WorldWideScience

Sample records for metal ion adsorbents

  1. Emission of positive oxygen ions from ion bombardment of adsorbate-covered metal surfaces

    International Nuclear Information System (INIS)

    Kaurin, M.G.

    1989-01-01

    During ion bombardment of metal surfaces, collision cascades can result in the emission of sputtered secondary ions. Recent experiments, however, have suggested that the emission of positive ions of electronegative adsorbates can result from electronic processes rather than from processes involving elastic collisions. This dissertation presents the results of experiments studying the emission of positive oxygen ions from oxygen- and carbon-monoxide-covered transition metal surfaces during bombardment by 25-250 keV ions of neon, argon, and krypton. The systems studied may be grouped into four categories. For a nickel substrate with adsorbed oxygen, the emission of positive oxygen ions proceeds through collision cascades. For titanium and niobium with adsorbed oxygen, the emission of positive oxygen ions is proportional to the primary ion velocity, consistent with emission from electronic processes; for a given primary ion velocity, the oxygen ion yield is independent of primary ion species. For substrates of molybdenum and tungsten, the oxygen yield is proportional to primary ion velocity, but the yield also depends on the primary ion species for a given primary ion velocity in a manner that is consistent with emission resulting from electronic processes. For these two groups, except for titanium, the yields during neon ion bombardment do not extrapolate (assuming linearity with primary ion velocity) to a nonzero value at zero beam velocity. The magnitude of the oxygen ion yields from these targets is not consistent with that expected if the emission were induced by secondary electrons emitted during the ion bombardment

  2. Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; a review.

    Science.gov (United States)

    Ahmad, Mudasir; Manzoor, Kaiser; Ikram, Saiqa

    2017-12-01

    The polyfunctional chitosan can act as the biological macromolecule ligand not only for the adsorption and the recovery of metal ions from an aqueous media, but also for the fabrication of novel adsorbents which shows selectivity and better adsorption properties. The unmodified chitosan itself, a single cationic polysaccharide, has hydroxyl and amine groups carrying complex properties with the metal ions. In addition, the selectivity of metal ions, the adsorption efficiency and adsorption capacity of the adsorbent can be modified chemically. This review covers the synthetic strategies of chitosan towards the synthesis of hetero-chitosan based adsorbents via chemical modifications in past two decades. It also includes how chemical modification influences the metal adsorption with N, O, S and P containing chitosan derivatives. Hope this review article provides an opportunity for researchers in the future to explore the potential of chitosan as an adsorbent for removal of metal ions from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Adsorption of Cd(II) Metal Ion on Adsorbent beads from Biomass Saccharomycess cereviceae - Chitosan

    Science.gov (United States)

    Hasri; Mudasir

    2018-01-01

    The adsorbent beads that was preparation from Saccharomycess cereviceae culture strain FN CC 3012 and shrimp shells waste and its application for adsorption of Cd (II) metal ion has been studied. The study start with combination of Saccharomycess cereviceae biomass to chitosan (Sc-Chi), contact time, pH of solution and initial concentration of cations. Total Cd(II) metal ion adsorbed was calculated from the difference of metal ion concentration before and after adsorption by AAS. The results showed that optimum condition for adsorption of Cd(II) ions by Sc-Chi beads was achieved with solution pH of 4, contact time of 60 minutes and initial concentration adsorption 100mg/L. The hydroxyl (-OH) and amino (-NH2) functional groups were believed to be responsible for the adsorption of Cd(II) ions.

  4. Theoretical investigation of the use of nanocages with an adsorbed halogen atom as anode materials in metal-ion batteries.

    Science.gov (United States)

    Razavi, Razieh; Abrishamifar, Seyyed Milad; Rajaei, Gholamreza Ebrahimzadeh; Kahkha, Mohammad Reza Rezaei; Najafi, Meysam

    2018-02-21

    The applicability of C 44 , B 22 N 22 , Ge 44 , and Al 22 P 22 nanocages, as well as variants of those nanocages with an adsorbed halogen atom, as high-performance anode materials in Li-ion, Na-ion, and K-ion batteries was investigated theoretically via density functional theory. The results obtained indicate that, among the nanocages with no adsorbed halogen atom, Al 22 P 22 would be the best candidate for a novel anode material for use in metal-ion batteries. Calculations also suggest that K-ion batteries which utilize these nanocages as anode materials would give better performance and would yield higher cell voltages than the corresponding Li-ion and Na-ion batteries with nanocage-based anodes. Also, the results for the nanocages with an adsorbed halogen atom imply that employing them as anode materials would lead to higher cell voltages and better metal-ion battery performance than if the nanocages with no adsorbed halogen atom were to be used as anode materials instead. Results further implied that nanocages with an adsorbed F atom would give higher cell voltages and better battery performance than nanocages with an adsorbed Cl or Br atom. We were ultimately able to conclude that a K-ion battery that utilized Al 21 P 22 with an adsorbed F atom as its anode material would afford the best metal-ion battery performance; we therefore propose this as a novel highly efficient metal-ion battery. Graphical abstract The results of a theoretical investigation indicated that Al 22 P 22 is a better candidate for a high-performance anode material in metal-ion batteries than Ge 44 is. Calculations also showed that K-ion batteries with nanocage-based anodes would produce higher cell voltages and perform better than the equivalent Li-ion and Na-ion batteries with nanocage-based anodes, and that anodes based on nanocages with an adsorbed F atom would perform better than anodes based on nanocages with an adsorbed Cl or Br atom.

  5. Facile preparation of highly hydrophilic, recyclable high-performance polyimide adsorbents for the removal of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jieyang; Zheng, Yaxin; Luo, Longbo; Feng, Yan [State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Zhang, Chaoliang [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Xu, E-mail: wx19861027@163.com [State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Liu, Xiangyang, E-mail: lxy6912@sina.com [State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2016-04-05

    Highlights: • High-performance polyimide was used as heavy metal adsorbents. • The contradiction between hydrophilicity and high performance of PI was solved. • Adsorption amount for Cu{sup 2+} of PI/silica was 77 times higher than that of PI. • The adsorption ability remained steady for more than 50 recycling processes. - Abstract: To obtain high-performance adsorbents that combine excellent adsorption ability, thermal stability, service life and recycling ability, polyimide (PI)/silica powders were prepared via a facile one-pot coprecipitation process. A benzimidazole unit was introduced into the PI backbone as the adsorption site. The benzimidazole unit induced more hydroxyls onto the silica, which provided hydrophilic sites for access by heavy metal ions. By comprehensively analyzing the effect of hydrophilcity, agglomeration, silica polycondensation, specific surface area and PI crystallinity, 10% was demonstrated to be the most proper feed silica content. The equilibrium adsorption amount (Q{sub e}) for Cu{sup 2+} of PI/silica adsorbents was 77 times higher than that of pure PI. Hydrogen chloride (HCl) was used as a desorbent for heavy metal ions and could be decomplexed with benzimidazole unit at around 300 °C, which was lower than the glass transition temperature of PI. The complexation and decomplexation process of HCl made PI/silica adsorbents recyclable, and the adsorption ability remained steady for more than 50 recycling processes. As PI/silica adsorbents possess excellent thermal stability, chemical resistance and radiation resistance and hydrophilicity, they have potential as superior recyclable adsorbents for collecting heavy metal ions from waste water in extreme environments.

  6. MODIFICATION OF KELUD VOLCANIC ASH 2014 AS SELECTIVE ADSORBENT MATERIAL FOR COPPER(II METAL ION

    Directory of Open Access Journals (Sweden)

    Susila Kristianingrum

    2017-01-01

      This research aims to prepare an adsorbent from Kelud volcanic ash for better Cu(II adsorption efficiency than Kiesel gel 60G E'Merck. Adsorbent synthesis was done by dissolving 6 grams of volcanic ash activated 700oC 4 hours and washed with HCl 0.1 M into 200 ml of 3M sodium hydroxide with stirring and heating of 100 °C for 1 hour. The filtrate sodium silicate was then neutralized using sulfuric acid. The mixture was allowed to stand for 24 hours then filtered and washed with aquaDM, then dried and crushed. The procedure is repeated for nitric acid, acetic acid and formic acid with a contact time of 24 hours. The products were then characterized using FTIR and XRD, subsequently determined acidity, moisture content, and tested for its adsorption of the ion Cu (II with AAS. The results showed that the type of acid that produced highest rendemen is AK-H2SO4-3M ie 36.93%, acidity of the adsorbent silica gel synthesized similar to Kiesel gel 60G E'Merck ie adsorbent AK-CH3COOH-3M and the water content of the silica gel adsorbent synthesized similar to Kiesel gel 60G E'Merck ie adsorbent AK-H2SO4-2 M. The character of the functional groups of silica gel synthesized all have similarities with Kiesel gel 60G E'Merck as a comparison. Qualitative analysis by XRD for all modified adsorbent showed a dominant peak of SiO2 except adsorbent AK-H2SO4 amorphous and chemical bonds with FTIR indicates that it has formed a bond of Si-O-Si and Si-OH. The optimum adsorption efficiency of the metal ions Cu(II obtained from AK-H2SO4-5M adsorbent that is equal to 93.2617% and the optimum adsorption capacity of the Cu(II metal ions was obtained from the adsorbent AK-CH3COOH-3M is equal to 2.4919 mg/ g.   Keywords: adsorbents, silica gel, adsorption, kelud volcanic ash

  7. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  8. Nanostructured Block Polymer Membranes as High Capacity Adsorbers for the Capture of Metal Ions from Water

    Science.gov (United States)

    Boudouris, Bryan; Weidman, Jacob; Mulvenna, Ryan; Phillip, William

    The efficient removal of metal ions from aqueous streams is of significant import in applications ranging from industrial waste treatment to the purification of drinking water. An emerging paradigm associated with this separation is one that utilizes membrane adsorbers as a means by which to bind metal salt contaminants. Here, we demonstrate that the casting of an A-B-C triblock polymer using the self-assembly and non-solvent induced phase separation (SNIPS) methodology results in a nanoporous membrane geometry. The nature of the triblock polymer affords an extremely high density of binding sites within the membrane. As such, we demonstrate that the membranes with binding capacities equal to that of state-of-the-art packed bed columns. Moreover, because the affinity of the C moiety can be tuned, highly selective binding events can occur based solely on the chemistry of the block polymer and the metal ions in solution (i.e., in a manner that is independent of the size of the metal ions). Due to these combined facts, these membranes efficiently remove heavy metal (e.g., lead- and cadmium-based) salts from contaminated water streams with greater than 95% efficiency. Finally, we show that the membranes can be regenerated through a simple treatment in order to provide long-lasting adsorber systems as well. Thus, it is anticipated that these nanostructured triblock polymer membranes are a platform by which to obtain next-generation water purification processes.

  9. Converting untreated waste office paper and chitosan into aerogel adsorbent for the removal of heavy metal ions.

    Science.gov (United States)

    Li, Zhanying; Shao, Lin; Ruan, Zehai; Hu, Wenbin; Lu, Lingbin; Chen, Yongjun

    2018-08-01

    The utilization of waste paper, an obsolete recyclable resource, helps to save resources and protect environment. In this paper, an aerogel was prepared to convert the waste paper into a useful material, which was used to adsorb heavy metal ions and handle water pollution. Combining waste office paper and chitosan, the aerogel obtained the enhanced mechanical strength, acid resistance and high adsorption capacity (up to 156.3 mg/g for Cu 2+ ). This adsorption process obeyed the pseudo-second order model and the Langmuir model. The research showed that a coordination compound was formed between amino group and Cu 2+ during the adsorption process. The adsorbent could be regenerated well in 0.1 M H 2 SO 4 with up to 98.3% desorption efficiency. The low cost, environmental friendliness, excellent adsorption capacity and regeneration ability made this novel aerogel a promising adsorbent for heavy metal ions. And this conversion is an effective reuse way of waste paper too. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Cellulose bearing Schiff base and carboxylic acid chelating groups: a low cost and green adsorbent for heavy metal ion removal from aqueous solution.

    Science.gov (United States)

    Saravanan, R; Ravikumar, L

    2016-10-01

    Chemically modified cellulose bearing metal binding sites like Schiff base and carboxylic acid groups was synthesized and characterized through Fourier transform infrared and solid state 13 C-nuclear magnetic resonance (NMR) analysis. The chemically modified cellulose (Cell-PA) adsorbent was examined for its metal ion uptake ability for Cu(II) and Pb(II) ions from aqueous solution. Kinetic and isotherm studies were carried out under optimum conditions. Pseudo-second-order kinetics and Langmuir isotherm fit well with the experimental data. Thermodynamic studies were also performed along with adsorption regeneration performance studies. The adsorbent (Cell-PA) shows high potential for the removal of Cu(II) and Pb(II) metal ions, and it shows antibacterial activity towards selected microorganisms.

  11. Synthesis of adsorbent from Tamarix hispida and modified by lanthanum metal for fluoride ions removal from wastewater: Adsorbent characteristics and real wastewater treatment data

    Directory of Open Access Journals (Sweden)

    Nasim Habibi

    2017-08-01

    Full Text Available This data article describes a facile method for production of an adsorbent from Tamarix hispida wasted wood and modified by lanthanum metal for fluoride ions removal from wastewater. The main characteristics of the adsorbent consist of BET surface area, functional groups, and elemental analysis is presented. The data for attenuating the pollutants from a real wastewater treatment which was provided from a glass factory is also represented. More than 90% of fluoride content of the real wastewater was treated by the adsorbent. Generally, these data would be informative for extend research aim to industrial wastewater treatment and those who work in the wastewater treatment plants.

  12. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    International Nuclear Information System (INIS)

    Madrid, Jordan F.; Ueki, Yuji; Seko, Noriaki

    2013-01-01

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu 2+ and Ni 2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu 2+ is four times higher than Ni 2+ ions. - Highlights: • An amine type adsorbent from abaca/polyester nonwoven fabric was synthesized. • Pre-irradiation method was used in grafting glycidyl methacrylate on nonwoven fabric. • Radiation-induced grafting was performed with monomer in emulsion state. • The calculated adsorption capacity for Cu 2+ is four times higher than Ni 2+ ions. • Grafted adsorbent can remove Cu 2+ faster than a chemically similar commercial resin

  13. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent.

    Science.gov (United States)

    Wang, Futao; Pan, Yuanfeng; Cai, Pingxiong; Guo, Tianxiang; Xiao, Huining

    2017-10-01

    A high efficient and eco-friendly sugarcane cellulose-based adsorbent was prepared in an attempt to remove Pb 2+ , Cu 2+ and Zn 2+ from aqueous solutions. The effects of initial concentration of heavy metal ions and temperature on the adsorption capacity of the bioadsorbent were investigated. The adsorption isotherms showed that the adsorption of Pb 2+ , Cu 2+ and Zn 2+ followed the Langmuir model and the maximum adsorptions were as high as 558.9, 446.2 and 363.3mg·g -1 , respectively, in single component system. The binary component system was better described with the competitive Langmuir isotherm model. The three dimensional sorption surface of binary component system demonstrated that the presence of Pb 2+ decreased the sorption of Cu 2+ , but the adsorption amount of other metal ions was not affected. The result from SEM-EDAX revealed that the adsorption of metal ions on bioadsorbent was mainly driven by coordination, ion exchange and electrostatic association. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Metal ion removal from aqueous solution using physic seed hull.

    Science.gov (United States)

    Mohammad, Masita; Maitra, Saikat; Ahmad, Naveed; Bustam, Azmi; Sen, T K; Dutta, Binay K

    2010-07-15

    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium. 2010 Elsevier B.V. All rights reserved.

  15. Coal and Zea mays cob waste as adsorbents for removal of metallic ...

    African Journals Online (AJOL)

    The efficiency of coal (CO) and Zea mays (ZM) cob adsorbents for the removal of metallic ions from wastewater is reported. The adsorbents were used in both their granular (GCO and GZM) and powdered (PCO and PZM) forms respectively. Chromium, nickel, iron and cadmium were used as model ions. Efficiency of the ...

  16. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    Science.gov (United States)

    Madrid, Jordan F.; Ueki, Yuji; Seko, Noriaki

    2013-09-01

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu2+ and Ni2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu2+ is four times higher than Ni2+ ions.

  17. Application of Local Adsorbant From Southeast Sulawesi Clay Immobilized Saccharomyces Cerevisiae Bread’s Yeast Biomass for Adsorption Of Mn(Ii) Metal Ion

    Science.gov (United States)

    R, Halimahtussaddiyah; Mashuni; Budiarni

    2017-05-01

    Southeast Sulawesi has a great stock of clay. It is probably to use as a source of adsorbent. The adsorbent capacity of clay can be largered with teratment using bread’s yeast as biomass. At this research, study of analysis adsorption of Mn(II) metal ion on clay immobilized Saccharomyces cerevisiae bread’s yeast biomass adsorbent has been conducted. The aims of this research were to determine the effects of contact time, pH and concentration of Mn(II) metal ion and to determine the adsorption capacity of clay immobilized S. cerevisiae biomass for adsorbtion of Mn(II) metal ion. Activated clay was synthesized by reaction of clay with KMnO4, H2SO4 and HCl. S. cerevisiae biomass was result by bread’s yeast mashed. Immobilization of S. cerevisiae biomass into clay was done by mixing of ratio of S. cerevisiae bread’s yeast biomass and clay equal to 1:3 (mass of biomassa : mass of clay). The adsorption capacity was determined by using Freundlich and Langmuir adsorption isoterms. The results of FTIR spectrums showed that the functional groups of clay immobilized S. cerevisiae biomass were Si-OH (wave number 1643 cm-1), Si-O-Si (wave number 1033 cm-1), N-H (wave number 2337 cm-1), O-H (wave number 3441cm-1), and C-H (wave number 2931 cm-1). The result of adsorption capacity from Mn(II) metal ion of contact time optimum 120 minutes, pH optimun at 7 and concentration optimum 50 mg/L were 1,816 mg/g; 0,509 mg/g and 2,624mg/g respectively. The adsorption capacity of Mn(II) metal ion with ratio 1:3 (biomass : clay) was 0,1045 mg/g. Type of isothermal adsorption followed the Freunlich adsorption.

  18. An Engineering Scale Study on Radiation Grafting of Polymeric Adsorbents for Recovery of Heavy Metal Ions from Seawater

    International Nuclear Information System (INIS)

    Prasad, Tl; Saxena, Ak; Tewari, Pk; Sathiyamoorthy, D

    2009-01-01

    The ocean contains around eighty elements of the periodic table and uranium is also one among them, with a uniform concentration of 3.3 ppb and a relative abundance factor of 23. With a large coastline, India has a large stake in exploiting the 4 billion tonnes of uranium locked in seawater. The development of radiation grafting techniques, which are useful in incorporating the required functional groups, has led to more efficient adsorbent preparations in various geometrical configurations. Separation based on a polymeric adsorbent is becoming an increasingly popular technique for the extraction of trace heavy metals from seawater. Radiation grafting has provided definite advantages over chemical grafting. Studies related to thermally bonded non woven porous polypropylene fiber sheet substrate characterization and parameters to incorporate specific groups such as acrylonitrile (AN) into polymer back bones have been investigated. The grafted polyacrylonitrile chains were chemically modified to convert acrylonitrile group into an amidoxime group, a chelating group responsible for heavy metal uptake from seawater/brine. The present work has been undertaken to concentrate heavy metal ions from lean solutions from constant potential sources only. A scheme was designed and developed for investigation of the recovery of heavy metal ions such as uranium and vanadium from seawater

  19. Electron-Stimulated Desorption of Positive Ions from Methanol Adsorbed on a Solid Ar Substrate

    Science.gov (United States)

    Kawanowa, H.; Hanatani, K.; Gotoh, Y.; Souda, R.

    Electron-stimulated desorption (ESD) of positive ions from weakly physisorbed molecules has been investigated. From methanol adsorbed on a solid Ar substrate, the protonated cluster ions of the type H+(CH3OH)n (n = 1 - 4) are emitted, together with the fragment ions such as CHn+ (n = 0 - 3), H3O+, CHO+, CH3O+, etc. The yields of these ions are markedly enhanced at the smallest coverage and decay steeply with increasing coverage. Coulomb explosion between valence holes confined in adsorbed nanoclusters is responsible for the enhanced ion yields. Very few ions except for H+ are emitted from a thick layer as well as nanoclusters adsorbed directly on a metal substrate due to the delocalization of valence holes.

  20. Chitosan-coated magnetite nanoparticles as adsorbent for the removal of molybdenum ions

    International Nuclear Information System (INIS)

    Sousa, Jose S.; Egute, Nayara S.; Yamaura, Mitiko; Freitas, Antonio A.; Holland, Helber; Lugao, Ademar B.

    2011-01-01

    Metal ions in wastewater, even at low concentrations, affect a large number of organisms due to their high degree of toxicity. Research has developed some alternative methods for metal removal from the wastewater, as adsorption using a bio sorbent of combined chitosan with magnetic particles. Chitosan is a natural bio polymer, which has a highly reactive active sites in its structure, composed of amino and hydroxyl groups with affinity to bind to metal ions. In this study, magnetic nanoparticles of coated magnetite with chitosan as an adsorbent of molybdenum(Vi) ions in aqueous medium was investigated. The adsorption experiments were performed varying the time contact from 5 to 150 min, the p H from 0.5 to 11 and the molybdenum concentrations in nitric solutions. All molybdenum analyses were carried out by gamma spectroscopy using a Hp Ge detector and 99 Mo as radioactive tracer. Results showed that the chitosan-coated magnetite particles are good adsorbent for Mo ions from aqueous medium in the range of p H from 0.5 to 9 with a removal higher than 99%. Among the studied isotherm models, the Freundlich model fitted best the equilibrium adsorption isotherm of Mo(VI) ions. (author)

  1. Engineering of microorganisms towards recovery of rare metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Kouichi; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences

    2010-06-15

    The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/ peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved. (orig.)

  2. Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory.

    Science.gov (United States)

    Sousa, Francisco W; Sousa, Marcelo James; Oliveira, Isadora R N; Oliveira, André G; Cavalcante, Rivelino M; Fechine, Pierre B A; Neto, Vicente O S; de Keukeleire, Denis; Nascimento, Ronaldo F

    2009-08-01

    In this study, sugar cane residue or bagasse was used for removal of toxic metal ions from wastewater of an electroplating factory located in northeast Brazil. Prior acid treatment increased the adsorption efficacies in batch wise experiments. The microstructure of the material before and after the treatment was investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Column operations showed that removals of Cu(2+), Ni(2+) and Zn(2+) from wastewater (in the absence of cyanide) were 95.5%, 96.3.0%, and 97.1%, respectively. Regeneration of the adsorbent obtained in acid indicated that the efficiencies decreased only after the fourth cycle of re-use. Acid-treated sugar cane bagasse can be considered a viable alternative to common methods to remove toxic metal ions from aqueous effluents of electroplating industries.

  3. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  4. Novel Fiber-Based Adsorbent Technology; FINAL

    International Nuclear Information System (INIS)

    Nixon, P.G.; Tsukamoto, T.; Brose, D.J.

    2001-01-01

    The overall of this Department of Energy (DOE) Phase II SBIR program was to develop a new class of highly robust fiber-based adsorbents for recovery of heavy metals from aqueous waste-streams. The fiber-based adsorbents,when commercialized,will be used for clean up metals in aqueous waste-streams emanating from DOE facilities,industry,mining,and groundwater-cleanup operations.The amount of toxic waste released by these streams is of great significance.The U.S.Environment Protection Agency (EPA) reports that in 1990 alone,4.8 billion pounds of toxic chemicals were released into the environment.Of this waste,the metals-containing waste was the second largest contributor,representing 569 million pounds. This report presents the results of the Phase II program,which successfully synthesized noval fiber-based adsorbents for the removal of Group 12 metals(i.e.mercury),Group 14 metals (lead),and Group 10 metals(platinum and palladium) from contaminated groundwater and industrial waste streams.These fiber-based adsorbents are ideally suited for the recovery of metal ions from aqueous waste streams presently not treatable due to the degrading nature of corrosive chemicals or radioactive components in the feed stream. The adsorbents developed in this program rely on chemically resistant and robust carbon fibers and fabrics as supports for metal-ion selective ligands.These adsorbents demonstrate loading capacities and selectivities for metal ions exceeding those of conventional ion-exchange resins.The adsorbents were also used to construct filter modules that demonstrate minimal fouling,minimal compaction,chemical and physical robustness,and regeneration of metal loading capacity without loss of performance

  5. Removal of Pb(II), Cu(II) and Cd(II) from aqueous solution by some fungi and natural adsorbents in single and multiple metal systems

    International Nuclear Information System (INIS)

    Shoaib, A.; Badar, T.; Aslam, N.

    2011-01-01

    Six fungal and 10 natural biosorbents were analyzed for their Cu(II), Cd(II) and Pb(II) uptake capacity from single, binary and ternary metal ion system. Preliminary screening biosorption of assays revealed 2 fungi (Aspergillus niger and Cunninghamella echinulata) and three natural [Cicer arietinum husk, Moringa oleifera flower and soil (clay)] adsorbents hold considerable high adsorption efficiency and capacity for 3 meta l ions amongst the adsorbents. Further biosorption trials with five elected adsorbents showed a considerable reduction in metal uptake capability of adsorbents in binary- and ternary systems as compared to singly metal system. Cd(II) manifested the highest inhibitory effect on the biosorption of other metal ions, followed by Pb(II) and Cu(II). On account of metal preference, the selectivity order for metal ion towards the studied biomass matrices was Pb(II) (40-90%) > Cd(II) (2-53%) > Cu(II) (2-30%). (author)

  6. Utilization of fish bone as adsorbent of Fe3+ ion by controllable removal of its carbonaceous component

    Science.gov (United States)

    Nurhadi, M.; Kusumawardani, R.; Widiyowati, I. I.; Wirhanuddin; Nur, H.

    2018-05-01

    The performance of fish bone to adsorb Fe3+ ion in solution was studied. Powdered fish bone and carbonized fish bone were used as adsorbent. All absorbents were characterized by X-ray diffraction (XRD), IR spectroscopy, nitrogen adsorption, scanning electron microscopy (SEM) and TG analysis. Powdered fish bone and carbonized fish bone were effective as adsorbent for removing Fe3+ ion in solution. The metal adsorptions of Fe3+ ion were 94 and 98% for powdered fish bone and fish bone which carbonized at 400 and 500 °C.

  7. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    Science.gov (United States)

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence.

  8. Eliminating Heavy Metals from Water with NanoSheet Minerals as Adsorbents

    Directory of Open Access Journals (Sweden)

    Shaoxian Song

    2017-12-01

    Full Text Available Heavy metals usually referred to those with atomic weights ranging from 63.5 to 200.6. Because of natural-mineral dissolution and human activities such as mining, pesticides, fertilizer, metal planting and batteries manufacture, etc., these heavy metals, including zinc, copper, mercury, lead, cadmium and chromium have been excessively released into water courses, like underground water, lake and river, etc. The ingestion of the heavy metals-contaminated water would raise serious health problems to human beings even at a low concentration. For instance, lead can bring human beings about barrier to the normal function of kidney, liver and reproductive system, while zinc can cause stomach cramps, skin irritations, vomiting and anemia. Mercury is a horrible neurotoxin that may result in damages to the central nervous system, dysfunction of pulmonary and kidney, chest and dyspnea. Chromium (VI has been proved can cause many diseases ranging from general skin irritation to severe lung carcinoma. Accordingly, the World Health Organization announced the maximum contaminant levels (MCL for the heavy metals in drinking water. There are numerous processes for eliminating heavy metals from water in order to provide citizens safe drinking water, including precipitation, adsorption, ion exchange, membrane separation and biological treatment, etc. Adsorption is considered as a potential process for deeply removing heavy metals, in which the selection of adsorbents plays a predominant role. Nano-sheet minerals as the adsorbents are currently the hottest researches in the field. They are obtained from layered minerals, such as montmorillonite, graphite and molybdenite, through the processing of intercalation, electrochemical and mechanical exfoliation, etc. Nano-sheet minerals are featured by their large specific surface area, relatively low costs and active adsorbing sites, leading to be effective and potential adsorbents for heavy metals removal from water

  9. Adsorption of heavy metal ions on molybdenum and molybdenum trioxide from dilute aqueous solution

    International Nuclear Information System (INIS)

    Utsunomiya, Taizo; Hoshino, Yoshio; Sakabe, Ken-ichi

    1984-01-01

    The adsorption of heavy metal ions such as Co(II), Cu(II) and Pb(II) on molybdenum powder has been investigated by the batch technique as a function of soaking time, concentration of heavy metal ions and coexisting salts, pH etc. Molybdenum trioxide was also used as an adsorbent for a comparison to discuss the adsorption mechanism. The amount of these heavy metal ions adsorbed was highly pH and coexisting salts dependent. These adsorbents have features of selective adsorption for Pb(II) and large adsorption rate. The adsorption of heavy metal ions on these adsorbents proceeds independently or concurrently by following complex mechanism; (1) cation exchange reaction by hydroxyl radical on the surface of Mo and MoO 3 is predominant for most of heavy metal ions except Pb(II) [Co(II), Mn(II), Fe(III), Ni(II), Zn(II), Cd(II) and Sr(II)], (2) reduction (electron exchange reaction) to low ionic or metallic state after cation exchange reaction [Cu(II) and Ag(I) on Mo] and (3) formation of a compound [Pb(II) on both Mo and MoO 3 ]. (author)

  10. Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents

    Directory of Open Access Journals (Sweden)

    Jin Hur

    2015-01-01

    Full Text Available Competitive adsorption isotherms of Cu(II, Pb(II, and Cd(II were examined on a magnetic graphene oxide (GO, multiwalled carbon nanotubes (MWCNTs, and powered activated carbon (PAC. A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II > Cu(II > Cd(II, which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO > MWCNT > PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation.

  11. Preparation and properties of a novel macro porous Ni2+-imprinted chitosan foam adsorbents for adsorption of nickel ions from aqueous solution.

    Science.gov (United States)

    Guo, Na; Su, Shi-Jun; Liao, Bing; Ding, Sang-Lan; Sun, Wei-Yi

    2017-06-01

    In this study, novel macro porous Ni 2+ -imprinted chitosan foam adsorbents (F-IIP) were prepared using sodium bicarbonate and glycerine to obtain a porogen for adsorbing nickel ions from aqueous solutions. The use of the ion-imprinting technique for adsorbents preparation improved the nickel ion selectivity and adsorption capacity. We characterised the imprinted porous foam adsorbents in terms of the effects of the initial pH value, initial metal ion concentration, and contact time on the adsorption of nickel ions. The adsorption process was described best by Langmuir monolayer adsorption models, and the maximum adsorption capacity calculated from the Langmuir equation was 69.93mgg -1 . The kinetic data could be fitted to a pseudo-second-order equation. Our analysis of selective adsorption demonstrated the excellent preference of the F-IIP foams for nickel ions compared with other coexisting metal ions. Furthermore, tests over five cycle runs suggested that the F-IIP foam adsorbents had good durability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Graft copolymerization of polystyrene onto chitosan congress as an adsorbent for the removal of heavy metal ions

    International Nuclear Information System (INIS)

    Dela Mines, Remedel D.; Muncal, Danilet Vi A.

    2013-01-01

    Chitosan is primarily composed of glucosamine, 2-amino-2-deoxy-β-D-glucose. Chitosan has different types of reactive functional groups. Both hydroxyl and amino groups are possible sites for the reaction to incorporate new and desired functional groups. By modification of these groups various materials for different field of application can be achieved. Chitosan has been used as adsorbent for the removal of heavy metal ions from aqueous solution through adsorption process. Properties of chitosan, such as solubility, mechanical stability and adsorption compatibility, are enhanced by grafting. In this study, chitosan was graft copolymerized with polystyrene for wastewater treatment and evaluated its effectiveness in removing toxic heavy metals by adsorption. Chitosan-graft-polystyrene was characterized by FTIR spectroscopy, and SEM. Adsorption study of the copolymer is carried out as a function of adsorbent dose, pH, and contact time. Residual concentration was measured by Atomic Absorption Spectroscopy. To get an insight of the rate of adsorption and the rate limiting step of the transport mechanism, kinetic analysis was utilized. Langmuir equation/isotherm was used for proper quantification of the sorption equilibrium in the bio sorption process (author)

  13. Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics.

    Science.gov (United States)

    Verbinnen, Bram; Block, Chantal; Van Caneghem, Jo; Vandecasteele, Carlo

    2015-11-01

    Spent adsorbents for oxyanion forming elements and heavy metals are classified as hazardous materials and they are typically treated by stabilization/solidification before landfilling. The use of lime or cement for stabilization/solidification entails a high environmental impact and landfilling costs are high. This paper shows that mixing spent adsorbents in the raw material for the production of ceramic materials is a valuable alternative to stabilize oxyanion forming elements and heavy metals. The produced ceramics can be used as construction material, avoiding the high economic and environmental impact of stabilization/solidification followed by landfilling. To study the stabilization of oxyanion forming elements and heavy metals during the production process, two series of experiments were performed. In the first series of experiments, the main pollutant, Mo was adsorbed onto iron-based adsorbents, which were then mixed with industrial sludge (3 w/w%) and heated at 1100°C for 30 min. Mo was chosen, as this element is easily adsorbed onto iron-based adsorbents and it is the element that is the most difficult to stabilize (i.e. the highest temperatures need to be reached before the concentrations in the leachate are reduced). Leaching concentration from the 97/3 sludge/adsorbent mixture before heating ranged between 85 and 154 mg/kg; after the heating process they were reduced to 0.42-1.48 mg/kg. Mo was actually stabilized, as the total Mo concentration after addition was not affected by the heat treatment. In the second series of experiments, the sludge was spiked with other heavy metals and oxyanion forming elements (Cr, Ni, Cu, Zn, As, Cd and Pb) in concentrations 5 times higher than the initial concentrations; after heat treatment the leachate concentrations were below the regulatory limit values. The incorporation of spent adsorbents in ceramic materials is a valuable and sustainable alternative to the existing treatment methods, saving raw materials in the

  14. Layered Double Hydroxides as Effective Adsorbents for U(VI and Toxic Heavy Metals Removal from Aqueous Media

    Directory of Open Access Journals (Sweden)

    G. N. Pshinko

    2013-01-01

    Full Text Available Capacities of different synthesized Zn,Al-hydrotalcite-like adsorbents, including the initial carbonate [Zn4Al2(OH12]·CO3·8H2O and its forms intercalated with chelating agents (ethylenediaminetetraacetic acid (EDTA, diethylenetriaminepentaacetic acid (DTPA, and hexamethylenediaminetetraacetic acid (HMDTA and heat-treated form Zn4Al2O7, to adsorb uranium(VI and ions of toxic heavy metals have been compared. Metal sorption capacities of hydrotalcite-like adsorbents have been shown to correlate with the stability of their complexes with the mentioned chelating agents in a solution. The synthesized layered double hydroxides (LDHs containing chelating agents in the interlayer space are rather efficient for sorption purification of aqueous media free from U(VI irrespective of its forms of natural abundance (including water-soluble bi- and tricarbonate forms and from heavy metal ions. [Zn4Al2(OH12]·EDTA·nH2O is recommended for practical application as one of the most efficient and inexpensive synthetic adsorbents designed for recovery of both cationic and particularly important anionic forms of U(VI and other heavy metals from aqueous media. Carbonate forms of LDHs turned out to be most efficient for recovery of Cu(II from aqueous media with pH0≥7 owing to precipitation of Cu(II basic carbonates and Cu(II hydroxides. Chromate ions are efficiently adsorbed from water only by calcinated forms of LDHs.

  15. Adsorption Studies of Heavy Metals by Low-Cost Adsorbents | Okoli ...

    African Journals Online (AJOL)

    In this study, removal of toxic metals Cr(VI) from artificially contaminated water has been investigated with the aim of detoxifying industrial effluents before their safe disposal onto land or into the river. Two low-cost natural adsorbents, Palm Kernel fiber and Coconut husks, were used to remove Cr(VI) ion from synthesized ...

  16. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Motojima, K.; Kawamura, F.

    1984-01-01

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  17. Removal of adsorbent particles od copper ions by Jet flotation

    International Nuclear Information System (INIS)

    Santander, M.; Tapia, P.; Pavez, O.; Valderrama, L.; Guzman, D.

    2009-01-01

    The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbents containing the absorbed copper ions. The results indicate the at pH>7 and at adsorbent particles concentration of 2 kg.m - 3, 99% of copper ions is adsorbed and, when the air/effluent flow ratio applied in the Jet cell is 0,2, 98% of absorbent particles containing the adsorbed copper ions is removed. (Author) 39 refs.

  18. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls.

    Science.gov (United States)

    Rao, M Madhava; Ramana, D K; Seshaiah, K; Wang, M C; Chien, S W Chang

    2009-07-30

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g(-1) for Pb(II), 21.2 mg g(-1) for Zn(II), 19.5 mg g(-1) for Cu(II), and 15.7 mg g(-1) for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  19. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls

    International Nuclear Information System (INIS)

    Rao, M. Madhava; Ramana, D.K.; Seshaiah, K.; Wang, M.C.; Chien, S.W. Chang

    2009-01-01

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g -1 for Pb(II), 21.2 mg g -1 for Zn(II), 19.5 mg g -1 for Cu(II), and 15.7 mg g -1 for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  20. Metal Adsorbent Prepared from Poly(Methyl Acrylate)-Grafted Cassava Starch via Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suwanmala, P; Hemvichian, K; Srinuttrakul, W [Nuclear Research and Development Group, Thailand Institute of Nuclear Technology, Bangkok (Thailand)

    2012-09-15

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, %Dg = 191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum conditions: in a mixture solution of 20% HA (w/v) and methanol solution (methanol:H{sub 2}O = 5:1) 300 mL, pH 13, reaction time 2 h, and 20 g of grafted copolymer. The adsorbent was characterized by FTIR, TGA, and DSC. The presence of electron donating groups in adsorbent containing hydroxamic acid groups gives the ability to form polycomplexes with metal ions. The ability of the adsorbent to adsorb various metals was investigated in order to evaluate the possibility of its use in metal adsorption. The adsorbent exhibited a remarkable % adsorption for Cd{sup 2+}, Al{sup 3+}, UO{sub 2} {sup 2+}, V{sup 5+} and Pb{sup 2+} at pH 3, 4, 5, 4, and 3, respectively. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15, and 1.6 mmol/g adsorbent for Cd{sup 2+}, Al{sup 3+}, UO{sub 2} {sup 2+}, V{sup 5+} and Pb{sup 2+}, respectively, in the batch mode adsorption. (author)

  1. An eco-friendly approach for heavy metal adsorbent regeneration using CO2-responsive molecular octopus.

    Science.gov (United States)

    Bai, Yu; Liang, Yen Nan; Hu, Xiao

    2017-10-01

    Perennial problems of adsorption in wastewater treatment include adsorbent recycling, generation of waste sludge and secondary pollution because harmful concentrated acids, bases or strong chelators are often used for adsorbent regeneration and adsorbate recovery. We report, for the first time, an eco-friendly regeneration concept demonstrated with a CO 2 -responsive octopus-like polymeric adsorbent. Various heavy metals can be scavenged at very high Q e by such adsorbent through coordination. Most importantly, the rapid and complete regeneration of the adsorbent and recovery of the heavy metal ions can be readily achieved by CO 2 bubbling within a few minutes under mild conditions, i.e., room temperature and atmospheric pressure. The adsorbent can then be restored to its adsorptive state and reused upon removal of CO 2 by simply bubbling another gas. This eco-friendly, effective, ultra-fast and repeatable CO 2 -triggered regeneration process using CO 2 -responsive adsorbent with versatile structure, morphology or form can be incorporated into a sustainable closed-loop wastewater treatment process to solve the perennial problems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Adsorption of heavy metal ions by sawdust of deciduous trees

    International Nuclear Information System (INIS)

    Bozic, D.; Stankovic, V.; Gorgievski, M.; Bogdanovic, G.; Kovacevic, R.

    2009-01-01

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g -1 of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu 2+ ions but it is very low for Fe 2+ ions, not exceeding 10%.

  3. Cooperative adsorption of critical metal ions using archaeal poly-γ-glutamate.

    Science.gov (United States)

    Hakumai, Yuichi; Oike, Shota; Shibata, Yuka; Ashiuchi, Makoto

    2016-06-01

    Antimony, beryllium, chromium, cobalt (Co), gallium (Ga), germanium, indium (In), lithium, niobium, tantalum, the platinoids, the rare-earth elements (including dysprosium, Dy), and tungsten are generally regarded to be critical (rare) metals, and the ions of some of these metals are stabilized in acidic solutions. We examined the adsorption capacities of three water-soluble functional polymers, namely archaeal poly-γ-glutamate (L-PGA), polyacrylate (PAC), and polyvinyl alcohol (PVA), for six valuable metal ions (Co(2+), Ni(2+), Mn(2+), Ga(3+), In(3+), and Dy(3+)). All three polymers showed apparently little or no capacity for divalent cations, whereas L-PGA and PAC showed the potential to adsorb trivalent cations, implying the beneficial valence-dependent selectivity of anionic polyelectrolytes with multiple carboxylates for metal ions. PVA did not adsorb metal ions, indicating that the crucial role played by carboxyl groups in the adsorption of crucial metal ions cannot be replaced by hydroxyl groups under the conditions. In addition, equilibrium studies using the non-ideal competitive adsorption model indicated that the potential for L-PGA to be used for the removal (or collection) of water-soluble critical metal ions (e.g., Ga(3+), In(3+), and Dy(3+)) was far superior to that of any other industrially-versatile PAC materials.

  4. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review

    Science.gov (United States)

    Malik, D. S.; Jain, C. K.; Yadav, Anuj K.

    2017-09-01

    Heavy metal pollution is a major problems in the environment. The impact of toxic metal ions can be minimized by different technologies, viz., chemical precipitation, membrane filtration, oxidation, reverse osmosis, flotation and adsorption. But among them, adsorption was found to be very efficient and common due to the low concentration of metal uptake and economically feasible properties. Cellulosic materials are of low cost and widely used, and very promising for the future. These are available in abundant quantity, are cheap and have low or little economic value. Different forms of cellulosic materials are used as adsorbents such as fibers, leaves, roots, shells, barks, husks, stems and seed as well as other parts also. Natural and modified types of cellulosic materials are used in different metal detoxifications in water and wastewater. In this review paper, the most common and recent materials are reviewed as cellulosic low-cost adsorbents. The elemental properties of cellulosic materials are also discussed along with their cellulose, hemicelluloses and lignin contents.

  5. Adsorption of metal ions and acid dyes on brewer's refuse and its crosslinked products; Biru shikomikasu oyobi sono kashikaketai ni taisuru kinzoku ion oyobi sansei senryo no kyuchaku

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Kubota, Y.; Higashimura, T. [The University of Shiga Prefecture, Shiga (Japan). Department of Materials Sceince; Kawaguchi, M. [Seisui Kogyo Ltd., Osaka (Japan)

    2000-01-10

    To use brewer's refuse as adsorbent adsorption of metal ions and acid dyes on them and their reaction products with 1,3,5-triacryloylhexahydro-1,3,5-triazine(TAF) were examined. The refuse samples used in the present study are protein rich fraction(Pr) and cellulosics rich fraction(Hr) obtained by sifting brewer's refuse. Adsorptive experiments were conducted by a batchwise method at 303 K. Pr adsorbed more metal ions such as Cr{sup 6+}, Ni{sup 2+}, Co{sup 2+}, especially Fe{sup 3+}, Hg{sup 2+} and Cu{sup 2+} than Hr. But both refuses hardly adsorbed Ca{sup 2+}. Also Pr adsorbed more acid dyes, especially more hydrophobic C. I. Acid Red 88 than C. I. Acid Orange 7- than Hr at pH 5. By crosslinking Pr and Hr using TAF adsorption of acid dyes increased markedly, but adsorption of metal ions decreased. Therefore Pr can be used as adsorbent for acid dyes and metal ions as it is. Moreover the crosslinked products are excellent adsorbents for acid dyes. (author)

  6. Adsorbent for metal ions and method of making and using

    Science.gov (United States)

    White, L.R.; Lundquist, S.H.

    1999-08-10

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions. 2 figs.

  7. Equilibrium and kinetics studies of metal ion adsorption on dyed ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... Initial concentration of Cu(II) ions = 20 mg/l, adsorbent dose = 1.0 g. Table 2 Experiment Data of ... diffusivity of the metal ion would be independent of the extent of sorption .... exchange and adsorption. Equilibrium parameter.

  8. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  9. Functionalized nanostructured silica by tetradentate-amine chelating ligand as efficient heavy metals adsorbent : Applications to industrial effluent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shahbazi, Afsaneh [Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Younesi, Habibollah [Tarbiat Modares University, Noor (Iran, Islamic Republic of); Badiei, Alireza [University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Organofunctionalized nanostructured silica SBA-15 with tri(2-aminoethyl)amine tetradentate-amine ligand was synthesized and applied as adsorbent for the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from both synthetic wastewater and real paper mill and electroplating industrial effluents. The prepared materials were characterized by XRD, N{sub 2} adsorption-desorption, TGA, and FT-IR analysis. The Tren-SBA-15 was found to be a fast adsorbent for heavy metal ions from single solution with affinity for Cu{sup 2+}, Pb{sup 2+}, than for Cd{sup 2+} due to the complicated impacts of metal ion electronegativity. The kinetic rate constant decreased with increasing metal ion concentration due to increasing of ion repulsion force. The equilibrium batch experimental data is well described by the Langmuir isotherm. The maximum adsorption capacity was 1.85 mmol g{sup -1} for Cu{sup 2+}, 1.34 mmol g{sup -1} for Pb{sup 2+}, and 1.08 mmol g{sup -1} for Cd{sup 2+} at the optimized adsorption conditions (pH=4, T=323 K, t=2 h, C0=3 mmol L{sup -1}, and adsorbent dose=1 g L{sup -1}). All Gibbs energy was negative as expected for spontaneous interactions, and the positive entropic values from 103.7 to 138.7 J mol{sup -1} K{sup -1} also reinforced this favorable adsorption process in heterogeneous system. Experiment with real wastewaters showed that approximately a half fraction of the total amount of studied metal ions was removed within the first cycle of adsorption. Hence, desorption experiments were performed by 0.3M HCl eluent, and Tren-SBA-15 successfully reused for four adsorption/desorption cycles to complete removal of metal ions from real effluents. The regenerated Tren-SBA-15 displayed almost similar adsorption capacity of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} even after four recycles. The results suggest that Tren-SBA-15 is a good candidate as an adsorbent in the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from aqueous solutions.

  10. Synthesis and Characterization of Allophane-Like as Chromium (Cr) Ion Adsorbent

    Science.gov (United States)

    Pranoto; Purnawan, C.; Husnina, A. N.

    2018-03-01

    The synthesis and characterization of allophane-like as chrom (Cr) ion adsorbent has been studied. The objectives of this study is to determine the characteristics of allophane-like and determine ratio of Al/Si, chromium solution pH, and contact time to get the best decreasing metal ion chrom (Cr) adsorption condition. The study was conducted with the ratio of Al/Si ratios 0.5; 0.75; 1.0; 1.25 and 1.5 from Tetraetyl Orthosilicate (TEOS) solution and Aluminium Nitrate Nonahydrate [Al(NO3)3.9H2O] in pH 3-4. The result of synthetic was characterized on functional groups and cristallinity. Experiment of adsorption ability using variation of Cr solution pH 3-7, contact time 30, 60, 90 and 120 minutes with batch method. The results by FTIR shows that functional groups-OH, the asymmetry groups O-Si-O or O-Al-O, relatively weak absorption which stronger then the presence of OH and bending vibration Si-O or Al-O on allophane-like. The best conditions of chromium metal adsorption with adsorbent allophane-like was obtained at pH 5, contact time 90 minutes, and the ratio Al/Si 1.5. Types of adsorption in this study follows Freundlich and Langmuir isotherm.

  11. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced...... and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  12. The synthesis of a new type adsorbent for the removal of toxic gas by radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Okamoto, Jiro; Sugo, Takanobu

    1990-01-01

    A new type of adsorbent containing sulfuric acid group for the removal of ammonia gas was synthesized by radiation-induced graft polymerization of styrene onto fibrous and nonwoven type polypropylene followed by sulufonation with chlorosulfonic acid. The rate of the adsorption of ammonia gas by H-type adsorbent is independent of the ion-exchange capacity. The amount of ammonia gas adsorbed by the chemical adsorption was dependent on the ion-exchange capacity of H-type fibrous adsorbent and was kept constant value in spite of the equilibrium pressure of ammonia gas. Cu(II)- and Ni(II)-types fibrous adsorbent were prepared by the ion exchange reaction of Na-type fibrous adsorbent with metal nitrate solutions. Although, the rate of adsorption of ammonia gas by metal-type fibrous adsorbent is lower than that of H-type adsorbent, the amount of ammonia gas adsorbed increases compared to H-type adsorbent with the same ion exchange capacity. It was related to the highest coordination number of metal ion. The ratio of the number of ammonia molecules adsorbed chemically and the number of metal ion adsorbed in fibrous adsorbent was 4 for Cu-type and 6 for Ni-type fibrous adsorbent, respectively. (author)

  13. Adsorption of heavy metals ions on portulaca oleracea plants

    International Nuclear Information System (INIS)

    Naqvi, R.R.

    2005-01-01

    The aim of this study is to report the ability of portulaca oleracea (Fershi in Urdu) biomass grown in uncontaminated soils to adsorb or uptake lead, cadmium, arsenic, cobalt and copper from aqueous solutions. In order to help understand the metal binding mechanism, laboratory experiments performance to determine optimal binding, and binding capacity for each of the above mentioned metals. These experiments were carried out for the mass of crushed portulaca stems. Portulaca is a plant that grows abundantly in temperature climate in the area of Quetta Balochistan. It has reddish stem and thick succulent leaves. This plant has been found to be good adsorbent for heavy metals ions. (author)

  14. Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: Behaviours and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Shuangyou; Li, Kai; Ning, Ping [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, YunNan, KunMing, 650500 (China); Peng, Jinhui [Faculty of Metallurgical and Energy, Kunming University of Science and Technology, YunNan, KunMing 650500 (China); Jin, Xu [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, YunNan, KunMing, 650500 (China); Tang, Lihong, E-mail: luckyman@163.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, YunNan, KunMing, 650500 (China)

    2017-01-30

    Highlights: • Highly effective removal of Hg(II) and Pb(II) ions from wastewater. • This adsorbent had multiple adsorption sites (sulfur and amine sites) on the surface. • This adsorbent had better tolerance to low pH for removal of Hg(II). • This new hybrid material was much cheaper and no secondary pollution. • This adsorbent shows notable advantages including easy separation and recyclability. - Abstract: A novel hybrid material was fabricated using mercaptoamine-functionalised silica-coated magnetic nanoparticles (MAF-SCMNPs) and was effective in the extraction and recovery of mercury and lead ions from wastewater. The properties of this new magnetic material were explored using various characterisation and analysis methods. Adsorbent amounts, pH levels and initial concentrations were optimised to improve removal efficiency. Additionally, kinetics, thermodynamics and adsorption isotherms were investigated to determine the mechanism by which the fabricated MAF-SCMNPs adsorb heavy metal ions. The results revealed that MAF-SCMNPs were acid-resistant. Sorption likely occurred by chelation through the amine group and ion exchange between heavy metal ions and thiol functional groups on the nanoadsorbent surface. The equilibrium was attained within 120 min, and the adsorption kinetics showed pseudo-second-order (R{sup 2} > 0.99). The mercury and lead adsorption isotherms were in agreement with the Freundlich model, displaying maximum adsorption capacities of 355 and 292 mg/g, respectively. The maximum adsorptions took place at pH 5–6 and 6–7 for Hg(II) and Pb(II), respectively. The maximum adsorptions were observed at 10 mg and 12 mg adsorbent quantities for Hg(II) and Pb(II), respectively. The adsorption process was endothermic and spontaneous within the temperature range of 298–318 K. This work demonstrates a unique magnetic nano-adsorbent for the removal of Hg(II) and Pb(II) from wastewater.

  15. Utilization of cross-linked carboxymethyl κ-carrageenan as adsorbent for hexavalent chromium (Cr+6) ion

    International Nuclear Information System (INIS)

    Antonio, Princess Joyce R.; Punzalan, Mark Emile H.; Saturno, Rochelle Anne B.; Bayquen, Aristea V.

    2009-01-01

    The sorption behavior of cross-linked carboxymethyl κ-carrageenan as an alternative adsorbent for hexavalent chromium was studies. The κ-carrageenan had been carboxymethylated three times with 40% NaOH and monochloroacetic acid (MCA) in 80% isopropyl alcohol at 40 0 C. Carboxymethylated κ-carrageenan was crosslinked using Co 60 irradiation facility at PNRI. Batch experiments were conducted using prepared stock solution of Cr 6+ (70 ppm) under different sorption parameters at room temperature. These parameters include effects of pH, initial metal ion concentration, and contact time. Carboxymethylation and cross-linking was successfully achieved under optimum parameters. It was observed that cross-linked carboxymethyl κ-carrageenan best adsorbs chromium (VI) ion at pH 6, removing 41.59% of the metal ions present in the solution. Freundlich isotherm gave the highest correlation, R 2 , which is equal to 0.9880. This suggests the existence of mutilayer adsorption of the hexavalent chromium ions. Maximum adsorption was found to be at contact time of 2.5 hours and the concentration of the solution remains almost constant after 5 hours. The adsorption kinetics could be approximated favorably by the Lagergren pseudo-second-order kinetic model giving a correlation, R 2 , of 0.9985 and adsorption capacity, qmax, equal to 27.88 mg g +1 . (author)

  16. Combination of sawdust from teak wood and rice husk activated carbon as adsorbent of Pb(II) ion and its analysis using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Saputro, S.; Mahardiani, L.; Wulandari, D. A.

    2018-03-01

    This research aimed to know the usage of sawdust of teak wood and rice husk waste as Pb (II) ion adsorbents in simulated liquid waste, the combined optimum mass required adsorbent to adsorb Pb(II) ion, the sensitivity of the solid-phase spectrophotometry (sps) method in determining the decrease of Pb (II) metal ion levels in the μg/L level. This research was conducted by experimental method in laboratory. Adsorbents used in this study were charcoal of sawdust sawdust activated using 15% ZnCl2 solution and activated rice husk using 2 N NaOH solution. The adsorption processes of sawdust and rice husk with Pb(II) solution was done by variation of mass combination with a ratio of 1: 0; 0: 1; 1: 1; 1: 2; and 2: 1. Analysis of Pb(II) ion concentration using SPS and characterization of sawdust and rice husk adsorbent ads using FTIR. The results showed that activated charcoal from sawdust of teak wood and rice husks can be used as Pb (II) metal ion adsorbents with adsorption capacity of 0.86 μg/L, charcoal from sawdust of teak wood and rice husk adsorbent with a combination of optimum mass contact of sawdust and rice husk is 2:1 as much as 3 grams can adsorb 42.80 μg/L. Solid-phase spectophotometry is a sensitive method for analysis of concentration decreasing levels of Pb(II) ion, after it was absorbed by sawdust of teak wood and rice husk with high sensitivity and has the limit of detection (LOD) of 0.06 μg/L.

  17. Studies on adsorptions of metallic ions in water by zirconium glyphosate (ZrGP): Behaviors and mechanisms

    International Nuclear Information System (INIS)

    Jia Yunjie; Zhang Yuejuan; Wang Runwei; Fan Faying; Xu Qinghong

    2012-01-01

    A new adsorbent named zirconium glyphosate [Zr(O 3 PCH 2 NHCH 2 COOH) 2 ·0.5H 2 O, denoted as ZrGP] and its selective adsorptions to Pb 2+ , Cd 2+ , Mg 2+ and Ca 2+ ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO 4 ) 2 ], ZrGP exhibited highly selective adsorption to Pb 2+ in solution which contained Pb 2+ , Cd 2+ , Mg 2+ and Ca 2+ ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg 2+ and Ca 2+ were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.

  18. Gamma radiation-polymerized methacrylates used as heavy metals adsorbents

    International Nuclear Information System (INIS)

    Barrera D, C.; Roa M, G.; Balderas H, P.; Bilyeu, B.; Urena N, F.

    2009-01-01

    Heavy metal removal from aqueous solution is a priority research area since the actual methods are costly and a major drawback is the large amounts of sludge generated when applying traditional techniques. Adsorption is a physiochemical wastewater treatment process, which is gaining prominence as a means of producing high quality effluents, which are low in metal ion concentrations. The development of inexpensive adsorbents for the treatment of wastewater is an important area in environmental sciences. In this work we describe some of the physical and chemical phenomena that take place in the polymerization of methacrylates when gamma radiation is used. We explain how polymeric material characterization equipment are used for obtaining information regarding the material properties. Then we explain how the new polymeric material obtained can be use for the wastewater treatment. Finally, a comparison in the heavy metal removal from aqueous solution with other sorbent materials is presented. (Author)

  19. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    Science.gov (United States)

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  20. Mesoporous magnetic secondary nanostructures as versatile adsorbent for efficient scavenging of heavy metals

    Science.gov (United States)

    Bhattacharya, Kakoli; Parasar, Devaborniny; Mondal, Bholanath; Deb, Pritam

    2015-01-01

    Porous magnetic secondary nanostructures exhibit high surface area because of the presence of plentiful interparticle spaces or pores. Mesoporous Fe3O4 secondary nanostructures (MFSNs) have been studied here as versatile adsorbent for heavy metal scavenging. The porosity combined with magnetic functionality of the secondary nanostructures has facilitated efficient heavy metal (As, Cu and Cd) remediation from water solution within a short period of contact time. It is because of the larger surface area of MFSNs due to the porous network in addition to primary nanostructures which provides abundant adsorption sites facilitating high adsorption of the heavy metal ions. The brilliance of adsorption property of MFSNs has been realized through comprehensive adsorption studies and detailed kinetics. Due to their larger dimension, MFSNs help in overcoming the Brownian motion which facilitates easy separation of the metal ion sorbed secondary nanostructures and also do not get drained out during filtration, thus providing pure water. PMID:26602613

  1. Adsorption of heavy metals from aqueous solutions by Mg-Al-Zn mingled oxides adsorbent.

    Science.gov (United States)

    El-Sayed, Mona; Eshaq, Gh; ElMetwally, A E

    2016-10-01

    In our study, Mg-Al-Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg-Al-Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N 2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg-Al-Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g -1 , and 70.4 mg g -1 , respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, q max , obtained was 113.8 mg g -1 , and 79.4 mg g -1 for Co(II), and Ni(II), respectively. Our results showed that Mg-Al-Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.

  2. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis

    International Nuclear Information System (INIS)

    Kılıç, Murat; Kırbıyık, Çisem; Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-01-01

    Bio-char, a by-product of almond shell pyrolysis, was used as an alternative adsorbent precursor for the removal of heavy metal ions from aqueous solutions. The adsorption potential of almond shell bio-char for Ni(II) and Co(II) removal was investigated. Adsorption experiments were carried out by varying pH, adsorbent dosage, initial metal ion concentrations, contact time and temperature to determine the optimum conditions. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin–Radushkevich (D–R) and Temkin isotherm models. Pseudo-first order, pseudo-second order, and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The results showed that bio-char derived from pyrolysis of biomass can be used as a low-cost and effective adsorbent for removal of heavy metal ions from aqueous solutions.

  3. Waste metal hydroxide sludge as adsorbent for a reactive dye.

    Science.gov (United States)

    Santos, Sílvia C R; Vílar, Vítor J P; Boaventura, Rui A R

    2008-05-30

    An industrial waste sludge mainly composed by metal hydroxides was used as a low-cost adsorbent for removing a reactive textile dye (Remazol Brilliant Blue) in solution. Characterization of this waste material included chemical composition, pH(ZPC) determination, particle size distribution, physical textural properties and metals mobility under different pH conditions. Dye adsorption equilibrium isotherms were determined at 25 and 35 degrees C and pH of 4, 7 and 10 revealing reasonably fits to Langmuir and Freundlich models. At 25 degrees C and pH 7, Langmuir fit indicates a maximum adsorption capacity of 91.0mg/g. An adsorptive ion-exchange mechanism was identified from desorption studies. Batch kinetic experiments were also conducted at different initial dye concentration, temperature, adsorbent dosage and pH. A pseudo-second-order model showed good agreement with experimental data. LDF approximation model was used to estimate homogeneous solid diffusion coefficients and the effective pore diffusivities. Additionally, a simulated real effluent containing the selected dye, salts and dyeing auxiliary chemicals, was also used in equilibrium and kinetic experiments and the adsorption performance was compared with aqueous dye solutions.

  4. Preparation of New Adsorbent Containing Hydroxamic Acid Groups by Electron Beam-Induced Grafting for Metal Ion Adsorption

    International Nuclear Information System (INIS)

    Suwanmala, Phiriyatorn; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2007-08-01

    Full text: A new adsorbent containing hydroxamic acid groups was synthesized by electron beam-induced graft copolymerization of methyl acrylate (MA) onto nonwoven fabric composed of polyethylene-coated polypropylene fiber. Conversion of ester groups of the grafted copolymer into the hydroxamic groups was performed by treatment with an alkaline solution of hydroxylamine (HA). Adsorbent containing hydroxamic acid groups can adsorb 99% of UO2 2+ , 98% of V5+, 97% of Pb2+ and 96% of Al3+ at pH, 5, 4, 6, and 4, respectively, after coming into contact with 100 ppb metal solution for 24 h

  5. Removal of adsorbent particles od copper ions by Jet flotation; Remocion de particulas adsorbentes de iones cobre por flotacion Jet

    Energy Technology Data Exchange (ETDEWEB)

    Santander, M.; Tapia, P.; Pavez, O.; Valderrama, L.; Guzman, D.

    2009-07-01

    The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbents containing the absorbed copper ions. The results indicate the at pH>7 and at adsorbent particles concentration of 2 kg.m{sup -}3, 99% of copper ions is adsorbed and, when the air/effluent flow ratio applied in the Jet cell is 0,2, 98% of absorbent particles containing the adsorbed copper ions is removed. (Author) 39 refs.

  6. Studies on adsorptions of metallic ions in water by zirconium glyphosate (ZrGP): Behaviors and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jia Yunjie; Zhang Yuejuan [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China); Wang Runwei [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012 (China); Fan Faying [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China); Xu Qinghong, E-mail: xuqh@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China)

    2012-01-15

    A new adsorbent named zirconium glyphosate [Zr(O{sub 3}PCH{sub 2}NHCH{sub 2}COOH){sub 2}{center_dot}0.5H{sub 2}O, denoted as ZrGP] and its selective adsorptions to Pb{sup 2+}, Cd{sup 2+}, Mg{sup 2+} and Ca{sup 2+} ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO{sub 4}){sub 2}], ZrGP exhibited highly selective adsorption to Pb{sup 2+} in solution which contained Pb{sup 2+}, Cd{sup 2+}, Mg{sup 2+} and Ca{sup 2+} ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg{sup 2+} and Ca{sup 2+} were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.

  7. Influence of pH on Cr(VI) ions removal from aqueous solutions using carboxymethyl cellulose-based hydrogel as adsorbent

    Science.gov (United States)

    Anah, L.; Astrini, N.

    2017-03-01

    The major problem in heavy metal pollution is that these metals are not biodegradable and accordingly accumulate in the bodies of living organisms, causing dangerous diseases and serious cell disorder. According to World Health Organization (WHO), the long term exposure of Cr(VI) levels of over 0.1 ppm causes respiratory problems, liver and kidney damage, and carcinogenicity.Due to its easy operation and of various cheap adsorbents development, adsorption has been proved to be efficient and most economically attractive technique and feasible to the removal of toxic heavy metal from wastewater. The study aimed to report the removal of Cr(VI) ions from aqueous solutions through adsorption process using carboxymethyl cellulose-graft-poly(acrylic acid) (CMC-g-PAA) hydrogel as adsorbent.Effect of pH was studied to remove hexavalent chromium.Graft copolymerization of poly(acrylic acid) onto carboxymethyl cellulose was carried out in the presence of benzoyl peroxide redox initiator and methylenbisacrylamide as crosslinker agent. Batch experiments were carried out to investigate the effects ofinitial pH.The adsorption of Cr(VI) ions as a function of pH was conducted in the initial pH range of 1 to 8. The results indicated that acidic pH strongly favored the adsorption. The optimum pH for adsorption of Cr(VI) ranged from 1 to 3, and the maximum uptake of Cr(VI) from the solution was 6.53 mg/g at pH 1 and 30°C. FTIR spectroscopy, SEM analyses were performed on the adsorbent before and after Cr(VI) binding. All analyses confirmed the complexation of Cr(VI) ions on the adsorbent.

  8. Titania-Coated Silica Alone and Modified by Sodium Alginate as Sorbents for Heavy Metal Ions

    Science.gov (United States)

    Kołodyńska, D.; Gęca, M.; Skwarek, E.; Goncharuk, O.

    2018-04-01

    The novel organic-inorganic biohybrid composite adsorbent was synthesized based on nanosized silica-titania modified with alginate within the development of effective adsorbent for heavy metal ions. Effects of metal species Cu(II), Zn(II), Cd(II), and Pb(II); concentrations; pH; temperature; and adsorption onto titania-coated silica (ST20) initial or modified by sodium alginate (ST20-ALG) were studied. The equilibrium and kinetic data of metal ions adsorption were analyzed using Langmuir and Freundlich adsorption models and kinetic models: pseudo first order, pseudo second order, intraparticle kinetic model, and Elovich. The maximum sorption capacities observed were higher for the ST20-ALG composite compared to the initial ST20 oxide for all studied metal ions, namely their values for ST20-ALG were 22.44 mg g- 1 for Cu(II) adsorption, 19.95 mg g- 1 for Zn(II), 18.85 mg g- 1 for Cd(II), and 32.49 mg g- 1 for Pb(II). Structure and properties of initial silica-titania ST20 and modified by sodium alginate ST20-ALG adsorbents were analyzed using nitrogen adsorption/desorption isotherms, ATR-FTIR, SEM-EDS, and pHpzc techniques.

  9. Adsorbents for radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Ichinose, Shigeo; Kiribayashi, Takehiko.

    1986-01-01

    Purpose: To enable to settle radioactive solvents such as tributyl phosphate (TBP) and n-dodecane as they are without using hydrophobicizing agent such as quaternary ammonium salts. Constitution: The adsorbents are prepared by replacing interlaminer ions of swelling-type synthetic mica with alkaline earth metals or metal ions. For instance, synthetic micas introduced with Zr 4+ or Ca 2+ between the layers provide quite different functions from those of starting materials due to the properties of ions introduced between the layers. That is, they provide an intense affinity to organic phosphates such as TBP and transform into material showing a property of adsorbing and absorbing them. Particularly, the fixing nature to the phosphor content constituting TBP is significantly increased. (Horiuchi, T.)

  10. Preparation and Evaluation of Adsorbents from Coal and Irvingia gabonensis Seed Shell for the Removal of Cd(II and Pb(II Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mercy A. Ezeokonkwo

    2018-01-01

    Full Text Available Cd(II and Pb(II ions removal using adsorbents prepared from sub-bituminous coal, lignite, and a blend of coal and Irvingia gabonensis seed shells was investigated. Fourier transform infrared, scanning electron microscope and X-ray fluorescence analyses implicated hydroxyl, carbonyl, Al2O3, and SiO2 as being responsible for attaching the metal ions on the porous adsorbents. The optimum adsorption of carbonized lignite for the uptake of Cd(II and Pb(II ions from aqueous media were 80.93 and 87.85%, respectively. Batch adsorption was done by effect of adsorbent dosage, pH, contact time, temperature, particle size, and initial concentration. Equilibrium for the removal of Pb(II and Cd(II was established within 100 and 120 min respectively. Blending the lignite-derived adsorbent with I. gabonensis seed shell improved the performance significantly. More improvement was observed on modification of the blend using NaOH and H3PO4. Pb(II was preferentially adsorbed than Cd(II in all cases. Adsorption of Cd(II and Pb(II ions followed Langmuir isotherm. The adsorption kinetics was best described by pseudo-second order model. The potential for using a blend of coal and agricultural byproduct (I. gabonensis seed shell was found a viable alternative for removal of toxic heavy metals from aqueous solutions.

  11. Preparation of metal adsorbents from chitin/chitosan by radiation technology

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Nguyen Quoc Hien; Ngo Quang Huy; Thai My Phe; Dao Van Hoang; Nguyen Van Hung

    2004-01-01

    The methods of preparation of metal adsorbents basing on chitin/chitosan were developed. That include the adsorbent from chitin grafted with acrylic acid by different irradiation doses; the clinging chitosan gel beads; the coagulable solution and the chitosan composite filter. The process of metal adsorption for each adsorbent was studied as adsorption kinetic, isothermal adsorption. The results have been applied for removal of some elements as Hg, Pb, Cd, U, Cu, ect. in the wastewater. (NHA)

  12. Development of a new adsorbent from pumpkin husk by KOH-modification to remove copper ions.

    Science.gov (United States)

    Çelekli, Abuzer; Bozkuş, Bayram; Bozkurt, Hüseyin

    2018-02-08

    Heavy metal pollution in watercourses is a major environmental problem throughout the world due to rapid population growth, industrialization, and economic development. Considering this, the present study aimed to develop a new adsorbent from pumpkin husk (PH) by KOH modification to remove copper (Cu 2+ ) ions and to explore its adsorptive potential. The sorption studies of Cu 2+ on KOH-modified PH were carried out as functions of particle size, solution pH, adsorbent dose, temperature, initial metal concentration, and contact time. The sorption capacity of KOH-modified PH was found to be higher than that of raw PH, as 19.4 and 10.2 mg g -1 , respectively. Morphology and surface structures of adsorbents were characterized by determination of zero point charge, a Fourier transform infrared spectrometer (FTIR-ATR) spectra, and a scanning electron microscopy (SEM) of PH powders before and after the sorption of Cu 2+ . The pH zpc of PH was found to be 5.0. FTIR-ATR analyses indicated that amino, amide, hydroxyl, carboxyl, and oxygenated groups of PH play an important role in the sorption process. Sorption isotherm, kinetic, and thermodynamic parameters of Cu 2+ on KOH-modified PH were studied. The kinetic process was well represented by the Logistic model. The maximum sorption was found as 73.16 mg g -1 according to the well-fitting of Langmuir isotherm. Results of sorption and thermodynamic studies indicated that the process was exothermic, being feasible, and spontaneous. KOH-modified PH as an eco-friendly adsorbent had great potential to remove Cu 2+ ions from aquatic system.

  13. Immobilization of transition metal ions on zirconium phosphate monolayers

    International Nuclear Information System (INIS)

    Melezhik, A.V.; Brej, V.V.

    1998-01-01

    It is shown that ions of transition metals (copper, iron, vanadyl, titanium) are adsorbed on zirconium phosphate monolayers. The zirconium phosphate threshold capacity corresponds to substitution of all protons of hydroxyphosphate groups by equivalent amounts of copper, iron or vanadyl. Adsorption of polynuclear ions is possible in case of titanium. The layered substance with specific surface up to 300 m 2 /g, wherein ultradispersed titanium dioxide particles are intercalirated between zirconium-phosphate layers, is synthesized

  14. DESIGN A SYSTEM TO ADSORB THE SOLUBLE METALLIC IONS USING BIOMASS MATERIALS TO MAINTAIN THE SAFETY AND STABILITY OF THE SATURATED LIQUIDS

    Directory of Open Access Journals (Sweden)

    Abbas A. Karwi

    2018-01-01

    Full Text Available Researcher design an ionic system to adsorb ions from industrial water of companies and factories, system consisted of three integrated phases designed to test the efficiency of an unspecified number of residues of food as adsorb materials. We adsorb copper and cobalt ions, these ions are available at high rates in Al Musayab thermal station, high concentration of these ions pose a threat to the health of the population. In general, the presence of these ions in the proportions set by the World Health Organization, namely, (1mg/L are very useful for the completion of the metabolic processes of the living cell, but a greater focus for this will lead to tremendous health risks. Testing processes proved that there is an exact match between empirical testes and typical results of (Freundlich and Langmuir models, through the mathematical analysis of the trial data under different thermal conditions, all testes proved that (husks of sunflower is the best hypertext filtered materials for its high adsorption efficiency which equal to (71% with enthalpy equal to (33KJ/mol, followed in the second place (peel peanuts, these peels proved have an excellent efficiency which equal to (72% with enthalpy equal to (-14.8KJ/mol. In general, food remnants which have been selected for testing on an ion adsorption system designed by researcher have high capacity to adsorb various ionic roots of industrial water of Al-Musayab thermal station.

  15. Chitin Adsorbents for Toxic Metals: A Review

    Directory of Open Access Journals (Sweden)

    Ioannis Anastopoulos

    2017-01-01

    Full Text Available Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4-N-acetyl-d-glucosamine is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.

  16. Equilibrium and kinetics studies of metal ion adsorption on dyed ...

    African Journals Online (AJOL)

    Batch equilibration studies were conducted to determine the nature of adsorption of Zn (II) and Cu (II) onto dyed coconut pollens. The nature of adsorption of metal ions was explained using the Langmuir equation. The calculated values of equilibrium parameter indicated favourable adsorption by the adsorbents. Also the ...

  17. Ion exchange/adsorbent pilot plant

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A decontamination of greater than 99% of the actinides and fission products contained in radioactive waste water can be obtained using ion exchange resins. A system for achieving this result is described in this paper. This ion exchange pilot-plant design is the culmination of five years of study of the decontamination of radioactive waste streams by ion exchange resins and other adsorbents at Mound. In order to maintain maximum flexibility of treatments, this pilot-plant design is a conceptual design with specific flows, resins, and column specifications, but with many optional features and no rigid equipment specifications. This flexibility allows the system to be amenable to almost any radioactive waste stream. Very specific designs can be constructed from this conceptual design for the treatment of any specific waste stream. Operating and capital costs are also discussed. 1 figure, 5 tables

  18. The use of ionizing radiation and ion exchange resins in the removal of heavy metals from waste water

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.; Taher, N.H.; El-Toony, M.M.; Dessouki, A.M.

    2002-01-01

    The removal of heavy metal ions from waste water using gamma-radiation and a polymeric membrane prepared by radiation graft copolymerization of vinyl acetate (VAc) onto low density polyethylene films was investigated for the cases of zinc and iron ions. These metal ions were reduced by the hydrated electrons and hydrogen atoms to lower or zero valence state and eventually precipitate out of solution. parameter analysis includes the effect metal ion concentration, Ph, degree of grafting and irradiation dose. The maximum precipitation of the unirradiated metal ions was achieved at Ph 10, while the least precipitation occurred at Ph 3. Irradiation at Ph 5.5 resulted in more precipitation of iron than zinc. Both elements were adsorbed by different adsorbents granular activated carbon (GAC), powdered activated carbon (PAC), amberlite IR-120 plus, dowex-1- exchangers and grafted membranes). The combined treatment by irradiation plus adsorption showed more removal percent, especially for powdered activated carbon (PAC). Also, the grafted membranes showed a removal percent of 98% at high degree of grafting

  19. Transport of significant metals recovered in real sea experiment of adsorbents

    International Nuclear Information System (INIS)

    Takeda, Hayato; Tamada, Masao; Kasai, Noboru; Katakai, Akio; Hasegawa, Shin; Seko, Noriaki; Sugo, Takanobu; Kawabata, Yukiya

    2001-10-01

    Real sea experiment for the recovery of significant metals such as uranium and vanadium which dissolved in seawater with extremely low concentration has been carried out at the offing of Mutsu establishment to evaluate the adsorption performance of adsorbent synthesized by radiation-induced graft-polymerization. The significant metals of uranium and vanadium eluted from the adsorbent which was soaked in the real sea were adsorbed onto the conventional chelate resin. The chelate resin which adsorbed the metals was packed in a plastic (PVC) column and further put in a cylindrical stainless transport container. This container was transported to the facility for separation and purification by a truck for the exclusive loading. Then the recovers metals were purified there. The recovered metals contained the uranium of 150g (1.92 MBq) and less in one recovery experiment. The maximum concentration is 60 Bq/g when the uranium is adsorbed on the chelate resin. Transport of recovered metals can be treated as general substance since these amount and concentration are out of legal control. However, the recovered metals were transported in conformity to L type Transport as a voluntary regulation. Though there is no requirements of structural strength for L type package legally, the structural strength of container was designed on that of IP-2 type which is higher transport grade than L type to take its safety measure. Its strength analysis proved the safety under general transport process. The transport was based on the plan made in advance. (author)

  20. The use of natural and industrial aluminosilicates in the process of adsorption of heavy metals ions

    OpenAIRE

    Tsvetkova, A.; Akayev, O.

    2010-01-01

    The analysis of periodic scientific publications and patent literature was made, in which the possibilities of using natural and industrial silicon-containing compounds as adsorbents of ions of heavy metals are generalized. The conditions of adsorption, as well as the numerical values of the adsorption capacity of the studied materials are described Key words: adsorption, natural and industrial aluminosilicates, heavy metals ions.

  1. Removal of Cobalt Ion by Adsorbing Colloidal Flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-30

    Simulated waste liquid containing 50 ppm cobalt ion was treated by adsorbing colloidal flotation using Fe(III) or Al(III) as flocculant and a sodium lauryl sulfate as a collector. Parameters such as pH, surfactant concentration, Fe(III) or Al(III) concentration, gas flow rate, etc., were considered. The flotation with Fe(III) showed 99.8% removal efficiency of cobalt on the conditions of initial cobalt ion concentration 50 ppm, pH 9.5, gas flow rate 70 ml/min, and flotation time 30 min. When the waste solution was treated with 35% H{sub 2}O{sub 2} prior to adsorbing colloidal flotation, the optimal pH for removing cobalt shifted to weak alkaline range and flotation could be applied in wider range of pH as compared to non-use of H{sub 2}O{sub 2}. Additional use of 20 ppm Al(III) after precipitation of 50 ppm Co(II) with 50 ppm Fe(III) made the optimal pH range for preferable flotation wider. Foreign ions such as, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, Ca{sup 2+} were adopted and their effects were observed, Of which sulfate ion was found to be detrimental to removal of cobalt ion by flotation. Coprecipitation of Co ion with Fe(III) and Al(III) resulted in better removal efficiency of cobalt ion in the presence of sulfate ion. (author). 14 refs., 13 figs.

  2. Distribution of metal and adsorbed guest species in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  3. Distribution of metal and adsorbed guest species in zeolites

    International Nuclear Information System (INIS)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes 129 Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of 129 Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, 129 Xe NMR is insensitive to fine structural details at room temperature

  4. The use of new modified poly(acrylamide chelating resin with pendent benzothiazole groups containing donor atoms in the removal of heavy metal ions from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Semmedu Selvaraj Kalaivani

    2014-03-01

    Full Text Available The adsorption studies of poly(6-(ethoxybenzothiazole acrylamide (PEBTA, for Cu(II and Zn(II metal ions removal from an aqueous solution have been investigated, as a function of solution pH, adsorbent dose, contact time, initial metal ion concentration and temperature. The chemical and structural characteristics of the adsorbent were determined by the FT-IR, 1H-NMR, TGA, SEM, and EDAX analysis. The maximum adsorption capacities of the adsorbent for Cu(II and Zn(II ions, as calculated from the Langmuir isotherm model, were 273.5 and 216.4 mg/g, respectively. The adsorption kinetic studies show that the adsorption of Cu(II and Zn(II ions onto PEBTA follows the pseudo second order kinetic model. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also evaluated, and it has been found that the adsorption process is feasible, spontaneous and exothermic in nature. Desorption studies were carried out using 0.3 N HCl, and it revealed that the adsorbed Cu(II and Zn(II ions can be easily removed. The adsorption–desorption process is reversible, and this indicates that PEBTA is an effective adsorbent for the removal of heavy metal ions from an aqueous medium.

  5. Mass spectrum of secondary ions knocked-out from copper surface by argon ion beam

    International Nuclear Information System (INIS)

    Koval', A.G.; Bobkov, V.V.; Klimovskij, Yu.A.; Fogel', Ya.M.

    1976-01-01

    The mass-spectrum of secondary ions was studied within a mass range of 1-400. The ions were knocked-out by the beam of ions Ar + from the copper surface with different content of oxygen and sulphur solved in the volume. The studies were conducted at three temperatures of the target. The atomic and molecular ions of the metal matrix, volumetric impurities of metal and ions of chemical compounds molecules of the metal under study with gas particles adsorbed on its surface and atoms of the metal volumetric admixtures may be observed in the mass spectrum. Detection of secondary ions of the copper multi-atomic complexes and ions of these complexes compounds with the adsorbed molecules is of interest

  6. Determination of Pb2+ metal ion level in liquid waste from adsorption process by combination adsorbent of rice husk and water hyacinth charcoal using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Saputro, S.; Masykuri, M.; Mahardiani, L.; Hidayah, AN

    2018-03-01

    This research are to find out the influence of adsorbent composition between rice husk and water hyacinth in decreasing of Pb2+ ion in simulation liquid waste; the optimumcomposition of combination adsorbent of rice husk and water hyacinth charcoal on Pb2+ ion adsorption; and theeffectivenessof SPS as a method to determine the decreasing level of Pb2+ ion in simulation liquid waste by combination adsorbent of rice husk and water hyacinth charcoal in µg/L level. Rice husk and water hyacinth carbonization using muffle furnace at 350°C for 1 hour. Rice husk charcoal activation in a 2 N NaOH solution and water hyacinth charcoal activated in a 5 M HCl solution. Contacting the combination adsorbent of rice husk and water hyacinth charcoal with a Pb2+ solution with variation of mass composition, 1:0 ; 0:1 ; 1:1 ; 1:2 and 2:1. Analysis of the Pb2+ ion level using SPS method. Characterization of rice husk and water hyacinth charcoal using the FTIR. The results showed that the combination adsorbent composition of rice husk and water hyacinth charcoal have an impact on decreasing Pb2+ ion level. The optimum composition of combination adsorbent of rice husk and water hyacinth charcoal on the adsorption Pb2+ ion is 1:2. SPS is an effective method to determine the decreasing Pb2+ ion in simulation liquid waste from the adsorption process by combination adsorbent of rice husk and water hyacinth in µg/L, with Limit of Detection (LOD) was 0,06 µg/L.

  7. Characterization and Cadmium Ion-Removing Property of Adsorbents Synthesized from Inorganic Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ooishi, Kou; Ogino, Kana; Nishioka, Hiroshi; Muramatsu, Yasuji, E-mail: hnisioka@eng.u-hyogo.ac.jp [Department of Material Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo (Japan)

    2011-10-29

    Adsorbents for removing cadmium ions from water were synthesized from inorganic wastes such as oyster shells, drinking-water-treatment sludge (DWTS), and waste glass. The oyster shells and DWTS were pretreated by heating for 2 h at 1173 K before hydrothermal synthesis was started. The Al/(Al+Si) ratio was adjusted, and then, the mixture of pretreated materials was hydrothermally treated in a sodium hydroxide solution for 72 h at 423 K to synthesize the adsorbents. The synthesized adsorbent specimens were characterized by X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA) measurements, and scanning electron microscopy (SEM). The main components of these specimens were aluminum-substituted tobermorite and sodalite. The formation of sodalite was dependent on the mass ratio of DWTS to glass. The maximum amount of cadmium ions were removed when the mass ratio of the pretreated material was 1:1:1. In the cadmium removal test, the adsorbent with this mass ratio removed almost 100% of the cadmium in a solution with a concentration of 10 mg L-1. Even in the presence of a 1000-fold excess of potassium ions or 10000-fold excess of sodium ions, approximately 80% of the cadmium ions were removed.

  8. Electronic properties of adsorbates and clean surfaces of metals and semiconductors

    International Nuclear Information System (INIS)

    Lecante, J.

    1980-01-01

    This paper surveys recent progress in experimental studies on electronic properties of adsorbates and clean metal surfaces. Electron spectroscopy and particularly angle resolved photoelectron spectroscopy appears to be a very powerful tool to get informations on electronic levels of adsorbates or clean surfaces. Moreover this technique may also give informations about the atomic geometry of the surface. Experimental investigation about surface plasmons, surface states, core level shifts are presented for clean surfaces. As examples of adsorbate covered surfaces two typical cases are chosen: two dimensional band structure and oriented molecules. Finally the photoelectron diffraction may be used for surface structure determination either in the case of an adsorbate or a clean metal surface [fr

  9. Adsorption preference for divalent metal ions by Lactobacillus casei JCM1134.

    Science.gov (United States)

    Endo, Rin; Aoyagi, Hideki

    2018-05-09

    The removal of harmful metals from the intestinal environment can be inhibited by various ions which can interfere with the adsorption of target metal ions. Therefore, it is important to understand the ion selectivity and adsorption mechanism of the adsorbent. In this study, we estimated the adsorption properties of Lactobacillus casei JCM1134 by analyzing the correlation between its maximum adsorption level (q max ) for seven metals and their ion characteristics. Some metal ions showed altered adsorption levels by L. casei JCM1134 as culture growth time increased. Although it was impossible to identify specific adsorption components, adsorption of Sr and Ba may depend on capsular polysaccharide levels. The maximum adsorption of L. casei JCM1134 (9 h of growth in culture) for divalent metal ions was in the following order: Cu 2+  > Ba 2+  > Sr 2+  > Cd 2+  > Co 2+  > Mg 2+  > Ni 2+ . The q max showed a high positive correlation with the ionic radius. Because this tendency is similar to adsorption occurring through an ion exchange mechanism, it was inferred that an ion exchange mechanism contributed greatly to adsorption by L. casei JCM1134. Because the decrease in the amount of adsorption due to prolonged culture time was remarkable for metals with a large ion radius, it is likely that the adsorption components involved in the ion exchange mechanism decomposed over time. These results and analytical concept may be helpful for designing means to remove harmful metals from the intestinal tract.

  10. Development of a four-zone carousel process packed with metal ion-imprinted polymer for continuous separation of copper ions from manganese ions, cobalt ions, and the constituent metal ions of the buffer solution used as eluent.

    Science.gov (United States)

    Jo, Se-Hee; Park, Chanhun; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2011-08-19

    A three-zone carousel process, in which Cu(II)-imprinted polymer (Cu-MIP) and a buffer solution were employed as adsorbent and eluent respectively, has been developed previously for continuous separation of Cu²⁺ (product) from Mn²⁺ and Co²⁺ (impurities). Although this process was reported to be successful in the aforementioned separation task, the way of using a buffer solution as eluent made it inevitable that the product stream included the buffer-related metal ions (i.e., the constituent metal ions of the buffer solution) as well as copper ions. For a more perfect recovery of copper ions, it would be necessary to improve the previous carousel process such that it can remove the buffer-related metal ions from copper ions while maintaining the previous function of separating copper ions from the other 2 impure heavy-metal ions. This improvement was made in this study by proposing a four-zone carousel process based on the following strategy: (1) the addition of one more zone for performing the two-step re-equilibration tasks and (2) the use of water as the eluent of the washing step in the separation zone. The operating conditions of such a proposed process were determined on the basis of the data from a series of single-column experiments. Under the determined operating conditions, 3 runs of carousel experiments were carried out. The results of these experiments revealed that the feed-loading time was a key parameter affecting the performance of the proposed process. Consequently, the continuous separation of copper ions from both the impure heavy-metal ions and the buffer-related metal ions could be achieved with a purity of 91.9% and a yield of 92.8% by using the proposed carousel process based on a properly chosen feed-loading time. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Plant refuses driven biochar: Application as metal adsorbent from acidic solutions

    Directory of Open Access Journals (Sweden)

    Puja Khare

    2017-05-01

    Full Text Available Biochar prepared from aromatic spent was used as adsorbent for assessing its removal capacity of cadmium, chromium, copper and lead from aqueous acidic solutions. For the optimization of the processes, separate experiments were setup in fixed bed columns of biochar prepared from different biomasses in variable sizes at different temperatures, metal concentrations, flow rate and time. The effect of the above parameters on adsorption of metals was assessed in terms of maximum adsorption capacity, kinetics, theorem and thermodynamics. Results show that maximum removal of each metal was 60 mg/g. The adsorption equilibrium data obeyed the Freundlich model and the kinetic data were well described by the pseudo-second-order model. The adsorption process is believed to proceed by an initial surface adsorption followed by intra-particle diffusion. In this regard to the proposed mechanism, modeling results implied that exchange of the hydrogen occurs during the low loading of metal. Opposite is true for the calcium, magnesium and sodium ions. Thermodynamic studies revealed the feasibility and endothermic nature of the system. Treatment of acidic mine water with biochar suggests that it buffers the acid and is capable of efficient removal of these metals.

  12. Functionalized paper--A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water.

    Science.gov (United States)

    Setyono, Daisy; Valiyaveettil, Suresh

    2016-01-25

    Paper, a readily available renewable resource, comprises of interwoven cellulosic fibers, which can be functionalized to develop interesting low-cost adsorbent material for water purification. In this study, polyethyleneimine (PEI)-functionalized paper was used for the removal of hazardous pollutants such as Au and Ag nanoparticles, Cr(VI) anions, Ni(2+), Cd(2+), and Cu(2+) cations from spiked water samples. Compared to untreated paper, the PEI-coated paper showed significant improvement in adsorption capacities toward the pollutants investigated in this study. Kinetics, isotherm models, pH, and desorption studies were carried out to study the adsorption mechanism of pollutants on the adsorbent surface. Adsorption of pollutants was better described by pseudo-second order kinetics and Langmuir isotherm model. Maximum adsorption of anionic pollutants was achieved at pH 5 while that of cations was at pH>6. Overall, the PEI-functionalized paper showed interesting Langmuir adsorption capacities for heavy metal ions such as Cr(VI) (68 mg/g), Ni(2+) (208 mg/g), Cd(2+) (370 mg/g), and Cu(2+) (435 mg/g) ions at neutral pH. In addition, the modified paper was also used to remove Ag-citrate (79 mg/g), Ag-PVP (46 mg/g), Au-citrate (30 mg/g), Au-PVP (17 mg/g) nanoparticles from water. Desorption of NPs from the adsorbent was done by washing with 2 M HCl or thiourea solution, while heavy metal ions were desorbed using 1 M NaOH or HNO3 solution. The modified paper retained its extraction efficiencies upon desorption of pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Development of Highly Efficient Grafting Technique and Synthesis of Natural Polymer-Based Graft Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Y; Seko, N; Tamada, M [Japan Atomic Energy Agency, Quantum Beam Science Directorate, Takasaki (Japan)

    2012-09-15

    In the framework of the CRP, Japan has focused on the development of fibrous adsorbents for removal of toxic metal ions and recovery of significant metal ions from industrial wastewater and streaming water. Graft polymerization was carried out by using gamma irradiation facility and electron beam accelerator. Emulsion grafting is a novel topic for synthesis of metal ion adsorbents which are prepared from fibrous trunk polymers such as polyethylene fibre and biodegradable nonwoven fabrics. The emulsion grafting, where monomer micelles are dispersed in water in the presence of surfactant, is a highly efficient and economic grafting technique as compared to general organic solvent system. The resultant cotton-based adsorbent has high adsorption efficiency and high adsorption capacity for Hg, besides, it is biodegradable. Polylactic acid can also be used as a trunk material for the grafting. (author)

  14. Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Kim, Doo Won; Kim, Bohye; Yang, Kap Seung [Chonnam National Univ., Gwangju (Korea, Republic of); Lim, Yongkyun; Park, Eun Nam [Microfilter Co., Ltd, Seoul (Korea, Republic of)

    2013-02-15

    The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents.

  15. Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Kim, Doo Won; Kim, Bohye; Yang, Kap Seung; Lim, Yongkyun; Park, Eun Nam

    2013-01-01

    The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents

  16. Bioavailability in rats of metal adsorbed to soils

    International Nuclear Information System (INIS)

    Rubenstein, R.; Griffin, S.; Irene, S.; DeRosa, C.; Choudhury, H.

    1990-01-01

    The toxicity of metals to humans and animals has been well documented, however little data are available on the physiological bioavailability of metals from various soil types. These studies were designed to assess the bioavailability of sodium 75 selenate (NaS), 63 nickel chloride (NiCl) and 109 cadmium chloride (CdCl) adsorbed to sand or clay loam in rats. Each test compound was administered in seven dose groups: Group 1 - intravenously, Group 2 and 3 - oral aqueous solution by gavage, Groups 4-7 - aqueous suspension adsorbed to each soil type by gavage. Blood was collected from the jugular vein at intervals up to 48 hours post dosing and analyzed for radio-activity. Both NiCl and CdCl were poorly adsorbed from the soils. Approximately 3% of the CdCl bound to sand and 1.5% of the NiCl bound to clay loam were absorbed into the bloodstream. Approximately 0.5% and 0.1% of the CdCl bound to sand and clay, respectively were absorbed. NaS was well absorbed following oral administration with approximately 85% of the compound bound to sand and 94% bound to clay being absorbed into the blood. Bioavailability of metals from soil appears to be primarily affected by the ionic state of the metal. Anions, such as selenium, are more mobile in an acid environment and may leach more readily from soil. Cations, such as Ni and Cd may bind to soil more tightly, thus soil type becomes a factor affecting bioavailability

  17. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  18. First-principles studies on 3d transition metal atom adsorbed twin graphene

    Science.gov (United States)

    Li, Lele; Zhang, Hong; Cheng, Xinlu; Miyamoto, Yoshiyuki

    2018-05-01

    Twin graphene is a new two-dimensional semiconducting carbon allotrope which is proposed recently. The structural, magnetic and electronic properties are investigated for 3d transition metal (TM) atom adsorbed twin graphene by means of GGA+U calculations. The results show most of single 3d transition metal atom except Zn can make twin graphene magnetization. The adsorption of single TM atom can also make the twin graphene systems turn to half metal (V adsorption), half-semiconductor (Fe adsorption) or metal (Sc, Cr, Mn, Co and Cu adsorption). The semiconducting nature still exists for Ti, Ni and Zn adsorption. All the 3d TM adatoms belong to n-type doping for transferring charge to the neighboring C atoms and have strong covalent bond with these C atoms. The influence of Hubbard U value on half-metallic V adsorbed system is also considered. As the U increases, the system can gradually transform from metal to half metal and metal. The effect of the coverage is investigated for two TM atoms (Sc-Fe) adsorption, too. We can know TM atoms adsorbed twin graphene have potentials to be spintronic device and nanomagnets from the results.

  19. Rapid Preparation of Biosorbents with High Ion Exchange Capacity from Rice Straw and Bagasse for Removal of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Supitcha Rungrodnimitchai

    2014-01-01

    Full Text Available This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g and shorter reaction time (1.5–5.0 min than the phosphorylation by oil bath heating. Adsorption experiments towards Pb2+, Cd2+, and Cr3+ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L. The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax. As a result of Pb2+ sorption test, the modified rice straw (RH-NaOH 450W removed Pb2+ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin took 90 min for the same removal efficiency.

  20. Preparation and adsorption characteristics for heavy metals of active silicon adsorbent from leaching residue of lead-zinc tailings.

    Science.gov (United States)

    Lei, Chang; Yan, Bo; Chen, Tao; Xiao, Xian-Ming

    2018-05-19

    To comprehensively reuse the leaching residue obtained from lead-zinc tailings, an active silicon adsorbent (ASA) was prepared from leaching residue and studied as an adsorbent for copper(II), lead(II), zinc(II), and cadmium(II) in this paper. The ASA was prepared by roasting the leaching residue with either a Na 2 CO 3 /residue ratio of 0.6:1 at 700 °C for 1 h or a CaCO 3 /residue ratio of 0.8:1 at 800 °C for 1 h. Under these conditions, the available SiO 2 content of the ASA was more than 20%. The adsorption behaviors of the metal ions onto the ASA were investigated and the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were used to analyze the adsorption isotherm. The result showed that the maximum adsorption capacities of copper(II), lead(II), cadmium(II), and zinc(II) calculated by the Langmuir model were 3.40, 2.83, 0.66, and 0.62 mmol g -1 , respectively. The FT-IR spectra of the ASA and the mean free adsorption energies indicated that ion exchange was the mechanism of copper(II), lead(II), and cadmium(II) adsorption and that chemical reaction was the mechanism of zinc(II) adsorption. These results provide a method for reusing the leaching residue obtained from lead-zinc tailings and show that the ASA is an effective adsorbent for heavy metal pollution remediation.

  1. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Ge, Fei; Li, Meng-Meng; Ye, Hui; Zhao, Bao-Xiang

    2012-01-01

    We prepared novel Fe 3 O 4 magnetic nanoparticles (MNPs) modified with 3-aminopropyltriethoxysilane (APS) and copolymers of acrylic acid (AA) and crotonic acid (CA). The MNPs were characterized by transmission electron microscopy, X-ray diffraction, infra-red spectra and thermogravimetric analysis. We explored the ability of the MNPs for removing heavy metal ions (Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ ) from aqueous solution. We investigated the adsorption capacity of Fe 3 O 4 -APS-AA-co-CA at different pH in solution and metal ion uptake capacity as a function of contact time and metal ion concentration. Moreover, adsorption isotherms, kinetics and thermodynamics were studied to understand the mechanism of the synthesized MNPs adsorbing metal ions. In addition, we evaluated the effect of background electrolytes on the adsorption. Furthermore, we explored desorption and reuse of MNPs. Fe 3 O 4 -APS-AA-co-CA MNPs are excellent for removal of heavy metal ions such as Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ from aqueous solution. Furthermore, the MNPs could efficiently remove the metal ions with high maximum adsorption capacity at pH 5.5 and could be used as a reusable adsorbent with convenient conditions.

  2. Ultrafast electron dynamics at alkali/ice structures adsorbed on a metal surface

    International Nuclear Information System (INIS)

    Meyer, Michael

    2011-01-01

    The goal of this work is to study the interaction between excess electrons in water ice structures adsorbed on metal surfaces and other charged or neutral species, like alkali ions, or chemically reactive molecules, like chlorofluorocarbons (CFC), respectively. The excess electrons in the ice can interact with the ions directly or indirectly via the hydrogen bonded water molecules. In both cases the presence of the alkali influences the population, localization, and lifetime of electronic states of excess electrons in the ice adlayer. These properties are of great relevance when considering the highly reactive character of the excess electrons, which can mediate chemical reactions by dissociative electron attachment (DEA). The influence of alkali adsorption on electron solvation and transfer dynamics in ice structures is investigated for two types of adsorption configurations using femtosecond time-resolved two-photon photoelectron spectroscopy. In the first system alkali atoms are coadsorbed on top of a wetting amorphous ice film adsorbed on Cu(111). At temperatures between 60 and 100 K alkali adsorption leads to the formation of positively charged alkali ions at the ice/vacuum interface. The interaction between the alkali ions at the surface and the dipole moments of the surrounding water molecules results in a reorientation of the water molecules. As a consequence new electron trapping sites, i.e. at local potential minima, are formed. Photoinjection of excess electrons into these alkali-ion covered amorphous ice layers, results in the trapping of a solvated electron at an alkali-ion/water complex. In contrast to solvation in pure amorphous ice films, where the electrons are located in the bulk of the ice layer, solvated electrons at alkali-ion/water complexes are located at the ice/vacuum interface. They exhibit lifetimes of several picoseconds and show a fast energetic stabilization. With ongoing solvation, i.e. pump-probe time delay, the electron transfer is

  3. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  4. Characterization and application of dried plants to remove heavy metals, nitrate, and phosphate ions from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Chiban, Mohamed; Soudani, Amina; Sinan, Fouad [Department of Chemistry, Faculty of Sciences, Agadir (Morocco); Tahrouch, Saida [Department of Biology, Faculty of Sciences, Agadir (Morocco); Persin, Michel [European Membrane Institute, CRNS, Montpellier (France)

    2011-04-15

    Low cost adsorbents were prepared from dried plants for the removal of heavy metals, nitrate, and phosphate ions from industrial wastewaters. The efficiency of these adsorbents was investigated using batch adsorption technique at room temperature. The dried plant particles were characterized by N{sub 2} at 77 K adsorption, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and phytochemical screening. The adsorption experiments showed that the microparticles of the dried plants presented a good adsorption of heavy metals, phosphate, and nitrate ions from real wastewaters. This adsorption increased with increasing contact time. The equilibrium time was found to be 30 min for heavy metals and nitrate ions and 240 min for phosphate ions. After the adsorption process, the Pb(II) concentrations, as well as those of Cd(II), Cu(II), and Zn(II) were below the European drinking water norms concentrations. The percentage removal of heavy metals, nitrates, and phosphates from industrial wastewaters by dried plants was {proportional_to}94% for Cd{sup 2+}, {proportional_to}92% for Cu{sup 2+}, {proportional_to}99% for Pb{sup 2+}, {proportional_to}97% for Zn{sup 2+}, {proportional_to}100% for NO{sub 3}{sup -} and {proportional_to}77% for PO{sub 4}{sup 3-} ions. It is proved that dried plants can be one alternative source for low cost absorbents to remove heavy metals, nitrate, and phosphate ions from municipal and industrial wastewaters. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Combination of rice husk and coconut shell activated adsorbent to adsorb Pb(II) ionic metal and it’s analysis using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Rohmah, D. N.; Saputro, S.; Masykuri, M.; Mahardiani, L.

    2018-03-01

    The purpose of this research was to know the effect and determine the mass comparation which most effective combination between rice husk and coconut shell activated adsorbent to adsorb Pb (II) ion using SPS method. This research used experimental method. Technique to collecting this datas of this research is carried out by several stages, which are: (1) carbonization of rice husk and coconut shell adsorbent using muffle furnace at a temperature of 350°C for an hour; (2) activation of the rice husk and coconut shell adsorbent using NaOH 1N and ZnCl2 15% activator; (3) contacting the adsorbent of rice husk and coconut shell activated adsorbent with liquid waste simulation of Pb(II) using variation comparison of rice husk and coconut shell, 1:0; 0:1; 1:1; 2:1; 1:2; (4) analysis of Pb(II) using Solid-Phase Spectrophotometry (SPS); (5) characterization of combination rice husk and coconut shell activated adsorbent using FTIR. The result of this research show that the combined effect of combination rice husk and coconut shell activated adsorbent can increase the ability of the adsorbent to absorb Pb(II) ion then the optimum adsorbent mass ratio required for absorbing 20 mL of Pb(II) ion with a concentration of 49.99 µg/L is a ratio of 2:1 with the absorption level of 97,06%Solid-Phase Spectrophotometry (SPS) is an effective method in the level of µg/L, be marked with the Limit of Detection (LOD) of 0.03 µg/L.

  6. Adsorbate Diffusion on Transition Metal Nanoparticles

    Science.gov (United States)

    2015-01-01

    correlation is a Bronsted-Evans-Polanyi ( BEP )- type of correlation, similar to other BEP correlations established earlier for surface-catalyzed bond- breaking...bond-making reactions.6-9 The universal BEP -type correlation is independent of the nature of the adsorbed species and that of the metal surface. For...a certain class of surface-catalyzed reactions, the existence of a BEP -type correlation reflects a similarity between the geometry of the transition

  7. Creation of the technical adsorbent from local raw materials

    International Nuclear Information System (INIS)

    Isobaev, M.D.; Davlatnazarova, M.D.; Abdullaev, T.H.

    2016-01-01

    The results showed the possibility of obtaining effective adsorbents of walnut shell and the sunflower for environmental purposes, in particular for the purification of polluted waters from heavy metals. It has been shown, that 1 g of walnut shell adsorbent can adsorb on its surface ions of lead in amount of 47% by weight. The dependence of the adsorption activity of the semi-coke received from walnut shell from particle size and concentration of the solution. (author)

  8. A simple method for the preparation of difficult 99mTc complexes using surface adsorbed stannous ions

    International Nuclear Information System (INIS)

    Maddalena, D.J.; Snowdon, G.M.; Pojer, P.M.

    1987-01-01

    A simple new technique where stannous tin is adsorbed on the inner surface of plastic tubing and used to reduce ( 99m Tc) pertechnetate prior to labelling radiopharmaceuticals, has been evaluated, using some lipophillic and metal containing ligands. Complexes formed using the technique had good labelling efficiency and behaved the same in rat biodistribution studies as those prepared using conventional labelling methods. The labelling efficiency of the ligands was not related to their lipophillicity suggesting that this technique may be useful for labelling lipophillic and other difficult ligands such as those containing metals, which are incompatible with free stannous ions in solution. (M.E.L.) [es

  9. Solid-phase extraction and determination of trace elements in environmental samples using naphthalene adsorbent

    International Nuclear Information System (INIS)

    Pourreza, N.

    2004-01-01

    Naphthalene co-precipitated with quaternary ammonium salt such as tetraoctyl ammonium bromide and methyltrioctyl ammonium chloride have been used as adsorbent for solid phase extraction of metal ions such as Hg, Cd and Fe. The metal ions are retained on the adsorbent in a column as their complexes with suitable ligands and eluted by an eluent before instrumental measurements. The optimization of the procedures for solid phase extraction and consequent determination of trace elements and application to environmental samples especially water samples will be discussed. (author)

  10. Preparation and Evaluation of Adsorbents from Coal and Irvingia gabonensis Seed Shell

    Science.gov (United States)

    Ezeokonkwo, Mercy A.; Ofor, Okechukwu F.; Ani, Julius U.

    2017-12-01

    The adsorption of Cd(II) and Pb(II) ions on adsorbents prepared from sub-bituminous coal, lignite and a blend of coal and Irvingia gabonensis seed shells was investigated. Fourier transform infrared, scanning electron microscope and X-ray fluorescence analyses implicated hydroxyl, carbonyl, Al2O3 and SiO2 as being responsible for binding the metal ions on the porous adsorbents. The optimum adsorption of carbonized lignite for the removal of Cd(II) and Pb(II) ions from aqueous media were 80.93% and 87.85%, respectively. Batch adsorption was done by effect of adsorbent dosage, pH, contact time, temperature, particle size, and initial concentration. Equilibrium for the removal of Pb(II) and Cd(II) was established within 100 and 120 min respectively. Blending the lignite-derived adsorbent with Irvingia gabonensis seed shell improved the performance significantly. More improvement was observed on modification of the blend using NaOH and H3PO4. Pb(II) was preferentially adsorbed than Cd(II) in all cases. Adsorption of Cd(II) and Pb(II) ions followed Langmuir isotherm. The kinetics of adsorption was best described by pseudo-second order model. The potential for using a blend of coal and agricultural byproduct (Irvingia gabonensis seed shell) was found to be a viable alternative for removal of toxic heavy metals from aqueous solutions.

  11. Synthesis of Hydrophilic Sulfur-Containing Adsorbents for Noble Metals Having Thiocarbonyl Group Based on a Methacrylate Bearing Dithiocarbonate Moieties

    Directory of Open Access Journals (Sweden)

    Haruki Kinemuchi

    2018-01-01

    Full Text Available Novel hydrophilic sulfur-containing adsorbents for noble metals were prepared by the radical terpolymerization of a methacrylate bearing dithiocarbonate moieties (DTCMMA, hydrophilic monomers, and a cross-linker. The resulting adsorbents efficiently and selectively adsorbed noble metals (Au, Ag, and Pd from various multielement aqueous solutions at room temperature owing to the thiocarbonyl group having high affinity toward noble metals. The metal adsorption by the adsorbents was proceeded by simple mixing followed by filtration. The noble metal selectivity of the adsorbent obtained from DTCMMA and N-isopropylacrylamide was higher than that of the adsorbent obtained from DTCMMA and N,N-dimethylacrylamide due to the lower nonspecific adsorption.

  12. Performance evaluation of oxygen adsorbents using negative corona discharge–ion mobility spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Azadkish, Kamal; Jafari, Mohammad T., E-mail: jafari@cc.iut.ac.ir; Ghaziaskar, Hassan S.

    2017-02-08

    Trace amounts of oxygen was determined using negative corona discharge as an ionization source for ion mobility spectrometry. A point-in-cylinder geometry with novel design was used to establish the corona discharge without interferences of negative ions such as NO{sub X}{sup −}. The desirable background spectrum shows only electrons peak, providing the instrument capable of trace analysis of oxygen in gaseous samples. The limit of detection and linear dynamic range with high coefficient of determination (r{sup 2} = 0.9997), were obtained for oxygen as 8.5 and 28–14204 ppm, respectively. The relative standard deviations of the method for intraday and interday were obtained 4 and 11%, respectively. The satisfactory results revealed the ability of the negative corona discharge ion mobility spectrometry for investigating the performance of synthesized oxygen adsorbents in nitrogen streams. Two oxygen scavengers of MnO and Cu powder were prepared and the optimum temperature of the reactor containing MnO and Cu powder were obtained as 180 and 230 °C, respectively. Due to higher lifetime of copper powder, it was selected as the oxygen scavenger and some parameters such as: the type of adsorbent support, the size of adsorbent particles, and the amount of copper were studied for preparation of more efficient oxygen adsorbent. - Highlights: • Analysis of oxygen using negative corona discharge-ion mobility spectrometry was investigated for the first time. • Novel designed point-in-cylinder geometry was used to establish the corona discharge without interferences of negative ions. • The method was utilized to evaluate the performance of some synthesized oxygen scavengers.

  13. Removal of metal ions from water using nanohydrogel tragacanth gum-g-polyamidoxime: isotherm and kinetic study.

    Science.gov (United States)

    Masoumi, Arameh; Ghaemy, Mousa

    2014-08-08

    A new biosorbent was prepared by grafting polyacrylonitrile onto iranian tragacanth gum (ITG), a naturally and abundantly available polysaccharide, and subsequent amidoximation in the presence of hydroxylamine hydrochloride. This nanohydrogel with amidoxime functional groups [C(NH2)NOH], named polyamidoxime-g-tragacanth (ITG-g-PAO), was characterized and used for the removal of metal ions from aqueous solution. The effect of pH, agitation time, concentration of adsorbate and amount of adsorbent on the extent of adsorption was investigated. The experimental data were analyzed by four isotherms and kinetics equations, and the results were fitted well with the Temkin isotherm and pseudo-second-order model. The maximum adsorption capacities (Qm) of ITG-g-PAO as obtained from Langmuir adsorption isotherm were found to be 100.0, 76.92, 71.42 and 66.67 (mgg(-1)) for the adsorption of metal ions in order of Co(II)>Zn(II)>Cr(III)>Cd(II). The experimental results demonstrate that the above selective order of adsorption capacity is due to formation of stable chelating ring between the bidentate amidoxime ligand and metal ion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Renewable Modified Cellulose Bearing Chelating Schiff Base for Adsorptive Removal of Heavy Metal Ions and Antibacterial Action.

    Science.gov (United States)

    Saravanan, R; Ravikumar, L

    2017-07-01

      A novel approach toward chemically modified cellulose bearing active chelating Schiff base with hydroxyl group (Cell-Hy) was synthesized. The modified cellulose was examined for its heavy metal ion uptake potential from aqueous solution. The chemical and structural features of the adsorbent were characterized by Fourier transform infrared spectroscopy (FT-IR), solid state 13C-NMR, Scanning Electron Microscopy (SEM), and energy dispersive analysis of X-ray (EDAX) observations. The experimental conditions and adsorption parameters, including pH, initial metal ion concentration, adsorbent dosage, temperature, and contact time were optimized for the removal of Cu(II) and Pb(II) ions. Kinetic parameters, equilibrium adsorption capacities, and correlation coefficients for pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were carried out. The data obtained from the adsorption of Cu(II) and Pb(II) onto Cell-Hy were subjected to Langmuir and Freundlich isotherm models. Thermodynamic parameters have also been evaluated. The antibacterial activity of modified cellulose was tested toward specific bacterial species.

  15. Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Bingye; Cao, Meirong; Fang, Guozhen; Liu, Bing; Dong, Xv; Pan, Mingfei [Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457 (China); Wang, Shuo, E-mail: elisasw2002@yahoo.com.cn [Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Schiff base-chitosan grafted MWCNTs were synthesized via covalent modification. Black-Right-Pointing-Pointer The S-CS-MWCNTs were successfully characterized by FT-IR, TEM and TGA. Black-Right-Pointing-Pointer The S-CS-MWCNTs were used for solid-phase extraction of metal ions. Black-Right-Pointing-Pointer A method was developed detection of metal ions from samples coupled with ICP-MS. - Abstract: A novel Schiff base-chitosan-grafted multiwalled carbon nanotubes (S-CS-MWCNTs) solid-phase extraction adsorbent was synthesized by covalently grafting a Schiff base-chitosan (S-CS) onto the surfaces of oxidized MWCNTs. The adsorbent was characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and thermal gravimetric analysis. The results showed that S-CS was successfully grafted onto the surfaces of MWCNTs. A method was developed for the determination of heavy metals, namely V(V), Cr(VI), Cu(II), As(V) and Pb(II) in biological and environmental samples by inductively coupled plasma mass spectrometry coupled with preconcentration with S-CS-MWCNTs. The parameters influencing preconcentration of target ions, such as the pH of the sample solution, the flow rate of sample loading, the eluent concentration, and eluent volume, were investigated and optimized. Under the optimal conditions, the enrichment factors of V(V), Cr(VI), Cu(II), As(V), and Pb(II) reached 111, 95, 60, 52, and 128, respectively, and the detection limits were as low as 1.3-3.8 ng L{sup -1}. The developed method was successfully applied to the determination of trace-metal ions in herring, spinach, river water, and tap water with good recoveries ranging from 91.0% to 105.0%.

  16. Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS

    International Nuclear Information System (INIS)

    Dai, Bingye; Cao, Meirong; Fang, Guozhen; Liu, Bing; Dong, Xv; Pan, Mingfei; Wang, Shuo

    2012-01-01

    Highlights: ► Schiff base-chitosan grafted MWCNTs were synthesized via covalent modification. ► The S-CS-MWCNTs were successfully characterized by FT-IR, TEM and TGA. ► The S-CS-MWCNTs were used for solid-phase extraction of metal ions. ► A method was developed detection of metal ions from samples coupled with ICP-MS. - Abstract: A novel Schiff base-chitosan-grafted multiwalled carbon nanotubes (S-CS-MWCNTs) solid-phase extraction adsorbent was synthesized by covalently grafting a Schiff base-chitosan (S-CS) onto the surfaces of oxidized MWCNTs. The adsorbent was characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and thermal gravimetric analysis. The results showed that S-CS was successfully grafted onto the surfaces of MWCNTs. A method was developed for the determination of heavy metals, namely V(V), Cr(VI), Cu(II), As(V) and Pb(II) in biological and environmental samples by inductively coupled plasma mass spectrometry coupled with preconcentration with S-CS-MWCNTs. The parameters influencing preconcentration of target ions, such as the pH of the sample solution, the flow rate of sample loading, the eluent concentration, and eluent volume, were investigated and optimized. Under the optimal conditions, the enrichment factors of V(V), Cr(VI), Cu(II), As(V), and Pb(II) reached 111, 95, 60, 52, and 128, respectively, and the detection limits were as low as 1.3–3.8 ng L −1 . The developed method was successfully applied to the determination of trace-metal ions in herring, spinach, river water, and tap water with good recoveries ranging from 91.0% to 105.0%.

  17. The effect of environmental conditions on the stability of heavy metal-filter material complex as assessed by the leaching of adsorbed metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Khokhotva, Oleksandr, E-mail: khokhotva@bigmir.net [School of Sustainable Development of Society and Technology, Maelardalen University, Box 883, SE-721 23, Vaesteras (Sweden); Waara, Sylvia, E-mail: sylvia.waara@hh.se [School of Sustainable Development of Society and Technology, Maelardalen University, Box 883, SE-721 23, Vaesteras (Sweden)

    2011-06-15

    In this study the influence of environmental conditions, most likely prevailing in filter beds used for intermittently discharged pollutant streams such as landfill leachate and storm water, on the stability of the heavy metal-filter complex was investigated for 2 filter materials; non-treated and urea treated pine bark, using leaching experiments. The metal-filter complex stability was higher for urea treated than for non-treated pine bark and dependent on the metal adsorbed. The type of environmental condition applied was of less importance for the extent of leaching. - Highlights: > Metal-pine bark complex stability under changing environmental conditions is studied. > Metal leaching from non-treated bark is much higher than from urea-treated bark. > No significant influence of changing environmental conditions on the leaching extent. > Metal leaching from wet bark samples exposed to freezing is somewhat higher.> Zn leaching is the highest and Cu leaching is the lowest for both bark samples. - The study assess the metal-filter material complex stability when metal removal using filter material is used in locations with fluctuating environmental conditions.

  18. The effect of environmental conditions on the stability of heavy metal-filter material complex as assessed by the leaching of adsorbed metal ions

    International Nuclear Information System (INIS)

    Khokhotva, Oleksandr; Waara, Sylvia

    2011-01-01

    In this study the influence of environmental conditions, most likely prevailing in filter beds used for intermittently discharged pollutant streams such as landfill leachate and storm water, on the stability of the heavy metal-filter complex was investigated for 2 filter materials; non-treated and urea treated pine bark, using leaching experiments. The metal-filter complex stability was higher for urea treated than for non-treated pine bark and dependent on the metal adsorbed. The type of environmental condition applied was of less importance for the extent of leaching. - Highlights: → Metal-pine bark complex stability under changing environmental conditions is studied. → Metal leaching from non-treated bark is much higher than from urea-treated bark. → No significant influence of changing environmental conditions on the leaching extent. → Metal leaching from wet bark samples exposed to freezing is somewhat higher.→ Zn leaching is the highest and Cu leaching is the lowest for both bark samples. - The study assess the metal-filter material complex stability when metal removal using filter material is used in locations with fluctuating environmental conditions.

  19. Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods

    Directory of Open Access Journals (Sweden)

    Amira M. Mahmoud

    2015-03-01

    Full Text Available Environmental pollution by heavy metal is arising as the most endangering tasks to both water sources and atmosphere quality today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. To limit the spread of the heavy metals within water sources, nickel oxide nanoparticles adsorbents were synthesized and characterized with the aim of removal of one of the aggressive heavy elements, namely; lead ions. Nano nickel oxide adsorbents were prepared using NaOH and oxalic acid dissolved in ethanol as precursors. The results indicated that adsorption capacity of Pb(II ion by NiO-org catalyst is favored than that prepared using NaOH as a precipitant. Nickel oxide nanoparticles prepared by the two methods were characterized structurally and chemically through XRD, DTA, TGA, BET and FT-IR. Affinity and efficiency sorption parameters of the solid nano NiO particles, such as; contact time, initial concentration of lead ions and the dosage of NiO nano catalyst and competitive adsorption behaviors were studied. The results showed that the first-order reaction law fit the reduction of lead ion, also showed good linear relationship with a correlation coefficient (R2 larger than 0.9.

  20. Equilibrium Adsorption of heavy Metals from Aqueous Solutions onto Poly aniline Stannic(IV) Phosphate Composite

    International Nuclear Information System (INIS)

    El-Zahhar, A.A.; EI-Shourbagy, M.M.; Shady, S.A.

    2012-01-01

    An adsorbent material has been prepared by immobilization of stannic(IV) phosphate within poly aniline composite. The produced adsorbent exhibit a high adsorption potential for Pb(II), Cd(Il) and Zn(lI) from aqueous solutions. The influence of initial metal ion concentration, adsorbent dose, ph and temperature on metal ion removal has been studied. The process was found to follow a first order rate kinetics. Thc intra-particle diffusion of metal ions through pores in the adsorbent was to be the main rate limiting step. The equilibrium data fit well with Langmuir adsorption isotherm model. The selectivity order of the adsorbent towards the metal ions was Pb(Il) > Cd(Il) >Zn(II). The adsorption rate constant and thermodynamic parameters were also given to predict the nature of adsorption

  1. Batch adsorption of heavy metals (Cu, Pb, Fe, Cr and Cd) from ...

    African Journals Online (AJOL)

    cinthia

    This study was carried out to evaluate the efficiency of metals (Cu, Fe, Pb, Cr and Cd) removal from mixed metal ions solution using coconut husk as adsorbent. The effects of varying contact time, initial metal ion concentration, adsorbent dose and pH on adsorption process of these metals were studied using synthetically ...

  2. Oxygen effect on the work function of electropositive metal films adsorbed on 4d and 5d-transition metals

    International Nuclear Information System (INIS)

    Kultashev, O.K.; Makarov, A.P.; Rozhkov, S.E.

    1976-01-01

    The thermionic emission method was used to study the effect of oxygen upon the work function of films of electropositive metals, Sc, Y, La and Ba on some monocrystal and polycrystalline specimens of 4d- and 5d-transition metals of groups 4-8 of the Periodic system. It was revealed that when the supports were polycrystalline and monocrystalline specimens of transition metals of Group 5 (niobium and tantalum), the work function phi of films of electropositive adsorbates dropped substantially as compared, e.g., to the phi values on the same faces of tungsten. When the concentration of the electropositive adsorbate exceeds the optimum value (in the absence of oxygen), oxygen exerts an appreciably activating action upon the work function phi of films of electropositive adsorbates on transition metals of the Groups 7 and 8. The activating action of oxygen is assumed to be due to a possibility of formation of surface interstitial structures

  3. Many-body dispersion effects in the binding of adsorbates on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Reinhard J. [Department of Chemistry, Yale University, New Haven, Connecticut 06520 (United States); Ruiz, Victor G.; Tkatchenko, Alexandre [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany)

    2015-09-14

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic–inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate–surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.

  4. Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

    KAUST Repository

    Sinha, Shahnawaz

    2011-09-30

    The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated mic - rosand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of C eq = 10 μg/L were 500 mg/L for AA and GFH, 520–1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60–95 % .

  5. Removal of Copper(II) Ions in Aqueous Solutions Using Tannin-Rich Plants as Natural Bio-Adsorbents

    Science.gov (United States)

    Paksamut, J.; Boonsong, P.

    2018-03-01

    In this study, the purpose of our interest is to investigatethe adsorption behavior of copper (II) ions in aqueous solution using some tannin-rich plants as natural bio-adsorbents such as mangosteen peels (Garciniamangostana L.), cassava leaves (Manihotesculenta Crantz) and Thai copper pod leaves (Sennasiamea (Lam.)) as powder form in different dosage of adsorbent plant materials.The adsorption capacities at different pH of solution and contact time were performed.All the experiments in this studywere chosen at room temperature by batch technique. From the experimental results showed that cassava leaves gave better adsorbent properties than mangosteen peels and Thai copper pod leaves. The increasing dosage of all adsorbents and contact time have been found to increase adsorption capacities. In this respect, the adsorption capacities depend crucially on the adsorbents and contact time. The optimum pH of copper (II) ions adsorption was pH4. According to this work, it was observed that bioadsorbent materials from tannin-rich plants could be used to remove copper (II) ions from aqueous solutions.

  6. Application of Hydrothermal and Non-Hydrothermal TiO2 Nanoporous Materials as New Adsorbents for Removal of Heavy Metal Ions from Aqueous System

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2016-06-01

    Full Text Available Hydrothermal and non-hydrothermal spherical TiO2 nanoporous with crystalline framework were prepared by sol-gel method. The Crystalline structures, morphologies and surface texturing of materials were determined by X-ray diffraction (XRD, scanning electron microscopy (SEM and N2 adsorption-desorption isotherms. The Hydrothermal spherical TiO2 nanoporous was found to have a narrow and strong pore size distribution peaks with average of 37.8 Å and pore volume of 0.41 cm3/g and the (Brunauer–Emmett–TellerBET specific surface area of 365 m2/g. Hydrothermal and non-hydrothermal spherical TiO2 nanoporous have been used as adsorbent to study of the adsorption behavior of Pb(II, Co(II and Ni(II ions from aqueous system in a batch system. Effect of equilibrium time on adsorption Pb(II, Co(II and Ni(II ions on these adsorbent was studied The results show that the shaking time 0.5 to 10h has no serious effect on the percentage of ions removal, and the adsorption is fast in all cases. The maximum uptake capacities of Hydrothermal and non-hydrothermal spherical TiO2 nanoporous was calculated. Both hydrothermal and non-hydrothermal TiO2 nanoporous materials were found to have very good potential as new adsorbents in removal of these ions. In batch systems the maximum uptake capacities of Pb(II, Ni(II and Co(II on the hydrothermal and non-hydrothermal TiO2 nanoporous materials was Co(II > Pb(II > Ni(II and Co(II > Ni(II > Pb(II, respectively.

  7. Adsorbent material based on passion-fruit wastes to remove lead (Pb), chromium (Cr) and copper (Cu) from metal-contaminated waters

    Science.gov (United States)

    Campos-Flores, Gaby; Castillo-Herrera, Alberto; Gurreonero-Fernández, Julio; Obeso-Obando, Aída; Díaz-Silva, Valeria; Vejarano, Ricardo

    2018-04-01

    The aim of the present work was to evaluate the feasibility of passion-fruit shell (PFS) biomass as adsorbent material to remove heavy metals from contaminated waters. Model mediums were used, which were composed of distilled water and the respective metal: lead (Pb), chromium (Cr) and copper (Cu), with a dose of 10g of dry PFSbiomass per liter of medium. The residual concentration of each metal was determined by Atomic Absorption Spectrophotometry (AAS). A good adsorption capacity was exhibited by this agro industrial waste, achieving removal levels of 96,93 and 82% for Pb, Cr and Cu, respectively. In addition, the results obtained showed an adequate fit to the Freundlich model (R2 > 0.91), on the basis of which, the following values of adsorption capacity (k: 1.7057, 0.6784, 0.3302) and adsorption intensity (n: 0.6869, 2.3474, 1.0499), for Pb, Cr and Cu respectively, were obtained. Our results suggest that Pb, Cr and Cu ions can be removed by more than 80% by using this agro industrial waste, which with a minimum treatment could be used as an adsorbent material in the treatment of metal-contaminated waters.

  8. Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb(II) ions from contaminated waters; kinetics and thermodynamic study.

    Science.gov (United States)

    Piri, Somayeh; Zanjani, Zahra Alikhani; Piri, Farideh; Zamani, Abbasali; Yaftian, Mohamadreza; Davari, Mehdi

    2016-01-01

    Nowadays significant attention is to nanocomposite compounds in water cleaning. In this article the synthesis and characterization of conductive polyaniline/clay (PANI/clay) as a hybrid nanocomposite with extended chain conformation and its application for water purification are presented. Clay samples were obtained from the central plain of Abhar region, Abhar, Zanjan Province, Iran. Clay was dried and sieved before used as adsorbent. The conductive polyaniline was inflicted into the layers of clay to fabricate a hybrid material. The structural properties of the fabricated nanocomposite are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The elimination process of Pb(II) and Cd(II) ions from synthetics aqueous phase on the surface of PANI/clay as adsorbent were evaluated in batch experiments. Flame atomic absorption instrument spectrophotometer was used for determination of the studied ions concentration. Consequence change of the pH and initial metal amount in aqueous solution, the procedure time and the used adsorbent dose as the effective parameters on the removal efficiency was investigated. Surface characterization was exhibited that the clay layers were flaked in the hybrid nanocomposite. The results show that what happen when a nanocomposite polyaniline chain is inserted between the clay layers. The adsorption of ions confirmed a pH dependency procedure and a maximum removal value was seen at pH 5.0. The adsorption isotherm and the kinetics of the adsorption processes were described by Temkin model and pseudo-second-order equation. Time of procedure, pH and initial ion amount have a severe effect on adsorption efficiency of PANI/clay. By using suggested synthesise method, nano-composite as the adsorbent simply will be prepared. The prepared PANI/clay showed excellent adsorption capability for decontamination of Pb ions from contaminated water. Both of suggested synthesise and

  9. Removal of metallic ions from aqueous solutions by fluidized bed fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Rio, S.; Delebarre, A.; Hequet, V. [Ecole des Mines de Nantes, 44 - Nantes (France); Blondin, J. [Cerchar 62 - Mazingarbe (France)

    2001-07-01

    One of the main constraints deriving from the generation of power by coal combustion is to find some use for the fly ashes instead of disposing of them. Fly ashes from two fluidized bed power plants were tested to remove Pb{sup 2+}, Cu{sup 2+}, Cr (III), Ni{sup 2+}, Zn{sup 2+} and Cr (VI) from aqueous solutions. Experimental design methodology was used to study the removal and the leaching as a function of (i) the water pollutant content, (ii) the metal concentration in water, (iii) the pH of the solution and (iv) the addition of lime to fly ashes. The results show that the percentage of adsorbed ions was more important when they were in contact with silico-aluminous fly ashes than sulfo-calcic fly ashes, except in the case of the ion Ni{sup 2+}. The removal of metallic ions increases with increasing pH. The metallic canons removal accounting for the leaching test was higher when lime was added to silico-aluminous fly ashes during the adsorption. (authors)

  10. Obtaining sorbents of metal ions based on yeast cells Rhodotorula glutinis

    Directory of Open Access Journals (Sweden)

    Zh. Tattibayeva

    2013-05-01

    Full Text Available Ability to separate Cu2+ and Pb2+ ions from solution using yeast cells Rhodotorulа glutinis were considered. The degree of water purification in this case is of 60-70%. To increase the degree of binding of metal ions with cells and facilitate separation processes of water sorbents their immobilization on the surface of the water in the presence of polyethyleneimine was carried out. It is shown that under optimal conditions on the surface of 1 g diatomite 18 ∙ 106 cells is adsorbed. The high sorption capacity of diatomite justified its porosity. IR spectroscopic study of the interaction of the ions Cu2+ and Pb2+ with cell surface showed that high affinity Pb2 + ions to the surface of yeast cells is connected with form of slightly soluble compounds with the phosphate ions.

  11. The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions

    Directory of Open Access Journals (Sweden)

    Bobik Magdalena

    2017-06-01

    Full Text Available Magnetite nanoparticles have become a promising material for scientific research. Among numerous technologies of their synthesis, co-precipitation seems to be the most convenient, less time-consuming and cheap method which produces fine and pure iron oxide particles applicable to environmental issues. The aim of the work was to investigate how the co-precipitation synthesis parameters, such as temperature and base volume, influence the magnetite nanoparticles ability to separate heavy metal ions. The synthesis were conducted at nine combinations of different ammonia volumes - 8 cm3, 10 cm3, 15 cm3 and temperatures - 30°C, 60°C, 90°C for each ammonia volume. Iron oxides synthesized at each combination were examined as an adsorbent of seven heavy metals: Cr(VI, Pb(II, Cr(III, Cu(II, Zn(II, Ni(II and Cd(II. The representative sample of magnetite was characterized using XRD, SEM and BET methods. It was observed that more effective sorbent for majority of ions was produced at 30°C using 10 cm3 of ammonia. The characterization of the sample produced at these reaction conditions indicate that pure magnetite with an average crystallite size of 23.2 nm was obtained (XRD, the nanosized crystallites in the sample were agglomerated (SEM and the specific surface area of the aggregates was estimated to be 55.64 m2·g-1 (BET. The general conclusion of the work is the evidence that magnetite nanoparticles have the ability to adsorb heavy metal ions from the aqueous solutions. The effectiveness of the process depends on many factors such as kind of heavy metal ion or the synthesis parameters of the sorbent.

  12. Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels.

    Science.gov (United States)

    Vareda, João P; Valente, Artur J M; Durães, Luisa

    2016-11-01

    Heavy metals are dangerous pollutants that in spite of occurring naturally are released in major amounts to the environment due to anthropogenic activities. After being released in the environment, the heavy metals end up in the soils where they accumulate as they do not degrade, adversely affecting the biota. Because of the dynamic equilibria between soil constituents, the heavy metals may be present in different phases such as the solid phase (immobilized contaminants) or dissolved in soil solution. The latter form is the most dangerous because the ions are mobile, can leach and be absorbed by living organisms. Different methods for the decontamination of polluted soils have been proposed and they make use of two different approaches: mobilizing the heavy metals, which allows their removal from soil, or immobilization that maintains the metal concentrations in soils but keeps them in an inert form due to mechanisms like precipitation, complexation or adsorption. Mobilization of the heavy metals is known to cause leaching and increase plant uptake, so this treatment can cause greater problems. Aerogels are incredible nanostructured, lightweight materials with high surface area and tailorable surface chemistry. Their application in environmental cleaning has been increasing in recent years and very promising results have been obtained. The functionalization of the aerogels can give them the ability to interact with heavy metals, retaining the latter via strong adsorptive interactions. Thus, this review surveys the existing literature for remediation of soils using an immobilization approach, i.e. with soil amendments that increase the soil sorption/retention capacity for heavy metals. The considered framework was a set of heavy metals with relevance in polluted Iberian soils, namely Cd, Cr, Cu, Ni, Pb and Zn. Moreover, other adsorbents, especially aerogels, have been used for the removal of these contaminants from aqueous media; because groundwater and soil

  13. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  14. Contact isotopic- and contact ion-exchange between two adsorbents

    International Nuclear Information System (INIS)

    Bunzl, K.; Mohan, R.; Haimerl, M.

    1975-01-01

    The kinetics of contact ion exchange processes between an ion exchange membrane and resin ion exchange beads, stirred in pure water, was investigated. A general criterion was derived, which indicates whether diffusion of the ions between the intermingling electric double layers or the collision frequency between the two adsorbents is the rate dermining step. Since the latter process proved to be rate controlling under our experimental conditions, the corresponding rate equations were derived under various initial and boundary conditions. Experimentally, the kinetics of contact isotopic exchange of Cs + - and Na + -ions as well as of the reverse contact ion exchange process of Cs + -versus Na + -ions were investigated by using Na 22 and Cs 137 radioisotopes. The experiments reveal in quantitative accord with the theory that the rate of collision controlled contact ion exchange processes depends mainly on the 'exchange coefficient', the separation factor and the collision frequency. While the latter two quantities were determined independently by separate experiments, the 'exchange coefficient' was evaluated from a contact isotopic exchange experiment. (orig.) [de

  15. Preparation and characterization of a novel electrospun ammonium molybdophosphate/polyacrylonitrile nanofiber adsorbent for cesium removal

    International Nuclear Information System (INIS)

    Amin Tabatabaeefar; Mohammad Ali Moosavian; Ali Reza Keshtkar

    2015-01-01

    Adsorption of Cs + ion from aqueous solution onto a novel electrospun ammonium molybdophosphate/polyacrylonitrile nanofiber adsorbent with variation in AMP content, adsorbent concentration, pH, contact time, initial concentration and temperature was studied. The physicochemical characterization was performed by FTIR, XRD, BET and SEM analyses. Langmuir, Freundlich and Dubinin-Radushkevich models were used for analysis of equilibrium data. Kinetic results showed that the experimental data best fitted the pseudo-second-order kinetic model. The adsorption affinity of metal ions onto adsorbent was in order of Cs + > Co 2+ > Mg 2+ > Ca 2+ > Sr 2+ . The adsorbent could be easily regenerated after five cycles of adsorption-desorption. (author)

  16. Strong adsorbability of mercury ions on aniline/sulfoanisidine copolymer nanosorbents.

    Science.gov (United States)

    Li, Xin-Gui; Feng, Hao; Huang, Mei-Rong

    2009-01-01

    The highest Hg-ion adsorbance so far, namely up to 2063 mg g(-1), has been achieved by poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Sorption of Hg ions occurs mainly by redox and chelation mechanisms (see scheme), but also by ion exchange and physisorption.Poly(aniline (AN)-co-5-sulfo-2-anisidine (SA)) nanoparticles were synthesized by chemical oxidative copolymerization of AN and SA monomers, and their extremely strong adsorption of mercury ions in aqueous solution was demonstrated. The reactivity ratios of AN and SA comonomers were found to be 2.05 and 0.02, respectively. While AN monomer tends to homopolymerize, SA monomer tends to copolymerize with AN monomer because of the great steric hindrance and electron-attracting effect of the sulfo groups, despite the effect of conjugation of the methoxyl group with the benzene ring. The effects of initial mercury(II) concentration, sorption time, sorption temperature, ultrasonic treatment, and sorbent dosage on mercury-ion sorption onto AN/SA (50/50) copolymer nanoparticles with a number-average diameter of around 120 nm were significantly optimized. The results show that the maximum Hg-ion sorption capacity on the particulate nanosorbents can even reach 2063 mg of Hg per gram of sorbent, which would be the highest Hg-ion adsorbance so far. The sorption data fit to the Langmuir isotherm, and the process obeys pseudo-second-order kinetics. The IR and UV/Vis spectral data of the Hg-loaded copolymer particles suggest that some mercury(II) was directly reduced by the copolymer to mercury(I) and even mercury(0). A mechanism of sorption between the particles and Hg ions in aqueous solution is proposed, and a physical/ion exchange/chelation/redox sorption ratio of around 2/3/45/50 was found. Copolymer nanoparticles may be one of the most powerful and cost-effective sorbents of mercury ions, with a wide range of potential applications for the efficient removal and even recovery of the mercury ions from aqueous solution.

  17. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution.

    Science.gov (United States)

    Ma, Xiaofei; Liu, Xueyuan; Anderson, Debbie P; Chang, Peter R

    2015-08-15

    Porous starch xanthate (PSX) and porous starch citrate (PSC) were prepared in anticipation of the attached xanthate and carboxylate groups respectively forming chelation and electrostatic interactions with heavy metal ions in the subsequent adsorption process. The lead(II) ion was selected as the model metal and its adsorption by PSX and PSC was characterized. The adsorption capacity was highly dependent on the carbon disulfide/starch and citric acid/starch mole ratios used during preparation. The adsorption behaviors of lead(II) ion on PSXs and PSCs fit both the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity from the Langmuir isotherm equation reached 109.1 and 57.6 mg/g for PSX and PSC when preparation conditions were optimized, and the adsorption times were just 20 and 60 min, respectively. PSX and PSC may be used as effective adsorbents for removal of heavy metals from contaminated liquid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  18. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Science.gov (United States)

    Wei, Wei; Yang, Lei; Zhong, Wenhui; Cui, Jing; Wei, Zhenggui

    2015-03-01

    In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (Xc = 0.23) and had better adsorption capacity for FA than those (Xc = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long term. Findings of the present work highlight the potential for using poorly crystalline HAP nanoparticles as an effective and recyclable adsorbent for FA removal from aqueous solution.

  19. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Science.gov (United States)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  20. Effective embedded-atom potential for metallic adsorbates on crystalline surfaces

    International Nuclear Information System (INIS)

    Förster, G D; Magnin, Y; Rabilloud, F; Calvo, F

    2014-01-01

    Based on the embedded-atom method (EAM), an analytical effective potential is developed to model the interaction of a metallic adsorbate on a perfect crystalline substrate, which is also metallic. The many-body character of the original EAM potential is preserved in the adsorbate energy and in the alteration of the substrate energy due to the presence of the adsorbate. A mean-field-type version neglecting corrugation of the substrate is first derived based on rigorous integration of individual monolayers, followed by an approximate form for the perturbation of the substrate energy. Lateral corrugation is subsequently included by additional phenomenological terms respecting the symmetry of the substrate, again preserving the many-body nature of the original potential. The effective model contains four parameters to describe uncorrugated substrates and eight extra parameters to describe every order of the Fourier lateral expansion. These parameters were fitted to reproduce the adsorption energy of a sample of random configurations of realistic 2D and 3D clusters deposited on the (1 1 1) fcc surface, for metals for which popular EAM models have been parametrized. As a simple application, the local relaxation of pre-formed icosahedral or truncated octahedral clusters soft-landed and exposing (1 1 1) faces in epitaxy to the substrate has been simulated at 0 and 300 K. The deformation of small clusters to wet the substrate is correctly captured by the effective model. This agreement with the exact potential suggests that the present model should be useful for treating metallic environments in large-scale surface studies, notably in structural optimization or as a template for more general models parametrized from ab initio data. (paper)

  1. Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Liu, Meiying; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Huang, Hongye; Xu, Dazhuang; Zeng, Guangjian [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-09-15

    Adsorption has been well regarded as a promising and efficient method for the removal of low concentration heavy metal ions in aqueous solutions. And kaolin has been considered as a kind of low cost and environment-friendly adsorbent for its abundant in nature. But the low adsorption capacity to heavy metal ions and severe aggregation in solution restrains its application. In this work, an environment-friendly adsorbent (denoted as Kaolin-PDA-PEI) was prepared based on mussel inspired chemistry and Michael addition reaction between high reaction activity of polydopamine (PDA) and polyethyleneimine (PEI), which was possesses a number of amine groups. The amine groups have displayed strong adsorption affinity towards copper ions. The successful modification of Kaolin by PDA and PEI was confirmed by a series of analyses, such as Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetry analysis and X-ray photoelectron spectroscopy. The effects of various parameters such as contact time, pH, initial concentrations of copper ions and temperature on copper ion adsorption by Kaolin-PDA-PEI were investigated. Kaolin-PDA-PEI shows higher adsorption capacity as compared with the raw Kaolin. The kinetic adsorption data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The Langmuir isotherm and Freundlich isotherm equilibrium model were applied to adsorption isotherm data to find the better fit isotherm. The results showed that adsorption process was well fitted by Langmuir isotherm model. The values of thermodynamics constants such as entropy change (ΔS{sup 0}), enthalpy change (ΔH{sup 0}) and Gibbs free energy (ΔG{sup 0}) were also calculated. The results indicated that the adsorption process of Kaolin-PDA-PEI were endothermic and spontaneous. - Graphical abstract: Amino groups functionalized Kaolin was facilely prepared via mussel inspired chemistry. The modified Kaolin exhibited much

  2. Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions

    International Nuclear Information System (INIS)

    Huang, Qiang; Liu, Meiying; Deng, Fengjie; Wang, Ke; Huang, Hongye; Xu, Dazhuang; Zeng, Guangjian; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Adsorption has been well regarded as a promising and efficient method for the removal of low concentration heavy metal ions in aqueous solutions. And kaolin has been considered as a kind of low cost and environment-friendly adsorbent for its abundant in nature. But the low adsorption capacity to heavy metal ions and severe aggregation in solution restrains its application. In this work, an environment-friendly adsorbent (denoted as Kaolin-PDA-PEI) was prepared based on mussel inspired chemistry and Michael addition reaction between high reaction activity of polydopamine (PDA) and polyethyleneimine (PEI), which was possesses a number of amine groups. The amine groups have displayed strong adsorption affinity towards copper ions. The successful modification of Kaolin by PDA and PEI was confirmed by a series of analyses, such as Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetry analysis and X-ray photoelectron spectroscopy. The effects of various parameters such as contact time, pH, initial concentrations of copper ions and temperature on copper ion adsorption by Kaolin-PDA-PEI were investigated. Kaolin-PDA-PEI shows higher adsorption capacity as compared with the raw Kaolin. The kinetic adsorption data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The Langmuir isotherm and Freundlich isotherm equilibrium model were applied to adsorption isotherm data to find the better fit isotherm. The results showed that adsorption process was well fitted by Langmuir isotherm model. The values of thermodynamics constants such as entropy change (ΔS"0), enthalpy change (ΔH"0) and Gibbs free energy (ΔG"0) were also calculated. The results indicated that the adsorption process of Kaolin-PDA-PEI were endothermic and spontaneous. - Graphical abstract: Amino groups functionalized Kaolin was facilely prepared via mussel inspired chemistry. The modified Kaolin exhibited much enhanced adsorption

  3. Application of neutron activation techniques and x-ray energy dispersion spectrometry, in analysis of metallic traces adsorbed by chelex-100 resin

    International Nuclear Information System (INIS)

    Fernandes, Jair C.; Amaral, Angela M.; Magalhaes, Jesus C.; Pereira, Jose S.J.; Silva, Juliana B. da; Auler, Lucia M.L.A.

    2000-01-01

    In this work, the authors have investigated optimal conditions of adsorption for several ion metallic groups (cations of heavy metals and transition metals, oxyanions metallics and metalloids and cations of rare earths), as traces (ppb), withdrawn and in mixture of groups, by chelex-100 resin. The experiments have been developed by bath techniques in ammonium acetate tamponade solution 40 mM pH 5,52 content 0,5 g of chelex-100 resin. After magnetic agitation for two hours, resins were dried and submitted to X-ray energy dispersion spectrometry, x-ray fluorescence spectrometry and neutron activation analysis. The results have demonstrated that chelex-100 resin adsorb quantitatively transition element groups and rare earth groups in two cases (withdrawn and simultaneously adsorption)

  4. Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions

    International Nuclear Information System (INIS)

    Ahmadpour, A.; Zabihi, M.; Tahmasbi, M.; Bastami, T. Rohani

    2010-01-01

    In the present investigation, three different solid wastes namely almond green hull, eggplant hull, and moss were initially treated and used as adsorbents for the adsorption of strontium ion from aqueous solutions. Adsorbent types and chemical treatments are proved to have effective roles on the adsorption of Sr(II) ion. Among the three adsorbents, almond green hull demonstrated strong affinity toward strontium ion in different solutions. The effectiveness of this new adsorbent was studied in batch adsorption mode under a variety of experimental conditions such as: different chemical treatments, various amounts of adsorbent, and initial metal-ion concentration. The optimum doses of adsorbent for the maximum Sr(II) adsorption were found to be 0.2 and 0.3 g for 45 and 102 mg L -1 solutions, respectively. High Sr(II) adsorption efficiencies were achieved only in the first 3 min of adsorbent's contact time. The kinetics of Sr(II) adsorption on almond green hull was also examined and it was observed that it follows the pseudo second-order behavior. Both Langmuir and Freundlich models well predicted the experimental adsorption isotherm data. The maximum adsorption capacity on almond green hull was found to be 116.3 mg g -1 . The present study also confirmed that these low cost agriculture byproducts could be used as efficient adsorbents for the removal of strontium from wastewater streams.

  5. Synthesis and characterization of inorganic materials to be employees as adsorbents of toxic metals; Sintesis y caracterizacion de materiales inorganicos para ser empleados como adsorbentes de metales toxicos y de interes nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Granados C, F.; Serrano G, J.; Bonifacio M, J., E-mail: francisco.granados@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In this chapter is described the development of the studies realized in the Instituto Nacional de Investigaciones Nucleares (ININ) by researchers of the Chemistry Department in the area of water decontamination. The study of the metals separation in aqueous solution through inorganic adsorbents, was initiated in the Chemistry Department, using zeolites for to adsorb metal cations like the cobalt and cadmium. In the year 1995, the separation studies of Co and Cd were realized using zeolite X. On the other hand, the adsorption capacity of the natural clinoptilolite to retain to the cobalt was also studied. With the natural evolution of these works, it began to study the effect of the organic compounds presence in the metals adsorption in zeolites. Apart from the Co and Cd the removal of Ni, Cd and Zn of the water has been investigated using clinoptilolite, heulandite and Hg, also using zeolites like adsorbent material. In the last years, they have been carried out studies on the separation of Cr in form of chromate (CrO{sub 4}{sup 2-}) as of dichromate ions (Cr{sub 2}O{sub 7}{sup 2-}), using pouzzolane modified with Fe and tricalcic phosphate. In these works were found that both materials are highly efficient to separate the chromium of aqueous solutions. (Author)

  6. Sample preparation of waste water to determine metallic contaminants by X-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez Olivos, Javier.

    1987-01-01

    Trace X-ray fluorescence spectroscopy analysis in liquid samples is preceded by sample preparation, which usually consists in the precipitation of the metallic ions and concentration over a thin cellulose filter. The samples preparation of waste water by this method is not efficient, due to the great amount of organic and insoluble matter that they contain. The purpose of this work was to determine the optimal value of pH in order to adsorbe all the insoluble matter contained in a waste water sample in the activated charcoal, so that the metallic ions could be precipitated and concentrated on a thin filter and determinated by X-ray fluorescence spectroscopy. A survey about the adsorption of some ions in activated charcoal in function of the pH was made for the following: Cr 3+ , Fe 3+ , Ni 2+ , Cu 2+ , Zn 2+ , Se 2+ , Hg 2+ , and Pb 2+ . It was observed that at pH 0, the ions are not adsorbed, but Cu 2+ and Zn 2+ are adsorbed in small amount; at pH 14, the ions are adsorbed, excluding Se, which is not adsorbed at any value of pH. If a waste water sample is treated at pH 0 with activated charcoal to adsorbe the organic and insoluble matter, most of the metallic ions are not adsorbed by the activated charcoal and could be precipitated with APDC (ammonium 1-pirrolidine dithio carbamate salt) and concentrated on a thin filter. The analysis of the metallic ions contained on the filter and those adsorbed in the activated charcoal by X-ray fluorescence spectroscopy, gave the total amount of the ions in the sample. (author)

  7. Study on the adsorption of heavy metal ions from aqueous solution on modified SBA-15

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2013-01-01

    Full Text Available Amino-functionalized SBA-15 mesoporous silica was prepared, characterized, and used as an adsorbent for heavy metal ions. The organic - inorganic hybrid material was obtained by a grafting procedure using SBA-15 silica with 3-aminopropyl-triethoxysilane and bis(2,4,4-trimethylpentyl phosphinic acid (Cyanex 272, respectively. The structure and physicochemical properties of the materials were characterized by means of elemental analysis, X-ray diffraction (XRD, nitrogen adsorption - desorption, thermogravimetric analysis, FTIR spectroscopy and immersion calorimetry. The organic functional groups were successfully grafted onto the SBA-15 surface and the ordering of the support was not affected by the chemical modification. The behavior of the grafted solids was investigated for the adsorption of heavy metal ions from aqueous solutions. The hybrid materials showed high adsorption capacity and high selectivity for zinc ions. Other ions, such as cooper and cobalt were absorbed by the modified SBA-15 material.

  8. Gold recovery from low concentrations using nanoporous silica adsorbent

    Science.gov (United States)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  9. Preparation of poly(acrylic acid)-chitosan hydrogels by gamma irradiation for metal ions sorption

    International Nuclear Information System (INIS)

    Tran Thu Hong; Le Hai; Nguyen Tan Man; Tran Thi Tam; Pham Thi Le Ha; Pham Thi Sam; Nguyen Duy Hang; Le Huu Tu; Le Van Toan

    2013-01-01

    Acid acrylic (AAc) was grafted onto crosslinked chitosan to make Chitosan-g-AAc copolymer with concentration of AAc from 0.5 to 15% by gamma irradiation. The optimal dose for grafting of 15% AAc onto chitosan was 5 kGy. Physical and chemical properties of irradiated samples such as SEM images, FTIR spectroscopy, TGA and swelling behavior at different pHs were evaluated. The grafting yield increased with the increase in dose, it reached 52% at 7 kGy irradiation dose. The application were grafted materials to adsorb metals ion from aqueous solutions was also investigated with both ungrafted and grafted chitosan beads under changing pH from 3 to 6. Grafted chitosan presented higher sorption capacity for most of metal ions than unmodified chitosan. (author)

  10. Metal ion transporters and homeostasis.

    OpenAIRE

    Nelson, N

    1999-01-01

    Transition metals are essential for many metabolic processes and their homeostasis is crucial for life. Aberrations in the cellular metal ion concentrations may lead to cell death and severe diseases. Metal ion transporters play a major role in maintaining the correct concentrations of the various metal ions in the different cellular compartments. Recent studies of yeast mutants revealed key elements in metal ion homeostasis, including novel transport systems. Several of the proteins discover...

  11. Characterization of interfaces between metals and organic thin films by electron and ion spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Martin

    2012-01-18

    In this thesis, interfaces between metals and organic thin films have been characterized with photoelectron and ion-scattering spectroscopies. Two different classes of metal/organic interfaces were examined in detail. First, interfaces which can be mainly characterized by relatively weak coordinative interactions between substrate and adsorbate. Second, interfaces which are mostly determined, or even created, by chemical reactions between different adsorbates or between adsorbates and substrate. Typical examples from the first class are metalated tetrapyrrole monolayers on Ag(111) and Au(111) single-crystal substrates. In this study, a focus was set to the interaction between iron and cobalt tetrapyrroles with Ag(111) or Au(111) substrates. A detailed examination of the corresponding photoelectron spectra revealed that the adsorbatesubstrate interaction is associated with a charge transfer from the metallic substrate to the Fe(II) or Co(II) ions within the tetrapyrrole units. The examination of cobalt(II) phthalocyanine monolayers further led to the conclusion that the magnetic moment, as present in unperturbed CoPc molecules, is efficiently quenched by the contact to the Ag(111) surface and the associated charge transfer. Similar investigations on Au(111) substrates gave evidence for possible adsorption site effects, further complicating the adsorbate/substrate interaction. Furthermore the formation of two-dimensional structures of poly(p-phenylene-terephthalamide) (PPTA, trademark Kevlar) on Ag(111) was closely examined. The Ag(111) surface does not only provide the geometrical boundary for the formation of the 2D covalent structures, but, moreover, actively participates in the reaction; after the adsorption of TPC molecules, a scission of the C-Cl bond, in particular at temperatures above 120 K, was evident. The resulting radical fragments appear stable and can act as reaction partners for the co-adsorbed PPD units. The chlorine atoms reside on the surface even

  12. Silica gel modified with N-(3-propyl)-O-phenylenediamine: functionalization, metal sorption equilibrium studies and application to metal enrichment prior to determination by flame atomic absorption spectrometry.

    Science.gov (United States)

    Akl, Magda Ali Abd-elAziz; Kenawy, Ibraheim Mohamed; Lasheen, Rabab Ramadan

    2005-08-01

    The use of the chemically modified silica gel N-(3-propyl)-O-phenylenediamine (SiG-NPPDA) adsorbent, for the preconcentration and separation of trace heavy metals, was described. SiG-NPPDA sorbs quantitatively (90-100% recovery) trace amounts of nine heavy metals, viz., Cd(II), Zn(II), Fe(III), Cu(II), Pb(II), Mn(II), Cr(III), Co(II) and Ni(II) at pH 7-8. The sorption capacity varies from 350 to 450 micromol g(-1). Desorption was found to be quantitative with 1-2 M HNO3 or 0.05 M Na2EDTA. The distribution coefficient, Kd and the percentage concentration of the investigated metal ions on the adsorbent at equilibrium, C(M,eqm)% (Recovery, R%), were studied as a function of experimental parameters. The logarithmic values of the distribution coefficient, log Kd, ranges between 4.0 and 6.4. Some foreign ions caused little interference in the preconcentration and determination of the investigated nine metals by flame atomic absorption spectrometry (AAS). The adsorbent and its formed metal chelates were characterized by IR (absorbance and/or reflectance), potentiometric titrations and thermogravimetric analysis (TGA and DTG). The mode of chelation between the SiG-NPPDA adsorbent and the investigated metal ions is proposed to be due to the reaction of the investigated metal ions with the two nitrogen atoms of the SiG-NPPDA adsorbent. The present adsorbent coupled with flame AAS has been used to enrich and determine the nine metal ions in natural aqueous systems and in certified reference materials (RSD < or = 5%). The copper, iron, manganese and zinc present in some pharmaceutical vitamin samples were also preconcentrated on SiG-NPPDA adsorbent and determined by flame AAS (RSD < or = 4.2%). Nanogram concentrations (0.07-0.14 ng ml(-1)) of Cd(II), Zn(II), Fe(III), Pb(II), Cr(III), Mn(II), Cu(II), Co(II) and Ni(II) can be determined reliably with a preconcentration factor of 100.

  13. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent

    OpenAIRE

    Awual, M. R.; 矢板 毅; 田口 富嗣; 塩飽 秀啓; 鈴木 伸一; 岡本 芳浩

    2014-01-01

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of DB24C8 onto inorganic mesoporous silica. The obtained results revealed that adsorbent had higher selectivity towards C...

  14. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal

    International Nuclear Information System (INIS)

    Dong, Zhihui; Zhang, Feng; Wang, Dong; Liu, Xia; Jin, Jian

    2015-01-01

    By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI–PD/GO composite nanosheets. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu 2+ , Cd 2+ , Pb 2+ , Hg 2+ are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI–PD/RGO aerogel was prepared through hydrothermal and achieved a high surface area up to 373 m 2 /g. Although the adsorption capacity of PEI–PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI–PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu 2+ , Cd 2+ , Pb 2+ , and Hg 2+ , respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater. - Graphical abstract: Polyethylenimine (PEI) brushes were grafted onto the surface of graphene oxide (GO) uniformly via a Michael-Addition reaction between the PEI and polydopamine interlayer coated on GO surface. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions compared to PEI-coated GO and pure GO. - Highlights: • We prepared polyethylenimine grafted polydopamine-mediated graphene oxide composites. • Introduction of PD layer increases metal ions adsorption capacity. • PEI–PD/RGO aerogel exhibited a superior adsorption performance. • PEI–PD/RGO aerogel can be recycled several times in a simple way

  15. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    DEFF Research Database (Denmark)

    Houen, G.; Olsen, D.T.; Hansen, P.R.

    2003-01-01

    A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated......, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  16. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  17. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    Science.gov (United States)

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  18. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  19. Ion Exchange Kinetics of some Heavy Metals from Aqueous Solutions onto Poly(Acrylic Acid-Acrylo nitrle) Potassium Titanate

    International Nuclear Information System (INIS)

    El-Shorbagy, M.M.; El-Sadek, A.A.

    2012-01-01

    Composite inorganic-organic absorbers represent a group of inorganic ion exchangers modified using binding organic materials for preparation of larger size particles heaving higher granular strength. Such modification of originally powdered or microcrystalline inorganic ion exchangers makes their application in peaked beds possible-modified polyacrylonitrile (PAN) has been used as a universal binding polymer for a number of inorganic ion exchangers. The kinetic of ion exchange and sorption capacity of such composite absorbers is not influenced by the binding polymer mentioned above. These composites have been tested for separation and concentration of various contaminants from aqueous solutions. Their high selectivity and sorption efficiency are advantageous for treatment of various industrial waste waters. Removal of natural or artificial and the heavy metals, Pb, Cd and Zn ions. the influence of initial metal ion concentration and ph on metal ion removal has been studied. The process was found to follow a first order rate kinetics. The intra-particle diffusion of ions through pores in the adsorbent was to be the main rate limiting step. The selectivity order towards the ions was Pb(II) > Cd(II) > Zn(II)

  20. Synthesis of poly(aminopropyl/methyl)silsesquioxane particles as effective Cu(II) and Pb(II) adsorbents.

    Science.gov (United States)

    Lu, Xin; Yin, Qiangfeng; Xin, Zhong; Li, Yang; Han, Ting

    2011-11-30

    Poly(aminopropyl/methyl)silsesquioxane (PAMSQ) particles have been synthesized by a one-step hydrolytic co-condensation process using 3-aminopropyltriethoxysilane (APTES) and methyltrimethoxysilane (MTMS) as precursors in the presence of base catalyst in aqueous medium. The amino functionalities of the particles could be controlled by adjusting the organosilanes feed ratio. The compositions of the amino-functionalized polysilsesquioxanes were confirmed by FT-IR spectroscopy, solid-state (29)Si NMR spectroscopy, and elemental analysis. The strong adsorbability of Cu(II) and Pb(II) ions onto PAMSQ particles was systematically examined. The effect of adsorption time, initial metal ions concentration and pH of solutions was studied to optimize the metal ions adsorbability of PAMSQ particles. The kinetic studies indicated that the adsorption process well fits the pseudo-second-order kinetics. Adsorption phenomena appeared to follow Langmuir isotherm. The PAMSQ particles demonstrate the highest Cu(II) and Pb(II) adsorption capacity of 2.29 mmol/g and 1.31 mmol/g at an initial metal ions concentration of 20mM, respectively. The PAMSQ particles demonstrate a promising application in the removal of Cu(II) and Pb(II) ions from aqueous solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Ion implantation in metals

    International Nuclear Information System (INIS)

    Vook, F.L.

    1977-02-01

    The application of ion beams to metals is rapidly emerging as a promising area of research and technology. This report briefly describes some of the recent advances in the modification and study of the basic properties of metals by ion implantation techniques. Most of the research discussed illustrates some of the new and exciting applications of ion beams to metals which are under active investigation at Sandia Laboratories, Albuquerque

  2. Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds.

    Science.gov (United States)

    Tran, Hai Nguyen; Viet, Pham Van; Chao, Huan-Ping

    2018-01-01

    A hydrophilic Y zeolite was primarily treated with sodium hydroxide to enhance its cation exchange capacity (Na-zeolite). The organo-zeolite (Na-H-zeolite) was prepared by a modification process of the external surface of Na-zeolite with a cationic surfactant (hexadecyltrimethylammonium; HDTMA). Three adsorbents (i.e., pristine zeolite, Na-zeolite, and Na-H-zeolite) were characterized with nitrogen adsorption/desorption isotherms, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, cation exchange capacities, and zeta potential. Results demonstrated that HDTMA can be adsorbed on the surface of Na-zeolite to form patchy bilayers. The adsorption capacity of several hazardous pollutants (i.e., Pb 2+ , Cu 2+ , Ni 2+ , Cr 2 O 7 2- , propylbenzene, ethylbenzene, toluene, benzene, and phenol) onto Na-H-zeolite was investigated in a single system and multiple-components. Adsorption isotherm was measured to further understand the effects of the modification process on the adsorption behaviors of Na-H-zeolite. Adsorption performances indicated that Na-H-zeolite can simultaneously adsorb the metal cations (on the surface not covered by HDTMA), oxyanions (on the surface covered by HDTMA). Na-H-zeolite also exhibited both hydrophilic and hydrophobic surfaces to uptake organic compounds with various water solubilities (from 55 to 75,000mg/L). It was experimentally concluded that Na-H-zeolite is a potential dual-electronic and amphiphilic adsorbent for efficiently removing a wide range of potentially toxic pollutants from aquatic environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  4. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fayuan [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China); Wang Hui, E-mail: wanghui@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China); Ma Jianwei [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China)

    2010-05-15

    Batch adsorption experiments were conducted for the adsorption of Cd (II) ions from aqueous solution by bamboo charcoal. The results showed that the adsorption of Cd (II) ions was very fast initially and the equilibrium time was 6 h. High pH ({>=}8.0) was favorable for the adsorption and removal of Cd (II) ions. Higher initial Cd concentrations led to lower removal percentages but higher adsorption capacity. As the adsorbent dose increased, the removal of Cd increased, while the adsorption capacity decreased. Adsorption kinetics of Cd (II) ions onto bamboo charcoal could be best described by the pseudo-second-order model. The adsorption behavior of Cd (II) ions fitted Langmuir, Temkin and Freundlich isotherms well, but followed Langmuir isotherm most precisely, with a maximum adsorption capacity of 12.08 mg/g. EDS analysis confirmed that Cd (II) was adsorbed onto bamboo charcoal. This study demonstrated that bamboo charcoal could be used for the removal of Cd (II) ions in water treatment.

  5. A novel starch-based adsorbent for removing toxic Hg(II) and Pb(II) ions from aqueous solution.

    Science.gov (United States)

    Huang, Li; Xiao, Congming; Chen, Bingxia

    2011-08-30

    A novel effective starch-based adsorbent was prepared through two common reactions, which included the esterification of starch with excess maleic anhydride in the presence of pyridine and the cross-linking reaction of the obtained macromonomer with acrylic acid by using potassium persulphate as initiator. The percentage of carboxylic groups of the macromonomer ranged from 14% to 33.4%. The cross-linking degree of the adsorbent was tailored with the amount of acrylic acid which varied from 10wt% to 80wt%. Both Fourier transform infrared spectra and thermogravimetric analysis results verified the structure of the adsorbent. The maximum gel fraction and swelling ratio of the adsorbent were about 72% and 6.25, respectively, and they were able to be adjusted with the amount of monomers. The weight loss percentage of the adsorbent could reach 96.9% after immersing in the buffer solution that contained α-amylase for 14h. It was found that the adsorption capacities of the adsorbent for lead and mercury ions could be 123.2 and 131.2mg/g, respectively. In addition, the adsorbent was able to remove ca. 51-90% Pb(II) and Hg(II) ions that existed in the decoctions of four medicinal herbals. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Evaluation of Two Biosorbents in the Removal of Metal Ions in Aqueous Using a Pilot Scale Fixed-bed System

    Directory of Open Access Journals (Sweden)

    Andre Gadelha Oliveira

    2014-05-01

    Full Text Available The aim of the present work was to investigate the adsorption of toxic metal ions copper, nickel and zinc from aqueous solutions using low cost natural biomass (sugar cane bagasse and green coconut fiber in pilot scale fixed-bed system. The Hydraulic retention time (HRT was 229 minutes and the lowest adsorbent usage rate (AUR found was 0.10 g.L-1 for copper using green coconut fibers. The highest values of adsorption capacities founded were 1.417 and 2.772 mg.g-1 of Cu(II ions for sugarcane bagasse and green coconut fibers, respectively. The results showed that both sugarcane bagasse and green coconut fiber presented potential in the removal of metal ions copper, nickel and zinc ions from aqueous solution and the possible use in wastewater treatment station.

  7. Scattering of atoms by molecules adsorbed at solid surfaces

    International Nuclear Information System (INIS)

    Parra, Zaida.

    1988-01-01

    The formalism of collisional time-correlation functions, appropriate for scattering by many-body targets, is implemented to study energy transfer in the scattering of atoms and ions from molecules adsorbed on metal surfaces. Double differential cross-sections for the energy and angular distributions of atoms and ions scattered by a molecule adsorbed on a metal surface are derived in the limit of impulsive collisions and within a statistical model that accounts for single and double collisions. They are found to be given by the product of an effective cross-section that accounts for the probability of deflection into a solid angle times a probability per unit energy transfer. A cluster model is introduced for the vibrations of an adsorbed molecule which includes the molecular atoms, the surface atoms binding the molecule, and their nearest neighbors. The vibrational modes of CO adsorbed on a Ni(001) metal surface are obtained using two different cluster models to represent the on-top and bridge-bonding situations. A He/OC-Ni(001) potential is constructed from a strongly repulsive potential of He interacting with the oxygen atom in the CO molecule and a van der Waals attraction accounting for the He interaction with the free Ni(001) surface. A potential is presented for the Li + /OC-Ni(001) where a coulombic term is introduced to account for the image force. Trajectory studies are performed and analyzed in three dimensions to obtain effective classical cross-sections for the He/OC-Ni(001) and Li + /OC-Ni(001) systems. Results for the double differential cross-sections are presented as functions of scattering angles, energy transfer and collisional energy. Temperature dependence results are also analyzed. Extensions of the approach and inclusion of effects such as anharmonicity, collisions at lower energies, and applications of the approach to higher coverages are discussed

  8. Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg(II) ions

    International Nuclear Information System (INIS)

    Puanngam, Mahitti; Unob, Fuangfa

    2008-01-01

    Adsorbents for Hg(II) ion extraction were prepared using amorphous silica gel and ordered MCM-41. Grafting with 2-(3-(2-aminoethylthio)propylthio)ethanamine was used to functionalize the silica. The functionalized adsorbents were characterized by nitrogen adsorption, X-ray diffraction, 13 C MAS NMR spectroscopy and thermogravimetric analysis. The adsorption properties of the modified silica gel and MCM-41 were compared using batch method. The effect of pH, stirring time, ionic strength and foreign ions were studied. The extraction of Hg(II) ions occurred rapidly with the modified MCM-41 and the optimal pH range for the extraction by the modified materials was pH 4-7. Foreign ions, especially Cl - had some effect on the extraction efficiency of the modified silica gel and the modified MCM-41. The adsorption behavior of both adsorbents could be described by a Langmuir model at 298 K, and the maximum adsorption capacity of the modified silica gel and MCM-41 at pH 3 was 0.79 and 0.70 mmol g -1 , respectively. The modified MCM-41 showed a larger Langmuir constant than that of the modified silica gel, indicating a better ability for Hg(II) ion adsorption. The results indicate that the structure of the materials affects the adsorption behavior. These materials show a potential for the application as effective and selective adsorbents for Hg(II) removal from water

  9. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China); Yang, Lei; Zhong, Wenhui; Cui, Jing [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Wei, Zhenggui, E-mail: weizhenggui@gmail.com [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Poorly crystalline HAP was firstly used for FA removal from aqueous solution. • The maximum adsorption capacity was determined to be 90.20 mg/g at 318 K. • Adsorption kinetics, isotherms and thermodynamic have been studied in detail. • Adsorption mechanism involved surface complexation, electrostatic interaction and hydrogen bonding. - Abstract: In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (X{sub c} = 0.23) and had better adsorption capacity for FA than those (X{sub c} = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long

  10. Effect of temperature, solvent and nature of metal cations on the potentiometric titration S of iron oxide

    International Nuclear Information System (INIS)

    Tasleem, S.; Ishrat, B.

    2008-01-01

    A comprehensive study of the potentiometric titrations of iron oxide in the presence of CU/sub 2/ and Mg/sup 2/ were under taken under different experimental conditions of temperature and concentration of metal ions in aqueous and aqueous/organic mixed solvent. The adsorption of both the metal ions were observed to increase with the increase in pH and temperature of the system. The adsorbent iron oxide preferentially adsorbs transition metal as compared to alkaline earth metal ion. (author)

  11. Bio sorption process for uranium (VI) by using algae-yeast-silica gel composite adsorbent

    International Nuclear Information System (INIS)

    Turkozu, D. A.; Aytas, S.

    2006-01-01

    Many yeast, algae, bacteria and various aquatic flora are known to be capable of concentrating metal species from dilute aqueous solution. Many researcher have found that non-living biomaterials can be used to accumulate metal ions from environment. In recent studies, mainly two process are used in biosorption experiments. These are the use of free cells and the use of immobilized cells on a solid support. A variety of inert supports have been used to immobilize biomaterials either by adsorption or physical entrapment. This uptake is often considerable and frequently selective, and occurs via a variety of mechanisms including active transport, ion exchange or complexation, and adsorption or inorganic precipitation. Biosorbent may be used as an ion exchange material. Adsorption occurs through interaction of the metal ions with functional groups that are found in the cell wall biopolymers of either living or dead organisms. In this study, the algae-yeast-silica gel composite adsorbent was tested for its ability to recover U(VI) from diluted aqueous solutions. Macro marine algae (Jania rubens.), yeast (Saccharomyces cerevisiae) and silica gel were used to prepare composite adsorbent. The ability of the composite biosorbent to adsorb uranium (VI) from aqueous solution has been studied at different optimized conditions of pH, concentration of U(VI), temperature, contact time and matrix ion effect was also investigated. The adsorption patterns of uranium on the composite biosorbent were investigated by the Langmuir, Freundlich and Dubinin-Radushkhevic isotherms. The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated. The results suggested that the macro algae-yeast-silica gel composite sorbent is suitable as a new biosorbent material for removal of uranium ions from aqueous solutions

  12. Applications of ionizing radiation to remediation of materials contaminated with heavy metals

    International Nuclear Information System (INIS)

    Dessoukl, A.M.; El-Arnaouty, M.B.; Taher, N.H.; El-Toony, M.M.

    2000-01-01

    The removal of heavy metal ions from wastewater using gamma-radiation has been investigated for the cases of copper and nickel ions. Hydrated electrons and hydrogen atoms reduce these metal ions. Parameter analysis includes the effect of metal ions concentration, Ph, temperature and irradiation dose. The maximum precipitation of the unirradiated metal ions was achieved in the alkaline medium, followed by the neutral one and the least precipitation was in the acidic medium. Irradiations at Ph 5.5 showed that Cu 2+ precipitated more than Ni 2+ and that the same behaviour was observed when both elements were adsorbed by different adsorbents (GAC, Amberlite IR-120 plus and dowex -1 exchangers). The combined treatment of irradiation plus adsorption resulted in more removal percent especially for powdered activated carbon

  13. Using Adsorption Isotherm Studies to Determine Crosslinked Polymeric Adsorbent Performance in Heavy Metals Removal from Water

    Directory of Open Access Journals (Sweden)

    Nasrin Sheikh

    2015-01-01

    Full Text Available Polymeric adsorbents are useful tools for removing heavy metals from aqueous solutions. Adsorption models are efficient tools for accurate prediction and evaluation of the practical adsorption process in real situation. In this study, the two isotherms of Langmuir and Dubinin-Radushkevich models were employed to investigate the absorption performance of chitosan, PVA, and chitosan/PVA blend (with a weight ratio of 1:1 in the removal of Mn (II and Ni (II from aqueous solutions. The PVA adsorbent was crosslinked by both chemical and radiation methods while the others were crosslinked only chemically due to Chitosan’s lack of resistance to radiation. The results showed that the Langmuir model fitted the experimental data better than the Dubinin-Radushkevich one for both metals. The maximum adsorption capacity (qmax of the Langmuir model showed that the PVA/Chitosan adsorbent had the best adsorption compared to other adsorbents, with 52.63 mg/g for Ni and 30.30 mg/g for Mn (evidently more Ni was absorbed than Mn. Also, maximum adsorption by the chemically crosslinked PVA was 38.46 mg/g for Ni and 19.23 mg/g for Mn, which exhibits a higher level than adsorption by the radiation crosslinked PVA The results indicate that absorption capacity depends on the type of adsorbed metal, absorbent structure, and the crosslinking method employed.

  14. Screening of active metals for reactive adsorption desulfurization adsorbent using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Zhao, Liang, E-mail: liangzhao@cup.edu.cn; Xu, Chunming; Wang, Yuxian; Gao, Jinsen

    2017-03-31

    Highlights: • Electronic characteristics determined adsorption characteristics of transition metals. • Cobalt has the similar adsorption ability of thiophene as nickel. • Adsorption capacity of Cr and Mo was extremely fierce, while Cu has the potential ability for adsorbing thiophene. • The preference adsorption site for thiophene was hollow site on all the seven surface. - Abstract: To explore characteristics of active metals for reactive adsorption desulfurization (RADS) technology, the adsorption of thiophene on M (100) (M = Cr, Mo, Co, Ni, Cu, Au, and Ag) surfaces was systematically studied by density functional theory with vdW correction (DFT + D3). We found that, in all case, the most stable molecular adsorption site was the hollow site and adsorptive capabilities of thiophene followed the order: Cr > Mo > Co ≈ Ni > Cu > Au ≈ Ag. By analyzing the nature of binding between thiophene and corresponding metals and the electronic structure of metals, the excessive activities of Cr and Mo were found to have a negative regeneration, the passive activities of Au and Ag were found to have an inactive adsorption for RADS adsorbent alone, while Ni and Co have appropriate characteristics as the active metals for RADS, followed by Cu.

  15. KAJIAN ADSORPSI ION LOGAM Cr(VI OLEH ADSORBEN KOMBINASI ARANG AKTIF SEKAM PADI DAN ZEOLIT MENGGUNAKAN METODE SOLID-PHASE SPECTROPHOTOMETRY (SPS

    Directory of Open Access Journals (Sweden)

    Sulistyo Saputro

    2016-10-01

      This study aims to study the use of activated rice husk charcoal and zeolite as combination adsorbents to adsorb Cr(VI metal ions; the effect of the combination adsorbents of activated rice husk charcoal and zeolite’s compositions to adsorb Cr(VI metal ions; and the sensitivity of solid-phase spectrophotometry (SPS as a method to determine the reduced levels of Cr(VI metal ions in the level of 15μ"> g/L. The activated rice husk charcoal used were obtained through the activation process by soaking in a solution of ZnCl2 10% while the zeolite with a solution of H2SO4 10%. The contacting process of the adsorbents with Cr(VI metal ions was done by varying the compositions of the activated rice husk charcoal and zeolite adsorbent, 1:1, 1:2, 1:3, and 2:1. The data analysis of the Cr(VI level used solid-phase spectrophotometry (SPS method. Characterization of activated rice husk charcoal and zeolite used FTIR. The results showed that: (1 a combination of activated rice husk charcoal and zeolite can be used as adsorbent to adsorb Cr(VI metal ions with the adsorption capacity was 0,28 15μ"> g/g; (2 the optimum composition of adsorbents was 1:2 with the percentage of absorption was 40,99%; (3 solid-phase spectrophotometry (SPS is a sensitive method to determine the reduced levels of Cr(VI in the level of 15μ"> g/L with the limit of detection (LOD was 0,021 15μ"> g/L.   Keywords: adsorption, Cr(VI,  activated  rice husk charcoal,  zeolite, solid-phase spectrophotometry

  16. Inorganic ion exchangers and adsorbents for chemical processing in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1985-07-01

    The application of inorganic ion exchangers and adsorbents to both waste treatment and the recovery of fission products and actinides were of primary concern at this meeting. The meeting covered the two major fields of fundamental studies and industrial applications

  17. Metal Ion Controlled Polymorphism of a Peptide

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Jancso, Attila; Szunyogh, Daniel

    2011-01-01

    ions on fully or partially unstructured proteins, or the effect of metal ions on protein aggregation. Metal ions may be employed to fold (or misfold) individual peptides in a controlled manner depending on the potential metal ion coordinating amino acid side chains (Cys, His, Asp, Glu......In this work a metal ion binding model dodecapeptide was investigated in terms of its capacity to adopt different structures depending on the metal ion to peptide stoichiometry. The dodecapeptide is much simpler than real proteins, yet displays sufficient complexity to model the effect of metal......, …) in the peptide, and the ligand and structural preferences of the metal ion (in our studies Zn2+, Cd2+, Hg2+, Cu+/2+). Simultaneously, new species such as metal ion bridged ternary complexes or even oligomers may be formed. In recent previous studies we have observed similar polymorphism of zinc finger model...

  18. Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting

    International Nuclear Information System (INIS)

    Qiu Jingyi; Wang Ziyue; Li Huibo; Xu Ling; Peng Jing; Zhai Maolin; Yang Chao; Li Jiuqiang; Wei Genshuan

    2009-01-01

    Silica-based adsorbent was prepared by radiation-induced grafting of dimethylaminoethyl methacrylate (DMAEMA) onto the silanized silica followed by a protonation process. The FTIR spectra and XPS analysis proved that DMAEMA was grafted successfully onto the silica surface. The resultant adsorbent manifested a high ion exchange capacity (IEC) of ca. 1.30 mmol/g and the Cr(VI) adsorption behavior of the adsorbent was further investigated, revealing the recovery of Cr(VI) increased with the adsorbent feed and the equilibrium adsorption could be achieved within 40 min. The adsorption capacity, strongly depended on the pH of the solution, reached a maximum Cr(VI) uptake (ca. 68 mg/g) as the pH was in the range of 2.5-5.0. Furthermore, even in strong acidic (4.0 mol/L HNO 3 ) or alkaline media (pH 11.0), the adsorbent had a sound Cr(VI) uptake capacity (ca. 22 and 30 mg/g, respectively), and the adsorption followed Langmuir mode. The results indicated that this adsorbent, prepared via a convenient approach, is applicable for removing heavy-metal-ion pollutants (e.g. Cr(VI)) from waste waters.

  19. Preparation and adsorption behavior for metal ions and humic acid of chitosan derivatives crosslinked by irradiation

    International Nuclear Information System (INIS)

    Zhao Long; Mitomo, H.; Yoshii, F.

    2006-01-01

    Introduction: Removing metal ions and humic acid from water in water treatment has attracted much environment and health interests. Adsorbents, derived from a nature polymer, are desired in the viewpoints of environment-conscious technologies. Recently, some nature materials such as chitin, chitosan and their derivatives have been identified as an attractive option due to their distinctive properties. For an insoluble adsorbent based on these polymers to be obtained over a broad pH range, modification through crosslinking is required. Crosslinking agents such as glutaric dialdehyde and ethylene glycol diglycidyl ether are frequently used for modification. However, these crosslinking agents are not preferred because of their physiological toxicity. Radiation-crosslinking without any additive in the fabrication process results in a high-purity product. In a previous work, we applied ionizing radiation to induce the crosslinking of carboxymethylchitosan under highly concentrated paste-like conditions. The aim of this study is to investigate the adsorption behavior of metal ions, humic acid on irradiation-crosslinked carboxymethylchitosan. Experimental: Irradiation of chitosan samples at paste-like state was done with an electron beam. The solubility test of these crosslinked materials were investigated in acidic, alkaline media, and some organic solvents. Swelling and charged characteristic analyses demonstrated typically pH-sensitive properties of these crosslinked materials. Scanning electron microscopic images showed that the crosslinked samples possessed porous morphological structure. The adsorption studies were carried out by the batch method at room temperature. Adsorption of heavy metal ions (such as Cu 2+ , Cd 2+ ) and humic acid onto crosslinked samples was found to be strongly pH-dependent. Adsorption kinetic studies indicated the rapid removal of metal ions, and humic acid from the aqueous solutions. Also, isothermal adsorption data revealed that Cu 2

  20. An efficient selective reduction of nitroarenes catalyzed by reusable silver-adsorbed waste nanocomposite

    CSIR Research Space (South Africa)

    Giri, S

    2017-07-01

    Full Text Available Silver nanocomposites (AgNCs) were produced by adsorption onto an electron-rich polypyrrole-mercaptoacetic acid (PPy-MAA) composite, known to be a highly efficient adsorbent for the removal of Ag+ ions from aqueous media in the remediation of metal...

  1. Enhancement of oxygen reduction at Fe tetrapyridyl porphyrin by pyridyl-N coordination to transition metal ions

    International Nuclear Information System (INIS)

    Maruyama, Jun; Baier, Claudia; Wolfschmidt, Holger; Bele, Petra; Stimming, Ulrich

    2012-01-01

    One of the promising candidates as noble-metal-free electrode catalysts for polymer electrolyte fuel cells (PEFCs) is a carbon material with nitrogen atoms coordinating iron ions embedded on the surface (Fe-N x moiety) as the active site, although the activity is insufficient compared to conventional platinum-based electrocatalysts. In order to obtain fundamental information on the activity enhancement, a simple model of the Fe-N x active site was formed by adsorbing 5,10,15,20-Tetrakis(4-pyridyl)-21H,23H-porphine iron(III) chloride (FeTPyPCl) on the basal plane of highly oriented pyrolytic graphite (HOPG), and cathodic oxygen reduction was investigated on the surface in 0.1 M HClO 4 . The catalytic activity for oxygen reduction was enhanced by loading transition metal ions (Co 2+ , Ni 2+ , Cu 2+ ) together with FeTPyPCl. The X-ray photoelectron spectrum of the surface suggested that the metal was coordinated by the pyridine-N. The enhancement effect of the transition metals was supported by two different measurements: oxygen reduction at HOPG in 0.1 M HClO 4 dissolving FeTPyPCl and the metal ions; oxygen reduction in 0.1 M HClO 4 at the subsequently well-rinsed and dried HOPG. The ultraviolet–visible spectrum for the solution also suggested the coordination between the pyridyl-N and the metal ions. The oxygen reduction enhancement was attributed to the electronic interaction between the additional transition metal and the Fe center of the porphyrin through the coordination bonds. These results implied that the improvement of the activity of the noble-metal-free catalyst would be possible by the proper introduction of the transition metal ions around the active site.

  2. Metal ion implantation: Conventional versus immersion

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.

    1994-01-01

    Vacuum-arc-produced metal plasma can be used as the ion feedstock material in an ion source for doing conventional metal ion implantation, or as the immersing plasma for doing plasma immersion ion implantation. The basic plasma production method is the same in both cases; it is simple and efficient and can be used with a wide range of metals. Vacuum arc ion sources of different kinds have been developed by the authors and others and their suitability as a metal ion implantation tool has been well established. Metal plasma immersion surface processing is an emerging tool whose characteristics and applications are the subject of present research. There are a number of differences between the two techniques, both in the procedures used and in the modified surfaces created. For example, the condensibility of metal plasma results in thin film formation and subsequent energetic implantation is thus done through the deposited layer; in the usual scenario, this recoil implantation and the intermixing it produces is a feature of metal plasma immersion but not of conventional energetic ion implantation. Metal plasma immersion is more suited (but not limited) to higher doses (>10 17 cm -2 ) and lower energies (E i < tens of keV) than the usual ranges of conventional metal ion implantation. These and other differences provide these vacuum-arc-based surface modification tools with a versatility that enhances the overall technological attractiveness of both

  3. Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Niknam, Khodabakhsh [Chemistry Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Shokrollahi, Ardeshir; Niknam, Ebrahim; Rajabi, Hamid Reza [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-06-30

    A sensitive and selective solid phase extraction procedure for the determination of traces of Cu(II), Zn(II), Pb(II) and Fe(III) has been developed. An alumina-sodium dodecyl sulfate (SDS) coated on with meso-phenyl bis(indolyl) methane (MPBIM) was used for preconcentration and determination of Cu(II), Zn(II), Pb(II) and Fe(III) ions by flame atomic absorption spectrometry. The analyte ions were adsorbed quantitatively on adsorbent due to their complexation with MPBIM. Adsorbed metals were quantitatively eluted using 6 mL of 4 mol L{sup -1} nitric acid. The effects of parameters such as pH, amount of alumina, amount of MBITP, flow rate, type and concentration of eluting agent were examined. The effects of interfering ions on the separation-preconcentration of analytes were also investigated. The relative standard deviation of the method was found to be less than 3.0%. The presented procedure was successfully applied for determination of analytes in real samples.

  4. Comparison of heavy metals and uranium removal using adsorbent in soil

    Science.gov (United States)

    Choi, Jaeyoung; Yun, Hunsik

    2017-04-01

    This study investigates heavy metals (As, Ni, Zn, Cd, and Pb) and uranium removal onto geomaterials (limestone, black shale, and concrete) and biosorbents (Pseudomonas putida and starfish) from waste in soil. Geomaterials or biosorbents with a high capacity for heavy metals and uranium can be obtained and employed of with little cost. For investigating the neutralization capacity, the change in pH, Eh, and EC as a function of time was quantified. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing heavy metals and uranium concentrations. Dead cells adsorbed the largest quantity of all heavy metals than lother sorbents. The adsorption capacity followed the order: U(VI) > Pb > Cd > Ni. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated soil.

  5. USEBILITY OF HYDROGELS IN ADSORPTION TECHNOLOGHY FOR REMOVAL OF HEAVY METAL AND DYE

    Directory of Open Access Journals (Sweden)

    AÇIKEL Safiye Meriç

    2016-05-01

    Full Text Available Heavy metals and Dyes are very toxic and nonbiodegradable in waste waters to cause adverse health effects in human body and to induce irreversible pollution. Adsorption offers many potential advantages for removal of toxic heavy metals being flexibility in design and operation, high-quality treated effluent, reversible nature for multiple uses, and many commercially available adsorbent materials, such as activated carbon, zeolite, clay, sawdust, bark, biomass, lignin, chitosan and other polymer adsorbents. Compared to conventional adsorbent materials above, hydrogelbased adsorbents recently have attracted special attention to their highly potential for effective removal of heavy metals and dyes. Hydrogels are named “Hydrophilic Polymer” because of care for water. Hydrogels is not solved in water; however they have been swollen to their balance volume. Because of this swell behavior, they can adsorb big quantity of water in this structure. So they can term of “three sized polymers” due to protect their existing shape [9]. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. In adsorption applications, hydrogels are used in water purification, heavy metal/dying removing, controlled fertilizer released, ion exchange applications, chromatographic applications, dilute extractions, waste water treatments. This article general inform about usage of hydrogels in Dye and Heavy Metal adsorption.

  6. New developments in metal ion implantation by vacuum arc ion sources and metal plasma immersion

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.

    1996-01-01

    Ion implantation by intense beams of metal ions can be accomplished using the dense metal plasma formed in a vacuum arc discharge embodied either in a vacuum arc ion source or in a metal plasma immersion configuration. In the former case high energy metal ion beams are formed and implantation is done in a more-or-less conventional way, and in the latter case the substrate is immersed in the plasma and repetitively pulse-biased so as to accelerate the ions at the high voltage plasma sheath formed at the substrate. A number of advances have been made in the last few years, both in plasma technology and in the surface modification procedures, that enhance the effectiveness and versatility of the methods, including for example: controlled increase of the in charge states produced; operation in a dual metal-gaseous ion species mode; very large area beam formation; macroparticle filtering; and the development of processing regimes for optimizing adhesion, morphology and structure. These complementary ion processing techniques provide the plasma tools for doing ion surface modification over a very wide parameter regime, from pure ion implantation at energies approaching the MeV level, through ion mixing at energies in the ∼1 to ∼100 keV range, to IBAD-like processing at energies from a few tens of eV to a few keV. Here the authors review the methods, describe a number of recent developments, and outline some of the surface modification applications to which the methods have been put. 54 refs., 9 figs

  7. Simplified radioimmunoassay of urinary drugs of abuse adsorbed on ion-exchange papers

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G.J.; Machiz, S.

    1977-10-01

    A convenient screening procedure for presence of drugs of abuse in urine consists of two steps: adsorption of the drugs from urine onto a paper loaded with cation-exchange resin and detection of the adsorbed drugs by direct radioimmunoassay. The first step can be performed in the field, the second in a central laboratory. Storage and transport to the laboratory are simplified because specimens adsorbed on dried paper are stable and can be sent in letter-mail. In the laboratory, a small disc of the ion-exchange paper is exposed to antigen and antibody, rinsed, and tested for radioactivity. Discs treated with positive urines are more radioactive than discs from negative urines.

  8. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    International Nuclear Information System (INIS)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4 He adsorbed on metallic films. In contrast to measurements of 4 He adsorbed on all other insulating substrates, we have shown that 4 He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4 He adsorbed on sapphire and on Ag films and H 2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  9. Modeling the adsorption of metal ions (Cu 2+, Ni 2+, Pb 2+) onto ACCs using surface complexation models

    Science.gov (United States)

    Faur-Brasquet, Catherine; Reddad, Zacaria; Kadirvelu, Krishna; Le Cloirec, Pierre

    2002-08-01

    Activated carbon cloths (ACCs), whose efficiency has been demonstrated for microorganics adsorption from water, were here studied in the removal of metal ions from aqueous solution. Two ACCs are investigated, they are characterized in terms of porosity parameters (BET specific surface area, percentage of microporosity) and chemical characteristics (acidic surface groups, acidity constants, point of zero charge). A first part consists in the experimental study of three metal ions removal (Cu 2+, Ni 2+ and Pb 2+) in a batch reactor. Isotherms modeling by Freundlich and Brunauer-Emmett-Teller (BET) equations enables the following adsorption order: Cu 2+>Ni 2+>Pb 2+ to be determined for adsorption capacities on a molar basis. It may be related to adsorbates characteristics in terms of electronegativity and ionic radius. The influence of adsorbent's microporosity is also shown. Adsorption experiments carried out for pH values ranging from 2 to 10 demonstrate: (i) an adsorption occurring below the precipitation pH; (ii) the strong influence of pH, with a decrease of electrostatic repulsion due to the formation of less charged hydrolyzed species coupled with a decrease of activated carbon surface charge as pH increases. The second part focuses on the modeling of adsorption versus the pH experimental data by the diffuse layer model (DLM) using Fiteql software. The model is efficient to describe the system behavior in the pH range considered. Regarding complexation constants, they show the following affinity for ACC: Pb 2+>Cu 2+>Ni 2+. They are related to initial concentrations used for the three metal ions.

  10. Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study

    International Nuclear Information System (INIS)

    Shin, Keun-Young; Hong, Jin-Yong; Jang, Jyongsik

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → The monodisperse and multigram-scale N-MCNPs are fabricated by carbonization of polypyrrole as a carbon precursor. → The synthesized N-MCNPs provide an enhanced adsorption uptake for various heavy metal ions. → The N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. → The iron-impregnated N-MCNPs are reused up to 5 times with no loss of removal efficiency. - Abstract: To clarify the heavy metal adsorption mechanism of nitrogen-doped magnetic carbon nanoparticles (N-MCNPs), adsorption capacity was investigated from the adsorption isotherms, kinetics and thermodynamics points of view. The obtained results showed that the equilibrium adsorption behavior of Cr 3+ ion onto the N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. It indicated that the fabricated N-MCNPs had the homogenous surface for adsorption and all adsorption sites had equal adsorption energies. Furthermore, the adsorption onto N-MCNPs taken place through a chemical process involving the valence forces. According to the thermodynamics, the adsorption process is spontaneous and endothermic in nature which means that the adsorption capacity increases with increasing temperature due to the enhanced mobility of adsorbate molecules. The effects of the solution pH and the species of heavy metal ion on the adsorption uptake were also studied. The synthesized N-MCNPs exhibited an enhanced adsorption capacity for the heavy metal ions due to the high surface area and large amount of nitrogen contents.

  11. Fabrication of γ-Fe2O3 Nanoparticles by Solid-State Thermolysis of a Metal-Organic Framework, MIL-100(Fe, for Heavy Metal Ions Removal

    Directory of Open Access Journals (Sweden)

    Shengtao Hei

    2014-01-01

    Full Text Available Porous γ-Fe2O3 nanoparticles were prepared via a solid-state conversion process of a mesoporous iron(III carboxylate crystal, MIL-100(Fe. First, the MIL-100(Fe crystal that served as the template of the metal oxide was synthesized by a low-temperature (<100°C synthesis route. Subsequently, the porous γ-Fe2O3 nanoparticles were fabricated by facile thermolysis of the MIL-100(Fe powders via a two-step calcination treatment. The obtained γ-Fe2O3 was characterized by X-ray diffraction (XRD, N2 adsorption, X-ray photoelectron spectroscopy (XPS, and scanning electron microscopy (SEM techniques, and then used as an adsorbent for heavy metal ions removal in water treatment. This study illustrates that the metal-organic frameworks may be suitable precursors for the fabrication of metal oxides nanomaterials with large specific surface area, and the prepared porous γ-Fe2O3 exhibits a superior adsorption performance for As(V and As(III ions removal in water treatment.

  12. Ion adsorption properties of molybdenum (II) bromide

    International Nuclear Information System (INIS)

    Ganzerli-Valentini, M.T.; Meloni, S.; Caramella-Crespi, V.; Borroni, P.A.

    1976-01-01

    The adsorption of about 50 ions on molybdenum dibromide, (Mo 6 Br 8 )Br 4 .2H 2 O in nitric acid was investigated. The behaviour of the investigated elements on MDB in nitric acid, in the concentration range 10 -2 -8M is presented, where the distribution coefficients are given against the HNO 3 molarity. In some cases the elements were investigated in different oxidation states. Most of the elements are not adsorbed or poorly adsorbed, among these the stable anions, thus indicating that bromide ions substitution with other anions is not competitive. The preparation of the adsorber and its characterization is presented and discussed. Adsorption mechanism studies were carried out for some noble metals and chromium. Sorption cannot be ascribed to ion exchange mechanism but to formation of insoluble species, and to settlement of few ions into surface sorption sites or into a limited number of cavitites in the cluster crystal structure of the adsorber. (T.G.)

  13. Simultaneous fluorescent detection of multiple metal ions based on the DNAzymes and graphene oxide.

    Science.gov (United States)

    Yun, Wen; Wu, Hong; Liu, Xingyan; Fu, Min; Jiang, Jiaolai; Du, Yunfeng; Yang, Lizhu; Huang, Yu

    2017-09-15

    A novel fluorescent detection strategy for simultaneous detection of Cu 2+ , Pb 2+ and Mg 2+ based on DNAzyme branched junction structure with three kinds of DNAzymes and graphene oxide (GO) was presented. Three fluorophores labeled DNA sequences consisted with enzyme-strand (E-DNA) and substrate strand (S-DNA) were annealed to form DNAzyme branched junction structure. In the presence of target metal ion, the DNAzyme was activated to cleave the fluorophore labeled S-DNA. The S-DNA fragments were released and adsorbed onto GO surface to quench the fluorescent signal. The detection limit was calculated to be 1 nM for Cu 2+ , 200 nM for Mg 2+ , and 0.3 nM for Pb 2+ , respectively. This strategy was successfully used for simultaneous detection of Cu 2+ , Mg 2+ and Pb 2+ in human serum. Moreover, it had potential application for simultaneous detection of multiple metal ions in environmental and biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ion implantation of metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1976-01-01

    In this part of the paper descriptions are given of the effects of ion implantation on (a) friction and wear in metals; and (b) corrosion of metals. In the study of corrosion, ion implantation can be used either to introduce a constituent that is known to convey corrosion resistance, or more generally to examine the parameters which control corrosion. (U.K.)

  15. Study on adsorption properties and mechanism of Pb2+ with different carbon based adsorbents.

    Science.gov (United States)

    Song, Min; Wei, Yuexing; Cai, Shipan; Yu, Lei; Zhong, Zhaoping; Jin, Baosheng

    2018-03-15

    Different activated carbon materials are prepared from a series of solid wastes (sawdust, acrylic fabric, tire powder and rice husk) by combination of the KOH activation method and steam activation method. The influences of several parameters such as pH, contact time, adsorbent dosage and temperature on adsorption performance of Pb 2+ with those different carbon adsorbents are investigated. The results demonstrate that C rice husk performance well in the adsorption process. In the following, the C rice husk is used to explain the adsorption mechanism of Pb 2+ by SEM-EDS, FT-IR and XPS. The results illustrate that the surface oxygen-containing functional groups such as carboxyl, lactone group, phenolic hydroxyl and other alkaline metal ions like Na + and K + have significant effect on the adsorption process. A reasonable mechanism of Pb 2+ adsorption is proposed that the ion exchange play key roles in the adsorption process. In addition, the effects of Cu 2+ , Zn 2+ on the Pb 2+ adsorption capacity with the four carbon adsorbents are also studied and the results demonstrate that other heavy metals play positive effects on the adsorption of Pb 2+ . Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Removal of lead and zinc ions from water by low cost adsorbents.

    Science.gov (United States)

    Mishra, P C; Patel, R K

    2009-08-30

    In this study, activated carbon, kaolin, bentonite, blast furnace slag and fly ash were used as adsorbent with a particle size between 100 mesh and 200 mesh to remove the lead and zinc ions from water. The concentration of the solutions prepared was in the range of 50-100 mg/L for lead and zinc for single and binary systems which are diluted as required for batch experiments. The effect of contact time, pH and adsorbent dosage on removal of lead and zinc by adsorption was investigated. The equilibrium time was found to be 30 min for activated carbon and 3h for kaolin, bentonite, blast furnace slag and fly ash. The most effective pH value for lead and zinc removal was 6 for activated carbon. pH value did not effect lead and zinc removal significantly for other adsorbents. Adsorbent doses were varied from 5 g/L to 20 g/L for both lead and zinc solutions. An increase in adsorbent doses increases the percent removal of lead and zinc. A series of isotherm studies was undertaken and the data evaluated for compliance was found to match with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanism, the kinetic models were tested, and it follows second order kinetics. Kinetic studies reveals that blast furnace slag was not effective for lead and zinc removal. The bentonite and fly ash were effective for lead and zinc removal.

  17. The obtainment of carbon adsorbents and their compositions for cleaning industrial wastewater

    OpenAIRE

    JUMAEVA DILNOZA JURAYEVNA; TOIROV OLIMJON ZUVUROVICH

    2016-01-01

    The novel coal adsorbents based on Angren coal have been elaborated. They are the following: a) composite material obtained by addition in coal carbonates of alkaline-earth metals, allowing to rise sorption capacity adsorbent by 70-80% and use it can be used for sewage purification from some ions of inorganic impurities and decreasing of the water rigidity from 16.4 to 0.5 mg∙eq/l; b) heat-treated at 550 °C, with hydrophobic properties (wetting angle α = 99°), a porosity of 30%, capacity to k...

  18. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water

    Energy Technology Data Exchange (ETDEWEB)

    Kyaw, Htet Htet [Department of Physics, College of Science, Sultan Qaboos University, P. O. Box 36, Al-Khoud 123 (Oman); Boonruang, Sakoolkan, E-mail: sakoolkan.boonruang@nectec.or.th, E-mail: waleed.m@bu.ac.th [Photonics Technology Laboratory, National Electronics and Computer Technology Center (NECTEC), 112 Thailand Science Park, PathumThani 12120 (Thailand); Mohammed, Waleed S., E-mail: sakoolkan.boonruang@nectec.or.th, E-mail: waleed.m@bu.ac.th [Center of Research in Optoelectronics, Communication and Control Systems (BUCROCCS), School of Engineering, Bangkok University, PathumThani 12120 (Thailand); Dutta, Joydeep [Functional Materials Division, School of Information and Communication Technology, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 Kista, Stockholm (Sweden)

    2015-10-15

    Surface Plasmon Resonance (SPR) sensors are widely used in diverse applications. For detecting heavy metal ions in water, surface functionalization of the metal surface is typically used to adsorb target molecules, where the ionic concentration is detected via a resonance shift (resonance angle, resonance wavelength or intensity). This paper studies the potential of a possible alternative approach that could eliminate the need of using surface functionalization by the application of an external electric field in the flow channel. The exerted electrical force on the ions pushes them against the surface for enhanced adsorption; hence it is referred to as “Electric-Field assisted SPR system”. High system sensitivity is achieved by monitoring the time dynamics of the signal shift. The ion deposition dynamics are discussed using a derived theoretical model based on ion mobility in water. On the application of an appropriate force, the target ions stack onto the sensor surface depending on the ionic concentration of target solution, ion mass, and flow rate. In the experimental part, a broad detection range of target cadmium ions (Cd{sup 2+}) in water from several parts per million (ppm) down to a few parts per billion (ppb) can be detected.

  19. The Adsorption of Cr(VI Using Chitosan-Alumina Adsorbent

    Directory of Open Access Journals (Sweden)

    Darjito Darjito

    2013-12-01

    Full Text Available Chitosan as adsorbent has been used widely, however it was not effective yet for metal ions adsorption in industrial scale. In acidic condition, chitosan’s active site tends to decrease. This drawback can was solved by coating of chitosan active site on alumina. This paper discloses to overcome that limitation. The charateristic of the active side was analysed by FTIR spectrometry toward vibration N-H group at 1679.15 cm-1, C=O group of oxalate at 1703.30 cm-1, and Al-O group of alumina at 924.07 cm-1. The adsorption capacity of the developed adsorbent was tester to adsorb Cr(VI ions under various of pH value such as 1, 2, 3, 4, 5, 6, and 7. The contact time affect toward the adsorption was also reported in 20, 30, 40 50, 60, 70, and 80 minute. In addition, the concentration effects (100, 200, 300, 400, 500, and 600 ppm was also studied. Chromium (VI was measured using spectronic-20. Adsorption capacity was obtained at 66.90 mg/g under optimum conditions pH 2, and contact time 60 minute, respectively.

  20. Porous silicon powder as an adsorbent of heavy metal (nickel)

    Science.gov (United States)

    Nabil, Marwa; Motaweh, Hussien A.

    2018-04-01

    New and inexpensive nanoporous silicon (NPS) powder was prepared by alkali chemical etching using sonication technique and was subsequently investigated as an adsorbent in batch systems for the adsorption Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the NPS powder were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and contact time. The results indicated that the maximum adsorption capacity and the maximum removal percent of Ni(II) reached 2665.33 mg/g and 82.6%, respectively, at an initial Ni(II) concentration of 100 mg/L, adsorption time of 30 min and no effect of the solution pH and adsorption temperature.

  1. Isotherm studies for determination of removal capacity of bi-metal (Ni and Cr) ions by aspergillus niger

    International Nuclear Information System (INIS)

    Munir, K.; Yusuf, M.; Hameed, A.; Noreen, Z.; Hafeez, F.Y.; Faryal, R.

    2010-01-01

    Pakistan is among the developing countries where there is a need to establish new industries to meet the demands of a growing population. This has led to industrial setup in various sectors, without proper planning and consideration for treatment of contamination, leading to disposal of untreated wastewater into nearby land and water bodies. This study was planned to investigate an indigenous Aspergillus niger for development of biosorbent for the removal of metal ions. The Aspergillus isolate's Ni and Cr removal efficiency was determined in batch mode over various pH (4.0-10.0) and temperature (25-40 deg. C) as single as well as bimetal ions. Using a single metal ion, maximum biosorption potential was obtained at pH 5.0-6.0 and 30-35 deg. C for both ions. On the other hand, Ni removal was reduced in the presence of Cr, while Ni removal influenced Cr removal with an increase showing maximum removal at an initial adsorbate concentration of 50mg/L, pH 6.0 and 35 deg. C. Effect of presence of bimetal in a solution on biosorption potential of Aspergillus niger was predicted by using equilibrium modeling. Adsorption trends for both nickel (R2 0.9916) and chromium (R2 0.8548) followed Langmuir isotherm in single metal removal system, but under bimetal condition chromium adsorption fitted better to Freundlich model and that of nickel followed Temkin isotherm, suggesting considerable change in behavior and interaction between biosorbent and metal ions. Therefore, we concluded that Aspergillus niger a viable strain for development of a biosorbent for removal of a mixture of metal ions. (author)

  2. Removal of calcium and magnesium ions from hard water using modified Amorphophallus campanulatus skin as a low cost adsorbent

    Directory of Open Access Journals (Sweden)

    Lestari Ajeng Yulianti Dwi

    2018-01-01

    Full Text Available Low cost adsorbent from Amorphophallus campanulatus skin has successfully synthesized to remove calcium and magnesium ions in the syntetic hard water. A. campanulatus skin were dried, crushed into powder form and modified by acid modification. A batch experiment with various parameters was used in this research. Various isotherm models were applied to fit the experimental data. Adsorption capacity of Ca and Mg on KB and KM adsorbents in 100 ppm solution respectively 10,85 mg/g, 27,64 mg/g, 1,79 mg/g and 20,1 mg/g. It was found out that the adsorption behavior of hard mineral ions by adsorbents match well with the Dubinin Radushkevich isotherm model. Based on the result, it can be concluded that a acid modified A. campanulatus skin is quite potential as a new low cost adsorbent which is expected to be applied to Indonesian groundwater which have high degree of hardness.

  3. Carbonised jackfruit peel as an adsorbent for the removal of Cd(II) from aqueous solution.

    Science.gov (United States)

    Inbaraj, B Stephen; Sulochana, N

    2004-08-01

    The fruit of the jack (Artocarpus heterophyllus) is one of the popular fruits in India, where the total area under this fruit is about 13,460 ha. A significant amount of peel (approximately 2,714-11,800 kg per tree per year) is discarded as agricultural waste, as apart from its use as a table fruit, it is popular in many culinary preparations. Treatment of jackfruit peel with sulphuric acid produced a carbonaceous product which was used to study its efficiency as an adsorbent for the removal of Cd(II) from aqueous solution. Batch experiments were performed as a function of process parameters; agitation time, initial metal concentration, adsorbent concentration and pH. Kinetic analyses made with Lagergren pseudo-first-order, Ritchie second-order and modified Ritchie second-order models showed better fits with modified Ritchie second-order model. The Langmuir-Freundlich (Sips equation) model best defined the experimental equilibrium data among the three isotherm models (Freundlich, Langmuir and Langmuir-Freundlich) tested. Taking a particular metal concentration, the optimum dose and pH required for the maximum metal removal was established. A complete recovery of the adsorbed metal ions from the spent adsorbent was achieved by using 0.01 M HCl.

  4. Catalytic activity of γ-irradiated transition metal ions in the decomposition of hydrogen peroxide

    International Nuclear Information System (INIS)

    Arnikar, H.J.; Kapadi, A.H.; Gohad, A.S.; Bhosale, S.B.

    1988-01-01

    The catalystic decomposition of hydrogen peroxide by transition metal ions, Fe 2+ , Fe 3+ , Co 2+ and Cu 2+ , adsorbed on neutral α-alumina was studied over the temperature range of 295-313 K. γ-irradiation of the catalysts to a dose of 0.12 MGy enhanced markedly the first order decomposition rate. Negligible in the case of Cu 2+ , the radiation effect increased roughly in the order of the number of unpaired d electrons in these ions: Cu(II), Fe(II), Co(II) and Fe(III). Results are explained on the basis of Kremer's mechanism of electron induced heterogeneous decomposition of H 2 O 2 . The radiation effect is attributed to the initial excess of electrons released from traps in the beginning of the reaction

  5. A biosorption system for metal ions on Penicillium italicum - loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations

    International Nuclear Information System (INIS)

    Mendil, Durali; Tuzen, Mustafa; Soylak, Mustafa

    2008-01-01

    A solid phase extraction (SPE) preconcentration system, coupled to a flame atomic absorption spectrometer (FAAS), was developed for the determination of copper(II), cadmium(II), lead(II), manganese(II), iron(III), nickel(II) and cobalt(II) ions at the μg L -1 levels on Penicillium italicum - loaded on Sepabeads SP 70. The analytes were adsorbed on biosorbent at the pH range of 8.5-9.5. The adsorbed metals were eluted with 1 mol L -1 HCl. The influences of the various analytical parameters including pH of the aqueous solutions, sample volume, flow rates were investigated for the retentions of the analyte ions. The recovery values are ranged from 95-102%. The influences of alkaline, earth alkaline and some transition metal ions were also discussed. Under the optimized conditions, the detection limits (3 s, n = 21) for analytes were in the range of 0.41 μg L -1 (cadmium) and 1.60 μg L -1 (iron). The standard reference materials (IAEA 336 Lichen, NIST SRM 1573a Tomato leaves) were analyzed to verify the proposed method. The method was successfully applied for the determinations of analytes in natural water, cultivated mushroom, lichen (Bryum capilare Hedw), moss (Homalothecium sericeum) and refined table salt samples

  6. A biosorption system for metal ions on Penicillium italicum - loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations

    Energy Technology Data Exchange (ETDEWEB)

    Mendil, Durali; Tuzen, Mustafa [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)], E-mail: msoylak@gmail.com

    2008-04-15

    A solid phase extraction (SPE) preconcentration system, coupled to a flame atomic absorption spectrometer (FAAS), was developed for the determination of copper(II), cadmium(II), lead(II), manganese(II), iron(III), nickel(II) and cobalt(II) ions at the {mu}g L{sup -1} levels on Penicillium italicum - loaded on Sepabeads SP 70. The analytes were adsorbed on biosorbent at the pH range of 8.5-9.5. The adsorbed metals were eluted with 1 mol L{sup -1} HCl. The influences of the various analytical parameters including pH of the aqueous solutions, sample volume, flow rates were investigated for the retentions of the analyte ions. The recovery values are ranged from 95-102%. The influences of alkaline, earth alkaline and some transition metal ions were also discussed. Under the optimized conditions, the detection limits (3 s, n = 21) for analytes were in the range of 0.41 {mu}g L{sup -1} (cadmium) and 1.60 {mu}g L{sup -1} (iron). The standard reference materials (IAEA 336 Lichen, NIST SRM 1573a Tomato leaves) were analyzed to verify the proposed method. The method was successfully applied for the determinations of analytes in natural water, cultivated mushroom, lichen (Bryum capilare Hedw), moss (Homalothecium sericeum) and refined table salt samples.

  7. Kinetic study of liquid-phase adsorptive removal of heavy metal ions by almond tree (Terminalia catappa L. leaves waste

    Directory of Open Access Journals (Sweden)

    Michael Horsfall Jnr

    2007-04-01

    Full Text Available The kinetic sorption of five metal ions – Al3+, Cr6+, Zn2+, Ag+ and Mn2+- from aqueous solution onto almond tree leaves (ATL waste in single component system has been studied. The experimental data was analyzed in terms of intraparticle diffusion and rate of adsorption, thus comparing transport mechanism and chemical sorption processes. The sorption rates based on the pseudo-second order rate constants for the five metal ions are 0.018 (Al3+, 0.016 (Cr6+, 0.023 (Zn2+, 0.021 (Ag+ and 0.022 (Mn2+ g/mg.min. The adsorption rates are rapid and within 180 min of agitation more than 85 percent of these metal ions has been removed from solution by the ATL waste biomass. The kinetic data suggest that the overall adsorption process is endothermic, and that the rate-limiting step is a surface diffusion controlled process. The results from this study have revealed that the ATL waste, which is hitherto an environmental nuisance, has the ability to adsorb metal ions from solution and the data are relevant for optimal design of wastewater treatment plants. The low cost and easy availability of ATL waste make potential industrial application a strong possibility.

  8. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils.

    Science.gov (United States)

    Davari, Masoud; Rahnemaie, Rasoul; Homaee, Mehdi

    2015-09-01

    Investigating the interactions of heavy metals is imperative for sustaining environment and human health. Among those, Cd is toxic for organisms at any concentration. While Ni acts as a micronutrient at very low concentration but is hazardous toxic above certain threshold value. In this study, the chemical adsorption and desorption reactions of Ni and Cd in contaminated soils were investigated in both single and binary ion systems. Both Ni and Cd experimental data demonstrated Langmuir type adsorption. In the competitive systems, an antagonistic effect was observed, implying that both ions compete for same type of adsorption sites. Adverse effect of Cd on Ni adsorption was slightly stronger than that of opposite system, consistent with adsorption isotherms in single ion systems. Variation in ionic strength indicated that Ca, a much weaker adsorbate, could also compete with Cd and Ni for adsorption on soil particles. Desorption data indicated that Cd and Ni are adsorbed very tightly such that after four successive desorption steps, less than 0.5 % of initially adsorbed ions released into the soil solution. This implies that Ca, at concentration in equilibrium with calcite mineral, cannot adequately compete with and replace adsorbed Ni and Cd ions. This adsorption behavior was led to considerable hysteresis between adsorption and desorption in both single and binary ion systems. In the binary ion systems, desorption of Cd and Ni was increased by increase in both equilibrium concentration of adsorbed ion and concentration of competitor ion. The overall results obtained in this research indicate that Cd and Ni are strongly adsorbed in calcareous soil and Ca, the major dissolved ion, insignificantly influences metal ions adsorption. Consequently, the contaminated soils by Ni and Cd can simultaneously be remediated by environmentally oriented technologies such as phytoremediation.

  9. Metallic → Semiconducting transitions in HX(X=F, Br, Cl) adsorbed (5,5) and (7,7) carbon nanotubes: DFT study

    Science.gov (United States)

    Srivastava, Reena; Shrivastava, Sadhana; Srivastava, Anurag

    2018-05-01

    The edge sensitivity of two different chirality (5,5) and (7,7) armchair carbon nanotubes towards toxic hydrogen halides (HF, HBr and HCl) has been analyzed by using density functional theory based ab-initio approach. The edge sensitivity has been discussed in terms of the variations in the electronic band structure of (5,5) and (7,7) carbon nanotube. The observation shows metallic to semiconducting phase transition in HF and HBr adsorbed (5,5) CNT, whereas for HCl adsorbed, it is more metallic. Whereas HBr and HCl adsorbed (7,7) CNT confirms metallic→semiconducting transition and shows diameter dependence of properties of CNTs.

  10. Photoemission studies of clean and adsorbate covered metal surfaces using synchrotron and uv radiation sources

    International Nuclear Information System (INIS)

    Apai, G.R. II.

    1977-09-01

    Photoemission energy distribution experiments on clean metal and adsorbate-covered surfaces were performed under ultrahigh vacuum conditions by using x-ray and ultraviolet photon sources in the laboratory as well as continuously-tunable, highly polarized synchrotron radiation obtainable at the Stanford Synchrotron Radiation Laboratory (SSRL). Studies focused on two general areas: cross-section modulation in the photoemission process was studied as a function of photon energy and orbital composition. Sharp decreases in intensity of the valence bands of several transition metals (i.e., Ag, Au, and Pt) are attributed to the radial nodes in the respective wave functions. Adsorbate photoemission studies of CO adsorbed on platinum single crystals have demonstrated a very high spectral sensitivity to the 4sigma and (1π + 5sigma) peaks of CO at photon energies of 150 eV. Angle-resolved photoemission allowed determination of the orientation of CO chemisorbed on a Pt (111) or Ni(111) surface. Prelinimary results at high photon energies (approximately 150 eV) indicated scattering from the substrate which could yield chemisorption site geometries

  11. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Mohd F., E-mail: faisalt@petronas.com.my; Shaharun, Maizatul S. [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak Darul Ridzuan (Malaysia); Shuib, Anis Suhaila, E-mail: anisuha@petronas.com.my; Borhan, Azry [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  12. Versatile high current metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1992-01-01

    A metal ion implantation facility has been developed with which high current beams of practically all the solid metals of the periodic table can be produced. A multicathode, broad-beam, metal vapor vacuum arc ion source is used to produce repetitively pulsed metal ion beams at an extraction voltage of up to 100 kV, corresponding to an ion energy of up to several hundred kiloelectronvolts because of the ion charge state multiplicity, and with a beam current of up to several amps peak pulsed and several tens of milliamps time averaged delivered onto a downstream target. Implantation is done in a broad-beam mode, with a direct line of sight from ion source to target. Here we summarize some of the features of the ion source and the implantation facility that has been built up around it. (orig)

  13. Cell for studying electron-adsorbed gas interactions; Cellule d'etudes des interactions electron-gaz adsorbe

    Energy Technology Data Exchange (ETDEWEB)

    Golowacz, H; Degras, D A [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, Deptartement de Physique des Plasmas et de la Fusion Controlee, Service de Physique Appliquee, Service de Physique des Interractions Electroniques, Section d' Etude des Interactions Gaz-Solides

    1967-07-01

    The geometry and the technology of a cell used for investigations on electron-adsorbed gas interactions are described. The resonance frequencies of the surface ions which are created by the electron impact on the adsorbed gas are predicted by simplified calculations. The experimental data relative to carbon monoxide and neon are in good agreement with these predictions. (authors) [French] Les caracteristiques geometriques et technologiques generales d'une cellule d'etude des interactions entre un faisceau d'electrons et un gaz adsorbe sont donnees. Un calcul simplifie permet de prevoir les frequences de resonance des ions de surface crees par l'impact des electrons sur le gaz adsorbe. Les donnees experimentales sur l'oxyde de carbone et le neon confirment les previsions du calcul. (auteurs)

  14. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    Okumura, Minoru; Kitano, Yasushi

    1986-01-01

    The coprecipitation of alkali metal ions Li + , Na + , K + and Rb + with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na + which has approximately the same ionic radius as Ca 2+ . (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca 2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca 2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li + , Na + , K + and Rb + ) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li + , K + and Rb + ) into the aragonite. (author)

  15. Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod topology: Structure and ion-exchange effect

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Kim, J.; Yang, D.A.; Ahn, W.S. [Inha University, Inchon (Republic of Korea). Dept. of Chemical Engineering

    2011-04-15

    Zeolite-like metal organic framework (ZMOF) materials having rho and sod topologies were experimentally investigated as CO{sub 2} adsorbents for the first time. As-prepared ZMOF materials showed reasonably high CO{sub 2} adsorption capacities (ca. 51 and 53 mg/g(adsorbent) for rho- and sod-ZMOF, respectively) and high CO{sub 2}/N{sub 2} selectivity (> 20) at 298 K and 1 bar. The latter showed a higher heat of adsorption (27-45 kJ/mol). These ZMOFs exhibited better CO{sub 2} adsorption than ZIF-8, a commonly investigated zeolitic imidazolate framework (ZIF) material having the same sod topology but in a neutral framework. Partially ion-exchanged sod-ZMOFs by alkali-metals resulted in improved CO{sub 2} adsorption performance compared with the as-prepared ZMOF. The highest CO{sub 2} adsorption was obtained with K{sup +}-exchanged sod-ZMOF (61 mg/g(adsorbent)), representing a ca. 15% increase in adsorption capacity. Complete desorption of CO{sub 2} in the K{sup +}-sod-ZMOF was attained at mild conditions (40{sup o}C, He purging), and reversible and sustainable CO{sub 2} adsorption performance was demonstrated in 5 sets of recycling runs.

  16. Metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-06-01

    We have developed a family of metal vapor vacuum are (MEVVA) high current metal ion sources. The sources were initially developed for the production of high current beams of metal ions for heavy ion synchrotron injection for basic nuclear physics research; more recently they have also been used for metal ion implantation. A number of different embodiments of the source have been developed for these specific applications. Presently the sources operate in a pulsed mode, with pulse width of order 1 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, and since the ions produced in the vacuum arc plasma are in general multiply ionized the ion energy is up to several hundred keV. Beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Nearly all of the solid metals of the Periodic Table have been use to produce beam. A number of novel features have been incorporated into the sources, including multiple cathodes and the ability to switch between up to 18 separate cathode materials simply and quickly, and a broad beam source version as well as miniature versions. here we review the source designs and their performance. 45 refs., 7 figs

  17. New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals.

    Science.gov (United States)

    Zhou, Yun; Zhang, Zhiqiang; Zhang, Jiao; Xia, Siqing

    2016-07-01

    The adsorption characteristics and mechanisms of the biosorbent from waste activated sludge were investigated by adsorbing Pb(2+) and Zn(2+) in aqueous single-metal solutions. A pH value of the metal solutions at 6.0 was beneficial to the high adsorption quantity of the biosorbent. The optimal mass ratio of the biosorbent to metal ions was found to be 2. A higher adsorption quantity of the biosorbent was achieved by keeping the reaction temperature below 55°C. Response surface methodology was applied to optimize the biosorption processes, and the developed mathematical equations showed high determination coefficients (above 0.99 for both metal ions) and insignificant lack of fit (p=0.0838 and 0.0782 for Pb(2+) and Zn(2+), respectively). Atomic force microscopy analyses suggested that the metal elements were adsorbed onto the biosorbent surface via electrostatic interaction. X-ray photoelectron spectroscopy analyses indicated the presence of complexation (between -NH2, -CN and metal ions) and ion-exchange (between -COOH and metal ions). The adsorption mechanisms could be the combined action of electrostatic interaction, complexation and ion-exchange between functional groups and metal ions. Copyright © 2016. Published by Elsevier B.V.

  18. A novel fiber-based adsorbent technology

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.A. [Chemica Technologies, Inc., Bend, OR (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  19. Novel metal ion surface modification technique

    International Nuclear Information System (INIS)

    Brown, I.G.; Godechot, X.; Yu, K.M.

    1990-10-01

    We describe a method for applying metal ions to the near-surface region of solid materials. The added species can be energetically implanted below the surface or built up as a surface film with an atomically mixed interface with the substrate; the metal ion species can be the same as the substrate species or different from it, and more than one kind of metal species can be applied, either simultaneously or sequentially. Surface structures can be fabricated, including coatings and thin films of single metals, tailored alloys, or metallic multilayers, and they can be implanted or added onto the surface and ion beam mixed. We report two simple demonstrations of the method: implantation of yttrium into a silicon substrate at a mean energy of 70 keV and a dose of 1 x 10 16 atoms/cm 2 , and the formation of a titanium-yttrium multilayer structure with ion beam mixing to the substrate. 17 refs., 3 figs

  20. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    International Nuclear Information System (INIS)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W.P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-01-01

    natural seawater. Uptake of other metal ions such as V, Fe, and Cu follows the same trend as that of uranium. Also, the uptake of Ca, Mg, and Zn ions increased with increasing KOH conditioning time, probably due to formation of more carboxylates, which leads to conversion of uranium-selective binding sites to less selective sites. In the second part of the study, inorganic based reagents such as sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3 ), cesium hydroxide (CsOH), as well as organic based reagents such as ammonium hydroxide (AOH), tetramethylammonium hydroxide (TMAOH), tetraethylammonium hydroxide (TEAOH), triethylmethylammonium hydroxide (TEMAOH), tetrapropylammonium hydroxide (TPAOH) and tetrabutylammonium hydroxide (TBAOH), in addition to KOH, were used for alkaline conditioning. NaOH has emerged as a better reagent for alkaline conditioning of amidoxime-based adsorbent because of higher uranium uptake capacity, higher uranium uptake selectivity ...

  1. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    natural seawater. Uptake of other metal ions such as V, Fe, and Cu follows the same trend as that of uranium. Also, the uptake of Ca, Mg, and Zn ions increased with increasing KOH conditioning time, probably due to formation of more carboxylates, which leads to conversion of uranium-selective binding sites to less selective sites. In the second part of the study, inorganic based reagents such as sodium hydroxide (NaOH), sodium carbonate (Na2CO3), cesium hydroxide (CsOH), as well as organic based reagents such as ammonium hydroxide (AOH), tetramethylammonium hydroxide (TMAOH), tetraethylammonium hydroxide (TEAOH), triethylmethylammonium hydroxide (TEMAOH), tetrapropylammonium hydroxide (TPAOH) and tetrabutylammonium hydroxide (TBAOH), in addition to KOH, were used for alkaline conditioning. NaOH has emerged as a better reagent for alkaline conditioning of amidoxime-based adsorbent because of higher uranium uptake capacity, higher uranium uptake selectivity ...

  2. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki [National Inst. of Radiological Sciences, Chiba (Japan); Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu [Accelerator Engineering Corporation, Chiba (Japan)

    2001-11-19

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  3. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    International Nuclear Information System (INIS)

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki; Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu

    2001-01-01

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  4. Syntheses of amine-type adsorbents with emulsion graft polymerization of glycidyl methacrylate

    International Nuclear Information System (INIS)

    Seko, N.; Bang, L.T.; Tamada, M.

    2007-01-01

    Glycidyl methacrylate (GMA) which was precursor monomer for the synthesis of metal ion adsorbent was emulsified by surfactant of Tween 20 (Tw-20). The emulsion of 5% GMA in the water was stable for 48 h at Tw-20 concentration of 0.5%. Graft polymerization of GMA on polyethylene fiber was carried out in the emulsion state at various pre-irradiation doses. Degree of grafting (Dg) reached 103%, 301% and 348% for 1 h grafting at 40 deg. C with pre-irradiation of 10, 30 and 40 kGy, respectively. But the Dg was depressed when the pre-irradiation dose was over 50 kGy since cross-linking occurred simultaneously in the trunk polymer. Dg decreased with increment of Tw-20 concentration in emulsion of 5% GMA at pre-irradiation of 40 kGy. The three kinds of amine-type adsorbents were synthesized by reacting diethylenetriamine (DETA), triethylenetetramine (TETA) and ethylenediamine (EDA) with GMA-grafted polyethylene fiber. The synthesized EDA-type adsorbent had the highest selectivity against U ion and the distribution coefficient was 2.0 x 10 6

  5. Ion-beam-mixing in metal-metal systems and metal-silicon systems

    International Nuclear Information System (INIS)

    Hung, L.

    1984-01-01

    The influence of energetic ion bombardment on the composition and structure of thin film materials and utilization of ion-beam-mixing techniques to modify interfacial reactions are reported in this thesis. The phase formation in metals by using ion mixing techniques has been studied. Upon ion irradiation of Al/Pt, Al/Pd and Al/Ni thin films, only the simplest intermetallic compounds of PdAl and NiAl were formed in crystalline structure, while the amorphous phase has been observed over a large range of composition. Ion mixing of Au/Cu bilayers resulted in the formation of substitutional solid solutions with no trace of ordered compounds. The formation of the ordered compound CuAu was achieved either by irradiation of bilayers with Ar ions at elevated substrate temperature or by irradiation of the mixed layers with He ions at relatively low temperature. In the Au/Al system several crystal compounds existed in the as-deposited samples. These phases remained crystalline or transformed into other equilibrium compounds upon ion irradiation. The results suggest that the phase formation by ion mixing is dependent on the high quench rate in the collision cascade region and the atomic mobility at the irradiation temperature. The argument can be applied to silicide forming systems. With near-noble metals, the mixed atoms are mobile and form metallurgically distinct phases. With refractory metals, amorphous phases are formed due to lack of atomic mobility

  6. High charge state metal ion production in vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.

    1994-01-01

    The vacuum arc is a rich source of highly ionized metal plasma that can be used to make a high current metal ion source. Vacuum arc ion sources have been developed for a range of applications including ion implantation for materials surface modification, particle accelerator injection for fundamental nuclear physics research, and other fundamental and applied purposes. Typically the source is repetitively pulsed with pulse length of order a millisecond and duty cycle or order 1% and operation of a dc embodiment has been demonstrated also. Beams have been produced from over 50 of the solid metals of the periodic table, with mean ion energy up to several hundred keV and with peak (pulsed) beam current up to several amperes. The ion charge state distribution has been extensively studied. Ion spectra have been measured for a wide range of metallic cathode materials, including Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb, Hf, Ta, W, Ir, Pt, Au, Pb, Bi, Th and U, as well as compound and alloy cathode materials such as TiC, SiC, UC, PbS, brass, and stainless steel. The ions generated are in general multiply-stripped with a mean charge state of from 1 to 3, depending on the particular metal species, and the charge state distribution can have components from Q = 1+ to 6+. Here the authors review the characteristics of vacuum arc ion sources from the perspective of their high charge state metal ion production

  7. Surface modification of glass beads with glutaraldehyde: Characterization and their adsorption property for metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Mustafa; Can, Keziban; Akin, Ilker; Arslan, Gulsin [Department of Chemistry, Selcuk University, 42031, Konya (Turkey); Tor, Ali, E-mail: ali.alitor@gmail.com [Department of Environmental Engineering, Selcuk University, Engineering Faculty, Campus, 42031, Konya (Turkey); Cengeloglu, Yunus; Ersoz, Mustafa [Department of Chemistry, Selcuk University, 42031, Konya (Turkey)

    2009-11-15

    In this study, a new material that adsorbs the metal ions was prepared by modification of the glass beads surfaces with glutaraldehyde. First, the glass beads were etched with 4 M NaOH solution. Then, they were reacted with 3-aminopropyl-triethoxysilane (APTES). Finally, silanized glass beads were treated with 25% of glutaraldehyde solution. The characterization studies by using Fourier Transform Infrared Spectroscopy (FT-IR), Thermal Gravimetric Analysis (TGA), elemental analysis and Scanning Electron Microscopy (SEM) indicated that modification of the glass bead surfaces was successfully performed. The adsorption studies exhibited that the modified glass beads could be efficiently used for the removal of the metal cations and anion (chromate ion) from aqueous solutions via chelation and ion-exchange mechanisms. For both Pb(II) and Cr(VI), selected as model ions, the adsorption equilibrium was achieved in 60 min and adsorption of both ions followed the second-order kinetic model. It was found that the sorption data was better represented by the Freundlich isotherm in comparison to the Langmuir and Redlich-Peterson isotherm models. The maximum adsorption capacities for Pb(II) and Cr(VI) were 9.947 and 11.571 mg/g, respectively. The regeneration studies also showed that modified glass beads could be re-used for the adsorption of Pb(II) and Cr(VI) from aqueous solutions over three cycles.

  8. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent.

    Science.gov (United States)

    Awual, Md Rabiul; Yaita, Tsuyoshi; Taguchi, Tomitsugu; Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro

    2014-08-15

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs-π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The use of non-living biomass to recover heavy metals from aqueous solutions

    International Nuclear Information System (INIS)

    Darnall, D.W.

    1993-01-01

    The use of microorganisms in the treatment of hazardous wastes containing both inorganic and organic pollutants is becoming more and more attractive. There have been two approaches to the use of microorganisms in waste treatment. One involves the use of living organisms and the other involves the use of non-viable biomass derived from microorganisms. While the use of living organisms is often successful in the treatment of toxic organic contaminants, living organisms have not been found to be useful in the treatment of solutions containing heavy metal ions. This is because once the metal ion concentration becomes too high or sufficient metal ions are adsorbed by the microorganism, metabolism is disrupted causing the organism to die. This disadvantage is not encountered if non-living organisms or biological materials derived from microorganisms are used to adsorb metal ions from solution. Instead the biomass is treated as another reagent, a surrogate ion exchange resin. The binding, or biosorption, of metal ions by the biomass results from coordination of the metal ions to various functional groups in or on the cell. These chelating groups, contributed by the cell biopolymers, include carboxyl, imidazole, sulfhydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide, and hydroxyl moieties (Darnall et al.)

  10. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, M.E.; Borneman, Z.; Wessling, M.

    2003-01-01

    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an

  11. Pyrolized biochar for heavy metal adsorption

    Science.gov (United States)

    Removal of copper and lead metal ions from water using pyrolized plant materials. Method can be used to develop a low cost point-of-use device for cleaning contaminated water. This dataset is associated with the following publication:DeMessie, B., E. Sahle-Demessie , and G. Sorial. Cleaning Water Contaminated With Heavy Metal Ions Using Pyrolyzed Banana Peel Adsorbents. Separation Science and Technology. Marcel Dekker Incorporated, New York, NY, USA, 50(16): 2448-2457, (2015).

  12. Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mori, Masanobu; Suzuki, Toshinobu; Sugita, Tsuyoshi; Nagai, Daisuke; Hirayama, Kazuo; Onozato, Makoto; Itabashi, Hideyuki

    2014-01-01

    Highlights: • Calcium-alginate-modified dien-silica gel adsorbed multivalent metal ions. • Metal ions adsorbed on CaAD were eluted using low acidic concentrations. • Flow system with CaAD-packed column enriched metal concentrations up to 50-fold. - Abstract: This study aimed to evaluate the heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel (CaAD) and incorporate this biosorbent into a flow analytical system for heavy metal ions using flame atomic absorption spectrometry (FAAS). The biosorbent was synthesized by electrostatically coating calcium alginate onto diethylenetriamine (dien)-silica gel. Copper ion adsorption tests by a batch method showed that CaAD exhibited a higher adsorption rate compared with other biosorbents despite its low maximum adsorption capacity. Next, CaAD was packed into a 1 mL microcolumn, which was connected to a flow analytical system equipped with an FAAS instrument. The flow system quantitatively adsorbed heavy metals and enriched their concentrations. This quantitative adsorption was achieved for pH 3–4 solutions containing 1.0 × 10 −6 M of heavy metal ions at a flow rate of 5.0 mL min −1 . Furthermore, the metal ions were successfully desorbed from CaAD at low nitric acid concentrations (0.05–0.15 M) than from the polyaminecarboxylic acid chelating resin (Chelex 100). Therefore, CaAD may be considered as a biosorbent that quickly adsorbs and easily desorbs analyte metal ions. In addition, the flow system enhanced the concentrations of heavy metals such as Cu 2+ , Zn 2+ , and Pb 2+ by 50-fold. This new enrichment system successfully performed the separation and determination of Cu 2+ (5.0 × 10 −8 M) and Zn 2+ (5.7 × 10 −8 M) in a river water sample and Pb 2+ (3.8 × 10 −9 M) in a ground water sample

  13. A rapid microwave-assisted synthesis of a sodium-cadmium metal-organic framework having improved performance as a CO2 adsorbent for CCS.

    Science.gov (United States)

    Palomino Cabello, Carlos; Arean, Carlos Otero; Parra, José B; Ania, Conchi O; Rumori, P; Turnes Palomino, G

    2015-06-07

    We report on a facile and rapid microwave-assisted method for preparing a sodium-cadmium metal-organic framework (having coordinatively unsaturated sodium ions) that considerably shortens the conventional synthesis time from 5 days to 1 hour. The obtained (Na,Cd)-MOF showed an excellent volumetric CO2 adsorption capacity (5.2 mmol cm(-3) at 298 K and 1 bar) and better CO2 adsorption properties than those shown by the same metal-organic framework when synthesized following a more conventional procedure. Moreover, the newly prepared material was found to display high selectivity for adsorption of carbon dioxide over nitrogen, and good regenerability and stability during repeated CO2 adsorption-desorption cycles, which are the required properties for any adsorbent intended for carbon dioxide capture and sequestration (CSS) from the post-combustion flue gas of fossil fuelled power stations.

  14. Low concentration CO2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?

    KAUST Repository

    Belmabkhout, Youssef; Guillerm, Vincent; Eddaoudi, Mohamed

    2016-01-01

    The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents.

  15. Low concentration CO2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?

    KAUST Repository

    Belmabkhout, Youssef

    2016-03-30

    The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents.

  16. 13C NMR investigation of the structure of cationic carbonyls in transition metal zeolites

    International Nuclear Information System (INIS)

    Ben Taarit, Y.

    1979-01-01

    13 C NMR spectroscopy was used to investigate the nature of carbon monoxide adsorbed on transition metal ions hosted in a synthetic faujastite type zeolite. The adsorbed CO species was characterised by a highly shielded carbon nucleus. Using the Pople approximation for the paramagnetic shielding term, the observed chemical shift was rationalised assuming the formation of a cationic carbonyl species with an appreciable electronic transfer from the carbon lone pair to the transition metal ion and negligible π back-bonding if at all. (Auth.)

  17. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  18. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  19. Effects of nanodiamonds of explosive synthesis on the skin of experimental animals locally exposed to cobalt and chrome ions.

    Science.gov (United States)

    Prokhorenkov, V I; Vasil'eva, E Yu; Puzyr', A P; Bondar', V S

    2014-12-01

    Experiments in vivo demonstrated the protective effect of modified nanodiamonds on guinea pig skin after local exposure cobalt ions, but not chrome ions. The observed differences are determined by different adsorption of these ions by nanodiamonds: in vitro experiments showed that nanodiamonds adsorbed cobalt ions, but not chrome ions from water solutions. The perspectives of using modified nanodiamonds as a new adsorbent for prevention of allergic contact dermatitis induced by ions of bivalent metals are discussed.

  20. Modification of Cellulose with 4.4 Diaminodiphenylether-O-Hydroxibenzaldehide as Adsorbent and Its Application for Adsorbing Metalic Ion of Cd2+ In Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Nurlisa HIdayati

    2016-06-01

    Full Text Available This research on the modification of cellulose using 4,4-diaminodiphenylether and o-hydroxybenzaldehyde and its application to adsorb Cd2+ in aqueous solution has been done. The adsorption studies of cellulose and modified cellulose were done by using batch technique. The cellulose and modified cellulose were characterized by FTIR. The FTIR spectra revealed characteristic bands of 1573 cm-1, 1280 cm-1, 3749 cm-1 and 1056 cm-1. It indicates function group of C=N, C=O, O-H and Si-OR bond, respectively. The FTIR spectra of cellulose and modified cellulose which interacted to Cd2+, it were indicated by the shift in wavenumber 3410 cm-1 to 3371 cm-1. This spectral shift indicating Cd2+ bound to OH-group. In this research, interaction between modified cellulose with Cd2+ confirmed by intensities spectral changes at 1620 cm-1. The adsorption capacity and energy from adsorption of Cd2+ ions toward cellulose were 71,43 mg/g and 4,142 kJ/mol, while toward modified cellulose were 55,56 mg/g and 0,13 kJ/mol, respectively.

  1. Metallic ions in the upper atmosphere

    International Nuclear Information System (INIS)

    Kumar, S.

    1979-01-01

    During the past 20 years considerable progress has been made in establishing the presence of metallic ions in the sporadic E layers at mid latitudes and as discrete patches at high altitudes in the equatorial ionosphere. The E-region observations have been based on rocket flights, which represent local conditions faithfully. But the global distribution of metallic ions and variations relating to changes in season, local time, magnetic activity, etc., which require satellite data, have been largely unexamined. This work presents a few aspects of this missing global distribution over an altitude range of 100 to 1000 km, using the data from AE-C, AE-D, and OGO-6 satellites and the rocket flights 18.117 and 18.118 from Wallops Island on July 12 and 13, 1971. The rocket data provide a day-night pair of vertical profiles that include altitudes not covered by the satellites. Results are presented for Mg + , Al + , Si + and Fe + ions in terms of their detection probabilities, median concentrations and relative abundances with respect to Mg + ions as a function of significant geophysical parameters. Na + and K + ions have been excluded from this study because alkali metal ions driven off the spacecraft hamper the measurement of ambient Na + and K + ions. This study has indicated that in general different metallic ions appear together in comparable concentrations except for Al + , which is an order of magnitude smaller than the others

  2. Electronic spectral properties of surfaces and adsorbates and atom-adsorbate van der Waals interactions

    International Nuclear Information System (INIS)

    Lovric, D.; Gumhalter, B.

    1988-01-01

    The relevance of van der Waals interactions in the scattering of neutral atoms from adsorbates has been recently confirmed by highly sensitive molecular-beam techniques. The theoretical descriptions of the collision dynamics which followed the experimental studies have necessitated very careful qualitative and quantitative examinations and evaluations of the properties of atom-adsorbate van der Waals interactions for specific systems. In this work we present a microscopic calculation of the strengths and reference-plane positions for van der Waals potentials relevant for scattering of He atoms from CO adsorbed on various metallic substrates. In order to take into account the specificities of the polarization properties of real metals (noble and transition metals) and of chemisorbed CO, we first calculate the spectra of the electronic excitations characteristic of the respective electronic subsystems by using various data sources available and combine them with the existing theoretical models. The reliability of the calculated spectra is then verified in each particular case by universal sum rules which may be established for the electronic excitations of surfaces and adsorbates. The substrate and adsorbate polarization properties which derive from these calculations serve as input data for the evaluation of the strengths and reference-plane positions of van der Waals potentials whose computed values are tabulated for a number of real chemisorption systems. The implications of the obtained results are discussed in regard to the atom-adsorbate scattering cross sections pertinent to molecular-beam scattering experiments

  3. Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges

    CERN Document Server

    Baba, Y H

    2003-01-01

    This article reviews our recent works on the ion desorption from adsorbed and condensed molecules at low temperature following the core-level photoexcitations using synchrotron soft x-rays. The systems investigated here are adsorbed molecules with relatively heavy molecular weight containing third-row elements such as Si, P, S, and Cl. Compared with molecules composed of second-row elements, the highly element-specific and site-specific fragment-ion desorption were observed when we tune the photon energy at the dipole-allowed 1s -> sigma sup * (3p sup *) resonance. On the basis of the resonance Auger decay spectra around the 1s ionization thresholds, the observed highly specific ion desorption is interpreted by the localization of the excited electrons (here we call as 'spectator electrons') in the antibonding sigma sup * orbital. In order to separate the direct photo-induced process from the indirect processes triggered by the secondary electrons, the photon-stimulated ion desorption was also investigated in...

  4. (II) metal ions using phosphonate-functionalized polymer

    Indian Academy of Sciences (India)

    The metal binding was examined by the energy dispersive spectroscopy and scanning electron microscopy for the adsorbed Sr(II). Batch adsorption studies were performed by varying three parameters, namely initial pH, adsorbentdose and the contact time. The reaction kinetics was determined by the Langmuir, Freundlich, ...

  5. Analysis of metal ion release from biomedical implants

    Directory of Open Access Journals (Sweden)

    Ivana Dimić

    2013-06-01

    Full Text Available Metallic biomaterials are commonly used for fixation or replacement of damaged bones in the human body due to their good combination of mechanical properties. The disadvantage of metals as implant materials is their susceptibility to corrosion and metal ion release, which can cause serious health problems. In certain concentrations metals and metal ions are toxic and their presence can cause diverse inflammatory reactions, genetic mutations or even cancer. In this paper, different approaches to metal ion release examination, from biometallic materials sample preparation to research results interpretation, will be presented. An overview of the analytical techniques, used for determination of the type and concentration of released ions from implants in simulated biofluids, is also given in the paper.

  6. Processing method and device for iodine adsorbing material

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi; Shiga, Reiko.

    1997-01-01

    An iodine adsorbing material adsorbing silver compounds is reacted with a reducing gas, so that the silver compounds are converted to metal silver and stored. Then, the silver compounds are not melted or recrystallized even under a highly humid condition, accordingly, peeling of the adsorbed materials from a carrier can be prevented, and the iodine adsorbing material can be stored stably. Since the device is disposed in an off gas line for discharging off gases from a nuclear power facility, the iodine adsorbing material formed by depositing silver halides to the carrier is contained, and a reducing or oxidizing gas is supplied to the vessel as required, and silver halides can be converted to metal silver or the metal silver can be returned to silver halide. (T.M.)

  7. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  8. Pseudo ribbon metal ion beam source

    International Nuclear Information System (INIS)

    Stepanov, Igor B.; Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-01-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface

  9. Pseudo ribbon metal ion beam source.

    Science.gov (United States)

    Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A

    2014-02-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  10. Plasma immersion surface modification with metal ion plasma

    International Nuclear Information System (INIS)

    Brown, I.G.; Yu, K.M.; Godechot, X.

    1991-04-01

    We describe here a novel technique for surface modification in which metal plasma is employed and by which various blends of plasma deposition and ion implantation can be obtained. The new technique is a variation of the plasma immersion technique described by Conrad and co-workers. When a substrate is immersed in a metal plasma, the plasma that condenses on the substrate remains there as a film, and when the substrate is then implanted, qualitatively different processes can follow, including' conventional' high energy ion implantation, recoil implantation, ion beam mixing, ion beam assisted deposition, and metallic thin film and multilayer fabrication with or without species mixing. Multiple metal plasma guns can be used with different metal ion species, films can be bonded to the substrate through ion beam mixing at the interface, and multilayer structures can be tailored with graded or abrupt interfaces. We have fabricated several different kinds of modified surface layers in this way. 22 refs., 4 figs

  11. Fungitoxicity of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Somers, E

    1961-01-01

    The in vitro fungistatic activity of some twenty-four metal cations has been determine against Alternaria tenuis and Botrytis fabae. The metal salts, mainly nitrates, were tested in aqueous solution without added spore germination stimulant. The logarithm of the metal ion concentration at the ED 50 value has been found to conform to the exponenttial relationship with electronegativity proposed by Danielli and Davies (1951). These results are discussed in relation to the site of action of metal cations on the fungal cell.

  12. Tuning Surface Energy Landscapes in Metallic Quantum Films using Alkali Adsorbates

    Science.gov (United States)

    Khajetoorians, Alexander; Qin, Shengyong; Zhu, Wenguang; Eisele, Holger; Zhang, Zhenyu; Shih, Chih-Kang

    2008-03-01

    Quantum confinement shows a strong interplay with growth and kinetics in thin metal systems where the Fermi wavelength has a special relationship to the surface normal lattice constant. In the case of Pb/Si(111) systems, this relationship reveals an interesting thickness-dependent bilayer oscillation in the density of states and surface energy up to a phase. In this paper, we report on a novel effect: tuning of the energy landscape of a flat-top quantum Pb mesa using Cs adsorbates. Using STM/STS, we show that depositing Cs adsorbates on a thin Pb mesa promotes quantum stable Pb nanoislands on preferentially unstable thicknesses. Thickness-dependent nanoisland densities show a strong bilayer oscillation correlating with quantum stability. By modifying the Cs coverage on the mesa surface, we can tune the lateral size distribution of the nanoislands and the overall amplitude of the island density oscillation. Nanoisland formation is linked to a step decoration of Cs adatoms along the step edge of the nanoisland.

  13. Effect of the impregnation of carbon cloth with ethylenediaminetetraacetic acid on its adsorption capacity for the adsorption of several metal ions

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Madrakian, Tayyebeh; Amini, Azadeh; Karimi, Ziba

    2008-01-01

    Effect of loading of C-cloth with ethylenediaminetetraacetic acid (EDTA) on the adsorption capacity for the adsorption of several metal cations was studied. The concentration of ions in the solution was monitored using atomic absorption spectrometry. The adsorption isotherm data for the cations were derived at 25 deg. C and treated according to Langmuir and Freundlich models and was found that for most of the investigated cations Langmuir model was more successful. Adsorption capacities determined from Langmuir isotherms. Loading of the adsorbent with EDTA increased the adsorption capacity for the adsorption of all of the investigation ions

  14. Determinants of protein elution rates from preparative ion-exchange adsorbents.

    Science.gov (United States)

    Angelo, James M; Lenhoff, Abraham M

    2016-04-01

    The rate processes involved in elution in preparative chromatography can affect both peak resolution and hence selectivity as well as practical factors such as facility fit. These processes depend on the physical structure of the adsorbent particles, the amount of bound solute, the solution conditions for operation or some combination of these factors. Ion-exchange adsorbents modified with covalently attached or grafted polymer layers have become widely used in preparative chromatography. Their often easily accessible microstructures offer substantial binding capacities for biomolecules, but elution has sometimes been observed to be undesirably slow. In order to determine which physicochemical phenomena control elution behavior, commercially available cellulosic, dextran-grafted and unmodified agarose materials were characterized here by their elution profiles at various conditions, including different degrees of loading. Elution data were analyzed under the assumption of purely diffusion-limited control, including the role of pore structure properties such as porosity and tortuosity. In general, effective elution rates decreased with the reduction of accessible pore volume, but differences among different proteins indicated the roles of additional factors. Additional measurements and analysis, including the use of confocal laser scanning microscopy to observe elution within single chromatographic particles, indicated the importance of protein association within the particle during elution. The use of protein stabilizing agents was explored in systems presenting atypical elution behavior, and l-arginine and disaccharide excipients were shown to alleviate the effects for one protein, lysozyme, in the presence of sodium chloride. Incorporation of these excipients into eluent buffer gave rise to faster elution and significantly lower pool volumes in elution from polymer-modified adsorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Adsorption Kinetics of Cd(ll and Pb(ll Ions from Aqueous Solutions by Bamboo-Based Activated Charcoal and Bamboo Dust

    Directory of Open Access Journals (Sweden)

    Stevens Azubuike Odoemelam

    2015-01-01

    Full Text Available The use of bamboo dust (BD and bamboo-based activated charcoal for adsorption of Pb(ll and Cd(ll ions from aqueous solutions were assessed in this work. The effect of contact time on the uptake of these metal ions was studied in batch process. The adsorption data were correlated with pseudo first-order, pseudo second-order and diffusivity kinetic models. Results show that pseudo second-order kinetic model gave the best description for the adsorption process. Kinetic studies further showed that the adsorption transport mechanism was particle-diffusion controlled for the adsorption process. Results obtained generally showed that lead(ll ions were better adsorbed onto both adsorbents as compared to cadmium(ll. Comparison of sorption capacity for the two adsorbents shows that bamboo-based activated charcoal exhibited better removal for the metal ions than the bamboo dust.

  16. Column Adsorption Studies for the Removal of Cr(VI Ions by Ethylamine Modified Chitosan Carbonized Rice Husk Composite Beads with Modelling and Optimization

    Directory of Open Access Journals (Sweden)

    S. Sugashini

    2013-01-01

    Full Text Available The objective of this present study is the optimization of process parameters in adsorption of Cr(VI ions by ethylamine modified chitosan carbonized rice husk composite beads (EAM-CCRCBs using response surface methodology (RSM and continuous adsorption studies of Cr(VI ions by ethylamine modified chitosan carbonized rice husk composite beads (EAM-CCRCBs. The effect of process variables such as initial metal ion concentration, adsorbent dosage and pH were optimized using RSM in order to ensure high adsorption capacity at low adsorbent dosage and high initial metal ion concentration of Cr(VI in batch process. The optimum condition suggested by the model for the process variable such as adsorbent dosage, pH and initial metal ion concentration was 0.14 g, 300 mg/L and pH2 with maximum removal of 99.8% and adsorption capacity of 52.7 mg/g respectively. Continuous adsorption studies were conducted under optimized initial metal ion concentration and pH for the removal of Cr(VI ions using EAM-CCRCBs. The breakthrough curve analysis was determined using the experimental data obtained from the continuous adsorption. Continuous adsorption modelling such as bed depth service model and Thomson model were established by fitting it with experimental data.

  17. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents.

    Science.gov (United States)

    Rivera-Utrilla, José; Gómez-Pacheco, Carla V; Sánchez-Polo, Manuel; López-Peñalver, Jesús J; Ocampo-Pérez, Raúl

    2013-12-15

    The objective of this study was to analyze the behavior of activated carbons with different chemical and textural natures in the adsorption of three tetracyclines (TCs) (tetracycline, oxytetracycline, and chlortetracycline). We also assessed the influence of the solution pH and ionic strength on the adsorption of these compounds and studied their removal by the combined use of microorganisms and activated carbon (bioadsorption). Sludge-derived materials were also used to remove TC from water. The capacity of these materials to adsorb TC was very high and was much greater than that of commercial activated carbon. This elevated adsorption capacity (512.1-672.0 mg/g) is explained by the high tendency of TC to form complex ions with some of the metal ions present in these materials. The medium pH and presence of electrolytes considerably affected TCs adsorption on commercial activated carbon. These results indicate that electrostatic adsorbent-adsorbate interactions play an important role in TC adsorption processes when conducted at pH values that produce TC deprotonation. The presence of bacteria during the TCs adsorption process decreases their adsorption/bioadsorption on the commercial activated carbon, weakening interactions between the adsorbate and the microfilm formed on the carbon surface. The adsorptive capacity was considerably lower in dynamic versus static regime, attributable to problems of TC diffusion into carbon pores and the shorter contact time between adsorbate and adsorbent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Upgraded vacuum arc ion source for metal ion implantation

    International Nuclear Information System (INIS)

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-01-01

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  19. Application of biowaste materials for the sorption of heavy metals in contaminated aqueous medium

    International Nuclear Information System (INIS)

    Saeed, A.; Iqbal, M.; Akhtar, M.W.

    2002-01-01

    Biowaste materials were evaluated as metal ion adsorbents in aqueous medium. The biowaste used were black gram husk, wheat bran, sheesham (dalbergia sissoo) sawdust pea pod, rice husk and cotton and mustard seed cakes. All these biosorbents, except pea pod and rice husk, exhibited good adsorption potential for Cd, Pb, Cu, Zn and Ni. Black gram husk (bgh) was found to have the highest sorption capacity with 100, 99.4, 95.7, 98.2 and 93.1% removal of Cd, Pb, Cu, Zn and Ni, respectively. The metal ions adsorbed by bgh desorbed with 0.1 M HCl and the regenerated biosorbent was reused successfully for sorption of metal ions in the next cycle. Concentration of the tested metals achieved at equilibrium in the contaminated aqueous medium was well below the maximum limits recommended by UNEP for sewage discharge. The study indicates the potential of bgh as a new, inexpensive and efficient biosorbent for the treatment of water contaminated with heavy metals. (author)

  20. Novel highly porous magnetic hydrogel beads composed of chitosan and sodium citrate: an effective adsorbent for the removal of heavy metals from aqueous solutions.

    Science.gov (United States)

    Pu, Shengyan; Ma, Hui; Zinchenko, Anatoly; Chu, Wei

    2017-07-01

    This research focuses on the removal of heavy metal ions from aqueous solutions using magnetic chitosan hydrogel beads as a potential sorbent. Highly porous magnetic chitosan hydrogel (PMCH) beads were prepared by a combination of in situ co-precipitation and sodium citrate cross-linking. Fourier transform infrared spectroscopy indicated that the high sorption efficiency of metal cations is attributable to the hydroxyl, amino, and carboxyl groups in PMCH beads. Thermogravimetric analysis demonstrated that introducing Fe 3 O 4 nanoparticles increases the thermal stability of the adsorbent. Laser confocal microscopy revealed highly uniform porous structure of the resultant PMCH beads, which contained a high moisture content (93%). Transmission electron microscopy micrographs showed that the Fe 3 O 4 nanoparticles, with a mean diameter of 5 ± 2 nm, were well dispersed inside the chitosan beads. Batch adsorption experiments and adsorption kinetic analysis revealed that the adsorption process obeys a pseudo-second-order model. Isotherm data were satisfactorily described by the Langmuir equation, and the maximum adsorption capacity of the adsorbent was 84.02 mg/g. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectra analyses were performed to confirm the adsorption of Pb 2+ and to identify the adsorption mechanism.

  1. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  2. Yeast enolase: mechanism of activation by metal ions.

    Science.gov (United States)

    Brewer, J M

    1981-01-01

    Yeast enolase as prepared by current procedures is inherently chemically homogeneous, though deamidation and partial denaturation can produce electrophoretically distinct forms. A true isozyme of the enzyme exists but does not survive the purification procedure. The chemical sequence for both has been established. The enzyme behaves in solution like a compact, nearly spherical molecule of moderate hydration. Strong intramolecular forces maintain the structure of the individual subunits. The enzyme as isolated is dimeric. If dissociated in the presence of magnesium ions and substrate, then the subunits are active, but if the dissociation occurs in the absence of metal ions, they are inactive until they have reassociated and undergone a first order "annealing" process. Magnesium (II) enhances association. The interaction between the subunits is hydrophobic in character. The enzyme can bind up to 2 mol of most metal ions in "conformational" sites which then allows up to 2 mol of substrate or some substrate analogue to bind. This is not sufficient for catalysis, but conformational metal ions do more than just allow substrate binding. A change in the environment of the metal ions occurs on substrate or substrate analogue binding. There is an absolute correlation between the occurrence of a structural change undergone by the 3-amino analogue of phosphoenolpyruvate and whether the metal ions produce any level of enzymatic activity. For catalysis, two more moles of metal ions, called "catalytic", must bind. There is evidence that the enzymatic reaction involves a carbanion mechanism. It is likely that two more moles of metal ion can bind which inhibit the reaction. The requirement for 2 mol of metal ion per subunit which contribute in different ways to catalysis is exhibited by a number of other enzymes.

  3. Development of the removal technology for toxic heavy metal ions by surface-modified activated carbon

    International Nuclear Information System (INIS)

    Park, Geun Il; Song, Kee Chan; Kim, Kwang Wook; Kim, In Tae; Cho, Il Hoon; Kim, Joon Hyung

    2001-01-01

    Adsorption capacities of both radionuclides(uranium, cobalt) and toxic heavy metals (lead, cadmium and chromium) using double surface-modified activated carbon in wide pH ranges are extensively evaluated. Surface-modified activated carbons are classified as AC(as-received carbon), OAC(single surface-modified carbon with nitric acid solution) and OAC-Na(double surface-modified carbon with various alkali solutions). It is established that optimal condition for the second surface modification of OAC is to use the mixed solution of both NaOH and NaCl with total concentration of 0.1 N based on adsorption efficiencies of uranium and cobalt. Variations of adsorption efficiencies in pH ranges of 2∼10 and the adsorption capacities in batch adsorber and fixed bed for removal of both radionuclides and toxic heavy metals using OAC-Na were shown to be superior to that of the AC and OAC even in a low pH range. Capacity factors of OAC-Na for the removal of various metal ions are also excellent to that of AC or OAC. Quantitative analysis of capacity factors for each ions showed that adsorption capacity of OAC-Na increased by 30 times for uranium, 60 times for cobalt, 9 times for lead, 30 times for cadmium, 3 times for chromium compared to that of AC at pH 5, respectively. Adsorption capacity of OAC-Na is comparable to that of XAD-16-TAR used as commercial ion exchange resin

  4. Nano-adsorbents for the removal of metallic pollutants from water and wastewater.

    Science.gov (United States)

    Sharma, Y C; Srivastava, V; Singh, V K; Kaul, S N; Weng, C H

    2009-05-01

    Of the variety of adsorbents available for the removal of heavy and toxic metals, activated carbon has been the most popular. A number of minerals, clays and waste materials have been regularly used for the removal of metallic pollutants from water and industrial effluents. Recently there has been emphasis on the application of nanoparticles and nanostructured materials as efficient and viable alternatives to activated carbon. Carbon nanotubes also have been proved effective alternatives for the removal of metallic pollutants from aqueous solutions. Because of their importance from an environmental viewpoint, special emphasis has been given to the removal of the metals Cr, Cd, Hg, Zn, As, and Cu. Separation of the used nanoparticles from aqueous solutions and the health aspects of the separated nanoparticles have also been discussed. A significant number of the latest articles have been critically scanned for the present review to give a vivid picture of these exotic materials for water remediation.

  5. Magnesite tailing as low-cost adsorbent for the removal of copper (II) ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Kipcak, Ilker; Isiyel, Turgut Giray [Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2015-08-15

    The removal of Cu(II) ions from aqueous solution using magnesite tailing was investigated. Batch kinetic and equilibrium experiments were conducted to study the effects of initial pH, adsorbent dosage, contact time, initial concentration and temperature. The pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to study the kinetic data. The experimental data were best fitted by the pseudo-second-order kinetic model. The linear Langmuir and Freundlich adsorption equations were applied to describe the equilibrium isotherms. The equilibrium data fit very well the Langmuir model, and the maximum adsorption capacity was estimated as 12.18mg/g at 45 .deg. C. Thermodynamic parameters such as enthalpy change (ΔH{sup o}), free energy change (ΔG{sup o}) and entropy change (ΔS{sup o}) were calculated, and it was found that the adsorption process was spontaneous and endothermic. The results showed that magnesite tailing is a suitable adsorbent for the removal of Cu(II) ions from aqueous solutions.

  6. Ionic Liquids as Extraction Media for Metal Ions

    Science.gov (United States)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  7. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    Science.gov (United States)

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  8. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    International Nuclear Information System (INIS)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-01-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA–grafted NWPE (GMA–g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA–g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h −1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  9. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    Science.gov (United States)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-07-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA-grafted NWPE (GMA-g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA-g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h-1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  10. A Novel GH-92 Nano-Adsorbent Using the Sponge from the Persian Gulf for Lead and Cadmium Removal

    Directory of Open Access Journals (Sweden)

    Hossein Ghafourian

    2015-05-01

    Full Text Available Removing pollutants from aquatic ecosystems, especially from drinking water, has always been a major concern for scientists. Recent decades have witnessed the widespread application of natural compounds used as adsorbents to remove various pollutants. On the other hand, studies have proved nanotechnology to be an effective way of removing pollutants. A new type of sponge belonging to the family Demospongiae that has nano holes and is native to the Persian Gulf was investigated for the first time in the present study for use as an adsorbent to remove calcium, magnesium, cobalt, cadmium, and lead ions from water. For this purpose, adbsorption in sponges of different aggregate sizes, contact time, particle size, and ambient pH were measured. The results showed that the proposed sponge is capable of adsorbing the above-mentioned metal ions to various degrees. While small amounts of calcium, magnesium, and cobalt were adsorbed by this sponge, cadmium recorded a higher adsorption of 2.37 mg/g at pH=5. The highest adsorption level of 79.19 mg per gram of adsorbent was recorded for lead at a pH range of 4.5-5 with a mesh size of 230. This is the highest adsorption ever recorded for lead in the literature on selective separation of lead from the other ions.

  11. Adsorption performance of nickel and cadmium ions onto brewer's yeast

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L.; Wu, G. [South-Central Univ. for Nationalities, Wuhan (China). College of Chemical and Materials Science, Key Laboratory of Catalysts and Materials Science of Hubei Province; Jeong, T. [Chonbuk National Univ., Chonbuk (Korea, Republic of). Dept. of Environmental Engineering

    2010-02-15

    Heavy metals must be removed from polluted water streams in order to meet increasingly stringent environmental quality standards. Although various techniques have been used to recover metal ions from wastewater, they are either ineffective when heavy metals are present at low concentrations. In this study, brewer's yeast was used as an adsorbent for the removal of Ni(2) and Cd(2) metal ions from aqueous solution. The surface of the brewer's yeast had 3 main functional groups of sulfonate, carboxyl, and amine groups. The pH of solution played a key role on the uptake of metal ions. Optimum adsorption was obtained at pH 6. An acid solution with a pH of 3 was efficient for the desorption of Ni(2) and Cd(2) ions from loaded brewer's yeast. The desorption efficiency was greater than 90 per cent. The rate of metal ions adsorption onto brewer's yeast was rapid with short contact time. The kinetics of the adsorption process followed the pseudo-second-order kinetic model. Langmuir and Freundlich isotherm models were used to fit the experimental data. The Langmuir isotherm model provided a better fit. The maximum uptakes of Ni(2) and Cd(2) by brewer's yeast were estimated to be 5.34 and 10.17 mg/g, respectively. Electrostatic interaction was found to be the main mechanism of metal ions adsorption on the brewer's yeast. It was concluded that brewer's yeast is a promising adsorbent for the removal of metal ions from wastewater. 21 refs., 3 tabs., 6 figs.

  12. Ion implantation and ion assisted coatings for wear resistance in metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The implantation of electrically accelerated ions of chosen elements into the surface of material provides a method for improving surface properties such as wear resistance. High concentrations of nitrogen implanted into metals create obstacles to dislocation movement, and certain combinations of metallic and non-metallic species will also strengthen the surface. The process is best applied to situations involving mild abrasive wear and operating temperatures that are not too high. Some dramatic increases in life have been reported under such favourable conditions. A more recent development has been the combination of a thin coating with reactive ion bombardment designed to enhance adhesion by ion mixing at the interface and so provide hardness by the formation of finely dispersed nitrides, including cubic boron nitride. These coatings often possess vivid and decorative colours as an added benefit. Developments in the equipment for industrial ion implantation now offer more attractive costs per unit area and a potentially greater throughput of work. A versatile group of related hard vacuum treatments is now emerging, involving the use of intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (author)

  13. A biosystem for removal of metal ions from water

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II.

    1990-01-01

    The presence of heavy metal ions in ground and surface waters constitutes a potential health risk and is an environmental concern. Moreover, processes for the recovery of valuable metal ions are of interest. Bioaccumulation or biosorption is not only a factor in assessing the environmental risk posed by metal ions; it can also be used as a means of decontamination. A biological system for the removal and recovery of metal ions from contaminated water is reported here. Exopolysaccharide-producing microorganisms, including a methanotrophic culture, are demonstrated to have superior metal binding ability, compared with other microbial cultures. This paper describes a biosorption process in which dried biomass obtained from exopolysaccharide-producing microorganisms is encapsulated in porous plastic beads and is used for metal ion binding and recovery. 22 refs., 13 figs.

  14. Elution of Uranium and Transition Metals from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Horng-Bin; Kuo, Li-Jung; Wai, Chien M.; Miyamoto, Naomi; Joshi, Ruma; Wood, Jordana R.; Strivens, Jonathan E.; Janke, Christopher J.; Oyola, Yatsandra; Das, Sadananda; Mayes, Richard T.; Gill, Gary A.

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na2CO3-H2O2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. The Na2CO3-H2O2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater.

  15. Metal ion-dependent DNAzymes and their applications as biosensors.

    Science.gov (United States)

    Lan, Tian; Lu, Yi

    2012-01-01

    Long considered to serve solely as the genetic information carrier, DNA has been shown in 1994 to be able to act as DNA catalysts capable of catalyzing a trans-esterification reaction similar to the action of ribozymes and protein enzymes. Although not yet found in nature, numerous DNAzymes have been isolated through in vitro selection for catalyzing many different types of reactions in the presence of different metal ions and thus become a new class of metalloenzymes. What remains unclear is how DNA can carry out catalysis with simpler building blocks and fewer functional groups than ribozymes and protein enzymes and how DNA can bind metal ions specifically to perform these functions. In the past two decades, many biochemical and biophysical studies have been carried out on DNAzymes, especially RNA-cleaving DNAzymes. Important insights have been gained regarding their metal-dependent activity, global folding, metal binding sites, and catalytic mechanisms for these DNAzymes. Because of their high metal ion selectivity, one of the most important practical applications for DNAzymes is metal ion detection, resulting in highly sensitive and selective fluorescent, colorimetric, and electrochemical sensors for a wide range of metal ions such as Pb(2+), UO2 2 +,[Formula: see text] including paramagnetic metal ions such as Cu(2+). This chapter summarizes recent progresses in in vitro selection of metal ion-selective DNAzymes, their biochemical and biophysical studies and sensing applications.

  16. Theoretical and experimental studies for selective removal of antimony from zircaloy using thiourea grafted polystyrene adsorbent. Contributed Paper MS-01

    International Nuclear Information System (INIS)

    Arora, Jyotsna S.; Gaikar, Vilas G.

    2014-01-01

    During the dissolution step in nuclear fuel reprocessing, hulls consisting of essentially zircaloy clad are produced as high active solid waste. For recovery and reuse of zircaloy from this solid waste, 58 Co and 125 Sb which are present as the activation products of cobalt and tin in zircaloy tubes need to be separated. The present work involves selective sorption of antimony on thiourea grafted polymeric adsorbent in the presence of cobalt and zirconium. The effect of pH for the optimum uptake of antimony ions was studied. Since the variation in pH influences the antimony species formed in the solution, density functional theoretical (DFT) studies were performed in order to understand the complexation of the metal species with the grafted adsorbent at the molecular level. The highest occupied molecular orbital (HOMO) of the adsorbent which is located on S atom of loaded thiourea interacts with lowest unoccupied molecular orbital (LUMO) of Sb(V). The grafted adsorbent exhibits higher interaction with antimony species as compared to cobalt and zirconium. The metal-S bond distances are in good agreement with the XRD values for similar systems. Including the effect of solvation model helps in validation of simulation results with experimental adsorption data suggesting the application of thiourea grafted adsorbent for antimony separation. (author)

  17. Sequestering Potential of Peach Nut Shells as an Efficient Sorbent for Sequestering Some Toxic Metal Ions from Aqueous Waste: A Kinetic and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Muhammad Ashraf Shaheen

    2016-06-01

    Full Text Available The peach nut shells potential as a low cost biosorbent for separation of certain metal ions from aqueous media was investigated. The effects of different parameters such as pH, shaking speed, initial metal ions concentration and their contact time with adsorbent on sorption efficiency of biosorbent was investigated to optimize the parameters for maximum sorption. The FT–IR spectroscopy and TGA were used to characterize the biosorbent. A significant increase in sorption was noted with rise in pH of metal ions solution and maximum sorption was observed at pH 6. The isothermal data was fitted to Langmuir, Dubinin–Radushkevich (D–R, Freundlich isotherms and equilibrium process was best fitted to Langmuir isotherm. The removal efficiency of chemically activated samples was found to be ~35 to 45% greater than raw sample. The results showed that peach nut shell was an effective biosorbent for the remediation of the contaminated water with lead (II, Nickle (II and Chromium (III ions. Being low cost material, PNS has a potential to be exploited in waste water treatment technologies. This study shows that activated PNS exhibited appreciable sorption for Pb, Cr and Ni metals ions (97%, 95% and 94% respectively from aqueous solution even at very low concentration of sorbent. The chemical and thermal activation of peach nut shells enhances the removal efficiency for all the metal ions and from the reported data; it was found that the adsorption ability of Pb ions was greater than nickel and chromium.

  18. State promotion and neutralization of ions near metal surface

    International Nuclear Information System (INIS)

    Zinoviev, A.N.

    2011-01-01

    Research highlights: → Multiply charged ion and the charge induced in the metal form a dipole. → Dipole states are promoted into continuum with decreasing ion-surface distance. → These states cross the states formed from metal atom. → Proposed model explains the dominant population of deep bound states. → Observed spectra of emitted Auger electrons prove this promotion model. -- Abstract: When a multiply charged ion with charge Z approaches the metal surface, a dipole is formed by the multiply charged ion and the charge induced in the metal. The states for such a dipole are promoted into continuum with decreasing ion-surface distance and cross the states formed from metal atom. The model proposed explains the dominant population of deep bound states in collisions considered.

  19. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris

    International Nuclear Information System (INIS)

    Taty-Costodes, V. Christian; Fauduet, Henri; Porte, Catherine; Delacroix, Alain

    2003-01-01

    Fixation of heavy metal ions (Cd(II) and Pb(II)) onto sawdust of Pinus sylvestris is presented in this paper. Batch experiments were conducted to study the main parameters such as adsorbent concentration, initial adsorbate concentration, contact time, kinetic, pH solution, and stirring velocity on the sorption of Cd(II) and Pb(II) by sawdust of P. sylvestris. Kinetic aspects are studied in order to develop a model which can describe the process of adsorption on sawdust. The equilibrium of a solution between liquid and solid phases is described by Langmuir model. Scanning electronic microscopy (SEM) coupled with energy dispersive X-ray analysis (EDAX) and X-ray photoelectron spectroscopy (XPS) shows that the process is controlled by a porous diffusion with ion-exchange. The capacity of the metal ions to bind onto the biomass was 96% for Cd(II), and 98% for Pb(II). The sorption followed a pseudo-second-order kinetics. The adsorption of these heavy metals ions increased with the pH and reached a maximum at a 5.5 value. From these results, it can be concluded that the sawdust of P. sylvestris could be a good adsorbent for the metal ions coming from aqueous solutions. Moreover, this material could also be used for purification of water before rejection into the natural environment

  20. Trace Cd(II, Pb(II and Ni(II ions extraction and preconcentration from different water samples by using Ghezeljeh montmorillonite nanoclay as a natural new adsorbent

    Directory of Open Access Journals (Sweden)

    Zahra hassanzadeh Siahpoosh

    2017-01-01

    Full Text Available This investigate presents the extraction-preconcentration of Lead, Cadmium, and Nickel ions from water samples using Ghezeljeh montmorillonite nanoclay or “Geleh-Sar-Shoor” (means head-washing clay as a natural and native new adsorbent in batch single element systems. The Ghezeljeh clay is categorized by using Fourier Transform Infrared Spectroscopy (FT-IR, Scanning Electron Microscopy-Energy Dispersive Spectrometer Operating (SEM-EDS, X-ray Diffractometry (XRD, X-ray Fluorescence (XRF, Cation Exchange Capacity (CEC measurements, Surface property valuation (SBET by the BET method from nitrogen adsorption isotherms and Zeta potential. According to BET theory, the specific surface area of Ghezeljeh nanoclay was computed as 19.8 m2 g-1 whereas the cation exchange capacity was determined as 150 meq (100 g-1. The results of XRD, FT-IR, XRF, zeta potential, BET surface area and CEC of the Ghezeljeh clay confirm that montmorillonite is the dominant mineral phase. Based on SEM images of clay, it can be seen that the distance between the plates is nm level. For all three ions, the limit of detection, the limit of quantification, dynamic linear range, preconcentration factor, and the adsorption capacity were obtained. The result of several interfering ions was considered. The Ghezeljeh nanoclay as a new adsorbent and experimental method were effectively used for the extraction of heavy metals (Lead, Cadmium, and Nickel in a variety of real water samples.

  1. Ion-exchange properties of microporous tungstates: novel adsorbents for nuclear waste management applications

    International Nuclear Information System (INIS)

    Griffith, C.S.; Luca, V.; Eddowes, R.C.; Keegan, E.A.; Scales, N.

    2003-01-01

    A hydrothermally prepared tungsten oxide-based phase, ATS-1 (ANSTO Tungstate Sorbent), of nominal composition, Na 0.3 Mo 0.1 W 0.9O3 .χH 2 O, has been shown to display promising selectivity for both Cs + and Sr 2+ cations from acidic simulant, indicative of the Intermediate Level Liquid Waste (ILLW) produced from 99 Mo radioisotope production at the ANSTO site. The development of an inorganic ion-exchanger that displays such selectivity for both Cs + and Sr 2+ in acidic solutions has previously eluded researchers in the field of inorganic ion-exchangers. The ATS-1 adsorbent also displays exquisite selectivity for lead (and polonium) in low to high acidity solutions, and as such is being further investigated as a method to reduce the radiological hazard from 210 Pb and 210 Po during the processing of uranium ore bodies. The adsorption of Cs + , Sr 2+ and Pb 2+ cations by ATS-1 has been extensively investigated with respect to the kinetics of adsorption, capacity and the effect of competing cations viz. Na + , K + . The ATS-1 adsorbent has also been successfully granulated with an inert, organic matrix, which has consequently allowed the study of cation adsorption using more application-based, column separations. The results of these investigations suggest that these materials have potential application in several nuclear waste management issues in Australia at the present

  2. A DFT based analysis of adsorption of Hg2+ ion on chitosan monomer and its citralidene and salicylidene derivatives: Prior to the removal of Hg toxicity.

    Science.gov (United States)

    Hassan, Basila; Rajan, Vijisha K; Mujeeb, V M Abdul; K, Muraleedharan

    2017-06-01

    A Density functional theory based study of adsorption of the toxic metal Hg (II) ion by chitosan monomer and two of its derivatives; citralidene and salicylidene chitosan, has been performed. The effect of structural features on the stability of studied complexes has been analyzed by using Gaussian03 software package. All the possible conformations of these adsorbents were studied using the global minimum geometries. All the adsorbing sites were studied by placing the metal ion on the centroid of the atoms and the stable conformer of the adsorbent-metal ion complex was identified. Interaction between Hg (II) and the adsorbents is found to be electrostatic. Metal ion binding with nitrogen atom is stronger than that with oxygen atoms in all the cases as the charge density of nitrogen is enhanced on Schiff base formation. The advantage of derivatives over chitosan monomer is their stability in acidic media. ΔE value of the complexes are in the order SC-Hg (II)>chitosan-Hg (II)>CC-Hg (II) which indicates that the stability of complexes increases with increase in energy gap. The study reveals that aromatic Schiff base derivatives of chitosan is better for Hg(II) intake than aliphatic derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials.

    Science.gov (United States)

    Repo, Eveliina; Warchoł, Jolanta K; Bhatnagar, Amit; Sillanpää, Mika

    2011-06-01

    Novel adsorbents were synthesized by functionalizing chitosan-silica hybrid materials with (ethylenediaminetetraacetic acid) EDTA ligands. The synthesized adsorbents were found to combine the advantages of both silica gel (high surface area, porosity, rigid structure) and chitosan (surface functionality). The Adsorption potential of hybrid materials was investigated using Co(II), Ni(II), Cd(II), and Pb(II) as target metals by varying experimental conditions such as pH, contact time, and initial metal concentration. The kinetic results revealed that the pore diffusion process played a key role in adsorption kinetics, which might be attributed to the porous structure of synthesized adsorbents. The obtained maximum adsorption capacities of the hybrid materials for the metal ions ranged from 0.25 to 0.63 mmol/g under the studied experimental conditions. The adsorbent with the highest chitosan content showed the best adsorption efficiency. Bi-Langmuir and Sips isotherm model fitting to experimental data suggested the surface heterogeneity of the prepared adsorbents. In multimetal solutions, the hybrid adsorbents showed the highest affinity toward Pb(II). Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Role of Defects and Adsorbed Water Film in Influencing the Electrical, Optical and Catalytic Properties of Transition Metal Oxides

    Science.gov (United States)

    Wang, Qi

    obtain a mechanistic understanding of the charge transfer process. We have developed a spectroscopic technique for studying vacancy defects in TMOs using near-infrared photoluminescence (NIR-PL) spectroscopy and showed that this technique is uniquely suited for studying defect-adsorbate interactions. In this work, a series of studies were carried out to elucidate the underlying structure-defect-property correlations of TMOs and their role in catalyzing electrical and electrochemical properties. In the first study, we report a new type of electrical phase transition in p-type, non-stoichiometric nickel oxide involving a semiconductor-to-insulator-to-metal transition along with the complete change of conductivity from p- to n-type at room temperature induced by electrochemical Li+ intercalation. Direct observation of vacancy-ion interactions using in-situ NIR-PL show that the transition is a result of passivation of native nickel (cationic) vacancy defects and subsequent formation of oxygen (anionic) vacancy defects driven by Li+ insertion into the lattice. X-ray photoemission spectroscopy studies performed to examine the changes in the oxidation states of nickel due to defect interactions support the above conclusions. In the second study, main effects of oxygen vacancy defects on the electronic and optical properties of V2O5 nanowires were studied using in-situ Raman, photoluminescence, absorption, and photoemission spectroscopy. We show that both thermal reduction and electrochemical reduction via Li+ insertion results in the creation of oxygen vacancy defects in the crystal that leads to band filling and an increase in the optical band gap of V2O5 from 1.95 eV to 2.45 eV, an effect known as the Burstein-Moss effect. In the third study, we report a new type of semiconductor-adsorbed water interaction in metal oxides known as "electrochemical surface transfer doping," a phenomenon that has been previously been observed on hydrogen-terminated diamond, carbon nanotube

  5. Effect of nitrogen doping on titanium carbonitride-derived adsorbents used for arsenic removal

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jisun [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Soonjae [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Keunsu [Computational Science Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Jinhong [Samsung Electronics Co.Ltd.,(Maetan dong) 129, Samsung-ro Yeongtong-gu, Suwonsi, Gyeonggi-do 443-742, Repubilc of Korea (Korea, Republic of); Ha, Daegwon [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Chang-Gu [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); An, Byungryul [Department of Civil Engineering, Sangmyung University, Cheonan, Chungnam 31066 (Korea, Republic of); Lee, Sang-Hyup [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Mizuseki, Hiroshi, E-mail: mizuseki@kist.re.kr [Computational Science Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Jae-Woo, E-mail: plead36@kist.re.kr [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kang, Shinhoo, E-mail: shinkang@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-01-25

    Highlights: • The N-doping can improve the As adsorption performance of carbon-based materials. • The material features high micro- and small meso-pores with exceptional surface area. • Pyrrolic N atoms distributed uniformly on the micropores act as adsorption sites. • The synthesis temperature affected pore properties and surface functional groups. - Abstract: Arsenic in water and wastewater is considered to be a critical contaminant as it poses harmful health risks. In this regard, to meet the stringent regulation of arsenic in aqueous solutions, nitrogen doped carbon-based materials (CN) were prepared as adsorbents and tested for the removal of arsenic ion from aqueous solutions. Nitrogen-doped carbon (CNs) synthesized by chlorination exhibited well-developed micro- and small meso-pores with uniform pore structures. The structure and characteristics of the adsorbents thus developed were confirmed by field-emission scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Among the CNs developed, CN700 exhibited high adsorption capacity for arsenic (31.08 mg/g). The adsorption efficiency for arsenic ion was confirmed to be affected by pyrrolic nitrogen and micro-pores. These results suggest that CNs are useful adsorbents for the treatment of arsenic, and in particular, CN700 demonstrates potential for application as an adsorbent for the removal of anionic heavy metals from wastewater and sewage.

  6. Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes for heavy metal removal

    International Nuclear Information System (INIS)

    Genc, Oe.; Soysal, L.; Bayramoglu, G.; Arica, M.Y.; Bektas, S.

    2003-01-01

    The effective removal of toxic heavy metals from environmental samples still remains a major topic of present research. Metal-chelating membranes are very promising materials as adsorbents when compared with conventional beads because they are not compressible, and they eliminate internal diffusion limitations. The purpose of this study was to evaluate the performance of a novel adsorbent, Procion Green H-4G immobilized poly(hydroxyethylmethacrylate (HEMA)/chitosan) composite membranes, for the removal of three toxic heavy metal ions, namely, Cd(II), Pb(II) and Hg(II) from aquatic systems. The Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes were characterized by elemental analysis, scanning electron microscopy and Fourier transform infrared (FTIR) spectroscopy. The immobilized amount of the Procion Green H-4G was calculated as 0.018±0.003 μmol/cm 2 from the nitrogen and sulphur stoichiometry. The adsorption capacity of Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes for selected heavy metal ions from aqueous media containing different amounts of these ions (30-400 mg/l) and at different pH values (2.0-6.0) was investigated. The amount of Cd(II), Pb(II) and Hg(II) adsorbed onto the membranes measured at equilibrium, increased with time during the first 45 min and then remained unchanged toward the equilibrium adsorption. The maximum amounts of heavy metal ions adsorbed were 43.60±1.74, 68.81±2.75 and 48.22±1.92 mg/g for Cd(II), Pb(II) and Hg(II), respectively. The heavy metal ion adsorption on the pHEMA/chitosan membranes (carrying no dye) were relatively low, 6.31±0.13 mg/g for Cd(II), 18.73±0.37 mg/g for Pb(II) and 18.82±0.38 mg/g for Hg(II). Competitive adsorption of the metal ions was also studied. When the metal ions competed with each other, the adsorbed amounts were 12.74±0.38 mg Cd(II)/g, 28.80±0.86 mg Pb(II)/g and 18.41±0.54 mg Hg(II)/g. Procion Green H-4G

  7. The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel

    Science.gov (United States)

    Mende, Mandy; Schwarz, Dana; Steinbach, Christine; Schwarz, Simona

    2018-01-01

    The biodegradable polysaccharide chitosan possesses protonated and natural amino groups at medium pH values and has therefore been used as an adsorbing material for nickel salts in water treatment. Nickel is a problematic heavy metal ion which can cause various diseases and disorders in living organisms. Here, we show the influence of oxyanions (e.g., nitrate and sulfate) to the adsorption of nickel ions. Hence, simultaneously we are addressing the increasing global problem of nitrate and sulfate ion pollution in groundwater and surface water. A series of adsorption experiments was carried out in order to determine (i) the adsorption equilibrium, (ii) the adsorption capacity in dependence on the initial nickel ion concentration, and (iii) the influence of the anion presented in solution for the adsorption capacity. Surface morphology of chitosan flakes before and after the adsorption process has been studied with SEM-EDX analysis. The chitosan flakes exhibited promising adsorption capacities of 81.9 mg·g−1 and 21.2 mg·g−1 for nickel (sulfate) and nickel (nitrate), respectively. The calculated values of Gibbs free energy change ΔG0 confirm the higher adsorption of nickel ions in presence of sulfate ions. Hence, higher anion valence leads to a higher adsorption capacity. PMID:29510485

  8. Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australis

    International Nuclear Information System (INIS)

    Wang He; Jia Yongfeng; Wang Shaofeng; Zhu Huijie; Wu Xing

    2009-01-01

    The bioavailability of heavy metals strongly depends on their speciation in the environment. The effect of different chemical speciations of cadmium ions (i.e. adsorbed on different oxide minerals) on its bioavailability to wetland plant Phragmites australis was studied. Goethite, magnetite, gibbsite, alumina, and manganese oxide were chosen as representatives of metal (hydr)oxides commonly present in sediment. The cultivar system with Hoagland solution as nutrition supply, and single metal oxide with adsorbed Cd as contaminant was applied to study Cd accumulation by P. australis. The bioaccumulation degree in root after the 45-day treatment followed the order: Al(OH) 3 > Al 2 O 3 > Fe 3 O 4 > MnO 2 > FeOOH. The concentration of Cd in stem and leaf followed a similar order although it was considerably lower than that in root. Low-molecular-weight organic acids (LMWOAs), acetic acid, malic acid and citric acid were used to evaluate the desorbability of Cd from different oxides, which can be indicative of Cd-oxide bonding strength and Cd bioavailability. Desorption of Cd by acetic acid and malic acid followed the order: Al(OH) 3 > Fe 3 O 4 > Al 2 O 3 > FeOOH > MnO 2 , while by citric acid: Al(OH) 3 ≥ Al 2 O 3 > Fe 3 O 4 > FeOOH > MnO 2 . This was consistent with the Cd accumulation degree in the plant. Cd adsorbed on Al(OH) 3 was the most easily desorbable species and most bioavailable to P. australis among the oxide minerals, whereas MnO 2 adsorbed Cd was least desorbable by LMWOAs hence constituted the least bioavailable Cd species adsorbed on the oxide minerals.

  9. Biosorption of heavy metals and uranium from dilute solutions

    International Nuclear Information System (INIS)

    Schneider, I.A.H.; Misra, M.; Smith, R.W.

    1995-01-01

    Eichhornia crassipes approaches being a scourge in many parts of the world, choking waterways and hindering transport upon them. At the same time it is known to readily abstract heavy metal ions from water and, thus, aids in the removal of heavy metals found in such waters. This paper considers the possibility of using specific parts of the plant as an inexpensive adsorbent for the removal of heavy metals from contaminated chemical and mining industry waste waters. In particular the root of the plant was found to be an excellent accumulator of heavy metal ions including uranium from solution. It is also suggested that dried roots of the plant might be placed in simple bags and used in a very low cost metal ion removal system

  10. Poly(acrylic acid) modifying bentonite with in-situ polymerization for removing lead ions.

    Science.gov (United States)

    He, Y F; Zhang, L; Yan, D Z; Liu, S L; Wang, H; Li, H R; Wang, R M

    2012-01-01

    In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5-60 min), initial concentration of metal ions (200-1,000 mg/L) and adsorbent dosage (0.04-0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).

  11. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    International Nuclear Information System (INIS)

    Resta, V.; Quarta, G.; Farella, I.; Maruccio, L.; Cola, A.; Calcagnile, L.

    2014-01-01

    The implantation of 1 MeV metal ( 63 Cu + , 107 Ag + , 197 Au + ) and non-metal ( 4 He + , 12 C + ) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 10 13 ions cm −2 , the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated C=C bonds. For fluences around 1 × 10 17 ions cm −2 , the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C 0x clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C 0x cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼10 7 Ω/sq has been measured for implantation with metals at doses higher than 5 × 10 16 ions cm −2 , being 10 17 Ω/sq the corresponding sheet resistance for pristine PC

  12. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Resta, V., E-mail: vincenzo.resta@le.infn.it [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Quarta, G. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Farella, I. [Institute for Microelectronics and Microsystems – Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Maruccio, L. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Cola, A. [Institute for Microelectronics and Microsystems – Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Calcagnile, L. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy)

    2014-07-15

    The implantation of 1 MeV metal ({sup 63}Cu{sup +}, {sup 107}Ag{sup +}, {sup 197}Au{sup +}) and non-metal ({sup 4}He{sup +}, {sup 12}C{sup +}) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 10{sup 13} ions cm{sup −2}, the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated C=C bonds. For fluences around 1 × 10{sup 17} ions cm{sup −2}, the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C{sub 0x} clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C{sub 0x} cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼10{sup 7} Ω/sq has been measured for implantation with metals at doses higher than 5 × 10{sup 16} ions cm{sup −2}, being 10{sup 17} Ω/sq the corresponding sheet resistance for pristine PC.

  13. Ion-beam crystallography of clean and adsorbate covered metal surfaces

    International Nuclear Information System (INIS)

    Veen, J.F. van der.

    1978-01-01

    This thesis deals with the precise determination of atomic positions in the very first layer of a single-crystal surface. The technique of medium energy ion scattering in conjunction with channeling and blocking is used. The principle of this method is based on simple shadowing and blocking effects and relies on geometrical considerations only. (Auth.)

  14. Adsorption of Cadmium Ions from Water on Double-walled Carbon Nanotubes/Iron Oxide Composite

    Directory of Open Access Journals (Sweden)

    Karima Seffah

    2017-12-01

    Full Text Available A new material (DWCNT/iron oxide for heavy metals removal was developed by combining the adsorption features of double-walled carbon nanotubes with the magnetic properties of iron oxides. Batch experiments were applied in order to evaluate adsorption capacity of the DWCNT/iron oxide composite for cadmium ions. The influence of operating parameters such as pH value, amount of adsorbent, initial adsorbate concentration and agitation speed was studied. The adsorption capacity of the DWCNT/iron oxide adsorbent for Cd2+ ions was 20.8 mg g-1, which is at the state of the art. The obtained results revealed that DWCNT/iron oxide composite is a very promising adsorbent for removal of Cd2+ ions from water under natural conditions. The advantage of the magnetic composite is that it can be used as adsorbent for contaminants in water and can be subsequently controlled and removed from the medium by a simple magnetic process.

  15. Effectiveness Study of Drinking Water Treatment Using Clays/Andisol Adsorbent in Lariat Heavy Metal Cadmium (Cd) and Bacterial Pathogens

    Science.gov (United States)

    Pranoto; Inayati; Firmansyah, Fathoni

    2018-04-01

    Water is a natural resource that is essential for all living creatures. In addition, water also caused of disease affecting humans. The existence of one of heavy metal pollutants cadmium (Cd) in the body of water is an environmental problem having a negative impact on the quality of water resources. Adsorption is one of the ways or methods that are often used for the treatment of wastewater. Clay and allophanic soil were used as Cd adsorbent by batch method. Ceramic filter was used to reduce Cd concentration in the ground water. This study aims to determine the effect of the composition of clay and Allophane, activation temperature and contact time on the adsorption capacity of Cd in the model solution. The optimum adsorption condition and the effectiveness of drinking water treatment in accordance with Regulation of the Minister of Health using clay/Andisol adsorbents in ensnare heavy metals Cd and bacterial pathogens. Identification and characterization of adsorbent is done by using NaF, Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), specific surface area and total acidity specific. The Cd metal concentrations were analysed by atomic absorption spectroscopy. Adsorption isotherms determined by Freundlich and Langmuir equations. Modified water purification technology using ceramic filters are made with a mixture of clay and Andisol composition. The results showed samples of clay and Andisol containing minerals. The optimum condition of adsorption was achieved at 200 °C of activation temperature, 60 minutes of contact time and the 60:40 of clay:Andisol adsorbent composition. Freundlich isotherm represented Cd adsorption on the clay/Andisol adsorbent with a coefficient of determination (R2=0.99) and constant (k=1.59), higher than Langmuir (R2=0.89). The measurement results show the water purification technology using ceramic filters effectively reduce E. coli bacterial and Cd content in the water.

  16. Cauliflower-like CuI nanostructures: Green synthesis and applications as catalyst and adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yi [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China); Gao Shuyan, E-mail: shuyangao@htu.cn [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China); Li Zhengdao; Jia Xiaoxia; Chen Yanli [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2011-08-15

    Highlights: > In this study we report a green, environment-friendly, efficient, and direct one-step process for the preparation of CuI cauliflower. > The as-formed CuI cauliflower shows excellent catalytic activity for coupling reaction between benzylamine and iodobenzene. > The cauliflower-like CuI nanostructures have been successfully demonstrated as adsorbent for Cd (II) with high removal capacity. > To the best of our knowledge, it is the first report that nanostructured CuI acts as catalyst for coupling reaction and adsorbent for heavy metal ion. > It is also a good example for the organic combination of green chemistry and functional materials. - Abstract: Cauliflower-like CuI nanostructures is realized by an ampicillin-assisted clean, nontoxic, environmentally friendly synthesis strategy at room temperature. The morphology, composition, and phase structure of as-prepared powders were characterized by field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results show that ampicillin plays dual roles, reducing and morphology-directing agents, in the formation of the products. A possible growth mechanism of the cauliflower-like CuI nanostructures is tentatively proposed. The preliminary investigations show that the cauliflower-like CuI structure not only exhibits high catalytic activity with respect to coupling reaction between benzylamine and iodobenzene but also possesses high removal capacity for Cd (II), which may be ascribed to the high specific surface area of the special configuration. To the best of our knowledge, it is the first report that cauliflower-like CuI nanoparticles act as catalyst for coupling reaction and adsorbent for heavy metal ion.

  17. Solution chemistry and separation of metal ions in leached solution

    International Nuclear Information System (INIS)

    Shibata, J.

    1991-01-01

    The method to presume a dissolved state of metal ions in an aqueous solution and the technology to separate and concentrate metal ions in a leached solution are described in this paper. It is very important for the separation of metal ions to know the dissolved state of metal ions. If we know the composition of an aqueous solution and the stability constants of metal-ligand complexes, we can calculate and estimate the concentration of each species in the solution. Then, we can decide the policy to separate and concentrate metal ions. There are several methods for separation and purification; hydroxide precipitation method, sulfide precipitation method, solvent extraction method and ion exchange resin method. Solvent extraction has been used in purification processes of copper refinery, uranium refinery, platinum metal refinery and rare earth metal refinery. Fundamental process of solvent extraction, a kind of commercial extractants, a way of determining a suitable extractant and an equipment are discussed. Finally, it will be emphasized how the separation of rare earths is improved in solvent extraction. (author) 21 figs., 8 tabs., 8 refs

  18. Ion bombardment and adsorption studies on ilmenite (FeTiO3) by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Schulze, P.D.

    1983-01-01

    The effects of 5 KeV argon and oxygen ion bombardment on FeTiO3 (ilmenite) at low temperatures have been studied using x-ray photoelectron spectroscopy (XPS). Also, using this same technique, the adsorption of O 2 , NO, N 2 O, and CO at 300 K and the adsorption of O 2 and D 2 O at 150K have been studied. Argon and oxygen ion bombardment of ilmenite have confirmed earlier studies on metal oxides that argon ions generally reduce the anion species while oxygen ions generally oxidize the anion species. The two iron states involved were Fe sup +2 and Fe sup O. The reduction of Ti sup +4 was not verified although a significant shift in the Ti(2p1,3) binding energies toward the metallic state was observed after oxygen ion bombardment at low temperatures. At temperatures above 150K, O 2 adsorbs dissociatively on ilmenite while D 2 O adsorbs molecularly below 170K. Above 300 K NO, N 2 O, and CO do not appear to adsorb dissociatively. Low temperature adsorption of D 2 O was found to be inhibited by predosing the ilmenite with O 2

  19. Ion bombardment and adsorption studies on ilmenite (FeTiO3) by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Schulze, P. D.

    1983-01-01

    The effects of 5 KeV argon and oxygen ion bombardment on FeTiO3 (ilmenite) at low temperatures have been studied using X-ray photoelectron spectroscopy (XPS). Also, using this same technique, the adsorption of O2, NO, N2O, and CO at 300 K and the adsorption of O2 and D2O at 150K have been studied. Argon and oxygen ion bombardment of ilmenite have confirmed earlier studies on metal oxides that argon ions generally reduce the anion species while oxygen ions generally oxidize the anion species. The two iron states involved were Fe sup +2 and Fe sup O. The reduction of Ti sup +4 was not verified although a significant shift in the Ti(2p1,3) binding energies toward the metallic state was observed after oxygen ion bombardment at low temperatures. At temperatures above 150K, O2 adsorbs dissociatively on ilmenite while D2O adsorbs molecularly below 170K. Above 300 K No, N2O, and CO do not appear to adsorb dissociatively. Low temperature adsorption of D2O was found to be inhibited by predosing the ilmenite with O2.

  20. Enhanced Adsorption and Recovery of Uranyl Ions by NikR Mutant-Displaying Yeast

    Directory of Open Access Journals (Sweden)

    Kouichi Kuroda

    2014-04-01

    Full Text Available Uranium is one of the most important metal resources, and the technology for the recovery of uranyl ions (UO22+ from aqueous solutions is required to ensure a semi-permanent supply of uranium. The NikR protein is a Ni2+-dependent transcriptional repressor of the nickel-ion uptake system in Escherichia coli, but its mutant protein (NikRm is able to selectively bind uranyl ions in the interface of the two monomers. In this study, NikRm protein with ability to adsorb uranyl ions was displayed on the cell surface of Saccharomyces cerevisiae. To perform the binding of metal ions in the interface of the two monomers, two metal-binding domains (MBDs of NikRm were tandemly fused via linker peptides and displayed on the yeast cell surface by fusion with the cell wall-anchoring domain of yeast α-agglutinin. The NikRm-MBD-displaying yeast cells with particular linker lengths showed the enhanced adsorption of uranyl ions in comparison to the control strain. By treating cells with citrate buffer (pH 4.3, the uranyl ions adsorbed on the cell surface were recovered. Our results indicate that the adsorption system by yeast cells displaying tandemly fused MBDs of NikRm is effective for simple and concentrated recovery of uranyl ions, as well as adsorption of uranyl ions.

  1. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  2. Breast milk metal ion levels in a young and active patient with a metal-on-metal hip prosthesis.

    Science.gov (United States)

    Nelis, Raymond; de Waal Malefijt, Jan; Gosens, Taco

    2013-01-01

    Metal-on-metal resurfacing arthroplasty of the hip has been used increasingly over the last 10 years in younger active patients. The dissolution of the metal wear particles results in measurable increases in cobalt and chromium ions in the serum and urine of patients with a metal-on-metal bearing. We measured the cobalt, chromium, and molybdenum ion levels in urine; serum; and breast milk in a young and active patient with a metal-on-metal hip prosthesis after a pathologic fracture of the femoral neck. Metal-on-metal hip prosthesis leads to increasing levels of molybdenum in breast milk in the short-term follow-up. There are no increasing levels of chromium and cobalt ions in breast milk. Besides the already known elevated concentrations in serum of chromium and cobalt after implantation of a metal-on-metal hip prosthesis, we found no increasing levels of chromium and cobalt in urine. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Efficient removal of dyes by a novel magnetic Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dan; Li, Yang; Zhang, Jia [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China); Li, Wenhui [Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Zhou, Jizhi; Shao, Li [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China); Qian, Guangren, E-mail: grqian@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China)

    2012-12-15

    Graphical abstract: To purify heavy metal wastewater (pickling waste liquor (PWL{sub A} and PWL{sub B}) and electroplating wastewater (EPW{sub C} and EPW{sub D})), a novel magnetic Fe{sub 3}O{sub 4}/ZnCr-LDH material was formed via two-step microwave hydrothermal method (Step 1 and Step 2) and applicable for organic dyes wastewater treatment. Highlights: Black-Right-Pointing-Pointer Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent was produced from wastewater. Black-Right-Pointing-Pointer RSM was successfully applied to the optimization of the preparation conditions. Black-Right-Pointing-Pointer The maximum adsorption capacity of MO was found to be 240.16 mg/g. Black-Right-Pointing-Pointer The MO adsorption mechanism on MFLA was certified. Black-Right-Pointing-Pointer MFLA could be recycled after catalytic regeneration by the oxidation technology. - Abstract: A novel magnetic Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent was produced from electroplating wastewater and pickling waste liquor via a two-step microwave hydrothermal method. Adsorption of methyl orange (MO) from water was studied using this material. The effects of three variables have been investigated by a single-factor method. The response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the preparation conditions. The maximum adsorption capacity of MO was found to be 240.16 mg/g, indicating that this material may be an effective adsorbent. It was shown that 99% of heavy metal ions (Fe{sup 2+}, Fe{sup 3+}, Cr{sup 3+}, and Zn{sup 2+}) can be effectively removed into precipitates and released far less in the adsorption process. In addition, this material with adsorbed dye can be easily separated by a magnetic field and recycled after catalytic regeneration with advanced oxidation technology. Meanwhile, kinetic models, FTIR spectra and X-ray diffraction pattern were applied to the experimental data to examine uptake mechanism. The

  4. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  5. Equilibrium Sorption Studies of Hg (II) Ions from Aqueous Solution ...

    African Journals Online (AJOL)

    The potential of swamp arum (Lasimorpha senegalensis) seeds as a low-cost adsorbent for the removal of Hg (II) ions from aqueous solution was investigated in this study. The influence of initial metal concentration on the percent adsorption of Hg (II) ions onto powdered swamp arum seeds was studied in a batch system ...

  6. The role of pH in heavy metal detoxification by bio- sorption from ...

    African Journals Online (AJOL)

    Owner

    Environmental pollution problems caused by heavy metals cannot be ... (II) arsenic (V) and lead (II) metal ions adsorption from aqueous .... Health. A28: 173 – 185. Gang S, Weixing S (1998). Sunflower stalk as adsorbents for the removal of ...

  7. Electrical properties of polymer modified by metal ion implantation

    International Nuclear Information System (INIS)

    Wu Yuguang; Zhang Tonghe; Zhang Huixing; Zhang Xiaoji; Deng Zhiwei; Zhou Gu

    2000-01-01

    Polyethylene terephthalate (PET) has been modified by Ag, Cr, Cu and Si ion implantation with a dose range from 1x10 16 to 2x10 17 ions cm -2 using a metal vapor vacuum arc (MEVVA) source. The electrical properties of PET have been changed after metal ion implantation. The resistivity of implanted PET decreased obviously with an increase of ion dose. When metal ion dose of 2x10 17 cm -2 was selected, the resistivity of PET could be less than 10 Ω cm, but when Si ions are implanted, the resistivity of PET would be up to several hundred Ω cm. The results show that the conductive behavior of a metal ion implanted sample is obviously different from Si implantation one. The changes of the structure and composition have been observed with transmission electron microscope (TEM) and X-ray diffraction (XRD). The surface structure is varying after ion implantation and it is believed that the change would cause the improvement of the conductive properties. The mechanism of electrical conduction will be discussed

  8. Preparation of porous adsorbers and supports most favorable for separation by using radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Saito, Kyoichi

    2014-01-01

    Various functional groups such as chelate-forming and ion-exchange groups were introduced into the poly-glycidyl methacrylate chain grafted onto a commercially available porous hollow-fiber membrane with a thickness of approximately 1 mm, an average pore size of 0.4 µm, and a porosity of 70%. Permeation of a target metal-ion or protein solution driven by a transmembrane pressure enables us to minimize the diffusional mass-transfer resistance of metal ions or proteins to the functional groups. Considerable degree of GMA grafting and molar conversion of the epoxy group into the functional group provide a higher functional group density of the porous hollow-fiber membrane than for conventional adsorbents. First, metal ions and proteins were transported to the chelating and ion-exchange groups, respectively, of the graft chain. The higher the permeation rate of the target solution is, the higher the overall adsorption rate of the target ions or proteins onto the modified porous hollow-fiber membrane becomes. In addition, proteins were bound to the ion-exchange polymer brush in multilayers because the polymer brush extends from the pore surface towards the pore interior due to its mutual electrostatic repulsion. Second, replacement adsorption was observed in a binary system of metal ions or proteins during the permeation of the solution through the membrane with a membrane thickness of approximately 1 mm. Third, chiral resolution of DL-tryptophan was demonstrated using albumin-multilayered porous hollow-fiber membranes. (author)

  9. Role of Bioadsorbents in Reducing Toxic Metals

    Directory of Open Access Journals (Sweden)

    Blessy Baby Mathew

    2016-01-01

    Full Text Available Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to study and explore all possible sources of agrobased inexpensive adsorbents for their feasibility in the removal of heavy metals. The objective was to study inexpensive adsorbents like various agricultural wastes such as sugarcane bagasse, rice husk, oil palm shell, coconut shell, and coconut husk in eliminating heavy metals from waste water and their utilization possibilities based on our research and literature survey. It also shows the significance of developing and evaluating new potential biosorbents in the near future with higher adsorption capacity and greater reusable options.

  10. Role of Bioadsorbents in Reducing Toxic Metals.

    Science.gov (United States)

    Mathew, Blessy Baby; Jaishankar, Monisha; Biju, Vinai George; Krishnamurthy Nideghatta Beeregowda

    2016-01-01

    Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to study and explore all possible sources of agrobased inexpensive adsorbents for their feasibility in the removal of heavy metals. The objective was to study inexpensive adsorbents like various agricultural wastes such as sugarcane bagasse, rice husk, oil palm shell, coconut shell, and coconut husk in eliminating heavy metals from waste water and their utilization possibilities based on our research and literature survey. It also shows the significance of developing and evaluating new potential biosorbents in the near future with higher adsorption capacity and greater reusable options.

  11. Role of Bioadsorbents in Reducing Toxic Metals

    Science.gov (United States)

    Jaishankar, Monisha; Biju, Vinai George; Krishnamurthy Nideghatta Beeregowda

    2016-01-01

    Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to study and explore all possible sources of agrobased inexpensive adsorbents for their feasibility in the removal of heavy metals. The objective was to study inexpensive adsorbents like various agricultural wastes such as sugarcane bagasse, rice husk, oil palm shell, coconut shell, and coconut husk in eliminating heavy metals from waste water and their utilization possibilities based on our research and literature survey. It also shows the significance of developing and evaluating new potential biosorbents in the near future with higher adsorption capacity and greater reusable options. PMID:28090207

  12. Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater

    Science.gov (United States)

    Hussain, Athar; Maitra, Jaya; Khan, Kashif Ali

    2017-12-01

    Heavy metals are usually released into water bodies from industrial/domestic effluents such as metal plating industries, mining and tanneries. Adsorption is a fundamental process in the physiochemical treatment of wastewaters because of its low cost. Great efforts have been made to use the economically efficient and unconventional adsorbents to adsorb heavy metals from aqueous solutions, such as plant wastes and agricultural waste. Biochar mixed with chitosan after crosslinking can be casted into membranes, beads and solutions which can be effectively utilized as an adsorbent for metal ion uptake. Keeping these facts into consideration, the present study was undertaken with the objective to determine the effect of various proportions of biochar-modified chitosan membranes on the sorption characteristics of different heavy metals like Cu, Pb, As and Cd along with comparison of sorption characteristics between industrial waste water samples containing multi-metals and standard synthetic stock solution containing a particular metal. It is apparent from the results that the bioadsorbent prepared from biochar and chitosan are low-cost efficacious resource due to its easy availability. It is also eco-friendly material for making adsorbent for abstraction of heavy metals from aqueous solution. This adsorbent can be best utilized for adsorption of heavy metals.

  13. Graphene-like monolayer InSe–X: several promising half-metallic nanosheets in spintronics

    Science.gov (United States)

    Liu, Jun; Kang, Wei; Zhou, Ting-Yan; Ma, Chong-Geng

    2018-04-01

    Several half-metallic graphene-like nanosheets, namely halogen atom adsorbed InSe–X (X  =  F, Cl, Br and I) nanosheets, are predicted by first-principles calculations. Then, their structural, electric and magnetic properties are studied in detail. The calculated negative adsorption energies of these InSe–X nanosheets ensure that they attain stable adsorption structures, which suggests that they may be prepared experimentally. The pristine InSe monolayer is a typical semi-conductor, whereas it is interesting that the X ion (X  =  F, Cl, Br and I) adsorbed InSe–X nanosheets are electronically conductive. They can be promising and good candidates for applications of half-metallic 2D materials. The calculated magnetic moments of these nanosheets are close to 1.0 µ B. In the InSe–F nanosheet, there are sp2 hybridized orbitals due to the crystal field effect, and its electroconductibility, half-metallicity and magnetic moments originate from the In and Se ions, not the F ion. However, in InSe–X (X  =  Cl, Br and I) nanosheets, there are sp3 hybridized orbitals, and their electroconductibility, half-metallicity and magnetic moments originate mainly from X ions, together partially with the In and Se ions.

  14. Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer

    Science.gov (United States)

    Adzic, Radoslav; Harris, Alexander

    2014-04-15

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  15. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  16. Fe3O4/Reduced Graphene Oxide Nanocomposite: Synthesis and Its Application for Toxic Metal Ion Removal

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Vuong Hoan

    2016-01-01

    Full Text Available The synthesis of reduced graphene oxide modified by magnetic iron oxide (Fe3O4/rGO and its application for heavy metals removal were demonstrated. The obtained samples were characterized by X-ray diffraction (XRD, nitrogen adsorption/desorption isotherms, X-ray photoelectron spectroscopy (XPS, Fourier transform infrared spectroscopy (FT-IR, and magnetic measurement. The results showed that the obtained graphene oxide (GO contains a small part of initial graphite as well as reduced oxide graphene. GO exhibits very high surface area in comparison with initial graphite. The morphology of Fe3O4/rGO consists of very fine spherical iron nanooxide particles in nanoscale. The formal kinetics and adsorption isotherms of As(V, Ni(II, and Pb(II over obtained Fe3O4/rGO have been investigated. Fe3O4/rGO exhibits excellent heavy metal ions adsorption indicating that it is a potential adsorbent for water sources contaminated by heavy metals.

  17. Effective charge of energetic ions in metals

    International Nuclear Information System (INIS)

    Kitagawa, M.; Brandt, W.

    1983-01-01

    The effective charge of energetic ion, as derived from stopping power of metals, is calculated by use of a dielectronic-response function method. The electronic distribution in the ion is described through the variational principle in a statistical approximation. The dependences of effective charge on the ion velocity, atomic number and r/sub s/-value of metal are derived at the low-velocity region. The effective charge becomes larger than the real charge of ion due to the close collisions. We obtain the quasi-universal equation of the fractional effective electron number of ion as a function of the ratio between the ionic size and the minimum distance approach. The comparsion between theoretical and experimental results of the effective charge is performed for the cases of N ion into Au, C and Al. We also discuss the equipartition rule of partially ionized ion at the high-velocity region

  18. Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australis

    Energy Technology Data Exchange (ETDEWEB)

    Wang He, E-mail: he.wangworld@yahoo.com.cn [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Jia Yongfeng, E-mail: yongfeng.jia@iae.ac.cn [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Wang Shaofeng [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Zhu Huijie; Wu Xing [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China)

    2009-08-15

    The bioavailability of heavy metals strongly depends on their speciation in the environment. The effect of different chemical speciations of cadmium ions (i.e. adsorbed on different oxide minerals) on its bioavailability to wetland plant Phragmites australis was studied. Goethite, magnetite, gibbsite, alumina, and manganese oxide were chosen as representatives of metal (hydr)oxides commonly present in sediment. The cultivar system with Hoagland solution as nutrition supply, and single metal oxide with adsorbed Cd as contaminant was applied to study Cd accumulation by P. australis. The bioaccumulation degree in root after the 45-day treatment followed the order: Al(OH){sub 3} > Al{sub 2}O{sub 3} > Fe{sub 3}O{sub 4} > MnO{sub 2} > FeOOH. The concentration of Cd in stem and leaf followed a similar order although it was considerably lower than that in root. Low-molecular-weight organic acids (LMWOAs), acetic acid, malic acid and citric acid were used to evaluate the desorbability of Cd from different oxides, which can be indicative of Cd-oxide bonding strength and Cd bioavailability. Desorption of Cd by acetic acid and malic acid followed the order: Al(OH){sub 3} > Fe{sub 3}O{sub 4} > Al{sub 2}O{sub 3} > FeOOH > MnO{sub 2}, while by citric acid: Al(OH){sub 3} {>=} Al{sub 2}O{sub 3} > Fe{sub 3}O{sub 4} > FeOOH > MnO{sub 2}. This was consistent with the Cd accumulation degree in the plant. Cd adsorbed on Al(OH){sub 3} was the most easily desorbable species and most bioavailable to P. australis among the oxide minerals, whereas MnO{sub 2} adsorbed Cd was least desorbable by LMWOAs hence constituted the least bioavailable Cd species adsorbed on the oxide minerals.

  19. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Tu Zhifeng; He Qun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chang, Xijun, E-mail: tuzhf07@lzu.cn [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Hu Zheng; Gao Ru; Zhang Lina; Li Zhenhua [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2009-09-07

    A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L{sup -1} HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g{sup -1} for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL{sup -1} for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n = 8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.

  20. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions.

    Science.gov (United States)

    Tu, Zhifeng; He, Qun; Chang, Xijun; Hu, Zheng; Gao, Ru; Zhang, Lina; Li, Zhenhua

    2009-09-07

    A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n=8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.

  1. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions

    International Nuclear Information System (INIS)

    Tu Zhifeng; He Qun; Chang, Xijun; Hu Zheng; Gao Ru; Zhang Lina; Li Zhenhua

    2009-01-01

    A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L -1 HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g -1 for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL -1 for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n = 8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.

  2. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  3. Designer ligands: The search for metal ion selectivity

    Directory of Open Access Journals (Sweden)

    Perry T. Kaye

    2011-03-01

    Full Text Available The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-selective molecular imprinted polymers.

  4. Sorption of U(VI) on natural sepiolite and sepiolite-agar agar composite adsorbent

    International Nuclear Information System (INIS)

    Esen, K.; Donat, R.; Cetisli, H.; Aytas, S.

    2006-01-01

    Adsorption of uranium (VI) ions onto clay minerals is one of the significant reactions affecting the transport of uranium in the environment. The use of composite adsorbents for the removal of metal ions and radionuclide from industrial wastes has attracted great interest to researchers in recent years[1]. In this study, natural sepiolite type clay and an organic compound, agar agar, were chosen as the adsorbent material. Composite adsorbent was prepared from sepiolite and agar agar. Adsorption of uranium (VI) on this composite and on natural sepiolite adsorbent was investigated. Thermodynamic investigations were carried out to get more information about the adsorption of uranium. Adsorption of U (VI) has been studied as a function of solution pH, time, temperature and initial concentration of uranium on natural sepiolite and agar agar composite. The maximum sorption yield of U (VI) on composite and on sepiolite from batch experiments is calculated approximately 89% and 76% respectively in the optimum experimental adsorption condition. The adsorption data were fitted to Freundlich and Dubinin-Radushkevich (D-R) adsorption isotherms. Using the experimental data obtained different temperatures, thermodynamic constants ΔH d egree, ΔS d egree and ΔG d egree were calculated. The results show that the adsorption process on natural sepiolite and sepiolite-agar agar composite are both egzothermic natures. [1] S. M. Hasany, M. M. Saeed, M. Ahmed, J. Radioanal. Nucl. Chem. Vol. 252 (3), 477-484 (2002)

  5. Ion microprobe analysis of metallic pigments

    International Nuclear Information System (INIS)

    Pelicon, P.; Simcic, J.; Budnar, M.; Klanjsek-Gunde, M.; Kunavaer, M.

    2001-01-01

    Full text: Metallic paints consist of metallic flakes dispersed m a resinous binder, i.e. a light-element polymer matrix. The spatial distribution and orientation of metallic flakes inside the matrix determines the covering efficiency of the paint, glossiness, and its angular-dependent properties such as lightness flop or color flop (two-tone). Such coatings are extensively used for a functional (i.e. security) as well as decorative purpose. The ion microbeam analysis of two types of silver paint with imbedded metallic flake has been performed to test the ability of the ion microbeam spectroscopic methods on this type of samples. The average sizes of the aluminium flakes were 23 (size distribution 10-37) and 49 (size distribution 34-75) micrometers, respectively. The proton beam with the size of 2x2 micrometers at Ljubljana ion microprobe has been used to scan the surface of the pigments. PIXE mapping of Al Kα map shows lateral distribution of the aluminum flakes, whereas the RBS slicing method reveals tomographic image of the flakes in uppermost 5 micrometers of the pigment layer. The flake distribution in the larger layer depths has been accessed by RBS analysis in a point mode. (author)

  6. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties

    DEFF Research Database (Denmark)

    Jantzen, Christopher; Jørgensen, Henrik L; Duus, Benn R

    2013-01-01

    Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties.......Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties....

  7. Validation of ion chromatography for the determination of transition metal ions along with alkali, alkaline earth metal elements for uranium oxide fuel

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Prakash, Amrit; Afzal, Mohd.; Panakkal, J.P.

    2009-02-01

    The present report describes the use of Ion chromatography (IC) methods with spectrophotometric and direct conductivity detection for the determination of transition metal elements and alkali alkaline earth metal ions in UO 2 pellets. Transmet analytical column and Metrosep- cation 1-2 column were used for the separation of transition metal elements and alkali and alkaline earth metal elements respectively. Oxalic acid and mixture of pyridine 2,6-dicarboxylic acid (PDCA), Na 2 SO 4 and NaCl were used as mobile phase for the separation of transition metal ions and monitored after post - column reaction with 4,2-pyridylazo resorcinol (PAR) at 520nm spectrophotometrically. In the determination of alkali and alkaline earth metal ions the interference of transition metals are removed by complexing them with PDCA. Mixture of tartaric acid and PDCA employed in the separation of alkali and alkaline earth metal ions and monitored on direct conductivity detector. Mobile phase composition was optimised for the base line separation. Calibration plots of Fe 3+ , Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Mn 2+ , Li + , Na + , K + , Mg 2+ , Ca 2+ and Sr 2+ were linear over a wide dynamic range with regression coefficient better than 0.999. Detection limit of above ions were between 5-30ppb. To prevent the overloading of the cation exchange column, uranium matrix was removed from UO 2 sample by solvent extraction with 30% TBP - TOPO/CCl 4 . Ten sintered UO2 pellets of same lot were analysed and R.S.D. ±10% was obtained. These methods were validated by analysis of ILCE standards of UO 2 . (author)

  8. The development of bio-carbon adsorbents from Lodgepole Pine to remediate acid mine drainage in the Rocky Mountains

    International Nuclear Information System (INIS)

    Shin, Eun-Jae; Lauve, Alexander; Carey, Maxwell; Bukovsky, Eric; Ranville, James F.; Evans, Robert J.; Herring, Andrew M.

    2008-01-01

    Activated carbon adsorbents were produced from biomass locally available in the Rocky Mountain West, e.g. Lodgepole Pine (Pinus contorta), by vacuum pyrolysis at moderate temperatures followed by steam activation, for use as metal adsorbents for acid mine drainage (AMD). Wood cubes from fresh cut Lodgepole Pine (P. contorta) with different sizes, 3 and 12 mm, were made. Sawdust was also used to study the effect of sample size as well as sample material. We applied chemical pretreatment with potassium hydroxide before charring to improve the quality of the activated carbons. We compared the characteristics of the activated carbons, which were chemically pretreated, before and after washing with water. After washing, the BET surface area was found to increase and diffuse reflectance infrared spectroscopy showed changes in the carbon matrix. We then tested the samples for metal adsorption from AMD sampled from AMD sites in Colorado, Clear Creek County and the Leadville mine drainage tunnel, along with a commercial activated carbon for comparison. We used a batch method to measure maximum metal adsorption of the activated carbons. The metals chosen to be monitored were copper, cadmium, manganese, nickel, lead, and zinc, because they are the principal metals of interest for the test areas, and metal concentrations were determined by ion coupled plasma-atomic emission spectroscopy. The samples produced in this work outperformed the commercial activated carbon in two AMD water treatment tests and for the six metals monitored. This metal adsorption data indicate that locally produced inexpensive activated carbons can be used as adsorbents for AMD successfully

  9. The development of bio-carbon adsorbents from Lodgepole Pine to remediate acid mine drainage in the Rocky Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eun-Jae [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)], E-mail: eshin@mines.edu; Lauve, Alexander; Carey, Maxwell [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Bukovsky, Eric; Ranville, James F. [Department of Chemistry and Geochemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Evans, Robert J.; Herring, Andrew M. [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2008-03-15

    Activated carbon adsorbents were produced from biomass locally available in the Rocky Mountain West, e.g. Lodgepole Pine (Pinus contorta), by vacuum pyrolysis at moderate temperatures followed by steam activation, for use as metal adsorbents for acid mine drainage (AMD). Wood cubes from fresh cut Lodgepole Pine (P. contorta) with different sizes, 3 and 12 mm, were made. Sawdust was also used to study the effect of sample size as well as sample material. We applied chemical pretreatment with potassium hydroxide before charring to improve the quality of the activated carbons. We compared the characteristics of the activated carbons, which were chemically pretreated, before and after washing with water. After washing, the BET surface area was found to increase and diffuse reflectance infrared spectroscopy showed changes in the carbon matrix. We then tested the samples for metal adsorption from AMD sampled from AMD sites in Colorado, Clear Creek County and the Leadville mine drainage tunnel, along with a commercial activated carbon for comparison. We used a batch method to measure maximum metal adsorption of the activated carbons. The metals chosen to be monitored were copper, cadmium, manganese, nickel, lead, and zinc, because they are the principal metals of interest for the test areas, and metal concentrations were determined by ion coupled plasma-atomic emission spectroscopy. The samples produced in this work outperformed the commercial activated carbon in two AMD water treatment tests and for the six metals monitored. This metal adsorption data indicate that locally produced inexpensive activated carbons can be used as adsorbents for AMD successfully.

  10. Metal ion separations with proton-ionizable Lariat Ethers and their polymers

    International Nuclear Information System (INIS)

    Bartsch, R.A.

    1993-01-01

    The preparation of novel and specific organic complexing agents may lead to the development of new separation systems for aqueous metal ions. Thus the introduction of highly lipophilic oximes led to the current utilization of these compounds as commercial extractants for the hydrometallurgy of nonferrous metals. Crown ethers (macrocyclic polyethers) have been employed in the laboratory-scale solvent extraction of alkali-metal, alkaline-earth, and other metal cations into organic phases. Attachment of side arms to crown ethers gives lariat ethers. The presence of one or more potential coordination sites in the side arm of the lariat ether may produce substantial changes in the selectivity and efficiency of metal ion complexation. It has been demonstrated that concomitant transfer of an aqueous phase anion into the organic medium is not required for metal ion extraction. This factor is of immense importance to potential practical applications of these proton-ionizable crown ethers in which the common, hard, aqueous phase anions would be involved. Another advantage of proton-ionizable lariat ethers is the ease with which extracted metal ions may be stripped from the organic phase by shaking with aqueous mineral acid. Thus both metal ion extraction and stripping are facilitated by pendent proton-ionizable groups. Most of the hazardous metal ion species in the Hanford Site tank wastes are members of the alkali-metal, alkaline-earth, lanthanide, and actinide families. These hard metal ion species prefer association with hard donor atoms, such as oxygens. Therefore, crown and lariat ethers are well-suited for complexation with such metal ion species

  11. Adsorption performances and mechanisms of the newly synthesized N,N'-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media

    International Nuclear Information System (INIS)

    Jing Xiaosheng; Liu Fuqiang; Yang Xin; Ling Panpan; Li Lanjuan; Long Chao; Li Aimin

    2009-01-01

    N,N'-di (carboxymethyl) dithiocarbamate chelating resin (PSDC) was synthesized by anchoring the chelating agent of N,N'-di (carboxymethyl) dithiocarbamate to the chloromethylated PS-DVB (Cl-PS-DVB) matrix, as a new adsorbent for removing divalent heavy metal ions from waste-stream. The physicochemical structures of Cl-PS-DVB and PSDC were elaborately characterized using Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), and were further morphologically characterized using BET and BJH methods. The adsorption performances of PSDC towards heavy metals such as Cu(II), Pb(II) and Ni(II) were systematically investigated, based upon which the adsorption mechanisms were deeply exploited. For the above target, the classic batch adsorption experiments were conducted to explore the kinetics and isotherms of the removal processes with pH-value, initial concentration, temperature, and contact time as the controlling parameters. The kinetic and isotherm data could be well elucidated with Lagergren-second-order equation and Langmuir model respectively. The strong affinity of PSDC toward these target soft acids could be well demonstrated with the electrostatic attraction and chelating interaction caused by IDA moiety and sulphur which were namely soft bases on the concept of hard and soft acids and bases (HASB). Thermodynamic parameters, involving ΔH o , ΔS o and ΔG o were also calculated from graphical interpretation of the experimental data. The standard heats of adsorption (ΔH o ) were found to be endothermic and the entropy change values (ΔS o ) were calculated to be positive for the adsorption of Cu(II), Pb(II) and Ni(II) ions onto the tested adsorbents. Negative values of ΔG o indicated that adsorption processes for all tested metal ions onto PSDC were spontaneous.

  12. A new biotechnology for recovering heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Darnall, D.W.; Gabel, A.

    1989-01-01

    This paper reports that bio-recovery systems has developed a new sorption process for removing toxic metal ions from water. This process is based upon the natural, very strong affinity for biological materials, such as the cell walls of plants and microorganisms, for heavy metal ions such as uranium, cadmium, cobalt, nickel, etc.. Biological materials, primarily algae, have been immobilized in a polymer to produce a biological ion exchange resin, AlgaSORB. The material has a remarkable affinity for heavy metal ions and is capable of concentrating these ions by a factor of may thousand-fold. Additionally, the bound metals can be stripped and recovered from the algal material in a manner similar to conventional resins

  13. Ion-ion correlations across and between electrified graphene layers

    Science.gov (United States)

    Mendez-Morales, Trinidad; Burbano, Mario; Haefele, Matthieu; Rotenberg, Benjamin; Salanne, Mathieu

    2018-05-01

    When an ionic liquid adsorbs onto a porous electrode, its ionic arrangement is deeply modified due to a screening of the Coulombic interactions by the metallic surface and by the confinement imposed upon it by the electrode's morphology. In particular, ions of the same charge can approach at close contact, leading to the formation of a superionic state. The impact of an electrified surface placed between two liquid phases is much less understood. Here we simulate a full supercapacitor made of the 1-butyl-3-methylimidazolium hexafluorophosphate and nanoporous graphene electrodes, with varying distances between the graphene sheets. The electrodes are held at constant potential by allowing the carbon charges to fluctuate. Under strong confinement conditions, we show that ions of the same charge tend to adsorb in front of each other across the graphene plane. These correlations are allowed by the formation of a highly localized image charge on the carbon atoms between the ions. They are suppressed in larger pores, when the liquid adopts a bilayer structure between the graphene sheets. These effects are qualitatively similar to the recent templating effects which have been reported during the growth of nanocrystals on a graphene substrate.

  14. Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water

    International Nuclear Information System (INIS)

    Ahmed, M.A.; Ali, S.M.; El-Dek, S.I.; Galal, A.

    2013-01-01

    Graphical abstract: The negatively charged cubic magnetite nanoparticles, prepared by the coprecipitation method in N 2 atmosphere, can adsorb up to 99% of the positively charged toxic heavy metal ions at a proper pH value. -- Highlights: • Mixed magnetite–hematite nanoparticles were synthesized via different routes. • Prepared samples were characterized by XRD, HRTEM, BET and magnetic hysteresis. • The material was employed as a sorbent for removal of some heavy metal ions from water. • The effects of pH and the contact time on the adsorption process were studied and optimized. -- Abstract: Mixed magnetite–hematite nanoparticles were synthesized via different routes such as, coprecipitation in air and N 2 atmosphere, citrate–nitrate, glycine–nitrate and microwave-assisted citrate methods. The prepared samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), BET measurements and magnetic hysteresis. XRD data showed the formation of magnetite–hematite mixture with different compositions according to the synthesis method. The particle size was in the range of 4–52 nm for all the prepared samples. From HRTEM micrographs, it was found that, the synthesis method affects the moropholgy of the prepared samples in terms of crystallinity and porosity. The magnetite–hematite mixture was employed as a sorbent material for removal of some heavy metal ions from water such as lead(II), cadmium(II) and chromium(III). The effects of pH value and the contact time on the adsorption process were studied and optimized in order to obtain the highest possible adsorption efficiency of the magnetite–hematite mixture. The effect of the synthesis method of the magnetite–hematite mixture on the adsorption process was also investigated. It was found that samples prepared by the coprecipitation method had better adsorption efficiency than those prepared by other combustion methods

  15. Complexation-induced supramolecular assembly drives metal-ion extraction.

    Science.gov (United States)

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Metal ion sequestration: An exciting dimension for molecularly ...

    African Journals Online (AJOL)

    The use of a tight binding macrocyclic ligand to complex a metal ion so that this serves as receptee on the Molecularly Imprinted Polymer (MIP) receptor as described here affords a sequestration route for a targeted metal ion, with potential for environmental remediation and restoration applications. Ethylene glycol ...

  17. Cauliflower-like CuI nanostructures: Green synthesis and applications as catalyst and adsorbent

    International Nuclear Information System (INIS)

    Jiang Yi; Gao Shuyan; Li Zhengdao; Jia Xiaoxia; Chen Yanli

    2011-01-01

    Highlights: → In this study we report a green, environment-friendly, efficient, and direct one-step process for the preparation of CuI cauliflower. → The as-formed CuI cauliflower shows excellent catalytic activity for coupling reaction between benzylamine and iodobenzene. → The cauliflower-like CuI nanostructures have been successfully demonstrated as adsorbent for Cd (II) with high removal capacity. → To the best of our knowledge, it is the first report that nanostructured CuI acts as catalyst for coupling reaction and adsorbent for heavy metal ion. → It is also a good example for the organic combination of green chemistry and functional materials. - Abstract: Cauliflower-like CuI nanostructures is realized by an ampicillin-assisted clean, nontoxic, environmentally friendly synthesis strategy at room temperature. The morphology, composition, and phase structure of as-prepared powders were characterized by field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results show that ampicillin plays dual roles, reducing and morphology-directing agents, in the formation of the products. A possible growth mechanism of the cauliflower-like CuI nanostructures is tentatively proposed. The preliminary investigations show that the cauliflower-like CuI structure not only exhibits high catalytic activity with respect to coupling reaction between benzylamine and iodobenzene but also possesses high removal capacity for Cd (II), which may be ascribed to the high specific surface area of the special configuration. To the best of our knowledge, it is the first report that cauliflower-like CuI nanoparticles act as catalyst for coupling reaction and adsorbent for heavy metal ion.

  18. Cleaning Water Contaminated with Heavy Metal Ions Using Pyrolyzed Biochar Adsorbents

    Science.gov (United States)

    The extraction of pollutants from water using activated biochar materials is a low cost, sustainable approach for providing safe water in developing countries. The adsorption of copper ions, Cu (II), onto banana peels that were dried, pyrolyzed and activated was studied and compa...

  19. Synthesis and Optimization of Chitosan Nanoparticles of Shrimp shell as Adsorbent of Pb2+ Ions

    Directory of Open Access Journals (Sweden)

    Sulistyani Sulistyani

    2017-11-01

    Full Text Available Synthesis and optimization of chitosan nanoparticles from shrimp shell as an adsorbent of Pb2+ ions has been done. Chitosan is obtained through several stages, namely deproteinase, demineralization and deacetylation. Deproteinase by using 2 N NaOH solution (a ratio of 1:6 w/v while stirring at 90 °C for 1 hour. Demineralization by using 1 N HCl solution (a ratio of 1:12 w/v while stirring at room temperature for 1 hour. Deacetylation by using 50% NaOH solution (a ratio of 1:10 w/v at 120 °C for 3 hours. Chitosan nanoparticles are obtained by adding a solution of 1% CH3COOH and a few drops of NH3 concentrated at 90 °C to form a white gel is then washed to pH neutral and dried. Characterization of chitosan include analysis of degree of deacetylation by using FTIR and analysis of particle size by using Particle Size Analyzer (PSA. Chitosan nanoparticles was then applied as an adsorbent of lead. Optimization of chitosan as an adsorbent include contact time and pH. Concentration of lead is determined using Atomic Absorption Spectroscopy (AAS. The results showed chitosan synthesis product has a size of ~600 nm, so that it can be expressed as nanoparticles with a degree of deacetylation of 62.69%. Chitosan nanoparticles as adsorbent optimum at pH 3 and a contact time of 2 hours with an adsorption capacity of 13,25 mg/g .

  20. Complexation ion-exchange chromatography of some metal ions on papers impregnated with Ti(IV)-based inorganic ion exchangers.

    Science.gov (United States)

    Sharma, S D; Gupta, R

    2000-02-01

    The chromatographic behavior of 40 metal ions is studied on titanium (IV) arsenate, titanium (IV) phosphate-, titanium (IV) molybdate-, titanium(IV) tungstate-, and titanium(IV) selenite-impregnated papers in 0.1M oxalic, citric, and tartaric acid as mobile phases. Similar studies are carried out on Whatman No. 1 papers for comparison. The ion-exchange capacity of these papers is determined, and their selectivity for different cations is discussed. The mechanism of migration is explained in terms of ion-exchange, precipitation, and adsorption. The prediction of elution sequence from RF values is also checked. The average Ri is found to be almost linearly dependent on the charge of the metal ions. The effect of the pKa of complexing acids on average RF values of 3d series metal ions is explained. A number of binary and ternary separations are achieved.

  1. Solid adsorbents for removal of hydrogen sulphide from hot gas

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Yumura, Motoo

    1986-04-01

    A wide range of solids have been tested as potential adsorbents for H/sub 2/S removal from hot gas. These solids can be divided into two main groups, i.e., the adsorbents containing alkaline earth metals and those containing transition metals. Among the former, calcium oxide and naturally occurring materials such as limestone, dolomite and calcium silicate have attracted a great deal of attention. The adsorbents of the second group include iron oxide alone or in combination with some supports, zinc oxide, zinc ferrite and manganese oxide. The materials containing both the alkaline earth metals and transition metals, e.g., manganese nodules, fly ash and the reject from the aluminium industry (red mud) have been evaluated as well.

  2. Retention Behaviour of Copper, Zinc, Cadmium and Lead Ions on Synthesized Zirconium Titanate Ion Exchanger

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Abdel-Galil, E.A.; Moustafa, M.E.; Mahmoud, M.Y.

    2013-01-01

    Zr(IV) titanate as inorganic ion exchange material has been synthesized and utilized as the adsorbent for the removal of Cu 2+ , Zn 2+ , Cd 2+ and Pb 2+ ions from aqueous waste solutions. The experimental data were analyzed by Langmuir and Freundlich models of adsorption. The results suggest that the adsorption of the studied metals Cu 2+ , Zn 2+ , Cd 2+ and Pb 2+ ions on Zr(IV) titanate was favourable for the Freundlich isotherm more than Langmuir isotherm. The numerical values of 1/n for the studied metal ions were found to be smaller than the one (1/n L ) was found to be R L > 1 which confirmed that the prepared Zr(IV) titanate unfavourable the Langmuir isotherm. Based on the obtained results, practical separation experiments for the above mentioned cations on Zr(IV) titanate (ZrTi) column from aqueous waste solutions were carried out.

  3. ADSORPSI ION SIANIDA DALAM LARUTAN MENGGUNAKAN ADSORBEN HIBRIDA AMINOPROPIL SILIKA GEL DARI SEKAM PADI TERIMPREGNASI ALUMINIUM (Adsorption of Cyanide Ions in Solution Using a Hybrid Adsorbent Aminopropyl Silica Gel from Rice Husks of Impregnated With

    Directory of Open Access Journals (Sweden)

    Amaria Amaria

    2012-03-01

    Full Text Available ABSTRAK Telah dibuat dua macam adsorben hibrida aminopropil silika gel yang terimpregnasi aluminium (APSG-Al dan silika gel terimpregnasi aluminium (SG-Al dari silika gel sekam padi sebagai bahan untuk adsorpsi ion sianida dalam larutan. Interaksi antara adsorben dengan ion sianida dalam larutan dilakukan dalam sistem batch. Parameter-parameter yang dikaji dalam penelitian ini adalah pengaruh pH medium, pengaruh waktu interaksi dan pengaruh konsentrasi awal ion sianida terhadap kemampuan adsorpsi adsorben hibrida amino silika gel terimpregnasi aluminium. Analisis kuantitatif ion-ion sianida yang tersisa di dalam filtrat diuji dengan alat elektroda selektif ion. Data hasil pengaruh waktu interaksi dianalisis dengan model kinetika adsorpsi, data hasil pengaruh konsentrasi ion sianida dianalisis dengan model isoterm adsorpsi Langmuir dan Freundlich. Di samping itu gugus fungsional yang diperkirakan terlibat dalam adsorpsi diidentifikasi dengan spektrofotometer infra merah dan kristalinitas adsorben diuji dengan defraksi sinar X. Hasil penelitian menunjukkan bahwa hasil identifikasi spektroskopi infra merah menunjukkan adsorben APSG-Al memiliki gugus silanol (Si-OH, siloksil (Si-O-Si, gugus amina primer, NH2. Hasil analisis XRD nilai 2θ pada 65,51 menunjukkan bahwa aluminium yang terimpregnasi pada silika berbentuk alumina Al2¬O3. Hasil adsorpsi ion sianida oleh hibrida aminopropil silika gel terimpregnasi aluminium (APSG-Al menunjukkan adsorpsi sianida terjadi maksimum pada pH 5 sebesar 67,62 %, sedangkan SG-Al mengadsorpsi sianida secara maksimum pada pH 8 sebesar 51,11%. Kajian kinetika dari pengaruh waktu interaksi menunjukkan bahwa adsorben APSG-Al maupun SG-Al memiliki konstanta laju adsorpsi k1 masing-masing adalah 2,7. 10-3 dan 1,9.10-3 min-1. Data kapasitas adsorpsi menunjukkan bahwa adsorben APSG-Al dan SG-Al cenderung mengikuti model isoterm adsorpsi Freundlich. ABSTRACT This research has made two kinds of adsorbents, namely hybrid

  4. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, Sergio Efrain [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Carbajal-Arizaga, Gregorio Guadalupe [Departamento de Química, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Manriquez-Gonzalez, Ricardo [Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, carretera Guadalajara-Nogales, Las Agujas, C.P. 45020 Zapopan, Jalisco (Mexico); De la Cruz-Hernandez, Wencel [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, C.P. 22830 Ensenada, Baja California (Mexico); Gomez-Salazar, Sergio, E-mail: sergio.gomez@cucei.udg.mx [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico)

    2014-11-15

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.

  5. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    International Nuclear Information System (INIS)

    Gomez-Gonzalez, Sergio Efrain; Carbajal-Arizaga, Gregorio Guadalupe; Manriquez-Gonzalez, Ricardo; De la Cruz-Hernandez, Wencel; Gomez-Salazar, Sergio

    2014-01-01

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH 3 COO) 2 Cr + ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. 13 C, 29 Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level

  6. Bioavailability of Metal Ions and Evolutionary Adaptation

    Directory of Open Access Journals (Sweden)

    Rolando P. Hong Enriquez

    2012-10-01

    Full Text Available The evolution of life on earth has been a long process that began nearly 3,5 x 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches.

  7. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    Science.gov (United States)

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  8. Chromatography Of Metal Ions On Wood Cellulose Impregnated ...

    African Journals Online (AJOL)

    Adsorption chromatography of some heavy metal ions on wood cellulose of saw dust (wood waste dust) modified with hydrochloric acid, urea and thiourea was studied. Atomic absorption spectrophotometry (AAS) was used to determine the initial concentration of solutions of Zn2+, Cu2+, Ni2+, Pb2+, and Fe3+ metal ions.

  9. Metal hydride compositions and lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Nei, Jean

    2018-04-24

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  10. A remarkable adsorbent for removal of contaminants of emerging concern from water: Porous carbon derived from metal azolate framework-6.

    Science.gov (United States)

    Bhadra, Biswa Nath; Jhung, Sung Hwa

    2017-10-15

    A series of metal-azolate frameworks or MAFs-MAF-4, -5, and -6-were synthesized and pyrolyzed to prepare porous carbons derived from MAFs (CDM-4, -5, -6, respectively). Not only the obtained carbons but also MAFs were characterized and applied for the adsorption of organic contaminants of emerging concern (CECs, including pharmaceuticals and personal care products) such as salicylic acid, clofibric acid, diclofenac sodium, bisphenol-A, and oxybenzone (OXB) from water. CDM-6 was found to be the most remarkable adsorbent among the tested ones (including activated carbon) for all the adsorbates. OXB was taken as a representative adsorbate for detailed adsorption studies as well as understanding the adsorption mechanism. H-bonding (H-acceptor: CDM; H-donor: CECs) was suggested as the principal mechanism for the adsorption of tested adsorbates. Finally, CDMs, especially CDM-6, were suggested as highly efficient and easily recyclable adsorbents for water purification. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Rapid adsorption of heavy metals by Fe3O4/talc nanocomposite and optimization study using response surface methodology.

    Science.gov (United States)

    Kalantari, Katayoon; Ahmad, Mansor B; Masoumi, Hamid Reza Fard; Shameli, Kamyar; Basri, Mahiran; Khandanlou, Roshanak

    2014-07-21

    Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions.

  12. Application of ion implantation in metals and alloys

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1981-01-01

    Ion implantation first became established as a precise method of introducing dopant elements into semiconductors. It is now appreciated that there may be equally important applications in metallic tools or components with the purpose of improving their resistance to wear, fatigue or corrosion. Nitrogen ions implanted into steels pin dislocations and thereby harden the metal. Some metallic ions such as yttrium reduce the tendency for oxidative wear. There is a fairly good understanding of how both treatments can provide a long-lasting protection that extends to many times the original depth of implantation. Nitrogen implantation also improves the wear resistance of Co-cemented tungsten carbide and of hard chromium electroplated coatings. These treatments have wide application in press tools, molds, dies and other metal-forming tools as well as in a more limited variety of cutting tools. Some striking improvements can be achieved in the corrosion field, but there are economic and technical reasons for concluding that practical applications of ion implantation will be more restricted and specialized in this area. The most promising area is that in which mechanical stress and oxidation coexist. When a metallic species has to be introduced, a promising new development is to bombard a thin coating of the metal at an elevated temperature. Several powerful mechanisms of radiation-enhanced diffusion can bring about a complete intermixing. Examples of how this has been used to produce wear resistant surfaces in titanium are given. Finally, the equipment developed for the large scale application of the ion implantation process in the engineering field is described

  13. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  14. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P J; Chu, J W; Johnson, E P; Noorman, J T [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  15. Ion beam analysis of metal ion implanted surfaces

    International Nuclear Information System (INIS)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T.; Sood, D.K.

    1993-01-01

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs

  16. Metal nanostructures for the enhancement of the Raman response of molecular adsorbates

    Science.gov (United States)

    Giorgetti, Emilia; Giammanco, Francesco; Margheri, Giancarlo; Trigari, Silvana; Muniz-Miranda, Maurizio

    2011-08-01

    Spectroscopic investigation of metallic nanostructures of different size and morphology is presented, with particular focus on the capability of enhancing the Raman response of molecular adsorbates, namely on their SERS properties. In this framework, we describe recent results obtained with Au/Ag nanocages and Au nanostars, which can be used conveniently to shift the extinction spectra and the SERS activity up to the near infrared. In the case of nanostars, we present a synthesis procedure which permits fine tuning of their morphology and extinction, thus allowing preparation of structures with controlled SERS activity from 500 up to 1500 nm.

  17. Valuing Metal-Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents

    KAUST Repository

    Adil, Karim

    2017-08-22

    The development of practical solutions for the energy-efficient capture of carbon dioxide is of prime importance and continues to attract intensive research interest. Conceivably, the implementation of adsorption-based processes using different cycling modes, e.g., pressure-swing adsorption or temperature-swing adsorption, offers great prospects to address this challenge. Practically, the successful deployment of practical adsorption-based technologies depends on the development of made-to-order adsorbents expressing mutually two compulsory requisites: i) high selectivity/affinity for CO2 and ii) excellent chemical stability in the presence of impurities. This study presents a new comprehensive experimental protocol apposite for assessing the prospects of a given physical adsorbent for carbon capture under flue gas stream conditions. The protocol permits: i) the baseline performance of commercial adsorbents such as zeolite 13X, activated carbon versus liquid amine scrubbing to be ascertained, and ii) a standardized evaluation of the best reported metal-organic framework (MOF) materials for carbon dioxide capture from flue gas to be undertaken. This extensive study corroborates the exceptional CO2 capture performance of the recently isolated second-generation fluorinated MOF material, NbOFFIVE-1-Ni, concomitant with an impressive chemical stability and a low energy for regeneration. Essentially, the NbOFFIVE-1-Ni adsorbent presents the best compromise by satisfying all the required metrics for efficient CO2 scrubbing.

  18. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    Science.gov (United States)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  19. Synthesis of 2,4-dinitrophenylhydrazine loaded sodium dodecyl sulfate-coated magnetite nanoparticles for adsorption of Hg(II ions from an aqueous solution

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2016-09-01

    Full Text Available Background: The rapid increase in agricultural and industrial development has made heavy metal pollution a serious environmental problem and public health threat; therefore, removal of heavy metals from water is important. The current study prepared DNPH@SDS@Fe3O4 nanoparticles as a novel and effective adsorbent for removal of Hg(II ions from an aqueous solution. Methods: A selective adsorbent for Hg(II was synthesized by coating Fe3O4 nanoparticles with sodium dodecyl sulfate which was further functionalized with 2,4-dinitrophenylhydrazine (2,4-DNPH. The synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR, x-ray diffraction (XRD, scanning electron microscopy (SEM and SEM–EDXSt. The effects of pH, dose of adsorbent and shaking time on adsorption capacity were investigated. The kinetics and equilibrium of adsorption of the metal ions were thoroughly studied. Results: SEM showed that the size of the nanoparticles was 20 to 35 nm. The maximum adsorption capacity for Hg(II was 164.0 mg g-1 for an adsorbent dose of 0.04 g at pH 7.0, 25°C and the initial metal concentration was 25 mg L-1,which was greater than for most adsorbents previously examined for Hg(II adsorption. Adsorption experimental data showed good correlation with the pseudo-secondorder model and Langmuir isotherm model. Conclusion: The results indicated that the DNPH@SDS@Fe3O4 nanoparticles are an efficient adsorbent for removal of heavy metal from wastewater.

  20. Progress in metal ion separation and preconcentration: an overview

    International Nuclear Information System (INIS)

    Bond, A. H.

    1998-01-01

    A brief historical perspective covering the most mature chemically-based metal ion separation methods is presented, as is a summary of the recommendations made in the 1987 National Research Council (NRC) report entitled ''Separation and Purification: Critical Needs and Opportunities''. A review of Progress in Metal Ion Separation and Preconcentration shows that advances are occurring in each area of need cited by the NRC. Following an explanation of the objectives and general organization of this book, the contents of each chapter are briefly summarized and some future research opportunities in metal ion separations are presented

  1. Removal of lead (II) from metal plating effluents using sludge based activated carbon as adsorbent.

    Science.gov (United States)

    Raju, P; Saseetharan, M K

    2010-01-01

    A novel adsorbent was prepared from waste sludge obtained from a sugar mill for removing heavy metals from industrial wastewater. The adsorption studies were carried out in batch and continuous modes for both sugar mill sludge based carbon and commercial carbon. In batch studies, experiments were conducted at ambient temperature to assess the influence of the parameters such as pH, adsorbent dose, contact time and equilibrium concentration. Adsorption data for the prepared carbon was found to satisfy both the Freundlich and Langmuir isotherms. Column studies were carried out to delineate the effect of varying depth of carbon at constant flow rate. The breakthrough curves were drawn to establish the mechanism. The result shows that the sludge based activated carbon can be used as an alternative for commercial carbon.

  2. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  3. Ion beam induced nanosized Ag metal clusters in glass

    International Nuclear Information System (INIS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-01-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam

  4. Sol-Gel Derived Adsorbents with Enzymatic and Complexonate Functions for Complex Water Remediation

    Directory of Open Access Journals (Sweden)

    Roman P. Pogorilyi

    2017-09-01

    Full Text Available Sol-gel technology is a versatile tool for preparation of complex silica-based materials with targeting functions for use as adsorbents in water purification. Most efficient removal of organic pollutants is achieved by using enzymatic reagents grafted on nano-carriers. However, enzymes are easily deactivated in the presence of heavy metal cations. In this work, we avoided inactivation of immobilized urease by Cu (II and Cd (II ions using magnetic nanoparticles provided with additional complexonate (diethylene triamine pentaacetic acid or DTPA functions. Obtained nanomaterials were characterized by Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and scanning electron microscopy (SEM. According to TGA, the obtained Fe3O4/SiO2-NH2-DTPA nanoadsorbents contained up to 0.401 mmol/g of DTPA groups. In the concentration range Ceq = 0–50 mmol/L, maximum adsorption capacities towards Cu (II and Cd (II ions were 1.1 mmol/g and 1.7 mmol/g, respectively. Langmuir adsorption model fits experimental data in concentration range Ceq = 0–10 mmol/L. The adsorption mechanisms have been evaluated for both of cations. Crosslinking of 5 wt % of immobilized urease with glutaraldehyde prevented the loss of the enzyme in repeated use of the adsorbent and improved the stability of the enzymatic function leading to unchanged activity in at least 18 cycles. Crosslinking of 10 wt % urease on the surface of the particles allowed a decrease in urea concentration in 20 mmol/L model solutions to 2 mmol/L in up to 10 consequent decomposition cycles. Due to the presence of DTPA groups, Cu2+ ions in concentration 1 µmol/L did not significantly affect the urease activity. Obtained magnetic Fe3O4/SiO2-NH2-DTPA-Urease nanocomposite sorbents revealed a high potential for urease decomposition, even in presence of heavy metal ions.

  5. Fluorescence signalling of the transition metal ions: Design strategy ...

    Indian Academy of Sciences (India)

    Unknown

    strategy based on the choice of the fluorophore component. N B SANKARAN, S ... skill for the development of fluorosensors of this kind. Further, the ... salts of the transition metal ions have been used for studying the influence of the metal ions.

  6. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing--systematic review of clinical and epidemiological studies.

    Directory of Open Access Journals (Sweden)

    Albrecht Hartmann

    Full Text Available INTRODUCTION: The use of metal-on-metal (MoM total hip arthroplasty (THA increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. OBJECTIVE: To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. METHODS: Systematic review of clinical trials (RCTs and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor, patient characteristics as well as study quality characteristics (secondary explanatory factors. RESULTS: Overall, 104 studies (11 RCTs, 93 epidemiological studies totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L. Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. DISCUSSION: Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed "time out" for stemmed large-head MoM-THA and recommend a restricted

  7. Studies on indigenous ion exchange resins: alkali metal ions-hydrogen ion exchange equilibria

    International Nuclear Information System (INIS)

    Shankar, S.; Kumar, Surender; Venkataramani, B.

    2001-01-01

    With a view to select a suitable ion exchange resin for the removal of radionuclides (such as cesium, strontium etc.) from low level radioactive effluents, alkali metal ion -H' exchanges on nine indigenous gel- and macroporous-type and nuclear grade resins have been studied at a total ionic strength of 0.1 mol dm .3 (in the case ofCs' -H' exchange it was 0.05 mol dm .3 ). The expected theoretical capacities were not attained by all the resins for the alkali metal ions. The water content (moles/equiv.) of the fully swollen resins for different alkali metal ionic forms do not follow the usual sequence of greater the tendency of the cation to hydrate the higher the water uptake, but a reverse trend. The ion exchange isotherms (plots of equivalent fractions of the ion in resin phase, N M1 to that in solution, N M ) were not satisfactory and sorption of cations, for most of the resins, was possible only when the acidity of the solution was lowered. The variations of the selectivity coefficient, K, with N M show that the resins are highly cross linked and the selectivity sequence: Cs + >K + >Na + >Li + , obtained for all the resins indicate that hydrated ions were involved in the exchange process. However, the increase in the selectivity was not accompanied by the release of water, but unusual uptake of water, during the exchange process. The characteristics of macroporous resins were not significantly different from those of the gel-type resins. The results are discussed in terms of heterogeneity in the polymer net work, improper sulphonation process resulting in the formation of functional groups at inaccessible sites with weak acidic character and the overall lack of control in the preparation of different resins. (author)

  8. Biosorption study of radiotoxic nuclide and toxic heavy metals using green adsorbent

    International Nuclear Information System (INIS)

    Bagla, Hemlata K.

    2014-01-01

    Our research scientifically illuminates the pioneering and successful application of the ancient Indian epitome of energy, Dry Cow Dung Powder, DCP, a combo humiresin, in its naive 'as it is form' for the bioremediation of toxic pollutants. The potential of DCP to sequester toxic heavy metal ions such as Cr(III), Cr(VI). Cd(II), Hg(II) and radionuclide 90 Sr(II) has been successfully demonstrated, employing tracer technique. The Batch equilibration method and all the important parameters such as pH, dose of sorbent, metal ion concentration, contact time, agitation speed, temperature and interference of different salts have been studied and optimized. The study on thermodynamic, kinetic and isotherm modeling of biosorption indicates that it is feasible, eco-friendly and efficient process to employ DCP for the removal of metal ions from aqueous medium. Spectroscopic analysis by FTIR and EDAX effectively explain the mechanism involved in the biosorption by DCP. The adsorption capacity and the pseudo-second order rate constant were also obtained by regression analysis. Thus DCP proves to be Eco-friendly resin for the removal of these toxic pollutants such as Cr(III), Cr(VI), Cd(II), Hg(II) and 90 Sr(II) from aqueous medium. (author)

  9. Modification of metallic corrosion by ion implantation

    International Nuclear Information System (INIS)

    Clayton, C.R.

    1981-01-01

    This review will consider some of the properties of surface alloys, formed by ion implantation, which are effective in modifying corrosion behaviour. Examples will be given of the modification of the corrosion behaviour of pure metals, steels and other engineering alloys, resulting from implantation with metals and metalloids. Emphasis will be given to the modification of anodic processes produced by ion implantation since a review will be given elsewhere in the proceedings concerning the modification of cathodic processes. (orig.)

  10. Surface modification of metals by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1988-01-01

    Ion implantation in metals has attracted the attention as a useful technology for the formation of new metastable alloys and compounds in metal surface layers without thermal equilibrium. Current studies of metal surface modification by ion implantation with high fluences have expanded from basic research areas and to industrial applications for the improvement of life time of tools. Many results suggest that the high fluence implantation produces the new surface layers with un-expected microscopic characteristics and macroscopic properties due to implant particles, radiation damage, sputtering, and knock-on doping. In this report, the composition, structure and chemical bonding state in surface layers of iron, iron-based alloy and aluminum sheets implanted with high fluences have been investigated by means of secondary ion mass spectroscopy (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Tribological properties such as hardness, friction and wear are introduced. (author)

  11. Very broad beam metal ion source for large area ion implantation application

    International Nuclear Information System (INIS)

    Brown, I.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Yao, X.

    1993-01-01

    The authors have made and operated a very broad beam version of vacuum arc ion source and used it to carry out high energy metal ion implantation of a particularly large substrate. A multiple-cathode vacuum arc plasma source was coupled to a 50 cm diameter beam extractor (multiple aperture, accel-decel configuration) operated at a net extraction voltage of up to 50 kV. The metal ion species chosen were Ni and Ta. The mean ion charge state for Ni and Ta vacuum arc plasmas is 1.8 and 2.9, respectively, and so the mean ion energies were up to about 90 and 145 keV, respectively. The ion source was operated in a repetitively pulsed mode with pulse length 250 μs and repetition rate several pulses per second. The extracted beam had a gaussian profile with FWHM about 35 cm, giving a nominal beam area of about 1,000 cm 2 . The current of Ni or Ta metal ions in the beam was up to several amperes. The targets for the ion implantation were a number of 24-inch long, highly polished Cu rails from an electromagnetic rail gun. The rails were located about 80 cm away from the ion source extractor grids, and were moved across a diameter of the vessel in such a way as to maximize the uniformity of the implant along the rail. The saturation retained dose for Ta was limited to about 4 x 10 16 cm -2 because of the rather severe sputtering, in accordance with the theoretical expectations for these implantation conditions. Here they describe the ion source, the implantation procedure, and the kinds of implants that can be produced in this way

  12. The sorption of lead, cadmium, copper and zinc ions from aqueous solutions on a raw diatomite from Algeria.

    Science.gov (United States)

    Safa, Messaouda; Larouci, Mohammed; Meddah, Boumediene; Valemens, Pierre

    2012-01-01

    The adsorption of Cu(2+), Zn(2+), Cd(2+) and Pb(2+) ions from aqueous solution by Algerian raw diatomite was studied. The influences of different sorption parameters such as contact pH solution, contact time and initial metal ions concentration were studied to optimize the reaction conditions. The metals ions adsorption was strictly pH dependent. The maximum adsorption capacities towards Cu(2+), Zn(2+), Cd(2+) and Pb(2+) were 0.319, 0.311, 0.18 and 0.096 mmol g(-1), respectively. The kinetic data were modelled using the pseudo-first-order and pseudo-second-order kinetic equations. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analysed using the Langmuir and the Freundlich isotherms; the results showed that the adsorption equilibrium was well described by both model isotherms. The negative value of free energy change ΔG indicates feasible and spontaneous adsorption of four metal ions on raw diatomite. According to these results, the high exchange capacities of different metal ions at high and low concentration levels, and given the low cost of the investigated adsorbent in this work, Algerian diatomite was considered to be an excellent adsorbent.

  13. Ion exchange properties of carboxylate bagasse

    International Nuclear Information System (INIS)

    Nada, A.M.A.; Hassan, M.L.

    2005-01-01

    Bagasse fibers were chemically modified using three different reactions: esterification using monochloro acetic acid, esterification using succinic anhydride, and oxidation using sodium periodate and sodium chlorite to prepare cation exchanger bearing carboxylic groups. Bagasse was crosslinked using epichlorohydrin before chemical modification to avoid loss of its constituents during the chemical modification. The structure of the prepared derivatives was proved using Fourier transform infrared (FTIR) and chemical methods. The ability of the prepared bagasse cation exchangers to adsorb heavy metal ions (Cu +2 , Ni +2 , Cr +3 , Fe +3 ), on a separate basis or in a mixture of them, at different metal ion concentration was tested. Thermal stability of the different bagasse derivative was studied using thermogravimetric analysis (TGA)

  14. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeon Ho; Kim, Younghun [Kwangwoon University, Seoul (Korea, Republic of)

    2015-04-15

    Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multicolorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type.

  15. Mineral Adsorbents for Removal of Metals in Urban Runoff

    Science.gov (United States)

    Bjorklund, Karin; Li, Loretta

    2014-05-01

    The aim of this research was to determine the capacity of four different soil minerals to adsorb metals frequently detected in urban runoff. These are low-cost, natural and commercially available soil minerals. Contaminated surface runoff from urban areas is a major cause of concern for water quality and aquatic ecosystems worldwide. Pollution in urban areas is generated by a wide array of non-point sources, including vehicular transportation and building materials. Some of the most frequently detected pollutants in urban runoff are metals. Exhaust gases, tire wear and brake linings are major sources of such metals as Pb, Zn and Cu, while impregnated wood, plastics and galvanized surfaces may release As, Cd, Cr and Zn. Many metals have toxic effects on aquatic plants and animals, depending on metal speciation and bioavailability. The removal efficiency of pollutants in stormwater depends on treatment practices and on the properties the pollutant. The distribution of metals in urban runoff has shown, for example, that Pb is predominantly particle-associated, whereas Zn and Cd are present mainly in dissolved form. Many metals are also attached to colloids, which may act as carriers for contaminants, thereby facilitating their transport through conventional water treatment processes. Filtration of stormwater is one of the most promising techniques for removal of particulates, colloidal and truly dissolved pollutants, provided that effective filtration and adsorption media are used. Filtration and infiltration are used in a wide array of stormwater treatment methods e.g. porous paving, infiltration drains and rain gardens. Several soil minerals were investigated for their potential as stormwater filter materials. Laboratory batch tests were conducted to determine the adsorption capacity of these minerals. A synthetic stormwater was tested, with spiked concentrations corresponding to levels reported in urban runoff, ranging from 50-1,500 µg/L for Zn; 5-250 µg/L for Cu

  16. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica

    International Nuclear Information System (INIS)

    Li Guoliang; Zhao Zongshan; Liu Jiyan; Jiang Guibin

    2011-01-01

    A thiol-functionalized magnetic mesoporous silica material (called SH-mSi-Fe 3 O 4 ), synthesized by a modified Stoeber method, has been investigated as a convenient and effective adsorbent for heavy metal ions. Structural characterization by powder X-ray diffraction, N 2 adsorption-desorption isotherm, Fourier transform infrared spectroscopy and elemental analyses confirms the mesoporous structure and the organic moiety content of this adsorbent. The high saturation magnetization (38.4 emu/g) make it easier and faster to be separated from water under a moderate magnetic field. Adsorption kinetics was elucidated by pseudo-second-order kinetic equation and exhibited 3-stage intraparticle diffusion mode. Adsorption isotherms of Hg and Pb fitted well with Langmuir model, exhibiting high adsorption capacity of 260 and 91.5 mg of metal/g of adsorbent, respectively. The distribution coefficients of the tested metal ions between SH-mSi-Fe 3 O 4 and different natural water sources (groundwater, lake water, tap water and river water) were above the level of 10 5 mL/g. The material was very stable in different water matrices, even in strong acid and alkaline solutions. Metal-loaded SH-mSi-Fe 3 O 4 was able to regenerate in acid solution under ultrasonication. This novel SH-mSi-Fe 3 O 4 is suitable for repeated use in heavy metal removal from different water matrices.

  17. Accumulation of metal ions by pectinates

    Science.gov (United States)

    Deiana, S.; Deiana, L.; Palma, A.; Premoli, A.; Senette, C.

    2009-04-01

    The knowledge of the mechanisms which regulate the interactions of metal ions with partially methyl esterified linear polymers of α-1,4 linked D-galacturonic acid units (pectinates), well represented in the root inner and outer apoplasm, is of great relevance to understand the processes which control their accumulation at the soil-root interface as well as their mobilization by plant metabolites. Accumulation of a metal by pectinates can be affected by the presence of other metals so that competition or distribution could be expected depending on the similar or different affinity of the metal ions towards the binding sites, mainly represented by the carboxylate groups. In order to better understand the mechanism of accumulation in the apoplasm of several metal ions, the sorption of Cd(II), Zn(II), Cu(II), Pb(II) and Cr(III) by a Ca-polygalacturonate gel, used as model of the soil-root interface, with a degree of esterification of 18% (PGAE1) and 65% (PGAE2) was studied at pH 3.0, 4.0, 5.0 and 6.0 in the presence of CaCl2 2.5 mM.. The results show that sorption increases with increasing both the initial metal concentration and pH. A similar sorption trend was evidenced for Cu(II) and Pb(II) and for Zn(II) and Cd(II), indicating that the mechanism of sorption for these two ionic couples is quite different. As an example, at pH 6.0 and an initial metal concentration equal to 2.0 mM, the amount of Cu(II) and Pb(II) sorbed was about 1.98 mg-1 of PGAE1 while that of Cd(II) and Zn(II) was about 1.2 mg-1. Cr(III) showed a rather different sorption trend and a much higher amount (2.8 mg-1of PGAE1 at pH 6.0) was recorded. The higher affinity of Cr(III) for the polysaccharidic matrix is attributable to the formation of Cr(III) polynuclear species in solution, as shown by the distribution diagrams obtained through the MEDUSA software. On the basis of these findings, the following affinity towards the PGAE1 can be assessed: Cr(III) > Cu(II) ? Pb(II) > Zn (II) ? Cd

  18. Broad-beam, high current, metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the 'seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs

  19. Progress in metal ion separation and preconcentration : an overview.

    Energy Technology Data Exchange (ETDEWEB)

    Bond, A. H.

    1998-05-19

    A brief historical perspective covering the most mature chemically-based metal ion separation methods is presented, as is a summary of the recommendations made in the 1987 National Research Council (NRC) report entitled ''Separation and Purification: Critical Needs and Opportunities''. A review of Progress in Metal Ion Separation and Preconcentration shows that advances are occurring in each area of need cited by the NRC. Following an explanation of the objectives and general organization of this book, the contents of each chapter are briefly summarized and some future research opportunities in metal ion separations are presented.

  20. Heavy metal ions are potent inhibitors of protein folding

    International Nuclear Information System (INIS)

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-01-01

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd 2+ , Hg 2+ and Pb 2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC 50 in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far

  1. Highly sensitive colour change system within slight differences in metal ion concentrations based on homo-binuclear complex formation equilibrium for visual threshold detection of trace metal ions

    International Nuclear Information System (INIS)

    Mizuguchi, Hitoshi; Atsumi, Hiroshi; Hashimoto, Keigo; Shimada, Yasuhiro; Kudo, Yuki; Endo, Masatoshi; Yokota, Fumihiko; Shida, Junichi; Yotsuyanagi, Takao

    2004-01-01

    A new technique of expressing slight differences in metal ion concentrations by clear difference in colour was established for visual threshold detection of trace metal ions. The proposed method is based on rapid change of the mole fraction of the homo-binuclear complex (M 2 L) about a ligand in a narrow range of the total metal ion concentration (M T ) in a small excess, in case the second metal ion is bound to the reagent molecule which can bind two metal ions. Theoretical simulations showed that the highly sensitive colour change within slight differences in metal ion concentrations would be realized under the following conditions: (i) both of the stepwise formation constants of complex species are sufficiently large; (ii) the stepwise formation constant of the 1:1 complex (ML) is larger than that of M 2 L; and (iii) the absorption spectrum of M 2 L is far apart from the other species in the visible region. Furthermore, the boundary of the colour region in M T would be readily controlled by the total ligand concentration (L T ). Based on this theory, the proposed model was verified with the 3,3'-bis[bis(carboxymethyl)amino]methyl derivatives of sulphonephthalein dyes such as xylenol orange (XO), methylthymol blue (MTB), and methylxylenol blue (MXB), which can bind two metal ions at both ends of a π-electron conjugated system. The above-mentioned model was proved with the iron(III)-XO system at pH 2. In addition, MTB and MXB were suitable reagents for the visual threshold detection of trivalent metal ions such as iron(III), aluminium(III), gallium(III) and indium(III) ion in slightly acidic media. The proposed method has been applied successfully as a screening test for aluminium(III) ion in river water sampled at the downstream area of an old mine

  2. Metal ion transport quantified by ICP-MS in intact cells

    Science.gov (United States)

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  3. Use of heavy ions to model radiation damage of metals

    International Nuclear Information System (INIS)

    Shirokov, S.V.; Vyshemirskij, M.P.

    2011-01-01

    The methods for modeling radiation damage of metals using heavy ions are reviewed and the results obtained are analyzed. It is shown that irradiation of metals with heavy ion can simulate neutron exposure with the equivalent dose with adequate accuracy and permits a detailed analysis of radiation damage of metals

  4. Application of proton induced x-ray emission (PIXE) in estimation of trace metals entrapped in silica matrix

    International Nuclear Information System (INIS)

    Jal, P.K.; Patel, Sabita; Mishra, B.K.; Sudarshan, M.; Saha, A.

    2005-01-01

    Proton induced x-ray emission technique is used for multielemental analysis of metal ions adsorbed on nanosilica surface. At pH 3.5, silica traps uranium selectively from a mixture of solutions of 13 different metal ions viz., K(I), Ca(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II). Ba(II), Hg(II) and UO 2 (VI). (author)

  5. Ion beam assisted deposition of metal-coatings on beryllium

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Tul'ev, V.V.

    2015-01-01

    Thin films were applied on beryllium substrates on the basis of metals (Cr, Ti, Cu and W) with method of the ion-assisted deposition in vacuum. Me/Be structures were prepared using 20 kV ions irradiation during deposition on beryllium neutral fraction generated from vacuum arc plasma. Rutherford back scattering and computer simulation RUMP code were applied to investigate the composition of the modified beryllium surface. Researches showed that the superficial structure is formed on beryllium by thickness ~ 50-60 nm. The covering composition includes atoms of the deposited metal (0.5-3.3 at. %), atoms of technological impurity carbon (0.8-1.8 at. %) and oxygen (6.3-9.9 at. %), atoms of beryllium from the substrate. Ion assisted deposition of metals on beryllium substrate is accompanied by radiation enhanced diffusion of metals, oxygen atoms in the substrate, out diffusion of beryllium, carbon atoms in the deposited coating and sputtering film-forming ions assists. (authors)

  6. Hydrolysis of metal ions. Vol. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Paul L. [Geochem Australia, Kiama, NSW (Australia); Ekberg, Christian [Chalmers Univ. of Technology, Goeteborg (Sweden). Nuclear Chemistry/Industrial Materials Recycling

    2016-07-01

    Filling the need for a comprehensive treatment that covers the theory, methods and the different types of metal ion complexes with water (hydrolysis), this handbook and ready reference is authored by a nuclear chemist from academia and an industrial geochemist. The book includes both cation and anion complexes, and approaches the topic of metal ion hydrolysis by first covering the background, before proceeding with an overview of the dissociation of water and then all different metal-water hydrolysis complexes and compounds. A must-have for scientists in academia and industry working on this interdisciplinary topic.

  7. Charge state of ions scattered by metal surface

    International Nuclear Information System (INIS)

    Kishinevsky, L.M.; Parilis, E.S.; Verleger, V.K.

    1976-01-01

    A model for description of charge distributions for scattering of heavy ions in the keV region, on metal surfaces developing and improving the method of Van der Weg and Bierman, and taking into account the connection between the ion charge state and scattering kinematics, is proposed. It is shown that multiple charged particles come from ions with a vacancy in the inner shell while the outer shell vacancies give only single charged ions and neutrals. The approximately linear increase of degree of ionization with normal velocity, and the non-monotonic charge dependence of the energy spectrum established by Chicherov and Buck et al is explained by considering irreversible neutralization in the depth of the metal, taking into account the connection of the charge state with the shape of trajectory and its location relative to the metal surface. The dependence of charge state on surface structure is discussed. Some new experiments are proposed. (author)

  8. Adhesive, abrasive and oxidative wear in ion-implanted metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1985-01-01

    Ion implantation is increasingly being used to provide wear resistance in metals and cemented tungsten carbides. Field trials and laboratory tests indicate that the best performance is achieved in mild abrasive wear. This can be understood in terms of the classification of wear modes (adhesive, abrasive, oxidative etc.) introduced by Burwell. Surface hardening and work hardenability are the major properties to be enhanced by ion implantation. The implantation of nitrogen or dual implants of metallic and interstitial species are effective. Recently developed techniques of ion-beam-enhanced deposition of coatings can further improve wear resistance by lessening adhesion and oxidation. In order to support such hard coatings, ion implantation of nitrogen can be used as a preliminary treatment. There is thus emerging a versatile group of related hard vacuum treatments involving intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (Auth.)

  9. Comparative study of adsorbents for the removal of fluoride ions from water use and consumption in Mexico

    International Nuclear Information System (INIS)

    Teutli S, E. A.

    2014-01-01

    Although fluoride is essential for health many studies have shown it is associated with some health problems, such as fluoro sis, thyroid disorder, neurological disease, Alzheimer, pineal gland and cancer. One of the major routes of exposure is through drinking water. The World Health Organization (Who) allows only 1.5 mg/L as a safe limit for fluoride ions in drinking water and the EPA U. S. Environmental Protection Agency has recently proposed 0.7 mg/L. In some cases, the water extracted from deep wells has concentrations of fluoride ions above 1.5 mg/L (NOM-127-SSA1-2000) which is the permissible limit of water for human use and consumption (whuc). In several countries, there are high concentrations of fluoride ions due to the geological distribution of fluorine-rich rocks. In our country we can find several states that have concentrations higher than 1.5 mg/L of fluoride ions in water, such as Aguascalientes, Zacatecas, Chihuahua, Coahuila, Durango, Guanajuato, Sonora, Jalisco and San Luis Potosi. Various technologies have been proposed to remove fluoride ions from water, such as adsorption, ion exchange, reverse osmosis, nano filtration, electrodialysis, dialysis and electrocoagulation. Sorption is superior to other techniques in terms of initial cost, simplicity of design and ease of operation. In this work systematic studies were done considering the aspects mentioned above, in order to determine the adsorbents properties and most suitable conditions for the removal of fluoride ions from whuc. It is important to note that to date no adsorption treatments for the removal of fluoride ions from water for human use and consumption in our country is done, although there are established methodologies, they have not been implemented because of their high costs. In this work an integral study was done on the removal of fluoride ions from water for human use and consumption. A comparative study of hematite, calcite and zeolite as adsorbents was performed to develop a

  10. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    Science.gov (United States)

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip

  11. Solution thermodynamics of rare-earth metal ions - physicochemical study-

    Energy Technology Data Exchange (ETDEWEB)

    Amerkhanova, Sh K; Shlyapov, R M; Uali, A S [Buketov Karaganda state university, University str., 28, Karaganda, 100028 (Kazakhstan)], E-mail: amerkhanova_sh@mail.ru

    2009-02-01

    The results of the studying of interactions in multicomponent systems 'polyvinyl alcohol (PVA) - rare-earth element ion - nitrate of sodium - water' are represented. It is established that for rubidium (I) ions temperature and ionic strength is render destroying action, and for yttrium (III) ions the influence of these factors has return character which is connected with features of an electronic structure of metal ion. It is revealed that a dominating role of non-electrostatic formation composed, hence, the formation of donor-acceptor connection of 'metal - ligand' occurs through atom of oxygen.

  12. Accumulation of some metal ions on Bacillus licheniformis

    International Nuclear Information System (INIS)

    Hafez, M.B.; El-Desouky, W.; Fouad, A.

    2001-01-01

    Pure species of Bacillus licheniformis was used to remove ions from aqueous and simulated waste solutions. Metal ion accumulation on B. licheniformis was fast. Maximum uptake occurred at pH 4± 0.5 and at 25 ± 3 deg C. One gram of dry B. licheniformis was found to accumulate 115 mg cerium, 34 mg copper and 11 mg cobalt from aqueous solutions. The presence of certain foreign ions such as calcium, sodium and potassium decreased the uptake of ions by B. licheniformis, while citrate and EDTA prevent the uptake. Electron microscopic investigations showed that cerium (III), copper (II) and cobalt (II) accumulated extracellulary around the surface wall of B. licheniformis cells. A bio-adsorption mechanism between the metal ions and B. licheniformis cell wall was proposed. (author)

  13. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  14. Applications of ion plating in metals fabrication

    International Nuclear Information System (INIS)

    Bell, R.T.; Thompson, J.C.

    1974-01-01

    Use of ion plating at the Oak Ridge Y-12 Plant to solve problems encountered in metals fabrication and processing are discussed. Three typical areas are covered. The first is the use of strike coats on various substrates for subsequent electrodeposition. The second area in which ion plating is shown to contribute to a process is in cold welding or room temperature bonding of metals. The third application involves plating U to promote safe handling, fission-product retention, and corrosion protection in nuclear reactors

  15. Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples.

    Science.gov (United States)

    Ghasemi, Ensieh; Sillanpää, Mika

    2015-01-01

    A novel type of magnetic nanosorbent, hydroxyapatite-coated Fe2O3 nanoparticles was synthesized and used for the adsorption and removal of nitrite and nitrate ions from environmental samples. The properties of synthesized magnetic nanoparticles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. After the adsorption process, the separation of γ-Fe2O3@hydroxyapatite nanoparticles from the aqueous solution was simply achieved by applying an external magnetic field. The effects of different variables on the adsorption efficiency were studied simultaneously using an experimental design. The variables of interest were amount of magnetic hydroxyapatite nanoparticles, sample volume, pH, stirring rate, adsorption time, and temperature. The experimental parameters were optimized using a Box-Behnken design and response surface methodology after a Plackett-Burman screening design. Under the optimum conditions, the adsorption efficiencies of magnetic hydroxyapatite nanoparticles adsorbents toward NO3(-) and NO2(-) ions (100 mg/L) were in the range of 93-101%. The results revealed that the magnetic hydroxyapatite nanoparticles adsorbent could be used as a simple, efficient, and cost-effective material for the removal of nitrate and nitrite ions from environmental water and soil samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Reactions of metal ions and their clusters in the gas phase using laser ionization: ion cyclotron resonance spectroscopy

    International Nuclear Information System (INIS)

    Freiser, B.S.

    1981-04-01

    Two subjects are discussed in this report: advances in proposed studies on metal ion chemistry and expansion of laboratory facilities. The development of a combined pulsed laser source-ion cyclotron resonance spectrometer has proven to be a convenient and powerful method for generating metal ions and for studying their subsequent chemistry in the gas phase. The main emphasis of this research has been on the application of metal ions as a selective chemical ionization reagents and progress in this area are discussed. The goal is to identify trends in reactivity i.e. mechanisms useful in interpreting the chemical ionization spectra of unknown compounds and to test for the functional group selectivity of the various metal ions. The feasibility of these goals have been demonstrated in extensive studies on Cu + with esters and ketones, on Fe + with ethers, ketones, and hydrocarbons, and on Ti + with hydrocarbons. In addition, preliminary results on sulfur containing compounds and on a variety of other metallic ions have been obtained. Laboratory facilities were expanded from one ion cyclotron resonance (ICR) spectrometer to two, plus a third instrument the Fourier Transform Ion Cyclotron Resonance (FTICR) spectrometer

  17. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    Duesterhoeft, H.; Pippig, R.

    1986-01-01

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  18. Biosorption of heavy metal ions from aqueous solution by red macroalgae.

    Science.gov (United States)

    Ibrahim, Wael M

    2011-09-15

    Biosorption is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high biosorption capacities for a number of heavy metal ions. In this study, four species of red seaweeds Corallina mediterranea, Galaxaura oblongata, Jania rubens and Pterocladia capillacea were examined to remove Co(II), Cd(II), Cr(III) and Pb(II) ions from aqueous solution. The experimental parameters that affect the biosorption process such as pH, contact time and biomass dosage were studied. The maximum biosorption capacity of metal ions was 105.2mg/g at biomass dosage 10 g/L, pH 5 and contact time 60 min. The biosorption efficiency of algal biomass for the removal of heavy metal ions from industrial wastewater was evaluated for two successive cycles. Galaxaura oblongata biomass was relatively more efficient to remove metal ions with mean biosorption efficiency of 84%. This study demonstrated that these seaweeds constitute a promising, efficient, cheap and biodegradable sorbent biomaterial for lowering the heavy metal pollution in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Microstructured liquid metal electron and ion sources (MILMES/MILMIS)

    Energy Technology Data Exchange (ETDEWEB)

    Mitterauer, J [Technische Universitaet Wien (Austria). Institut fuer Allgemeine Elektrotechnik und Elektronik

    1997-12-31

    Ion or electron beams can be emitted from liquid metal wetted needles, or from capillaries or slits into which the liquid metal is allowed to flow. Large-area liquid metal field emission sources have been proposed recently, using either two-dimensional, regular arrays of cones or capillaries, or even a substrate with an intrinsically microstructured surface covered by a liquid metal film. This latter concept has been realized in a pilot experiment by in situ wicking and wetting of a porous sintered metal disc. Microstructured liquid metal ion or electron sources are capable of operating in a pulsed mode at a current level which is orders of magnitude above that for steady-state operation. (author). 3 figs., 10 refs.

  20. Solvent cleanup using base-treated silica gel solid adsorbent

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-06-01

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO 3 , dibutyl phosphate (DBP), UO 2 2+ , Pu 4+ , various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO 3 waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables

  1. Ultraviolet spectroscopy and metal ions detection

    International Nuclear Information System (INIS)

    Chaudry, M.A.

    1995-01-01

    The spectrochemical analysis is based on the interaction of radiation with the chemical species and depends on their nature, having pi, sigma or electrons, or d and f electrons, UV. Visible spectrophotometry has been used extensively in the detection and determination of both organics and inorganics. In UV detection the sensitivity is proportional to the bath length and the excitation coefficient of the given sample. It may be insensitive to many species unless these are converted to UV, absorbing derivatives. The technique has been applied for the monitoring of the effluents from HPLC, as chlorides or other complexes of various elements in this article the utility of HCl as reagent for the spectrophotometric determination of the metal ions like Al(III), As(III,IV), Ba(II), Cd(II), Ca(II) Ce(III), Cs(i), Cr(III,VI), Co(II), Cu(II), Dy(III), Eu(III), Gd(III), Au(III), Hf(IV), Ho(III), In(III), Fe(III), La(III), Pb(II), Lu (III), Mg(II), Mn(II), Hg(II), Mo(VI), Ni(II), Pd(II), Pt(IV), K(I), Pr(III), Re(VII), Ru(IV), Sm(III), Sc(III), Ag(I), Sr(II) Te(III), Th(IV), Sn(II,IV), Ti(III,IV), W(VI), U(VI), V(IV,V), Yb(III), Zn(II) AND Zr(IV) Ions i.e. for meta ions from d of the most of these metal ions has been found sufficient permit their detection in HPLC. Their molar absorptive have also been reported. Reference has also been provided to post column derivatization of some metal ions from d and f block elements for their detection in HPLC. (author) 12 figs.; 6 tabs.; 27 refs

  2. Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal.

    Science.gov (United States)

    Song, Jooyoung; Oh, Hyuntaek; Kong, Hyeyoung; Jang, Jyongsik

    2011-03-15

    Polyrhodanine was immobilized onto the inner surface of anodic aluminum oxide (AAO) membrane via vapor deposition polymerization method. The polyrhodanine modified membrane was applied to remove heavy metal ions from aqueous solution because polyrhodanine could be coordinated with specific metal ions. Several parameters such as initial metal concentration, contact time and metal species were evaluated systematically for uptake efficiencies of the fabricated membrane under continuous flow condition. Adsorption isotherms of Hg(II) ion on the AAO-polyrhodanine membrane were analyzed with Langmuir and Freundlich isotherm models. The adsorption rate of Hg(II) ion on the membrane was obeyed by a pseudo-second order equation, indicating the chemical adsorption. The maximum removal capacity of Hg(II) ion onto the fabricated membrane was measured to be 4.2 mmol/g polymer. The AAO-polyrhodanine membrane had also remarkable uptake performance toward Ag(I) and Pb(II) ions. Furthermore, the polyrhodanine modified membrane could be recycled after recovery process. These results demonstrated that the polyrhodanine modified AAO membrane provided potential applications for removing the hazardous heavy metal ions from wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Migration of trace heavy metals at the sea water/sediment interface

    International Nuclear Information System (INIS)

    Terada, Kikuo; Tomiyama, Chisato

    1984-01-01

    Migration behavior of some trace heavy metals such as Co(II), Cu(II), Mn(II) and Zn(II) at the sea water/sediment interface was investigated by tank experiments. The sea water which was doped with these metal ions (ppb to ppm levels) allowed to contact with the raw-, ignited- and autoclaved-marine sediments and the change of the concentration of each metal was traced at definite time intervals. At the end of the experiments, a core sample of the sediment was taken and analyzed for each metal in every 1 mm thick segment. On the other hand, the surface sediment was submitted to partial extraction with various kinds of reagents to estimate the chemical species of the metals captured in the sediment. While every metal ion was quickly adsorbed on surface of the raw sediment, a concentration gradient from surface to bottom of the water phase occurred in the ignited sediment system. The migration of manganese to the sediment phase was assumed to be concerned with bacterial activity in the sediment. Copper and zinc seemed to be adsorbed very quickly onto some fine sediment particles by the formation of organometallic complexes with some organic materials existing in the sediments. Cobalt migrated relatively fast downward within the sediment phase after its deposition. (author)

  4. Work function dependence and isotope effect in the production of negative hydrogen ions during sputtering of adsorbed hydrogen on Cs covered Mo(100) surfaces

    International Nuclear Information System (INIS)

    Yu, M.L.

    1977-01-01

    The enhancement of the H - yield, during sputtering of adsorbed hydrogen on a Mo(100) surface, by a Cs overlayer was investigated. An exponential dependence of the H - yield on the work function was observed for a wide range of Cs coverages. A simple electron tunneling model was proposed. A large reduction in the ion yield was also observed when D 2 replaced H 2 as the adsorbate

  5. Heavy metals adsorption on blast furnace sludges; Adsorcion de metales pesados sobre lodos de horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Perez, C.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1998-10-01

    Most of industrial liquid effluents have high contents of heavy metals. The recovery of these metals is environmental and economically interesting. In this work we study the use of sludge, a by-product of the steel industry, as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Pb``2+, Zn``2+, Cd``2+, Cu``2+ and Cr``3+ on the sludge was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on sludge adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Freundlich and Langumuir and the thermodynamic values {Delta}G, {Delta}H and {Delta}S corresponding to each adsorption process were calculated. Blast furnace sludge was found to be an effective sorbent for Pb, Zn, Cd, Cu and Cr-ions within the range of ion concentrations employed. (Author) 5 refs.

  6. Equilibrium, kinetics and mechanism of Au3+, Pd2+ and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin.

    Science.gov (United States)

    Wang, Zhongmin; Li, Xiaojuan; Liang, Haijun; Ning, Jingliang; Zhou, Zhide; Li, Guiyin

    2017-10-01

    In this study, a novel bio-adsorbent (PT-GO) was prepared by functionalization persimmon tannin (PT) with graphene oxide (GO) and the effective adsorption behaviors of Au 3+ , Pd 2+ and Ag + ions from aqueous solution was investigated. The PT-GO was characterized by Fourier transform infrared spectrometer (FTIR), scanning electronic microscope (SEM), thermogravimetric analysis (TGA) and Zeta potential. Many influence factors such as pH value, bio-adsorbent dosage, initial concentration of metal ions and contact time were optimized. The maximum adsorption capacity for Au 3+ , Pd 2+ and Ag + was 1325.09mg/g, 797.66mg/g and 421.01mg/g, respectively. The equilibrium isotherm for the adsorption of Au 3+ and Ag + on PT-GO were found to obey the Langmuir model, while the Freundlich model fitted better for Pd 2+ . The adsorption process of Au 3+ , Pd 2+ presented relatively fast adsorption kinetics with pseudo-second-order equation as the best fitting model, while the pseudo-first-order kinetic model was suitable for describing the adsorption of Ag + . Combination of ion exchange, electrostatic interaction and physical adsorption was the mechanism for adsorption of Au 3+ , Pd 2+ and Ag + onto PT-GO bio-adsorbent. Therefore, the PT-GO bio-adsorbent would be an ideal adsorbent for removal of precious metal ions and broaden the potential applications of persimmon tannin in environmental research. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Simultaneous determination of copper, cobalt, and mercury ions in water samples by solid-phase extraction using carbon nanotube sponges as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography.

    Science.gov (United States)

    Wang, Lei; Zhou, Jia-Bin; Wang, Xia; Wang, Zhen-Hua; Zhao, Ru-Song

    2016-06-01

    Recently, a sponge-like material called carbon nanotube sponges (CNT sponges) has drawn considerable attention because it can remove large-area oil, nanoparticles, and organic dyes from water. In this paper, the feasibility of CNT sponges as a novel solid-phase extraction (SPE) adsorbent for the enrichment and determination of heavy metal ions (Co(2+), Cu(2+), and Hg(2+)) was investigated for the first time. Sodium diethyldithiocarbamate (DDTC) was used as the chelating agent and high performance liquid chromatography (HPLC) for the final analysis. Important factors which may influence extraction efficiency of SPE were optimized, such as the kind and volume of eluent, volume of DDTC, sample pH, flow rate, etc. Under the optimized conditions, wide range of linearity (0.5-400 μg L(-1)), low limits of detection (0.089~0.690 μg L(-1); 0.018~0.138 μg), and good repeatability (1.27~3.60 %, n = 5) were obtained. The developed method was applied for the analysis of the three metal ions in real water samples, and satisfactory results were achieved. All of these findings demonstrated that CNT sponges will be a good choice for the enrichment and determination of target ions at trace levels in the future.

  8. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions

    International Nuclear Information System (INIS)

    Yu, Jin-Gang; Yu, Lin-Yan; Yang, Hua; Liu, Qi; Chen, Xiao-Hong; Jiang, Xin-Yu; Chen, Xiao-Qing; Jiao, Fei-Peng

    2015-01-01

    Due to their high adsorption capacities, carbon-based nanomaterials such as carbon nanotubes, activated carbons, fullerene and graphene are widely used as the currently most promising functional materials. Since its discovery in 2004, graphene has exhibited great potential in many technological fields, such as energy storage materials, supercapacitors, resonators, quantum dots, solar cells, electronics, and sensors. The large theoretical specific surface area of graphene nanosheets (2630 m 2 ·g −1 ) makes them excellent candidates for adsorption technologies. Further, graphene nanosheets could be used as substrates for decorating the surfaces of nanoparticles, and the corresponding nanocomposites could be applied as novel adsorbents for the removal of low concentrated contaminants from aqueous solutions. Therefore, graphene nanosheets will challenge the current existing adsorbents, including other types of carbon-based nanomaterials. - Highlights: • The recent progress of application of graphene in adsorption was presented. • The design and practical application of graphene based composites was discussed. • The future trends and prospects of graphene were analyzed and proposed

  9. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT).

    Science.gov (United States)

    Maurer, Reinhard J; Reuter, Karsten

    2013-07-07

    Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.

  10. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  11. Interaction of Hydroxyproline with Bivalent Metal Ions in Chemical ...

    African Journals Online (AJOL)

    NICO

    The stability constants of the ML and ML2 complex species of some metal ions, namely beryllium(II) and cobalt(II), with hydroxyproline were ... metal ions have several significant applications in biological systems.3–20 Beryllium is one ... 1 filter paper for chromatography was used for the purpose of electrophoresis. An Elico ...

  12. Evaluation of natural clay Brasgel as adsorbent in removal of lead in synthetic waste water

    International Nuclear Information System (INIS)

    Lima, W.S.; Rodrigues, M.G.F.; Mota, M.F.; Patricio, A.C.L.; Silva, M.M.

    2012-01-01

    The smectite clays have high adsorption capacity and cation exchange. Due to its chemical and physical characteristics, they can be effectively used as adsorbent of pollutants (such as metal ions). The initial objective of this study was to characterize the clay Brasgel through the techniques of X-Ray Diffraction (XRD), X-Ray Spectrometry by Energy Dispersive (EDX) and nitrogen adsorption (BET method), seeking its use in removing lead (Pb 2+ ) from synthetic effluents. System was used in finite bath to assess the potential removal of lead (Pb 2+ ), following a 2 2 factorial experimental design with three center point experiments, taking as input variables: pH and initial concentrations of lead (Pb 2+ ). The clay has Brasgel clay in its composition that characterize it as a smectite clay. By having a large surface area, this clay showed great potential on the adsorption of metal ions. (author)

  13. High-current pulsed ion source for metallic ions

    International Nuclear Information System (INIS)

    Gavin, B.; Abbott, S.; MacGill, R.; Sorensen, R.; Staples, J.; Thatcher, R.

    1981-03-01

    A new sputter-ion PIG source and magnet system, optimized for intermediate charge states, q/A of 0.02 to 0.03, is described. This source will be used with the new Wideroe-based injector for the SuperHILAC. Pulsed electrical currents of several emA of heavy metal ions have been produced in a normalized emittance area of .05π cm-mr. The source system is comprised of two electrically separate anode chambers, one in operation and one spare, which can be selected by remote control. The entire source head is small and quickly removable

  14. Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium.

    Science.gov (United States)

    Xue, Mei; Chitrakar, Ramesh; Sakane, Kohji; Hirotsu, Takahiro; Ooi, Kenta; Yoshimura, Yuji; Feng, Qi; Sumida, Naoto

    2005-05-15

    Adsorption of the organic sulfur compounds thiophene (TP) and 1-benzothiophene (1-BTP) in an organic model solution of hydrodesulfurizated gasoline (heptane with 1 wt% toluene and 0.156 mM (5 ppmw as sulfur) TP or 1-BTP) was studied by a batch method at 80 degrees C using metal-ion-exchanged Y-zeolites. Although NaY-zeolite or its acid-treated material rarely adsorbed the organic sulfur compounds, NaY-zeolites exchanged with Ag+, Cu2+, and Ce3+ ions and NH(4)Y-zeolites exchanged with Ce3+ ions showed markedly high adsorptive capacities for TP and 1-BTP. The sulfur uptake increased in the order CuY-zeolite(Na)

  15. Alzheimer’s disease: How metal ions define β-amyloid function

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    focuses on the essential coordination chemistry and biochemistry that relate transition metal ions iron, copper, and zinc to β-amyloid (Aβ) and most likely define the peptide's roles in neurons. The metal-Aβ interactions have elements of both gain of toxic function, as usually considered, but also loss......Alzheimer’s disease is increasingly recognized to be linked to the function and status of metal ions, and recently, the amyloid hypothesis has been strongly intertwined with the metal ion hypothesis; in fact, these two hypotheses fit well together and are not mutually contradictory. This review...... of natural functions, as emphasized in this review. Both these aspects and their relationships are discussed and their implications for future therapeutic strategies are outlined....

  16. Adsorption of some heavy metals on sulphate and phosphate modified kaolinite clay

    International Nuclear Information System (INIS)

    Adebowale, K.O.; Unuabonah, I.E.; Olu-Owolabi, B.I.

    2003-12-01

    Kaolinite clay, in bright white lumps collected from from Ubulu-Ukwu, Delta State, Nigeria, was modified with 200μ.ml -1 of phosphate and sulphate anion and thereafter used to adsorb some heavy metals viz. lead (Pb), Cadmium (Cd), Zinc (Zn) and Copper (Cu) from aqueous solution of the metals. The metal ions showed the greatest affinity for the P-modified (P-mod) sorbents. The order of adsorption of P-mod follows the order: P-mod Pb > P-mod Cu > P-mod Zn > P-mod Cd . Desorption studies showed that the P-modified sorbents exhibited a very strong ability to specifically adsorb lead, copper and zinc and are therefore poorly desorbed. All the metals were easily desorbed from the unmodified sorbent. The potential of the modified sorbents are enumerated. (author)

  17. Size dependence investigations of hot electron cooling dynamics in metal/adsorbates nanoparticles

    International Nuclear Information System (INIS)

    Bauer, Christophe; Abid, Jean-Pierre; Girault, Hubert H.

    2005-01-01

    The size dependence of electron-phonon coupling rate has been investigated by femtosecond transient absorption spectroscopy for gold nanoparticles (NPs) wrapped in a shell of sulfate with diameter varying from 1.7 to 9.2 nm. Broad-band spectroscopy gives an overview of the complex dynamics of nonequilibrium electrons and permits the choice of an appropriate probe wavelength for studying the electron-phonon coupling dynamics. Ultrafast experiments were performed in the weak perturbation regime (less than one photon in average per nanoparticle), which allows the direct extraction of the hot electron cooling rates in order to compare different NPs sizes under the same conditions. Spectroscopic data reveals a decrease of hot electron energy loss rates with metal/adsorbates nanosystem sizes. Electron-phonon coupling time constants obtained for 9.2 nm NPs are similar to gold bulk materials (∼1 ps) whereas an increase of hot electron cooling time up to 1.9 ps is observed for sizes of 1.7 nm. This is rationalized by the domination of surface effects over size (bulk) effects. The slow hot electron cooling is attributed to the adsorbates-induced long-lived nonthermal regime, which significantly reduces the electron-phonon coupling strength (average rate of phonon emission)

  18. Metal-ion interactions and the structural organization of Sepia eumelanin.

    Science.gov (United States)

    Liu, Yan; Simon, John D

    2005-02-01

    The structural organization of melanin granules isolated from ink sacs of Sepia officinalis was examined as a function of metal ion content by scanning electron microscopy and atomic force microscopy. Exposing Sepia melanin granules to ethelenediaminetetraacetic acid (EDTA) solution or to metal salt solutions changed the metal content in the melanin, but did not alter granular morphology. Thus ionic forces between the organic components and metal ions in melanin are not required to sustain the natural morphology once the granule is assembled. However, when aqueous suspensions of Sepia melanin granules of varying metal content are ultra-sonicated, EDTA-washed and Fe-saturated melanin samples lose material to the solution more readily than the corresponding Ca(II) and Mg(II)-loaded samples. The solubilized components are found to be 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-rich constituents. Associated with different metal ions, Na(I), Ca(II) and Mg(II) or Fe(III), these DHICA-rich entities form distinct two-dimensional aggregation structures when dried on the flat surface of mica. The data suggest multiply-charged ions play an important role in assisting or templating the assembly of the metal-free organic components to form the three-dimensional substructure distributed along the protein scaffold within the granule.

  19. PEMANFAATAN KARBON AKTIF ARANG BATUBARA (KAAB UNTUK MENURUNKAN KADAR ION LOGAM BERAT Cu2+ DAN Ag+ PADA LIMBAH CAIR INDUSTRI

    Directory of Open Access Journals (Sweden)

    Kusmiyati Kusmiyati

    2012-05-01

    Full Text Available UTILIZATION OF CHAR COAL ACTIVATED CARBON (CCAB FOR HEAVY IONS (Cu2+ AND Ag+ REDUCTION FROM INDUSTRIAL WASTE WATER. Industrial wastewater may contain heavy metals such as Cu and Ag those are harmful to the environment if discharged without pretreatment. One of the methods to reduce heavy metals in wastewater is adsorption, to separate certain components from liquid to the surface of solids. Adsorption is a simple method, but most of the adsorbents are expensive, therefore a cheaper adsorbent is required to reduce the cost of the adsorption process. This work utilized bottom ash as an adsorbent. Bottom ash is a waste of combustion products in the coal industry, which contain potentially harmful materials. Activation of bottom ash was made by soaking in peroxide and continuing by heating at a temperature of 500oC. This study was aimed to determine the influence of process parameters (concentration, pH and processing time to the percentage of amount heavy metals adsorbed, to study the equation isotherm adsorption using Langmuir and Freundlich models, and to calculate the kinetic constants of adsorption based on pseudo -first- order and pseudo-second-order kinetic model. The experiment was conducted in the batch system, where 10 grams bottom ash was mixed with 400 ml of synthetic waste. AAS was used to determine the heavy metals content in the waste solution. The results showed that bottom ash can be used to reduce heavy metals of Cu2+ and Ag+, the optimum condition when the concentration of 25 ppm under acidic conditions, bottom ash was able to adsorb Cu2+ metals ion by 62.79-80.25% at pH 4, and 65.54-85.98% at neutral pH with the same adsorption time of 300 min. For the ion metals Ag+, at acidic solution the metals ion can be adsorbed by 56.51-82.21%, while at neutral pH conditions 59.92-87.55%. Adsorption of bottom ash follows the model of Freundlich isotherm adsorption at acidic and neutral condition, the correlation coefficient (R2obtained was

  20. Defect-impurity interactions in ion-implanted metals

    International Nuclear Information System (INIS)

    Turos, A.

    1986-01-01

    An overview of defect-impurity interactions in metals is presented. When point defects become mobile they migrate towards the sinks and on the way can be captured by impurity atoms forming stable associations so-called complexes. In some metallic systems complexes can also be formed athermally during ion implantation by trapping point defects already in the collision cascade. An association of a point defect with an impurity atom leads to its displacement from the lattice site. The structure and stability of complexes are strongly temperature dependent. With increasing temperature they dissociate or grow by multiple defect trapping. The appearance of freely migrating point defects at elevated temperatures, due to ion bombardment or thermal annealing, causes via coupling with defect fluxes, important impurity redistribution. Because of the sensitivity of many metal-in-metal implanted systems to radiation damage the understanding of this processes is essential for a proper interpretation of the lattice occupancy measurements and the optimization of implantation conditions. (author)

  1. Metal ion interaction of an oligopeptide fragment representing the regulatory metal binding site of a CueR protein

    DEFF Research Database (Denmark)

    Jancsó, Attila; Szokolai, Hajnalka; Roszahegyi, Livia

    2013-01-01

    Metalloregulatory proteins of the MerR family are transcriptional activators that sense/control the concentration of various metal ions inside bacteria.1 The Cu+ efflux regulator CueR, similarly to other MerR proteins, possesses a short multiple Cys-containing metal binding loop close to the C...... of cognate metal ions.2 Nevertheless, it is an interesting question whether the same sequence, when removed from the protein, shows a flexibility to adopt different coordination environments and may efficiently bind metal ions having preferences for larger coordination numbers....

  2. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    concentration on the uptake of metal ions have been studied. The uptake ... employed for the removal of heavy metal pollutants from industrial waste water. ... nitrate, mercuric chloride, cadmium nitrate and potassium dichromate salts. ... polymer resin was determined by reacting 50, 100, 150, 200, 250 and 300 ppm of metal.

  3. Investigation of metal ions in fusion plasmas using emission spectroscopy

    International Nuclear Information System (INIS)

    Tale, I.

    2005-01-01

    Full text: The Latvian and Portugal Associations are performing development of advanced plasma - facing system using the liquid metal limiter. The objectives of this project require study of the influence of the liquid metal limiter on the main plasma parameters, including concentration of evaporated metal atoms in plasma. The fusion plasmas are related to the dense hot plasmas. The required average ion temperature according to the ITER project (International Thermonuclear Experimental Reactor) is 8,0 keV (9,3 x 10 7 0 K), the average electron temperature - 8,9 keV (1,04 x 10 8 0 K). Plasma temperature operated in the research tokamak ISSTOK, involved in testing of liquid metal limiter concept is considerably less, being of order of 10 50 K. The ionization degree of metal atoms considerably depends on the plasma ion temperature. Density of metal vapours in plasma can be estimated using the following two spectroscopic methods: The fluorescence of the multiple ionised metal ions in steady state concentration; The charge exchange emission during ionisation of evaporated metal ions. In the first step of development of testing system of metal vapours the equipment and instrumentation for charge exchange spectroscopy of Ga and In has been elaborated taking into account the following features of plasma emission. The Ga emission lines occur on the background high temperature plasma black body emission and stray light. Radial distribution of Ga in plasma in the facing plane of Ga flux is desirable

  4. Application of monocarboxylic acids for the extraction of metal ions-literature survey

    International Nuclear Information System (INIS)

    Brzozka, Z.; Rozycki, C.

    1980-01-01

    In the paper there is presented a literature review concerning the application of monocarboxylic acids for extraction of metal ions. The following problems are discussed: characteristic of monocarboxylic acids and their mixtures, the equilibria between the acid solution in organic solvent and aqueous phase, the mechanism of acid partition, complexes of carboxylic acids and metal ions in aqueous phase, mechanism of extraction by means of carboxylic acids as well as the problems concerning the extraction of individual metal ions. Data about the extraction of metal ions are presented in table. The 138 references are given. (author)

  5. Uptake of metal ions by a silica-based tetraphenylporphyrin sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Pyrzynska, K.; Sadowska, M.; Trojanowicz, M.

    1999-09-01

    The [5-p-carboxyphenyl-10,15,20-triphenyl]porphyrin (TPP) covalently attached to aminopropyl silica gel was examined with respect to the sorption of transition metal ions. The distribution coefficients (K{sub d}) are reported for some metal ions with this new sorbent as a function of pH. It was found that in optimum pH conditions the sorption of Cu(II) and Fe(III) is much faster than that of Co(II) and Cr(III). The binding of metal ions is strongly affected by the presence of various species accelerating the complex formation. The application of porphyrin ligands for preconcentration and metal-matrix separation was also examined using complex formation in solution coupled with an anion exchange resin and column chelation procedure, e.g. sorption of metal on an anion exchanger previously loaded with tetra(4-carboxyphenyl)porphyrin.

  6. Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass

    Directory of Open Access Journals (Sweden)

    Muhammad Muneeb Ur Rahman Khattak

    2017-01-01

    Full Text Available Heavy metals contamination of drinking water has significant adverse effects on human health due to their toxic nature. In this study a new adsorbent, magnetic graphitic nanostructures were prepared from watermelon waste. The adsorbent was characterized by different instrumental techniques (surface area analyzer, FTIR, XRD, EDX, SEM, and TG/DTA and was used for the removal of heavy metals (As, Cr, Cu, Pb, and Zn from water. The adsorption parameters were determined for heavy metals adsorption using Freundlich and Langmuir isotherms. The adsorption kinetics and effect of time, pH, and temperature on heavy metal ions were also determined. The best fits were obtained for Freundlich isotherm. The percent adsorption showed a decline at high pH. Best fit was obtained with second-order kinetics model for the kinetics experiments. The values of ΔH° and ΔG° were negative while that of ΔS° was positive. The prepared adsorbent has high adsorption capacities and can be efficiently used for the removal of heavy metals from water.

  7. Cesium adsorption ability and stability of metal hexacyanoferrate irradiated with gamma-rays

    International Nuclear Information System (INIS)

    Arisaka, Makoto; Watanabe, Masayuki; Ishizaki, Manabu; Kurihara, Masato; Chen, Rongzhi; Tanaka, Hisashi

    2013-01-01

    The influence of irradiation with gamma-rays to metal hexacyanoferrate (MHCF: M = Fe, Cu or Ni), which is known as an adsorbent for selective adsorption of cesium (Cs) ion in solution, on Cs adsorption ability and stability was investigated in HNO 3 solutions. Under the adsorbed dose conditions (50 - 300 kGy), it was found that the MHCF is fully stable although the radiolytic decomposition of MHCF was slightly observed with an increase of the total adsorbed dose, which was confirmed by an increment of Fe, Cu or Ni concentration in HNO 3 solution after the irradiation. The weight percent of the metal in the solution to initial weight of MHCF was less than unity. Moreover, no change in composition of carbon, hydrogen and nitrogen in MHCF was observed. On the other hand, the distribution coefficients of Cs to the irradiated MHCF were independent of the total adsorbed dose. This indicates that the Cs adsorption ability was maintained under gamma-ray irradiation. (author)

  8. Application of Iron Oxide Nano materials for the Removal of Heavy Metals

    International Nuclear Information System (INIS)

    Dave, P.N.; Chopda, L.V.

    2014-01-01

    In the 21st century water polluted by heavy metal is one of the environment problems. Various methods for removal of the heavy metal ions from the water have extensively been studied. Application of iron oxide nana particles based nano materials for removal of heavy metals is well-known adsorbents for remediation of water. Due to its important physiochemical property, inexpensive method and easy regeneration in the presence of external magnetic field make them more attractive toward water purification. Surface modification strategy of iron oxide nanoparticles is also used for the remediation of water increases the efficiency of iron oxide for the removal of the heavy metal ions from the aqueous system.

  9. The metal binding potential of a dairy isolate

    Directory of Open Access Journals (Sweden)

    K. Ramyakrishna

    2017-12-01

    Full Text Available Excess iron in water resources can lead to health hazards and problems. The ability of lactic acid bacteria to bind iron has not yet been widely studied. In the present study, sorption of iron ions from aqueous solutions onto lactic acid bacterium was determined. Elemental analyses were carried out by inductively coupled plasma optical emission spectrometry. The kinetics of Fe(III biosorption was investigated at different initial concentrations of metal ion. The highest uptake capacity was found to be 16 mg of Fe(III per gram of adsorbent with a contact time of 24 hr and at initial metal ion concentration of 34 mg/L. The uptake capacity of Fe(III ion varied from 83.2 to 46.7% across the range of initial metal ion concentrations. The equilibrium data were evaluated by Langmuir and Freundlich isotherms, and were found to fit better with the latter (R2 = 0.9999. The surface morphology of the biomass and percentage of metal was characterized by using a scanning electron microscope equipped with energy dispersive X-ray spectroscopy. The functional groups on the cell wall surface of biomass involved in biosorption of heavy metals were studied by Fourier transform infrared spectroscopy spectrum.

  10. Coordination of cassava starch to metal ions and thermolysis of ...

    African Journals Online (AJOL)

    Cassava starch formed Werner-type complexes with ions of metals from the transition groups. This was proven by conductivity and electron paramagnetic resonance measurements. The coordination of starch to central metal ions influenced the thermal decomposition of starch. As a rule complexes started to decompose at ...

  11. Alkali metal adsorbate sputtering by molecular impact

    International Nuclear Information System (INIS)

    Moran, J.P.; Wachman, H.Y.; Trilling, L.

    1974-01-01

    An exploratory study of the sputtering by a krypton molecular beam of rubidium adsorbed at low coverage on a tungsten substrate has been described in a previous paper. An extension of this work is reported now

  12. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jin-Gang, E-mail: yujg@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Yu, Lin-Yan; Yang, Hua; Liu, Qi [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Chen, Xiao-Hong [Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083 (China); Jiang, Xin-Yu [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Chen, Xiao-Qing, E-mail: xqchen@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Jiao, Fei-Peng, E-mail: jiaofp@163.com [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China)

    2015-01-01

    Due to their high adsorption capacities, carbon-based nanomaterials such as carbon nanotubes, activated carbons, fullerene and graphene are widely used as the currently most promising functional materials. Since its discovery in 2004, graphene has exhibited great potential in many technological fields, such as energy storage materials, supercapacitors, resonators, quantum dots, solar cells, electronics, and sensors. The large theoretical specific surface area of graphene nanosheets (2630 m{sup 2}·g{sup −1}) makes them excellent candidates for adsorption technologies. Further, graphene nanosheets could be used as substrates for decorating the surfaces of nanoparticles, and the corresponding nanocomposites could be applied as novel adsorbents for the removal of low concentrated contaminants from aqueous solutions. Therefore, graphene nanosheets will challenge the current existing adsorbents, including other types of carbon-based nanomaterials. - Highlights: • The recent progress of application of graphene in adsorption was presented. • The design and practical application of graphene based composites was discussed. • The future trends and prospects of graphene were analyzed and proposed.

  13. Photoemission spectroscopy of surfaces and adsorbates

    International Nuclear Information System (INIS)

    Chiang, T.C.; Kaindl, G.; Himpsel, F.J.; Eastman, D.E.

    1982-01-01

    Core level photoelectron spectroscopy is providing new information concerning the electronic properties of adsorbates and surfaces. Several examples will be discussed, including studies of adsorbed rare gas submonolayers and multilayers as well as clean metal surfaces. For rare gas multilayers adsorbed on metal surfaces, the photoelectrons and Auger electrons exhibit well-resolved increases in kinetic energy with decreasing distance between the excited atom and the substrate, allowing a direct labeling of the layers. These energy shifts are mainly due to the substrate screening effects, and can be described well by an image-charge model. For a Kr/Xe bilayer system prepared by first coating a Pd substrate with a monolayer of Kr and then overcoating with a layer of Xe, a thermally activated layer inversion process is observed when the temperature is raised, with Xe coming in direct contact with the substrate. For rare gas submonolayers adsorbed on the Al(111) surface, coverage-dependent core level shift and work function measurements provide information about the adatom spatial distributions, polarizabilities, and dipole moments for the ground and excited states. We have also studied the 2p core level shifts for a clean Al(001) surface relative to the bulk. The shifts have a large contribution from the initial-state effects

  14. Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening--current concepts.

    Science.gov (United States)

    Cadosch, Dieter; Chan, Erwin; Gautschi, Oliver P; Filgueira, Luis

    2009-12-15

    Metal implants are essential therapeutic tools for the treatment of bone fractures and joint replacements. The metals and metal alloys used in contemporary orthopedic and trauma surgery are well tolerated by the majority of patients. However, complications resulting from inflammatory and immune reactions to metal implants have been well documented. This review briefly discusses the different mechanisms of metal implant corrosion in the human body, which lead to the release of significant levels of metal ions into the peri-implant tissues and the systemic blood circulation. Additionally, this article reviews the effects of the released ions on bone metabolism and the immune system and discusses their involvement in the pathophysiological mechanisms of aseptic loosening and metal hypersensitivity in patients with metal implants.

  15. Cu II Removal from Industrial Wastewater Using Low Cost Adsorbent

    Directory of Open Access Journals (Sweden)

    Salwa Hadi Ahmed

    2018-01-01

    Full Text Available Study the possibility of utilization of waste tires rubber ash (WTRA as a low-cost adsorbent and are available as a type of solid waste for the removal of copper ions from industrial wastewater. Depending on batch adsorption experiments, the effect of different parameters including pH, adsorbent dosage WTRA, contact time, initial concentration of the ion and shacking speed were studied. Results showed that the highest removal Cu+2 ions was 97.8% at pH equal to 6, 120 min contact time, dose WTRA 1.5 g/L, shacking speed 150 rpm. The experimental data were analyzed using the Freundlich and Langmuir isotherm models showed great compatibility with Langmuir model (R2=0.923. Adsorption kinetics was studied and the data was showed agree with Pseudo-first-order equation where the value of (kt=0.5115/min. The study also showed the possibility of using WTRA efficiently as adsorbent and low cost in the removal of copper ions from industrial waste water. DOI: http://dx.doi.org/10.25130/tjes.24.2017.17

  16. Linear and nonlinear surface spectroscopy of supported size selected metal clusters and organic adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Thaemer, Martin Georg

    2012-03-08

    The spectroscopic investigation of supported size selected metal clusters over a wide wavelength range plays an important role for understanding their outstanding catalytic properties. The challenge which must be overcome to perform such measurements is the difficult detection of the weak spectroscopic signals from these samples. As a consequence, highly sensitive spectroscopic methods are applied, such as surface Cavity Ringdown Spectroscopy and surface Second Harmonic Generation Spectroscopy. The spectroscopic apparatus developed is shown to have a sensitivity which is high enough to detect sub-monolayer coverages of adsorbates on surfaces. In the measured spectra of small supported silver clusters of the sizes Ag{sub 4}2, Ag{sub 2}1, Ag{sub 9}, and Ag atoms a stepwise transition from particles with purely metallic character to particles with molecule-like properties can be observed within this size range.

  17. Real-time detection of metal ions using conjugated polymer composite papers.

    Science.gov (United States)

    Lee, Ji Eun; Shim, Hyeon Woo; Kwon, Oh Seok; Huh, Yang-Il; Yoon, Hyeonseok

    2014-09-21

    Cellulose, a natural polymeric material, has widespread technical applications because of its inherent structural rigidity and high surface area. As a conjugated polymer, polypyrrole shows practical potential for a diverse and promising range of future technologies. Here, we demonstrate a strategy for the real-time detection and removal of metal ions with polypyrrole/cellulose (PPCL) composite papers in solution. Simply, the conjugated polymer papers had different chemical/physical properties by applying different potentials to them, which resulted in differentiable response patterns and adsorption efficiencies for individual metal ions. First, large-area PPCL papers with a diameter of 5 cm were readily obtained via vapor deposition polymerization. The papers exhibited both mechanical flexibility and robustness, in which polypyrrole retained its redox property perfectly. The ability of the PPCL papers to recognize metal ions was examined in static and flow cells, in which real-time current change was monitored at five different applied potentials (+1, +0.5, 0, -0.5, and -1 V vs. Ag/AgCl). Distinguishable signals in the PPCL paper responses were observed for individual metal ions through principal component analysis. Particularly, the PPCL papers yielded unique signatures for three metal ions, Hg(ii), Ag(i), and Cr(iii), even in a real sample, groundwater. The sorption of metal ions by PPCL papers was examined in the flow system. The PPCL papers had a greatly superior adsorption efficiency for Hg(ii) compared to that of the other metal ions. With the strong demand for the development of inexpensive, flexible, light-weight, and environmentally friendly devices, the fascinating characteristics of these PPCL papers are likely to provide good opportunities for low-cost paper-based flexible or wearable devices.

  18. Separation of strontium ions from other alkaline earth metal ions using masking reagent

    International Nuclear Information System (INIS)

    Komatsu, Y.

    1996-01-01

    Cs + and Sr 2+ have been well known as serious elements in high level radioactive waste. Separation of Cs + has already been successful when using an ion-exchange method from solution in the presence of other alkali metal ions. The separation of Sr 2+ is, however, not so easy by any known separation method such as solvent-extraction and ion-exchange methods. This is because Sr 2+ is in the middle of the selectivity series, which is Mg 2+ > Ca 2+ > Sr 2+ > Ba 2+ for the solvent-extraction method and Ba 2+ > Sr 2+ > Ca 2+ > Mg 2+ for the ion- exchange method. In the present study, separation of strontium from other alkaline earth metal ions was studied by a combined use of three types of separation methods at 298 K: the solvent-extraction method was applied for the first separation, in which thenoyltrifluoroacetone (TTA, extractant) and trioctylphosphine oxide ( TOPO, adduct forming ligand) were used for the organic phase of the system. The separation factors for each combination of four alkaline earth metal ions were determined by the values of the distribution ratio. The Mg 2+ was well separated from Sr 2+ by the TTA-TOPO system. However, the separation of the combinations of Ca 2+ -Sr 2+ and Sr 2+ -Ba 2+ was not complete by the above solvent-extraction system. The second separation method, an ion-exchange method was applied using dihydrogen tetratitanate hydrate fibers (H 2 Ti 4 O 9 nH 2 O) as an ion exchanger to separate Sr 2+ and Ba 2+ . The separation factors for each combination of four alkaline earth metal ions were calculated by the values of the distribution coefficients. Ba 2+ was well separated from Sr 2+ by the ion-exchange method. To separate Ca 2+ and Sr 2+ , however, a modified solvent-extraction method was finally used in which H 2 Ti 4 O 9 nH 2 O was used as a masking reagent of Sr 2+ . After the dihydrogen tetratitanate hydrate fibers were contacted with the aqueous solution containing Ca 2+ and Sr 2+ , the organic solution containing TTA and TOPO

  19. Development of a method employing chitosan to remove metallic ions from wastewater

    International Nuclear Information System (INIS)

    Janegitz, Bruno Campos; Lourencao, Bruna Claudia; Lupetti, Karina Omuro; Fatibello-Filho, Orlando

    2007-01-01

    In this work a method was developed for removing metallic ions from wastewaters by co-precipitation of Cu 2+ , Pb 2+ , Cd 2+ , Cr 3+ and Hg 2+ with chitosan and sodium hydroxide solution. Solutions of these metallic ions in the range from 0.55 to 2160 mg L -1 were added to chitosan dissolved in 0.05 mol L -1 HCl. For the co-precipitation of metal-chitosan-hydroxide a 0.17 mol L -1 NaOH solution was added until pH 8.5-9.5. A parallel study was carried out applying a 0.17 mol L -1 NaOH solution to precipitate those metallic ions. Also, a chitosan solid phase column was used for removing those metallic ions from wastewaters. (author)

  20. Radioactive Barium Ion Trap Based on Metal-Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater.

    Science.gov (United States)

    Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-04-06

    Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution.

  1. Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed

    Directory of Open Access Journals (Sweden)

    T.M. Zewail

    2015-03-01

    Full Text Available Spouted bed contactor is a hybrid of fixed and fluidized bed contactors, which retains the advantages of each with good hydrodynamic conditions. The aim of the present study is to investigate the performance of a batch conical air spouted vessel for heavy metal removal by strong cation exchange resins (AMBERJET 1200 Na. The effect of various parameters such as type of heavy metal ions (Ni+2 and Pb+2, contact time, superficial air velocity and initial heavy metal ion concentration on % heavy metal ion removal has been investigated. It has been found that under optimum conditions 98% and 99% removal of Ni+2 and Pb+2 were achieved respectively. Several kinetic models were used to test the experimental data and to examine the controlling mechanism of the sorption process. The present results of Ni+2 and Pb+2 well fit pseudo second order kinetic model with a high correlation coefficient. Both film diffusion and intra-particle diffusion contribute to the ion exchange process. The present study revealed that spouted bed vessel may provide an effective alternative for conducting ion exchange reactions.

  2. Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen.

    Science.gov (United States)

    Gurlo, Alexander

    2006-10-13

    Tin dioxide is the most commonly used material in commercial gas sensors based on semiconducting metal oxides. Despite intensive efforts, the mechanism responsible for gas-sensing effects on SnO(2) is not fully understood. The key step is the understanding of the electronic response of SnO(2) in the presence of background oxygen. For a long time, oxygen interaction with SnO(2) has been treated within the framework of the "ionosorption theory". The adsorbed oxygen species have been regarded as free oxygen ions electrostatically stabilized on the surface (with no local chemical bond formation). A contradiction, however, arises when connecting this scenario to spectroscopic findings. Despite trying for a long time, there has not been any convincing spectroscopic evidence for "ionosorbed" oxygen species. Neither superoxide ions O(2)(-), nor charged atomic oxygen O,(-) nor peroxide ions O(2)(2-) have been observed on SnO(2) under the real working conditions of sensors. Moreover, several findings show that the superoxide ion does not undergo transformations into charged atomic oxygen at the surface, and represents a dead-end form of low-temperature oxygen adsorption on reduced metal oxide.

  3. MCTBI: a web server for predicting metal ion effects in RNA structures.

    Science.gov (United States)

    Sun, Li-Zhen; Zhang, Jing-Xiang; Chen, Shi-Jie

    2017-08-01

    Metal ions play critical roles in RNA structure and function. However, web servers and software packages for predicting ion effects in RNA structures are notably scarce. Furthermore, the existing web servers and software packages mainly neglect ion correlation and fluctuation effects, which are potentially important for RNAs. We here report a new web server, the MCTBI server (http://rna.physics.missouri.edu/MCTBI), for the prediction of ion effects for RNA structures. This server is based on the recently developed MCTBI, a model that can account for ion correlation and fluctuation effects for nucleic acid structures and can provide improved predictions for the effects of metal ions, especially for multivalent ions such as Mg 2+ effects, as shown by extensive theory-experiment test results. The MCTBI web server predicts metal ion binding fractions, the most probable bound ion distribution, the electrostatic free energy of the system, and the free energy components. The results provide mechanistic insights into the role of metal ions in RNA structure formation and folding stability, which is important for understanding RNA functions and the rational design of RNA structures. © 2017 Sun et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  4. The ion implantation of metals and engineering materials

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1978-01-01

    An entirely new method of metal finishing, by the process of ion implantation, is described. Introduced at first for semiconductor device applications, this method has now been demonstrated to produce major and long-lasting improvements in the durability of material surfaces, as regards both wear and corrosion. The process is distinct from that of ion plating, and it is not a coating technique. After a general description of ion implantation examples are given of its effects on wear behaviour (mostly in steels and cemented carbides) and on corrosion, in a variety of metals and alloys. Its potential for producing decorative finishes is mentioned briefly. The equipment necessary for carrying out ion implantation for engineering applications has now reached the prototype stage, and manufacture of plant for treating a variety of tools and components is about to commence. These developments are outlined. (author)

  5. Retention of metal and sulphate ions from acidic mining water by anionic nanofibrillated cellulose.

    Science.gov (United States)

    Venäläinen, Salla H; Hartikainen, Helinä

    2017-12-01

    We carried out an adsorption experiment to investigate the ability of anionic nanofibrillated cellulose (NFC) to retain metal and SO 4 2- ions from authentic highly acidic (pH3.2) mining water. Anionic NFC gels of different consistencies (1.1-%, 1.4-% and 1.8-% w/w) were allowed to react for 10min with mining water, after which NFC-induced changes in the metal and SO 4 2- concentrations of the mining water were determined. The sorption capacities of the NFC gels were calculated as the difference between the element concentrations in the untreated and NFC-treated mining water samples. All the NFCs efficiently co-adsorbed both metals and SO 4 2- . The retention of metals was concluded to take place through formation of metal-ligand complexes. The reaction between the NFC ligand and the polyvalent cations renders the cellulose nanofibrils positively charged and, thus, able to retain SO 4 2- electrostatically. Adsorption capacity of the NFC gels substantially increased upon decreasing DM content as a result of the dilution-induced weakening of the mutual interactions between individual cellulose nanofibrils. This outcome reveals that the dilution of the NFC gel not only increases its purification capacity but also reduces the demand for cellulosic raw material. These results suggest that anionic NFC made of renewable materials serves as an environmentally sound and multifunctional purification agent for acidic multimetal mining waters or AMDs of high ionic strength. Unlike industrial minerals traditionally used to precipitate valuable metals from acidic mining effluents before their permanent disposal from the material cycle, NFC neither requires mining of unrenewable raw materials nor produces inorganic sludges. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Adsorption behavior of lithium from seawater using manganese oxide adsorbent

    International Nuclear Information System (INIS)

    Wajima, Takaaki; Munakata, Kenzo; Uda, Tatsuhiko

    2012-01-01

    The deuterium-tritium (D-T) fusion reactor system is expected to provide the main source of electricity in the future. Large amounts of lithium will be required, dependent on the reactor design concept, and alternative resources should be found to provide lithium inventories for nuclear fusion plants. Seawater has recently become an attractive source of this element and the separation and recovery of lithium from seawater by co-precipitation, solvent extraction and adsorption have been investigated. Amongst these techniques, the adsorption method is suitable for recovery of lithium from seawater, because certain inorganic ion-exchange materials, especially spinel-type manganese oxides, show extremely high selectivity for the lithium ion. In this study, we prepared a lithium adsorbent (HMn 2 O 4 ) by elution of spinel-type lithium di-manganese-tetra-oxide (LiMn 2 O 4 ) and examined the kinetics of the adsorbent for lithium ions in seawater using a pseudo-second-order kinetic model. The intermediate, LiMn 2 O 4 , can be synthesized from LiOH·H 2 O and Mn 3 O 4 , from which the lithium adsorbent can subsequently be prepared via acid treatment., The adsorption kinetics become faster and the amount of lithium adsorbed on the adsorbent increases with increasing solution temperature. The thermodynamic values, ΔG 0 , ΔH 0 and ΔS 0 , indicate that adsorption is an endothermic and spontaneous process. (author)

  7. Metal ion binding with dehydroannulenes – Plausible two ...

    Indian Academy of Sciences (India)

    WINTEC

    Theoretical investigations have been carried out at B3LYP/6-311++G** level of theory to study the binding ... Alkali metals; dehydroannulenes; binding energy; penetration barrier. 1. .... can be discriminated from larger metal ions by running.

  8. Cytotoxicity and metal ions removal using antibacterial biodegradable hydrogels based on N-quaternized chitosan/poly(acrylic acid).

    Science.gov (United States)

    Mohamed, Riham R; Elella, Mahmoud H Abu; Sabaa, Magdy W

    2017-05-01

    Physically crosslinked hydrogels resulted from interaction between N,N,N-trimethyl chitosan chloride (N-Quaternized Chitosan) (NQC) and poly(acrylic acid) (PAA) were synthesized in different weight ratios (3:1), (1:1) and (1:3) taking the following codes Q3P1, Q1P1 and Q1P3, respectively. Characterization of the mentioned hydrogels was done using several analysis tools including; FTIR, XRD, SEM, TGA, biodegradation in simulated body fluid (SBF) and cytotoxicity against HepG-2 liver cancer cells. FTIR results proved that the prepared hydrogels were formed via electrostatic and H-bonding interactions, while XRD patterns proved that the prepared hydrogels -irrespective to their ratios- were more crystalline than both matrices NQC and PAA. TGA results, on the other hand, revealed that Q1P3 hydrogel was the most thermally stable compared to the other two hydrogels (Q3P1 and Q1P1). Biodegradation tests in SBF proved that these hydrogels were more biodegradable than the native chitosan. Examination of the prepared hydrogels for their potency in heavy metal ions removal revealed that they adsorbed Fe (III) and Cd (II) ions more than chitosan, while they adsorbed Cr (III), Ni (II) and Cu (II) ions less than chitosan. Moreover, testing the prepared hydrogels as antibacterial agents towards several Gram positive and Gram negative bacteria revealed their higher antibacterial activity as compared with NQC when used alone. Evaluating the cytotoxic effect of these hydrogels on an in vitro human liver cancer cell model (HepG-2) showed their good cytotoxic activity towards HepG-2. Moreover, the inhibition rate increased with increasing the hydrogels concentration in the culture medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Metal negative ion beam extraction from a radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  10. Surface Chemistry Dependence of Mechanochemical Reaction of Adsorbed Molecules-An Experimental Study on Tribopolymerization of α-Pinene on Metal, Metal Oxide, and Carbon Surfaces.

    Science.gov (United States)

    He, Xin; Kim, Seong H

    2018-02-20

    Mechanochemical reactions between adsorbate molecules sheared at tribological interfaces can induce association of adsorbed molecules, forming oligomeric and polymeric products often called tribopolymers). This study revealed the role or effect of surface chemistry of the solid substrate in mechanochemical polymerization reactions. As a model reactant, α-pinene was chosen because it was known to readily form tribopolymers at the sliding interface of stainless steel under vapor-phase lubrication conditions. Eight different substrate materials were tested-palladium, nickel, copper, stainless steel, gold, silicon oxide, aluminum oxide, and diamond-like carbon (DLC). All metal substrates and DLC were initially covered with surface oxide species formed naturally in air or during the oxidative sample cleaning. It was found that the tribopolymerization yield of α-pinene is much higher on the substrates that can chemisorb α-pinene, compared to the ones on which only physisorption occurs. From the load dependence of the tribopolymerization yield, it was found that the surfaces capable of chemisorption give a smaller critical activation volume for the mechanochemical reaction, compared to the ones capable of physisorption only. On the basis of these observations and infrared spectroscopy analyses of the adsorbed molecules and the produced polymers, it was concluded that the mechanochemical reaction mechanisms might be different between chemically reactive and inert surfaces and that the chemical reactivity of the substrate surface greatly influences the tribochemical polymerization reactions of adsorbed molecules.

  11. Ion-induced effects on metallic nanoparticles

    International Nuclear Information System (INIS)

    Klimmer, Andreas

    2010-01-01

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L1 0 phase. (orig.)

  12. Adaptation of metal arc plasma source to plasma source ion implantation

    International Nuclear Information System (INIS)

    Shamim, M.M.; Fetherston, R.P.; Conrad, J.R.

    1995-01-01

    In Plasma Source Ion Implantation (PSII) a target is immersed in a plasma and a train of high negative voltage pulses is applied to accelerate ions into the target and to modify the properties in the near surface region. In PSII, until now the authors have been using gaseous species to generate plasmas. However metal ion plasma may be used to modify the surface properties of material for industrial applications. Conventionally the ion implantation of metal ions is performed using beam line accelerators which have complex engineering and high cost. The employment of a metal arc source to PSII has tremendous potential due to its ability to process the conformal surfaces, simple engineering and cost effectiveness. They have installed metal arc source for generation of titanium plasma. Currently, they are investigating the properties of titanium plasma and material behavior of titanium implanted aluminum and 52100 steel. The recent results of this investigation are presented

  13. A rare earth-based metal-organic framework for moisture removal and control in confined spaces

    KAUST Repository

    Eddaoudi, Mohamed

    2017-04-13

    A method for preparing a metal-organic framework (MOF) comprising contacting one or more of a rare earth metal ion component with one or more of a tetratopic ligand component, sufficient to form a rare earth-based MOF for controlling moisture in an environment. A method of moisture control in an environment comprising adsorbing and/or desorbing water vapor in an environment using a MOF, the MOF including one or more of a rare earth metal ion component and one or more of a tetratopic ligand component. A method of controlling moisture in an environment comprising sensing the relative humidity in the environment comprising a MOF; and adsorbing water vapor on the MOF if the relative humidity is above a first level, sufficient to control moisture in an environment. The examples relate to a MOF created from 1,2,4,5-Tetrakis(4-carboxyphenyl )benzene (BTEB) as tetratopic ligand, 2-fluorobenzoic acid and Y(NO3)3, Tb(NO3)3 and Yb(NO3)3 as rare earth metals.

  14. Adsorption of heavy metal ions by activated charcoal

    International Nuclear Information System (INIS)

    Fujikawa, Mitsuo

    1978-01-01

    The adsorption effect was measured for several kinds of heavy metal ions, Pb 2+ , Cd 2+ , Cu 2+ and Zn 2+ by passing them through activated charcoal beds and changing the pH values of solutions. The test procedure is to keep the pH value of solution more than 10 at first, filter heavy metal hydroxide deposit, measure the remaining ion concentration in filtrate, and also test the influence of the addition of alkali to each kind of ions. The individual test procedure for each kind of ions is explained. As for the Cd ions, after the detailed experimental procedure is explained, the adsorption characteristic line is shown as the relation between the adsorption quantity and the equilibrium concentration of Cd 2+ . The similar test procedure and the adsorption characteristic lines are shown and evaluated about Pb 2+ , Cu 2+ and Zn 2+ . These lines are all linear, but have different adsorption quantity and inclination in relation to heavy metal ion concentration. Concerning the influence of pH to adsorption, the characteristics of pH increase are presented, when alkali is added by various quantities to Zn 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The pH of Pb 2+ increased to about 10 by adding 0.4 cc alkali and saturates, but the pH of the other ions did not saturate by adding less than 1.5 cc alkali. When the water containing heavy metals are treated, Cd 2+ , Pb 2+ , Cu 2+ and Zn 2+ are removed almost satisfactorily by passing them through active charcoal filters and keeping pH at 10. The experimental concentrations are 0.05 ppm at pH 10 in Cd, 0.86 ppm at 10.3 in Pb, 0 ppm at pH 9.6 in Cu, 0.06 ppm at pH 8.8 and 12.4 ppm at pH 9.8 in Zn. (Nakai, Y.)

  15. Sorption of polluting metal ions on a palm tree frond sawdust studied by the means of modified carbon paste electrodes.

    Science.gov (United States)

    Nouacer, Sana; Hazourli, Sabir; Despas, Christelle; Hébrant, Marc

    2015-11-01

    Water remediation by adsorption of the metal ions on a low cost sorbent is the frame of the present study. The metal ions adsorption properties of sawdust of palm tree fronds (PTF sawdust) are investigated by both equilibrium measurements and modified carbon paste electrode. The ability to adsorb Cu(II), Cr(VI) and As(III) in significant quantities is demonstrated. Carbon paste electrodes modified by incorporation of PTF sawdust (PTF-CPE) or, for comparison, an organically modified silica for the detection of copper(II) are investigated in term of sensitivity, estimation of number of possible reuses, repeatability and interference effect. A detection limit for Cu(II) analysis of 1.0×10(-8) M has been achieved after 5 min preconcentration and a single PTF-CPE can be used for up to 10 preconcentration-analysis-regeneration cycles. The relative standard deviation (n=9) for the determination of a 10(-6) M Cu(II) solution (pH=5) was about 26%. The effects of Ca(II), As(III) and Cr(VI) on the copper detection are investigated: calcium ions were shown to compete with copper on the same adsorption sites, arsenic(III) has no effect on the copper detection whereas chromium(VI) was shown to enhance the copper detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Removal of Mn, Fe, Ni and Cu Ions from Wastewater Using Cow Bone Charcoal

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2010-01-01

    Full Text Available Cow bone charcoal (CBC was synthesized and used for the removal of metals ions (manganese, iron, nickel and copper from aqueous solutions. Two different adsorption models were used for analyzing the data. Adsorption capacities were determined: copper ions exhibit the greatest adsorption on cow bone charcoal because of their size and pH conditions. Adsorption capacity varies as a function of pH. Adsorption isotherms from aqueous solution of heavy metals on CBC were determined. Adsorption isotherms are consistent with Langmuir´s adsorption model. Adsorbent quantity and immersion enthalpy were studied.

  17. Adsorption of Heavy Metals on Biologically Activated Brown Coal Sludge

    Directory of Open Access Journals (Sweden)

    Mária Praščáková

    2005-11-01

    Full Text Available Adsorption of cooper (II and zinc (II ions from aqueous solutions on a biologically activated brown coal sludge was investigated. Four families of adsorbents were prepared from the brown coal sludge bya microorganism’s activity. There were used microscopic fungi such as Aspergillus niger, Aspergillus clavatus, Penicillium glabrum and Trichoderma viride. Prepared sorbents were capable of removing Cu (II and Zn (II. The sorption isotherm has been constructed and the specific metal uptake and the maximum capacity of the adsorbent have been determined.

  18. Fatigue and wear of metalloid-ion-implanted metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Richter, E.; Rauschenbach, B.; Blochwitz, C.

    1985-01-01

    The effect of metalloid ion implantation on the fatigue behaviour and wear of nickel and two steels has been investigated. These metals were implanted with boron, carbon and nitrogen ions at energies from 30 to 60 keV and with doses from 1 X 10 16 to 1 X 10 18 ions cm -2 at room temperature. The mechanical behaviour of fatigued nickel was studied in push-pull tests at room temperature. Wear measurements were made using a pin-and-disc technique. The surface structure, dislocation arrangement and modification of the implantation profile resulting from mechanical tests on metals which had been implanted with metalloid ions were examined using high voltage electron microscopy, transmission high energy electron diffraction, scanning electron microscopy and Auger electron spectroscopy. It is reported that nitrogen and boron ion implantation improves the fatigue lifetime, changes the number and density of the slip bands and modifies the dislocation arrangements in nickel. The cyclic deformation leads to recrystallization of the boron-ion-induced amorphous structure of nickel and to diffusion of the boron and nitrogen in the direction of the surface. The wear behaviour of steels was improved by implantation of mass-separated ions and by implantation of ions without mass separation. (Auth.)

  19. Neutralization by metal ions of the toxicity of sodium selenide.

    Directory of Open Access Journals (Sweden)

    Marc Dauplais

    Full Text Available Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺, (ii metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co²⁺ and Ni²⁺ and, finally, (iii metal ions which do not afford protection and do not interact (Ca²⁺, Mg²⁺, Mn²⁺ or weakly interact (Fe²⁺ with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB, the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds.

  20. Adsorption pertechnetate ions on the substituted Sn-hydroxyapatite

    International Nuclear Information System (INIS)

    Hamarova, A.; Rosskopfova, O.; Pivarciova, L.

    2015-01-01

    Hydroxyapatite is suitable adsorbent for heavy metals and radionuclides due to its large surface area, high stability under redox conditions. SnCl 2 for its reducing properties is used in biomedical applications and industrial technologies, for its reducing properties. The adsorption of TcO 4 - to the HA samples, prepared by wet precipitation method, was studied by the d radio-indication method. Radionuclide 99m Tc was used as radioisotope indicator. The effect of contact time on the adsorption of 99m TcO 4 - ions on the Sn-HA was studied. Sn 2+ ions reduced Tc (VII) to Tc (IV) forming TcO 2 , TcO(OH) 2 or more precisely TcO 2 ·2H 2 O, which can be adsorbed on the surface of the HA, or to form complexes on the surface of the hydroxyapatite. (authors)

  1. New thiamine functionalized silica microparticules as a sorbent for the removal of lead, mercury and cadmium ions in aqueous media

    Directory of Open Access Journals (Sweden)

    Deniz Sabahattin

    2017-01-01

    Full Text Available The existence of heavy metal ions in aqueous media is one of the biggest environmental pollution problems and thus the removal of heavy metals is a very important procedure. In this work, a new adsorbent was synthesized by modifying 3-aminopropyl-functionalized silica gel with thiamine (vitamin B1 and characterized. The influence of the uptake conditions, such as pH, contact time, initial feed concentration and foreign metal ions, on the binding capacity of thiamine-functionalized silica gel sorbent (M3APS were investigated. Maximum obtained adsorption capacities for Pb(II, Hg(II and Cd(II were 39.4±0.2, 30.9±0.5 and 9.54±0.4 mg g-1 M3APS, respectively, at pH 5.0. The observed selectivity of M3APS for these metal ions was the following: Pb(II > Hg(II > Cd(II. Adsorption isotherm models were also applied to the adsorption process. As a result, the Langmuir isotherm model gave the best fit for the adsorption of metal ions on M3APS. The Gibbs energy change (ΔG for the adsorption of Pb(II, Hg(II and Cd(II were calculated to predict the nature of adsorption process. Having such satisfactory adsorption results, M3APS is a potential candidate adsorbent for Pb(II and Hg(II removal from aqueous media.

  2. Characterization of natural adsorbent material for heavy metal removal in a petrochemical site contamination

    Directory of Open Access Journals (Sweden)

    Bianchi F.

    2013-04-01

    Full Text Available Despite of over 25 years of intensive technological efforts, sub-surface environment cleanup still remains a challenge, especially in case of highly contaminated sites. In this context, ion exchanger technologies could provide simple and effective solutions for heavy metal removal in water treatment. The challenge is finding exchanger able to operate in extreme natural environments or in situations involving natural interfering species such as inorganic ions. In this paper we exam the use of natural zeolites as versatile exchanger for environmental protection of coastal refinery's groundwater against pollution of Ni, Cd, Pb. The influence of particle diameter on clinoptilolite performances toward heavy metal removal is studied. Also, we evaluate the exchanger activities in condition of high ionic strength, commonly present in groundwater located under coastal petrol industries. The obtained results confirmed that ion exchangers could provide an effective solutions for remediation in complex environmental conditions.

  3. Metal ion binding to iron oxides

    Science.gov (United States)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  4. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  5. Synergistic effect of graphene nanosheets and zinc oxide nanoparticles for effective adsorption of Ni (II) ions from aqueous solutions

    Science.gov (United States)

    Hadadian, Mahboubeh; Goharshadi, Elaheh K.; Fard, Mina Matin; Ahmadzadeh, Hossein

    2018-03-01

    The threat of toxic substances such as heavy metals to public health and wildlife has led to an increasing public awareness. Different techniques for neutralizing the toxic effects of heavy metals in wastewater have been used. Here, we prepared a new and efficient type of adsorbent, zinc oxide-graphene nanocomposite (ZnO-Gr), via a green method to remove Ni (II) ions from aqueous solutions. A facile microwave-assisted hydrothermal technique in the presence of an ionic liquid, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [C6mim] [NTf2], was used to prepare ZnO-Gr. The synergistic effect between graphene nanosheets and ZnO nanoparticles in this new adsorbent for Ni (II) ions caused a maximum adsorption capacity of 66.7 mg g-1 at room temperature which is much higher than that of graphene nanosheets (3.8 mg g-1) and other carbonaceous nanomaterials used as an adsorbent in the literature. The maximum desorption percentage (90.32%) was achieved at pH 3.6. By thermodynamic study, we found that the adsorption of this heavy metal ion on ZnO-Gr was spontaneous (Δ G° = -6.14 kJ mol-1) and endothermic (Δ H° = 53.31 kJ mol-1) with entropy change of Δ S° = 199.45 J K-1 mol- 1.

  6. Detection and Recovery of Palladium, Gold and Cobalt Metals from the Urban Mine Using Novel Sensors/Adsorbents Designated with Nanoscale Wagon-wheel-shaped Pores

    Science.gov (United States)

    El-Safty, Sherif A.; Shenashen, Mohamed A.; Sakai, Masaru; Elshehy, Emad; Halada, Kohmei

    2015-01-01

    Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wagon-wheel-shaped MSAs were fabricated by anchoring chelating agents (colorants) into three-dimensional pores and micrometric particle surfaces of the mesoporous monolithic scaffolds. Findings show, for the first time, evidence of controlled optical recognition of Pd(II), Au(III), and Co(II) ions and a highly selective system for recovery of Pd(II) ions (up to ~95%) in ores and industrial wastes. Furthermore, the controlled assessment processes described herein involve evaluation of intrinsic properties (e.g., visual signal change, long-term stability, adsorption efficiency, extraordinary sensitivity, selectivity, and reusability); thus, expensive, sophisticated instruments are not required. Results show evidence that MSAs will attract worldwide attention as a promising technological means of recovering and recycling palladium, gold and cobaltmetals. PMID:26709467

  7. "Rocking-Chair"-Type Metal Hybrid Supercapacitors.

    Science.gov (United States)

    Yoo, Hyun Deog; Han, Sang-Don; Bayliss, Ryan D; Gewirth, Andrew A; Genorio, Bostjan; Rajput, Nav Nidhi; Persson, Kristin A; Burrell, Anthony K; Cabana, Jordi

    2016-11-16

    Hybrid supercapacitors that follow a "rocking-chair"-type mechanism were developed by coupling divalent metal and activated carbon electrodes in nonaqueous electrolytes. Conventional supercapacitors require a large amount of electrolyte to provide a sufficient quantity of ions to the electrodes, due to their Daniell-type mechanism that depletes the ions from the electrolyte while charging. The alternative "rocking-chair"-type mechanism effectively enhances the energy density of supercapacitors by minimizing the necessary amount of electrolyte, because the ion is replenished from the metal anode while it is adsorbed to the cathode. Newly developed nonaqueous electrolytes for Mg and Zn electrochemistry, based on bis(trifluoromethylsulfonyl)imide (TFSI) salts, made the metal hybrid supercapacitors possible by enabling reversible deposition on the metal anodes and reversible adsorption on an activated carbon cathode. Factoring in gains through the cell design, the energy density of the metal hybrid supercapacitors is projected to be a factor of 7 higher than conventional devices thanks to both the "rocking-chair"-type mechanism that minimizes total electrolyte volume and the use of metal anodes, which have substantial merits in capacity and voltage. Self-discharge was also substantially alleviated compared to conventional supercapacitors. This concept offers a route to build supercapacitors that meet dual criteria of power and energy densities with a simple cell design.

  8. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes.

    Science.gov (United States)

    DeMuth, J Corinne; McLuckey, Scott A

    2015-01-20

    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  9. Cobalt and nickel ferrocyanide-functionalized magnetic adsorbent for the removal of radioactive cesium

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyu Sun; Park, Chan Woo; Lee, Kune Woo; Yang, Hee Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, So Jin [Chungnam National University, Daejeon (Korea, Republic of)

    2017-03-15

    Cobalt ferrocyanide (CoFC) or nickel ferrocyanide (NiFC) magnetic nanoparticles (MNPs) were fabricated for efficient removal of radioactive cesium, followed by rapid magnetic separation of the absorbent from contaminated water. The Fe{sub 3}O{sub 4} nanoparticles, synthesized using a co-precipitation method, were coated with succinic acid (SA) to immobilize the Co or Ni ions through metal coordination to carboxyl groups in the SA. CoFC or NiFC was subsequently formed on the surfaces of the MNPs as Co or Ni ions coordinated with the hexacyanoferrate ions. The CoFC-MNPs and NiFC-MNPs possess good saturation magnetization values (43.2 emu∙g{sup -1} for the CoFC-MNPs, and 47.7 emu∙g{sup -1} for the NiFC-MNPs). The fabricated CoFC-MNPs and NiFC-MNPs were characterized by XRD, FT-IR, TEM, and DLS. The adsorption capability of the CoFC-MNPs and NiFC-MNPs in removing cesium ions from water was also investigated. Batch experiments revealed that the maximum adsorption capacity values were 15.63 mg∙g{sup -1} (CoFC-MNPs) and 12.11 mg∙g{sup -1} (NiFC-MNPs). Langmuir/ Freundlich adsorption isotherm equations were used to fit the experimental data and evaluate the adsorption process. The CoFC-MNPs and NiFC-MNPs exhibited a removal efficiency exceeding 99.09% for radioactive cesium from {sup 137}Cs solution (18-21 Bq∙g{sup -1}). The adsorbent selectively adsorbed {sup 137}Cs, even in the presence of competing cations.

  10. Effects of metal-ion replacement on pyrazinamidase activity: A quantum mechanical study.

    Science.gov (United States)

    Khadem-Maaref, Mahmoud; Mehrnejad, Faramarz; Phirouznia, Arash

    2017-05-01

    Pyrazinamidase (PZase), a metalloenzyme, is responsible for acidic modification of pyrazinamide (PZA), a drug used in tuberculosis treatment. The metal coordination site of the enzyme is able to coordinate various divalent metal cofactors. Previous experimental studies have demonstrated that metal ions, such as Co 2+ , Mn 2+ , and Zn 2+ , are able to reactivate metal-depleted PZase, while others including Cu 2+ , Fe 2+ , and Mg 2+ , cannot restore activity. In this study, we investigated binding of various metal ions to the metal coordination site (MCS) of the enzyme using quantum mechanical calculations. We calculated the metal-ligand (residue) binding energy and the atomic partial charges in the presence of various ions. The results indicated that the tendency of alkaline earth metals to bind to PZase MCS is very low and not suitable for enzyme structural and catalytic function. In contrast, Co 2+ and Ni 2+ ions have very high binding affinity and are favorable to the structural and functional properties of the enzyme. Furthermore, we observed that the rate at which Ni 2+ , Co 2+ and Fe 2+ ions in PZase MCS polarize the OH bond of coordinated water molecules is much higher than the polarization rate created by other ions. This finding suggests that the coordination of Ni 2+ , Co 2+ , or Fe 2+ to PZase facilitates the deprotonation of coordinated water molecules to generate a nucleophile that catalyzes the enzymatic reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Long range implantation by MEVVA metal ion source

    International Nuclear Information System (INIS)

    Zhang Tonghe; Wu Yuguang; Ma Furong; Liang Hong

    2001-01-01

    Metal vapor vacuum arc (MEVVA) source ion implantation is a new technology used for achieving long range ion implantation. It is very important for research and application of the ion beam modification of materials. The results show that the implanted atom diffusion coefficient increases in Mo implanted Al with high ion flux and high dose. The implanted depth is 311.6 times greater than that of the corresponding ion range. The ion species, doses and ion fluxes play an important part in the long-range implantation. Especially, thermal atom chemistry have specific effect on the long-range implantation during high ion flux implantation at transient high target temperature

  12. Isotherms of ion exchange on titanates of alkaline metals

    International Nuclear Information System (INIS)

    Fillina, L.P.; Belinskaya, F.A.

    1986-01-01

    Present article is devoted to isotherms of ion exchange on titanates of alkaline metals. Therefore, finely dispersed hydrated titanates of alkaline metals (lithium, sodium, potassium) with ion exchange properties are obtained by means of alkaline hydrolysis of titanium chloride at high ph rates. Sorption of cations from salts solution of Li 2 SO 4 , NaNO 3 , Ca(NO 3 ) 2 , AgNO 3 by titanates is studied.

  13. Ion irradiation effect on metallic condensate adhesion to glass

    International Nuclear Information System (INIS)

    Kovalenko, V.V.; Upit, G.P.

    1984-01-01

    The ion irradiation effect on metallic condensate adhesion to glass is investigated. It has been found that in case of indium ion deposition the condensate adhesion to glass cleavages being in contact with atmosphere grows up to the level corresponding to a juvenile surface while in case of argon ion irradiation - exceeds it. It is shown that the observed adhesion growth is determined mainly by the surfwce modification comparising charge accumulation on surface, destruction of a subsurface layer and an interlayer formation in the condensate-substrate interface. The role of these factors in the course of various metals deposition is considered

  14. A computational study of adsorption of divalent metal ions on graphene oxide

    Directory of Open Access Journals (Sweden)

    Somphob Thompho

    2017-12-01

    Full Text Available Adsorption of divalent metal ions (Pb2+,Cd2+, Zn2+,Cu2+ on graphene oxide (GO was studied using density functional theory (DFT. Adsorption geometries and energies, as well as the nature of the binding energy, were calculated for the interaction of divalent metal ions with oxygen-containing groups on the surface of GO. The configurations of the complexes were modeled by placing the divalent metal ions above the center and perpendicular to the surface. Binding of Cu2+ to the GO sheet was predicted to be much stronger than that for other divalent metal ions. Calculated results show good agreement with experimental observations and provide useful information for environmental pollution cleanup.

  15. Multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) onto natural bentonite clay.

    Science.gov (United States)

    Alexander, Jock Asanja; Surajudeen, Abdulsalam; Aliyu, El-Nafaty Usman; Omeiza, Aroke Umar; Zaini, Muhammad Abbas Ahmad

    2017-10-01

    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.

  16. Facile synthesis of Fe3O4@PDA core-shell microspheres functionalized with various metal ions: A systematic comparison of commonly-used metal ions for IMAC enrichment.

    Science.gov (United States)

    Jiang, Jiebing; Sun, Xueni; Li, Yan; Deng, Chunhui; Duan, Gengli

    2018-02-01

    Metal ions differed greatly in affinity towards phosphopeptides, and thus it is essential to systematically compare the phosphopeptides enrichment ability of different metal ions usually used in the IMAC techniques. In this work, for the first time, eight metal ions, including Nb 5+ , Ti 4+ , Zr 4+ , Ga 3+ , Y 3+ , In 3+ , Ce 4+ , Fe 3+ , were immobilized on the polydopamine (PDA)-coated Fe 3 O 4 (denoted as Fe 3 O 4 @PDA-M n+ ), and systematically compared by the real biosamples, in addition to standard phosphopeptides. Fe 3 O 4 microspheres were synthesized via the solvothermal reaction, followed by self-polymerization of dopamine on the surface. Then through taking advantage of the hydroxyl and amino group of PDA, the eight metal ions were easily adhered to the surface of Fe 3 O 4 @PDA. After characterization, the resultant Fe 3 O 4 @PDA-M n+ microspheres were applied to phosphopeptides enrichment based on the binding affinity between metal ions and phosphopeptides. According to the results, different metal ions presented diverse phosphopeptides enrichment efficiency in terms of selectivity, sensitivity and the enrichment ability from real complex samples, and Fe 3 O 4 @PDA-Nb 5+ and Fe 3 O 4 @PDA-Ti 4+ showed obvious advantages of the phosphopeptides enrichment effect after the comparison. This systematic comparison may provide certain reference for the use and development of IMAC materials in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Investigation of metal ions sorption of brown peat moss powder

    Science.gov (United States)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  18. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  19. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Science.gov (United States)

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  20. Removal of Cu (II) ions from aqueous solutions by turmeric powder

    International Nuclear Information System (INIS)

    Qayoom, A.; Kazmi, S.A.; Rafiq, N.

    2009-01-01

    Copper is an essential nutrient, but it is toxic at high intake levels. The presence of copper(II) ions causes serious toxicological concerns, it is usually known to deposit in brain, skin, liver, pancreas and myocardium. In this work the ability of turmeric to remove copper (II) ions from aqueous solution was studied. Adsorption of metals ions by turmeric powder may be used as a natural remedy for sequestration of toxic metals which are ingested through daily food intake It was found that adsorption increased with increasing contact time, pH, temperature, adsorbent dose. The equilibrium data were satisfactorily described by Freundlich isotherm model. Adsorption of Cu (II) by turmeric powder was followed by pseudo 2/sub nd/ order kinetics. (author)

  1. Use of sepiolite as an adsorbent for the removal of copper (II) from industrial waste leachate

    Science.gov (United States)

    Gamze Turan, N.; Ardali, Yüksel

    2013-04-01

    Land filling is the most common method of disposal of solid waste all over the world. As well as municipal solid waste, industrial wastes, which may contain hazardous substances, are also received by landfills in many countries. Leachate is one of the problems arising from landfills. When water percolates through solid wastes, contaminants are leached into solution. The major concern with the movement of leachate into the subsurface aquifer is the fate of the constituents found in leachate. The fate of heavy metals is the greatest interest in leachate. Several treatment technologies have been developed for eliminating heavy metals recently. Adsorption is one of the most interesting methods that it has been successfully applied for the heavy metal removal. Activated carbons were widely used as adsorbent materials because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity. However, it is restricted due to its relatively high price, high operation costs, and problems with generation for the industrial scale applications. Recently, more research efforts have been focused on effective sorbents material in order to minimize the processing cost and solve their disposal problems in an environmentally sustainable way. Adsorption of metal ions onto clay minerals has been studied extensively because both metal ions and clays are common components in nature. The cost of clays is relatively low as compared to other alternative adsorbents. Furthermore, the high specific surface area, chemical and mechanical stability, variety of structural and surface properties and higher values of cation exchange capacities make the clays an excellent group of adsorbents. Sepiolite (Si12O30Mg8(OH)4(H2O)4•8H2O) is a natural, fibrous clay mineral with fine microporous channels running parallel to the length of the fibers. The structure of sepiolite, in some aspects, is similar to those of other 2:1 trioctahedral silicates, such

  2. Zeolitic adsorbent synthesized from powdered waste porcelain, and its capacity for heavy metal removal

    International Nuclear Information System (INIS)

    Wajima, T.; Ikegami, Y.

    2006-01-01

    A zeolitic adsorbent was synthesized from powdered waste porcelain kept at 80 o C for 24 h. The product contained the zeolite phases Na-P1 and hydroxysodalite. The product with the highest cation exchange capacity (CEC) was synthesized using 4 M NaOH and the sample weight / volume of alkali solution ratio was 1/4. The highest CEC obtained for the product was almost 1900 mmol/kg, which is the same as that of natural zeolite. The product with the highest CEC was tested for its ability to remove heavy metals (Fe, Cu, Ni, Zn, Pb, Cd, Mn, Cr, Al, B,Mo) from an acidic solution (pH 2). The product can neutralize the acidic solution to almost pH 7, and the capacity of the product for the removal of heavy metals is higher than that of the natural zeolite, except for Mo and B. (authors)

  3. Pure high dose metal ion implantation using the plasma immersion technique

    International Nuclear Information System (INIS)

    Zhang, T.; Tang, B.Y.; Zeng, Z.M.; Kwok, T.K.; Chu, P.K.; Monteiro, O.R.; Brown, I.G.

    1999-01-01

    High energy implantation of metal ions can be carried out using conventional ion implantation with a mass-selected ion beam in scanned-spot mode by employing a broad-beam approach such as with a vacuum arc ion source, or by utilizing plasma immersion ion implantation with a metal plasma. For many high dose applications, the use of plasma immersion techniques offers a high-rate process, but the formation of a surface film along with the subsurface implanted layer is sometimes a severe or even fatal detriment. We describe here an operating mode of the metal plasma immersion approach by which pure implantation can be obtained. We have demonstrated the technique by carrying out Ti and Ta implantations at energies of about 80 and 120 keV for Ti and Ta, respectively, and doses on the order of 1x10 17 ions/cm 2 . Our experiments show that virtually pure implantation without simultaneous surface deposition can be accomplished. Using proper synchronization of the metal arc and sample voltage pulse, the applied dose that deposits as a film versus the part that is energetically implanted (the deposition-to-implantation ratio) can be precisely controlled.copyright 1999 American Institute of Physics

  4. Acetabular bone density and metal ions after metal-on-metal versus metal-on-polyethylene total hip arthroplasty; short-term results

    NARCIS (Netherlands)

    Zijlstra, Wierd P.; van der Veen, Hugo C.; van den Akker-Scheek, Inge; Zee, Mark J. M.; Bulstra, Sjoerd K.; van Raay, Jos J. A. M.

    Information on periprosthetic acetabular bone density is lacking for metal-on-metal total hip arthroplasties. These bearings use cobalt-chromium instead of titanium acetabular components, which could lead to stress shielding and hence periprosthetic bone loss. Cobalt and chromium ions have

  5. Selective transport and incorporation of highly charged metal and metal complex ions in self-assembled polyelectrolyte multilayer membranes

    International Nuclear Information System (INIS)

    Toutianoush, Ali; Tieke, Bernd

    2002-01-01

    The transport of aqueous salts containing mono-, di- and trivalent metal and tetravalent metal complex ions across ultrathin polyvinylammonium/polyvinylsulphate (PVA/PVS) membranes is described. The membranes were prepared by electrostatic layer-by-layer (LBL) assembly of the two polyelectrolytes. Using spectroscopic measurements and permeability studies, it is demonstrated that the transport of copper(II) chloride, lanthanum(III) chloride, barium chloride and potassium hexacyanoferrate(II) is accompanied by the permanent incorporation of the metal and metal complex ions in the membrane. Upon the uptake of copper, lanthanum and hexacyanoferrate ions, the membranes become cross-linked so that the permeation rates of other salts not taken up by the membrane, e.g. sodium chloride, potassium chloride and magnesium chloride, are decreased. The uptake of barium ions leads to a decrease of the cross-linking density of the membrane so that the permeation rate of NaCl is increased. Possible mechanisms for the ion uptake are discussed

  6. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

    Science.gov (United States)

    Dokmanić, Ivan; Sikić, Mile; Tomić, Sanja

    2008-03-01

    Metal ions are constituents of many metalloproteins, in which they have either catalytic (metalloenzymes) or structural functions. In this work, the characteristics of various metals were studied (Cu, Zn, Mg, Mn, Fe, Co, Ni, Cd and Ca in proteins with known crystal structure) as well as the specificity of their environments. The analysis was performed on two data sets: the set of protein structures in the Protein Data Bank (PDB) determined with resolution metal ion and its electron donors and the latter was used to assess the preferred coordination numbers and common combinations of amino-acid residues in the neighbourhood of each metal. Although the metal ions considered predominantly had a valence of two, their preferred coordination number and the type of amino-acid residues that participate in the coordination differed significantly from one metal ion to the next. This study concentrates on finding the specificities of a metal-ion environment, namely the distribution of coordination numbers and the amino-acid residue types that frequently take part in coordination. Furthermore, the correlation between the coordination number and the occurrence of certain amino-acid residues (quartets and triplets) in a metal-ion coordination sphere was analysed. The results obtained are of particular value for the identification and modelling of metal-binding sites in protein structures derived by homology modelling. Knowledge of the geometry and characteristics of the metal-binding sites in metalloproteins of known function can help to more closely determine the biological activity of proteins of unknown function and to aid in design of proteins with specific affinity for certain metals.

  7. Biological adsorbent for water decontamination from uranium

    Energy Technology Data Exchange (ETDEWEB)

    Jilek, R [Vyzkumny Ustav Veterinarniho Lekarstvi, Brno-Medlanky (Czechoslovakia); Fuska, J; Nemec, P [Slovenska Vysoka Skola Technicka, Bratislava (Czechoslovakia). Chemickotechnologicka Fakulta

    1978-01-01

    A study was made into the capacity of native and heat-denaturated mycelium to adsorb uranium salts from solutions and into the effect of uranium on the growth of the microorganism biomass. The presence of uranium did not inhibit the growth of Penicillium and Aspergillus strains used at a concentration of up to 5x10/sup -4/ M/dm/sup 3/. Uranium added to a nutrient medium produced complexes with phosphorus ions which were adsorbed on the surface of growing hyphae, thus the removal of the mycelium also removed uranium. The results of the experiments with denaturated mycelium of the same strains suggested that uranium was also bound to the biomass with chemical bonds so that mycelium acted as a ''multifunction ion exchanger'' from which adsorbed uranium can be removed step by step by elution. A sorbent of a three-dimensional structure could be prepared from a dried native mycelium using reinforcing resins, which prevented leakage of the biomass. Uranium sorption by biosorbents is a function of the concentration of the cation sorbed and of the pH of the solution.

  8. Biological adsorbent for water decontamination from uranium

    International Nuclear Information System (INIS)

    Jilek, R.; Fuska, J.; Nemec, P.

    1978-01-01

    A study was made into the capacity of native and heat-denaturated mycelium to adsorb uranium salts from solutions and into the effect of uranium on the growth of the microorganism biomass. The presence of uranium did not inhibit the growth of Penicillium and Aspergillus strains used at a concentration of up to 5x10 -4 M/dm 3 . Uranium added to a nutrient medium produced complexes with phosphorus ions which were adsorbed on the surface of growing hyphae, thus the removal of the mycelium also removed uranium. The results of the experiments with denaturated mycelium of the same strains suggested that uranium was also bound to the biomass with chemical bonds so that mycelium acted as a ''multifunction ion exchanger'' from which adsorbed uranium can be removed step by step by elution. A sorbent of a three-dimensional structure could be prepared from a dried native mycelium using reinforcing resins, which prevented leakage of the biomass. Uranium sorption by biosorbents is a function of the concentration of the cation sorbed and of the pH of the solution. (author)

  9. Accelerated electron exchange between U4+ and UO22+ by foreign metal ions

    International Nuclear Information System (INIS)

    Obanawa, Heiichiro; Onitsuka, Hatsuki; Takeda, Kunihiko

    1990-01-01

    The rate constant of U 4+ -UO 2 2+ electron exchange (k et ) was increased by more than 100 times in the presence of various metal ions. The larger rate constant was observed for the smaller difference of the standard reduction potential strength between metal ion and UO 2 2+ ion (Δμ θ e ). Detailed investigation of the electron exchange reaction in the presence of Mo 5+ suggested that the mechanism of the electron transfer reaction catalyzed by metal ions is the outer-sphere type independent of U-Clcomplex ions. (author)

  10. Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: Adsorption isotherms and kinetics studies.

    Science.gov (United States)

    Tadjarodi, Azadeh; Moazen Ferdowsi, Somayeh; Zare-Dorabei, Rouholah; Barzin, Ahmad

    2016-11-01

    A novel adsorbent, based on modifying graphene oxide (GO) chemically with 2-pyridinecarboxaldehyde thiosemicarbazone (2-PTSC) as ligand, was designed by facile process for removal of Hg(II) from aqueous solution. Characterization of the adsorbent was performed using various techniques, such as FT-IR, XRD, XPS, SEM and AFM analysis. The adsorption capacity was affected by variables such as adsorbent dosage, pH solution, Hg(2+) initial concentration and sonicating time. These variables were optimized by rotatable central composite design (CCD) under response surface methodology (RSM). The predictive model for Hg(II) adsorption was constructed and applied to find the best conditions at which the responses were maximized. In this conditions, the adsorption capacity of this adsorbent for Hg(2+) ions was calculated to be 309mgg(-1) that was higher than that of GO. Appling the ultrasound power combined with adsorption method was very efficient in shortening the removal time of Hg(2+) ions by enhancing the dispersion of adsorbent and metal ions in solution and effective interactions among them. The adsorption process was well described by second-order kinetic and Langmuir isotherm model in which the maximum adsorption capacity (Qm) was found to be 555mgg(-1) for adsorption of Hg(2+) ions over the obtained adsorbent. The performance of adsorbent was examined on the real wastewaters and confirmed the applicability of adsorbent for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    International Nuclear Information System (INIS)

    Fish, D.

    1996-01-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished

  12. Biosorptive removal of cobalt (II) ions from aqueous solution by ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the possibility of using Amaranthus hybridus L. stalk as an alternative to high cost commercial adsorbent materials for the removal of Co (II) from aqueous solution. The experiment was carried out by batch method at 33°C. The influence of pH, contact time and initial metal ion ...

  13. Some aspects of metallic ion chemistry and dynamics in the mesosphere and thermosphere

    Science.gov (United States)

    Mathews, J. D.

    1987-01-01

    The relationship between the formation of sporadic layers of metallic ion and the dumping of these ions into the upper mesosphere is discussed in terms of the tidal wind, classical (i.e., windshear) and other more complex, perhaps highly nonlinear layer formation mechanisms, and a possible circulation mechanism for these ions. Optical, incoherent scatter radar, rocket, and satellite derived evidence for various layer formation mechanisms and for the metallic ion circulation system is reviewed. The results of simple one dimensional numerical model calculations of sporadic E and intermediate layer formation are presented along with suggestions for more advanced models of intense or blanketing sporadic E. The flux of metallic ions dumped by the tidal wind system into the mesosphere is estimated and compared with estimates of total particle flux of meteoric origin. Possible effects of the metallic ion flux and of meteoric dust on D region ion chemistry are discussed.

  14. Ranges of ions in metals for use in particle treatment planning

    International Nuclear Information System (INIS)

    Jaekel, Oliver

    2006-01-01

    In proton and ion radiotherapy, the range of particles is calculated from x-ray computed tomography (CT) numbers. Due to the strong absorption of x-rays in a metal and a cut-off for large Hounsfield units (HU) in the software of most CT-scanners, a range calculation in metals cannot be based on the measured HU. This is of special importance when metal implants such as gold fillings or hip prostheses are close to the treatment volume. In order to overcome this problem in treatment planning for heavy charged particles, the correct ranges of ions in the metal relative to water have to be assigned in the CT data. Measurements and calculations of carbon ion ranges in various metals are presented that can be used in treatment planning to allow for a more accurate range calculation of carbon ion beams in titanium, steel, tungsten and gold. The suggested values for the relative water-equivalent range and their uncertainties are 3.13 (±3%) for titanium, 5.59 (±3%) for stainless steel and 10.25 (±4%) for gold. (note)

  15. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence

    Science.gov (United States)

    Bayram, Serene S.; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-01

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd2+, Pb2+, Zn2+ and Ni2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions.

  16. Smart responsive microcapsules capable of recognizing heavy metal ions.

    Science.gov (United States)

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Synthesis of iminodi(methylphosphonic acid)-type chitosan resin and its adsorption behavior for trace metals

    International Nuclear Information System (INIS)

    Yamakawa, Satoko; Oshita, Koji; Sabarudin, Akhmad; Oshima, Mitsuko; Motomizu, Shoji

    2004-01-01

    A chitosan-based resin possessing the iminodi(methyphosphonic acid) moiety (IDP-type chitrosan resin) was synthesized by using cross-linked chitosan as a base material. The adsorption behavior of trace metal ions on the IDP-type chitosan resin was systematically investigated using a mini-column (1 ml of the resin) packed with the resin. The concentrations of metal ions in the effluents were measured by ICP-MS and ICP-AES. The resin could adsorb four metals, such as In(III), Sn(II), Th(IV), and U(VI), by almost 100% over a wide pH range (1-7). Uranium(VI) and thorium could not be eluted with nitric acid and hydrochloric acid (1-6 M); other metal ions were easily and readily eluted with 1 M nitric acid. The IDP-type chitosan resin synthesized in this work can be applied to the separation of U(VI) and Th(IV) from other metal ions. (author)

  18. Chemical characterization of agroforestry solid residues aiming its utilization as adsorbents for metals in water

    Directory of Open Access Journals (Sweden)

    Francisco H. M. Luzardo

    2015-01-01

    Full Text Available In this work, a study of the correlation between the functional groups present in the chemical structure of the fibers of coconut shells, cocoa and eucalyptus, and their adsorption capacity of Cd+2 and Cu+2 ions from water was performed. The content of soluble solids and reactive phenols in aqueous extracts were determined. The chemical functional groups present in the fibers were examined using the IR spectra. The adsorption capacity of the peels was determined using atomic absorption spectrophotometer. For Cd+2, a significant correlation between the adsorption capacity and some specific chemical functional groups present in the fiber was verified. The potential use of these peels, as adsorbent of Cd+2 ions, is based on the presence of OH functional groups such as aryl-OH, aryl-O-CH2 of phenol carboxylic acids, as well as carbonyl groups derived from carboxylic acid salts, in these fibers.

  19. Do soft drinks affect metal ions release from orthodontic appliances?

    Science.gov (United States)

    Mikulewicz, Marcin; Wołowiec, Paulina; Loster, Bartłomiej W; Chojnacka, Katarzyna

    2015-01-01

    The effect of orange juice and Coca Cola(®) on the release of metal ions from fixed orthodontic appliances. A continuous flow system designed for in vitro testing of orthodontic appliances was used. Orange juice/Coca Cola(®) was flowing through the system alternately with artificial saliva for 5.5 and 18.5h, respectively. The collected samples underwent a multielemental ICP-OES analysis in order to determine the metal ions release pattern in time. The total mass of ions released from the appliance into orange juice and Coca Cola(®) (respectively) during the experiment was calculated (μg): Ni (15.33; 37.75), Cr (3.604; 1.052), Fe (48.42; ≥ 156.1), Cu (57.87, 32.91), Mn (9.164; 41.16), Mo (9.999; 30.12), and Cd (0.5967; 2.173). It was found that orange juice did not intensify the release of metal ions from orthodontic appliances, whereas Coca Cola(®) caused increased release of Ni ions. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Metallization of ion beam synthesized Si/3C-SiC/Si layer systems by high-dose implantation of transition metal ions

    International Nuclear Information System (INIS)

    Lindner, J.K.N.; Wenzel, S.; Stritzker, B.

    2001-01-01

    The formation of metal silicide layers contacting an ion beam synthesized buried 3C-SiC layer in silicon by means of high-dose titanium and molybdenum implantations is reported. Two different strategies to form such contact layers are explored. The titanium implantation aims to convert the Si top layer of an epitaxial Si/SiC/Si layer sequence into TiSi 2 , while Mo implantations were performed directly into the SiC layer after selectively etching off all capping layers. Textured and high-temperature stable C54-TiSi 2 layers with small additions of more metal-rich silicides are obtained in the case of the Ti implantations. Mo implantations result in the formation of the high-temperature phase β-MoSi 2 , which also grows textured on the substrate. The formation of cavities in the silicon substrate at the lower SiC/Si interface due to the Si consumption by the growing silicide phase is observed in both cases. It probably constitutes a problem, occurring whenever thin SiC films on silicon have to be contacted by silicide forming metals independent of the deposition technique used. It is shown that this problem can be solved with ion beam synthesized contact layers by proper adjustment of the metal ion dose