WorldWideScience

Sample records for metal industry

  1. Metal Casting--Industry of the Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-23

    This 8-page brochure describes the Office of Industrial Technologies Metal Casting Industry of The Future; a partnership between the Department of Energy and the metal casting industry established to increase industrial energy and cost efficiency.

  2. The Danish fabricated metal industry:

    DEFF Research Database (Denmark)

    Hansen, Teis

    2010-01-01

    . This is less the case for low-tech industries, but their economic importance continues to be large, however. It is thus interesting to analyse how they manage to remain competitive. The analysis focuses on a case study of the fabricated metal industry by identifying the innovation strategies followed by firms...

  3. Proposed industrial recovered materials utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    The introductory chapter provides a discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. It discusses these industries in terms of resource characteristics, industry technology, pollution control requirements, market structure, the economics of recycling, and the issues involved in econometrically estimating scrap supply response behavior. It further presents the methodology established by DOE for the metals, textiles, rubber, and pulp and paper industries. The areas in which government policies might have a significant impact on the utilization of primary and secondary metals and on any recycling targets between now and 1987 are noted. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33. The profiles include such topics as industry structure, process technology, materials and recycling flow, and future trends. Chapter 4 specifically covers the evaluation of recycling targets for the ferrous, aluminum, copper, zinc, and lead industries. (MCW)

  4. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recycling flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)

  5. Utility industry evaluation of the metal fuel facility and metal fuel performance for liquid metal reactors

    International Nuclear Information System (INIS)

    Burstein, S.; Gibbons, J.P.; High, M.D.; O'Boyle, D.R.; Pickens, T.A.; Pilmer, D.F.; Tomonto, J.R.; Weinberg, C.J.

    1990-02-01

    A team of utility industry representatives evaluated the liquid metal reactor metal fuel process and facility conceptual design being developed by Argonne National Laboratory (ANL) under Department of Energy sponsorship. The utility team concluded that a highly competent ANL team was making impressive progress in developing high performance advanced metal fuel and an economic processing and fabrication technology. The utility team concluded that the potential benefits of advanced metal fuel justified the development program, but that, at this early stage, there are considerable uncertainties in predicting the net overall economic benefit of metal fuel. Specific comments and recommendations are provided as a contribution towards enhancing the development program. 6 refs

  6. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  7. Metal Casting--Industry of the Future; Industrial Partnerships: Advancing Energy and Environmental Goals

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A.

    2001-02-05

    This tri-fold brochure describe the partnering activities of the Office of Industrial Technologies' (OIT) Industries of the Future (IOF) for Metal Casting. Information on what works for the Metal Casting industry, examples of successful partnerships, and benefits of partnering with OIT are included.

  8. Collective bargaining in the Dutch metal and electrical engineering industry

    NARCIS (Netherlands)

    van Klaveren, M.; Tijdens, K.

    2012-01-01

    The story of the metal and electrical engineering collective agreement The current collective labour agreement covering the Dutch metal and electrical engineering industry dates as of 1985, when the earlier agreement was divided in an agreement for firms with 31 or more employees (the ‘large metal

  9. A review of metal release in the food industry

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Rasmussen, Anette Alsted; Hilbert, Lisbeth Rischel

    2006-01-01

    The objective of this review is to outline literature on metal release in the food industry. Key results are reviewed from publications with high scientific level as well as papers with focus on industrial aspects. Examples of food products with a corrosive effect are given, and cases concerning...... processes, storing equipment as well as cleaning and sanitising procedures are reviewed. Stainless steel is the most widely used metallic material in the food industry; however other metals and their alloys are also briefly treated. The review deals with phenomena mainly relating to electrochemical...

  10. Removal Of Heavy Metals From Industrial Wastewaters Using Local ...

    African Journals Online (AJOL)

    Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminum sulphate and ferric chloride in order to determine and compare their effectiveness in removing heavy metal contents from the wastewaters. The percentage removal of the metals from the ...

  11. Management Model Applicable to Metallic Materials Industry

    Directory of Open Access Journals (Sweden)

    Adrian Ioana

    2013-02-01

    Full Text Available This paper presents an algorithmic analysis of the marketing mix in metallurgy. It also analyzes the main correlations and their optimizing possibilities through an efficient management. Thus, both the effect and the importance of the marketing mix, for components (the four “P-s” areanalyzed in the materials’ industry, but their correlations as well, with the goal to optimize the specific management. There are briefly presented the main correlations between the 4 marketing mix components (the 4 “P-s” for a product within the materials’ industry, including aspects regarding specific management.Keywords: Management Model, Materials Industry, Marketing Mix, Correlations.

  12. Heavy metal levels in soil samples from highly industrialized Lagos ...

    African Journals Online (AJOL)

    The effect of heavy metals on the environment is of serious concern and threatens life in all forms. Environmental contamination is correlated with the degree of industrialization and intensities of chemical usage. The aim of this study was to determine to what extent, human and industrial activities have affected the quality of ...

  13. Methods for recovering precious metals from industrial waste

    Science.gov (United States)

    Canda, L.; Heput, T.; Ardelean, E.

    2016-02-01

    The accelerated rate of industrialization increases the demand for precious metals, while high quality natural resources are diminished quantitatively, with significant operating costs. Precious metals recovery can be successfully made from waste, considered to be secondary sources of raw material. In recent years, concerns and interest of researchers for more increasing efficient methods to recover these metals, taking into account the more severe environmental protection legislation. Precious metals are used in a wide range of applications, both in electronic and communications equipment, spacecraft and jet aircraft engines and for mobile phones or catalytic converters. The most commonly recovered precious metals are: gold from jewellery and electronics, silver from X- ray films and photographic emulsions, industrial applications (catalysts, batteries, glass/mirrors), jewellery; platinum group metals from catalytic converters, catalysts for the refining of crude oil, industrial catalysts, nitric acid manufacturing plant, the carbon-based catalyst, e-waste. An important aspect is the economic viability of recycling processes related to complex waste flows. Hydrometallurgical and pyrometallurgical routes are the most important ways of processing electrical and electronic equipment waste. The necessity of recovering precious metals has opened new opportunities for future research.

  14. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2015-10-01

    Full Text Available Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  15. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review.

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-10-09

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  16. Metal and engineering industry in the Finnish economy

    International Nuclear Information System (INIS)

    Maeenpaeae, I.; Viitanen, M.; Juutinen, A.

    1996-01-01

    The study analyses quantitatively the position, internal structures and environmental aspects of the metal sector (basic metal industry, mechanical engineering, electronics and electrotechnics) in the recent past of the Finnish economy. The changes in the sector by the year 2005 are assessed by means of a macroeconomic simulation model as well. The future development of the metal sector by the year 2005 was assessed by the FMS model system, for which a detailed metal sector sub-model was constructed. The scenario of the general development of the Finnish economy was tuned so that it corresponds as closely as possible to the recent basic projections of the economy made by the government authorities. Three scenarios for the metal sector were constructed: base scenario, rapid and slow growth scenarios. In the base scenario the production volume of the metal sector grows by 6 per cent annually between 1994-2005 while the annual growth rate of the whole industry is 4 per cent and that of the GDP 3 per cent. In the rapid growth scenario, the growth rate of the metal sector goes up to 10 per cent and in the slow growth scenario down to 3 per cent. In the assessment of environmental effects of the metal sector are included energy consumption, emissions into the air, use on natural resources, waste formation and recycling of metals. Although the production volume of the metal sector almost doubles between 1990 - 2000, the consumption of primary energy grows only about one fourth and that of the electricity by 50 per cent

  17. Removal of heavy metal from industrial wastewater using hydrogen ...

    African Journals Online (AJOL)

    The batch removal of heavy metals lead (Pb), zinc (Zn) and copper (Cu) from industrial wastewater effluent under different experimental conditions using hydrogen peroxide was investigated. Experimental results indicated that at pH 6.5, pre-treatment analysis gave the following values: Pb 57.63 mg/l, Zn 18.9 mg/l and Cu ...

  18. Determination of Heavy Metal Levels in Various Industrial Waste Waters

    Directory of Open Access Journals (Sweden)

    Mustafa Şahin Dündar

    2012-06-01

    Full Text Available Important part of the environmetal pollution consists of waste water and water pollution. The water polluted by anthropogenical, industrial, and agricultural originated sources are defined as waste waters which are the main pollution sources for reservoirs, rivers, lakes, and seas. In this work, waste waters of leather, textile, automotive side, and metal plating industries were used to determine the levels of Cu, Zn, Cr, Pb and Ni by using Flame Atomic Absorption Spectrometer. As a result, highest mean levels of copper in supernatants of plating and textile industries were observed as 377,18 ng ml-1, respectively 103 ng ml-1 lead and 963,6 ng ml-1 nickel in plating industry, 1068,2 ng ml-1 zinc and 14557,1 ng ml-1 chromium in plating and leather industries were determined.

  19. An anthropometric study of Serbian metal industry workers.

    Science.gov (United States)

    Omić, S; Brkić, V K Spasojevic; Golubović, T A; Brkić, A D; Klarin, M M

    2017-01-01

    There are recent studies using new industrial workers' anthropometric data in different countries, but for Serbia such data are not available. This study is the first anthropometric study of Serbian metal industry workers in the country, whose labor force is increasingly employed both on local and international markets. The metal industry is one of Serbia's most important economic sectors. To this end, we collected the basic static anthropometric dimensions of 122 industrial workers and used principal components analysis (PCA) to obtain multivariate anthropometric models. To confirm the results, the dimensions of an additional 50 workers were collected. The PCA methodology was also compared with the percentile method. Comparing both data samples, we found that 96% of the participants are within the tolerance ellipsoid. According to this study, multivariate modeling covers a larger extent of the intended population proportion compared to percentiles. The results of this research are useful for the designers of metal industry workstations. This information can be used in dimensioning the workplace, thus increasing job satisfaction, reducing the risk of injuries and fatalities, and consequently increasing productivity and safety.

  20. Progress of liquid metal technology and application in energy industries

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kamei, Mitsuru; Nei, Hiromichi.

    1990-01-01

    Liquid metals are excellent energy transport media, and recently remarkable development has been observed in the technology of handling sodium and the machinery and equipment. In nuclear fusion, the development of the use of lithium as the coolant is advanced. For space technology, attention has been paid from the early stage to various liquid metals. For general industries, liquid metals have been used for high temperature heat pipes and the utilization of solar heat, and mercury vapor turbines were manufactured for trial. Besides, attention is paid anew to liquid metal MHD electric power generation. The development of the NaS batteries for electric cars and electric power storage and the interchange of liquid metal technology with the fields of iron and steel, metallurgy and so on advance. It is expected that liquid metal technology bears future advanced energy engineering while deepening the interchange with other advanced fields also in order to reactivate atomic energy technology. Liquid metals have the features of high electric and thermal conductivities, chemical activity and opaque property as metals, and fluidity and relatively high boiling point and melting point as liquids. FBRs, fusion reactors and the power sources for space use are described. (K.I.)

  1. The Recovery of Zinc Heavy Metal from Industrial Liquid Waste

    International Nuclear Information System (INIS)

    Panggabean, Sahat M.

    2000-01-01

    It had been studied the recovery of zinc heavy metal from liquid waste of electroplating industry located at East Jakarta. The aim of this study was to minimize the waste arisen from industrial activities by taking out zinc metal in order to reused on-site. The method of recovery was two steps precipitation using NaOH reagent and pH variation. The first step of precipitation at pH optimum around 6 yielded iron metal. The second step at pH optimum around 10 yielded zinc metal. The zinc metal was taken out assessed to the possibility of reused at that fabric. By applying its, it will yield the volume reduction of sludge waste about 36.1% or 53.2% of zinc metal containing in the waste. It means the cost of waste treatment will be lower. Beside its, the effluent arisen from the method had fulfill the maximum limit and it allowed to release to the environment. (author)

  2. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    Science.gov (United States)

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  3. Removal of heavy metal from industrial effluents using Baker's yeast

    Science.gov (United States)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  4. Taiwan's industrial heavy metal pollution threatens terrestrial biota

    International Nuclear Information System (INIS)

    Hsu, M.J.; Selvaraj, K.; Agoramoorthy, G.

    2006-01-01

    The bioconcentration levels of essential (Cu, Fe, Mg, Mn, and Zn) and non-essential (As, Cd, Hg, Pb, and Sn) elements have been investigated in different terrestrial biota such as fungi, plant, earthworm, snail, crab, insect, amphibian, lizard, snake, and bat including the associated soil, to investigate the ecosystem health status in Kenting National Park, Taiwan. High bioconcentrations of Cd, Hg, and Sn in snail, earthworm, crab, lizard, snake, and bat indicated a contaminated terrestrial ecosystem. High concentrations of Cd, Hg, and Sn in plant species, effective bioaccumulation of Cd by earthworm, snail, crab and bat, as well as very high levels of Hg found in invertebrates, amphibians, and reptiles revealed a strong influence from industrial pollution on the biotic community. This study for the first time presents data on the impact of heavy metal pollution on various terrestrial organisms in Taiwan. - Metal effects occur at any terrestrial levels in Taiwan

  5. Recycling decontaminated scrap metal from the nuclear industry

    International Nuclear Information System (INIS)

    Bordas, F.

    2000-01-01

    The Commissariat a l'Energie Atomique (CEA) has set up a pilot program for recycling decontaminated scrap metal. In decommissioning its enriched uranium production facilities at Pierrelatte, the CEA has accumulated some 700 metric tons of scrap metal from dismantled uranium hexafluoride transport containers. The containers were decontaminated by SOCATRI at the Tricastin site, then cut up and recycled by a steelmaker. The project was submitted to the Ionizing Radiation Protection Office, the Nuclear Facilities Safety Division and the Regional Directorate for Industry, Research and Environmental Protection for approval. It was also submitted to the Ministry of Industry's Nuclear Information and Safety Council and to the Permanent Secretariat for Industrial Pollution Problems (an informational group chaired by the Prefect of the Provence Alpes-Cote d Azur region and including representatives of local and regional authorities, associations, elected officials and the media). The permit was granted for this program under the terms of a prefectorial decree stipulating additional requirements for the steelmaker, and contingent on the demonstration of full control over the operations, demonstrated traceability and the absence of any significant harmful effects. The key elements of this demonstration include the choice of operators, identification of the objects, itemization of the operations, discrimination of operators, the contractual framework of the operations, the signature of agreements by the CEA with SOCATRI and with the steelmaker, documentary monitoring of the operations, contradictory inspections and measurements, second-level inspection by the CEA/Valrho, audits of the operators and impact assessments. All the procedures of operations related to the scrap metal are described in quality assurance documents. (author)

  6. Summary of industrial impacts from recycled radioactive scrap metals

    International Nuclear Information System (INIS)

    Dehmel, J.-C.; Harrop, J.; MacKinney, J.A.

    1995-01-01

    During operation, decontamination, and dismantlement, nuclear facilities are generating significant quantities of radioactive scrap metal (RSM). Future decommissioning will generate even more RSM. The petroleum industry also generates RSM in the form of equipment contaminated with naturally occurring radioactivity. Finally, the accidental melting of radioactive sources in steel mills has generated smaller amounts of contaminated metals. Steel mills, smelters, and foundries could recycle these materials, which might then appear in finished products or as feedstocks used by other industries. If introduced in this manner, residual radioactivity can adversely affect the performance of certain products. Such products include computers and other devices that rely on integrated circuits. The most important effect of residual radioactivity on integrated circuits is a phenomenon known as 'single event upsets or soft errors.' Radioactivity can also adversely affect the performance of products such as photographic film and components designed to measure the presence of radioactivity. Radioactivity that raises background count-rates to higher levels could affect the performance of radiation monitoring systems and analytical equipment. Higher background count-rates would lead to reduced sensitivity and lower resolution in spectroscopic systems. The computer, photographic, and radiation measurement industries have taken steps to minimize the impact of residual radioactivity on their products. These steps include monitoring manufacturing processes, specifying material acceptance standards, and screening suppliers. As RSM is recycled, these steps may become more important and more costly. This paper characterizes potentially impacted industries and vulnerability and effects due to the presence of residual radioactivity. Finally, the paper describes practices used to limit the impact of residual radioactivity. (J.P.N.)

  7. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    OpenAIRE

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothée

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures...

  8. Impact of industrial effluents on geochemical association of metals within intertidal sediments of a creek

    Digital Repository Service at National Institute of Oceanography (India)

    Volvoikar, S.P.; Nayak, G.N.

    Metal speciation studies were carried out on three intertidal core sediments of the industrially impacted Dudh creek located along west coast of India Metals indicated a drastic increase in the bioavailable fraction towards the surface of the cores...

  9. 279 Watt Metal-Wrap-Through module using industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Guillevin, N.; Heurtault, B.; Geerligs, L.J.; Anker, J.; Van Aken, B.B.; Bennett, I.J.; Jansen, M.J.; Berkeveld, L.D.; Weeber, A.W.; Bultman, J.H. [ECN Solar Energy, PO Box 1, 1755 ZG Petten (Netherlands); Wenchao, Zhao; Jianming, Wang; Ziqian, Wang; Yingle, Chen; Yanlong, Shen; Zhiyan, Hu; Gaofei, Li; Jianhui, Chen; Bo, Yu; Shuquan, Tian; Jingfeng, Xiong [Yingli Solar, 3399 Chaoyang North Street, Baoding (China)

    2012-09-15

    This paper describes results of metal wrap through (MWT) cells produced from n-type Czochralski silicon wafers, and modules produced from those cells. The use of n-type silicon as base material allows for high efficiencies: for front emitter contacted industrial cells, efficiencies up to 20% have been reported. MWT cells allow even higher cell efficiency due to reduced front metal coverage, and additionally full back-contacting of the MWT cells in a module results in reduced cell to module (CTM) fill factor losses. MWT cells were produced by industrial process technologies. The efficiency of the MWT cells reproducibly exceeds the efficiency of front contact cells based on the same technology by about 0.2-0.3%, and routes for further improvement are analyzed. 60-cell modules were produced from both types of cells (MWT and H-pattern front emitter). In a direct module performance comparison, the MWT module, based on integrated backfoil, produced 3% higher power output than the comparable tabbed front emitter contact module. CTM current differences arise from the higher packing density, and in this experiment from a lower reflectance of the backfoil, in MWT modules. CTM FF differences are related to resistive losses in copper circuitry on the backfoil versus tabs. The CTM FF loss of the MWT module was reduced by 2.2%abs compared to the tabbed front emitter contact module. Finally, simple process optimizations were tested to improve the n-type MWT cell and module efficiency. A module made using MWT cells of 19.6% average efficiency resulted in a power output of 279W. The cell and module results are analyzed and routes for improvements are discussed.

  10. Radioactive contamination in metal recycling industry - an environmental issue

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2012-01-01

    Metal recycling has become an important industrial activity worldwide; it is seen as being socially and environmentally beneficial because it conserves natural ore resources and saves energy. However, there have been several accidents over the past decades involving orphan radioactive sources or other radioactive material that were inadvertently collected as metal scrap that was destined for recycling. The consequences of these accidents have been serious with regard to the protection of people and the environment from the harmful effects of ionizing radiation as well as from an economic point of view. India produces and exports steel products to various countries. In the recent years there were rejection and return of steel products as they were found to be contaminated with trace quantities of radioactive materials. During investigation of incidents of radioactive contamination in steel products exported from India, it was observed that steel products are contaminated with low level radioactivity. Though radioactivity level in steel products is found to be too low to pose any significant hazards to the handling personnel or to the users or the public at large, its presence is undesirable and need to be probed as to how it has entered in the steel products. Atomic Energy Regulatory Board (AERB) has investigated the incidents of such nature in the recent past and it is gathered that the steel products are made out of steel produced in a foundry where metal scrap containing radioactive material has been used. In this talk, incidents of radioactive contamination, its roots cause, and its radiological impact on person, property and environment, lessons learnt, remedial measures and international concerns will be discussed

  11. Recovery of precious metals from industrial wastes using membrane separation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Ki; Lee, Jae Chun; Youn, In Ju [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    The purpose of the research is to develop a membrane technology for the recovery of Au by the concentration of used cyanide solution. Au and Ag have been widely used in various advanced technology due to their excellent physical and chemical properties. In most of their application, they were electrodeposited in the cyanide solution. The solution was also used as an etchant for the decorative gold alloys such as 14 K and 18 K. Due to the expanding related industry, the amount of used cyanide solution has been greatly increased. The used solution normally contains about 1-3 g/1 of Au. Due to their high prices various separation method has been developed and commercialized for long time. The concentration method which removes water offers various advantages like the reduction of used solution, the needless of additional cyanide, and the increase in the recovery rate. The main objective of the study was laid in the development of an economical recovery process for precious metals including Au from used cyanide solution. To achieve this goal related processes were reviewed comprehensively focussing on the membrane process and the concentration process. The feasibility of membrane process was evaluated by the measurement of separation efficiency and concentration efficiency of cyanide. In addition, various CN analysis was compared in order to develop a simple and routine procedure for future experiment. The process does not require additional cyanide and thus prevents further environmental contamination. It is economical because the recovery can be increased by the concentration of the solution during the recovery process. In addition, it can be applied to other metals waste system due to the reduced recovery process by concentration. The used water can also be reused. (author). 23 refs., 16 figs., 5 tabs.

  12. Impact of industrial activities on heavy metal loading and their ...

    African Journals Online (AJOL)

    Sources of water pollution include effluents from a brewery (high pH) and areas associated with tanning activities, sewage treatment plant and ... industry (Pb), operations involving Zn scrap (Cd), former Cu smelter (Cu, Pb, Ni and Co), tannery and pharmaceutical industry (Cr), and soap and cosmetics industry (Hg).

  13. Metal Recovery from Industrial Solid Waste — Contribution to Resource Sustainability

    Science.gov (United States)

    Yang, Yongxiang

    Increased demand of metals has driven the accelerated mining and metallurgical production in recent years, causing fast depletion of primary metals resources. On the contrary, the mining and metallurgical industry generates large amount of solid residues and waste such as tailings, slags, flue dust and leach residues, with relative low valuable metal contents. On the other hand, end-of-life (EoL) consumer products form another significant resources. The current technology and processes for primary metals production are not readily applicable for direct metals extraction from these waste materials, and special adaptation and tailor-made processes are required. In the present paper, various solid waste resources are reviewed, and current technologies and R&D trends are discussed. The recent research at author's group is illustrated for providing potential solutions to future resource problems, including metal recovery from MSW incinerator bottom ashes, zinc recovery from industrial ashes and residues, and rare earth metals recovery from EoL permanent magnets.

  14. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    Directory of Open Access Journals (Sweden)

    Ehsanul Kabir

    2012-01-01

    Full Text Available There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo, calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  15. Heavy metal levels in soil samples from highly industrialized Lagos ...

    African Journals Online (AJOL)

    Anyakora

    2013-09-05

    Sep 5, 2013 ... The effect of heavy metals on the environment is of serious concern and threatens life in all forms. Environmental ... have affected the quality of soil due to contamination of soil with heavy metals and the consequent effects on the ..... tested for remediation of chromium-contaminated soils. (Collen, 2003).

  16. Modelling, screening, and solving of optimisation problems: Application to industrial metal forming processes

    NARCIS (Netherlands)

    Bonte, M.H.A.; van den Boogaard, Antonius H.; Veldman, E.

    2007-01-01

    Coupling Finite Element (FEM) simulations to mathematical optimisation techniques provides a high potential to improve industrial metal forming processes. In order to optimise these processes, all kind of optimisation problems need to be mathematically modelled and subsequently solved using an

  17. Trace metal levels in nearshore sediments close to industrial discharges off Cuddalore (Bay of Bengal)

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, T.; Balachandran, K.K.; Nair, M.; Das, V.K.; Nair, K.K.C.; Paimpillii, J.S.

    Trace metals in the sediment and in the overlying water column along with texture characteristics in the vicinity of industrial discharges at Cuddallore were analyzed, covering the seasonal changes to identify probable anthropogenic influence...

  18. Use of plain carbon steel and configuration management program for the metal industry

    International Nuclear Information System (INIS)

    Tariq, M.M.; Kalsoom, T.

    2006-01-01

    The application of Configuration Management (CM) and structural plain carbon steels for metal industry is studied. Requirements of surface treatment and heat treatment are also defined to achieve maximum for metal industry. Triangle of materials, properties and applications is discussed with in the role of CM. Equivalent plain carbon steel have been suggested, based on structural applications. Operating conditions for the required surface treatment e.g. paint, galvanizing or other coatings are studied. Role of CM is highlighted for these activities. (author)

  19. FREQUENCY OF HEARING IMPAIRMENT IN METAL INDUSTRY AND REPERCUSSION ON PROFESSIONAL ENABLING OF DEAF

    Directory of Open Access Journals (Sweden)

    Husnija Hasanbegović

    2011-04-01

    Full Text Available The survey has been done on sample of 1252 people. The target was to estimate damage of noise on professional rehabilitation of deaf population, which is mostly directed to professions in heavy industry, for professions in metal industry. Sample has been divided to 3 sub samples: 137 hearing people in metal industry; 106 hearing impaired adults with different professions and control group of 1000 hearing people. The results of survey point that work conditions contribute to hearing damage at employers in metal industry by comparison with hearing impairment of usual population. By comparative analysis of registered hearing impairments concerning age, statistically important difference in frequency of hearing impairment of two sub samples (t= 3.27, sing=.05. The relation between hearing impairment and years of working has been identifi ed at employers in heavy industry, (r=.37.

  20. Frequency of Hearing Impairment in Metal Industry and Repercussion on Professional Enabling of Deaf

    Directory of Open Access Journals (Sweden)

    Husnija Hasanbegovic

    2011-08-01

    Full Text Available The survey has been done on sample of 1252 people. The target was to estimate damage of noise on professional rehabilitation of deaf population, which is mostly directed to professions in heavy industry, for professions in metal industry. Sample has been divided to 3 sub samples: 137 hearing people in metal industry; 106 hearing impaired adults with different professions and control group of 1000 hearing people. The results of survey point that work conditions contribute to hearing damage at employers in metal industry by comparison with hearing impairment of usual population. By comparative analysis of registered hearing impairments concerning age, statistically important difference in frequency of hearing impairment of two sub samples (t= 3.27, sing=.05. The relation between hearing impairment and years of working has been identify ed at employers in heavy industry, (r=.37.

  1. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania.

    Science.gov (United States)

    Rossi, Robert J; Bain, Daniel J; Hillman, Aubrey L; Pompeani, David P; Finkenbinder, Matthew S; Abbott, Mark B

    2017-04-18

    Early industrial trace metal loadings are poorly characterized but potentially substantial sources of trace metals to the landscape. The magnitude of legacy contamination in southwestern Pennsylvania, the cradle of North American fossil fuel industrialization, is reconstructed from trace metal concentrations in a sediment core with proxies including major and trace metal chemistry, bulk density, and magnetic susceptibility. Trace metal chemistry in this sediment record reflects 19th and 20th century land use and industry. In particular, early 19th century arsenic loadings to the lake are elevated from pesticides used by early European settlers at a lakeside tannery. Later, sediment barium concentrations rise, likely reflecting the onset of acidic mine drainage from coal operations. Twentieth century zinc, cadmium, and lead concentrations are dominated by emissions from the nearby, infamous Donora Zinc Works yet record both the opening of a nearby coal-fired power plant and amendments to the Clean Air Act. The impact of early industry is substantial and rivals more recent metal fluxes, resulting in a significant potential source of contaminated sediments. Thus, modern assessments of trace metal contamination cannot ignore early industrial inputs, as the potential remobilization of legacy contamination would impact ecosystem and human health.

  2. A case in support of implementing innovative bio-processes in the metal mining industry

    NARCIS (Netherlands)

    Sanchez Andrea, I.; Stams, A.J.M.; Weijma, J.; Gonzalez Contreras, P.A.; Dijkman, H.; Rozendal, R.A.; Johnson, D.B.

    2016-01-01

    The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements.

  3. 75 FR 7030 - Dawson Metal Company, Inc., Industrial Division, Jamestown, NY; Notice of Affirmative...

    Science.gov (United States)

    2010-02-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Dawson Metal Company, Inc., Industrial Division, Jamestown, NY; Notice... determination based on the finding that imports of precision sheet metal fabrication did not contribute...

  4. A case in support of implementing innovative bio-processes in the metal mining industry.

    Science.gov (United States)

    Sánchez-Andrea, Irene; Stams, Alfons J M; Weijma, Jan; Gonzalez Contreras, Paula; Dijkman, Henk; Rozendal, Rene A; Johnson, D Barrie

    2016-06-01

    The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements. Typically about 99% of solid material hauled to, and ground at, the land surface currently ends up as waste (rock dumps and mineral tailings). Exposure of these to air and water frequently leads to the formation of acidic, metal-contaminated run-off waters, referred to as acid mine drainage, which constitutes a severe threat to the environment. Formation of acid drainage is a natural phenomenon involving various species of lithotrophic (literally 'rock-eating') bacteria and archaea, which oxidize reduced forms of iron and/or sulfur. However, other microorganisms that reduce inorganic sulfur compounds can essentially reverse this process. These microorganisms can be applied on industrial scale to precipitate metals from industrial mineral leachates and acid mine drainage streams, resulting in a net improvement in metal recovery, while minimizing the amounts of leachable metals to the tailings storage dams. Here, we advocate that more extensive exploitation of microorganisms in metal mining operations could be an important way to green up the industry, reducing environmental risks and improving the efficiency and the economy of metal recovery. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater

    Science.gov (United States)

    Hussain, Athar; Maitra, Jaya; Khan, Kashif Ali

    2017-12-01

    Heavy metals are usually released into water bodies from industrial/domestic effluents such as metal plating industries, mining and tanneries. Adsorption is a fundamental process in the physiochemical treatment of wastewaters because of its low cost. Great efforts have been made to use the economically efficient and unconventional adsorbents to adsorb heavy metals from aqueous solutions, such as plant wastes and agricultural waste. Biochar mixed with chitosan after crosslinking can be casted into membranes, beads and solutions which can be effectively utilized as an adsorbent for metal ion uptake. Keeping these facts into consideration, the present study was undertaken with the objective to determine the effect of various proportions of biochar-modified chitosan membranes on the sorption characteristics of different heavy metals like Cu, Pb, As and Cd along with comparison of sorption characteristics between industrial waste water samples containing multi-metals and standard synthetic stock solution containing a particular metal. It is apparent from the results that the bioadsorbent prepared from biochar and chitosan are low-cost efficacious resource due to its easy availability. It is also eco-friendly material for making adsorbent for abstraction of heavy metals from aqueous solution. This adsorbent can be best utilized for adsorption of heavy metals.

  6. 75 FR 65523 - Dawson Metal Company, Inc., Industrial Division, Jamestown, NY; Notice of Negative Determination...

    Science.gov (United States)

    2010-10-25

    ...., Industrial Division, Jamestown, NY; Notice of Negative Determination on Reconsideration On January 21, 2010... the relatively insignificant scale of the customer's decline. The fourth customer was the customer... adjustment assistance for workers and former workers of Dawson Metal Company, Inc., Industrial Division...

  7. Trace Analysis of Heavy Metals in Ground Waters of Vijayawada Industrial Area

    Science.gov (United States)

    Tadiboyina, Ravisankar; Ptsrk, Prasada Rao

    2016-01-01

    In recent years, the new environmental problem are arising due to industrial hazard wastage, global climate change, ground water contamination and etc., gives an attention to protect environment.one of the major source of contamination of ground water is improper discharge of industrial effluents these effluents contains so many heavy metals which…

  8. A study on the treatment of industrial wastewater containing heavy metals

    International Nuclear Information System (INIS)

    Yoon, Myoung Hwan; Jang, In Soon; Park, Jang Jin; Choi, Chang Shik; Lee, Yoon Hwan; Shin, Jin Myoung

    1993-06-01

    It is essential to treat heavy metals contained in industrial wastewater safely and economically for the protection of the environment. An effective method of separating heavy metals using acornic acid for the first time in the world must be utilized for wastewater treatment. One of the merits of this method lies in its cheap treatment cost. Furthermore, the secondary contamination, which occurs often when chemical purifiers are used, could be minimized. Another advantage of utilizing the acornic acid is that various kinds of heavy metals contained in industrial wastewater can be purified at once. The final purpose of this project is to commercialize the method by 1994. (Auther)

  9. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications.

    Science.gov (United States)

    Ranawat, Preeti; Rawat, Seema

    2018-02-01

    Metal-tolerant thermophiles are inhabitants of a wide range of extreme habitats like solfatara fields, hot springs, mud holes, hydrothermal vents oozing out from metal-rich ores, hypersaline pools and soil crusts enriched with metals and other elements. The ability to withstand adverse environmental conditions, like high temperature, high metal concentration and sometimes high pH in their niche, makes them an interesting subject for understanding mechanisms behind their ability to deal with multiple duress simultaneously. Metals are essential for biological systems, as they participate in biochemistries that cannot be achieved only by organic molecules. However, the excess concentration of metals can disrupt natural biogeochemical processes and can impose toxicity. Thermophiles counteract metal toxicity via their unique cell wall, metabolic factors and enzymes that carry out metal-based redox transformations, metal sequestration by metallothioneins and metallochaperones as well as metal efflux. Thermophilic metal resistance is heterogeneous at both genetic and physiology levels and may be chromosomally, plasmid or transposon encoded with one or more genes being involved. These effective response mechanisms either individually or synergistically make proliferation of thermophiles in metal-rich habitats possibly. This article presents the state of the art and future perspectives of responses of thermophiles to metals at genetic as well as physiological levels.

  10. assessment of atmospheric metal depositions in the industrial areas

    African Journals Online (AJOL)

    Osondu

    and the citizens of the study areas that their environments are polluted with heavy metals. This would certainly help in taking proactive steps that will help to reduce the pollution load. Keywords: Air quality, biomonitors, anthropogenic, environment, passive biomonitoring, exudates. Introduction. The quality of our environment ...

  11. Assessment of Atmospheric Metal Depositions in the Industrial ...

    African Journals Online (AJOL)

    ... this study would inform the Government and the citizens of the study areas that their environments are polluted with heavy metals. This would certainly help in taking proactive steps that will help to reduce the pollution load. Keywords: Air quality, biomonitors, anthropogenic, environment, passive biomonitoring, exudates ...

  12. Industrial Arts Curriculum Guide for Automated Machining in Metals Technology.

    Science.gov (United States)

    1985

    This curriculum guide is designed to be used for creating programs in automated machining education in Connecticut. The first sections of the guide are introductory, explaining the importance of computer-numerically controlled machines, describing the industrial arts scope and sequence for kindergarten through adult levels, describing the…

  13. INFLUENCE OF MINING AND METAL INDUSTRY ON PHYSCIA LICHENS

    Directory of Open Access Journals (Sweden)

    Kachinskaya V.V.

    2015-04-01

    Full Text Available The comparative analysis of lichens Physcia. Рopulation at different levels of aerotechnogenic pollution of industrial mining – metallurgical complex of Krivyi Rig Basin. In the highway area there was found the worsening living conditions of thallus at the lichens Physcia, manifested in the reduction of a projective cover and reducing of the size of thallus with the increasing of the degree of their damage. It is set that specific composition and conformities to law of distribution of cladinas is determined the type of the industrial loading. Predominance at the lichens of crustaceous cladinas, insignificant participation of fissile cladinas and complete absence of bushy forms is the possible consequence of industrial influence. We registered some 3 species of epiphytic lichens, namely Phaeophyscia nigricans, Physcia tenella, Physcia adscendens in a residential zone, while on conditional control area we found Physcia orbicularis. The dominant species was scum-like shape Phaeophyscia nigricans, Physcia adscendens, Physcia tenella, while on conditional control region we marked predominance of Physcia orbicularis and did not registered bushy lichens form. We also divided the lichens into two groups according to the resistance towards air pollution - moderate (2 species, Phaeophyscia nigricans, Physcia tenella and toxic-resistant (2 species, Physcia orbicularis, Physcia adscendens. Epiphytic lichens in terms of residential areas compared to conventionally control area characterized by a decrease of morphometric parameters of the melt. Key results can be used to predict the state of ecosystems using lichenoindication in terms of industrial regions of Ukraine.

  14. Application of the dynamic characterization of metals in automotive industry

    Science.gov (United States)

    D'Aiuto, Fabio; De Caro, Daniele; Federici, Claudio; Tedesco, Michele M.; Ziggiotti, Alessandro; Cadoni, Ezio

    2015-09-01

    This paper presents the experimental methodology used by R&D EMEA - Global Materials Labs Department to test metals at high strain rate of 500 s-1. The implementation of dynamic results in commercial FEM Software LS - DYNA for crash simulation are presented. The effects of the strain rate on the tensile properties of metals, used in automotive field, are evaluated using results obtained from a direct tension split Hopkinson bar, built in collaboration with the University of Applied Sciences of Southern Switzerland DynaMat Lab. Finally the complete mechanical characterization of the Magnesium alloy AZ31B is presented, from static up to dynamic tests, showing its applications in FCA (Fiat Chrysler Automobiles), problems and future developments.

  15. Application of the dynamic characterization of metals in automotive industry

    Directory of Open Access Journals (Sweden)

    D'Aiuto Fabio

    2015-01-01

    Full Text Available This paper presents the experimental methodology used by R&D EMEA – Global Materials Labs Department to test metals at high strain rate of 500 s−1. The implementation of dynamic results in commercial FEM Software LS – DYNA for crash simulation are presented. The effects of the strain rate on the tensile properties of metals, used in automotive field, are evaluated using results obtained from a direct tension split Hopkinson bar, built in collaboration with the University of Applied Sciences of Southern Switzerland DynaMat Lab. Finally the complete mechanical characterization of the Magnesium alloy AZ31B is presented, from static up to dynamic tests, showing its applications in FCA (Fiat Chrysler Automobiles, problems and future developments.

  16. Fungal biotrap for retrieval of heavy metals from industrial wastewaters

    International Nuclear Information System (INIS)

    Crusberg, T.C.; Weathers, P.; Baker, E.

    1989-01-01

    Biotraps are living cells or specific cell components capable of removing or stabilizing toxic substances form waste streams. The fungus Penicillium ochro-chloron was discovered growing in an electroplating wastewater stream in Japan. It is not only tolerant to very high concentrations of divalent metal ions, but it can effectively remove heavy metals (such as uranium cadmium, nickel, etc.) from almost any aqueous waste stream. This paper discussed P. ochro-chloron biotrap which was prepared by growing spores in a glucose-minimal salts medium supplemented with 0.5 percent Tween 80 for 5 days with constant gentle agitation. The while mycelia beads 4-6 mm dia. were treated in a Buchner funnel with 80% ethanol to kill the cells, 15 percent sodium carbonate/bicarbonate pH 9.5, and then resuspended in an aqueous slurry at pH 4.0. The mycelia beads were used as an adsorbent in a batch experiment to determine copper-to-mycelia binding. This system should be capable of heavy metal uptake and recovery from both electroplating wastewaters and contaminated aqueous environments. The use of this fungus biotrap will rival synthetic cation environments. The use of this fungus biotrap will rival synthetic cation exchange resins because of lower cost, lower weight per unit of exchange capacity and ease of application

  17. Study of radiation portal monitor and its application to metal recycling industry

    International Nuclear Information System (INIS)

    Pujol, L.; Lara-Calleja, S.; Suarez-Navarro, M. J.; Gonzalez-Gonzalez, J. A.

    2009-01-01

    The industry of the iron and the steel in one of the most important sectors in Spain for its economic development. the recycling of metallic materials as well as the import of metallic scrap is very significant. Several reports on accidental dispersion or smelting of radioactive sources in metal recycling industries confirm the possibility that radioactive material might be mixed with scrap. In consequence, this type of accident shows the necessity of a rigorous and specific radiation control of the sector. The control of these materials with radioactive content can be carried out with radiation portal monitors installed at the entrance of these industries. The detection of radioactive materials presents special features as the continuous background acquisition or the minimisation of the relatively large number of innocent/nuisance detections. In the present work, we study a radiation portal monitor, the FHT-1388-T Thermo-Eberline. This is one of the usual radiation portal systems installed at the entrance of the metal recycling industry. Se study the characteristics and parameters of this portal monitor to optimise its use. furthermore, we propose some rapid tests for radiation portal systems in metal recycling industry. (Author) 16 refs

  18. Projection-based metal-artifact reduction for industrial 3D X-ray computed tomography.

    Science.gov (United States)

    Amirkhanov, Artem; Heinzl, Christoph; Reiter, Michael; Kastner, Johann; Gröller, M Eduard

    2011-12-01

    Multi-material components, which contain metal parts surrounded by plastic materials, are highly interesting for inspection using industrial 3D X-ray computed tomography (3DXCT). Examples of this application scenario are connectors or housings with metal inlays in the electronic or automotive industry. A major problem of this type of components is the presence of metal, which causes streaking artifacts and distorts the surrounding media in the reconstructed volume. Streaking artifacts and dark-band artifacts around metal components significantly influence the material characterization (especially for the plastic components). In specific cases these artifacts even prevent a further analysis. Due to the nature and the different characteristics of artifacts, the development of an efficient artifact-reduction technique in reconstruction-space is rather complicated. In this paper we present a projection-space pipeline for metal-artifacts reduction. The proposed technique first segments the metal in the spatial domain of the reconstructed volume in order to separate it from the other materials. Then metal parts are forward-projected on the set of projections in a way that metal-projection regions are treated as voids. Subsequently the voids, which are left by the removed metal, are interpolated in the 2D projections. Finally, the metal is inserted back into the reconstructed 3D volume during the fusion stage. We present a visual analysis tool, allowing for interactive parameter estimation of the metal segmentation. The results of the proposed artifact-reduction technique are demonstrated on a test part as well as on real world components. For these specimens we achieve a significant reduction of metal artifacts, allowing an enhanced material characterization. © 2010 IEEE

  19. Magnetic signature, geochemistry, and oral bioaccessibility of "technogenic" metals in contaminated industrial soils from Sindos Industrial Area, Northern Greece.

    Science.gov (United States)

    Bourliva, Anna; Papadopoulou, Lambrini; Aidona, Elina; Giouri, Katerina

    2017-07-01

    The objective of this study was to assess the contamination level of potentially harmful elements (PHEs) in industrial soils and how this relates to environmental magnetism. Moreover, emphasis was given to the determination of the potential mobile fractions of typically "technogenic" metals. Therefore, magnetic and geochemical parameters were determined in topsoils (0-20 cm) collected around a chemical industry in Sindos Industrial Area, Thessaloniki, Greece. Soil samples were presented significantly enriched in "technogenic" metals such Cd, Pb, and Zn, while cases of severe soil contamination were observed in sampling sites north-west of the industrial unit. Contents of Cd, Cr, Cu, Ni, Pb, Mo, Sb, Sn, and Zn in soils and pollution load index (PLI) were highly correlated with mass specific magnetic susceptibility (χ lf ). Similarly, enrichment factor (EF) and geoaccumulation index (I geo ) for "technogenic" Pb and Zn exhibited high positive correlation factors with χ lf . Principal component analysis (PCA) classified PHEs along with the magnetic variable (χ lf ) into a common group indicating anthropogenic influence. The water extractable concentrations were substantially low, while the descending order of UBM (Unified BARGE Method) extractable concentrations in the gastric phase was Zn > Pb > As > Cd, yet Cd showed the highest bioaccessibility (almost 95%).

  20. Assessment of heavy metals leaching from (biochar obtained from industrial sewage sludge

    Directory of Open Access Journals (Sweden)

    Julija Pečkytė

    2015-10-01

    Full Text Available Biochar can be produced from many various feedstock including biomass residues such as straw, branches, sawdust and other agricultural and forestry waste. One of the alternatives is to obtain biochar from industrial sewage sludge, however, the use of such a product could be limited due to high quantities of heavy metals in the biochar as a product. Total concentration of heavy metals provides only limited information on the behavior of heavy metals, therefore, batch leaching and up-flow percolation leaching tests were applied to study the leaching of heavy metals (Cd, Pb, Cr, Ni, Zn, Cu from (biochar produced from two types of sewage sludge: from paper mill and leather industries.

  1. Metal-containing residues from industry and in the environment: geobiotechnological urban mining.

    Science.gov (United States)

    Glombitza, Franz; Reichel, Susan

    2014-01-01

    This chapter explains the manifold geobiotechnological possibilities to separate industrial valuable metals from various industrial residues and stored waste products of the past. In addition to an overview of the different microbially catalyzed chemical reactions applicable for a separation of metals and details of published studies, results of many individual investigations from various research projects are described. These concern the separation of rare earth elements from phosphorous production slags, the attempts of tin leaching from mining flotation residues, the separation of metals from spent catalysts, or the treatment of ashes as valuable metal-containing material. The residues of environmental technologies are integrated into this overview as well. The description of the different known microbial processes offers starting points for suitable and new technologies. In addition to the application of chemolithoautotrophic microorganisms the use of heterotrophic microorganisms is explained.

  2. Improvement Bio sorption of Heavy Metals from Industrial Wastewater Using Azolla

    International Nuclear Information System (INIS)

    Kotb, E.A.

    2012-01-01

    This study aims to improve the removal process which is vital for some heavy metals and natural radionuclides from industrial wastewater by bio sorption using living organisms with rapid growth as a trial to increase the efficient use of those organisms in the removal process is vital for the toxic elements. Bio sorption of heavy metal (Copper, Manganese, Iron, Zinc, Lead and Strontium) from industrial waste water (contaminated) with six different time periods for Azolla growth. The results indicate that Azolla plant able to on the absorption of ions of heavy elements and Sr and was up to the maximum absorption of most of the elements at a concentration of 50% of polluted water + 50% fresh water so we recommend using the plant Azolla as bio sorbent in the disposal and collection of heavy metals and radionuclides from industrial waste water and deal with it safely to humans and the environment. The results obtained confirm the ability of the fern to grow and absorb ion of heavy metal when mixed with industrial waste water and other sources of polluted water and act as bio filter. The optimum conditions for maximum removal of heavy metals were also determined. Study was conducted on recycling municipal wastewaters for cultivation of Azollamicrophylla biomass, which is used for inoculation into paddy fields as N bio fertilizer and has other applications as green manure,animal feed and bio filter.

  3. Use of constructed wetland for the removal of heavy metals from industrial wastewater.

    Science.gov (United States)

    Khan, Sardar; Ahmad, Irshad; Shah, M Tahir; Rehman, Shafiqur; Khaliq, Abdul

    2009-08-01

    This study was conducted to investigate the effectiveness of a continuous free surface flow wetland for removal of heavy metals from industrial wastewater, in Gadoon Amazai Industrial Estate (GAIE), Swabi, Pakistan. Industrial wastewater samples were collected from the in-let, out-let and all cells of the constructed wetland (CW) and analyzed for heavy metals such as lead (Pb), cadmium (Cd), iron (Fe), nickel (Ni), chromium (Cr) and copper (Cu) using standard methods. Similarly, samples of aquatic macrophytes and sediments were also analyzed for selected heavy metals. Results indicate that the removal efficiencies of the CW for Pb, Cd, Fe, Ni, Cr, and Cu were 50%, 91.9%, 74.1%, 40.9%, 89%, and 48.3%, respectively. Furthermore, the performance of the CW was efficient enough to remove the heavy metals, particularly Cd, Fe, and Cu, from the industrial wastewater fed to it. However, it is suggested that the metal removal efficiency of the CW can be further enhanced by using proper management of vegetation and area expansion of the present CW.

  4. Potential health risk of heavy metals in the leather manufacturing industries in Sialkot, Pakistan.

    Science.gov (United States)

    Junaid, Muhammad; Hashmi, Muhammad Zaffar; Tang, Yu-Mei; Malik, Riffat Naseem; Pei, De-Sheng

    2017-08-18

    This is a systematical report on the potential health risk of heavy metals from the leather industries in Pakistan based on multiple biological matrices of the exposed workers and indoor dust samples. The adverse impacts of heavy metals on the oxidative enzyme and their risks to workers' health were also explored. Our results indicated that the level of Cr in indoor industrial dust was more than twice, compared to the background household dust. Blood, urine and hair samples of exposed workers showed significantly high concentrations of heavy metals, compared to those in the control group. Superoxide dismutase (SOD) level in the blood samples expressed significant positive correlation with Cr and Ni. Total hazard quotients (HQs)/hazard index (HI) were >1, and Cr (VI) exhibited higher cancer risks than that of Cd in the exposed workers. In addition, the PCA-MLR analysis confirmed that the industrial sections; cutting, shivering/crusting, and stitching were the principal contributors of heavy metals in the biological entities of the workers. Taken together, our results highlighted the occupationally exposed groups would likely to experience the potential health risks due to excessive exposure to the heavy metals from the leather industries.

  5. State-of-the-art of furnace recuperation in the primary metals industry: technical briefing report

    Energy Technology Data Exchange (ETDEWEB)

    Moore, N.L.

    1983-08-01

    Existing and emerging recuperator technology is identified, as well as the technical and economic issues in applying such technology. An overview of recuperation and its relevance to the primary metals industry is presented. Design considerations, equipment, and energy and cost savings of five recuperator applications in the primary metals industry are examined. Three applications include a case history of a recent recuperator installation. A cost engineering analysis of recuperator technology is included to ensure that technically feasible engineering projects are also economically attractive business ventures. An overview of emerging recuperation technology is presented.

  6. Trade in the telecoupling framework: evidence from the metals industry

    Directory of Open Access Journals (Sweden)

    Hang Xiong

    2018-03-01

    Full Text Available As a conceptual framework for understanding contemporary sustainability challenges, telecoupling emphasizes the importance of socioeconomic and environmental interactions over long distances. These long-distance interactions can occur through multiple human activities. We focus on international trade, a major channel of telecoupling flows, and in particular on the international trade of metals. We use the data of physical products and embedded greenhouse gas (GHG emissions trade in the World Input-Output Database (WIOD to quantitatively examine how countries contribute to both economic and environmental flows through the trade of metals, but also how that contribution varies depending on their position in the global value chain (GVC of contemporary international trade. This analysis is built on previously developed techniques for decomposing gross exports of products, which we apply to examine embedded GHG emissions. We make comparisons between countries' contributions to flows of economic value versus embedded GHG emissions, but also examine contributions beyond total volumes of trade and bilateral trade. Specifically, we quantify the economic and environmental spillover effects that occur in contemporary international trade because of the GVC in which flows of intermediate goods form components in other subsequently traded goods. We interpret differences between countries' contributions to the flows of economic value versus embedded GHG emissions as being related to the intensity and efficiency of resource use during production. In turn, differences in contributions to direct trade flows versus spillover flows are related to their positions in the GVC. Subsequently, we discuss other elements of the telecoupling framework in trade, i.e., agents, causes, and effects. Quantitatively incorporating these telecoupling framework elements alongside spillover flows will enable investigation of dynamics and relationships that traditional trade theories

  7. Slow improvements of metal exposure, health- and breeding conditions of pied flycatchers (Ficedula hypoleuca) after decreased industrial heavy metal emissions

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, A.M.M., E-mail: asa.berglund@emg.umu.se; Nyholm, N.E.I.

    2011-09-15

    The environment around metal industries, such as smelters, is often highly contaminated due to continuous deposition of metals. We studied nest box breeding populations of pied flycatchers (Ficedula hypoleuca) in a well-studied pollution gradient from a sulfide ore smelter in Northern Sweden, after reduced aerial metal emissions (by 93-99%) from the smelter. The deposition of arsenic, cadmium, copper and zinc (based on moss samples) reflected the reduced emissions fairly well. However, nestling pied flycatchers had similar concentrations of these elements and mercury in tissues (bone, liver and blood) and feces in the 2000s, as in the 1980s, when the emissions were substantially higher. The exposure to high metal concentrations in the close vicinity of the smelter resulted in inhibited ALAD activities, depressed hemoglobin and hematocrit levels and increased mortality of nestlings. Our results indicate that in the highly contaminated environment around the smelter, nestlings reflected the slowly cycling soil pool, rather than the atmospheric deposition, and the concentration in soils plays an important role for the response of pied flycatchers to reduced atmospheric deposition. - Highlights: {yields} Pied flycatchers were studied in a pollution gradient from a sulfide smelter. {yields} Metal emissions from the smelter have decreased substantially. {yields} Nestling birds still had high metal concentrations in tissues. {yields} Health and survival rates of nestlings were negatively affected. {yields} Recovery of birds is not expected in the near future.

  8. Slow improvements of metal exposure, health- and breeding conditions of pied flycatchers (Ficedula hypoleuca) after decreased industrial heavy metal emissions

    International Nuclear Information System (INIS)

    Berglund, A.M.M.; Nyholm, N.E.I.

    2011-01-01

    The environment around metal industries, such as smelters, is often highly contaminated due to continuous deposition of metals. We studied nest box breeding populations of pied flycatchers (Ficedula hypoleuca) in a well-studied pollution gradient from a sulfide ore smelter in Northern Sweden, after reduced aerial metal emissions (by 93-99%) from the smelter. The deposition of arsenic, cadmium, copper and zinc (based on moss samples) reflected the reduced emissions fairly well. However, nestling pied flycatchers had similar concentrations of these elements and mercury in tissues (bone, liver and blood) and feces in the 2000s, as in the 1980s, when the emissions were substantially higher. The exposure to high metal concentrations in the close vicinity of the smelter resulted in inhibited ALAD activities, depressed hemoglobin and hematocrit levels and increased mortality of nestlings. Our results indicate that in the highly contaminated environment around the smelter, nestlings reflected the slowly cycling soil pool, rather than the atmospheric deposition, and the concentration in soils plays an important role for the response of pied flycatchers to reduced atmospheric deposition. - Highlights: → Pied flycatchers were studied in a pollution gradient from a sulfide smelter. → Metal emissions from the smelter have decreased substantially. → Nestling birds still had high metal concentrations in tissues. → Health and survival rates of nestlings were negatively affected. → Recovery of birds is not expected in the near future.

  9. Industrial applications of ion implantation into metal surfaces

    International Nuclear Information System (INIS)

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry

  10. A landscape-scale approach to examining the fate of atmospherically derived industrial metals in the surficial environment.

    Science.gov (United States)

    Stromsoe, Nicola; Marx, Samuel K; McGowan, Hamish A; Callow, Nikolaus; Heijnis, Henk; Zawadzki, Atun

    2015-02-01

    Industrial metals are now ubiquitous within the atmosphere and their deposition represents a potential source of contamination to surficial environments. Few studies, however, have examined the environmental fate of atmospheric industrial metals within different surface environments. In this study, patterns of accumulation of atmospherically transported industrial metals were investigated within the surface environments of the Snowy Mountains, Australia. Metals, including Pb, Sb, Cr and Mo, were enriched in aerosols collected in the Snowy Mountains by 3.5-50 times pre-industrial concentrations. In sedimentary environments (soils, lakes and reservoirs) metals showed varying degrees of enrichment. Differences were attributed to the relative degree of atmospheric input, metal sensitivity to enrichment, catchment area and metal behaviour following deposition. In settings where atmospheric deposition dominated (ombrotrophic peat mires in the upper parts of catchments), metal enrichment patterns most closely resembled those in collected aerosols. However, even in these environments significant dilution (by 5-7 times) occurred. The most sensitive industrial metals (those with the lowest natural concentration; Cd, Ag, Sb and Mo) were enriched throughout the studied environments. However, in alpine tarn-lakes no other metals were enriched, due to the dilution of pollutant-metals by catchment derived sediment. In reservoirs, which were located lower within catchments, industrial metals exhibited more complex patterns. Particle reactive metals (e.g. Pb) displayed little enrichment, implying that they were retained up catchment, whereas more soluble metals (e.g., Cu and Zn) showed evidence of concentration. These same metals (Cu and Zn) were depleted in soils, implying that they are preferentially transported through catchments. Enrichment of other metals (e.g. Cd) varied between reservoirs as a function of contributing catchment area. Overall this study showed that the fate

  11. Evaluation of Creative (Metal Industry Development Policy in Dealing with the ASEAN Economic Community in Sidoarjo

    Directory of Open Access Journals (Sweden)

    Berliana Mustika Rani

    2017-05-01

    Full Text Available Economic Kreatif is one of the progress factors of the national economy. The creative economy concentrates on the economic dynamics of the creative industry sector, which was recently targeted by the government as an area with significant growth potential. On January 20, 2015, President Joko Widodo established a new non-ministerial institution called the Creative Economy Agency (Bekraf. This body is responsible for the expansion of the creative economy in Indonesia. East Java has 29 districts and 9 cities, a number of which host creative industry businesses in the field of SMEs, namely Sidoarjo district. Sidoarjo regency, which is one of the regencies in East Java, is focused on the development of Micro Small Medium Enterprises in facing the ASEAN Economic Community (AEC. The primary creative industry in Sidoarjo district are the Metal Industries in Ngingas Village, Waru Sub-district. The small and medium industry (IKM metal center of Ngingas, Sidoarjo, East Java is one of the component suppliers for major manufacturing companies in Indonesia. Craftsmen in these industrial centers are constrained by licensing problems. They are also constrained by limited business capital for the procurement of raw materials and production machinery, and the lack of metal waste disposal facilities.

  12. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru

    International Nuclear Information System (INIS)

    Cooke, Colin A.; Abbott, Mark B.

    2008-01-01

    To date, few studies have investigated the environmental legacy associated with industrialization in the South American Andes. Here, we present an environmental archive of industrial pollution from 210 Pb-dated lake cores recovered from Laguna Chipian, located near the Cerro de Pasco metallurgical region and Laguna Pirhuacocha, located near the Morococha mining region and the La Oroya smelting complex. At Laguna Chipian, trace metal concentrations increase beginning ∼ 1900 AD, coincident with the construction of the central Peruvian railway, and the rapid industrial development of the Cerro de Pasco region. Trace metal concentrations and fluxes peak during the 1950s before subsequently declining up-core (though remaining well above background levels). While Colonial mining and smelting operations are known to have occurred at Cerro de Pasco since at least 1630 AD, our sediment record preserves no associated metal deposition. Based on our 14 C and 210 Pb data, we suggest that this is due to a depositional hiatus, rather than a lack of regional Colonial pollution. At Laguna Pirhuacocha, industrial trace metal deposition first begins ∼ 1925 AD, rapidly increasing after ∼ 1950 AD and peaking during either the 1970s or 1990s. Trace metal concentrations from these lakes are comparable to some of the most polluted lakes in North America and Europe. There appears to be little diagenetic alteration of the trace metal record at either lake, the exception being arsenic (As) accumulation at Laguna Pirhuacocha. There, a correlation between As and the redox-sensitive element manganese (Mn) suggests that the sedimentary As burden is undergoing diagenetic migration towards the sediment-water interface. This mobility has contributed to surface sediment As concentrations in excess of 1100 μg g -1 . The results presented here chronicle a rapidly changing Andean environment, and highlight a need for future research in the rate and magnitude of atmospheric metal pollution

  13. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Colin A. [Department of Geology, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3 (Canada)], E-mail: cacooke@ualberta.ca; Abbott, Mark B. [Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3 (Canada); Section of Anthropology, Carnegie Museum of Natural History, Pittsburgh, PA 15206 (United States)

    2008-04-15

    To date, few studies have investigated the environmental legacy associated with industrialization in the South American Andes. Here, we present an environmental archive of industrial pollution from {sup 210}Pb-dated lake cores recovered from Laguna Chipian, located near the Cerro de Pasco metallurgical region and Laguna Pirhuacocha, located near the Morococha mining region and the La Oroya smelting complex. At Laguna Chipian, trace metal concentrations increase beginning {approx} 1900 AD, coincident with the construction of the central Peruvian railway, and the rapid industrial development of the Cerro de Pasco region. Trace metal concentrations and fluxes peak during the 1950s before subsequently declining up-core (though remaining well above background levels). While Colonial mining and smelting operations are known to have occurred at Cerro de Pasco since at least 1630 AD, our sediment record preserves no associated metal deposition. Based on our {sup 14}C and {sup 210}Pb data, we suggest that this is due to a depositional hiatus, rather than a lack of regional Colonial pollution. At Laguna Pirhuacocha, industrial trace metal deposition first begins {approx} 1925 AD, rapidly increasing after {approx} 1950 AD and peaking during either the 1970s or 1990s. Trace metal concentrations from these lakes are comparable to some of the most polluted lakes in North America and Europe. There appears to be little diagenetic alteration of the trace metal record at either lake, the exception being arsenic (As) accumulation at Laguna Pirhuacocha. There, a correlation between As and the redox-sensitive element manganese (Mn) suggests that the sedimentary As burden is undergoing diagenetic migration towards the sediment-water interface. This mobility has contributed to surface sediment As concentrations in excess of 1100 {mu}g g{sup -1}. The results presented here chronicle a rapidly changing Andean environment, and highlight a need for future research in the rate and magnitude

  14. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru.

    Science.gov (United States)

    Cooke, Colin A; Abbott, Mark B

    2008-04-15

    To date, few studies have investigated the environmental legacy associated with industrialization in the South American Andes. Here, we present an environmental archive of industrial pollution from (210)Pb-dated lake cores recovered from Laguna Chipian, located near the Cerro de Pasco metallurgical region and Laguna Pirhuacocha, located near the Morococha mining region and the La Oroya smelting complex. At Laguna Chipian, trace metal concentrations increase beginning ~1900 AD, coincident with the construction of the central Peruvian railway, and the rapid industrial development of the Cerro de Pasco region. Trace metal concentrations and fluxes peak during the 1950s before subsequently declining up-core (though remaining well above background levels). While Colonial mining and smelting operations are known to have occurred at Cerro de Pasco since at least 1630 AD, our sediment record preserves no associated metal deposition. Based on our (14)C and (210)Pb data, we suggest that this is due to a depositional hiatus, rather than a lack of regional Colonial pollution. At Laguna Pirhuacocha, industrial trace metal deposition first begins ~1925 AD, rapidly increasing after ~1950 AD and peaking during either the 1970s or 1990s. Trace metal concentrations from these lakes are comparable to some of the most polluted lakes in North America and Europe. There appears to be little diagenetic alteration of the trace metal record at either lake, the exception being arsenic (As) accumulation at Laguna Pirhuacocha. There, a correlation between As and the redox-sensitive element manganese (Mn) suggests that the sedimentary As burden is undergoing diagenetic migration towards the sediment-water interface. This mobility has contributed to surface sediment As concentrations in excess of 1100 microg g(-1). The results presented here chronicle a rapidly changing Andean environment, and highlight a need for future research in the rate and magnitude of atmospheric metal pollution.

  15. Biological recovery of metals, sulfur and water in the mining and metallurgical industry

    NARCIS (Netherlands)

    Weijma, J.; Copini, C.F.M.; Buisman, C.J.N.; Schultz, C.E.

    2002-01-01

    Metals of particular interest in acid mine drainage and industrial wastewaters include copper, zinc, cadmium, arsenic, manganese, aluminum, lead, nickel, silver, mercury, chromium, uranium and iron, in a concentration that can range from 106 to 102 g/l. The composition of such wastewater reflects

  16. Process of technology management in SMEs of the metal processing industry – the case study investigation

    Directory of Open Access Journals (Sweden)

    Krawczyk-Dembicka Elżbieta

    2017-03-01

    Full Text Available The main purpose of this work is to identify the factors that influence the process of technology management in the sector of small- and medium-sized enterprises of the metal processing industry, considering the shape and course required to achieve modern operation conditions by enterprises in the market.

  17. Integrated Assessment of Heavy Metal Contamination in Sediments from a Coastal Industrial Basin, NE China

    Science.gov (United States)

    Li, Xiaoyu; Liu, Lijuan; Wang, Yugang; Luo, Geping; Chen, Xi; Yang, Xiaoliang; Gao, Bin; He, Xingyuan

    2012-01-01

    The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002). This is one of the most polluted of the world’s impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems. PMID:22768107

  18. Integrated assessment of heavy metal contamination in sediments from a coastal industrial basin, NE China.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Li

    Full Text Available The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002. This is one of the most polluted of the world's impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems.

  19. Empirical analysis of Macedonian export structure: The role of metal industry

    Directory of Open Access Journals (Sweden)

    Lazarov Darko

    2017-01-01

    Full Text Available The paper investigates the Macedonian export structure and export performance by using several indexes: product complexity, export sophistication, export diversity, and export ubiquity for the period 1995-2014. The empirical analysis is based on the application of product space methodology (based on network theory developed by Hidalgo et al. (2007 with data from UN comtrade database. Moreover, the paper analyzes the performance of metal industry and its productivity as one of the biggest exporting sector and investigates its capacity for further product diversification. The estimated results indicate that Macedonian export basket is highly concentrated (the top ten products have nearly half of the total country's export and more than 70 percent of the export goes to several countries and more importantly the export structure is composed of products with low complexity level. Additionally, the results show that the export structure is less diversified, making the economy very sensitive on the external shocks. On the other side, the analysis of metal industry performance indicates that this industry has comparative advantages (RCA=2.16 and more importantly it has strong capacity for further diversification by building new capabilities for production of more complexed products. So, the suggestion to policymakers in Macedonia is to be created an active industrial policy that will stimulate the structural transformation of metal industry towards products with higher value added.

  20. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...... glasses will at elevated temperatures behave like a highly viscous liquid, which can easily form even complicated geometries in 1 step. The strengths and limitations of forming the 2 materials are analyzed for a micro 3D component in a silver alloy and an Mg-Cu-Y BMG. ©2007 American Institute of Physics...

  1. Metals interaction tested in children’s hair originating from industrial and rural areas

    Directory of Open Access Journals (Sweden)

    Jerzy Kwapulinski

    2014-09-01

    Full Text Available Introduction. Different biological samples (blood, gallstone, teeth, hair serve as a biomarker of exposure to metals for many years. This method appeared to be useful not only in clinical medicine, but also in the studies on the environment. Aim. The study is to compare the amount of selected metals in children’s hair residing in industrial and rural areas. Material and methods. Research of occurrence of 12 metals in children’s hair at the age of 7, 10 and 14 living in an industrial (Nowy Bytom town and a rural (Strumień town areas has been presented. Determination of Pb, Cd, Ni, Co Na, K, Mg, Zn, Cu, Mn, Fe and Ca was carried out by atomic absorption spectrophotometry (AAS using a spectrometer PerkinElmer 400. Results. In the case of seven-year old children, regardless of gender a common mechanism of co-occurrence was noticed for manganese and calcium, manganese and magnesium, calcium and magnesium, sodium and potassium. Apart from the correlation of metals for the seven-year-old-children mentioned, in case of ten-year old children, an additional correlation between calcium and zinc appears. Conclusion: The amount of some metals in the hair with the diversified possibility of interaction between the metals themselves and their relation to gender and age of children revealed different environmental exposure.

  2. GROWTH STRATEGIES OF MULTINATIONAL COMPANIES STUDY CASE: PRECIOUS METALS JEWELRY RETAIL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Raluca Daniela RIZEA

    2015-04-01

    Full Text Available The turbulent start of the new century has brought new challenges for firms, industries and countries. This paper investigates business and growth strategies of multinational companies within the precious metals jewelry retail industry. The main objective is to identify whether a company’s performance is determined by its growth strategy or not. The purposes for the research are: to understand what kind of business models and strategies global precious metals jewelry retailers pursue, what growth strategies global jewelry retailers pursue and if there is a link between a company’s growth strategy and its profitability. Least but not last, the findings are reviewed on their transferability to other industries. The findings regarding the business models and growth strategies pursued are that all of them are based on Porter’s generic strategies as well as internationalization and diversification but there is no specific preference given to any of the strategic elements.

  3. Seamount mineral deposits: A source of rare metals for high technology industries

    Science.gov (United States)

    Hein, James R.; Conrad, Tracey A.; Staudigel, Hubert

    2010-01-01

    The near exponential growth in Earth’s population and the global economy puts increasing constraints on our planet’s finite supply of natural metal resources, and, consequently, there is an increasing need for new sources to supply high-tech industries. To date, effectively all of our raw-metal resources are produced at land-based sites. Except for nearshore placer deposits, the marine environment has been largely excluded from metal mining due to technological difficulties, even though it covers more than 70% of the planet. The case can be made that deep-water seabed mining is inevitable in the future, owing to the critical and strategic metal needs for human society. In this paper, we evaluate the case that seamounts offer significant potential for mining.

  4. Heavy Metal In Food Ingredients In Oil Refi nery Industrial Area, Dumai

    Directory of Open Access Journals (Sweden)

    Dian Sundari

    2016-06-01

    Full Text Available Background: Industrial waste generally contains a lot of heavy metals such as Plumbum (Pb, Arsenic (As, Cadmium(Cd and Mercury (Hg, which can contaminate the surrounding environment and cause health problems. Bioaccumulation ofheavy metals from the environment can occur in foodstuffs. The study aims to determine levels of heavy metals Pb, Cd, Asand Hg in foodstuffs in the oil refi nery industry. Methods: The analytical method used Atomic Absorption Spectrophotometer(AAS. Samples were taken from two locations, namely: the exposed area and non exposed area. The sample consisted ofcassava, papaya leaves, fern leaves, cassava leaves, guava, papaya and catfi sh. Results: The analysis showed levels ofmetals As in all samples at exposed locations is below the maximum limit of SNI, the location is not exposed only in catfi shlevels of As (2.042 mg/kg exceeds the SNI. Cd levels of both locations are not detected. Pb levels in catfi sh in exposedlocations (1,109 mg/kg exceeds the SNI. Hg levels in leaves of papaya, cassava leaves, fern leaves, cassava and fruitpapaya exceed SNI. Conclusion: There has been a heavy metal contamination in foodstuffs. Recommendation: Thelocal people are advised to be careful when consuming food stuffs from oil refi nery industrial area.

  5. Noise-induced hearing loss in small-scale metal industry in Nepal.

    Science.gov (United States)

    Whittaker, J D; Robinson, T; Acharya, A; Singh, D; Smith, M

    2014-10-01

    There has been no previous research to demonstrate the risk of noise-induced hearing loss in industry in Nepal. Limited research on occupational noise-induced hearing loss has been conducted within small-scale industry worldwide, despite it being a substantial and growing cause of deafness in the developing world. The study involved a cross-sectional audiometric assessment, with questionnaire-based examinations of noise and occupational history, and workplace noise level assessment. A total of 115 metal workers and 123 hotel workers (control subjects) were recruited. Noise-induced hearing loss prevalence was 30.4 per cent in metal workers and 4.1 per cent in hotel workers, with a significant odds ratio of 10.3. Except for age and time in occupation, none of the demographic factors were significant in predicting outcomes in regression analyses. When adjusted for this finding, and previous noise-exposed occupations, the odds ratio was 13.8. Workplace noise was significantly different between the groups, ranging from 65.3 to 84.7 dBA in metal worker sites, and from 51.4 to 68.6 dBA in the control sites. Metal workers appear to have a greater risk of noise-induced hearing loss than controls. Additional research on occupational noise-induced hearing loss in Nepal and small-scale industry globally is needed.

  6. Heavy metal contamination assessment and partition for industrial and mining gathering areas.

    Science.gov (United States)

    Guan, Yang; Shao, Chaofeng; Ju, Meiting

    2014-07-16

    Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies.

  7. Maintaining and increasing the contribution made to South Africa by the minerals and metals industry

    International Nuclear Information System (INIS)

    Jochens, P.R.

    1985-01-01

    This review article first highligts the past performance of the industry and discusses the manner in which the development of the industry has followed a logical progression from mining to the production of mineral and metal products of specification purity. Then the numerous constraints against a greater contribution by the industry are enumerated. Attention is drawn to the extent of further processing that can be undertaken in the context of mining and metallurgical processing, not only to indicate the benefits that can be derived from the added-value conferred on a mineral or metal commodity during each stage of its further processing, but also to point out some important corollaries of further processing. The many opportunities and challenges for an increased contribution by the minerals and metals industry are then reviewed. This major section includes a list of commodities for which increased penetration of export markets could be sought because the increasing resistance level (a term developed in this paper) has not been attained: a list of commodities that are imported at present, many of which could be produced locally on the basis of identified resources and expertise; a list of commodities for which additional uses should be developed so that South Africa, which possesses the largest reserves and is the largest exporter, can increase its production rate; and examples of commodities for which further processing is still at an early stage

  8. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Directory of Open Access Journals (Sweden)

    Yang Guan

    2014-07-01

    Full Text Available Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1 Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2 The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3 The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4 The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies.

  9. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Science.gov (United States)

    Guan, Yang; Shao, Chaofeng; Ju, Meiting

    2014-01-01

    Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies. PMID:25032743

  10. Content and the forms of heavy metals in bottom sediments in the zone of industrial pollution sources ,

    OpenAIRE

    Voytyuk Y.Y.; Kurayeva I.V.; Kroyik H.A.; Karmazynenko S.P.; Matsibora O.V.

    2014-01-01

    Regularities in the distribution of heavy metals in sediments in the zone of influence of the steel industry in Mariupol are installed. The study results of the forms of occurrence of Zn, Pb, Cu, Cr, Ni are represented. Ecological and geochemical assessment of sediment contamination by heavy metals is performed. The main sources of pollution of bottom sediments are air borne emissions from industrial plants, hydrogenous pollution in industrial sewage entering the water, sewage sludge, ash dum...

  11. Soil contamination of heavy metals in the Katedan Industrial Development Area, Hyderabad, India.

    Science.gov (United States)

    Govil, P K; Sorlie, J E; Murthy, N N; Sujatha, D; Reddy, G L N; Rudolph-Lund, Kim; Krishna, A K; Rama Mohan, K

    2008-05-01

    Studies on quantitative soil contamination due to heavy metals were carried out in Katedan Industrial Development Area (KIDA), south of Hyderabad, Andhra Pradesh, India under the Indo-Norwegian Institutional Cooperation Programme. The study area falls under a semi-arid type of climate and consists of granites and pegmatite of igneous origin belonging to the Archaean age. There are about 300 industries dealing with dyeing, edible oil production, battery manufacturing, metal plating, chemicals, etc. Most of the industries discharge their untreated effluents either on open land or into ditches. Solid waste from industries is randomly dumped along roads and open grounds. Soil samples were collected throughout the industrial area and from downstream residential areas and were analysed by X-ray Fluorescence Spectrometer for fourteen trace metals and ten major oxides. The analytical data shows very high concentrations of lead, chromium, nickel, zinc, arsenic and cadmium through out the industrial area. The random dumping of hazardous waste in the industrial area could be the main cause of the soil contamination spreading by rainwater and wind. In the residential areas the local dumping is expected to be the main source as it is difficult to foresee that rain and wind can transport the contaminants from the industrial area. If emission to air by the smokestacks is significant, this may contribute to considerable spreading of contaminants like As, Cd and Pb throughout the area. A comparison of the results with the Canadian Soil Quality Guidelines (SQGL) show that most of the industrial area is heavily contaminated by As, Pb and Zn and local areas by Cr, Cu and Ni. The residential area is also contaminated by As and some small areas by Cr, Cu, Pb and Zn. The Cd contamination is detected over large area but it is not exceeding the SQGL value. Natural background values of As and Cr exceed the SQGL values and contribute significantly to the contamination in the residential area

  12. Development of fluoric compound treatment system in conversion for recycle in metal industry

    International Nuclear Information System (INIS)

    Kim, P.O.; Cho, N.C.

    1998-01-01

    Korea Nuclear Fuel Company (KNFC) has been operating AUC conversion process from UF 6 to UO 2 from 1990. In 1997, KNFC constructed another conversion line called dry conversion to meet the increasing demand for nuclear fuel fabrication. In the dry conversion, two kinds of hydrofluoric acid (HF) are produced as a by-product. The first one is 50% concentration HF and the other one is diluted HF ranging from 10% to 49%. The high concentration HF can be used in metal industry, but there is no use for diluted one. The diluted HF should be disposed of as liquid waste after some treatment. To solve this problem we have developed the process to convert the diluted hydrofluoric acid to the sodium fluoride, which is readily used in the metal industry. By developing the process we could make a contribution to the environment as well as cost reduction in manufacturing nuclear fuel. (author)

  13. Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals

    Science.gov (United States)

    Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.

    2017-02-01

    The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.

  14. Uptake of Heavy Metals from Industrial Wastewater Using In Vitro Plant Cultures.

    Science.gov (United States)

    Jauhari, Nupur; Menon, Sanjay; Sharma, Neelam; Bharadvaja, Navneeta

    2017-11-01

    The plant species Bacopa monnieri has been observed to reduce the heavy metal concentrations in its vicinity. The present study is a comparison of in vitro culture and soil-grown plants of B. monnieri to remove Cr and Cd, from synthetic solution and effluent obtained from industrial area. Results were obtained at every half hour interval upto 180 min. Samples were observed for light absorption using UV-Visible spectrophotometer. Statistically, both systems reclaimed Cr and Cd from polluted water. In vitro cultures showed 67% and 93% removal of Cr and Cd from industrial wastewater whereas soil-grown plants showed 64% and 83% Cr and Cd removal. However, reduction rate was significantly higher for in vitro culture as compared to soil-grown plants. Besides other advantages, in vitro plant cultures proved to be more potent to detoxify pollutants in less time. This approach can be used for the removal of heavy metals at large scale.

  15. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  16. [Levels of awareness of occupational and general cardiovascular risk factors among metal industry employees].

    Science.gov (United States)

    Gürdoğan, Muhammet; Paslı Gürdoğan, Eylem; Arı, Hasan; Ertürk, Mehmet; Genç, Ahmet; Uçar, Mehmet Fatih

    2015-06-01

    Long-term exposure to physical, chemical, ergonomic and psychosocial environmental factors may lead to occupational cardiovascular disease in metal industry employees. This study aimed to determine levels of knowledge levels regarding occupational and cardiovascular risk factors among metal industry employees. The study was conducted between 2nd and 6th June 2014 with the participation of 82 employees. All were working in a medium-sized workplace in the metal industry. Data were collected by means of a questionnaire, which included socio-demographic characteristics and occupational cardiovascular risk factors, and a scale developed by Arıkan et al. to measure awareness levels of risk factors for cardiovascular diseases (CARRF-KL). The mean age of employees was 39.97±8.44. Of the participants, 58.5% stated that they had knowledge on cardiac disease risk factors. The mean CARRF-KL score was found to be 18.65±4.04. The percentage of employees stating that they had no knowledge on the occupational risks for such diseases was 79.3%, while 19.5% stated that job stress caused cardiac diseases. One individual (1.2%) stated that one of the chemical solvents used in the working environment was a risk factor. Although awareness among metal industry employees of cardiovascular risk factors was above average, it was determined that they do not have adequate information on occupational risk factors. Prolonged and unprotected levels exposure to environmental factors constitute a risk for cardiovascular disease. This information is important for the development of preventive cardiology.

  17. Chromatographic and electroanalytical studies of metal ions in industrial and environmental matrices

    OpenAIRE

    Meaney, Mary Patricia

    1989-01-01

    This thesis describes novel analytical methods for the determination of trace metal ions in a variety of industrial and environmental samples. A method is described for the simultaneous determination of Cu(II) and F e (III) in anaerobic adhesive formulations by high performance liq u id chromatography with spectrophotometric detection. Limits of detection of 100 ppb and 250 ppb for Cu(II) and Fe (III) respectively were achieved. A second approach based on direct application of the adhesiv...

  18. Influence of heavy metals pollution in borehole water collected within abandoned battery industry, Essien Udim, Nigeria

    OpenAIRE

    Uffia, I. Dan; Etim D. E

    2013-01-01

    Physico-chemical and heavy metals analyses of water samples from three boreholes located within abandoned battery company in Essien Udim LGA, Akwa Ibom State, Nigeria was carried out to ascertain the impact of pollution from battery industry on groundwater quality. Borehole locations were at different distances of 0km, 2km, and 5km (X1, X11 and X111) respectively away from the abandoned battery vicinity. The parameters determined included; turbidity, temperature, pH, Dissolved oxygen (DO), ...

  19. Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: metal surface treatment industry.

    Science.gov (United States)

    Gartiser, Stefan; Hafner, Christoph; Hercher, Christoph; Kronenberger-Schäfer, Kerstin; Paschke, Albrecht

    2010-06-01

    Toxicity testing has become a suitable tool for wastewater evaluation included in several reference documents on best available techniques of the Integrated Pollution Prevention and Control (IPPC) Directive. The IPPC Directive requires that for direct dischargers as well as for indirect dischargers, the same best available techniques should be applied. Within the study, the whole effluent assessment approach of OSPAR has been applied for determining persistent toxicity of indirectly discharged wastewater from the metal surface treatment industry. Twenty wastewater samples from the printed circuit board and electroplating industries which indirectly discharged their wastewater to municipal wastewater treatment plants (WWTP) have been considered in the study. In all factories, the wastewater partial flows were separated in collecting tanks and physicochemically treated in-house. For assessing the behaviour of the wastewater samples in WWTPs, all samples were biologically pretreated for 7 days in the Zahn-Wellens test before ecotoxicity testing. Thus, persistent toxicity could be discriminated from non-persistent toxicity caused, e.g. by ammonium or readily biodegradable compounds. The fish egg test with Danio rerio, the Daphnia magna acute toxicity test, the algae test with Desmodesmus subspicatus, the Vibrio fischeri assay and the plant growth test with Lemna minor have been applied. All tests have been carried out according to well-established DIN or ISO standards and the lowest ineffective dilution (LID) concept. Additionally, genotoxicity was tested in the umu assay. The potential bioaccumulating substances (PBS) were determined by solid-phase micro-extraction and referred to the reference compound 2,3-dimethylnaphthalene. The chemical oxygen demand (COD) and total organic carbon (TOC) values of the effluents were in the range of 30-2,850 mg L(-1) (COD) and 2-614 mg L(-1) (TOC). With respect to the metal concentrations, all samples were not heavily polluted. The

  20. Appraisal of venomous metals in selected crops and vegetables from industrial areas of the Punjab Province

    International Nuclear Information System (INIS)

    Husaini, S.N.; Matiullah; Arif, M.

    2011-01-01

    Due to the inadequate water sources, usually sewerage water and industrial effluents are being use for irrigation of the agricultural land around the industrial areas in Pakistan wherein crops and vegetables are cultivated. As untreated effluents contain heavy elements, toxic metals and organic pollutants that may find its way through food chain to general public and may cause health hazards. It is, therefore, mandatory to assess the toxic metals in such crops and vegetables. In this regard, samples of corn, millet, cabbage, spinach and potato were collected within the vicinity of industrial areas of the Faisalabad and Gujranwala regions. The food samples were analyzed using neutron activation analysis (NAA) technique. The highest concentration values of Arsenic (1.9 ± 0.1 μg/g) and Cobalt (0.85 ± 0.01 μg/g) were found in cabbage whereas Manganese (91.6 ± 0.2 μg/g), Antimony (0.15 ± 0.03 μg/g) and Selenium (1.1 ± 0.1 μg/g) were observed in spinach and Chromium (9.63 ± 1.3 μg/g) was found in millet crop. The observed concentrations of all the toxic and heavy metals in crops and vegetables are higher than those reported in the literature. (author)

  1. East Calcutta wetlands as a sink of industrial heavy metals. A PIXE study

    International Nuclear Information System (INIS)

    Chatterjee, S.; Chattopadhyay, B.; Mukhopadhyay, S.K.; Mohanta, B.; Sudarshan, M.; Chakraborty, A.

    2007-01-01

    Industrial wastes are considered as critical factors for disturbing natural ecosystems. The East Calcutta Wetlands, a Ramsar site in West Bengal, India, receives composite industrial effluents, subsequently bringing various kinds of heavy metals throughout the year. This wastewater is being utilized by the local people for pisciculture. The present investigation was carried out to study 1) elemental distribution various components of the wetland and 2) potentiality of water hyacinth in metal amelioration. Water and sediments were collected from four different spots along a wastewater-carrying canal having a stretch of 40 km from the source point to the final confluence with river and from the wastewater fed fishpond. Fish (three common carps viz. Labeo rohita, Cirrhinus mrigala and Oreochromis niloticus) and water hyacinth were collected from fishpond mentioned above. Samples were analyzed by PIXE with 3 MeV tandem Pelletron. Cr, which is a known metal contaminant of tannery effluent, was detected along with S, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, As, Br, Rb, Sr, Zr. Variable concentrations of some elements like Ca, Fe, Zn in different fish organs was noted in the experiment. Accumulation of Cr, Cu from the water bodies by water hyacinth suggesting their crucial role in heavy metal amelioration. (author)

  2. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water

    Directory of Open Access Journals (Sweden)

    Michael B. Ellison

    2014-05-01

    Full Text Available The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation of metals. The experiments used Ash Dam water from Tarong power station in Queensland, which is contaminated by multiple metals (Al, Cd, Ni and Zn and metalloids (As and Se in excess of Australian water quality guidelines. All species had consistent growth rates in Ash Dam water, despite significant differences in their growth rates in “clean” water. A species isolated from the Ash Dam water itself was not better suited to the bioremediation of that waste water. While there were differences in the temporal pattern of the bioconcentration of metals by the three species, over the course of the experiment, all three species bioconcentrated the same elements preferentially and to a similar extent. All species bioconcentrated metals (Cu, Mn, Ni, Cd and Zn more rapidly than metalloids (As, Mo and Se. Therefore, bioremediation in situ will be most rapid and complete for metals. Overall, all three species of freshwater macroalgae had the ability to grow in waste water and bioconcentrate elements, with a consistent affinity for the key metals that are regulated by Australian and international water quality guidelines. Together, these characteristics make Oedogonium a clear target for scaled bioremediation programs across a range of geographic regions.

  3. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

    Science.gov (United States)

    Yıldırım, Gülşen; Tokalıoğlu, Şerife

    2016-02-01

    A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Wear Behavior of Aluminium Metal Matrix Composite Prepared from Industrial Waste.

    Science.gov (United States)

    Xavier, L Francis; Suresh, Paramasivam

    2016-01-01

    With an increase in the population and industrialization, a lot of valuable natural resources are depleted to prepare and manufacture products. However industrialization on the other hand has waste disposal issues, causing dust and environmental pollution. In this work, Aluminium Metal Matrix Composite is prepared by reinforcing 10 wt% and 20 wt% of wet grinder stone dust particles an industrial waste obtained during processing of quarry rocks which are available in nature. In the composite materials design wear is a very important criterion requiring consideration which ensures the materials reliability in applications where they come in contact with the environment and other surfaces. Dry sliding wear test was carried out using pin-on-disc apparatus on the prepared composites. The results reveal that increasing the reinforcement content from 10 wt% to 20 wt% increases the resistance to wear rate.

  5. Distribution to heavy metals in sediments of the Venice Lagoon: The role of the industrial area

    International Nuclear Information System (INIS)

    Frignani, M.; Bellucci, L.G.; Ravanelli, M.; Paolucci, D.

    1999-01-01

    The Venice Lagoon has been heavily polluted both from diffuse and direct sources. It has been recently established that the atmospheric delivery of contaminants to the lagoon can be very significant in zones far from direct sources, but the influence of the industrial area of Porto Marghera, though widely recognized, has not been entirely described and quantified. In order to assess the temporal and spatial variability of metal pollution, and to better understand the contribution of the industrial channels as sources of contaminants, in May 1996 we sampled 18 stations in the lagoon and 9 in the channels of the industrial area of Porto Marghera. At each site a short core, 10 cm long, was taken and immediately extruded to obtain 4 slices 2-2.5 cm thick. Sediment samples have been analysed for As, Cd, Pb, and Zn after acid extraction

  6. Wear Behavior of Aluminium Metal Matrix Composite Prepared from Industrial Waste

    Directory of Open Access Journals (Sweden)

    L. Francis Xavier

    2016-01-01

    Full Text Available With an increase in the population and industrialization, a lot of valuable natural resources are depleted to prepare and manufacture products. However industrialization on the other hand has waste disposal issues, causing dust and environmental pollution. In this work, Aluminium Metal Matrix Composite is prepared by reinforcing 10 wt% and 20 wt% of wet grinder stone dust particles an industrial waste obtained during processing of quarry rocks which are available in nature. In the composite materials design wear is a very important criterion requiring consideration which ensures the materials reliability in applications where they come in contact with the environment and other surfaces. Dry sliding wear test was carried out using pin-on-disc apparatus on the prepared composites. The results reveal that increasing the reinforcement content from 10 wt% to 20 wt% increases the resistance to wear rate.

  7. Metal Extraction Processes for Electronic Waste and Existing Industrial Routes: A Review and Australian Perspective

    Directory of Open Access Journals (Sweden)

    Abdul Khaliq

    2014-02-01

    Full Text Available The useful life of electrical and electronic equipment (EEE has been shortened as a consequence of the advancement in technology and change in consumer patterns. This has resulted in the generation of large quantities of electronic waste (e-waste that needs to be managed. The handling of e-waste including combustion in incinerators, disposing in landfill or exporting overseas is no longer permitted due to environmental pollution and global legislations. Additionally, the presence of precious metals (PMs makes e-waste recycling attractive economically. In this paper, current metallurgical processes for the extraction of metals from e-waste, including existing industrial routes, are reviewed. In the first part of this paper, the definition, composition and classifications of e-wastes are described. In the second part, separation of metals from e-waste using mechanical processing, hydrometallurgical and pyrometallurgical routes are critically analyzed. Pyrometallurgical routes are comparatively economical and eco-efficient if the hazardous emissions are controlled. Currently, pyrometallurgical routes are used initially for the segregation and upgrading of PMs (gold and silver into base metals (BMs (copper, lead and nickel and followed by hydrometallurgical and electrometallurgical processing for the recovery of pure base and PMs. For the recycling of e-waste in Australia, challenges such as collection, transportation, liberation of metal fractions, and installation of integrated smelting and refining facilities are identified.

  8. Seamount mineral deposits: A source of rare metals for high-technology industries

    Science.gov (United States)

    Hein, J.R.; Conrad, T.A.; Staudigel, H.

    2010-01-01

    The near exponential growth in Earth's population and the global economy puts increasing constraints on our planet's finite supply of natural metal resources, and, consequently, there is an increasing need for new sources to supply high-tech industries. To date, effectively all of our raw-metal resources are produced at land-based sites. Except for nearshore placer deposits, the marine environment has been largely excluded from metal mining due to technological difficulties, even though it covers more than 70% of the planet. The case can be made that deep-water seabed mining is inevitable in the future, owing to the critical and strategic metal needs for human society. In this paper, we evaluate the case that seamounts offer significant potential for mining. deposits can be formed in volcanic arc seamounts, no commercially viable deposits have yet been identified in the submarine environment. However, a substantial body of research suggests that hydrogenous Fe-Mn crusts may provide significant resources, especially for "high-tech metals" that are increasingly used in solar cells, computer chips, and hydrogen fuel cells.

  9. Risk Assessment of Metals in Urban Soils from a Typical Industrial City, Suzhou, Eastern China

    Directory of Open Access Journals (Sweden)

    Gang Wang

    2017-09-01

    Full Text Available Risk of metals in urban soils is less studied, compared to that in other types of soils, hindering accurate assessment of human exposure to metals. In this study, the concentrations of five metals (As, Cd, Cr, Pb, and Hg were analyzed in 167 surface soil samples collected from Suzhou city and their potential ecological and human health risks were assessed. The mean concentrations of As, Cd, Pb, and Hg except Cr, were higher than the background values in Jiangsu Province. Metal concentrations varied among districts, where sites of high contamination showed a punctate distribution. Principal components and correlation analyses revealed that As, Pb, and Cd could originate from the same sources. The geo-accumulation (Igeo and potential ecological risk indices (RI were calculated and the relatively low values of Igeo (<0 and RI (<150 suggested generally low ecological risk. The noncarcinogenic risks of the metals were relatively low for Suzhou residents (i.e., average hazard index or HI: 0.1199 for adults and 0.5935 for children, <1, while the total carcinogenic risks (TCR of Cr and As were acceptable (TCR in the range of 1.0 × 10−6 to 1.0 × 10−4. Children faced a higher threat than adults. Results of Monte-Carlo simulations were lower than those obtained from models using deterministic parameters. Of all the uncertain parameters, the ingestion rate and body weight were the most sensitive for adults and children, respectively, while As was an important factor for both. The results as well as the factors controlling risks of metals could help better understand the risks of metals in urban soils of industrial cities in China.

  10. Removal of metals from industrial wastewater and urban runoff by mineral and bio-based sorbents.

    Science.gov (United States)

    Gogoi, Harshita; Leiviskä, Tiina; Heiderscheidt, Elisangela; Postila, Heini; Tanskanen, Juha

    2018-03-01

    The study was performed to evaluate chemically modified biosorbents, hydrochloric acid treated peat (HCl-P) and citric acid treated sawdust (Citric acid-SD) for their metal removal capacity from dilute industrial wastewater and urban runoff and compare their efficiency with that of commercially available mineral sorbents (AQM PalPower M10 and AQM PalPower T5M5 magnetite). Batch and column experiments were conducted using real water samples to assess the sorbents' metal sorption capacity. AQM PalPower M10 (consisting mainly of magnesium, iron and silicon oxides) exhibited excellent Zn removal from both industrial wastewater and spiked runoff water samples even at low dosages (0.1 g/L and 0.05 g/L, respectively). The high degree of Zn removal was associated with the release of hydroxyl ions from the sorbent and subsequent precipitation of zinc hydroxide. The biosorbents removed Ni and Cr better than AQM PalPower M10 from industrial wastewater and performed well in removing Cr and Cu from spiked runoff water, although at higher dosages (0.3-0.75 g/L). The main mechanism of sorption by biosorbents was ion exchange. The sorbents required a short contact time to reach equilibrium (15-30 min) in both tested water samples. AQM PalPower T5M5 magnetite was the worst performing sorbent, leaching Zn into both industrial and runoff water and Ni into runoff water. Column tests revealed that both HCl-P and AQM PalPower M10 were able to remove metals, although some leaching was witnessed, especially As from AQM PalPower M10. The low hydraulic conductivity observed for HCl-P may restrict the possibilities of using such small particle size peat material in a filter-type passive system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Occupational accidents and affecting factors of metal industry in a factory in Ankara

    Directory of Open Access Journals (Sweden)

    Buket Gulhan

    2012-08-01

    Full Text Available Abstract Objective:According to the statistics of the Social Security Institution, 18672 occupational accidents occurred in the metal industry in 2008 in Turkey. Whereas 78 of these accidents resulted in death, 252 people became permanently incapable of working. In 2008, 369677 working days were lost as a result of occupational accidents. Evaluating the reasons for and the results of accidents in the metal industry and contributing to the development of recommendations for prevention in accordance with the information obtained. Method: The study was conducted with 201 of 210 workers working in heavy metal manufacturing and construction in the building company between April 2008 and June 2008. Results: The frequency of occupational accidents among the metal workers was 22% between January 2007 and June 2008. The reasons for the workers’ accidents are listed as; insufficient use of personal protective equipment (44%, carelessness (37%, and personal reasons, not to be taken of security measures at machines and looms/ unsuitable machines (both 17%.Conclusion: The study demonstrates that the accidents mostly occur because of failure to use of personal protective equipment, insufficient vocational training. Key Words: Occupational, accident, metal industry, preventionAnkara’da bir metal sanayi fabrikasında iş kazaları ve etkileyen faktörler Özet Amaç: 2008 yılında Sosyal Güvenlik Kurumu’nun verilerine göre metal sanayisinde 18672 iş kazası meydana gelmiş ve 369677 işgünü kaybı olmuştur.  Bu kazalardan 78 tanesi ölümle sonuçlanırken, 252 kişi kalıcı olarak işgöremez hale gelmiştir. Metal sanayisinde meydana gelen kazaların sebep ve sonuçlarını inceleyerek, elde edilen bilgiler doğrultusunda kazaların önlenmesine yönelik tavsiyelerin geliştirilmesi amaçlanmıştır. Yöntem: Araştırma, Ankara’da faaliyet gösteren ağır metal imalat, konstrüksiyon ve inşaat sanayi şirketinde 2008 Nisan-2008 Haziran d

  12. Editorial input for the right price: tobacco industry support for a sheet metal indoor air quality manual.

    Science.gov (United States)

    Campbell, Richard; Balbach, Edith

    2013-01-01

    Following legal action in the 1990s, internal tobacco industry documents became public, allowing unprecedented insight into the industry's relationships with outside organizations. During the 1980s and 1990s, the National Energy Management Institute (NEMI), established by the Sheet Metal Workers International Association and the Sheet Metal and Air Conditioning Contractors' National Association, (SMACNA) received tobacco industry funding to establish an indoor air quality services program. But the arrangement also required NEMI to serve as an advocate for industry efforts to defeat indoor smoking bans by arguing that ventilation was a more appropriate solution to environmental tobacco smoke. Drawing on tobacco industry documents, this paper describes a striking example of the ethical compromises that accompanied NEMI's collaboration with the tobacco industry, highlighting the solicitation of tobacco industry financial support for a SMACNA indoor air quality manual in exchange for sanitizing references to the health impact of environmental tobacco smoke prior to publication.

  13. Assessment of combined toxicity of heavy metals from industrial wastewaters on Photobacterium phosphoreum T3S

    Science.gov (United States)

    Zeb, BibiSaima; Ping, Zheng; Mahmood, Qaisar; Lin, Qiu; Pervez, Arshid; Irshad, Muhammad; Bilal, Muhammad; Bhatti, Zulfiqar Ahmad; Shaheen, Shahida

    2017-07-01

    This research work is focusing on the toxicities of heavy metals of industrial origin to anaerobic digestion of the industrial wastewater. Photobacterium phosphoreum T3S was used as an indicator organism. The acute toxicities of heavy metals on P. phosphoreum T3S were assessed during 15-min half inhibitory concentration (IC50) as indicator at pH 5.5-6. Toxicity assays involved the assessment of multicomponent mixtures using TU and MTI approaches. The results of individual toxicity indicated that the toxicity of Cd, Cu and Pb on P. phosphoreum increased with increasing concentrations and there was a linear correlation. The 15-min IC50 values of Cd, Cu and Pb were 0.537, 1.905 and 1.231 mg/L, respectively, and their toxic order was Cd > Pb > Cu. The combined effects of Cd, Cu and Pb were assayed by equivalent concentration mixing method. The results showed that the combined effects of Cd + Cu, Cd + Pb, Cu + Pb, Cd + Cu + Pb were antagonistic, antagonistic and partly additive. The combined effect of three heavy metals was partly additive.

  14. Contemplating the feasibility of vermiculate blended chitosan for heavy metal removal from simulated industrial wastewater

    Science.gov (United States)

    Prakash, N.; Soundarrajan, M.; Arungalai Vendan, S.; Sudha, P. N.; Renganathan, N. G.

    2017-12-01

    Wastewater contaminated by heavy metals pose great challenges as they are non biodegradable, toxic and carcinogenic to the soil and aquifers. Vermiculite blended with chitosan have been used to remove Cr(VI) and Cd(II) from the industrial wastewater. The results indicate that the vermiculite blended with chitosan adsorb Cr(VI) and Cd(II) from industrial waste water. Batch adsorption experiments were performed as a function of pH 5.0 and 5.5 respectively for chromium and cadmium. The adsorption rate was observed to be 72 and 71 % of chromium and cadmium respectively. The initial optimum contact time for Cr(VI) was 300 min with 59.2 % adsorption and 300 min for Cd(II) with 71.5 % adsorption. Whereas, at 4-6 there is saturation, increasing the solid to liquid ratio for chitosan biopolymers increases the number of active sites available for adsorption. The optimum pH required for maximum adsorption was found to be 5.0 and 5.5 for chromium and cadmium respectively. The experimental equilibrium adsorption data were fitted using Langmuir and Freundlich equations. It was observed that adsorption kinetics of both the metal ions on vermiculite blended chitosan is well be analyzed with pseudo-second-order model. The negative free energy change of adsorption indicates that the process was spontaneous and vermiculite blended chitosan was a favourable adsorbent for both the metals.

  15. Influence of industrial heavy metal pollution on soil free-living nematode population

    International Nuclear Information System (INIS)

    Pen-Mouratov, Stanislav; Shukurov, Nosir; Steinberger, Yosef

    2008-01-01

    The effect of distance from a heavy metal pollution source on the soil nematode community (trophic structure, sex structure, and taxa composition) was investigated along a 15-km transect originating at the Almalyk Industrial Complex, Uzbekistan (pollution source). The soil nematode community was exposed to heavy metal influence both directly and through soil properties changes. Pollution effect on the density and biomass of soil free-living nematodes was found to be highest at pollution source, with fungivores and plant parasites dominating at the upper and deeper soil layers next to the pollution source. These groups decreased along the transect, yielding domination to bacteria- and fungi-feeders. The sex ratio of nematode communities was found to be dependent on heavy metal pollution levels, with the juveniles being the most sensitive nematode group. The Maturity and modified Maturity Indices, reflecting the degree of disturbance of the soil ecosystem, were found to be the most sensitive indices. - Trophic structure and sex ratio of soil nematode population are sensitive tools for monitoring industrial pollution

  16. Valorization of mine rejects and industrial wastes for the recovery of some strategic and critical metals

    International Nuclear Information System (INIS)

    Sreenivas, T.; Dey, G K.; Anand Rao, K.

    2017-01-01

    Strategic and critical metals (SCM) resources form important components in safety and security design of any country. Uneven distribution of SCM resources as well as lack of technical expertise in manufacture of end-products makes many nations vulnerable to external pulls and pressures. India is making determined bid to surmount these difficulties by constantly upgrading its scientific and engineering expertise to address issues related to resources and materials manufacturing technologies. It is a well known fact that India is a resource starved country with respect to many of the strategic and critical metals (SCM). The demand for the SCM is met mostly by import of finished products and to a lesser extent by recycle of used products. In these days of growing inclination towards 'sustainable development' valorization of industrial waste for securing valuable metals including those of SCM category is worth pursuing, more so for a country like India. With this premise, we present in this paper representative case studies which depict technical feasibility of using industrial waste as a source for some important SCM, namely Nd, Y, Co and W. The wastes used for valorization are the mine tailings or rejects of different ores like copper, gold, uranium and fly ash generated from a coal-fired thermal power plant. (author)

  17. Energy demand forecasting in Iranian metal industry using linear and nonlinear models based on evolutionary algorithms

    International Nuclear Information System (INIS)

    Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.

    2012-01-01

    Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector

  18. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations.

    Science.gov (United States)

    Jacukowicz-Sobala, Irena; Ociński, Daniel; Kociołek-Balawejder, Elżbieta

    2015-07-01

    Industrial wastes with a high iron or aluminium oxide content are produced in huge quantities as by-products of water treatment (water treatment residuals), bauxite processing (red mud) and hard and brown coal burning in power plants (fly ash). Although they vary in their composition, the wastes have one thing in common--a high content of amorphous iron and/or aluminium oxides with a large specific surface area, whereby this group of wastes shows very good adsorbability towards heavy metals, arsenates, selenates, etc. But their physical form makes their utilisation quite difficult, since it is not easy to separate the spent sorbent from the solution and high bed hydraulic resistances occur in dynamic regime processes. Nevertheless, because of the potential benefits of utilising the wastes in industrial effluent treatment, this issue attracts much attention today. This study describes in detail the waste generation processes, the chemical structure of the wastes, their physicochemical properties, and the mechanisms of fixing heavy metals and semimetals on the surface of iron and aluminium oxides. Typical compositions of wastes generated in selected industrial plants are given. A detailed survey of the literature on the adsorption applications of the wastes, including methods of their thermal and chemical activation, as well as regeneration of the spent sorbents, is presented. The existing and potential ways of modifying the physical form of the discussed group of wastes, making it possible to overcome the basic limitation on their practical use, are discussed. © The Author(s) 2015.

  19. Marble industry effluents cause an increased bioaccumulation of heavy metals in Mahaseer (Tor putitora) in Barandu River, district Buner, Pakistan.

    Science.gov (United States)

    Mulk, Shahi; Korai, Abdul Latif; Azizullah, Azizullah; Shahi, Lubna; Khattak, Muhammad Nasir Khan

    2017-10-01

    The present study was conducted to evaluate the impact of marble industry effluents on the accumulation of heavy metals in selected tissues of mahaseer (Tor putitora) in Barandu River. Fish samples were collected from three selected sites (upstream (US), effluents/industrial (IS), and downstream (DS) sites) on monthly basis for 8 months. Heavy metal concentrations were determined in fish tissues using Atomic Absorption Spectrophotometer. Liver accumulated the highest level of metal concentrations while the lowest concentrations were found in muscles in T. putitora. Among metals, Fe was reported in the highest amount whereas the lowest was Cd in all the fish organs. In all the months, the metal concentrations were significantly higher (P metal concentrations at DS were found significantly higher (P metals in fish tissues at IS compared to US and DS. Furthermore, in many cases, the concentrations at DS were also found significantly higher (P < 0.05) compared to US. It is further confirmed by skewness z-score which was found to be higher than 1.96 suggesting the hazardous effects of marble industries on the collective health of the river. It is therefore recommended that all these industries either should be moved away from the bank of River Barandu or must be bound to properly treat their effluents prior to discharge into the river in order to protect the biota of River Barandu from the pollution caused by these marble industries.

  20. Options report for the mining, non-ferrous metal smelting and refining industry

    International Nuclear Information System (INIS)

    1999-10-01

    This plant level analysis involved the study of three Canadian mines from ore extraction to refining. Energy consumption and GHG emissions from each facility were examined, along with projects to reduce these emissions. Results showed variation in emissions between firms by orders of magnitude, and while GHG reducing projects do exist, many are not implemented for economic and business reasons. Nevertheless, a modelling analysis of the mining industry as a whole showed that the industry should be able to reduce its GH emissions to within range of the Kyoto target. Enhanced voluntary initiatives, already supported by the industry, are seen as the most cost effective means of achieving these emission reductions. Industry experts suggest more effort to be expended on identifying GHG reducing technologies and competing projects with higher returns on investment. There is incontrovertible evidence that energy efficiency measures are often not implemented by the industry because their return on investment are not as attractive as those associated with process improvement projects. With appropriate assistance from government, such as funding for comprehensive energy audits similar to the plant level analysis done for this report, funding for carrying out the detailed economic evaluation of these projects, help with specialized human resources to participate in enhanced voluntary activities (such as the energy audits and life cycle cost/benefit analysis), and financial incentives to create more attractive returns on investment for energy efficiency/GHG emission reduction projects, the Canadian mining industry will be, and can be, part of the solution towards reducing GHG emissions. Other avenues that could be helpful in this effort include exporting Canadian mining technology to aid in reaching a global solution to a global problem, recognition for the Canadian mining industry for its northern operations, credit for Canada for embodied energy in exports, and recycling to

  1. Hyper accumulators of heavy metals of industrial areas of Islamabad and Rawalpindi

    International Nuclear Information System (INIS)

    Nazir, A.; Malik, R.N.; Ajaib, M.; Khan, N.; Siddiqui, M.F.

    2011-01-01

    Contamination of heavy metals is one of the major threats to water and soil as well as human health. Phytoremediation has been used to remediate metal-contaminated sites. This study evaluated the potential of 23 plant species growing on contaminated sites in Industrial areas of the Islamabad and Rawalpindi. Plant root, shoot and the soil samples were collected and analyzed for selected metal concentration values. To evaluate the potential of plant species for phyto remediation: Bioconcentration Factor (BCF), Biological Accumulation Coefficient (BAC) and Biological Transfer Coefficient (BCF) were calculated. The concentration of Pb in soils varied from 2-29 mg/kg, Zn from 28.82-172.56 mg/ kg, Cu from 8.88-306 mg/kg, respectively. The concentration of Pb in plant shoots varied from 1.0 to 39 mg/kg, Zn from 17.25 to 194.03 mg/kg, Cu from 0.65 to 171.83 mg/kg. The concentration of Pb in roots of plant varied 1-43 mg/kg, Zn from 3.34-116.16 mg/kg, Cu from 3.35- 416.89 mg/kg. Brachiaria raptans and Malvastrum coromandelianum were found most suitable for phyto stabilization of sites contaminated with Pb and Cu (BCF= 18 and 9.12). Considering the BAC values, 15 species for Pb, two species for Cu, five species for Zn possessed the characteristics of hyper accumulator, none of the plant species was found as hyper accumulator; however plants with high BCF (metal concentration ratio of plant root to soil) and low BTC (metal concentration ratio of plants shoots to roots) have the potential for phyto stabilization and phyto extraction. The results of this study can be used for management and decontamination of soils with heavy metals using plant species having phyto remediation potential/characteristics. (author)

  2. Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China.

    Directory of Open Access Journals (Sweden)

    Xudong Jiao

    Full Text Available To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti, copper (Cu, lead (Pb, zinc (Zn, cobalt (Co, nickel (Ni, chromium (Cr and arsenic (As. Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995. There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources.

  3. Binding of Industrial Deposits of Heavy Metals and Arsenic in the Soil by 3-Aminopropyltrimethoxysilane

    Directory of Open Access Journals (Sweden)

    Grzesiak Piotr

    2014-06-01

    Full Text Available The results of the research studies concerning binding of heavy metals and arsenic (HM+As, occurring in soils affected by emissions from Głogów Copper Smelter and Refinery, by silane nanomaterial have been described. The content of heavy metals and arsenic was determined by AAS and the effectiveness of heavy metals and arsenic binding by 3-Aminopropyltrimethoxysilane was examined. The total leaching level of impurities in those fractions was 73.26% Cu, 74.7% – Pb, 79.5% Zn, 65.81% – Cd and 55.55% As. The studies demonstrated that the total binding of heavy metals and arsenic with nanomaterial in all fractions was about as follows: 20.5% Cu, 9.5% Pb, 7.1% Zn, 25.3% Cd and 10.89% As. The results presented how the safety of food can be cultivated around industrial area, as the currently used soil stabilization technique of HM by soil pH does not guarantee their stable blocking in a sorptive complex.

  4. [Metallic content of water sources and drinkable water in industrial cities of Murmansk region].

    Science.gov (United States)

    Doushkina, E V; Dudarev, A A; Sladkova, Yu N; Zachinskaya, I Yu; Chupakhin, V S; Goushchin, I V; Talykova, L V; Nikanov, A N

    2015-01-01

    Performed in 2013, sampling of centralized and noncentralized water-supply and analysis of engineering technology materials on household water use in 6 cities of Murmansk region (Nikel, Zapolyarny, Olenegorsk, Montchegorsk, Apatity, Kirovsk), subjected to industrial emissions, enabled to evaluate and compare levels of 15 metals in water sources (lakes and springs) and the cities' drinkable waters. Findings are that some cities lack sanitary protection zones for water sources, most cities require preliminary water processing, water desinfection involves only chlorination. Concentrations of most metals in water samples from all the cities at the points of water intake, water preparation and water supply are within the hygienic norms. But values significantly (2-5 times) exceeding MACs (both in water sources and in drinkable waters of the cities) were seen for aluminium in Kirovsk city and for nickel in Zapolarny and Nikel cities. To decrease effects of aluminium, nickel and their compounds in the three cities' residents (and preserve health of the population and offsprings), the authors necessitate specification and adaptation of measures to purify the drinkable waters from the pollutants. In all the cities studied, significantly increased concentrations of iron and other metals were seen during water transportation from the source to the city supply--that necessitates replacement of depreciated water supply systems by modern ones. Water taken from Petchenga region springs demonstrated relatively low levels of metals, except from strontium and barium.

  5. Corrosion behavior of metals and alloys in marine-industrial environment

    Directory of Open Access Journals (Sweden)

    Mariappan Natesan, Subbiah Selvaraj, Tharmakkannu Manickam and Gopalachari Venkatachari

    2008-01-01

    Full Text Available This work deals with atmospheric corrosion to assess the degrading effects of air pollutants on ferrous and non-ferrous metals and alloys, which are mostly used as engineering materials. An exposure study was conducted in the Tuticorin port area located on the east coast of South India, in the Gulf of Mannar with Sri Lanka to the southeast. Common engineering materials, namely mild steel, galvanized iron, Zn, Al, Cu and Cu–Zn alloys (Cu–27Zn, Cu–30Zn and Cu–37Zn, were used in the investigation. The site was chosen where the metals are exposed to marine and industrial atmospheres. Seasonal 1 to 12 month corrosion losses of these metals and alloys were determined by a weight loss method. The weight losses showed strong corrosion of mild steel, galvanized iron, Cu and Zn and minor effect on Al and Cu–Zn alloys. Linear regression analysis was conducted to study the mechanism of corrosion. The composition of corrosion products formed on the metal surfaces was identified by x-ray diffraction and Fourier transform infrared spectroscopy.

  6. Corrosion behavior of metals and alloys in marine-industrial environment.

    Science.gov (United States)

    Natesan, Mariappan; Selvaraj, Subbiah; Manickam, Tharmakkannu; Venkatachari, Gopalachari

    2008-12-01

    This work deals with atmospheric corrosion to assess the degrading effects of air pollutants on ferrous and non-ferrous metals and alloys, which are mostly used as engineering materials. An exposure study was conducted in the Tuticorin port area located on the east coast of South India, in the Gulf of Mannar with Sri Lanka to the southeast. Common engineering materials, namely mild steel, galvanized iron, Zn, Al, Cu and Cu-Zn alloys (Cu-27Zn, Cu-30Zn and Cu-37Zn), were used in the investigation. The site was chosen where the metals are exposed to marine and industrial atmospheres. Seasonal 1 to 12 month corrosion losses of these metals and alloys were determined by a weight loss method. The weight losses showed strong corrosion of mild steel, galvanized iron, Cu and Zn and minor effect on Al and Cu-Zn alloys. Linear regression analysis was conducted to study the mechanism of corrosion. The composition of corrosion products formed on the metal surfaces was identified by x-ray diffraction and Fourier transform infrared spectroscopy.

  7. Soil Heavy Metal Pollution and Risk Assessment in Shenyang Industrial District, Northeast China

    Science.gov (United States)

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources. PMID:25997173

  8. Removal of heavy metals from tannery effluents of Ambur industrial area, Tamilnadu by Arthrospira (Spirulina) platensis.

    Science.gov (United States)

    Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G

    2015-06-01

    The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent.

  9. Heavy metals in industrially emitted particulate matter in Ile-Ife, Nigeria.

    Science.gov (United States)

    Ogundele, Lasun T; Owoade, Oyediran K; Hopke, Philip K; Olise, Felix S

    2017-07-01

    Iron and steel smelting facilities generate large quantities of airborne particulate matter (PM) through their various activities and production processes. The resulting PM that contains a variety of heavy metals has potentially detrimental impacts on human health and the environment. This study was conducted to assess the potential health effects of the pollution from the heavy metals in the airborne PM sampled in the vicinity of secondary smelting operations in Ile-Ife, Nigeria. X-ray fluorescence (XRF) was used to determine the elemental concentration of Pb, Cr, Cd, Zn, Mn, As, Fe, Cu, and Ni in the size-segregated PM samples. Pollution Indices (PI) consisting of Contamination Factor (CF), Degree of Contamination (DC) and Pollution Index Load (PLI) and Target Hazard Quotient (THQ) were employed to assess the pollution risk associated with the heavy metals in the PM. CF, DC and PLI values were 332 and >1, respectively for the three sites, indicating deterioration of the ambient air quality in the vicinity of the smelter. The heavy metals in the airborne PM pose a severe health risk to people living in vicinity of the facility and to its workers. The diminished air quality with the associated health risks directly depends on the industrial emissions from steel production and control measures are recommended to mitigate the likely risks. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Study of radiation portal monitor and its application to metal recycling industry; Estudio de un sistema de deteccion tipo portico para su aplicacion en la industria del metal

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, L.; Lara-Calleja, S.; Suarez-Navarro, M. J.; Gonzalez-Gonzalez, J. A.

    2009-07-01

    The industry of the iron and the steel in one of the most important sectors in Spain for its economic development. the recycling of metallic materials as well as the import of metallic scrap is very significant. Several reports on accidental dispersion or smelting of radioactive sources in metal recycling industries confirm the possibility that radioactive material might be mixed with scrap. In consequence, this type of accident shows the necessity of a rigorous and specific radiation control of the sector. The control of these materials with radioactive content can be carried out with radiation portal monitors installed at the entrance of these industries. The detection of radioactive materials presents special features as the continuous background acquisition or the minimisation of the relatively large number of innocent/nuisance detections. In the present work, we study a radiation portal monitor, the FHT-1388-T Thermo-Eberline. This is one of the usual radiation portal systems installed at the entrance of the metal recycling industry. Se study the characteristics and parameters of this portal monitor to optimise its use. furthermore, we propose some rapid tests for radiation portal systems in metal recycling industry. (Author) 16 refs.

  11. Ionization detector for aerosol air pollution detection and ventilation control in the metal processing industry

    International Nuclear Information System (INIS)

    Kovacs, Istvan

    1989-01-01

    An indicator and measuring instrument was developed for the continuous monitoring, recording and indicating aerosol mass concentrations in mechanical workshops, like in metal cutting, welding or forming industries, for air pollution control and ventilation of the atmosphere in the workshops. An ionization chamber containing alpha radiation source was modified for this purpose, and a suitable electronic circuit was built for the measurement of ionization current. The calibration of the ionization aerosol detectors was performed for welding smoke and oil mist. They were suitable for continuous monitoring of workshop atmospheres and controlling ventilation equipment, or as portable instruments, for the rapid inspection of air pollution. (R.P.) 4 refs.; 3 figs

  12. BACTERIAL POPULATION DYNAMICS IN WASTE OILY EMULSIONS FROM THE METAL-PROCESSING INDUSTRY

    OpenAIRE

    Paweł Kaszycki; Paulina Supel; Przemysław Petryszak

    2014-01-01

    Oil-containing wastewaters are regarded as main industrial pollutants of soil and water environments. They can occur as free-floating oil, unstable or stable oil-in-water (O/W) emulsions, and in the case of extreme organic load, as water-in-oil (W/O) emulsions. In this study two types of oily effluents, a typical O/W emulsion marked as E1 and a W/O emulsion E2, both discharged by local metal processing plants were examined to test their toxicity to microbial communities and the ability to ser...

  13. Rehabilitation of river sediments contaminated by heavy metals from tanning industries using the phytoextraction technique

    Science.gov (United States)

    Beltrá Castillo, Juan Carlos; García Orenes, Fuensanta; Mora Navarro, José; Murcia Navarro, Francisco Jose; Zornoza Belmonte, Raúl; Faz Cano, Ángel; Gómez-Garrido, Melisa

    2017-04-01

    Leather tanning is an industrial sector of great tradition in Spain that has progressively evolved until it has reached a high degree of technification in the present. However, in its early days, the leather tanning industry has always been considered a dirty and polluting activity, mainly due to the water spills that ended up in the river channels. The Guadalentin Valley between Lorca and Murcia (SE Spain) is characterised by intensive crop and pig production, and an extensive agroalimentary and leather tannery industry. These anthropogenic sources have released salts and metals such as copper (Cu), zinc (Zn) and chromium (Cr) into Guadalentin river. Up to 2003, wastewater was discharged directly to the dry river, immediately upstream of the urban nucleus of Lorca, without any previous treatment. It contained high concentrations of inorganic salts and heavy metals (Cu, Zn and Cr). Spills, in some events, had a flow of 10 000 m3 d-1, with concentration of Cr over 500 mg L-1. Phytoremediation is a sustainable alternative that allows the environmental rehabilitation of fluvial dry sediments through the transfer of heavy metals from the contaminated soils to the native vegetation present. Atriplex halimus, salsola oppositifolia, suaeda vera and tamarix africana were the most representative autochthonous phytoextractor species that were planted to study the degree of decontamination of dry river sediments before planting and 12 months after planting. The sediments characterization was done by a sampling grid of 40 000 m2 (500 m x 8 m) where samples were taken at 3 depths (0-20 cm, 20-50 cm and 5-100 cm) every 50 m. A vegetation study was carried out by random plots of 10 m x 10 m. The results indicated that after 12 months the vegetation cover increased between 35% and 70%. The degree of contamination of Cu, Zn and Cr of the river dry sediments decreased slightly, being the atriplex halimus the plant specie that presented the highest value of the bioaccumulation factor

  14. Current trends in degradation assesment on metallic materials of industrial components

    International Nuclear Information System (INIS)

    Herrera Palma, Victoria

    2007-01-01

    To needs to assess objectively a structural integrity analysis in nuclear and termal power-, oil- and chemical- industry system, represents a large challenge for engineer and researches related to Materials Science, equipment manufactures or users. These systems share many of their problems with regards to aging mechanism of components metallic materials, high replacement costs and increasing requirements on efficiency and safety. This paper makes an attempt to give an overview of the current trends on material damage and residual life assessment for installation of power-, oil- and chemical industry. Some of the currently existing ideas on components inspection, as an activity for damage detection are shown. A summary on mechanism of material damage and experimental techniques for their characterization is also presented. Finally, some analytical methods with wide appliance in materials damage evaluation and residual life assesment of components are described

  15. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    International Nuclear Information System (INIS)

    Peña-Fernández, A.; Lobo-Bedmar, M.C.; González-Muñoz, M.J.

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation

  16. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Fernández, A. [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain); Lobo-Bedmar, M.C. [Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Finca el Encín, Crta. Madrid-Barcelona Km, 38.2, 28800 Alcalá de Henares, Madrid (Spain); González-Muñoz, M.J., E-mail: mariajose.gonzalez@uah.es [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain)

    2015-01-15

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation.

  17. Studies of toxic metals removal in industrial wastewater after electron-beam treatment

    International Nuclear Information System (INIS)

    Ribeiro, Marcia Almeida

    2002-01-01

    The Advanced Oxidation Process, using electron-beam, have been studied by scientific community due to its capacity to mineralize the toxic organic compound from highly reactive radical's formation. The electron-beam treatment process has been adopted by several countries for organic compounds removal and to effluents and sewers biological degradation. In this work, studies of metals removal in the simulated aqueous solutions and in the actual industrial effluents were carried out, using electron-beam treatment. The effluents samples were collected at ETE/SABESP (Governmental Wastewater Treatment Plant) in Suzano, SP city. The sampling was outlined at three distinctive sites: Industrial Receiver Unit, Medium Bar, and Final Effluent. The effluents samples were irradiated using different irradiation doses (20, 50, 100, 200 and 500 kGy). The removal behavior of metals Ca, CI, S, P, K, Al, Fe, As, Ni, Cr, Zn, Si, Co, Mn, As, Se, Cd, Hg and Pb was verified. The elements determination was accomplished with the x-ray fluorescence (WD-XRFS) technique using Fundamental Parameters method and thin film samples. The elements Fe, Zn, Cr and Co presented a removal > 99% to 200 kGy of irradiation dose in industrial effluent. At the same dose, P, Al and Si presented a removal of 81.8%, 97.6% and 98.7%, respectively. Ca and S were removed more than 80% at 20 kGy and Na, CI and K did not presented any degree of removal. As, Se, Cd, Hg and Pb removal was studied in the simulated aqueous solutions and industrial effluents with scavengers addition (EDTA and HCOONa). The elements As and Hg presented a removal of 92% and 99%, respectively, with HCOONa, at 500 kGy irradiation dose. The Se presented a 96.5% removal at same irradiation dose without scavengers addition. The removal of Cd and Pb did not give a significant removal, once all of the assay were carried out in the oxidant medium. (author)

  18. Assessment of heavy metals in the industrial effluents, tube-wells and municipal supplied water of Dehradun, India.

    Science.gov (United States)

    Kulshrestha, Shail; Awasthi, Alok; Dabral, S K

    2013-07-01

    The bio-geochemical cycles of metals involve the lands, rivers, oceans and the atmosphere. Although a large number of metals are introduced to the water bodies during their mining and extraction processes and geochemical weathering of rocks, but the role of domestic and industrial wastes is predominant and of much concern. Increased industrial activities has increased the incidence of percolation of toxic metal ions to the soil and water bodies and presently their presence in ecosystem, have reached to an alarming level that environmentalists are finding it difficult to enforce control measures. Human activities and large number of small and big industrial units are increasingly discharging deleterious metals present in the effluents and wastes, to the environment and aquatic systems and have contaminated heavily even the ground water. The toxic metals have a great tendency of bioaccumulation through which they enter the food chain system and ultimately affect adversely the life on this planet Earth in various ways. Further, due to contamination of irrigation system by the harmful Chemicals and toxic metals, the farm products, vegetables, fruits, potable water and even milk is not spared. This paper describes the assessment of the heavy metal concentration in various industrial effluents of the surrounding area. Various physico-chemical characteristics of the effluents collected from various sites are also reported. To assess the status of ground water quality, water samples from four tube wells of different localities of the area and four drinking water samples supplied by Municipal Distribution System were also analyzed.

  19. Analysis of Heavy Metal in Electrocoagulated Metal Hydroxide Sludge (EMHS from the Textile Industry by Energy Dispersive X-Ray Fluorescence (EDXRF

    Directory of Open Access Journals (Sweden)

    Tanveer Mehedi Adyel

    2012-12-01

    Full Text Available Environmental pollution due to discharges of heavy metal containing sludge from textile industries is a common nuisance in Bangladesh, where no treatment of sludge is carried out before final disposals. Energy Dispersive X-ray Fluorescence (EDXRF was employed in the present study to analyze the heavy metal content of Electrocoagulated Metal Hydroxide Sludge (EMHS collected from a composite textile industry. Thirteen heavy metals, viz., Mn, Ti, Cu, Zn, Ni, Sr, V, Cr, Zr, Hg, Cd, Nb and Ga, were detected. Mn, Ni, Cu, Zn and Cd exceeded the permissible limit to apply the EMHS in agricultural land. Cr, Ni, Cu and Zn were compared to the values of the European legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control landfilled. EMHS was categorized as class I and needs to be deposited in controlled landfills.

  20. Enrichment and solubility of trace metals associated with magnetic extracts in industrially derived contaminated soils.

    Science.gov (United States)

    Lu, S G; Wang, H Y; Chen, Y Y

    2012-08-01

    Magnetic fractions (MFs) in industrially derived contaminated soils were extracted with a magnetic separation procedure. Total, soluble, and bioaccessible Cr, Cu, Pb and Zn in the MFs and non-magnetic fractions (NMFs) were analyzed using aqua regia and extraction tests, such as deionized water, toxicity characteristic leaching procedure (TCLP), and gastric juice simulation (GJST) test. Compared with the non-magnetic fractions, soil MFs were enriched with Fe, Mn, Pb, Cd, Cr, Cu, and Ni. Extraction tests indicated that soil MFs contained higher water, TCLP, and GJST-extractable Cr, Cu, Pb, and Zn concentrations than the soil NMFs. The TCLP-extractable Pb concentration in the MFs exceeded the USEPA hazardous waste criteria, suggesting that soil MFs have a potentially environmental pollution risk. Solubility of trace metals was variable in the different extraction tests, which has the order of GJST > TCLP > water. TCLP test showed Cu and Zn were more mobile than Cr and Pb while bioaccessibility of trace metal defined by GJST test showed the order of Cu ≈ Cr ≈ Zn > Pb. These findings suggested that the MFs in the industrially derived contaminated soils had higher possibility of polluting water bodies, and careful environmental impact assessment was necessary.

  1. Metal concentration in the tourist beaches of South Durban: An industrial hub of South Africa.

    Science.gov (United States)

    Vetrimurugan, E; Shruti, V C; Jonathan, M P; Roy, Priyadarsi D; Kunene, N W; Villegas, Lorena Elizabeth Campos

    2017-04-15

    South Durban basin of South Africa has witnessed tremendous urban, industrial expansion and mass tourism impacts exerting significant pressure over marine environments. 43 sediment samples from 7 different beaches (Bluff beach; Ansteys beach; Brighton beach; Cutting beach; Isipingo beach; Tiger Rocks beach; Amanzimtoti beach) were analyzed for acid leachable metals (ALMs) Fe, Mg, Mn, Cr, Cu, Mo, Ni, Co, Pb, Cd, Zn and Hg. The metal concentrations found in all the beaches were higher than the background reference values (avg. in μgg -1 ) for Cr (223-352), Cu (27.67-42.10), Mo (3.11-4.70), Ni (93-118), Co (45.52-52.44), Zn (31.26-57.01) and Hg (1.13-2.36) suggesting the influence of industrial effluents and harbor activities in this region. Calculated geochemical indexes revealed that extreme contamination of Cr and Hg in all the beach sediments and high Cr and Ni levels poses adverse biological effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Specific training in Radiation Protection for workers in the scrap metal recycling industry in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Correa Sainz, C.; Ortiz Ramis, T. [ENRESA. Madrid (Spain); Pinilla Matos, J.L.; Fuentes Fuentes, L. [ENRESA. Centro de Almacenamiento El Cabril, Cordoba (Spain); Gonzalez, C.O. [AdQ, Madrid (Spain)

    2006-07-01

    Enresa, as signatory of the Spanish Protocol on radiological surveillance of metal materials, collaborates in the training programme for workers in the metal recycling sector. Since 1998 a total of 16 training courses have been held with a total of 332 workers from smelting and recovery companies. Furthermore information and publicity campaigns have been held for employees in the metal industry. Two types of courses are held: a Basic Course directed at first responders and an specialized Advanced Course concentrating on radiological characterisation of detected material. The evaluation of the courses by the participants has always been very positive, with the Basic Course being more popular. The practical classes are very much appreciated by the participants. In the future the Basic Course will be held once or twice per year, according to demand, and the Advanced Course will be held every two years as a minimum and always providing there is a minimum number of participants. Refresher courses for workers who are already carrying out the tasks of localisation, segregation and characterisation of radioactive material are also planned. (authors)

  3. Specific training in Radiation Protection for workers in the scrap metal recycling industry in Spain

    International Nuclear Information System (INIS)

    Correa Sainz, C.; Ortiz Ramis, T.; Pinilla Matos, J.L.; Fuentes Fuentes, L.; Gonzalez, C.O.

    2006-01-01

    Enresa, as signatory of the Spanish Protocol on radiological surveillance of metal materials, collaborates in the training programme for workers in the metal recycling sector. Since 1998 a total of 16 training courses have been held with a total of 332 workers from smelting and recovery companies. Furthermore information and publicity campaigns have been held for employees in the metal industry. Two types of courses are held: a Basic Course directed at first responders and an specialized Advanced Course concentrating on radiological characterisation of detected material. The evaluation of the courses by the participants has always been very positive, with the Basic Course being more popular. The practical classes are very much appreciated by the participants. In the future the Basic Course will be held once or twice per year, according to demand, and the Advanced Course will be held every two years as a minimum and always providing there is a minimum number of participants. Refresher courses for workers who are already carrying out the tasks of localisation, segregation and characterisation of radioactive material are also planned. (authors)

  4. A catchment-wide assessment of bed sediment metal concentrations in the first industrial city

    Science.gov (United States)

    Hurley, Rachel; Rothwell, James; Woodward, Jamie

    2016-04-01

    Manchester is often heralded as the 'first industrial city'. Rapid industrialisation in the 18th and 19th centuries saw vast quantities of fine-grained sediments (e.g. boiler ash and cinders) and contaminants (e.g. dyes, bleaches, and chemicals) deposited into the river channels of the Irwell and Mersey in a manner largely unchecked until the 1970s. Although water quality has improved in recent decades, there is a paucity of information on fluvial sediment quality and the extent to which a legacy of historical contamination persists in the contemporary river network. Forty five sites were sampled across the Irwell and Mersey catchments during low flow conditions in spring/summer 2015. Fine-grained bed sediment was collected using the Lambert and Walling (1988) method. Wet sieving was used to isolate the industrial floodplain deposits, were calculated. The enrichment factors reveal severe or very severe metal contamination across the whole catchment, including the headwater basins. Relationships between bed sediment quality and hotspots of historic industrial activity have been examined - these reveal complex spatial patterns associated with the high number and variety of historic contaminant inputs. These data form the first baseline assessment and will be used within a larger project investigating the impact of extreme hydrological events on bed sediment quality and transfer in these catchments.

  5. Content and the forms of heavy metals in bottom sediments in the zone of industrial pollution sources ,

    Directory of Open Access Journals (Sweden)

    Voytyuk Y.Y.

    2014-12-01

    Full Text Available Regularities in the distribution of heavy metals in sediments in the zone of influence of the steel industry in Mariupol are installed. The study results of the forms of occurrence of Zn, Pb, Cu, Cr, Ni are represented. Ecological and geochemical assessment of sediment contamination by heavy metals is performed. The main sources of pollution of bottom sediments are air borne emissions from industrial plants, hydrogenous pollution in industrial sewage entering the water, sewage sludge, ash dumps, slag, ore, sludge, oil spills and salt solutions. Pollution hydrogenous sediments may be significant, contaminated sediments are a source of long-term contamination of water, even after cessation of discharges into rivers untreated wastewater. The environmental condition of bottom sediments in gross content of heavy metals is little information because they do not reflect the transformation and further migration to adjacent environment. The study forms of giving objective information for ecological and geochemical evaluation. The study forms of heavy metals in the sediments carried by successive extracts. Concentrations of heavy metals in the extracts determined by atomic absorption spectrometer analysis CAS-115. It was established that a number of elements typical of exceeding their content in bottom sediments of the background values, due likely to their technogenic origin. Man-made pollution of bottom sediments. Mariupol has disrupted the natural form of the ratio of heavy metals. In the studied sediments form ion exchange increased content of heavy metals, which contributes to their migration in the aquatic environment.

  6. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals.

    Science.gov (United States)

    Ahmaruzzaman, M

    2011-08-10

    Industrial wastes, such as, fly ash, blast furnace slag and sludge, black liquor lignin, red mud, and waste slurry, etc. are currently being investigated as potential adsorbents for the removal of the heavy metals from wastewater. It was found that modified industrial wastes showed higher adsorption capacity. The application of low-cost adsorbents obtained from the industrial wastes as a replacement for costly conventional methods of removing heavy metal ions from wastewater has been reviewed. The adsorption mechanism, influencing factors, favorable conditions, and competitive ions etc. on the adsorption of heavy metals have also been discussed in this article. From the review, it is evident that certain industrial waste materials have demonstrated high removal capacities for the heavy metals laden with wastewater. However, it is to be mentioned that adsorption capacities of the adsorbents vary depending on the characteristics of the adsorbents, the extent of chemical modification and the concentration of adsorbates. There are also few issues and drawbacks on the utilization of industrial wastes as low-cost adsorbents that have been addressed. In order to find out the practical utilization of industrial waste as low-cost adsorbents on the commercial scale, more research should be conducted in this direction. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Multivariate analysis combined with GIS to source identification of heavy metals in soils around an abandoned industrial area, Eastern China.

    Science.gov (United States)

    Zhou, Jie; Feng, Ke; Pei, Zongping; Meng, Fang; Sun, Jian

    2016-03-01

    Heavy metals in soils polluted by industrial production are a meaningful topic worldwide. The purpose of this study is to understand the pollution status and spatial distribution of heavy metals in soils. The result can help decision-makers apportion possible soil heavy metals sources and formulate effective pollution control policies. In this paper, 155 soil samples (0-20 cm) were collected and analyzed for eight heavy metals (Cd, Hg, As, Cu, Pb, Cr, Zn, and Ni) from an abandoned industrial area of Tong County, located in Jiangsu Province of Eastern China. The multivariate analysis (including I(geo), Ei/RI, EF, PCA, and CA) and geostatistics (GIS) were used to assess the enrichment level and pollution level of soil heavy metals and identify their sources. The results indicated that eight heavy metals in soils had moderate variations, with CVs ranging from 19.63 to 63.34%. The pollution level of I(geo) of soil heavy metals decreased in the order of Cd~Zn > Cu > Hg~As~Pb~Cr~Ni. The enrichment level of soil heavy metals decreased in the order of Cd > Zn > Hg > Cu > Pb > Ni > As > Cr. According to the Ei, except Cd and Hg were in the significant and moderate ecological risk levels respectively, other soil heavy metals were in the clean or light ecological risk levels, the level of potential ecological risk (RI) of the whole industrial area was moderate. Finally, the source identification of soil heavy metals indicated that Cd and Zn were primarily controlled by human activities, and Hg and Cu were controlled by natural and anthropogenic sources, and As, Pb, Cr, and Ni were mainly controlled by soil parent materials.

  8. Estimating genetic potential of biofuel forest hardwoods to withstand metal toxicity in industrial effluent under dry tropical conditions.

    Science.gov (United States)

    Manzoor, S A; Mirza, S N; Zubair, M; Nouman, W; Hussain, S B; Mehmood, S; Irshad, A; Sarwar, N; Ammar, A; Iqbal, M F; Asim, A; Chattha, M U; Chattha, M B; Zafar, A; Abid, R

    2015-08-14

    Biofuel tree species are recognized as a promising alternative source of fuel to conventional forms. Additionally, these tree species are also effective in accumulating toxic heavy metals present in some industrial effluents. In developing countries such as Pakistan, the use of biofuel tree species is gaining popularity not only for harvesting economical and environmentally friendly biofuel, but also to sequester poisonous heavy metals from industrial wastewater. This study was aimed at evaluating the genetic potential of two biofuel species, namely, Jatropha curcas and Pongamia pinnata, to grow when irrigated with industrial effluent from the Pak-Arab Fertilizer Factory Multan, Southern Punjab, Pakistan. The growth performances of one-year-old seedlings of both species were compared in soil with adverse physiochemical properties. It was found that J. curcas was better able to withstand the toxicity of the heavy metals present in the fertilizer factory effluent. J. curcas showed maximum gain in height, diameter, and biomass production in soil irrigated with 75% concentrated industrial effluent. In contrast, P. pinnata showed a significant reduction in growth in soil irrigated with more than 50% concentrated industrial effluent, indicating that this species is less tolerant to higher toxicity levels of industrial effluent. This study identifies J. curcas as a promising biofuel tree species that can be grown using industrial wastewater.

  9. Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model

    Science.gov (United States)

    Chen, Bing; Stein, Ariel F.; Maldonado, Pabla Guerrero; Sanchez de la Campa, Ana M.; Gonzalez-Castanedo, Yolanda; Castell, Nuria; de la Rosa, Jesus D.

    2013-06-01

    This study presents a description of the emission, transport, dispersion, and deposition of heavy metals contained in atmospheric aerosols emitted from a large industrial complex in southern Spain using the HYSPLIT model coupled with high- (MM5) and low-resolution (GDAS) meteorological simulations. The dispersion model was configured to simulate eight size fractions (17 μm) of metals based on direct measurements taken at the industrial emission stacks. Twelve stacks in four plants were studied and the stacks showed considerable differences for both emission fluxes and size ranges of metals. We model the dispersion of six major metals; Cr, Co, Ni, La, Zn, and Mo, which represent 77% of the total mass of the 43 measured elements. The prediction shows that the modeled industrial emissions produce an enrichment of heavy metals by a factor of 2-5 for local receptor sites when compared to urban and rural background areas in Spain. The HYSPLIT predictions based on the meteorological fields from MM5 show reasonable consistence with the temporal evolution of concentrations of Cr, Co, and Ni observed at three sites downwind of the industrial area. The magnitude of concentrations of metals at two receptors was underestimated for both MM5 (by a factor of 2-3) and GDAS (by a factor of 4-5) meteorological runs. The model prediction shows that heavy metal pollution from industrial emissions in this area is dominated by the ultra-fine (<0.66 μm) and fine (<2.5 μm) size fractions.

  10. Separation tests of heavy metals in samples of industrial wastes through flotation

    International Nuclear Information System (INIS)

    Abrego L, J.

    1995-12-01

    Samples of residual muds, taken at the exit of the filter-press of the water treatment plant of a galvanoplastics industry in Lerma, Estado de Mexico, its were prepared for its qualitative and quantitative analysis. Likewise, the residual waters of the cistern located at the end of the electrodeposition process, was subjected to qualitative chemical analysis for the neutron activation technique and to quantitative analysis by atomic absorption spectrometry. The samples were treated by a flotation process by means of the one which it was studied the heavy metals removal. The results show that the AP-845 collector is the one that better it fulfilled the objectives since, it solves the problem, unless by the copper that although their concentration in the residual waters drop a lot, it was not inside the standard. (Author)

  11. Membranes prepared by radiation grafting of binary monomers for adsorption of heavy metals from industrial wastes

    Science.gov (United States)

    Hegazy, El-Sayed A.; Kamal, H.; Maziad, N.; Dessouki, A. M.

    1999-05-01

    Preparation of synthetic membranes using simultaneous radiation grafting of acrylic acid (AAc) and styrene (Sty) as individually and in binary monomer mixture onto low density polyethylene (LDPE) has been carried out. The effect of preparation conditions such as irradiation dose, monomer concentration, comonomer composition, and solvent on the grafting yield was investigated. Characterization and some properties of the prepared membranes using different analytical techniques are studied, accordingly the possibility of its practical use in industrial waste treatment is determined. The swelling behavior, electrical conductivity, thermal stability, and mechanical properties of the membranes were investigated as a function of the grafting degree. The prepared cation-exchange membranes possessed good electrical and mechanical properties, high thermal stability and possess good characteristics for separation processes. These membranes have also good affinity toward the adsorption or chelation with Fe 3+ and Pb 2+ ions either in mixture containing other metals or if exists alone in the waste solution.

  12. New trends for non-ferrous metals in the electrical engineering industry

    International Nuclear Information System (INIS)

    Singer, R.F.

    1989-01-01

    The non-ferrous metals copper, aluminium and nickel are of major importance to the electrical engineering industry. Copper is used for magnet wire, underground cable and overhead contact wire, and aluminium is important for overhead power transmission lines. Nickel alloys are employed as gas turbine blades in power generation. An important new trend in the conductor area is rapid solidification for improved combinations of strength and conductivity. Another new trend is the Conform continuous extrusion process which can decrease cost and increase quality. New high temperature superconductors might change the conductor market completely, but only on the long run. Nickel base blading materials will see considerable improvements from oxide dispersion strengthening and directional solidification. In summary, non-ferrous materials technology for electrical engineering applications is on the move and considerable improvements can be expected within the next decade. (orig.) [de

  13. Evaluation of the chelating performance of biopolyelectrolyte green complexes (NIBPEGCs) for wastewater treatment from the metal finishing industry.

    Science.gov (United States)

    López-Maldonado, Eduardo A; Zavala García, Oscar Gabriel; Escobedo, Kevin Cruz; Oropeza-Guzman, Mercedes T

    2017-08-05

    In this paper nonstoichiometric interbiopolyelectrolyte green complexes (NIBPEGCs) were prepared using chitosan (Ch), alginate (AG) and poly(acrylic acid)(PAA). They are proposed as innovative formulations (polyelectrolytes and chelating agents) suitable for the elimination heavy metals contained in wastewater. This application may represent an integral solution for industries rejecting solid and aqueous metallic materials; however, it has not been previously reported. NIBPEGCs physicochemical performance was evaluated based on pH, particle size, surface charge, isoelectric point, dose, coagulation-flocculation kinetics and chemical affinity with seven metal ions. The experimental results showed that NIBPEGCs composed by AG/Ch and PAA/Chitosan have all the three complementary functions: chemical affinity, electrostatic interaction and particle entrapment anticipating more simple operation units to remove heavy metals. Complexes of AG/Ch (negative) were higher performance in removing heavy metals, with a dose window (150-180mg/L), lower dose of 410mg/L PAA/Ch (negative). Investigation of chelating performances of NIBPEGCs show that the efficiency of metal removal is: Ca˃Cr˃Cu˃Pb˃Ni˃Zn˃Cd. Transmittance vs time profiles, metals and zeta potential analysis showed that chelation capacity is the crucial factor to ensure metallic species removal, followed by physical entrapment of the metallic colloids. Integrating all presented results allow to sustain the development of excellent metals removal formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Environmental metal contamination and health impact assessment in two industrial regions of Romania.

    Science.gov (United States)

    Nedelescu, Mirela; Baconi, Daniela; Neagoe, Aurora; Iordache, Virgil; Stan, Miriana; Constantinescu, Paula; Ciobanu, Anne-Marie; Vardavas, Alexander I; Vinceti, Marco; Tsatsakis, Aristidis M

    2017-02-15

    We investigated two Romanian industrial regions- Copşa Mică and Zlatna, to assess the current situation of soil pollution and bioaccumulation of Pb, Cd, Cu and Zn in different vegetable species and possible risks to consumers. Both total and mobile forms of the metals were determined in soil samples, and metal content in the edible parts of root vegetable samples was also assessed. The concentrations of Pb and Zn in soil were higher in Copşa Mică than in Zlatna (566mg/kg vs 271mg/kg for Pb and 1143mg/kg vs 368mg/kg for Zn)·The metal mobility in soil from Copsa Mica decreases in the order Zn>Cu>Cd>Pb (1.88mg/kg, 0.40mg/kg, 0.22mg/kg, 0.16mg/kg, respectively), while in Zlatna, the order was Cu>Zn>Pb>Cd (0.88mg/kg, 0.29mg/kg, 0.04mg/kg, 0.01mg/kg, respectively), apparently depending on metal and soil conditions. In Copsa Mica, the amount of Pb and Cd in vegetable samples exceeded the maximum permissible limits in carrots (median concentration 0.32mg/kg for Pb and Cd) and in yellow onions (median concentration 0.24mg/kg for Cd). In Zlatna region, the content of Cd exceeded the maximum limits in yellow onions (median concentration 0.11mg/kg). The amount of Pb was higher than the maximum acceptable level in carrots from the Zlatna region (median concentration 0.12mg/kg). Cu and Zn levels were within the normal range in all vegetable samples. In the Zlatna region, the transfer factors for Pb and Cd were higher in carrots (median values of 9.9 for Pb and 21.0 for Cd) compared to carrots harvested in Copsa Mica (median values of 4.0 for Pb and 2.0 for Cd). Daily intake rates of metals through local vegetable consumption exceeded the limit values established by the European Food Safety Authority for Pb (1.2 to 2.4 times) and Cd (5.5 to 9.1 times) in both regions, with potential adverse health effects for the local population. The results highlight the need for total soil remediation action before fruit and vegetables produced in these polluted areas can be safely

  15. Metal levels in street sediment from an industrial city. Spatial trends, chemical fractionation, and management implications

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, Kim N.; Perrelli, Mary F. [State Univ. of New Yrok, Buffalo, NY (United States). Geography and Planning Dept., Buffalo State; Ngoen-klan, Ratchadawan [Chiang Mai Univ. (Thailand). Dept. of Parasitology; Droppo, Ian G. [Water Science and Technology Directorate, Science and Technology Branch, Environment Canada, Burlington, ONT (Canada). Aquatic Ecosystem Management Research Div.

    2009-08-15

    Background, aim and scope: Street sediment samples were collected at 50 locations in a mixed land use area of Hamilton, Ontario, Canada, and metal levels were analyzed using a sequential extraction procedure for different particle size classes to provide an estimate of potential toxicity as well as the potential for treatment through best management practices (BMPs). Methodology: The street sediment samples were dry sieved into four different particle size categories and a sequential extraction procedure was done on each size category following the methodology proposed by Tessier et al. 1979 using a Hitachi 180-80 Polarized Zeeman Atomic Absorption Spectrophotometer. Results and discussion: Analysis of variance, post hoc least-significant difference tests, and kriging analysis showed that spatially Mn and Fe levels were associated with a well-defined heavy industrial area that includes large iron- and steel-making operations; Cu and Pb were associated with both the industrial and high-volume traffic areas, while Zn tended to be more associated with high-volume traffic areas. The potential bioavailability of the metals, based on the sum of chemical fractions 1 (exchangeable) and 2 (carbonate-bound), decreased in order: Zn > Cd > Mn > Pb > Cu > Fe. Based on aquatic sediment quality guidelines, there is some concern regarding the potential impact of the street sediment when runoff reaches receiving waters. Conclusions: It is possible that a combination of BMPs, including street sweeping and constructed wetlands, could help to reduce street sediment impact on environmental quality in the Hamilton region. The data presented here would be important in developing and optimizing the design of these BMPs. (orig.)

  16. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain).

    Science.gov (United States)

    Peña-Fernández, A; Lobo-Bedmar, M C; González-Muñoz, M J

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The Distribution and Health Risk Assessment of Metals in Soils in the Vicinity of Industrial Sites in Dongguan, China.

    Science.gov (United States)

    Liu, Chao; Lu, Liwen; Huang, Ting; Huang, Yalin; Ding, Lei; Zhao, Weituo

    2016-08-19

    Exponential industrialization and rapid urbanization have resulted in contamination of soil by metals from anthropogenic sources in Dongguan, China. The aims of this research were to determine the concentration and distribution of various metals (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn)) in soils and identify their potential health risks for local residents. A total of 106 soil samples were collected from the vicinity of industrial sites in Dongguan. Two types of samples were collected from each site: topsoil (0-20 cm, TS) and shallow soil (20-50 cm, SS). Results showed that the soils were contaminated by metals and pollution was mainly focused on TS. The geoaccumulation index (Igeo) and pollution indexes (PI) implied that there was a slight increase in the concentrations of Cd, Cu, Hg, Ni, and Pb, but the metal pollution caused by industrial activities was less severe, and elements of As and Cr exhibited non-pollution level. The risk assessment results suggested that there was a potential health risk associated with As and Cr exposure for residents because the carcinogenic risks of As and Cr via corresponding exposure pathways exceeded the safety limit of 10(-6) (the acceptable level of carcinogenic risk for humans). Furthermore, oral ingestion and inhalation of soil particles are the main exposure pathways for As and Cr to enter the human body. This study may provide basic information of metal pollution control and human health protection in the vicinity of industrial regions.

  18. Monitoring of Heavy Metals Content in Soil Collected from City Centre and Industrial Areas of Misurata, Libya

    OpenAIRE

    Elbagermi, M. A.; Edwards, H. G. M.; Alajtal, A. I.

    2013-01-01

    The present paper deals with the assessment of heavy metals in soil and roadside dust around Misurata City Centre and industrial areas/roads in the period of October 2011?May 2012. The levels of Pb, Fe, Zn, Ni, Cd, Cr, and Cu in settled dust samples collected near small streets, playgrounds, gas stations and main streets in the Misurata Area have been determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Also, the levels of same heavy metals in industrial areas have...

  19. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.

    Science.gov (United States)

    Kamika, Ilunga; Momba, Maggy N B

    2013-02-06

    Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Significant differences (p metal-removal and the presence of certain metal-resistant genes indicated that the selected microbial isolates used both passive (biosorptive) and active (bioaccumulation) mechanisms to remove heavy metals from industrial wastewater. This study

  20. Physico-Chemical parameters and trace-metals concentration in effluents from various industries in vicinity of Lahore

    International Nuclear Information System (INIS)

    Gulfraz, M.; Ahmad, T.; Afzal, H.

    2003-01-01

    Increasing problem of pollution has become serious in almost all big cities of Pakistan. The industrial effluents (Liquid waste) discharged by different industries are drained into streams/nallahs, which ultimately join the waterways (streams, lakes, rivers or sea). The effluent samples from five industries, like Tanneries, Chemicals, Pharmaceuticals, Fertilizers and metal/electroplating, working in Lahore, Sheikhupura and Kalashahkaku were selected for analysis. The parameters, like Temperature, pH, conductivity, hardness, alkalinity, total dissolved solids, chemical oxygen demands, phosphate, nitrate, nitrite, major cations (Na, K, Ca, Mg) and heavy/trace metals, were studied. The results were compared with National environmental Quality standards (NEQS). It was further observed that when effluents of industries join fresh water of stream, lakes or rivers, this causes severe water-pollution and damages the flora and fauna. Suggestions for effective control of water-pollution are also given. (author)

  1. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    Science.gov (United States)

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient.

  2. Multivariate Analyses of Heavy Metals in Surface Soil Around an Organized Industrial Area in Eskisehir, Turkey.

    Science.gov (United States)

    Malkoc, S; Yazici, B

    2017-02-01

    A total of 50 surface industrial area soil in Eskisehir, Turkey were collected and the concentrations of As, Cr, Cd, Co, Cu, Ni, Pb, Zn, Fe and Mg, at 11.34, 95.8, 1.37, 15.28, 33.06, 143.65, 14.34, 78.79 mg/kg, 188.80% and 78.70%, respectively. The EF values for As, Cu, Pb and Zn at a number of sampling sites were found to be the highest among metals. Igeo-index results show that the study area is moderately polluted with respect to As, Cd, Ni. According to guideline values of Turkey Environmental Quality Standard for Soils, there is no problem for Pb, but the Cd values are fairly high. However, Cr, Cu, Ni and Zn values mostly exceed the limits. Cluster analyses suggested that soil the contaminator values are homogenous in those sub classes. The prevention and remediation of the heavy metal soil pollution should focus on these high-risk areas in the future.

  3. Heavy-metal-contaminated industrial soil: Uptake assessment in native plant species from Brazilian Cerrado.

    Science.gov (United States)

    Meyer, Sylvia Therese; Castro, Samuel Rodrigues; Fernandes, Marcus Manoel; Soares, Aylton Carlos; de Souza Freitas, Guilherme Augusto; Ribeiro, Edvan

    2016-08-02

    Plants of the Cerrado have shown some potential for restoration and/or phytoremediation projects due to their ability to grow in and tolerate acidic soils rich in metals. The aim of this study is to evaluate the tolerance and accumulation of metals (Cd, Cu, Pb, and Zn) in five native tree species of the Brazilian Cerrado (Copaifera langsdorffii, Eugenia dysenterica, Inga laurina, Cedrela fissilis, Handroanthus impetiginosus) subjected to three experiments with contaminated soils obtained from a zinc processing industry (S1, S2, S3) and control soil (S0). The experimental design was completely randomized (factorial 5 × 4 × 3) and conducted in a greenhouse environment during a 90-day experimentation time. The plant species behavior was assessed by visual symptoms of toxicity, tolerance index (TI), translocation factor (TF), and bioaccumulation factor (BF). C. fissilis has performed as a Zn accumulator by the higher BFs obtained in the experiments, equal to 3.72, 0.88, and 0.41 for S1, S2, and S3 respectively. This species had some ability of uptake control as a defense mechanism in high stress conditions with the best behavior for phytoremediation and high tolerance to contamination. With economical and technical benefits, this study may support a preliminary analysis necessary for using native tree species in environmental projects.

  4. Simultaneous Exposure to Heavy Metals among Residents in the Industrial Complex: Korean National Cohort Study

    Directory of Open Access Journals (Sweden)

    Heejin Park

    2015-05-01

    Full Text Available A survey was conducted to evaluate the multi-exposure level and correlation among toxic metal biomarkers (Cd, Pb, and Hg. A total of 592 individuals who participated in the survey were residents near an industrial complex in Gwangyang and Yeosu (exposed group and of Hadong and Namhae (control group in southern Korea from May 2007 to November 2010. The Gwangyang and Yeosu area exposed groups had slightly higher blood Pb (2.21 and 1.90 µg/dL, urinary Cd observed values (2.20 and 1.46 µg/L, urinary Cd with a urinary creatinine correction (1.43 and 1.25 µg/g Cr, and urinary Hg observed values (2.26 and 0.98 µg/L in women participants than those in the Hadong and Namhae area (control group. Blood Pb (3.18 and 2.55 µg/dL, urinary Hg observed values (1.14 and 0.92 µg/L, and urinary Hg with a urinary creatinine correction (1.06 and 0.96 µg/L for male participants were also slightly higher than those in the Hadong and Namhae area (control group. The correlation among urinary Cd, Hg and Pb concentrations in the blood was significant. We suggest that the exposed group of residents were simultaneously exposed to Pb, Cd, and Hg from contaminated ambient air originating from the iron manufacturing industrial complex.

  5. Data on metals biomonitoring in the body of schoolchildren in the vicinity of a heavily industrialized site

    Directory of Open Access Journals (Sweden)

    Raheleh Kafaei

    2017-06-01

    Full Text Available This data is obtained from analyzing the concentration of metals include Al, Co, Cr, Cu, Fe, Mo, Pb, and Zn in the urine of schoolchildren in Asalouyeh city in vicinity to a heavily industrialized site and comparison with a reference city. The significance of sex groups on urine metal level was evaluated through this data. The urinary content of metals was measured by inductively coupled plasma atomic emission spectroscopy (ICP-OES. Statistical analyze of data were done by Mann–Whitney test. The herein presented date could beneficial for health assessment of gas and petrochemical companies.

  6. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil.

    Science.gov (United States)

    Oves, Mohammad; Khan, Mohammad Saghir; Zaidi, Almas

    2013-04-01

    The study was navigated to examine the metal biosorbing ability of bacterial strain OSM29 recovered from rhizosphere of cauliflower grown in soil irrigated consistently with industrial effluents. The metal tolerant bacterial strain OSM29 was identified as Bacillus thuringiensis following 16S rRNA gene sequence analysis. In the presence of the varying concentrations (25-150 mgl(-1)) of heavy metals, such as cadmium, chromium, copper, lead and nickel, the B. thuringiensis strain OSM29 showed an obvious metal removing potential. The effect of certain physico-chemical factors such as pH, initial metal concentration, and contact time on biosorption was also assessed. The optimum pH for nickel and chromium removal was 7, while for cadmium, copper and lead, it was 6. The optimal contact time was 30 min. for each metal at 32 ± 2 °C by strain OSM29. The biosorption capacity of the strain OSM29 for the metallic ions was highest for Ni (94%) which was followed by Cu (91.8%), while the lowest sorption by bacterial biomass was recorded for Cd (87%) at 25 mgl(-1) initial metal ion concentration. The regression coefficients obtained for heavy metals from the Freundlich and Langmuir models were significant. The surface chemical functional groups of B. thuringiensis biomass identified by Fourier transform infrared (FTIR) were amino, carboxyl, hydroxyl, and carbonyl groups, which may be involved in the biosorption of heavy metals. The biosorption ability of B. thuringiensis OSM29 varied with metals and was pH and metal concentration dependent. The biosorption of each metal was fairly rapid which could be an advantage for large scale treatment of contaminated sites.

  7. Heavy Metals in Suburban Ecosystems of Industrial Centres and Ways of their Reduction

    Directory of Open Access Journals (Sweden)

    Onistratenko Nikolay Vladimirovich

    2016-09-01

    Full Text Available Technogenic contamination of ecosystems is one of the main dangers of our time. In order to reduce the harmful effects of this contamination and to provide cost-effective and environmentally safe food production methods, we are forced to look for ways of reliable analysis of the environmental situation, the selection systems of animal husbandry and regulations for the degree of impact of pollutants on the elements of the agroecosystem. This article presents the results of studies aimed at assessing the plight of the environment of a large industrial centre, and its anthropogenic impacts on every element of the suburban ecosystems. It presents data on maintenance and migration of anthropogenous pollutants in the trophic chains of pasturable ecosystems of the suburb of Volgograd. The authors have listed the industrial enterprises as the key sources of pollution. The features of the distribution of xenobiotics in the tissues and organs of calves and heifers of different breeds were analysed in the study. Conclusions were drawn on the accumulation of heavy metals and arsenic in cattle, and the impact of this factor on the quality of production. A comparative assessment of the resistance of different breeds of cows to the action of toxicants in the environment of the Lower Volga region was carried out. Ways to decrease the impact of pollutants on the cattle organism have also been suggested. The article pays attention to the environmental pollution of the industrial centre, the influence of these processes on all elements of an ecosystem including humans, and offers ways to minimize the damage.

  8. High power n-type metal-wrap-through cells and modules using industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Guillevin, N.; Heurtault, B.J.B.; Geerligs, L.J.; Van Aken, B.B.; Bennett, I.J.; Jansen, M.J.; Weeber, A.W.; Bultman, J.H. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Jianming, Wang; Ziqian, Wang; Jinye, Zhai; Zhiliang, Wan; Shuquan, Tian; Wenchao, Zhao; Zhiyan, Hu; Gaofei, Li; Bo, Yu; Jingfeng, Xiong [Yingli Green Energy Holding Co.,Ltd. 3399 North Chaoyang Avenue, Baoding (China)

    2013-10-15

    This paper reviews our recent progress in the development of metal wrap through (MWT) cells and modules, produced from n-type Czochralski silicon wafers. The use of n-type silicon as base material allows for high efficiencies: for front emitter-contacted industrial cells, efficiencies above 20% have been reported. N-type MWT (nMWT) cells produced by industrial process technologies allow even higher efficiency due to reduced front metal coverage. Based on the same industrial technology, the efficiency of the bifacial n-MWT cells exceeds the efficiency of the n-type front-and-rear contact and bifacial 'Pasha' technology (n-Pasha) by 0.1-0.2% absolute, with a maximum nMWT efficiency of 20.1% so far. Additionally, full back-contacting of the MWT cells in a module results in reduced cell to module (CTM) fill factor losses. In a direct 60-cell module performance comparison, the n-MWT module, based on integrated backfoil, produced 3% higher power output than the comparable tabbed front emitter-contacted n-Pasha module. Thanks to reduced resistive losses in copper circuitry on the backfoil compared to traditional tabs, the CTM FF loss of the MWT module was reduced by about 2.2%abs. compared to the tabbed front emitter contact module. A full-size module made using MWT cells of 19.6% average efficiency resulted in a power output close to 280W. Latest results of the development of the n-MWT technology at cell and module level are discussed in this paper, including a recent direct comparison run between n-MWT and n-Pasha cells and results of n-MWT cells from 140{mu}m thin mono-crystalline wafers, with only very slight loss (1% of Isc) for the thin cells. Also reverse characteristics and effects of reverse bias for extended time at cell and module level are reported, where we find a higher tolerance of MWT modules than tabbed front contact modules for hotspots.

  9. Utilisation of fly ash for the management of heavy metal containing primary chemical sludge generated in a leather manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Sekaran, G.; Rao, B.P.; Ghanamani, A.; Rajamani, S. [Central Leather Research Institute, Chennai (India). Dept. of Environmental Technology

    2003-07-01

    The present study aims at disposal of primary chemical sludge generated in the tanning industry by solidification and stabilization process using flyash generated from thermal power plant along with binders and also on evaluating the leachability of heavy metal from the solidified product. The primary chemical sludge containing heavy metals iron and chromium were obtained from a garment leather manufacturing company at Chennai in India. The sludge was dried in open environment and it was powdered to fine size in a grinder. Binding increases stabilization of heavy metal in calcined sludge with refractory binders such as clay, fly ash, lime and ordinary Portland cement. Fly ash can be considered as the additional binder for producing stronger bricks, with high metal fixation efficiency, and minimum rate of removal of heavy metal and minimum diffusion co-efficient. 15 refs., 5 figs., 5 tabs.

  10. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries.

    Science.gov (United States)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-29

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  11. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    Science.gov (United States)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  12. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    Science.gov (United States)

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-04-01

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  13. Tracing industrial heavy metal inputs to topsoils using using cadmium isotopes

    Science.gov (United States)

    Huang, Y.; Ma, L.; Ni, S.; Lu, H.; Liu, Z.; Zhang, C.; Guo, J.; Wang, N.

    2015-12-01

    Anthropogenic activities have dominated heavy metal (such as Cd, Pb, and Zn) cycling in many environments. The extent and fate of these metal depositions in topsoils, however, have not been adequately evaluated. Here, we utilize an innovative Cadmium (Cd) isotope tool to trace the sources of metal pollutants in topsoils collected from surrounding a Vanadium Titanium Magnetite smelting plant in Sichuan, China. Topsoil samples and possible pollution end-members such as fly ashes, bottom ashes, ore materials, and coal were also collected from the region surrounding the smelting plant and were analyzed for Cd isotope ratios (d114Cd relative to Cd NIST 3108). Large Cd isotope fractionation (up to 3 ‰) was observed in these industrial end-members: fly ashes possessed higher δ114Cd values ranging from +0.03 to +0.19‰; bottom fly ashes have lower δ114Cd values ranging from -0.35 to -2.46‰; and unprocessed ore and coal samples has δ114Cd value of -0.40‰. This fractionation can be attributed to the smelting processes during which bottom ashes acquired lighter Cd isotope signatures while fly ashes were mainly characterized by heavy isotope ratios, in comparison to the unprocessed ore and coal samples. Indeed, δ114Cd values of topsoils in the smelting area range from 0.29 to -0.56‰, and more than half of the soils analyzed have distinct δ114Cd values > 0‰. Cd isotopes and concentrations measured in topsoils suggested that processed materials (fly and bottom ashes from ore and coal actually used by the smelting plant) were the major source of Cd in soils. In a δ114Cd vs 1/Cd mixing diagram, the soils represent a mixture of three identified end members (fly ash, bottom ash and deep unaffected soil) with distinct Cd isotopic compositions and concentrations. Deep soils have the same δ114Cd values range as the unprocessed ore and coal, which indicated the Cd isotope fractionation did occur during evaporation and condensation processes inside the smelting plant

  14. Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan

    Science.gov (United States)

    Al-Khashman, Omar. A.

    Karak Industrial Estate (KIE) was investigated for its heavy metals content. Samples of dust, street dust and soil were analyzed for their content of Fe, Cu, Zn, Ni and Pb after digestion with nitric acid. The results of the analysis were used to determine major sources and magnitude of heavy metals pollution. The ranges of heavy metal concentrations in the investigated area were 58.8-94.8, 1.8-84.9, 15.4-136.9, 1.7-6.5 and 2.1-314.1 mg kg -1 dry soil for Fe, Cu, Zn, Ni and Pb, respectively. The concentrations of heavy metals in soils are greater on the surface but decreased in the lower part as a result of the basic nature of this soil. There are two possible sources of heavy metals (Zn, Cu, Ni and Pb) anthropogenic and industrial activities from the work place in KIE. Significant contribution from industrial sources at KIE was evident at nearby places.

  15. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  16. Investigation of the influence of pretreatment parameters on the surface characteristics of amorphous metal for use in power industry

    Science.gov (United States)

    Nieroda, Jolanta; Rybak, Andrzej; Kmita, Grzegorz; Sitarz, Maciej

    2018-05-01

    Metallic glasses are metallic materials, which exhibit an amorphous structure. These are mostly three or more component alloys, and some of them are magnetic metals. Materials of this kind are characterized by high electrical resistivity and at the same time exhibit very good magnetic properties (e.g. low-magnetization loss). The above mentioned properties are very useful in electrical engineering industry and this material is more and more popular as a substance for high-efficiency electrical devices production. This industry area is still evolving, and thus even higher efficiency of apparatus based on amorphous material is expected. A raw material must be carefully investigated and characterized before the main production process is started. Presented work contains results of complementary examination of amorphous metal Metglas 2605. Studies involve two ways to obtain clean and oxidized surface with high reactivity, namely degreasing followed by annealing process and plasma treatment. The amorphous metal parameters were examined by means of several techniques: surface free energy (SFE) measurements by sessile drop method, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and both ex situ and in situ Raman spectroscopy. Additionally, influence of plasma parameters on wetting properties were optimized in systematic way with Design of Experiments (DOE) method. A wide range of used methods allow to fully investigate the amorphous metal material during preliminary preparation of surface. Obtained results provide information about appropriate parameters that should be applied in order to obtain highly reactive surface with functional oxide layer on it.

  17. Raw Materials Synthesis from Heavy Metal Industry Effluents with Bioremediation and Phytomining: A Biomimetic Resource Management Approach

    Directory of Open Access Journals (Sweden)

    Salmah B. Karman

    2015-01-01

    Full Text Available Heavy metal wastewater poses a threat to human life and causes significant environmental problems. Bioremediation provides a sustainable waste management technique that uses organisms to remove heavy metals from contaminated water through a variety of different processes. Biosorption involves the use of biomass, such as plant extracts and microorganisms (bacteria, fungi, algae, yeast, and represents a low-cost and environmentally friendly method of bioremediation and resource management. Biosorption-based biosynthesis is proposed as a means of removing heavy metals from wastewaters and soils as it aids the development of heavy metal nanoparticles that may have an application within the technology industry. Phytomining provides a further green method of managing the metal content of wastewater. These approaches represent a viable means of removing toxic chemicals from the effluent produced during the process of manufacturing, and the bioremediation process, furthermore, has the potential to save metal resources from depletion. Biomimetic resource management comprises bioremediation, biosorption, biosynthesis, phytomining, and further methods that provide innovative ways of interpreting waste and pollutants as raw materials for research and industry, inspired by materials, structures, and processes in living nature.

  18. Alternative granular media for the metal casting industry. Final report, September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Guichelaar, P.J.; Ramrattan, S.N.; Tieder, R.E. [Michigan Technological Univ., Houghton, MI (United States)

    1995-09-01

    Silica sand for foundry use is inexpensive to purchase, readily transported and widely available. As a result, it is universally used. However, three factors are becoming increasingly significant as more environmental regulations are promulgated. First, the disposal of waste foundry sand has become an excessively burdensome cost. Second, the phase changes which occur in the silica structure on heating and cooling cause thermal breakdown of the sand into smaller unusable fractions. Third, silica is a relatively weak mineral. Alternatives to silica sand which can withstand the rigors of repetitive reuse must be seriously evaluated as a way to control production costs of the domestic metal casting industry. Chromite sands, olivine sands and carbon sands have each been successfully used to solve operating problems and thus have developed their specific niches in the foundry materials inventory. However, there are several other materials that are candidates for replacing silica sand, such as fused alumina, sintered bauxite and sintered oil well proppants. These media, and others that are generically similar, are manufactured for specific purposes. Compositions and shapes could be readily tailored for used in a metal casting environment of total recycling and materials conservation. This study examines materials that are readily available as alternatives to silica sand from a functionality perspective and a cost perspective. Some of the alternative materials are natural and others are synthetic and thus referring to them as ``sands`` has the potential to cause confusion; the generic term ``granular medium`` is used in this study to mean any material that could functionally substitute for silica sand in the foundry process.

  19. Noise-Induced Hearing Loss in Korean Workers: Co-Exposure to Organic Solvents and Heavy Metals in Nationwide Industries

    Science.gov (United States)

    Choi, Yoon-Hyeong; Kim, KyooSang

    2014-01-01

    Background Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. Methods We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents) and subject-specific health outcomes (e.g., audiometric examination) were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA) (i.e., means of 2, 3, and 4 kHz) were computed. Results In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. Conclusion This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks. PMID:24870407

  20. Noise-induced hearing loss in Korean workers: co-exposure to organic solvents and heavy metals in nationwide industries.

    Directory of Open Access Journals (Sweden)

    Yoon-Hyeong Choi

    Full Text Available BACKGROUND: Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. METHODS: We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents and subject-specific health outcomes (e.g., audiometric examination were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA (i.e., means of 2, 3, and 4 kHz were computed. RESULTS: In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. CONCLUSION: This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks.

  1. Noise-induced hearing loss in Korean workers: co-exposure to organic solvents and heavy metals in nationwide industries.

    Science.gov (United States)

    Choi, Yoon-Hyeong; Kim, KyooSang

    2014-01-01

    Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents) and subject-specific health outcomes (e.g., audiometric examination) were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA) (i.e., means of 2, 3, and 4 kHz) were computed. In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks.

  2. Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: their potential use in wastewater treatment.

    Science.gov (United States)

    Naureen, Ayesha; Rehman, Abdul

    2016-08-01

    Arsenite oxidizing bacteria, isolated from industrial wastewater, showed high resistance against arsenite (40 mM) and other heavy metals (10 mM Pb; 8 mM Cd; 6 mM Cr; 10 mM Cu and 26.6 mM As(5+)). Bacterial isolates were characterized, on the basis of morphological, biochemical and 16S rRNA ribotyping, as Bacillus cereus (1.1S) and Acinetobacter junii (1.3S). The optimum temperature and pH for the growth of both strains were found to be 37 °C and 7. Both the strains showed maximum growth after 24 h of incubation. The predominant form of arsenite oxidase was extracellular in B. cereus while in A. junii both types of activities, intracellular and extracellular, were found. The extracellular aresenite oxidase activity was found to be 730 and 750 µM/m for B. cereus and A. junii, respectively. The arsenite oxidase from both bacterial strains showed maximum activity at 37 °C, pH 7 and enhanced in the presence of Zn(2+). The presence of two protein bands with molecular weight of approximately 70 and 14 kDa in the presence of arsenic points out a possible role in arsenite oxidation. Arsenite oxidation potential of B. cereus and A. junii was determined up to 92 and 88 % in industrial wastewater after 6 days of incubation. The bacterial treated wastewater improved the growth of Vigna radiata as compared to the untreated wastewater. It indicates that these bacterial strains may find some potential applications in wastewater treatment systems to transform toxic arsenite into less toxic form, arsenate.

  3. Industrialization

    African Journals Online (AJOL)

    Lucy

    importantly exploiting cheap labour for industrial purposes from the native population. 13 . During the colonial era manufacturing in the continent was generally at the handicraft and small scale levels. In some colonies this was supplemented by some relatively complex industries producing mainly for export, but also ...

  4. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    Science.gov (United States)

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control

  5. Cumulative internal dose of natural uranium in chemical industry workers and metal; Dosis interna acumulada de uranio natural en trabajadores de la industria quimica y del metal

    Energy Technology Data Exchange (ETDEWEB)

    Capelo, R.; Garcia, M. A.; Jara, R.; Galisteo, R.; Diaz-Santos, M.; Caballero, F. J.; Pereira, A.; Rosa, J. de la; Garcia, T.; Gomez-Ariza, J. L.; Alguacil, J.

    2011-07-01

    Natural uranium is a slightly radioactive element that decays slowly by emitting an alpha particle. If absorbed by the human body can cause health effects. For people who perform their work in the chemical/metallurgical or mining it would be the main source of exposure, while for the rest of the population's main source of exposure is usually the diet. The aim of this study was to measure the cumulative dose of uranium in chemical industry workers/metal.

  6. Laser Induced Forward Transfer of High Viscosity Silver Paste for New Metallization Methods in Photovoltaic and Flexible Electronics Industry

    Science.gov (United States)

    Chen, Y.; Munoz-Martin, D.; Morales, M.; Molpeceres, C.; Sánchez-Cortezon, E.; Murillo-Gutierrez, J.

    Laser Induced Forward Transfer (LIFT) has been studied in the past as a promising approach for precise metallization in electronics using metallic inks and pastes. In this work we present large area metallization using LIFT of fully commercial silver-based pastes initially designed for solar cell screen-printing. We discuss the mechanisms for the material transfer both in ns and ps regimes of irradiation of these high viscosity materials, and the potential use of this technique in the photovoltaic industry (both in standard c-Si solar cells and thin film technologies) and flexible electronics devices. In particular we summarize the results of our group in this field, demonstrating that our approach is capable of improving the aspect ratio of the standard metallization patterns achieved with screen-printing technologies in those technological fields and, in addition, of fulfilling the requirements imposed by the mechanical properties of the substrates in flexible electronic applications.

  7. Determination of Some Heavy Metals In The Environment of SADAT Industrial City

    International Nuclear Information System (INIS)

    Nassef, M.; EI-Tahawy, M.S.; Hannigan, R.; EL Sayed, K.A.

    2007-01-01

    The aim of this study was to assess the heavy metal concentration in the soil and the groundwater of Sadat City in Egypt and its relation to the highly developed industrial activities in that area. The levels of Pb, Cr, Cu, Cd, Zr, and V were determined in the groundwater samples (as drinking water supplies) and also the same elements in the soil samples. 10 soil samples and 18 groundwater samples were collected from the city. The soil and the groundwater samples were analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The concentration of Pb, Cr, Cu, Cd, Zr, and V measured (in ppm) in the soil samples ranged from 0.48 to 11.3, 0.36 to 2.56, 43.7 to 304.0, 0.34 to 2.64, 0.209 to 21.7, and 0.10 to 17.0, respectively. The concentration of Pb, Cr, Cu, Cd, Zr, and V measured (in ppb) in the groundwater samples of all studied wells ranged from 0.11 to 41.32, 0.10 to 2.63, 0.14 to 5.76, 0.03 to 21.7, 11.4 to 134, and 0.08 to 5.08, respectively. The levels of Pb and Zr exceeded the threshold limits set by the WHO health-based guideline for drinking water in some studied groundwater wells

  8. Evaluation of potential for reuse of industrial wastewater using metal-immobilized catalysts and reverse osmosis.

    Science.gov (United States)

    Choi, Jeongyun; Chung, Jinwook

    2015-04-01

    This report describes a novel technology of reusing the wastewater discharged from the display manufacturing industry through an advanced oxidation process (AOP) with a metal-immobilized catalyst and reverse osmosis (RO) in the pilot scale. The reclaimed water generated from the etching and cleaning processes in display manufacturing facilities was low-strength organic wastewater and was required to be recycled to secure a water source. For the reuse of reclaimed water to ultrapure water (UPW), a combination of solid-phase AOP and RO was implemented. The removal efficiency of TOC by solid-phase AOP and RO was 92%. Specifically, the optimal acid, pH, and H2O2 concentrations in the solid-phase AOP were determined. With regard to water quality and operating costs, the combination of solid-phase AOP and RO was superior to activated carbon/RO and ultraviolet AOP/anion polisher/coal carbon. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Life Cycle Inventory analysis of degreasing processes in the metal-processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Finkbeiner, M.; Hoffmann, E.; Kreisel, G. [Friedrich-Schiller-Univ. Jena (Germany). Inst. fuer Technische Chemie

    1995-12-31

    In 1986 degreasing processes in the German metal-processing industry contributed about 70,000 t to the emissions of chlorinated C{sub 1}-C{sub 2}-hydrocarbons (trichloroethane, trichloroethene, tetrachloroethene, dichloromethane). Due to legal requirements these emissions decreased to roughly 18,000 t in 1992. This was achieved by operating modern, closed-chamber plants and substitution of halogenated solvents by aqueous cleansing agents or non-halogenated hydrocarbons. The reduction of toxic emissions and Ozone Depletion Potential (ODP) leads to a shift of environmental impacts towards higher energy consumption, emission of waste water and VOCs with Photochemical Ozone Creation Potential (POCP). A Life Cycle Inventory Analysis was carried out to compare the integral environmental impact of the three main degreasing processes which cover about 90% of the German market. In their study the authors showed the feasibility to apply the established LCI-method for products to processes, though difficulties arise especially in the step of the goal definition, e.g. the definition of the use of the process and the functional unit is not as straightforward as for most products. Purpose, scope, system boundaries, deliberate omissions, process trees and data quality of the study are discussed. The chosen method was applied to representative examples of each process. Data of the LCI are given and a preliminary impact assessment presented.

  10. Analytical Methods for the Determination of Heavy Metals in the Textile Industry

    Directory of Open Access Journals (Sweden)

    Steffan, I.

    2007-11-01

    Full Text Available Heavy metals in textile wastewater represent a major environmental problem, and are a potential danger to human health when present on textiles. Furthermore, the presence of some metals influences the production of textiles. Heavy metals are often used as oxidizing agents, as metal complex dyes, dye stripping agents, fastness improvers, and finishers. Thus, they act as hazardous sources throughout entire textile processing. Toxic effects of heavy metals on humans are well documented. Therefore, it is important to monitor heavy metals throughout the entire production. Today, maximum permissible values for metals in textiles are given by different regulations, according to which the heavy metals have to be determined both qualitatively and quantitatively. Several analytical procedures for the determination of heavy metals were tested for their application on textiles. The advantages and disadvantages of TLC, UV-VIS, GF-AAS, ICP-OES, and ICP-MS methods are discussed.

  11. Silver-free Metallization Technology for Producing High Efficiency, Industrial Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, Lynne M [Technic Inc; Munoz, Krystal [Technic Inc.; Karas, Joseph [Arizona State Univ., Tempe, AZ (United States); Bowden, Stuart [Arizona State Univ., Tempe, AZ (United States); Rand, James A; Gallegos, Anthony [Technic Inc.; Tyson, Tom [Technic Inc.; Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2018-03-30

    The goal of this project is to provide a commercially viable Ag-free metallization technology that will both reduce cost and increase efficiency of standard silicon solar cells. By removing silver from the front grid metallization and replacing it with lower cost nickel, copper, and tin metal, the front grid direct materials costs will decrease. This reduction in material costs should provide a path to meeting the Sunshot 2020 goal of $1 / WDC. As of today, plated contacts are not widely implemented in large scale manufacturing. For organizations that wish to implement pilot scale manufacturing, only two equipment choices exist. These equipment manufacturers do not supply plating chemistry. The main goal of this project is to provide a chemistry and equipment solution to the industry that enables reliable manufacturing of plated contacts marked by passing reliability results and higher efficiencies than silver paste front grid contacts. To date, there have been several key findings that point to plated contacts performing equal to or better than the current state of the art silver paste contacts. Poor adhesion and reliability concerns are a few of the hurdles for plated contacts, specifically plated nickel directly on silicon. A key finding of the Phase 1 budget period is that the plated contacts have the same adhesion as the silver paste controls. This is a huge win for plated contacts. With very little optimization work, state of the art electrical results for plated contacts on laser ablated lines have been demonstrated with efficiencies up to 19.1% and fill factors ~80% on grid lines 40-50 um wide. The silver paste controls with similar line widths demonstrate similar electrical results. By optimizing the emitter and grid design for the plated contacts, it is expected that the electrical performance will exceed the silver paste controls. In addition, cells plated using Technic chemistry and equipment pass reliability testing; i.e. 1000 hours damp heat and 200

  12. Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India.

    Science.gov (United States)

    Pradhan, Jatindra Kumar; Kumar, Sudhir

    2014-01-01

    Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.

  13. Potential for energy conservaton in the metal forming industries. Progress report, July 1, 1978-August 15, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Avitzur, B.; Beidleman, C.R.; Smackey, B.M.

    1979-08-01

    Reduced energy consumption and improved product attributes are realizable benefits that are achievable through the adoption of optimal metal forming techniques. With the meteoric rise in energy costs, certain segments of the metal forming industries have accelerated their efforts in switching from energy intensive manufacturing techniques, e.g., casting, to metal forming, and, furthermore, from hot forming and machined components to cold forming, notably the automotive industry. The first year results of a two year study that will identify and document potential energy and cost savings associated with the adoption of low energy consumption techniques are presented. When compared with techniques requiring energy for hot forming, heat treatments, and excess or scrap material, the utilizaton of alternative metal forming processes offer considerable promise for energy savings. Descriptions of savings achieved by a combination of analytical methods and imaginative new processes are provided in the form of specific industrial case studies. The elimination of defects through the use of an analytical criteria for the prevention of the central burst is presented. Such available criteria for central burst serve as a justification for the desirability to develop criteria for the prevention of fishskin and other defects. Other savings which may be possible through the development of new technologies are included in an Appendix entitled: Recent Developments in Wire Making. One specific new process, Continuous Hydrostatic Extrusion, has been developed at Western Electric and is described in detail.

  14. Bioaccumulation and distribution of heavy metals in Maize, Oat and Sorghum Plants, grown in industrially polluted region

    Science.gov (United States)

    Angelova, Violina; Ivanova, Radka; Ivanov, Krasimir

    2010-05-01

    The uptake of heavy metals (Cd, Pb and Zn) by maize, oat and sorghum plants cultivated, under field conditions, in industrially polluted soils was studied. The experimental plots were situated at different distances (0.1, 2.0 and 15.0 km) from the source of pollution - the Non-Ferrous Metal Works near Plovdiv, Bulgaria. On reaching commercial ripeness the crops were gathered and the contents of heavy metals in their different parts - roots, stems, leaves and grains, were determined after dry ashing. The quantitative measurements were carried out with ICP. A clearly distinguished species peculiarity existed in the accumulation of heavy metals in the vegetative and reproductive organs of the studied crops. Sorghum plants accumulated larger heavy metal quantities compared to maize and oat plants, as the major part of heavy metals was retained by roots and a very small part was translocated to epigeous parts. The studied crops may be considered as metal-tolerant crops and may be cultivated on soils which are low, medium or highly contaminated with lead, zinc and cadmium, as they do not show a tendency of accumulating these elements in epigeous parts and grains above the maximum permissible concentrations. The possible use of aboveground mass and grains for animal food guarantees the economic expedience upon the selection of these crops. Acknowledgment: This work is supported by the Bulgarian Ministry of Education, Project DO-02-87/08.

  15. Laboratory Study on Possibility of Using Eichhornia To Decrease The Concentrations of Some Heavy Metals in Industrial Wastewater

    International Nuclear Information System (INIS)

    Alia, T.; Juniedi, H.; Salama, L.

    2009-01-01

    In this study Eichhornia crassipes was used under varying conditions of heavy metals concentrations, due to typical study for wastewater concentrations from the batteries factories, to decrease them. Moreover, the concentrations in different media of the plants have been distributed depending on the Response Surface design for three factors 100- 300 mg Pb/l, 15-50 mg Cd/l, 5-10 mg Mn/l which are the concentrations of heavy metals in the wastewater of batteries factories. The experiment has continued for fourteen days in which a study has been made for the current changes over the plants endurance for the different concentrations by continuing the morphologic changes which have appeared through this period. The heavy metals concentrations of the media were measured during two days. At the end of the experiment, analyses for metals were also carried out on the plant samples to determine the effect of different media on metal accumulation by roots and aerial parts of the plants. The results showed that the plant can absorb heavy metals from the industrial wastewater which is polluted by them, but at certain concentrations. It is unable to survive in a mixture of high heavy metals concentrations of these three factors together (Pb, Cd, Mn). (author)

  16. The Distribution and Health Risk Assessment of Metals in Soils in the Vicinity of Industrial Sites in Dongguan, China

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2016-08-01

    Full Text Available Exponential industrialization and rapid urbanization have resulted in contamination of soil by metals from anthropogenic sources in Dongguan, China. The aims of this research were to determine the concentration and distribution of various metals (arsenic (As, cadmium (Cd, chromium (Cr, copper (Cu, mercury (Hg, nickel (Ni, lead (Pb and zinc (Zn in soils and identify their potential health risks for local residents. A total of 106 soil samples were collected from the vicinity of industrial sites in Dongguan. Two types of samples were collected from each site: topsoil (0–20 cm, TS and shallow soil (20–50 cm, SS. Results showed that the soils were contaminated by metals and pollution was mainly focused on TS. The geoaccumulation index (Igeo and pollution indexes (PI implied that there was a slight increase in the concentrations of Cd, Cu, Hg, Ni, and Pb, but the metal pollution caused by industrial activities was less severe, and elements of As and Cr exhibited non-pollution level. The risk assessment results suggested that there was a potential health risk associated with As and Cr exposure for residents because the carcinogenic risks of As and Cr via corresponding exposure pathways exceeded the safety limit of 10−6 (the acceptable level of carcinogenic risk for humans. Furthermore, oral ingestion and inhalation of soil particles are the main exposure pathways for As and Cr to enter the human body. This study may provide basic information of metal pollution control and human health protection in the vicinity of industrial regions.

  17. Distribution and fractionation of heavy metals in solid waste from selected sites in the industrial belt of Delhi, India.

    Science.gov (United States)

    Moturi, M C Z; Rawat, M; Subramanian, V

    2004-07-01

    Solid waste samples were collected from five small-scale industrial sites in the National Capital Territory (NCT) of Delhi. These industrial sites represent the regional spread of the industrial belt in the NCT of Delhi. Solid waste samples were digested using aqua-regia and HF in air tight teflon bombs for the quantitative analysis of heavy metals (Hg, Pb, Cd, Mn, Fe, Ni, Cu and Zn) by GBC model 902 atomic absorption spectrophotometer. Hg was analysed using hydrid generator attachment. Beside this sequential extraction was used to fractionate five heavy metals (Pb, Ni, Cd, Cu and Zn) into six operationally defined phases, viz. water soluble, exchangeable, carbonate-bound, Fe-Mn oxides, organic-bound and residual fractions to ascertain the relative mobility of these metals. The result obtained showed metal concentration to be in the range of Hg 0.42-2.3; Pb 23-530; Cd 014-224; Mn 494-19 964; Fe 35 684-233 119; Ni 192-1534; Cu 3065-10 144 and Zn 116-23 321 (all units in mg kg(-1)) in all the industrial areas studied. The fractionated toxic metals like Pb, Ni and Cd were observed to be in the range of 25-35, 15-50 and 40-50%, respectively, in mobile or bio-available fractions of solid waste. As this waste is often disposed-off by the roadsides, low lying areas, abandoned quarries or in landfill sites which are often not properly planned, thus posing potential risk to ground and surface water quality to millions of people living downstream.

  18. The metal industry in Norway: Economy, employment and emission of climate gases; Metallindustrien i Norge: Oekonomi, sysselsetting og utslipp av klimagasser

    Energy Technology Data Exchange (ETDEWEB)

    Godal, Odd

    1998-11-01

    This document presents various types of data on the metal industry in Norway as a basis for further analysis and discussion. Being energy intensive, the Norwegian metal industry has profited from the availability of hydroelectric power. The factories are often located in sparsely populated areas. In the production of aluminium, carbon dioxide is emitted to the atmosphere. A table lists all the Norwegian smelteries and their emissions of the greenhouse gases. Some of these emissions are fluoride gases with heating potentials up to 9200 times that of carbon dioxide. The emissions of SF6 are small in mass, but large in heating effect, 23900 times that of carbon dioxide. The total emission of climate gases from Norway is 59 million ton CO2 equivalents and 11% of this is due to the part of the metal industry described in this document. The total consumption of electricity of the factories included in this analysis is 25 TWh, which is 2/3 of the consumption by private households. The metal industry is not work intensive; the last twenty years the numbers of employees have decreased by 50%. But these factories are very important for the local communities. The metal industry is exposed to competition; the large fluctuation in prices on metals leads to fluctuation in the profit of the companies. Finally the report discusses the metal industry in a global context. Norway is committed to the Kyoto Protocol and the impact of this commitment on the metal industry is not clear. 2 refs., 8 figs., 9 tabs.

  19. Industrialization

    African Journals Online (AJOL)

    Lucy

    . African states as ... regarded as the most important ingredients that went to add value to land and labour in order for countries ... B. Sutcliffe Industry and Underdevelopment (Massachusetts Addison – Wesley Publishing Company. 1971), pp.

  20. The competitiveness of metallurgy and metal products industry in Spain; La competitividad de las industrias metalurgica y de productos metalicos en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Mateos Torres, C.

    2012-07-01

    This article analyzes the competitiveness of metallurgy and manufacture of metal products sectors, in which the Industrial Observatory of the Metal Sector has studied the key factors of innovation for competitiveness. It includes a reference to the competitive situation of the Spanish iron and steel industry. Furthermore, the investments carried out by both sectors under the Competitiveness Promotion Programme for Strategic Industrial Sectors during the years 2009-2011 are analyzed. (Author)

  1. Industrialization

    OpenAIRE

    Blundel, Richard

    2016-01-01

    Industrialization, the historical development that saw cheesemaking transformed from a largely craft-based or artisanal activity, often located on a dairy farm, to a production process that, for the most part, takes place in large ‘cheese factories’ or creameries [See ARTISANAL]. The principal features of modern industrialized cheesemaking, which set it apart from traditional approaches include: high production volumes; sourcing of milk from multiple dairy herds; pasteurization and re-balanci...

  2. Content of metals and metabolites in honey originated from the vicinity of industrial town Kosice (eastern Slovakia)

    OpenAIRE

    Kováčik, J.; Grúz, J. (Jiří); Bíba, O. (Ondřej); Hedbavny, J.

    2016-01-01

    Composition of three types of honey (mixed forest honey and monofloral-black locust and rapeseed honeys) originated from the vicinity of an industrial town (Kosice, Slovak Republic) was compared. Higher content of minerals including toxic metals in forest honey (1358.6 ng Ni/g, 85.6 ng Pb/g, and 52.4 ng Cd/g) than in rapeseed and black locust honeys confirmed that botanical origin rather than the distance for eventual source of pollution (steel factory) affects metal deposition. Benzoic acid ...

  3. Roles of Co element in Fe-based bulk metallic glasses utilizing industrial FeB alloy as raw material

    Directory of Open Access Journals (Sweden)

    Shouyuan Wang

    2017-08-01

    Full Text Available A series of Fe-based bulk metallic glasses were fabricated by a conventional copper mold casting method using a kind of Fe-B industrial raw alloy. It is found that Fe-B-Y-Nb bulk metallic glass with 3 at% of Co addition possesses the best glass forming ability, thermal stability, hardness, magnetic property and anti-corrosion property. The hardness test result indicates a synchronically trend with glass-forming ability parameters. The excellent glass-forming ability and a combination of good mechanical and functional properties suggest that the alloys in this work might be good candidates for commercial use.

  4. Arqueología Industrial: Conservación del Patrimonio Minero-Metalúrgico madrileño

    OpenAIRE

    Mazadiego Martínez, Luis Felipe; Puche Riart, Octavio

    2001-01-01

    Acaba de finalizar la segunda fase del Proyecto de Investigación de título "Arqueología Industrial: Conservación del Patrimonio Minero- Metalúrgico madrileño", que, financiado por la Comunidad de Madrid, han realizado Octavio Puche (Director), Luis F. Mazadiego, Angel García Cortés y Luis Fernández. El objetivo general del mismo ha sido "evaluar, clasificar y catalogar los elementos, relacionados con el ámbito minero y metalúrgico, existentes en la provincia de Madrid".

  5. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    Directory of Open Access Journals (Sweden)

    Kamika Ilunga

    2013-02-01

    Full Text Available Abstract Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively compared to other test isolates. This was also revealed with significant COD increases (p Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49% followed by Bacillus licheniformis (Al-23% and Zn-53% and Peranema sp. (Cd-42%. None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes. Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p Peranema sp. as a potential candidate for the bioremediation of heavy-metals in wastewater treatment, in addition to Pseudomonas

  6. Mechanochemical process to recover heavy metals from industrial ash; Procedimenti meccanochimici per l'estrazione di metalli pesanti da ceneri industriali

    Energy Technology Data Exchange (ETDEWEB)

    La Barbera, A.; Bimbi, C.; De Francesco, M.; Padella, F. [ENEA Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione; Ranaldi, E. [ENEA Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1999-07-01

    An innovative mechanochemical process has been conceived to recover heavy metals from industrial ashes. The low environmental impact process is based on the transformation of heavy metals oxides into soluble salts. In particular high energy ball milling has been successfully applied on real samples from iron electrometallurgy. Heavy metals extractions higher than the ones resulting from the typical acid attack were obtained. [Italian] A partire da simulazioni termidinamiche, e' stato ideato un innovativo processo meccanochimico a basso impatto ambientale per il recupero di metalli pesanti da ceneri pericolose di origine industriale. Il processo, che prevede la conversione in fasi solubili di metalli pesanti presenti nelle ceneri sotto forma di ossidi misti insolubili, e' stato sperimentato con successo sia su campioni di laboratorio che su campioni reali. In particolare la macinazione ad alta energia e' stata applicata a campioni di cenere provenienti da elettrometallurgia del ferro, con un elevato contenuto di zinco, ottenendo risultati migliori di quelli ottenibili da un tradizionale attacco acido.

  7. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China

    Directory of Open Access Journals (Sweden)

    Bifeng Hu

    2018-04-01

    Full Text Available Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI and Nemerow integrated pollution index (NIPI were calculated for every surface sample (0–20 cm to assess the degree of heavy metal pollution. Ordinary kriging (OK was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK. The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution.

  8. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China.

    Science.gov (United States)

    Hu, Bifeng; Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan; Shi, Zhou

    2018-04-10

    Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0-20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution.

  9. Metals in coastal zones impacted with urban and industrial wastes: Insights on the metal accumulation pattern in fish species

    Science.gov (United States)

    La Colla, Noelia S.; Botté, Sandra E.; Marcovecchio, Jorge E.

    2018-05-01

    The pollution of aquatic environments is a worldwide problem of difficult solution since these areas are used for the disposal and dilution of anthropogenic wastes. This study evaluated the concentrations of Cd, Cu, Ni and Zn in the gills, liver and muscle tissues of six economically important fish species from the Bahía Blanca estuary in Argentina, a coastal environment that is under anthropogenic pressure. Metal contents in 147 fish samples were determined by digestion and a subsequent analysis with an ICP OES. The concentrations (μg/g, wet weight) of each metal in the fish tissues ranged from below the limit of detection for the four metals to 5.2 in the case of Cd, 340 for Cu, 20 for Ni, and 101 for Zn. The results suggested that metal burden in fishes varied with the species and metal elements, with Cd, Cu and Zn mean maximum accumulation towards the liver tissue. Ni showed a high number of samples with concentrations below the limit of detection. Among species, Cynoscion guatucupa was found to have the highest concentrations of Cu and Zn in the liver tissues, whereas the gills and liver tissues of Mustelus schmitti showed the lowest levels of Ni and Zn. As regards the human health risks, two samples of muscle tissue belonging to C. guatucupa reached to Cd levels that exceeded the permissible levels for human consumption. Moreover, the estimated daily intakes calculated suggest that people would not experience significant health risks from the intake of individual metals through fish consumption.

  10. Microvirga indica sp. nov., an arsenite-oxidizing Alphaproteobacterium, isolated from metal industry waste soil.

    Science.gov (United States)

    Tapase, Savita R; Mawlankar, Rahul B; Sundharam, Shiva S; Krishnamurthi, Srinivasan; Dastager, Syed G; Kodam, Kisan M

    2017-09-01

    A novel Gram-stain-negative bacterium, strain S-MI1bT, belonging to the genus Microvirga was isolated from a metal industry waste soil sample in Pirangut village, Pune District, Maharashtra, India. Cells were non-spore-forming, small rod-shapes, motile and strictly aerobic with light-pink colonies. The strain grew in 0-7.0 % (w/v) NaCl and at 25-45 °C, with optimal growth at 40 °C. The predominant fatty acids detected were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C19 : 0 cyclo ω8c. The predominant isoprenoid quinone was Q-10. The G+C content was 67.2 mol% and DNA-DNA relatedness values between strain S-MI1bTand Microvirga subterranea DSM 14364T and Microvirgaaerophila 5420S-12T were 53.9 and 54.8 %, respectively. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain S-MI1bT is a member of the genus Microvirga, with greatest sequence similarities of 97.7 and 97.4 % with M. subterranea DSM 14364T and M.aerophila 5420S-12T, respectively. Phylogenetic analysis showed that strain S-MI1bT forms a clade with the type strain of M. subterranea DSM 14364T, and was readily distinguishable from it due to various phenotypic characteristics. The combination of genotypic and phenotypic data suggests that the isolate represents a novel species of the genus Microvirga, for which the name Microvirga indica sp. nov. is proposed. The type strain is S-MI1bT (=NCIM-5595T=KACC 18792T=BCRC 80972T).

  11. Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters

    Science.gov (United States)

    Euvrard, Élise; Morin-Crini, Nadia; Druart, Coline; Bugnet, Justine; Martel, Bernard; Cosentino, Cesare; Moutarlier, Virginie

    2016-01-01

    Summary In this study, a polymer, prepared by crosslinking cyclodextrin (CD) by means of a polycarboxylic acid, was used for the removal of pollutants from spiked solutions and discharge waters from the surface treatment industry. In spiked solutions containing five metals, sixteen polycyclic aromatic hydrocarbons (PAH) and three alkylphenols (AP), the material exhibited high adsorption capacities: >99% of Co2+, Ni2+ and Zn2+ were removed, between 65 and 82% of the PAHs, as well as 69 to 90% of the APs. Due to the structure of the polymer and its specific characteristics, such as the presence of carboxylic groups and CD cavities, the adsorption mechanism involves four main interactions: ion exchange, electrostatic interactions and precipitation for metal removal, and inclusion complexes for organics removal. In industrial discharge waters, competition effects appeared, especially because of the presence of calcium at high concentrations, which competed with other pollutants for the adsorption sites of the adsorbent. PMID:27829889

  12. Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters

    Directory of Open Access Journals (Sweden)

    Élise Euvrard

    2016-08-01

    Full Text Available In this study, a polymer, prepared by crosslinking cyclodextrin (CD by means of a polycarboxylic acid, was used for the removal of pollutants from spiked solutions and discharge waters from the surface treatment industry. In spiked solutions containing five metals, sixteen polycyclic aromatic hydrocarbons (PAH and three alkylphenols (AP, the material exhibited high adsorption capacities: >99% of Co2+, Ni2+ and Zn2+ were removed, between 65 and 82% of the PAHs, as well as 69 to 90% of the APs. Due to the structure of the polymer and its specific characteristics, such as the presence of carboxylic groups and CD cavities, the adsorption mechanism involves four main interactions: ion exchange, electrostatic interactions and precipitation for metal removal, and inclusion complexes for organics removal. In industrial discharge waters, competition effects appeared, especially because of the presence of calcium at high concentrations, which competed with other pollutants for the adsorption sites of the adsorbent.

  13. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qing; Cui, Yanrui; Li, Qilu; Sun, Jianhui, E-mail: sunjh@htu.cn

    2015-02-11

    Highlights: • A novel readily biodegradable chelating ligand was employed to remove heavy metals. • The effects of different conditions on the extraction with GLDA were probed. • Species distribution of metals before and after extraction with GLDA was analyzed. • GLDA was effective for Cd extraction from sludge samples under various conditions. • GLDA offers special insights in the effective removal of heavy metals. - Abstract: Tetrasodium of N,N-bis(carboxymethyl) glutamic acid (GLDA), a novel readily biodegradable chelating ligand, was employed for the first time to remove heavy metals from industrial sludge generated from a local battery company. The extraction of cadmium, nickel, copper, and zinc from battery sludge with the presence of GLDA was studied under different experimental conditions such as contact times, pH values, as well as GLDA concentrations. Species distribution of metals in the sludge sample before and after extraction with GLDA was also analyzed. Current investigation showed that (i) GLDA was effective for Cd extraction from sludge samples under various conditions. (ii) About 89% cadmium, 82% nickel and 84% copper content could be effectively extracted at the molar ratio of GLDA:M(II) = 3:1 and at pH = 4, whereas the removal efficiency of zinc was quite low throughout the experiment. (iii) A variety of parameters, such as contact time, pH values, the concentration of chelating agent, stability constant, as well as species distribution of metals could affect the chelating properties of GLDA.

  14. Industry

    OpenAIRE

    Schmidt-Belz, B.; Mohamad, Y.; Velasco, C.A.

    2009-01-01

    Industry plays a key role in the path towards eInclusion. While corporate social responsibility statements of leading companies confirm this, surveys show that there is still a long way to go. Among various reasons for the reluctant take-up of Design for All (DfA) by industry providing Information and Communication Technology (ICT), the lack of relevant knowledge and skills obviously plays a crucial role. Therefore, the DfA@eInclusion project has undertaken to develop curriculum guidelines an...

  15. A new method for determining extra time by considering ergonomic loads in the garment and metal working industries

    OpenAIRE

    Verhovnik, Vekoslav; Polajnar, Andrej

    2017-01-01

    The changing labour conditions in the garment and metal-working industries have led to the necessity of determining new extra times to establish the time standard. In this paper, a method of measuring stress and strain imposed upon the operator in new working conditions by determining the additional production coefficient is presented. The method gives criteria and grades to assess stress at the workplace. Physical stress (dynamic and static), thermal and visual stress, discomfort caused by n...

  16. Monitoring of heavy metals content in soil collected from city centre and industrial areas of misurata, libya.

    Science.gov (United States)

    Elbagermi, M A; Edwards, H G M; Alajtal, A I

    2013-01-01

    The present paper deals with the assessment of heavy metals in soil and roadside dust around Misurata City Centre and industrial areas/roads in the period of October 2011-May 2012. The levels of Pb, Fe, Zn, Ni, Cd, Cr, and Cu in settled dust samples collected near small streets, playgrounds, gas stations and main streets in the Misurata Area have been determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Also, the levels of same heavy metals in industrial areas have been determined. Metal concentration trend variation was also discussed in relation with traffic density and other sources of fugitive emission around different sites on each road/area. The overall mean concentration for main streets was significantly higher (P < 0.05) than for other small streets, where Misurata has been the centre of fierce fighting and is located in a frontline battle zone in the Libyan war; therefore most of metal concentrations in surface soil in the fighting area Tripoli Street and Benghazi Street were higher than those from the other sites (outside fighting area).

  17. Enzymatically mediated bioprecipitation of heavy metals from industrial wastes and single ion solutions by mammalian alkaline phosphatase.

    Science.gov (United States)

    Chaudhuri, Gouri; Shah, Gaurav A; Dey, Pritam; S, Ganesh; Venu-Babu, P; Thilagaraj, W Richard

    2013-01-01

    The study was aimed at investigating the potential use of calf intestinal alkaline phosphatase (CIAP) enzyme in the removal of heavy metals (Cd(2+), Ni(2+), Co(2+) and Cr(3+/6+)) from single ion solutions as well as tannery and electroplating effluents. CIAP mediated bioremediation (white biotechnology) is a novel technique that is eco-friendly and cost effective unlike the conventional chemical technologies. Typical reactions containing the enzyme (CIAP) and p-nitrophenyl phosphate (pNPP) as substrate in Tris-HCl buffer (pH 8 and 11) and either single ion metal solutions (250 ppm and 1000 ppm) or effluents from tannery or electroplating industry were incubated at 37°C for 30 min, 60 min and 120 min. The inorganic phosphate (P(i)) generated due to catalytic breakdown of pNPP complexes free metal ions as metal-phosphate and the amount of metal precipitated was derived by estimating the reduction in the free metal ion present in the supernatant of reactions employing atomic absorption spectrophotometer (AAS). Better precipitation of metal was obtained at pH 11 than at pH 8 and between the two concentrations of different metals tested, an initial metal concentration of 250 ppm in the reaction gave more precipitation than with 1000 ppm. Experimental data showed that at pH 11, the percentage of removal of metal ions (for an initial concentration of 250 ppm) was in the following order: Cd(2+) (80.99%) > Ni(2+) (64.78%) > Cr(3+) > (46.15%) > Co(2+) (36.47%) > Cr(6+) (32.33%). The overall removal of Cr(3+) and Cr(6+) from tannery effluent was 32.77% and 37.39% respectively in 120 min at pH 11. Likewise, the overall removal of Cd(2+), Co(2+) and Ni(2+) from electroplating effluent was 50.42%, 13.93% and 38.64% respectively in 120 min at pH 11. The study demonstrates that bioprecipitation by CIAP may be a viable and environmental friendly method for clean-up of heavy metals from tannery and electroplating effluents.

  18. Heavy Metal Presence in Two Different Types of Ice Cream: Artisanal Ice Cream (Italian Gelato) and Industrial Ice Cream.

    Science.gov (United States)

    Conficoni, D; Alberghini, L; Bissacco, E; Ferioli, M; Giaccone, V

    2017-03-01

    Ice cream, a popular product worldwide, is usually a milk-based product with other types of ingredients (fruit, eggs, cocoa, dried fruit, additives, and others). Different materials are used to obtain the desired taste, texture, consistency, and appearance of the final product. This study surveyed ice cream products available in Italy for heavy metals (lead, cadmium, chromium, tin, and arsenic). The differences between artisanal and industrial ice cream were also investigated because of the importance in the Italian diet and the diffusion of this ready-to-eat food. Ice cream sampling was performed between October 2010 and February 2011 in the northeast of Italy. A total of 100 samples were randomly collected from different sources: 50 industrial samples produced by 19 different brands were collected in coffee bars and supermarkets; 50 artisanal ice cream samples were gathered at nine different artisanal ice cream shops. Ten wooden sticks of industrial ice cream were analyzed in parallel to the ice cream. All samples were negative for arsenic and mercury. None of the artisanal ice cream samples were positive for lead and tin; 18% of the industrial ice cream samples were positive. All positive lead samples were higher than the legal limit stated for milk (0.02 mg/kg). All industrial ice cream samples were negative for cadmium, but cadmium was present in 10% of the artisanal ice cream samples. Chromium was found in 26% of the artisanal and in 58% of the industrial ice cream samples. The heavy metals found in the wooden sticks were different from the corresponding ice cream, pointing out the lack of cross-contamination between the products. Considering the results and the amount of ice cream consumed during the year, contamination through ice cream is a low risk for the Italian population, even though there is need for further analysis.

  19. BACTERIAL POPULATION DYNAMICS IN WASTE OILY EMULSIONS FROM THE METAL-PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Paweł Kaszycki

    2014-07-01

    Full Text Available Oil-containing wastewaters are regarded as main industrial pollutants of soil and water environments. They can occur as free-floating oil, unstable or stable oil-in-water (O/W emulsions, and in the case of extreme organic load, as water-in-oil (W/O emulsions. In this study two types of oily effluents, a typical O/W emulsion marked as E1 and a W/O emulsion E2, both discharged by local metal processing plants were examined to test their toxicity to microbial communities and the ability to serve as nutrient sources for bacterial growth. The organic contaminant load of the samples was evaluated on the basis of chemical oxygen demand (COD parameter values and was equal to 48 200 mg O2·dm-3 and >300 000 mg O2·dm-3 for E1 and E2, respectively.Both emulsions proved to be non toxic to bacterial communities and were shown to contain biodiverse autochthonous microflora consisting of several bacterial strains adapted to the presence of xenobiotics (the total of 1.36 · 106 CFU·cm-3 and 1.72 · 105 CFU·cm-3 was determined for E1 and E2, respectively. These indigenous bacteria as well as exogenously inoculated specialized allochthonous microorganisms were biostimulated so as to proliferate within the wastewater environment whose organic content served as the only source of carbon. The most favorable cultivation conditions were determined as fully aerobic growth at the temperature of 25 ºC. In 9 to 18 day-tests, autochthonous as well as bioaugmented allochthonous bacterial population dynamics were monitored. For both emulsions tested there was a dramatic increase (up to three orders of magnitude in bacterial frequency, as compared to the respective initial values. The resultant high biomass densities suggest that the effluents are susceptible to bioremediation. A preliminary xenobiotic biodegradation test confirmed that mixed auto- and allochthonous bacterial consortia obtained upon inoculation of the samples with microbiocenoses preselected for efficient

  20. Heavy Metals (Mg, Mn, Ni and Sn contamination in Soil Samples of Ahvaz II Industrial Estate of Iran in 2013

    Directory of Open Access Journals (Sweden)

    Soheil l Sobhanardakani

    2016-04-01

    Full Text Available Background & Aims of the Study: Due to the rapid industrial development in Khuzestan province of Iran during recent years, this study was performed to analyze the variation of metals concentrations (Mg, Mn, Ni, and Sn in soil samples of Ahvaz II Industrial estate during the spring season of 2013. Materials & Methods: In this experimental study, 27 topsoil samples were collected from nine stations. The intensity of the soil contamination was evaluated, using a contamination factor (Cf and geo-accumulation index (I-geo. Results:  The mean soil concentrations (in mg kg-1 (dry weight were in ranged within 870-1144 (Mg, 188-300 (Mn, 93-199 (Ni and 9-15 (Sn. The data indicated that the I-geo value for all metals falls in class ‘1’. Also the Cf value for Mg and Mn falls in class ‘0’, the Cf value for Sn falls in class ‘1’ and the Cf value for Ni falls in the classes of ‘1’ and ‘2’. The result of the Pearson correlation showed that there were significant positive associations between all metals. Conclusions: According to the results which were achieved by a cluster analysis, there were significant positive associations among all metals based on Pearson correlation coefficient, especially between Ni and Sn; also both of them with Mn. Because the Ni originates from oil sources it can be resulted that Mn and Sn originate from oil sources, too. Therefore, industrial activities and exploitation of oil reservoirs are the main cause of pollution in that area. Also, it can be concluded that, with increasing the distance from the source of pollution, the accumulation of contaminants in the soil samples decreased.

  1. New biosorbent in removing some metals from industrial wastewater in El Mex Bay, Egypt

    Science.gov (United States)

    Abdallah, Maha Ahmed Mohamed; Mahmoud, Mohamed E.; Osman, Maher M.; Ahmed, Somaia B.

    2017-07-01

    Biosorption is an extensive technology applied for the removal of heavy metal ions and other pollutants from aqueous solutions. In the present study, the biosorption of cadmium, lead, chromium and mercury ions from polluted surface seawater in El-Max Bay was determined using hybrid active carbon sorbents. These sorbents were treated chemically by acid, base and redox reaction followed by surface loading of baker's yeast biomass for increasing their biosorption capacity and the highest metal uptake values. The surface function and morphology of the hybrid immobilized sorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Metal removal values proved that the vital role of baker's yeast as a significant high removable due to functional groups at baker's yeast cell wall surface that have the ability to forming various coordination complexes with metal ions. A noticeable increase in the removal of all studied metals was observed and reached to 100 %.

  2. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China.

    Science.gov (United States)

    Xu, Xianghua; Zhao, Yongcun; Zhao, Xiaoyan; Wang, Yudong; Deng, Wenjing

    2014-10-01

    The rapid industrialization and urbanization in developing countries have increased pollution by heavy metals, which is a concern for human health and the environment. In this study, 230 surface soil samples (0-20cm) were collected from agricultural areas of Jiaxing, a rapidly industrializing area in the Yangtze Delta of China. Sequential Gaussian simulation (SGS) and multivariate factorial kriging analysis (FKA) were used to identify and explore the sources of heavy metal pollution for eight metals (Cu, Zn, Pb, Cr, Ni, Cd, Hg and As). Localized hot-spots of pollution were identified for Cu, Zn, Pb, Cr, Ni and Cd with area percentages of 0.48 percent, 0.58 percent, 2.84 percent, 2.41 percent, 0.74 percent, and 0.68 percent, respectively. The areas with Hg pollution covered approximately 38 percent whereas no potential pollution risk was found for As. The soil parent material and point sources of pollution had significant influences on Cr, Ni, Cu, Zn and Cd levels, except for the influence of agricultural management practices also accounted for micro-scale variations (nugget effect) for Cu and Zn pollution. Short-range (4km) diffusion processes had a significant influence on Cu levels, although they did not appear to be the dominant sources of Zn and Cd variation. The short-range diffusion pollution arising from current and historic industrial emissions and urbanization, and long-range (33km) variations in soil parent materials and/or diffusion jointly determined the current concentrations of soil Pb. The sources of Hg pollution risk may be attributed to the atmosphere deposition of industrial emission and historical use of Hg-containing pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. k0-INAA performance in the measurement of filters sampled in an industry with high loadings of metals

    Science.gov (United States)

    Almeida, S. M.; Félix, P. M.; Franco, C.; Freitas, M. C.; Alves, L. C.; Pinheiro, T.

    2010-10-01

    Foundry industry has important environmental and occupational health impacts. More information is needed to properly assess occupational health risks presented by this industrial sector. This works aims at (1) characterizing the workers exposure to particulate matter in the foundry industry using k0-Instrumental Neutron Activation Analysis ( k0-INAA ) and Particle-Induced X-Ray Emission (PIXE) and (2) identifying some weakness of the k0-INAA technique when high concentrations of particulate matter and metals are involved. Filters were collected in a foundry industry which processes Pb and were analysed by k0-INAA and PIXE. In INAA, the incomplete deposition of gamma-rays in the germanium crystal due to Compton scattering elevated the spectra baseline, thus increased the background, and hindered the identification of some photopeaks. The problem was particularly important due to the high Sb contents existing in the sampled filters. The application of the Compton Suppression System for the analysis of these filters was successfully used in order to ascertain potential improvements on the detection limits for Zn and Fe. Results obtained showed that in this foundry industry workers were exposed to high concentrations of Pb, Sb, Fe, Sn, As, Ni, Br, Na and Cl.

  4. 78 FR 26289 - Guides for the Jewelry, Precious Metals, and Pewter Industries: Public Roundtable

    Science.gov (United States)

    2013-05-06

    ... commenters, the high price of precious metals has led to an increase in products containing a surface-layer... information, such as anyone's Social Security number, date of birth, driver's license number or other state...

  5. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  6. Risk Assessment of Metals in Urban Soils from a Typical Industrial City, Suzhou, Eastern China

    Science.gov (United States)

    Wang, Gang; Liu, Hou-Qi; Gong, Yu; Wei, Yang; Miao, Ai-Jun; Yang, Liu-Yan; Zhong, Huan

    2017-01-01

    Risk of metals in urban soils is less studied, compared to that in other types of soils, hindering accurate assessment of human exposure to metals. In this study, the concentrations of five metals (As, Cd, Cr, Pb, and Hg) were analyzed in 167 surface soil samples collected from Suzhou city and their potential ecological and human health risks were assessed. The mean concentrations of As, Cd, Pb, and Hg except Cr, were higher than the background values in Jiangsu Province. Metal concentrations varied among districts, where sites of high contamination showed a punctate distribution. Principal components and correlation analyses revealed that As, Pb, and Cd could originate from the same sources. The geo-accumulation (Igeo) and potential ecological risk indices (RI) were calculated and the relatively low values of Igeo (China. PMID:28880235

  7. Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb(II).

    Science.gov (United States)

    Gola, Deepak; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2017-10-01

    Presence of industrial dyes and heavy metal as a contaminant in environment poses a great risk to human health. In order to develop a potential technology for remediation of dyes (Reactive remazol red, Yellow 3RS, Indanthrene blue and Vat novatic grey) and heavy metal [Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI) and Pb(II)] contamination, present study was performed with entomopathogenic fungi, Beauveria bassiana (MTCC no. 4580). High dye removal (88-97%) was observed during the growth of B. bassiana while removal percentage for heavy metals ranged from 58 to 75%. Further, detailed investigations were performed with Pb(II) in terms of growth kinetics, effect of process parameters and mechanism of removal. Growth rate decreased from 0.118 h -1 (control) to 0.031 h -1 , showing 28% reduction in biomass at 30 mg L -1 Pb(II) with 58.4% metal removal. Maximum Pb(II) removal was observed at 30 °C, neutral pH and 30 mg L -1 initial metal concentration. FTIR analysis indicated the changes induced by Pb(II) in functional groups on biomass surface. Further, microscopic analysis (SEM and atomic force microscopy (AFM)) was performed to understand the changes in cell surface morphology of the fungal cell. SEM micrograph showed a clear deformation of fungal hyphae, whereas AFM studies proved the increase in surface roughness (RSM) in comparison to control cell. Homogenous bioaccumulation of Pb(II) inside the fungal cell was clearly depicted by TEM-high-angle annular dark field coupled with EDX. Present study provides an insight into the mechanism of Pb(II) bioremediation and strengthens the significance of using entomopathogenic fungus such as B. bassiana for metal and dye removal.

  8. Removal of some heavy metals from industrial waste water using polyacrylamide ferric antimonate as new ion exchange material

    International Nuclear Information System (INIS)

    El-Aryan, Y.F.A.

    2011-01-01

    Composite ion exchangers consist of one or more ion exchangers combined with another material, which can be inorganic or organic and may it be an ion exchanger. The reason for manufacturing a composite material is to produce a granular material, with sufficient strength for column use, from ion exchangers that do not form, or only form weak, granules themselves. Attempts in this study are focused to prepare composite ion exchangers for treatment of wastewater. Heavy metals when present in water in concentrations exceeding the permitted limits are injurious to the health. Hence, it is very important to treat such waters to remove the metal ions present before it is supplied for any useful purpose. Therefore, many investigations have studied to develop more effective process to treat such waste stream. Ion-exchange has been widely adopted in heavy metal containing wastewater and most of the ion-exchangers (i.e. ion-exchange media) currently being used are commercially mass-produced organic resins.Therefore, the main aim of this work is directed to find the optimum conditions for removal of some heavy metals from industrial waste water.1-Preparation of polyacrylamide ferric antimonate composite.2-Characterization of the prepared exchanger using IR spectra, X-ray diffraction pattern, DTA and TG analyses.3-Chemical stability, capacity and equilibrium measurements will be determined on the materials using at different conditions (ph heating temperature and reaction temperature).4-Kinetic studies of some heavy metals.5-Ion exchange isotherm.6-Breakthrough curves for removal of the investigated metal ions on the prepared exchanger under certain condition.

  9. Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters

    International Nuclear Information System (INIS)

    Perez, R.M.; Cabrera, G.; Gomez, J.M.; Abalos, A.; Cantero, D.

    2010-01-01

    The precipitation of chromium(III), copper(II), manganese(II) and zinc(II) by biogenic hydrogen sulfide generated by sulfate-reducing bacteria, Desulfovibrio sp., and the degradation of total petroleum hydrocarbons (TPH) in the presence of heavy metal by Pseudomonas aeruginosa AT18 have been carried out. An anaerobic stirred tank reactor was used to generate hydrogen sulfide with Desulfovibrio sp. culture and the precipitation of more than 95% of each metal was achieved in 24 h (metal solutions contained: 60, 49, 50 and 80 mg L -1 of chromium, copper, manganese and zinc sulfates). A stirred tank reactor with P. aeruginosa AT18, in the presence of the heavy metal solution and 2% (v/v) of petroleum, led to the degradation of 60% of the total petroleum hydrocarbons and the removal of Cr(III) 99%, Cu(II) 93%, Zn(II) 46% and Mn(II) 88% in the medium through biosorption phenomena. These results enabled the development of an integrated system in which the two processes were combined. The overall aim of the study was achieved, with 84% of TPH degraded and all of the metals completely removed. Work is currently underway aimed at improving this system (decrease in operation time, culture of P. aeruginosa in anaerobic conditions) in an effort to apply this process in the bioremediation of natural media contaminated with heavy metals and petroleum.

  10. Chemical Speciation and Health Risk Assessment of Fine Particulate Bound Trace Metals Emitted from Ota Industrial Estate, Nigeria

    Science.gov (United States)

    Anake, Winifred U.; Ana, Godson R. E. E.; Williams, Akan B.; Fred-Ahmadu, Omowunmi H.; Benson, Nsikak U.

    2017-05-01

    In this study carcinogenic and non-carcinogenic health risk due to exposure to PM2.5-bound trace metals from an industrial area in Southwestern Nigeria was estimated. A four-step chemical sequential extraction procedure was employed for the chemical extraction of arsenic (As), cadmium (Cd), chromium (Cr) copper (Cu), manganese (Mn), nickel (Ni), and zinc (Zn). Samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Results reveal Cr and Cu as the most dominant exchangeable fraction metals, indicating possibility of their being readily soluble once PM2.5 is inhaled. Cd and Cr record the highest bioavailability index of 0.7. The cumulative lifetime cancer risks due to inhalation exposure for adults (4.25×10-2), children 1-6 years old (4.87×10-3), and children 6-18 years old (1.46×10-2) were found above Environmental Protection Agency’s acceptable range of 1×10-6 to 1×10-4. The hazard index values for all studied trace metals suggest significant potential for non-carcinogenic health risks to adults and children. The choice of chemical speciation as an essential tool in facilitating a better predictive insight on metal bioavailability and toxicity for immediate remediation action has been highlighted.

  11. Lixiviation of heavy metals of hazardous industrial wastes by means of thermostatized columns and design of a pilot plant

    International Nuclear Information System (INIS)

    Vite T, J.; Leon, C.C. de; Vite T, M.; Soto T, J.L.

    2006-01-01

    The purpose of this work was to evaluate the efficiency of lixiviation of heavy metals, using thermostatized columns and hazardous industrial residual wastes: those by the volume with which are generated and its high toxicity, its represent a great problem for it treatment and disposition, in this work a diagram of a pilot plant for extraction of heavy metals is included. The process and equipment were patented in United States and in Mexico. For the development of this study four thermostated columns were used that were coupled. The waste were finely milled and suspended in an aqueous pulp adding of 10 - 40gL -1 of mineral acid or sodium hydroxide until reaching an interval of pH of 2,5,7 and 10. Its were used of 4-10 gL -1 of a reducer agent and of 0.3-1.5 g of a surfactant agent. In some cases with this method was possible to remove until 100% of heavy metals. It was used Plasma Emission Spectroscopy to determine the concentrations of the cations in the lixiviation liquors. For studying the metallic alloys the X-ray diffraction technique was used. (Author)

  12. Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent.

    Science.gov (United States)

    Lee, Chang-Gu; Song, Mi-Kyung; Ryu, Jae-Chun; Park, Chanhyuk; Choi, Jae-Woo; Lee, Sang-Hyup

    2016-06-01

    Electroplating wastewater contains various types of toxic substances, such as heavy metals, solvents, and cleaning agents. Carbon foam was used as an adsorbent for the removal of heavy metals from real industrial plating wastewater. Its sorption capacity was compared with those of a commercial ion-exchange resin (BC258) and a heavy metal adsorbent (CupriSorb™) in a batch system. The experimental carbon foam has a considerably higher sorption capacity for Cr and Cu than commercial adsorbents for acid/alkali wastewater and cyanide wastewater. Additionally, cytotoxicity test showed that the newly developed adsorbent has low cytotoxic effects on three kinds of human cells. In a pilot plant, the carbon foam had higher sorption capacity for Cr (73.64 g kg(-1)) than for Cu (14.86 g kg(-1)) and Ni (7.74 g kg(-1)) during 350 h of operation time. Oxidation pretreatments using UV/hydrogen peroxide enhance heavy metal removal from plating wastewater containing cyanide compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. APPLICATION OF METAL RESISTANT BACTERIA BY MUTATIONAL ENHANCMENT TECHNIQUE FOR BIOREMEDIATION OF COPPER AND ZINC FROM INDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    M. R. Shakibaie ، A. Khosravan ، A. Frahmand ، S. Zare

    2008-10-01

    Full Text Available In this research, using mutation in the metal resistant bacteria, the bioremediation of the copper and zinc from copper factory effluents was investigated. Wastewater effluents from flocculation and rolling mill sections of a factory in the city of Kerman were collected and used for further experiments. 20 strains of Pseudomonas spp. were isolated from soil and effluents surrounding factory and identified by microbiological methods. Minimum inhibitory concentrations for copper (Cu and zinc (Zn were determined by agar dilution method. Those strains that exhibited highest minimum inhibitory concentrations values to the metals (5mM were subjected to 400-3200 mg/L concentrations of the three mutagenic agents, acriflavine, acridine orange and ethidium bromide. After determination of subinhibitory concentrations, the minimum inhibitory concentrations values for copper and zinc metal ions were again determined, which showed more than 10 fold increase in minimum inhibitory concentrations value (10 mM for Cu and 20 mM for Zn with P≤0.05. The atomic absorption spectroscopy of dried biomass obtained from resistant strains after exposure to mutagenic agents revealed that strains 13 accumulate the highest amount of intracellular copper (0.35% Cu/mg dried biomass and strain 10 showed highest accumulation of zinc (0.3% Zn/mg dried biomass respectively with P≤0.05. From above results it was concluded that the treatment of industrial waste containing heavy metals by artificially mutated bacteria may be appropriate solution for effluent disposal problems.

  14. Chemical industrial production and applied chemistry of metals and nonmetals in educational program of chemistry in elementary school

    Directory of Open Access Journals (Sweden)

    Cvjetićanin Stanko M.

    2009-01-01

    Full Text Available In this paper a part of the model of the curriculum, which should improve chemical education in primary schools is presented. The implemented module refers to metals and non-metals in the fields of applied chemistry and chemical industry. Contents of the curriculum from 1974 to 2004 are considered. The quantity and quality of the pupils' knowledge are analyzed. The research showed that the pupils' knowledge is low. The module is implemented for the sake of overcoming the observed drawbacks in the curriculum, which should facilitate further chemical education, especially in the field of chemical technology. Contents of the curriculum, ways of implementation of the contents, and methods for evaluation of the pupils' knowledge are proposed considering the results of the research. For this purpose the method of descriptive analysis and statistical methods are used.

  15. Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater.

    Science.gov (United States)

    Arivoli, A; Mohanraj, R; Seenivasan, R

    2015-09-01

    The paper production is material intensive and generates enormous quantity of wastewater containing organic pollutants and heavy metals. Present study demonstrates the feasibility of constructed wetlands (CWs) to treat the heavy metals from pulp and paper industry effluent by using vertical flow constructed wetlands planted with commonly available macrophytes such as Typha angustifolia, Erianthus arundinaceus, and Phragmites australis. Results indicate that the removal efficiencies of the planted CWs for iron, copper, manganese, zinc, nickel, and cadmium were 74, 80, 60, 70, 71, and 70 %, respectively. On the other hand, the removal efficiency of the unplanted system was significantly lower ranging between 31 and 55 %. Among the macrophytes, T. angustifolia and E. arundinaceus exhibited comparatively higher bioconcentration factor (10(2) to 10(3)) than P. australis.

  16. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 μm, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  17. A comparison of two digestion methods for assessing heavy metals level in urban soils influenced by mining and industrial activities.

    Science.gov (United States)

    Alsaleh, Khaled A M; Meuser, Helmut; Usman, Adel R A; Al-Wabel, Mohammad I; Al-Farraj, Abdullah S

    2018-01-15

    A comparison between two digestion methods of hot plate Hossner (total-total) and USEPA method 3051 (total-recoverable) was carried out to suggest a proper method for determining nine heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) content of three urban soils affected by mining (Mahd AD'Dahab) or industrial activities (Riyadh and Jubail) at Saudi Arabia. The results showed no significant differences between two digestion methods for Cd, Cu, Pb and Zn in soils affected by mining and for Cr, Cu, Pb and Zn in soils affected by industrial activities. Additionally, lower biases were obtained between two methods for metals Cd, Cu, Zn and Pb in the urban soil samples from mining area with the percent biases of -16.5%, +6.24%, -12.4% and +24.1%, respectively. The results also revealed that only Cu and Zn in the soil samples from Riyadh were extracted satisfactorily using USEPA 3051 with low biases of +5.69% and -9.61%, respectively. Meanwhile, only Pb in soil samples from Jubail showed lower baise between two methods with satisfactory biase of -8.07%. The correlation coefficients were significant between total-recoverable and total-total concentrations for Cu (r = 0.66), Pb (r = 0.72) and Cd (r = 0.65) in soil samples from mining area. Overall, concentrations of Co, Cr, Fe, Mn, and Ni that may show soil background concentrations were found higher by Hossner method than by USEPA 3051; thus, this suggests the addition of hydrofluoric acid (HF) is necessary for the determination of lithogenic metal concentrations. It could be concluded that the USEPA 3051 may be recommended and applied for total Cd, Cu, Pb and Zn originated from anthropogenic source in mining and industrial areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Rubber pad forming - Efficient approach for the manufacturing of complex structured sheet metal blanks for food industry

    Science.gov (United States)

    Spoelstra, Paul; Djakow, Eugen; Homberg, Werner

    2017-10-01

    The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.

  19. APPLICATION OF PAN/PANI COMPOSITE MEMBRANES IN PURIFICATION OF INDUSTRIAL WASTEWATER GENERATED DURING PROCESSING OF METALS

    Directory of Open Access Journals (Sweden)

    Beata Fryczkowska

    2017-04-01

    Full Text Available The paper presents results of research on the use of composite membranes of polyacrylonitrile (PAN doped polyaniline (PANI to remove contaminations of industrial wastewater generated during the processing of metals. Wastewater obtained from industry was pre-treated with the flocculant Magnafloc®336, and then the supernatant solution was introduced into the ultrafiltration cell, AMICON (Millipore equipped in the previously prepared polymer membrane. Using spectrophotometer UV-Vis (HACH and atomic absorption spectrometry (AAS pollution indicators was marked before and after the integrated purification proces, to determine the degree of removal of selected ions from wastewater. As a result of flocculation from wastewater there have been removed phosphates (79%, chlorides (11-14%, sulfates (2-10% and iron (36-92%, cobalt (~ 80%, cadmium (~ 31% and nickel (~ 25%. However, the pressure membrane process almost completely removed zinc, copper and cadmium (~ 100%, iron (by a further 43-69% and phosphate anions, which was a little.

  20. Physical and thermal waste utilisation in the nonferrous metal industry; Stoffliche und thermische Abfallverwertung in der Nichteisenmetallindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, F. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1998-09-01

    In its amended form the German Household Waste Technical Code favours physical and thermal utilisation of wastes against dumping. Industrial processes offer various ways of utilising wastes with a high calorific value, e.g. in nonferrous metal production. Besides portraying this branch of industry in Germany the present paper investigates to what extent this topic has already found coverage and what potential it holds for the utilisation of wastes. By way of example it describes a successful demonstration of the physical utilisation of sewage sludge in lead production. [Deutsch] Die Neugestaltung der TA Siedlungsabfall favorisiert die thermische und stoffliche Verwertung von Abfallstoffen gegenueber der Deponierung. Moeglichkeiten fuer die Verwertung heizwertreicher Abfaelle bieten auch industrielle Produktionsprozesse, z.B. auch in der Nichteisenmetallerzeugung. Neben einer Charakterisierung der Branche wird untersucht, inwieweit dieses Thema bereits aufgegriffen worden ist und welches Verwertungspotential zur Verfuegung steht. An einem Beispiel wird die erfolgreiche Demonstration der stofflichen Verwertung von Klaerschlamm in der Bleierzeugung dargestellt. (orig.)

  1. Metal concentration of liquid effluents and surroundings of a pharmaceutical industry

    Directory of Open Access Journals (Sweden)

    E.I. Adeyeye

    2007-04-01

    Full Text Available Major and trace metals (Mg, Na, K, Ca, Fe, Zn, Cu, Sn, Al, Pb, As, Cr, Cd, Mn and Ti in liquid effluents, soil sediments and plant parts (roots and leaves from Tisco Nigeria Limited, Akure, were determined in both open effluent channel and closed direct tank. The plant in the open effluent channel was Pennisetum purpureum while the one around the direct tank was Chloris pilosa. The correlation coefficient (Cc of the metals in the open channel gave the values: soil sediments/water (0.61, roots/leaves (0.709; and (0.34, (0.91, respectively, in direct tank. F-test values showed that 67 % of the metals were significantly different (p < 0.05 among the samples. The soil sediments would serve as reservoir for all the metals determined. This was also the case for both plant roots with species variation. The plant leaves showed evidence of bioaccumulation of some metals. The high levels of Pb, As and Cd in the samples call for concern as environmental contaminants.

  2. Metal Pollution of Forest Phytomass from Uranium Industry in Czech Republic and Its Ecological Management Perspectives

    Directory of Open Access Journals (Sweden)

    David Juřička

    2017-01-01

    Full Text Available The paper is focused on the issue of metals migration within the forest environment affected by deep mining of metals and the possibility how to immobilize them using an environment-friendly method. First, the paper presents the information about metal content in the tree leaves in alluvial recipients polluted by metals from uranium deep mining at Dolní Rožínka, the Czech Republic. X-ray fluorescence analysis of dried leaves results showed the increased content of Cu, Fe, Mn, Ni, Rb, Sr, Zn and U; it corresponds to the most seriously polluted areas in the world comparing with the scientific literature. However, statistically, we did not succeed to demonstrate in none of areas of interest the element heterogeneity between the upper, middle and lower streams segments. Element habitat homogeneity can be caused by current stand species composition where Picea abies L. dominates and this fact results in the negative impact on the soil pH since it is a primary factor of metals immobilization in the ecosystem and their transformation into toxic variations. Within the area of interest, there is demonstrated positive effect of reconstruction of forest stands, which are close to the dominating deciduous trees, especially Fagus silvatica L. This management change in the selected interested forest stands can result in Ca supply of up to 39 kg.ha-1 from strictly natural sources, which might be a perspective alternative to liming.

  3. Temporal variations of heavy metals in coral Porites lutea from Guangdong Province, China: Influences from industrial pollution, climate and economic factors

    Science.gov (United States)

    Peng, Z.; Liu, J.; Zhou, C.; Nie, B.; Chen, T.

    2006-01-01

    The eight heavy metals Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb have been determined in samples of coral Porites lutea collected from Dafangji Island waters (21°21′N, 111°11′E), Dianbai County, Guangdong Province, China, by the ICP-MS method. The samples represent the growth of coral in the period of 1982–2001. The results showed that the waters were polluted by the heavy metals Cu, Ni, Zn, and Pb in certain years, but not by other metals. The contamination may have come from industrial sources, including electroplating, metallurgy, mining, and aquatic industries in the coastal areas.

  4. Spatial distribution of heavy metals in top soils around the industrial facilities of Cromatos de México, Tultitlan Mexico.

    Science.gov (United States)

    Morton-Bermea, Ofelia; Hernández-Álvarez, Elizabeth; Lozano, Rufino; Guzmán-Morales, Janin; Martínez, Gerardo

    2010-11-01

    The environmental damage caused by industrial activities in Cromatos de México, (Tultitlán, México) has been evaluated in terms of heavy metal concentrations in topsoils of the surrounding area. The concentrations of lead, copper and zinc demonstrate a significant enrichment with respect to unpolluted levels. Their maximum enrichment factors are 37.7, 21.1 and 9.6 mg kg⁻¹, respectively; such increase is related to traffic emissions. Nickel concentrations show no significant difference in the analyzed samples. Total chromium concentrations show a significant decrease with distance from the industrial facilities, ranging from 15 to 1,837 mg kg⁻¹. The enrichment factors of chromium (total), with respect to the background values reach up to 40.8 mg kg⁻¹. In spite of this pronounced increase, only three analyzed samples show chromium (VI) concentrations over 0.5 mg kg⁻¹ (instrumental detection limit) and do not exceed the values recommended by the Mexican official norm. The current results show that the chromium present in the studied area does not represent serious health risks and environmental damage in the zone, nevertheless, it is necessary to consider that the oxidation of chromium (III) is determinate by changes in redox and/or pH conditions which would imply significant impacts upon its toxic risk. This study suggests that the waste material generated during the industrial activities of Cromatos de Mexico represents a relevant metal pollution source for the area even 30 years after the closure of the industrial facilities.

  5. Metals anomalies in foraminiferal shells as indicators for industrial pollution: a case study from the Mediterranean coast of Israel

    Science.gov (United States)

    Titelboim, Danna; Sadekov, Aleksey; Almogi-Labin, Ahuva; Herut, Barak; Kucera, Michal; Abramovich, Sigal

    2017-04-01

    In recent years we have been witnessing a considerable growth of industrial facilities along coastal areas. Some of these have major economical and national importance yet their operation can introduce a wide range of chemicals that might contaminate the coastal area and impact local ecosystems and our health. Among some of these harmful chemicals are metals that are introduced to the coastal environment by some of these facilities. Here we present a novel approach for monitoring low-level industrial pollution in coastal environments based on anomalies in metal concentration within foraminiferal shells. Living foraminifera are used as bio-indicators of the environmental status of any marine habitat. As unicellular organisms with short life and reproductive cycles, they are extremely sensitive to long and short-term changes. The majority of foraminifera precipitate CaCO3 (low-Mg-calcite, high-Mg calcite or rarely aragonite tests). Their calcareous shells are precipitated by a mechanism that involves direct seawater vacuolization which reflects the chemical composition of the ambient water. For this reason the geochemical composition of their shells is particularly applicable as a tool for marine environmental monitoring. Material for this study was obtained during the monthly campaigns of a biomonitoring project (2012-2015) of a heat polluted area and of a nearby natural clean station off the northern Mediterranean coast of Israel. Essentially, monitoring of water chemistry in both habitats showed no indications of presence of heavy metal contamination. Yet, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of two common local foraminifera the hyaline species Pararotalia calcariformata and the miliolid species Lachlanella sp. 1 that were collected alive from both areas, recorded presence of various metals (Mn, Cu, Zn, Ba, Pb) within their shells. Metal concentrations within the miliolid species were significantly higher than those of

  6. Abrasive blasting, a technique for the industrial decontamination of metal components and concrete blocks from decommissioning to unconditional release levels

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    When decommissioning nuclear installations, large quantities of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has gone to recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can considered to be a first order ecological priority in order to limit the quantities of radioactive wastes for final disposal and to reduce the technical and economic problems involved with the management of radioactive wastes. It will help as well to make economic use of primary material and to conserve natural resources of basic material for future generations. In a demonstration programme, Belgoprocess has shown that it is economically interesting to decontaminate metal components to unconditional release levels using dry abrasive blasting techniques, the unit cost for decontamination being only 30 % of the global cost for radioactive waste treatment, conditioning, storage and disposal. As a result, an industrial dry abrasive blasting unit was installed in the Belgoprocess central decontamination infrastructure. At the end of December 2006, more than 1,128 Mg of contaminated metal has been treated as well as 313 Mg of concrete blocks. The paper gives an overview of the experience relating to the decontamination of metal material and concrete blocks at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium as well from the decontamination of concrete containers by abrasive blasting. (authors)

  7. Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Kurkowski, Radosław; Brym, Szczepan; Wiśniewski, Dariusz

    2016-11-01

    In contaminated soils, excessive concentrations of metals and their high mobility pose a serious environmental risk. A suitable soil amendment can minimize the negative effect of metals in soil. This study investigated the effect of different biochars on metal (Cu, Pb, Zn) immobilization in industrial soil. Biochars produced at 300 and 600 °C from conventional (MS, maize silage; WP, wooden pellets) and alternative (SC, sewage sludge compost; DR, digestate residue) feedstocks were used as soil amendments at a dosage of 10 % (w/w). The type of feedstock and pyrolysis temperature affected the properties of the biochars and their ability to immobilize metal in soil. Compared to production at 300 °C, all biochars produced at 600 °C had higher pH (6.2-10.7), content of ash (7.2-69.0 %) and fixed carbon (21.1-56.7 %), but lower content of volatile matter (9.7-37.2 %). All biochars except DR biochar had lower dissolved organic carbon (DOC) content (1.4-2.3 g C/L) when made at 600 °C. Only MS and SC biochars had higher cation exchange capacity (25.2 and 44.7 cmol/kg, respectively) after charring at 600 °C. All biochars contained low concentrations of Cd, Cu, Ni, Pb and Zn; Cd was volatilized to the greatest extent during pyrolysis. Based on FTIR analysis and molar ratios of H/C and O/C, biochars had a greater degree of carbonization and aromaticity after charring at 600 °C. The efficiency of the biochars in metal immobilization depended mainly on their pH, ash content, and concentration of DOC. SC and DR biochars were more effective for Cu and Zn immobilization than MS and WP biochars, which makes them attractive options for large-scale soil amendment.

  8. Content of metals and metabolites in honey originated from the vicinity of industrial town Košice (eastern Slovakia).

    Science.gov (United States)

    Kováčik, Jozef; Grúz, Jiří; Biba, Ondřej; Hedbavny, Josef

    2016-03-01

    Composition of three types of honey (mixed forest honey and monofloral-black locust and rapeseed honeys) originated from the vicinity of an industrial town (Košice, Slovak Republic) was compared. Higher content of minerals including toxic metals in forest honey (1358.6 ng Ni/g, 85.6 ng Pb/g, and 52.4 ng Cd/g) than in rapeseed and black locust honeys confirmed that botanical origin rather than the distance for eventual source of pollution (steel factory) affects metal deposition. Benzoic acid derivatives were typically more accumulated in forest but cinnamic acid derivatives and some flavonoids in rapeseed honey (in free and/or glycoside-bound fraction). In terms of quantity, p-hydroxybenzoic and p-coumaric acids were mainly abundant. Total phenols, thiols, and proteins were abundant in forest honey. Some metals and phenols contributed to separation of honeys based on principal component analysis (PCA). Native amount of 5-(hydroxymethyl)furfural was not related to honey type (~11 μg/g) and was elevated after strong acid hydrolysis (200-350 μg/g) but it did not interfere with the assay of phenols by Folin-Ciocalteu reagent. This is the first report of metals and metabolites in the same study, and data are discussed with available literature. We conclude that black locust (acacia) honey is the most suitable for daily use and that central European monofloral honeys contain lower amounts of toxic metals in comparison with other geographical regions.

  9. Risk Assessment of Heavy Metals Contamination in Soils and Selected Crops in Zanjan Urban and Industrial Regions

    Directory of Open Access Journals (Sweden)

    A. Afshari

    2016-02-01

    Full Text Available Introduction: Heavy metals are types of elements naturally present in soil or enter into soil as a result of human activities. The most important route of exposure to heavy metals is daily intake of food. Crops grown in contaminated soil (due to mining activities, industrial operations and agriculture may contain high concentrations of heavy metals. Also closeness to cities and industrial centers can have a great influence on the accumulation of heavy metals to agricultural products grown in the region. The study aimed to determine the concentration of heavy metals in soil and agricultural products around urban and industrial areas of Zanjan province (North West of Iran and consumption hazard probability. Materials and Methods: Soil (75 samples of soil from a depth of 0 to 10 cm and plant (101 samples samples, in the summer 2011, were randomly taken from industrial areas as follow: tomatoes (Lycopersicum esculentum M, wheat seed (Triticum vulgare, barley seeds (Hordeum vulgare, alfalfa shoots (Medicago sativa L., potato tubers (Solanumtuberosum L., apple fruit, vegetables and fruits such as Dill (Aniethum graveolens L., leek (Allium porrum L., Gardencress (Barbara verna L. and basil (Ocimum basilicum L.. Plant samples were then washed with distilled water, oven dried for48 hours at a temperature of 70 ´C until constant weight was attained and then they digested using 2 M hydrochloric acid (HCl and nitric acid digestion in 5 M. Concentrations of heavy metals in the soil and crops were determined by atomic absorption spectrometry. DTPA extraction of metals by Lindsay and Norvell (1978 method and sequential extraction method by Tessier et al. (1979 were performed. Statistical analysis was accomplished using the software SPSS 16.0 and the comparison of mean values was done using the Duncan test at the 5% level of significance. Results and Discussion: The magnitude of variations for total copper was from 11.5 to 352.5 (average 52.4, zinc was from 96

  10. Testing and modelling of industrial tribo-systems for sheet metal forming

    DEFF Research Database (Denmark)

    Friis, Kasper Leth; Nielsen, Peter Søe; Bay, Niels

    2008-01-01

    Galling is a well-known problem in sheet metal forming of tribological difficult materials such as stainless steel. In this work new, environmentally friendly lubricants and wear resistant tool materials are tested in a laboratory environment using a strip reduction test as well as in a real prod...

  11. Industrial Arts Test Development Book 2: Resource Items for Ceramics, Graphic Arts, Metals, Plastics.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Industrial Arts Education.

    This publication encompasses questions for Ceramics, Graphic Arts, Metals, and Plastics for the second of a series. The use of this publication and the previously published (1973) book containing resource items for Drawing, Electricity/Electronics, Power Mechanics, and Woods (ED 109 457) will provide complete coverage of the basic series courses…

  12. BIOLOGICAL REMOVAL OF LEAD BY BACILLUS SP. OBTAINED FROM METAL CONTAMINATED INDUSTRIAL AREA

    Directory of Open Access Journals (Sweden)

    Rinoy Varghese

    2012-10-01

    Full Text Available In the present study bacterial strains were isolated from soil, sediment and water samples of metal polluted environment. As a result, various 164 heterotrophic bacterial strains were isolated and studied the multiple metal tolerance profile and lead bioaccumulation potentiality. We also analyze the metal contamination of the selected study area. The average abundance order of heavy metal contents in soil, water and sediments were Zn>Cu>Pb>Cd. Zinc concentration ranged from 39.832µg/L to 310.24µg/L in water, 12.81µg/g to 407.53µg/g in soil and 81.06µg/g to 829.54µg/g in sediment; copper concentration from 25.54µg/L to 66.29µg/L in water, 8.22µg/g to 73.11µg/g in soil and 32.28µg/g to 600.61µg/g in sediment; lead concentration from 8.09µg/L to 25.23µg/L in water, 5.31µg/g to 73.11µg/g in soil and 1.02µg/g to 60.14µg/g in sediment and cadmium concentration ranged from 39.832µg/L to 310.24µg/L in water, 12.81µg/g to 407.53µg/g in soil and 81.06µg/g to 829.54µg/g in sediment. Metal resistance studies of the bacterial isolates revealed that out of 164 isolates collected about 45% of the isolates showed very high tolerance (>6000µg/ml to lead. Tolerance to Cd and Zn were relatively low (<500 µg/ml. Resistance to Ni and Cr were in between 1000µg/ml - 1500µg/ml. A total of 18 bacterial genera were recorded from the study area; ten genera from soil and 11 from water, while only 5 bacterial genera were recorded from sediment samples. Bioaccumulation studies revealed that with increase in time, the biomass of the selected bacterial isolates increased. Correspondingly, with increase in biomass, the heavy metal bioaccumulation was also increased. In lead removal studies, around 50% of the lead in the experimental flasks was reduced by Bacillus sp. In control flask, only 5% metal reduction occurs. The obtained results showed that the selected Bacillus sp. is good bioaccumulation medium for lead ions.

  13. Separation tests of heavy metals in samples of industrial wastes through flotation; Pruebas de separacion de metales pesados en muestras de residuos industriales mediante flotacion

    Energy Technology Data Exchange (ETDEWEB)

    Abrego L, J

    1995-12-15

    Samples of residual muds, taken at the exit of the filter-press of the water treatment plant of a galvanoplastics industry in Lerma, Estado de Mexico, its were prepared for its qualitative and quantitative analysis. Likewise, the residual waters of the cistern located at the end of the electrodeposition process, was subjected to qualitative chemical analysis for the neutron activation technique and to quantitative analysis by atomic absorption spectrometry. The samples were treated by a flotation process by means of the one which it was studied the heavy metals removal. The results show that the AP-845 collector is the one that better it fulfilled the objectives since, it solves the problem, unless by the copper that although their concentration in the residual waters drop a lot, it was not inside the standard. (Author)

  14. Archaeological analogous and industrials for deep storage: study of the archaeological metallic piece

    International Nuclear Information System (INIS)

    Criado Portal, A. J.; Martinez Garcia, J. A.; Calabres Molina, R.; Garcia abajo, A.; Penco Valenzuela, F.; Lecanda Esteban, J. A.; Garcia Bartual, M.; Jimenez Gonzalez, J. M.; Bravo Munoz, E.; Rodriguez Lobo, L. M.; Fernandez Cascos, T.; Fernandes Cordero, O.; Montero Ruiz, I.

    2000-01-01

    The aim of present research is to obtain information about archaeological analogous of iron and steel, useful for the model of deep geological repository (AGP). The analogous examined have remained buried between 1400 and 2400 years, in very assorted geochemical environments. The extraction of the archaeological pieces has been accomplished according to normalised protocols, trying to carry to the laboratory so the piece as its burial environment, avoiding all possible pollution. Trying to the archaeological analogous could provide valuable information to the AGP model, the study has been directed to related the physical-chemical characteristics of the terrain respect to the deterioration of the archaeological metallic piece. The geology of the surrounding terrain to the archaeological deposit, the geomorphological study of the terrain and data from the analysis of ground: pH, wetness, porosity, organic matter contents, bacteria presence, sulphates, carbonates, chlorides, etc., have allowed to explain the physical-chemical phenomena suffered by the archaeological iron and steel pieces. Also, an exhaustive study of the archaeological piece has been accomplished, concerning the microstructure of the corrosion layer and of the not deteriorated metallic rest. Obtained information concerns different items, such as corrosion velocity and formations of oxide layers, diffusion of chemical elements from the corrosion layer to the metal and viceversa, and structural changes in oxide layers and in the metallic remains by structural ageing. Obtained data have allowed to develop a mathematical model for calculation of corrosion velocity in buried iron and steels, based on physical-chemical variables of grounds, chemical composition and thermomechanical treatment given to the metal during its manufacture. (Author)

  15. Investigation and Identification of Types and Amounts of Heavy Metals in Soil of an Industrial Area

    Directory of Open Access Journals (Sweden)

    Majid Mohammadhosseini

    2014-12-01

    Full Text Available This study was mainly designed to investigate and identify the amounts and types of heavy metals in the soils of National Iranian Oil Refining & Distribution Company in Shahrood region and tried to establish a logical relation between the presence of heavy metals and their damage on vegetation. In addition, considering the power of drained soil and due to the proximity of ground water in Shahrood region, conducting this study provides a better insight into recognition of the possible contamination centers of drinking waters. The gridding and selective method was used for sampling step. Accordingly, five sub-samples were taken from each grid and finally after mixing all of the sub-samples, the final samples were obtained with an average weight of 400 grams prior to sending to the laboratory. To determine the total concentration of heavy metals in soil, extraction was done using concentrated solutions of HCl and HNO3. The total concentration of the heavy metals of chromium, cobalt and nickel were measured using an ICP-MS instrument, and the rest of the elements using an XRF device. The results explicitly indicated that the quantities of nickel, lead, zinc and strontium in patient samples exceeded the standard, and the other elements were lower than their standard limits. More specifically, the contents of lead and strontium in both normal and patient samples were higher than their standard contents. Moreover, the majority of the vegetation loss across the affected areas was caused by heavy metal accumulation, particularly nickel, lead, zinc, and strontium.

  16. Metal concentrations in aquatic environments of Puebla River basin, Mexico: natural and industrial influences.

    Science.gov (United States)

    Morales-García, S S; Rodríguez-Espinosa, P F; Shruti, V C; Jonathan, M P; Martínez-Tavera, E

    2017-01-01

    The rapid urban expansion and presence of volcanoes in the premises of Puebla River basin in central Mexico exert significant influences over its aquatic environments. Twenty surface sediment samples from Puebla River basin consisting of R. Alseseca, R. Atoyac, and Valsequillo dam were collected during September 2009 and analyzed for major (Al, Fe, Mg, Ba, Ca, and K) and trace elements (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, V, and Zn) in order to identify the metal concentrations and their enrichment. R. Atoyac sediments presented higher concentrations of Ba (1193.8 μg g -1 ) and Pb (27.1 μg g -1 ) in comparison with the local reference sample values. All the metal concentrations except Sr for R. Alseseca sediments were within the range of local reference sample values indicating no significant external influence, whereas Valsequillo dam sediments had elevated concentrations of all the metals suggesting both natural and external influences in the study region. The magnitude of metal contamination was assessed using several indices such as geoaccumulation index (I geo ), enrichment factor (EF), degree of contamination (C d ), and pollution load index (PLI). The results suggest that As, Pb, and Zn were predominantly enriched in the Puebla River basin sediments. Comparing with sediment quality guidelines and ecotoxicological values, it is revealed that Cd, Cr, Cu, and Ni have possible harmful effects on the biological community. The present study provides an outlook of metal enrichment in Puebla River basin sediments, highlighting the necessity to conserve this river ecosystem for the near future.

  17. Rfa method application for determination of heavy metals content in foods and industrial raw products

    International Nuclear Information System (INIS)

    Matveeva, I.M.

    1999-01-01

    The issue of improvement of the people's lives quality is considered to be of the highest priority according to the U N classification. It is known that its solution lies with the quality of drinking water and foods, which is defined, to a great extent, by the ecological situation of a concrete living region. As a rule, the existing methods of food analysis are mostly meant for determination of one chemical substance in a certain food. The analysis methods developed by authors are versatile and allow determining the quantitative content of Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Zr, Mo, Pb, Bi in the widely used basic foods and industrial raw products according to the common analytical scheme. The methods sensitivity allows determining the MCL of the toxic substances in foods and industrial raw products, specified in 'Medical and biological requirements and health-related quality standards in regards to the industrial raw products and foods

  18. Optimizing complex supply chains. Applications in the petroleum, shipping and metal industries

    International Nuclear Information System (INIS)

    Ulstein, Nina Linn

    2005-01-01

    plants. The model gives a description of Elkem's supply chain, and gives planners the possib ility to explore alternative decisions and study the effects in economic and physical terms. The main contribution from this paper consists of presenting a successful application of an optimization tool, used in a critical decision making process for the company. The paper also offers useful insight into the process of developing and applying the model. The paper is co-authored by Marielle Christiansen, Roar Groenhaug, Nick Magnussen and Marius M. Solomon, and has been submitted to Interfaces. Paper 4: Supply Chain Design in the Metals Production Industry under Uncertainty in Future Prices and Demands This paper describes a stochastic extension to the planning Mol described in Paper 3. The two-stage stochastic model includes alternative scenarios for future developments in market prices and demand. This help Elkem identify robust strategies with regard to future changes in the market. The stochastic model is a large scale MIP problem and a specialised solution algorithm is proposed for solving practical problem instances. The algorithm decomposes the problem per scenario and applies global branching on first-stage variables to re-establish non-anticipativity. The main contribution from this paper is to model and solve a real-world stochastic supply chain design problem. This includes presenting a solution algorithm which enables the solution of practical problem instances. The paper has been submitted to the European Journal of Operational Research. (Author)

  19. Microbial assisted phyto extraction of metals and growth of soybean (glycine max l. merrill) on industrial waste water contaminated soil

    International Nuclear Information System (INIS)

    Ali, I.; Bano, A.

    2012-01-01

    Pots experiments were made to investigate the role of effective microorganisms (EM) in improving phyto extraction of metals (Cd/sup +2/ and Mn/sup +2/) and growth of soybean plant in industrial waste water polluted soil. Waste water applications to soil were made in four different dilutions (i.e. 25%, 50%, 75% and 100%). Effective microorganisms were added into waste water prior to application. Effect of treatments on growth parameters was studied. The Cd/sup +2/ and Mn/sup +2/ concentrations in different parts of plant were measured by Atomic Absorption Spectrophotometer. Plant height significantly increased at all treatments except at 25% waste water treatment. Plant dry biomass and oil contents in seed significantly increased with all treatments compared to control but were higher at low concentration of waste water. Waste water treatments significantly increased the Cd and Mn accumulation in plant while inoculation of EM further enhanced the metals accumulation. The maximum accumulation of Cd and Mn found in plant treated with 100% waste water in combination with effective microorganisms. At harvest, the Cd/sup +2/ concentration decreased in leaves but increased in roots followed by stem > seeds, while, Mn/sup +2/ accumulation increased in leaves followed by roots > stem > seeds. Conclusively, EM enhanced the phyto extraction of Cd and Mn and also increased the oil contents in soybean on polluted soil. These findings suggest further investigation to find out a suitable concentration of industrial waste water in combination with EM for better growth of soybean and improving phyto extraction of metals. (author)

  20. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions

    International Nuclear Information System (INIS)

    Berlizov, A.N.; Blum, O.B.; Filby, R.H.; Malyuk, I.A.; Tryshyn, V.V.

    2007-01-01

    A comparative study of the capabilities of black poplar-tree (Populus nigra L.) bark as a biomonitor of atmospheric heavy-metal pollution is reported. Performance indicators (concentrations and enrichment factors) of heavy metal bioaccumulation of bark were compared to the corresponding indicators of epiphytic lichens Xanthoria parietina (L.) Th. Fr. and Physcia adscendens (Fr.) H. Oliver, collected simultaneously with bark samples within the Kiev urban-industrial conurbation. The concentrations of 40 minor and trace elements in the samples were measured by a combination of epithermal and instrumental neutron activation analysis (NAA) using a 10 MW nuclear research reactor WWR-M as the neutron source. Statistical analysis of the data was carried out using non-parametric tests. It was shown that for the majority of the elements determined a good correlation exists between their concentrations in bark and in the lichen species. The accumulation capability of the bark was found to be as effective as, and in some cases better, for both types of lichens. Based on the background levels and variations of the elemental concentration in black poplar-tree bark, threshold values for the enrichment factors were established. For a number of elements (As, Au, Ce, Co, Cr, Cu, La, Mn, Mo, Ni, Sb, Sm, Ti, Th, U, V, W) an interspecies calibration was performed. An optimized pre-irradiation treatment of the bark sample was employed which efficiently separated the most informative external layer from the deeper layers of the bark and thus minimized variations of the element concentrations. Results of this study support black poplar-tree bark as an alternative to epiphytic lichens for heavy metal air pollution monitoring in urban and industrial regions, where severe environmental conditions may result in scarcity or even lack of the indicator species

  1. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions.

    Science.gov (United States)

    Berlizov, A N; Blum, O B; Filby, R H; Malyuk, I A; Tryshyn, V V

    2007-01-01

    A comparative study of the capabilities of black poplar-tree (Populus nigra L.) bark as a biomonitor of atmospheric heavy-metal pollution is reported. Performance indicators (concentrations and enrichment factors) of heavy metal bioaccumulation of bark were compared to the corresponding indicators of epiphytic lichens Xanthoria parietina (L.) Th. Fr. and Physcia adscendens (Fr.) H. Oliver, collected simultaneously with bark samples within the Kiev urban-industrial conurbation. The concentrations of 40 minor and trace elements in the samples were measured by a combination of epithermal and instrumental neutron activation analysis (NAA) using a 10 MW nuclear research reactor WWR-M as the neutron source. Statistical analysis of the data was carried out using non-parametric tests. It was shown that for the majority of the elements determined a good correlation exists between their concentrations in bark and in the lichen species. The accumulation capability of the bark was found to be as effective as, and in some cases better, for both types of lichens. Based on the background levels and variations of the elemental concentration in black poplar-tree bark, threshold values for the enrichment factors were established. For a number of elements (As, Au, Ce, Co, Cr, Cu, La, Mn, Mo, Ni, Sb, Sm, Ti, Th, U, V, W) an interspecies calibration was performed. An optimized pre-irradiation treatment of the bark sample was employed which efficiently separated the most informative external layer from the deeper layers of the bark and thus minimized variations of the element concentrations. Results of this study support black poplar-tree bark as an alternative to epiphytic lichens for heavy metal air pollution monitoring in urban and industrial regions, where severe environmental conditions may result in scarcity or even lack of the indicator species.

  2. Impacts and Policy Implications of Metals Effluent Discharge into Rivers within Industrial Zones: A Sub-Saharan Perspective from Ethiopia

    Science.gov (United States)

    Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K.

    2018-04-01

    Kombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines. Cu concentrations were low in all effluents. Pb concentrations were high in the tannery effluent, but did not exceed emission guidelines. As expected, no metal emission guidelines were exceeded for the brewery, textile and meat processing effluents. Median Cr and Zn concentrations in the Leyole river in the effluent mixing zones downstream of the tannery and steel processing plant increased by factors of 52 (2660 compared with 51 µg Cr/L) and 5 (520 compared with 110 µg Zn/L), respectively, compared with stations further upstream. This poses substantial ecological risks downstream. Comparison with emission guidelines indicates poor environmental management by industries and regulating institutions. Despite appropriate legislation, no clear measures have yet been taken to control industrial discharges, with apparent mismatch between environmental enforcement and investment policies. Effluent management, treatment technologies and operational capacity of environmental institutions were identified as key improvement areas to adopt progressive sustainable development.

  3. Impacts and Policy Implications of Metals Effluent Discharge into Rivers within Industrial Zones: A Sub-Saharan Perspective from Ethiopia.

    Science.gov (United States)

    Zinabu, E; Kelderman, P; van der Kwast, J; Irvine, K

    2017-12-09

    Kombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines. Cu concentrations were low in all effluents. Pb concentrations were high in the tannery effluent, but did not exceed emission guidelines. As expected, no metal emission guidelines were exceeded for the brewery, textile and meat processing effluents. Median Cr and Zn concentrations in the Leyole river in the effluent mixing zones downstream of the tannery and steel processing plant increased by factors of 52 (2660 compared with 51 µg Cr/L) and 5 (520 compared with 110 µg Zn/L), respectively, compared with stations further upstream. This poses substantial ecological risks downstream. Comparison with emission guidelines indicates poor environmental management by industries and regulating institutions. Despite appropriate legislation, no clear measures have yet been taken to control industrial discharges, with apparent mismatch between environmental enforcement and investment policies. Effluent management, treatment technologies and operational capacity of environmental institutions were identified as key improvement areas to adopt progressive sustainable development.

  4. Metal-bearing fine particle sources in a coastal industrialized environment

    Czech Academy of Sciences Publication Activity Database

    Mbengue, Saliou; Alleman, L. Y.; Flament, P.

    2017-01-01

    Roč. 183, jan (2017), s. 202-211 ISSN 0169-8095 Institutional support: RVO:67179843 Keywords : PM2.5 * Trace elements * Industrial emissions * Sources apportionment Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.778, year: 2016

  5. Lighter, greener and strong: developing light metals for application in the aerospace industry

    CSIR Research Space (South Africa)

    Du Preez, W

    2010-08-01

    Full Text Available per SR-71 Drivers of the South African Titanium Industry SA’s Space Programme (mid ’80s – mid ’90s): Titanium (Ti-6Al-4V) in satellites Medical applications (’90s – present): Titanium orthopaedic implants Titanium dental implants © CSIR 2010...

  6. Materials damaging and rupture - Volumes 1-2. General remarks, metallic materials. Non-metallic materials and biomaterials, assemblies and industrial problems

    International Nuclear Information System (INIS)

    Clavel, M.; Bompard, P.

    2009-01-01

    The rupture and damaging of materials and structures is almost always and unwanted events which may have catastrophic consequences. Even if the mechanical failure causes can often be analyzed using a thorough knowledge of materials behaviour, the forecasting and prevention of failures remain difficult. While the macroscopic mechanical behaviour is often the result of average effects at the structure or microstructure scale, the damage is very often the result of the combination of load peaks, of localization effects and of microstructure defects. This book, presented in two volumes, takes stock of the state-of-the-art of the knowledge gained in the understanding and modelling of rupture and damaging phenomena of materials and structure, mostly of metallic type. It gives an outline of the available knowledge for other classes of materials (ceramics, biomaterials, geo-materials..) and for different types of applications (aeronautics, nuclear industry). Finally, it examines the delicate problem, but very important in practice, of the behaviour of assemblies. Content: Vol.1 - physical mechanisms of materials damaging and rupture; rupture mechanics; cyclic plasticity and fatigue crack growth; fatigue crack propagation; environment-induced cracking; contacts and surfaces. Vol.2 - glasses and ceramics; natural environments: soils and rocks; mechanical behaviour of biological solid materials: the human bone; contribution of simulation to the understanding of rupture mechanisms; assemblies damaging and rupture; industrial cases (behaviour of PWR pressure vessel steels, and thermal and mechanical stresses in turbojet engines). (J.S.)

  7. Biorecovered precious metals from industrial wastes: single-step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental application.

    Science.gov (United States)

    Mabbett, Amanda N; Sanyahumbi, Douglas; Yong, Ping; Macaskie, Lynne E

    2006-02-01

    The complete and continuous reduction of 1 mM Cr(VI) to Cr(III) was achieved in a flow-through reactor using a novel bioinorganic catalyst ("MM-bio-Pd(0)"), which was produced by single-step reduction of platinum group metals (PGM) from industrial waste solution onto biomass of Desulfovibrio desulfuricans ATCC 29577. Two flow-through reactor systems were compared using both "MM-bioPd(0)" and chemically reduced Pd(0). Reactors containing the latter removed Cr(VI) for 1 week only at the expense of formate as the electron donor, whereas the former gave complete Cr(VI) removal for 3 months of continuous operation. Mass balance analysis showed 100% reduction of Cr(VI) to soluble Cr(III) in the bioreactor exit solution. With the use of electron paramagnetic resonance (EPR) no intermediate Cr(V) species could be detected. Pd(0) was biodeposited similarly using Escherichia coliMC4100 and "bio-Pd(0)". The latter was used to recover Pd(II) from two acidic industrial waste leachates to generate two types of "MM-bio-Pd(0)": "SI-bio-Pd(0)" and "SII-bio-Pd(0)", respectively. The biomaterial composition was comparable in both cases, and the catalytic activity was related inversely to the amount of chloride in the waste leachate from which it was derived.

  8. Empirical analyses on the development trend of non-ferrous metal industry under China’s new normal

    Science.gov (United States)

    Li, C. X.; Liu, C. X.; Zhang, Q. L.

    2017-08-01

    The CGE model of Yunnan’s macro economy was constructed based on the input-output data of Yunnan in 2012, and the development trend of the non-ferrous metals industry (NMI) under the China’s new normal was simulated. In view of this, according to different expected economic growth, and optimized economic structure, the impact on development of Yunnan NMI was simulated. The results show that the NMI growth rate is expected to decline when the economic growth show a downward trend, but the change of the proportion is relatively small. Moreover, the structure in proportion was adjusted to realize the economic structure optimization, while the proportion of NMI in GDP will decline. In contrast, the biggest influence on the NMI is the change of economic structure. From the statistics of last two years, we can see that NMI is growing, and at the same time, its proportion is declining, which is consistent with the results of simulation. But the adjustment of economic structure will take a long time. It is need to improve the proportion of deep-processing industry, extend the industrial chain, enhance the value chain, so as to be made good use of resource advantage.

  9. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.

    Science.gov (United States)

    Lum, A Fontem; Ngwa, E S A; Chikoye, D; Suh, C E

    2014-01-01

    Phytoremediation is a promising option for reclaiming soils contaminated with toxic metals, using plants with high potentials for extraction, stabilization and hyperaccumulation. This study was conducted in Cameroon, at the Bassa Industrial Zone of Douala in 2011, to assess the total content of 19 heavy metals and 5 other elements in soils and phytoremediation potential of 12 weeds. Partial extraction was carried out in soil, plant root and shoot samples. Phytoremediation potential was evaluated in terms of the Biological Concentration Factor, Translocation Factor and Biological Accumulation Coefficient. The detectable content of the heavy metals in soils was Cu:70-179, Pb:8-130, Zn:200-971, Ni:74-296, Co:31-90, Mn:1983-4139, V:165-383, Cr:42-1054, Ba:26-239, Sc:21-56, Al:6.11-9.84, Th:7-22, Sr:30-190, La:52-115, Zr:111-341, Y:10-49, Nb:90-172 in mg kg(-1), and Ti:2.73-4.09 and Fe:12-16.24 in wt%. The contamination index revealed that the soils were slightly to heavily contaminated while the geoaccumulation index showed that the soils ranged from unpolluted to highly polluted. The concentration of heavy metals was ranked as Zn > Ni > Cu > V > Mn > Sc > Co > Pb and Cr in the roots and Mn > Zn > Ni > Cu > Sc > Co > V > Pb > Cr > Fe in the shoots. Dissotis rotundifolia and Kyllinga erecta had phytoextraction potentials for Pb and Paspalum orbicularefor Fe. Eleusine indica and K. erecta had phytostabilisation potential for soils contaminated with Cu and Pb, respectively.

  10. OPTIMIZATION OF MOTOR VEHICLE INDUSTRIES WASTEWATER TREATMENT METHODS WITH THE AIM OF HEAVY METALS REMOVAL AND WATER REUSE IN PILOT SCALE

    Directory of Open Access Journals (Sweden)

    S. A. Mirbagheri, M. Salehi M

    2006-10-01

    Full Text Available The waste of motor vehicle industries is mainly the result of washing, coloring and various stages of chassis manufacturing, which include oil, grease, dyestuff, chromium, phosphate and other pollutants. In the present research, extended aeration activated sludge biological treatment plant is being considered and evaluated, for the removal of heavy metals and pollution load from industrial wastes and sanitary wastewaters, and on the pilot scale for optimization of waste treatment method for motor vehicle industries. To accomplish the pilot experiments, the natural waste of Bahman motor vehicle factory is used. Effective factors on efficient removal of heavy metals and pollution load such as concentration of biological mass (MLVSS, COD, BOD, pH in the extended aeration activated sludge biological treatment system, in different ratios of the mixing of industrial waste to sanitary wastewater have been experimented and evaluated. The performance of the above system, in the best of conditions, removes about 90% of pollution load and 65% of heavy metals existing in the industrial wastes. After analyzing the experiments, it is concluded that the removal of heavy metals through biological methods is possible and moreover it is feasible to biologically treat the mixing of motor vehicle industries effluent and sanitary wastewater up to the ratio of one to one, if guided exactly and scientifically.

  11. Modeling seasonal and spatial contamination of surface waters and upper sediments with trace metal elements across industrialized urban areas of the Seybouse watershed in North Africa.

    Science.gov (United States)

    Belabed, Bourhane-Eddine; Meddour, Abderrafik; Samraoui, Boudjéma; Chenchouni, Haroun

    2017-06-01

    Industrialization and urbanization are the main sources of pollutions worldwide and particularly in developing countries. This study aims the determination of anthropogenic inputs with trace metals in aquatic ecosystems at the Plain of Annaba (NE Algeria), which is known as one of the largest industrial areas in Africa. Samples of surface waters and upper sediments were conducted in six stations: four in Meboudja wadi and two in Seybouse wadi. Contents of iron, copper, chromium, nickel, zinc, and manganese were measured by atomic absorption spectrophotometry, whereas Cd and Pb were determined using electrothermal atomic absorption spectrometry. Measurements of Hg were carried out using atomic fluorescence. Spatiotemporal variations of metal concentrations were tested using generalized linear models (GLM), whereas the influence of water pollution on sediment contamination was tested with generalized additive models (GAMs). Metal contents measured in surface water and sediments varied differently from upstream to downstream of the study wadis and between seasons. The results showed that the surface water was polluted with high levels of iron, nickel, chromium, lead, and cadmium. Values of the contamination index revealed that the surface sediments were contaminated by iron, chromium, lead, and cadmium. The GAMs indicated that water-phase metal concentrations had no significant effects on trace metal concentrations in the sediment. This suggests that seasonal metal concentrations in water phase, which are measured during the study period (2012) and are time-dependent, contribute increasingly and gradually over time-not immediately-to the accumulation of metals into the sediments. Therefore, the long-term accumulation of metals in the sediments resulted from the continuous discharges of metals in the water phase. The anthropogenic impacts are marked by high contaminations of Meboudja wadi particularly in downstream areas of the steel factory and the nearby industrial

  12. The Impact of Companies Age on Safety Culture in the Metal Products Industry

    OpenAIRE

    Maryam Ooshaksaraie; Amran A. Majid; Muhammad S. Yasir; Redzuwan Yahaya

    2009-01-01

    Problem statement: Safety culture is a complex structure in an organization that includes values and attitudes, most of which are potentially changeable and related to actual accident behavior. In this study, the components of safety culture included organizational commitment, management involvement, employee empowerment, reporting system and rewarding system. Approach: The numbers of occupational injuries in industries have steadily increased during recent years. The major objectives of this...

  13. DMAIC Application and Fault Analysis of Metal Packaging in the Canning Industry

    Directory of Open Access Journals (Sweden)

    Rafael Santos de Souza

    2017-11-01

    Full Text Available In the food industry, quality assurance is strongly associated with consumer safety and the risk of compromising the purity of products. Specifically, in the canning industries, rusty, dented or bulging cans may contain bacteria and cause foodborne illness. This article discusses the application of DMAIC and failure analysis to reduce the number of crushed cans in a canning industry. The methodology was of an applied nature, with an exploratory objective, a qualitative and quantitative approach and a case study method used. Through statistical analysis, it was found that the amount of dented packaging in the production process, which comprises the steps of filling, seaming and basketing, was high. The step with the highest number of crushed cans between three stages was seaming. This was followed by the application of FMEA failure analysis related to the use of an automated seaming machine. Finally, an action plan was roposed to solve the problem of cans crushed in the seaming step and the results demonstrate the improvements obtained before the target after 4 months (August-November 2015.

  14. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent.

    Science.gov (United States)

    Zhou, Guiyin; Luo, Jinming; Liu, Chengbin; Chu, Lin; Ma, Jianhong; Tang, Yanhong; Zeng, Zebing; Luo, Shenglian

    2016-02-01

    High sorption capacity, high sorption rate, and fast separation and regeneration for qualified sorbents used in removing heavy metals from wastewater are urgently needed. In this study, a polyampholyte hydrogel was well designed and prepared via a simple radical polymerization procedure. Due to the remarkable mechanical strength, the three-dimensional polyampholyte hydrogel could be fast separated, easily regenerated and highly reused. The sorption capacities were as high as 216.1 mg/g for Pb(II) and 153.8 mg/g for Cd(II) owing to the existence of the large number of active groups. The adsorption could be conducted in a wide pH range of 3-6 and the equilibrium fast reached in 30 min due to its excellent water penetration for highly accessible to metal ions. The fixed-bed column sorption results indicated that the polyampholyte hydrogel was particularly effective in removing Pb(II) and Cd(II) from actual industrial effluent to meet the regulatory requirements. The treatment volumes of actual smelting effluent using one fixed bed column were as high as 684 bed volumes (BV) (7736 mL) for Pb(II) and 200 BV (2262 mL) for Cd(II). Furthermore, the treatment volumes of actual smelting effluent using tandem three columns reached 924 BV (31,351 mL) for Pb(II) and 250 BV (8483 mL) for Cd(II), producing only 4 BV (136 mL) eluent. Compared with the traditional high density slurry (HDS) process with large amount of sludge, the proposed process would be expected to produce only a small amount of sludge. When the treatment volume was controlled below 209.3 BV (7103 mL), all metal ions in the actual industrial effluent could be effectively removed (removal of heavy metal ions from practical wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Activation analysis of heavy metals accumulated in soil and plants in some industrial areas in Bulgaria

    International Nuclear Information System (INIS)

    Ghounchev, C.

    1986-01-01

    Heavy metals having got into the soil are taken up by plants and then through a food chain reach animals and man. The investigation of their concentration in the first links of the food chain - soil and plants - will make possible in the future a scientifically based monitoring of the environmental pollution by these elements as well as the assessment of the possibility to utilize the polluted areas for agricultural purposes. To perform our investigation we have used the great possibilities of one of the analytical chemistry methods - a neutron activation analysis method. (author)

  16. A study on the treatment of industrial wastewater containing heavy metals

    International Nuclear Information System (INIS)

    Yoon, Myung Hwan; Chang, In Soon; Park, Jang Jin; Lee, Yoon Hwan; Shin, Jin Myung

    1994-08-01

    In order to practically use the acornic acid process for treating heavy metal contained wastewater, the pilot plant of 2.4 ton (wastewater)/day capacity was designed, constructed and operated. An electroplating wastewater originated from a company was treated with NaOH, acornic acid (60 ppm) and salt (1000 ppm) in this pilot plant. The COD, Cr, Fe and Zn cocentrations of treated water were 123, 0.08, 0.05 and 0.08 ppm, respectively. These values were all satisfied with the legal effluent limits. (Author)

  17. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-03-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  18. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-01-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  19. Testing and modelling of industrial tribo-systems for sheet metal forming

    DEFF Research Database (Denmark)

    Friis, Kasper Leth; Nielsen, Peter Søe; Bay, Niels

    2008-01-01

    Galling is a well-known problem in sheet metal forming of tribological difficult materials such as stainless steel. In this work new, environmentally friendly lubricants and wear resistant tool materials are tested in a laboratory environment using a strip reduction test as well as in a real prod....... The backstroke force and tool surface temperature are found to be highly sensitive to the initiation of galling. Furthermore the results combined with numerical investigations indicates that the level of the interface temperature is a vital factor predicting the initiation of galling....

  20. Lithium/metal sulfide cells and battery development progress at Eagle-Picher Industries

    Science.gov (United States)

    Cupp, E. B.

    A program aimed at the design, development, and fabrication of lithium/metal sulfide secondary batteries with a molten-salt electrolyte that has been under way since 1975 is reviewed. The goals of the program are to develop a long-life, high-power, high-energy-density battery for electric-vehicle applications. The tasks accomplished so far are discussed with particular attention given to the development of current collectors for both FeS and FeS2 cells, separator improvements, sealing techniques, and active-material balances. The present state-of-the-art Li/MS(x) molten-salt batteries are characterized.

  1. Mortality among population with exposure to industrial air pollution containing nickel and other toxic metals.

    Science.gov (United States)

    Pasanen, Kari; Pukkala, Eero; Turunen, Anu W; Patama, Toni; Jussila, Ilkka; Makkonen, Sari; Salonen, Raimo O; Verkasalo, Pia K

    2012-05-01

    To assess disease mortality among people with exposure to metal-rich particulate air pollution. We conducted a cohort study on mortality from 1981 to 2005 among 33,573 people living near a nickel/copper smelter in Harjavalta, Finland. Nickel concentration in soil humus was selected as an indicator for long-term exposure. Relative risks--adjusted for age, socioeconomic status, and calendar period--were calculated for three exposure zones. The relative risks for diseases of the circulatory system by increasing exposure were 0.93 (95% confidence interval = 0.79 to 1.09), 1.20 (1.04 to 1.39), and 1.18 (1.00 to 1.39) among men and 1.01 (0.88 to 1.17), 1.20 (1.04 to 1.38), and 1.14 (0.97 to 1.33) among women. Exclusion of smelter workers from the cohort did not materially change the results. Long-term environmental exposure to metal-rich air pollution was associated with increased mortality from circulatory diseases.

  2. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    International Nuclear Information System (INIS)

    Nelson, E; John Gladden, J

    2007-01-01

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments

  3. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E; John Gladden, J

    2007-03-22

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

  4. Noise Pollution Status in a Metal Melting Industry and the Map of Its Isosonic Curve

    Directory of Open Access Journals (Sweden)

    Forouharmajd

    2015-10-01

    Full Text Available Background Steel industry is one of the most important industries of each country and noise pollution is one of the very annoying factors in this industry that causes various diseases; above all, the damage to the auditory system of the work force is high. Therefore, the assessment of noise pollution and the identification of the sources and causes of its creation are inevitable for controlling and teaching the prevention programs and hearing protection. Objectives This study aimed to draw the noise map of isosonic curves and assess the noise pollution using Surfer modeling software. Materials and Methods In the present study, first, preliminary maps and stationing were drawn, and then, the measurement of the sound pressure level and the octave band analysis were performed by a noise measurement device called Casella-CEL 445; then, after recording the data in software of Surfer version 8, they were used for drawing the isosonic curves. Results The results of the peripheral measurements showed that the maximum sound pressure of level 109 dBA was related to the electric arc furnace. A map of the graphic isosonic curves showed most of the noise pollution in the following areas: furnace, casting, tundishes, and the cooling beds. Conclusions According to the factory noise map, except for the control rooms with 81 dBA noise, other cases of measuring stations were higher than the standard exposure of 85 dBA noise. As a result, the implementation of control strategies, such as inspection and performance of control systems and insulation of the control room to prevent unnecessary exposure noise, are necessary.

  5. Regulating specific organic substances and heavy metals in industrial wastewater discharged to municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Munk, L.; Pedersen, F.

    1994-01-01

    Due to the extension of wastewater treatment plants to nutrient removal and the development towards reuse of sludge m agriculture, new guidelines for regulating industrial discharges m Denmark were needed. The paper describes how a concept for regulating the discharge of specific organic substances...... for sludge intended for use in agriculture, and the quality criteria for the aquatic environment. Proposals for general guidelines have been calculated using a simple mass balance model combined with water quality criteria and the Danish limit values for use of sludge in agriculture....

  6. Safety-Culture Exploration in Taiwan’s Metal Industries: Identifying the Workers’ Background Influence on Safety Climate

    Directory of Open Access Journals (Sweden)

    Shu-Chiang Lin

    2017-10-01

    Full Text Available The present study aims to assess the safety-climate level in Taiwan’s metal industries, as well as to identify the influence of workers’ backgrounds on the safety climate. An earlier report showed that a poor safety culture was related to the cause of accidents in Taiwan’s traditional manufacturing industries. This study surveyed a total of 839 workers who voluntarily participated and completed the safety-culture questionnaires. These workers were from a Taiwanese metal company and its five satellite companies. Three safety-climate factors, namely safety perception, safety communication and safety-management systems, were assessed. Confirmatory factor analysis (CFA was conducted by developing structural equation modeling to ensure the questionnaire’s validity. The influence of workers’ backgrounds on the safety climate was identified by using one-way ANOVA. The reliability result of the questionnaire was above the acceptable level. The overall safety-climate score was 4.22 out of a five-point scale for safety perception, 4.23 for safety-management systems and 3.97 for safety communication. The scores indicate a good level of safety climate, with room for improvement in safety communication. Additionally, the influence of workers’ backgrounds on the safety climate was confirmed. Based on the validity test, it was also found that the questionnaire could be improved by reconstructing its questions in its development process in order to increase the safety-climate model’s reliability and validity, as well as its model fit.

  7. The Impact of Quality Culture and Leadership on Customer Relationship in Organizations from the Romanian Metal Construction Industry

    Directory of Open Access Journals (Sweden)

    Liviu Ilieș

    2017-11-01

    Full Text Available The current paper is part of a wider research that has as general objective to develop an evaluation and analysis model for the total quality management (TQM system to identify best practices that determine its’ performance, in order to improve it. The research is focused on organizations from the metal construction industry. The sample consists of organizations from Romania operating in the before mentioned area, which have a consolidated position in the market and conducted efforts in implementing TQM systems. The data analysis was conducted through quantitative research methods, based on statistical processing. Regarding the research tools used for data collection, a survey based on a questionnaire was employed. The designed and pre-tested questionnaire contains items based on factors considered important in analysing and evaluating the TQM system, based on the evaluation criteria of the EFQM European Excellence Award (European Foundation for Quality Management, which provides credibility to the research. The objective of the present research is analysing the components of the TQM system, leadership and quality culture, in companies from the Romanian metal construction industry and their influence on customer relationship. The empirical research was conducted between September 2014 and August 2015, and the study is based on questioning 263 managers from 23 companies. The main research results show a very strong positive relation between the variables leadership, quality culture and customer relationship. It was also noticed that the management team of the analysed organizations is concerned with the continuous quality improvement process and that efforts are made for satisfying and exceeding customers’ expectations, thus existing the premises for creating customers’ dedicated organizations and achieving long term excellence. A surprising result concerning the leadership style favourable to quality culture’s development was obtained

  8. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries

    International Nuclear Information System (INIS)

    Thevenon, Florian; Graham, Neil D.; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John

    2011-01-01

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750–1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (> 100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. Highlights: ► Natural sources dominated trace element

  9. Evaluation of the information quality in a company of metal-mechanical industry

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto Spiegel Gualazzi

    2012-11-01

    Full Text Available This paper presents the application of an instrument for assessing the quality of information based on attributes such as accuracy, reliability, performance, among others. This instrument was applied in order to evaluate and identify ineffective information in a specific scenario of an engineering company in the metal-mechanic sector from the point of view of users of technical information. The case study aimed to demonstrate the applicability and functionality of the assessment instrument, the interest of people in evaluating their information and, finally, evaluate the scope of their results. The result of this evaluation allowed the company researched a plan of action to correct problems in its processes and identified inaccuracies in the information, indicating that the problem was solved by the method of problem solving.

  10. Assessment of levels and 'health-effects' of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques

    International Nuclear Information System (INIS)

    2008-01-01

    The International Atomic Energy Agency (IAEA) has been supporting, over the years, several coordinated research programmes (CRPs) on various research topics related to environmental issues impacting human health. The primary aim of these CRPs has been to help enhance the research and development capabilities in the Member States, particularly among developing countries; to identify the sources of various environmental contaminants and evaluate their fate; and to provide for the basis of improved health among human populations by the use of nuclear and related analytical techniques. The CRP on Assessment of Levels and Health-Effects of Airborne Particulate Matter in Mining, Metal Refining and Metal Working Industries using nuclear and related analytical techniques focused on improving the competence for research on workplace monitoring in a variety of industrial environments. The personal monitoring of the APM (airborne particulate matter) of the exposed workforce was carried out for the first time by many participants. Nuclear and related analytical techniques, including the application of proton micro-beam, were used to generate the trace element concentration profiles in various biomarkers tissues of the exposed workers. The quality assurance/quality control (QA/QC) aspects related to the CRP were addressed through intercomparison analyses of APM on filter paper samples and freeze dried human urine samples to generate validated data. These data have helped to generate correlations between the occupational exposure measured and the magnitude of the biological response. Such new information is essential to evolve procedures to considerably reduce/eliminate the pollutants in the workplace environment and to make informed decisions on the evolution of standards in working environments aimed at preserving the health of workers. The purpose of this TECDOC is to provide an overview of the activities performed under the CRP by the participants. The overall achievements

  11. Performance of metal compound on thermolysis and electrolysis on sugar industries waste water treatment: COD and color removal with sludge analysis (batch-experiment)

    Science.gov (United States)

    Sahu, Omprakash

    2017-10-01

    The sugar cane industry is one of the most water demanding industries. Sugar industries consume and generate excess amount of water. The generated water contains organic compounds, which would cause pollution. The aim of this research work is to study the effectiveness of metal compound for treatment of sugar industry waste water by thermolysis and electrolysis process. The result shows ferrous metal catalyst shows 80 and 85 % chemical oxygen demand and color removal at pH 6, optimum mass loading 4 kg/m3, treatment temperature 85 °C and treatment time 9 h. When ferrous material was used as electrode, maximum 81 % chemical oxygen demand and 84 % color removal at pH 6, current density 156 Am-2, treatment time 120 min and anode consumption 0.7 g for 1.5 L wastewater were obtained.

  12. Methyl acrylate modified apple pomace as promising adsorbent for the removal of divalent metal ion from industrial wastewater.

    Science.gov (United States)

    Chand, Piar; Bokare, Mandar; Pakade, Yogesh B

    2017-04-01

    Polymerized apple pomace (PoAP) surface was evaluated as adsorbent for the removal of Pb +2 , Cd +2 , and Ni +2 ions from aqueous solution. PoAP was characterized by FTIR, SEM, EDS, XRD, and BET surface area analyzer. Furthermore, the adsorption influencing parameters such as dose, pH, time, concentration, and temperature were optimized for maximum removal of metal ions from aqueous solution. The maximum monolayer adsorption capacity of PoAP was found to be 106, 34.12, and 19.45 mg g -1 , for Pb +2 , Cd +2 , and Ni +2 ions respectively, using the Langmuir isotherm model. The rate of adsorption was evaluated using pseudo-second order kinetics and intra-particle diffusion. The adsorption data followed pseudo-second order kinetic with the correlation coefficient (r 2 ) from 0.99-1 at all concentration. Thermodynamic study revealed endothermic nature of Pb +2 and Cd +2 adsorption and exothermic for Ni +2 ions. The rate of adsorption for binary and tertiary mixtures of Pb +2 , Ni +2 , and Cd +2 metal ion was studied using the ideal adsorbed solution theory. The regeneration study revealed that PoAP could be re-utilized up to 4 cycles for Pb +2 and 2 cycles for Cd +2 and Ni +2 ions. PoAP was successfully applied to real industrial wastewater for the removal of Pb +2 , Cd +2 , and Ni +2 ions.

  13. Adsorption of heavy metals by bio-chars produced from pyrolysis of paper mulberry from simulated industrial wastewater

    International Nuclear Information System (INIS)

    Adil, S.; Asma, M.

    2014-01-01

    Paper mulberry bio-char (by-product of pyrolysis) was evaluated for the removal of heavy metals (Cd, Cr, Cu, Zn and Pb) from simulated industrial waste water. The surface properties and surface area of the bio-char was found suitable for metal adsorption. Batch sorption studies for adsorption potential of paper mulberry bio-char for Cd, Cr, Cu, Pb and Zn were investigated under different experimental conditions of pH, temperature and contact time. Maximum removal efficiency of Cd, Cu, Pb and Zn was 97.8, 76.8, 85.6, and 82.2 % respectively at pH 12 while maximum removal of Cr was recorded (98%) at pH 2. The removal efficiency showed different behaviour at different contact times. Maximum removal efficiency of Cd, Cr, Zn was 81, 86, 61.4% at contact time of 3 hr. The maximum removal of Cu was 64.2% observed at a contact time of 4 hours while the maximum removal of Pb and Zn was 85% at contact time of 2 hr. The values of the thermodynamic parameters, enthalpy delta H, Gibbs free energy delta G of sorption and entropy delta So were calculated to define endothermic or exothermic behavior of the sorbent used. Negative value of delta G for Cd, Cu, Cr and Pb indicated paper mulberry bio-char as a feasible sorbent for the efficient removal of Cd, Cu, Cr and Pb. Negative value of delta H was observed for Cd and Pb indicating that the adsorption process is exothermic while positive value of delta H was calculated for Cu, Cr and Zn showed that the adsorption is endothermic. The results obtained showed that plant residue bio-char can act as an effective sorbent for the removal of heavy metals from aqueous solutions. (author)

  14. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability.

    Science.gov (United States)

    Mäkelä, Mikko; Watkins, Gary; Pöykiö, Risto; Nurmesniemi, Hannu; Dahl, Olli

    2012-03-15

    Industrial residue application to soil was investigated by integrating granulated blast furnace or converter steel slag with residues from the pulp and paper industry in various formulations. Specimen analysis included relevant physicochemical properties, total element concentrations (HCl+HNO3 digestion, USEPA 3051) and chemical speciation of chosen heavy metals (CH3COOH, NH2OH·HCl and H2O2+H2O2+CH3COONH4, the BCR method). Produced matrices showed liming effects comparable to commercial ground limestone and included significant quantities of soluble vital nutrients. The use of converter steel slag, however, led to significant increases in the total concentrations of Cr and V. Subsequently, total Cr was attested to occur as Cr(III) by Na2CO3+NaOH digestion followed by IC UV/VIS-PCR (USEPA 3060A). Additionally, 80.6% of the total concentration of Cr (370 mg kg(-1), d.w.) occurred in the residual fraction. However, 46.0% of the total concentration of V (2470 mg kg(-1), d.w.) occurred in the easily reduced fraction indicating potential bioavailability. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Adsorption of Heavy Metals From Industrial Wastes Using Membranes Prepared by Radiation Grafting

    International Nuclear Information System (INIS)

    Hegazy, E. A.; Kamal, H.; Maziad, N.; Dessouki, A.M.; Aly, H.F.

    1999-01-01

    Preparation of synthetic membranes using simultaneous radiation grafting of acrylic acid (AAc) and styrene (Sty) individually and in a binary monomers mixture onto polypropylene (PP) has been carried out. The effect of preparation conditions such as irradiation dose, monomer and inhibitor concentration, comonomer composition on the grafting yield was investigated. The thermal stability and mechanical properties were also investigated as a function of degree of grafting. Accordingly the possibility of its practical use in industrial waste treatment is determined. The prepared cation-exchange membranes possess good mechanical properties, high thermal stability and good characteristics for separation processes. These membranes have also good affinity toward the adsorption or chelation with Fe 3+ , Pb 2+ , and Cd 2+ ions either in a mixture or exists alone in the solution

  16. Cobalt-free nickel–metal hydride battery for industrial applications

    International Nuclear Information System (INIS)

    Takasaki, Tomoaki; Nishimura, Kazuya; Saito, Makoto; Fukunaga, Hiroshi; Iwaki, Tsutomu; Sakai, Tetsuo

    2013-01-01

    Highlights: ► The development of RE 0.9 Mg 0.1 Ni 3.9 Al 0.2 alloy (alloy no. 1) electrode. ► Good high-rate discharge using alloy no. 1 as negative electrode. ► Effective self-discharge suppression using alloy no. 1 as negative electrode. ► Adequate cycling durability using carbon-coated Ni(OH) 2 as positive electrode. ► Good high-rate characteristics in a large-sized Co-free Ni–MH battery. -- Abstract: A cobalt-free (Co-free) RE 0.9 Mg 0.1 Ni 3.9 Al 0.2 alloy (RE: rare earth) was prepared for use in a nickel–metal hydride (Ni–MH) battery. The use of the alloy as the negative electrode of the Ni–MH battery effectively improved the high-rate discharge and suppressed the self-discharge compared to the conventional AB 5 -type alloy. Moreover, carbon-coated Ni(OH) 2 has been developed to produce a Co-free Ni–MH battery. This material exhibits a capacity retention comparable to that of the conventional CoOOH-coated Ni(OH) 2 . A 205 A h Co-free Ni–MH battery cell was constructed using the Co-free materials, and this cell exhibited a good high-rate discharge performance

  17. Thermal stability of some metal-palmitate soaps which find various industrial applications

    Directory of Open Access Journals (Sweden)

    Shoeb, Zein E.

    2001-10-01

    Full Text Available The soaps of alkaline earth's and transition elements and closed ‘d’ orbitals were prepared by the double decomposition method by the reaction between metallic salts and sodium palmitate. The thermal stability of these soaps was studied in order to throw the light on their suitability for using as catalysts or lubricants. The soaps of alkaline earth's were found to be more stable than transition and ‘d’ closed shell soaps.Se han preparado jabones de tierras alcalinas y elementos de transición y orbitales “d” completos por el método de la descomposición doble mediante la reacción entre sales metálicas y palmitato sódico. La estabilidad térmica de estos jabones se estudio con el fin de arrojar luz sobre su idoneidad para su uso como catalizadores o lubricantes. Se encontró que los jabones de las tierras alcalinas son más estables que los de transición y que los jabones con la capa “d” completa.

  18. Control of Transboundary Movement of Radioactive Material Inadvertently Incorporated into Scrap Metal and Semi-finished Products of the Metal Recycling Industries. Results of the Meetings Conducted to Develop a Draft Code of Conduct

    International Nuclear Information System (INIS)

    2014-02-01

    In 2010, the IAEA initiated the development of a code of conduct on the transboundary movement of radioactive material inadvertently incorporated into scrap metal and semi- finished products of the metal recycling industries (Metal Recycling Code of Conduct). The Metal Recycling Code of Conduct was intended to harmonize the approaches of Member States in relation to the discovery of radioactive material that may inadvertently be present in scrap metals and semi-finished products subject to transboundary movement, and their safe handling and management to facilitate regulatory control. The Metal Recycling Code of Conduct was envisaged as being complementary to the Safety Guide on Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries (IAEA Safety Standards Series No. SSG-17), which provides recommendations, principally within a national context, on the protection of workers, members of the public and the environment in relation to the control of radioactive material inadvertently incorporated in scrap metal. In February 2013, the third open-ended meeting of technical and legal experts to develop the Metal Recycling Code of Conduct was organized. The objective of this meeting was to address the comments received from Member States and to finalize the text of the draft Metal Recycling Code of Conduct. Representatives from 55 Member States, one non-Member State and the EU, together with seven observers from the metal recycling industry, reviewed the comments and revised the draft accordingly. In September 2013, in Resolution GC(57)/RES/9, the IAEA General Conference recorded that it 'Appreciates the intensive efforts undertaken by the Secretariat to develop a code of conduct on the transboundary movement of scrap metal, or materials produced from scrap metal, that may inadvertently contain radioactive material, and encourages the Secretariat to make the results of the discussion conducted on this issue available to

  19. Theoretical and practical investigation into sustainable metal joining process for the automotive industry

    Science.gov (United States)

    Al-Jader, M. A.; Cullen, J. D.; Shaw, Andy; Al-Shamma'a, A. I.

    2011-08-01

    Currently there are about 4300 weld points on the average steel vehicle. Errors and problems due to tip damage and wear can cause great losses due to production line downtime. Current industrial monitoring systems check the quality of the nugget after processing 15 cars average once every two weeks. The nuggets are examined off line using a destructive process, which takes approximately 10 days to complete causing a long delay in the production process. In this paper a simulation results using software package, SORPAS, will be presented to determined the sustainability factors in spot welding process including Voltage, Current, Force, Water cooling rates, Material thicknesses and usage. The experimental results of various spot welding processes will be investigated and reported. The correlation of experimental results shows that SORPAS simulations can be used as an off line measurement to reduce factory energy usage. This paper also provides an overview of electrode current selection and its variance over the lifetime of the electrode tip, and describes the proposed analysis system for the selection of welding parameters for the spot welding process, as the electrode tip wears.

  20. Pyrolisator Coal to be Cokes (Coal Cokes Casting Metal Industry Standard

    Directory of Open Access Journals (Sweden)

    Sukamto

    2016-01-01

    Full Text Available Pyrolisis of coal is partial combustion to reduce total moisture, volatile matter and sulfur contens and increase the calorific value of coal. The results of pyrolysis of coal is coke. At the laboratory level studies, pyrolisis done in batch using different calorie, namely 5800, 6000, 6300 kcal/kg and a time of 15-60 minutes and the temperature 400-800°C. Maximum results obtained total moisture (0.44%, fixed carbon (89%, volatile matter (2.4%, sulfur content (undetected and ash (7.2%. Then applied to the scale miniplant with continuous processes using multitube pyrolisator which are designed to operate in the temperature range 400-800°C and a flow rate of 240-730 kg/h, obtained coal cokes that meets industry quality standards, namely TM (0.42%, FC (90.40%, VM (2.16%, S (not detected, Ash (6.8% incalori 6300 kcal/h, a flow rate of 240 kg / h and temperatures between 600-700°C

  1. Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Buqing; Liang, Tao, E-mail: liangt@igsnrr.ac.cn; Wang, Lingqing; Li, Kexin

    2014-08-15

    An extensive soil survey was conducted to study pollution sources and delineate contamination of heavy metals in one of the metalliferous industrial bases, in the karst areas of southwest China. A total of 597 topsoil samples were collected and the concentrations of five heavy metals, namely Cd, As (metalloid), Pb, Hg and Cr were analyzed. Stochastic models including a conditional inference tree (CIT) and a finite mixture distribution model (FMDM) were applied to identify the sources and partition the contribution from natural and anthropogenic sources for heavy metal in topsoils of the study area. Regression trees for Cd, As, Pb and Hg were proved to depend mostly on indicators of anthropogenic activities such as industrial type and distance from urban area, while the regression tree for Cr was found to be mainly influenced by the geogenic characteristics. The FMDM analysis showed that the geometric means of modeled background values for Cd, As, Pb, Hg and Cr were close to their background values previously reported in the study area, while the contamination of Cd and Hg were widespread in the study area, imposing potentially detrimental effects on organisms through the food chain. Finally, the probabilities of single and multiple heavy metals exceeding the threshold values derived from the FMDM were estimated using indicator kriging (IK) and multivariate indicator kriging (MVIK). The high probabilities exceeding the thresholds of heavy metals were associated with metalliferous production and atmospheric deposition of heavy metals transported from the urban and industrial areas. Geostatistics coupled with stochastic models provide an effective way to delineate multiple heavy metal pollution to facilitate improved environmental management. - Highlights: • Conditional inference tree can identify variables controlling metal distribution. • Finite mixture distribution model can partition natural and anthropogenic sources. • Geostatistics with stochastic models

  2. Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China

    International Nuclear Information System (INIS)

    Zhong, Buqing; Liang, Tao; Wang, Lingqing; Li, Kexin

    2014-01-01

    An extensive soil survey was conducted to study pollution sources and delineate contamination of heavy metals in one of the metalliferous industrial bases, in the karst areas of southwest China. A total of 597 topsoil samples were collected and the concentrations of five heavy metals, namely Cd, As (metalloid), Pb, Hg and Cr were analyzed. Stochastic models including a conditional inference tree (CIT) and a finite mixture distribution model (FMDM) were applied to identify the sources and partition the contribution from natural and anthropogenic sources for heavy metal in topsoils of the study area. Regression trees for Cd, As, Pb and Hg were proved to depend mostly on indicators of anthropogenic activities such as industrial type and distance from urban area, while the regression tree for Cr was found to be mainly influenced by the geogenic characteristics. The FMDM analysis showed that the geometric means of modeled background values for Cd, As, Pb, Hg and Cr were close to their background values previously reported in the study area, while the contamination of Cd and Hg were widespread in the study area, imposing potentially detrimental effects on organisms through the food chain. Finally, the probabilities of single and multiple heavy metals exceeding the threshold values derived from the FMDM were estimated using indicator kriging (IK) and multivariate indicator kriging (MVIK). The high probabilities exceeding the thresholds of heavy metals were associated with metalliferous production and atmospheric deposition of heavy metals transported from the urban and industrial areas. Geostatistics coupled with stochastic models provide an effective way to delineate multiple heavy metal pollution to facilitate improved environmental management. - Highlights: • Conditional inference tree can identify variables controlling metal distribution. • Finite mixture distribution model can partition natural and anthropogenic sources. • Geostatistics with stochastic models

  3. Practice and prospects of creation of equipment for reprocessing and utilization of contaminated metal wastes of plants of nuclear industry in Russia

    International Nuclear Information System (INIS)

    Popov, G.P.

    2005-01-01

    Program of reprocessing and utilization of metallic radioactive wastes exists in Russia. In the framework of this program in nuclear industry it is accumulated forty years experience on taking-off-service, disassembly, decontamination and reprocessing of technological facilities. Some technical characteristics of the units used for these operations are represented [ru

  4. Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp nov., Ralstonia metallidurans sp nov and Ralstonia basilensis Steinle et al. 1998 emend.

    NARCIS (Netherlands)

    Goris, J; de Vos, P; Coenye, T; Hoste, B; Janssens, D; Brim, H; Diels, L; Mergeay, M; Kersters, K; Vandamme, P

    Thirty-one heavy-metal-resistant bacteria isolated from industrial biotopes were subjected to polyphasic characterization, including 16S rDNA sequence analysis, DNA-DNA hybridizations, biochemical tests, whole-cell protein and fatty-acid analyses. All strains were shown to belong to the Ralstonia

  5. Energy Consumption and Carbon Dioxide Emissions of China’s Non-Metallic Mineral Products Industry: Present State, Prospects and Policy Analysis

    Directory of Open Access Journals (Sweden)

    Hui Hu

    2014-11-01

    Full Text Available China is the largest non-metallic mineral producer in the world and one of the key consumers of four major non-metallic mineral products, including cement, refractories, plate glass and ceramics. The non-metallic mineral products industry’s rapid growth has brought about a large demand for energy. The present study provides an overview of China’s non-metallic mineral products industry in terms of production, energy consumption and carbon dioxide emissions. In this industry, the energy efficiency is relatively low and the level of carbon dioxide emission is much higher than developed countries’ average. This study interprets the effects of some newly issued policies and analyses the influential factors in achieving energy conservation and emission reduction goals. It also discusses the prospects for saving energy and emission reduction in the industry. Retrofitting facilities and using new production technologies is imperative. Additionally, implementing market-based policies, promoting industrial transformation and effective international cooperation would help decrease carbon dioxide emissions and energy consumption.

  6. ICARUS-4 : a database of energy reduction options for the Netherlands, 1995-2020 : Sector study for the Metals Products and Electrotechnical Industry

    NARCIS (Netherlands)

    Alsema, E.A.

    2000-01-01

    In this report we describe the energy consumption in 1995 and the energy saving options that exist within the metal products and electrotechnical industry (SBI/NACE 28-32, 34-35) in the Netherlands. The data will be included in the ICARUS-4 database which gives an inventory of the technological

  7. ICARUS-4 : a database of energy reduction options for the Netherlands, 1995-2020 : sector study for the non-ferrous metals industry

    NARCIS (Netherlands)

    Alsema, E.A.

    2000-01-01

    In this report we describe the energy consumption in 1995 and the energy saving options that exist within the non-ferro base metal industry (SBI/NACE 27.4-5) in the Netherlands. The data will be included in the ICARUS-4 database which gives an inventory of the technological options for energy

  8. Simultaneous determination of silver and other heavy metals in aquatic environment receiving wastewater from industrial area, applying an enrichment method

    Directory of Open Access Journals (Sweden)

    Naeemullah

    2016-01-01

    Full Text Available In the present study, silver (Ag, cadmium (Cd, nickel (Ni, cobalt (Co and lead (Pb were simultaneously determined in water samples of fresh water canal receiving untreated effluents from an industrial area, of Sindh Pakistan. The analytes in the water sample were determined by CPE using ammonium pyrrolidinedithiocarbamate (APDC as a complexing agent and then entrapped in non-ionic surfactant, octylphenoxypolyethoxyethanol (Triton X-114. The surfactant rich phase was diluted with acidic ethanol prior to analysis by flame atomic absorption spectrometry. The variables affecting the complexation and extraction steps such as pH of sample solution, concentration of oxine and Triton X-114, equilibration temperature and time period for shaking were investigated in detail. The validation of the procedure was carried out by analysis of a certified reference sample of water (CRM1634e. Reliability of the proposed method was also checked by the standard addition method in a real sample at three concentration levels of all metals. Under the optimum conditions, the preconcentration of 10 mL sample solutions, allowed preconcentration factor of 20-fold. The lower limit of detection obtained for Ag, Cd, Ni, Co and Pb was 0.42, 0.48, 0.92, 0.62, and 1.42 μg L−1, respectively. The proposed procedure was successfully applied to waste and fresh water samples for simultaneous determination of different metals. The concentration of Ag, Cd, Ni, Co and Pb has shown a decreased trend from 46.5–6.96, 23.0–8.92, 30.2–12.8, 14.2–4.45 and 15.3–5.32 μg L−1, respectively from initial entrance of waste water along the downstream of canal.

  9. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    International Nuclear Information System (INIS)

    Helsen, Lieve; Hacala, Amelie

    2006-01-01

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 μm) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 μm)

  10. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    International Nuclear Information System (INIS)

    Voglar, Grega E.; Lestan, Domen

    2011-01-01

    Highlights: → We assess the feasibility of using soil S/S for industrial land reclamation. → Retarders, accelerators, plasticizers were used in S/S cementitious formulation. → We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg -1 of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm -2 achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  11. Development of a surfactant liquid membrane extraction process for the cleansing of industrial aqueous effluents containing metallic cation traces

    International Nuclear Information System (INIS)

    Rapaumbya Akaye, Guy-Roland

    1994-01-01

    The purpose of this work was to develop a process of surfactant liquid membrane extraction to purify industrial waste solution containing Cu(II), Fe(III), and Zn(II) (about 0,1 g/L). The extractant is the ammonium salt of Cyanex 306 and Aliquat 336. The first part of this work deals with the study of the liquid-liquid extraction of the metals. The efficiency of the extractant has been shown for the extraction of each metal alone and for Cu(II) and Zn(II) in the case of a mixture of the three metals. During this study we have observed that Fe(III) is reduced to Fe(II) (which is not extracted by the salt of Cyanex 301) in presence of Cu(II) and the quaternary ammonium salt (Aliquat 336). The optimisation of the experimental conditions for the discontinuous surfactant liquid membrane process led us to choose the following composition of the emulsion: 1,5 % of Cyanex 301 salt, 2,5 % of ECA 4360, dodecan. The internal phase is an aqueous solution containing 3,5 mol/L of NaOH and 0,5 mol/L tri-ethanolamin The residual concentration of Cu(II) and Zn(II) in the external phase is very low. In the case of iron, only 60 % are extracted because of the reduction phenomenon (10 % in liquid-liquid extraction). The realisation of the continuous process in pulsed column, after optimisation of hydrodynamics conditions, leads to similar results. In stationary conditions, we obtain a raffinate containing less than 0,5 mg/L of Cu(II) and Zn(II) and 36 mg/L of iron. The internal phase contains about 2 g/L of Cu(II) an Zn(II). We tried and minimize the reduction of Fe(III) in surfactant liquid membrane process. Less than 16 % of iron cannot be reduced. This leads to a purification of only 84 % In the basis of these results, processes of purification have been proposed for effluents of various composition. They enable to purify the effluent and besides to concentrate the pollutants about twenty times. (author) [fr

  12. Practical study on the electrochemical simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater using a packed-bed cathode

    Directory of Open Access Journals (Sweden)

    Meshaal F. Alebrahim

    2017-06-01

    Full Text Available In this work, electrochemical-simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater containing different ratios of copper to zinc was studied using a packed-bed continuous-recirculation flow electrolytic reactor. The total nominal initial concentration of both metals, circulating rate of flow and nominal initial pH were held constant. Parameters affecting the removal percent and current efficiency of removal, such as applied current and time of electrolysis were investigated. Results revealed that increased current intensity accelerated the removal of metals and diminish current efficiency. It was also observed that selective removal of both metals is possible when the applied current was of small intensity. Moreover, the factors that led to loss of faradaic efficiency were discussed.

  13. Assessment of heavy metal and bacterial pollution in coastal aquifers from SIPCOT industrial zones, Gulf of Mannar, South Coast of Tamil Nadu, India

    Science.gov (United States)

    Selvam, S.; Antony Ravindran, A.; Venkatramanan, S.; Singaraja, C.

    2017-05-01

    Heavy metals and microbiological contamination were investigated in groundwater in the industrial and coastal city of Thoothukudi. The main sources of drinking water in this area are water bores which are dug up to the depth of 10-50 m in almost every house. A number of chemical and pharmaceutical industries have been established since past three decades. Effluents from these industries are reportedly being directly discharged onto surrounding land, irrigation fields and surface water bodies forming point and non-point sources of contamination for groundwater in the study area. The study consists of the determination of physico-chemical properties, trace metals, heavy metals and microbiological quality of drinking water. Heavy metals were analysed using Inductively Coupled Plasma Mass Spectrometry and compared with the (WHO in Guidelines for drinking water quality, 2004) standards. The organic contamination was detected in terms of most probable number (MPN) test in order to find out faecal coliforms that were identified through biochemical tests. A comparison of the results of groundwater samples with WHO guidelines reveals that most of the groundwater samples are heavily contaminated with heavy metals like arsenic, selenium, lead, boron, aluminium, iron and vanadium. The selenium level was higher than 0.01 mg/l in 82 % of the study area and the arsenic concentration exceeded 0.01 mg/l in 42 % of the area. The results reveal that heavy metal contamination in the area is mainly due to the discharge of effluents from copper industries, alkali chemical industry, fertiliser industry, thermal power plant and sea food industries. The results showed that there are pollutions for the groundwater, and the total Coliform means values ranged from 0.6-145 MPN ml-1, faecal Coliform ranged from 2.2-143 MPN ml-1, Escherichia coli ranged from 0.9 to 40 MPN ml-1 and faecal streptococci ranged from 10-9.20 × 102 CFU ml-1. The coastal regions are highly contaminated with total

  14. Investigation of potential soil contamination with Cr and Ni in four metal finishing facilities at Asopos industrial area.

    Science.gov (United States)

    Panagopoulos, Ioannis; Karayannis, Athanassios; Kollias, Konstantinos; Xenidis, Anthimos; Papassiopi, Nymphodora

    2015-01-08

    The objective of this work was to investigate whether previous disposal practices in four metal finishing facilities, located at Asopos river basin (East-Central Greece), have caused any potential serious contamination of soils. The study focused mainly on Cr and Ni, which are the primary elements of concern in the area. To estimate the natural geochemical levels of Cr and Ni, thirty soil samples were collected from locations that were not suspected of any contamination. In this group of samples, Cr concentration varied between 60 and 418 mg/kg, and Ni concentrations varied from 91 to 1200 mg/kg. The second group of samples consisted of more than 100 drill cores and surface soil samples, potentially affected by the disposal of effluents and/or the drainage of runoff water from the industrial facilities. According to the findings of the study, the disposal of treated effluents in absorption type sinks resulted occasionally in the contamination of a thin layer of soil just at the bottom of the sinks, but there was no indication of downward migration, since Cr and Ni concentrations in the lower soil layers were similar to those of the reference soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Health interventions for the metal working industry: which is the most cost-effective? A study from a developing country.

    Science.gov (United States)

    Salinas, A M; Villarreal, E; Nuñez, G M; Garza, M E; Briones, H; Navarro, O

    2002-05-01

    This study ranked the cost-effectiveness of health interventions in the metal working industry in a developing country. Data were based on 82 034 workers of the Northern region of Mexico. Effectiveness was measured through 'healthy life years' (HeaLYs) gained. Costs were estimated per worker according to type and appropriate inputs from selected health interventions. 'Hand' was the anatomical region that yielded the most gain of HeaLYs and amputation was the injury that yielded the most gain of HeaLYs. The most effective health intervention corresponded to training, followed by medical care, education, helmets, safety shoes, lumbar supports, safety goggles, gloves and safety aprons. In dollar terms, education presented the best cost-effectiveness ratio (US$637) and safety aprons presented the worst cost-effectiveness ratio (US$1 147 770). Training proved to be a very expensive intervention, but presented the best effectiveness outcome and the second best cost-effectiveness ratio (US$2084). Cost-effectiveness analyses in developing countries are critical. Corporations might not have the same funds and technology as those in developed countries or multinational companies.

  16. Detoxification and recovery capacities of Corbicula fluminea after an industrial metal contamination (Cd and Zn): a one-year depuration experiment.

    Science.gov (United States)

    Arini, A; Daffe, G; Gonzalez, P; Feurtet-Mazel, A; Baudrimont, M

    2014-09-01

    This study aimed to assess the recovery capacity of the freshwater bivalve Corbicula fluminea subjected to industrial metal discharges (Cd, Zn). After a 24-day exposure in a metal-contaminated river, bivalves were transferred and maintained in the laboratory for one year under metal-free conditions. Metal accumulation, metallothionein production and genetic expressions of genes involved in metal stress were studied. Results demonstrated the high persistence of Cd in tissues (only 73% eliminated after 365 days) whereas Zn was rapidly depurated. The Cd half-life was estimated around 240 days. Metallothioneins were strongly induced within the 28 first days of decontamination, then decreased by 45% after 365 days. The metal exposure of bivalves led to a significant gene induction. After 28 days, most of the genes were no longer overexpressed, suggesting that the bivalves may withstand small amounts of non-essential metals in their tissues without showing signs of detrimental effects on the tested genes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Metal bioaccumulation in the Mediterranean barbel (Barbus meridionalis) in a Mediterranean river receiving effluents from urban and industrial wastewater treatment plants.

    Science.gov (United States)

    Maceda-Veiga, Alberto; Monroy, Mario; de Sostoa, Adolfo

    2012-02-01

    Although sewage treatment plants (STPs) play a crucial role in maintaining the water quality and flow of Mediterranean rivers, particularly during drought periods, few studies have addressed their impact on aquatic fauna. Here we analyzed the role of STPs as a source of metals in the Ripoll River, a heavily urbanized and industrialized watercourse with a long history of anthropogenic disturbance. For this purpose, we measured iron, mercury, cadmium, zinc, lead, nickel and copper accumulation in the liver and muscle of the Mediterranean barbel, Barbus meridionalis and also the concentrations of these metals in the river water. Industrial and urban sewage treatment plants are source of metals in Ripoll River but the former mainly increases Zn and Ni values. Significant differences in metal bioaccumulation between reference and polluted sites were detected. Nevertheless, there was only a significant positive relationship between bioaccumulation of Cu and Hg, and their concentration in water. In addition, the lead concentration in fish was not clearly associated with the presence of STPs. On the basis of morphometric parameters, the hepato-somatic index was the only one denoting significant differences between polluted and references sites. Given that fish are key elements in food webs, recreational fishing is practice in this area and that river water is used for agricultural purposes, we recommend long-term studies to analyze the impact of metal pollution in this river. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China

    International Nuclear Information System (INIS)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-01-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. -- Highlights: •Large-scale Pb/Zn smelters contributed to elevated trace elements in the street dust. •The hard alloy processing caused the enrichment of a few elements. •Cd, In, Zn, Ag and Pb were the most polluted elements. •Northwestern Zhuzhou suffered severe contamination for a range of trace elements. -- Pb/Zn smelting and hard alloy processing operations have caused seriously contamination of trace metal/metalloids in the street dust

  19. No contaminant methods for the bio films formation control on metallic surfaces of industrial interest; Metodos no contaminantes para controlar la formacion de biopeliculas sobre superficies metalicas de interes industrial

    Energy Technology Data Exchange (ETDEWEB)

    Gomez de Saravia, S. G.; Guiamet, P. S.

    2003-07-01

    The aim of this paper was the control of aerobic and anaerobic bacterial biofilms formation on metal surfaces of industrial interest such as stainless steel and mild steel. A natural biocida obtained of an aqueous extract of seeds of black mustard (Brassica nigra) and mixtures of immunoglobulins IgA, IgG, and IgM were used. Microscopic techniques like scanning electron microscopy (SEM) and epifluorescens microscopy were used for observing bacterial adhesion of the metal surfaces. A marked inhibition of bacterial adherence was observed when an immunoglobulin film was formed on the metal surface. When the natural biocide was used, an important decrease in the number of microorganisms in the biofilms was observed. (Author) 8 refs.

  20. A National Assistance Extension Program for Metal Casting: A foundation industry. Final report for the period February 16, 1994 through May 15, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.H.

    1997-09-01

    The TRP award was proposed as an umbrella project to build infrastructure and extract lessons about providing extension enabling services to the metal casting industry through the national network of Manufacturing Technology Center`s (MTC`s). It targeted four discrete task areas required for the MCC to service the contemplated needs of industry, and in which the MCC had secured substantial involvement of partner organizations. Task areas identified included Counter-Gravitational Casting, Synchronous Manufacturing, Technology Deployment, and Facility and Laboratory Improvements. This volume provides project reports, case studies, and publicity information.

  1. A National Assistance Extension Program for Metal Casting: a foundation industry. Final report for the period February 16, 1994 through May 15, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The TRP award was proposed as an umbrella project to build infrastructure and extract lessons about providing extension-enabling services to the metal casting industry through the national network of Manufacturing Technology Center`s (MTC`s). It targeted four discrete task areas required for the MCC to service the contemplated needs of industry, and in which the MCC had secured substantial involvement of partner organizations. Task areas identified included Counter-Gravitational Casting, Synchronous Manufacturing, Technology Deployment, and Facility and Laboratory Improvements. Each of the task areas includes specific subtasks which are described.

  2. Evaluation of heavy metals in atmospheric emissions from automotive industry by total reflection X-ray fluorescence with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Weber Neto, Jose, E-mail: silvana@fec.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Saneamento e Ambiente; Vives, Ana Elisa Sirito de, E-mail: aesvives@unimep.b [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo

    2009-07-01

    This study had as goal to determine heavy metals and other elements (Ba, Br, Ca, Pb, Cl, Cr, Sr, Fe, Mn, Ni, K, Si, Ti and Zn) in atmospheric pollutants generated by an automotive industry located in the city of Engenheiro Coelho, state of Sao Paulo, Brazil. The sampling and sample preparation procedures were based on methods established by the Company of Sanitation and Technology (CETESB L9.234) and also by the Environmental Protection Agency (EPA - Method 29). The analysis was performed at XRF Beamline (D09B-XRF) in the Synchrotron Light Source Laboratory (Campinas/SP). A white beam of synchrotron radiation was used for sample and standard excitation which were irradiated by 100 seconds. For X-ray lines detection, a Ge (HP) detector with 150 eV of resolution at 5.9 keV was employed. For zinc, iron, barium, calcium and potassium, the values obtained were in the range of 30 mg/Nm{sup 3} and, for other elements, the concentrations were approximately 1 mg/Nm{sup 3}. The sum of As, Be, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, Te and Zn concentration was compared with the limits established by CONAMA 264/1999 and SEMA 041/2002 resolutions (7.0 mg/Nm{sup 3}) and it was observed that, for all samples, sums are higher than the permissive value mainly due to the high concentration of zinc. Detection limits for SR-TXRF technique were 0.10 mug/Nm{sup 3} for Pb and 0.02 mug/Nm{sup 3} for Zn. (author)

  3. Evaluation of heavy metals in atmospheric emissions from automotive industry by total reflection X-ray fluorescence with synchrotron radiation

    International Nuclear Information System (INIS)

    Moreira, Silvana; Weber Neto, Jose; Vives, Ana Elisa Sirito de

    2009-01-01

    This study had as goal to determine heavy metals and other elements (Ba, Br, Ca, Pb, Cl, Cr, Sr, Fe, Mn, Ni, K, Si, Ti and Zn) in atmospheric pollutants generated by an automotive industry located in the city of Engenheiro Coelho, state of Sao Paulo, Brazil. The sampling and sample preparation procedures were based on methods established by the Company of Sanitation and Technology (CETESB L9.234) and also by the Environmental Protection Agency (EPA - Method 29). The analysis was performed at XRF Beamline (D09B-XRF) in the Synchrotron Light Source Laboratory (Campinas/SP). A white beam of synchrotron radiation was used for sample and standard excitation which were irradiated by 100 seconds. For X-ray lines detection, a Ge (HP) detector with 150 eV of resolution at 5.9 keV was employed. For zinc, iron, barium, calcium and potassium, the values obtained were in the range of 30 mg/Nm 3 and, for other elements, the concentrations were approximately 1 mg/Nm 3 . The sum of As, Be, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, Te and Zn concentration was compared with the limits established by CONAMA 264/1999 and SEMA 041/2002 resolutions (7.0 mg/Nm 3 ) and it was observed that, for all samples, sums are higher than the permissive value mainly due to the high concentration of zinc. Detection limits for SR-TXRF technique were 0.10 μg/Nm 3 for Pb and 0.02 μg/Nm 3 for Zn. (author)

  4. Metal and nutrient behavior in the Raritan estuary, New Jersey, U.S.A.: The effect of multiple freshwater and industrial waste inputs

    Science.gov (United States)

    Maest, A.S.; Crerar, D.A.; Stallard, R.F.; Ryan, J.N.

    1990-01-01

    A geochemical analysis of the Raritan estuary during high and low river flow is presented. Several statistical and graphical approaches, in addition to a hydrodynamic model of the Raritan estuary, are used to demonstrate the effects of lateral inputs on trace-element distribution in a complicated fluvial-marine system. Results from factor and cluster analysis show that nutrient-salinity distributions on both sampling dates are controlled primarily by freshwater-saltwater mixing. Industrial and municipal waste sources within the estuary are important in controlling dissolved organic carbon (at low flow) and dissolved and bottom sediment trace metals. Biological and physico-chemical reactions have a significant, but secondary effect on nutrient and trace-metal distributions with salinity. Apparent flux calculations and property-property plots show that for dissolved phosphate, nitrate and inorganic carbon, the Raritan estuary can be divided into two mixing zones, with the Raritan River controlling nutrient concentrations in the lower-salinity stretches and the South River controlling their distributions at intermediate and higher salinities. High enrichment factors of most metals in estuary bottom sediment reveal that this is an important and semi-permanent sink for trace metals in the Raritan system. Previous work on suspended sediment in the estuary and river substantiates that this load is also an important sink for trace metals; however, many of these metals are in leachable modes which are more susceptible to release and incorporation into the food chain. ?? 1990.

  5. Migration of Hazardous Substances Through Soil. Part 2. Determination of the Leachability of Metals from Five Industrial Wastes and Their Movement within Soil

    Science.gov (United States)

    1985-08-01

    spent brines emerging from the electrolysis cells are treated, and the mercury is precipitated as the brine is concentrated and recycled. About 80 percent...block -- mb~er)Industrial wastes Chlorine production brine waste Electrplating wcste Toxic metals Nickel Cbt,’rpium battery waste Cadmium Inorganic...may be t1- oly mecil if concern and then only if the waste is co- disposed with municipai refuse. Chlorine production brine waste such as the sample

  6. Spatial distribution, environmental risk and source of heavy metals in street dust from an industrial city in semi-arid area of China

    Directory of Open Access Journals (Sweden)

    Han Xiufeng

    2017-06-01

    Full Text Available Environmental risks associated with Co, Cr, Cu, Mn, Ni, Pb, V and Zn in street dust collected from Baotou, a medium-sized industrial city in a semi-arid area of northwest China, were assessed by using enrichment factor and the potential ecological index. Their spatial distributions and sources in the dust were analyzed on the basis of geostatistical methods and multivariate statistical analysis, respectively. The results indicate that street dust in Baotou has elevated heavy metal concentrations, especially of Co, Cr, Cu, Pb and Zn. Co in the dust was significantly enriched. Cr and Pb were from moderate to significant enrichment. Cu and Zn were from minimal to moderate enrichment, whereas Mn, Ni and V in the dust were from deficient to minimal enrichment. The ecological risk levels of Co and Pb in the dust were moderate to considerable and low to moderate, respectively, whereas those of other heavy metals studied in the dust presented low ecological risk. Different distribution patterns were found among the analyzed heavy metals. Three main sources of these heavy metals were identified. Cr, Mn, Ni and V originated from nature and industrial activities. Cu, Pb and Zn derived mainly from traffic sources, and Co was mainly from construction sources.

  7. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China.

    Science.gov (United States)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-11-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Eriophorum angustifolium and Lolium perenne metabolic adaptations to metals- and metalloids-induced anomalies in the vicinity of a chemical industrial complex.

    Science.gov (United States)

    Anjum, Naser A; Ahmad, Iqbal; Rodrigues, Sónia M; Henriques, Bruno; Cruz, Nuno; Coelho, Cláudia; Pacheco, Mário; Duarte, Armando C; Pereira, Eduarda

    2013-01-01

    As plants constitute the foundation of the food chain, concerns have been raised about the possibility of toxic concentrations of metals and metalloids being transported from plants to the higher food chain strata. In this perspective, the use of important phytotoxicity endpoints may be of utmost significance in assessing the hazardous nature of metals and metalloids and also in developing ecological soil screening levels. The current study aimed to investigate the role of glutathione (GSH) and its associated enzymes in the metabolic adaptation of two grass species namely Eriophorum angustifolium Honck. and Lolium perenne L. to metals and metalloids stress in the vicinity of a chemical industrial complex (Estarreja, Portugal). Soil and plant samples were collected from contaminated (C) and non-contaminated (reference, R) sites, respectively, near and away from the Estarreja Chemical Complex, Portugal. Soils (from 0 to 10 and 10 to 20 cm depths) were analyzed for pH, organic carbon, and metals and metalloids concentrations. Plant samples were processed fresh for physiological and biochemical estimations, while oven-dried plant samples were used for metals and metalloids determinations following standard methodologies. Both soils and plants from the industrial area exhibited differential concentrations of major metals and metalloids including As, Cu, Hg, Pb, and Zn. In particular, L. perenne shoot displayed significantly higher and lower concentrations of Pb and As, respectively at contaminated site (vs. E. angustifolium). Irrespective of sites, L. perenne shoot exhibited significantly higher total GSH pool, oxidized glutathione (GSSG) and oxidized protein (vs. E. angustifolium). Additionally, severe damages to photosynthetic pigments, proteins, cellular membrane integrity (in terms of electrolyte leakage), and lipid peroxidation were also perceptible in L. perenne shoot. Contrarily, irrespective of the sites, activities of catalase and GSH-regenerating enzyme, GSH

  9. Industrial fabrication of an optical security device for document protection using plasmon resonant transmission through a thin corrugated metallic film embedded on a plastic foil

    Science.gov (United States)

    Sauvage-Vincent, Jean; Jourlin, Yves; Tonchev, Svetlen; Veillas, Colette; Claude, Pedri; Parriaux, Olivier

    2012-06-01

    Known since a long time in polymer banknotes and presented in the few years in paper banknotes, the principle of windowed documents has been currently extended to ID documents. We present an innovative solution which combines resonant transmission and Zero Order Device technologies and which is dedicated to improve windows in terms of the overt security level. With this R&D program, Hologram Industries targeted to obtain an overt visual security device that should be readily checked in transmission in the same manner as the established paper watermark. The proposed solution is based on the propagation of resonant modes in a thin continuous corrugated metallic layer embedded (encapsulated) between two dielectric layers of near equal refractive index. The mode of most interest is the Long Range Plasmon Mode. The coupling condition to the Long Range Mode is principally related to the corrugation, the metal layer thickness and the index of the two dielectric layers. If the condition of the mode excitation through the grating is fulfilled, a predetermined wavelength will be coupled to the Long Range Plasmon Mode. This mode will propagate at each metal/dielectric interface with a low loss and will concentrate the electric field inside the metal layer. This effect of coupling enables the transmission of a peak at this wavelength through the metallic layer. It defines the so called "extraordinary resonant transmission".

  10. Trace metal inventories and lead isotopic composition chronicle a forest fire's remobilization of industrial contaminants deposited in the angeles national forest.

    Directory of Open Access Journals (Sweden)

    Kingsley O Odigie

    Full Text Available The amounts of labile trace metals: [Co] (3 to 11 µg g-1, [Cu] (15 to 69 µg g-1, [Ni] (6 to 15 µg g-1, [Pb] (7 to 42 µg g-1, and [Zn] (65 to 500 µg g-1 in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change.

  11. Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters

    Science.gov (United States)

    Vystavna, Yuliya

    2014-05-01

    The research focuses on the monitoring of trace metals and pharmaceuticals as potential anthropogenic indicators of industrial and urban influences on surface water in poorly gauged transboundary Ukraine/Russia region. This study includes analysis of tracers use for the indication of water pollution events, including controlled and emerging discharges, and discussion of the detection method of these chemicals. The following criteria were proposed for the evaluation of indicators: specificity (physical chemical properties), variability (spatial and temporal) and practicality (capacity of the sampling and analytical techniques). The combination of grab and passive water sampling (i.e. DGT and POCIS) procedure was applied for the determination of dissolved and labile trace metals (Ag, Cd, Cr, Cu, Ni, Pb and Zn) and pharmaceuticals (carbamazepine, diazepam, paracetamol, caffeine, diclofenac and ketoprofen). Samples were analysed using ICP - MS (trace metals) and LC-MS/MS ESI +/- (pharmaceuticals). Our results demonstrate the distinctive spatial and temporal patterns of trace elements distribution along an urban watercourse. Accordingly, two general groups of trace metals have been discriminated: 'stable' (Cd and Cr) and 'time-varying' (Cu, Zn, Ni and Pb). The relationship Cd >> Cu > Ag > Cr ≥ Zn was proposed as an anthropogenic signature of the industrial and urban activities pressuring the environment from point sources (municipal wastewaters) and the group Pb - Ni was discussed as a relevant fingerprint of the economic activity (industry and transport) mainly from non-point sources (run-off, atmospheric depositions, etc.). Pharmaceuticals with contrasting hydro-chemical properties of molecules (water solubility, bioaccumulation, persistence during wastewater treatment processes) were discriminated on conservative, labile and with combined properties in order to provide information on wastewater treatment plant efficiency, punctual events (e.g. accidents on sewage

  12. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization.

    Science.gov (United States)

    Hu, Yuanan; Liu, Xueping; Bai, Jinmei; Shih, Kaimin; Zeng, Eddy Y; Cheng, Hefa

    2013-09-01

    Heavy metals in the surface soils from lands of six different use types in one of the world's most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma-mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2 × 10(4) km(2)) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas > waste disposal/treatment sites ∼ industrial areas > agricultural lands ∼ forest lands > water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.

  13. Geospatial distribution of metal(loid)s and human health risk assessment due to intake of contaminated groundwater around an industrial hub of northern India.

    Science.gov (United States)

    Kashyap, Rachit; Verma, K S; Uniyal, Sanjay Kr; Bhardwaj, S K

    2018-02-12

    The study focused on analyzing concentrations of metal(loid)s, their geospatial distribution in groundwater around an industrial hub of northern India. Human health risk posed due to the intake of contaminated groundwater was also evaluated. For this, 240 samples were assayed using inductively coupled plasma emission spectrophotometer. For risk assessment, the methodology proposed by US Environmental Protection Agency was adopted. Geometric mean of Al, As, Mo, Cd, Co, Cr, Fe, Mn, Ni, Pb, Se, and Zn was 193.13, 27.35, 4.22, 2.85, 92.81, 14.97, 271.78, 25.76, 54.75, 19.50, 16.94, and 1830.27 μg/l, respectively. Levels of Al (84%), As (63%), Ni (63%), Pb (49%), and Se (41%) exceeded the Bureau of Indian Standards (BIS). Principal component analysis is accounted for ~ 88% of the total variance and reflected pollution loads of Al, As, Mo, Cr, Fe, Se, and Pb in the groundwater. Based on it, four sources of metal(loid)s, namely geogenic (34.55%), mixed (industrial and agricultural, 26.76%), waste dumping (15.31%), and industrial (11.25%) were identified. Semi-variogram mapping model demonstrated significant geospatial variations of the metal(loid)s. Hazard index (HI) suggested potential non-carcinogenic risks to the inhabitants due to As, Al, Ni, Se, and Pb, which were the largest contributors. Based on maximum concentrations of metal(loid)s, HI for child and adult was above unity. Arsenic was identified as the most hazardous pollutant that may have chronic carcinogenic health implications. At western side of study area, carcinogenic health risks exceeded critical threshold of 1 × 10 -4 , indicating that As posed health risks to residents by intake of groundwater.

  14. Corrosion of metals and alloys - Corrosion and fouling in industrial cooling water systems - Part 1: Guidelines for conducting pilot-scale evaluation of corrosion and fouling control additives for open recirculating cooling water systems

    CERN Document Server

    International Organization for Standardization. Geneva

    2006-01-01

    Corrosion of metals and alloys - Corrosion and fouling in industrial cooling water systems - Part 1: Guidelines for conducting pilot-scale evaluation of corrosion and fouling control additives for open recirculating cooling water systems

  15. The Effects of Heavy Metals and Total Petroleum Hydrocarbons on Soil Bacterial Activity and Functional Diversity in the Upper Silesia Industrial Region (Poland).

    Science.gov (United States)

    Klimek, Beata; Sitarz, Anna; Choczyński, Maciej; Niklińska, Maria

    Various inorganic and organic pollutants in industrial soils may adversely affect soil microorganisms and terrestrial ecosystem functioning. The aim of the study was to explore the relationship between the microbial activity, microbial biomass, and functional diversity of soil bacteria and the metals and total petroleum hydrocarbons (TPHs) in the Upper Silesian Industrial Region (Poland). We collected soil samples in pine-dominated forest stands and analyzed them according to a range of soil physicochemical properties, including metal content (cadmium, lead, and zinc) and TPH content. Metal concentrations were normalized to their toxicity to soil microorganisms and integrated in a toxicity index (TI). Soil microbial activity measured as soil respiration rate, microbial biomass measured as substrate-induced respiration rate, and the bacterial catabolic activity (area under the curve, AUC) assessed using Biolog® ECO plates were negatively related to TPH pollution as shown in multiple regressions. The canonical correspondence analysis (CCA) showed that both TPH and TI affected the community-level physiological profiles (CLPPs) of soil bacteria and the pollutants' effects were much stronger than the effects of other soil properties, including nutrient content.

  16. The Influence of Industrial Waste on Pesticide and Heavy Metal Conetnts in Cipinang-Sunter River Water Jakarta

    International Nuclear Information System (INIS)

    Ulfa, T S; Mellawati, J; Sofni, M C

    1996-01-01

    The measurement of pesticide and heavy metal contents of river water in upperstream (around some factories), and downstream (housing area), along Cipinang-Sunter river Jakarta, on February-June 1996 had been done. The aim of the measurement was to get information about the influence of factories waste on pesticide and heavy metal contents in the Cipinang river water. Gas and liquid chromatographis were used to measure the pesticide content and X-ray fluorecence spectrometry was used to measure the heavy metals content. Result of the measurements showed that Cipinang river water has contained some organochlorin pesticides, i.e., BHC, a and b endosulfan, dieldrin, pp-DDE, and heavy metals, i.e., Ti, V, Cr, Fe, Ni, Cu, Zn, and Pb

  17. X-ray diffraction of the diminution in the concentration of heavy metals from industrial waste water sludge

    International Nuclear Information System (INIS)

    Carreno de Leon, M.C.

    1996-01-01

    We worked with an apparatus and process patented for Jaime Vite Torres, in the United States of America, for extracting simultaneously toxic and value metals from foundry sands. In this research, we used similar devices to remove toxic metals of waste water sludge. Generation of solid wastes including dangerous in 1992 in Mexico were 450,000 ton/day in accordance with the National Institut of Ecology (INE-SEDESOL 1992). With the apparatus and process of the present work we obtained two important points, whic are: a) the recovery of metals in solution which can be recycled and, b) an important reduction in the toxic of the wastes which one treated can be handled as normal waste with important savings. From among the metals which it is possible to recover one can mention among others: Au, Pt, Ag, Cr, Mn, Co, Pb, Al, Ni and others. (Author)

  18. Contamination levels and human health risk assessment of toxic heavy metals in street dust in an industrial city in Northwest China.

    Science.gov (United States)

    Jiang, Yufeng; Shi, Leiping; Guang, A-Long; Mu, Zhongfeng; Zhan, Huiying; Wu, Yingqin

    2017-10-12

    This study investigated the content, distribution, and contamination levels of toxic metals (Cd, Cr, Cu, Pb, and Zn) in street dust in Lanzhou, an industrial city in Northwest China. Meanwhile, the risk these metals posed to the urban ecosystem and human health was also evaluated using the potential ecological risk index and human exposure model. Results showed that concentrations of these metals in the dust are higher than the background value of local soil, with Cu having the highest levels. The districts of Anning and Xigu had the most extreme levels of contamination, while Chengguan and Qilihe districts were lightly contaminated, which can be partly attributed to human activities and traffic densities. In comparison with the concentrations of selected metals in other cities, the concentrations of heavy metals in Lanzhou were generally at moderate or low levels. Heavy metal concentration increased with decreasing dust particle size. The pollution indices of Cr, Cd, Cu, Pb, and Zn were in the range of 0.289-2.09, 0.332-2.15, 1.38-6.21, 0.358-2.59, and 0.560-1.83 with a mean of 1.37, 1.49, 3.18, 1.48, and 0.897, respectively. The geo-accumulation index (I geo ) suggested that Zn in street dust was of geologic origin, while Cd, Cr, Pb, and Cu were significantly impacted by anthropogenic sources. The comprehensive pollution index showed that urban dust poses a high potential ecological risk in Lanzhou. Non-carcinogenic and carcinogenic effects due to exposure to urban street dust were assessed for both children and adults. For non-carcinogenic effects, ingestion appeared to be the main route of exposure to dust particles and thus posed a higher health risk to both children and adults for all metals, followed by dermal contact. Hazard index values for all studied metals were lower than the safe level of 1, and Cr exhibited the highest risk value (0.249) for children, suggesting that the overall risk from exposure to multiple metals in dust is low. The carcinogenic

  19. Metal bioaccumulation and mutagenesis in a Tradescantia clone following long-term exposure to soils from urban industrial areas and closed landfills.

    Science.gov (United States)

    Čėsnienė, Tatjana; Kleizaitė, Violeta; Bondzinskaitė, Skaistė; Taraškevičius, Ričardas; Žvingila, Donatas; Šiukšta, Raimondas; Rančelis, Vytautas

    2017-11-01

    Soil mutagens, particularly metals, may persist long after the source of pollution has been removed, representing a hazard to plants, animals, and humans in or near contaminated areas. Often, due to urban growth, previous land uses may be forgotten and hazards overlooked. We exposed Tradescantia clone #4430 plants to soil from two industrial areas (with different former uses) and two urban waste landfills in the city of Vilnius, all of which were long disused. Two modes of exposure were used: long-term exposure of growing plants in test soils for 0.5 or 1.0y, and short-term exposure of cuttings to water and dimethyl sulfoxide (DMSO) soil extracts. An increased frequency of micronuclei (MN) was observed with both modes of exposure. The concentrations of 24 metals and other elements were analyzed in the test soils and in above-ground plant parts, under both exposure modes, and the concentration coefficients (Cc) for various elements, the total contamination index (Zs) for soils and plants, and the bioaccumulation factor (BAF) for plants were calculated. These measurements allow a comparison of the contamination levels of soils and plants with equalized values. Metal accumulation levels in plants and soils showed significant differences, providing a better understanding of the genotoxicity of soils from closed landfills and highlighting the need to determine the concentrations of metals and other genotoxicants in plants in relation to genotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Characterisation and treatment of roads covered with zinc ashes, muffle furnace fragments and lead slags from former non-ferrous metal industries in Belgium.

    Science.gov (United States)

    Vandecasteele, C; Van den Broeck, K; Van Gerven, T; Dutré, V; Seuntjens, P; Berghmans, P; Cornelis, C; Nouwen, J

    2002-08-01

    Zinc ashes, muffle furnace fragments and lead slags from non-ferrous industries were applied to pave roads in the North of Belgium. From an inventory it appeared that there are at least 490 km of such roads. In our survey the materials on these roads were characterised. The total metal concentration, the availability and the leaching as a function of time were determined. It appeared that these materials contain high concentrations of heavy metals, some of which are readily available. The high leaching of some metals makes them as such unsuitable as secondary construction material. Methods for the application of these materials for road construction were examined where the materials replaced part of the sand and gravel fraction in lean concrete and in bituminous mixtures, or where they replaced the sand in sand-cement mixtures, all these to be used for road foundations, cycle tracks, etc. When lead slags were applied in lean concrete, a material was obtained complying with the standards for secondary construction materials and with sufficient compressive strength for road foundations. When zinc ashes or muffle fragments were used to replace sand in sand-cement mixtures, again a suitable construction material was obtained. The other combinations tried out were rather unsuccessful, because of high metal leaching and/or poor compressive strength.

  1. Development of the Method of Bacterial Leaching of Metals out of Low-Grade Ores, Rocks, and Industrial Wastes Using Neutron Activation Analysis

    CERN Document Server

    Tsertsvadze, L A; Petriashvili, Sh G; Chutkerashvili, D G; Kirkesali, E I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2001-01-01

    The results of preliminary investigations aimed at the development of an economical and easy to apply technique of bacterial leaching of rare and valuable metals out of low-grade ores, complex composition ores, rocks, and industrial wastes in Georgia are discussed. The main groups of microbiological community of the peat suspension used in the experiments of bacterial leaching are investigated and the activity of particular microorganisms in the leaching of probes with different mineral compositions is assessed. The element composition of the primary and processed samples was investigated by the epithermal neutron activation analysis method and the enrichment/subtraction level is estimated for various elements. The efficiency of the developed technique to purify wastes, extract some scrace metals, and enrich ores or rocks in some elements, e.g. Au, U, Th, Cs, Sr, Rb, Sc, Zr, Hf, Ta, Gd, Er, Lu, Ce, etc., is demonstrated.

  2. Recycling of metal-organic chemical vapor deposition waste of GaN based power device and LED industry by acidic leaching: Process optimization and kinetics study

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon; Park, Jeung-Jin

    2015-05-01

    Recovery of metal values from GaN, a metal-organic chemical vapor deposition (MOCVD) waste of GaN based power device and LED industry is investigated by acidic leaching. Leaching kinetics of gallium rich MOCVD waste is studied and the process is optimized. The gallium rich waste MOCVD dust is characterized by XRD and ICP-AES analysis followed by aqua regia digestion. Different mineral acids are used to find out the best lixiviant for selective leaching of the gallium and indium. Concentrated HCl is relatively better lixiviant having reasonably faster kinetic and better leaching efficiency. Various leaching process parameters like effect of acidity, pulp density, temperature and concentration of catalyst on the leaching efficiency of gallium and indium are investigated. Reasonably, 4 M HCl, a pulp density of 50 g/L, 100 °C and stirring rate of 400 rpm are the effective optimum condition for quantitative leaching of gallium and indium.

  3. Lixiviation of heavy metals of hazardous industrial wastes by means of thermostatized columns and design of a pilot plant; Lixiviacion de metales pesados de residuos industriales peligrosos por medio de columnas termostatizadas y diseno de una planta piloto

    Energy Technology Data Exchange (ETDEWEB)

    Vite T, J.; Leon, C.C. de [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Vite T, M.; Soto T, J.L. [IPN, SEPI, ESIME 07738 Mexico D.F. (Mexico)]. e-mail: jvite@nuclear.inin.mx

    2006-07-01

    purpose of this work was to evaluate the efficiency of lixiviation of heavy metals, using thermostatized columns and hazardous industrial residual wastes: those by the volume with which are generated and its high toxicity, its represent a great problem for it treatment and disposition, in this work a diagram of a pilot plant for extraction of heavy metals is included. The process and equipment were patented in United States and in Mexico. For the development of this study four thermostated columns were used that were coupled. The waste were finely milled and suspended in an aqueous pulp adding of 10 - 40gL{sup -1} of mineral acid or sodium hydroxide until reaching an interval of pH of 2,5,7 and 10. Its were used of 4-10 gL{sup -1} of a reducer agent and of 0.3-1.5 g of a surfactant agent. In some cases with this method was possible to remove until 100% of heavy metals. It was used Plasma Emission Spectroscopy to determine the concentrations of the cations in the lixiviation liquors. For studying the metallic alloys the X-ray diffraction technique was used. (Author)

  4. Risk assessment of toxic metals in street dust from a medium-sized industrial city of China.

    Science.gov (United States)

    Lu, Xinwei; Wu, Xing; Wang, Yiwen; Chen, Hao; Gao, Panpan; Fu, Yi

    2014-08-01

    The concentrations of toxic metals As, Co, Cr, Cu, Mn, Ni, Pb, V and Zn in street dust of Tongchuan, China were determined by wavelength dispersive X-ray fluorescence spectrometry. The risk of the analyzed metals to urban ecosystem and human health were evaluated by potential ecological risk index and human exposure model, respectively. The results show that, in comparison with Shaanxi soil, dust samples have elevated metal concentration as a whole expect for As, Mn, V and Ni. The assessment results of ecological risk indicate that the ecological risks of As, Cr, Mn, Ni, Cu, V and Zn in the dust were in the low level, while Pb and Co presented low to moderate level. Health risk assessment shows that ingestion was the main exposure route of all analyzed toxic metals in street dust to children and adults. The non-cancer risks of the studied metals to children and adults were within the safe range, and the cancer risks of As, Co, Cr and Ni were also within the currently acceptable range. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, E., E-mail: eva.schreck@ensat.fr [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); Foucault, Y. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); STCM, Societe de Traitements Chimiques des Metaux, 30 Avenue de Fondeyre 31200 Toulouse (France); Sarret, G. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Sobanska, S. [LASIR (UMR CNRS 8516), Universite de Lille 1, Bat. C5, 59655 Villeneuve d' Ascq cedex (France); Cecillon, L. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Castrec-Rouelle, M. [Universite Pierre and Marie Curie (UPMC-Paris 6), Bioemco (Biogeochimie et Ecologie des Milieux Continentaux), Site Jussieu, Tour 56, 4 Place Jussieu, 75252 Paris cedex 05 (France); Uzu, G. [Laboratoire d' Aerologie (UMR 5560), OMP, UPS 14, Avenue Edouard Belin, 31400 Toulouse (France); GET (UMR 5563), IRD, 14, Avenue Edouard Belin, 31400 Toulouse (France); Dumat, C. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France)

    2012-06-15

    Fine and ultrafine metallic particulate matters (PMs) are emitted from metallurgic activities in peri-urban zones into the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer of metals and metalloids and their fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM (Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting from the emissions of a battery-recycling factory. Metal and metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead secondary species (PbCO{sub 3} and organic Pb). Some compounds were internalized in their primary form (PbSO{sub 4}) underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are proposed as two major mechanisms involved in foliar uptake of particulate matter. - Graphical abstract: Overall picture of performed observations and mechanisms potentially involved in lead foliar uptake. Highlights: Black-Right-Pointing-Pointer Foliar uptake of metallic particulate matter (PM) is of environmental and health concerns. Black-Right-Pointing-Pointer The leaf morphology influences the adsorption

  6. Proposal for the award of an industrial support contract for minor metalwork, metal fittings, cladding and roofing at CERN

    CERN Document Server

    2006-01-01

    This document concerns the award of a contract for minor metalwork, metal fittings, cladding and roofing at CERN. The Finance Committee is invited to agree to the negotiation of a contract with the firm INIZIATIVE INDUSTRIALI SRL (IT), the lowest bidder, for the provision of minor metalwork, metal fittings, cladding and roofing at CERN for three years for a total amount not exceeding 1 467 895 euros (2 258 301 Swiss francs), not subject to revision for two years. The contract will include options for two one-year extensions beyond the initial three-year period.

  7. Analysis of the Interdependence between Basic Metals Productions and the Industries that use them in European Union

    Directory of Open Access Journals (Sweden)

    Gabriela BUSAN

    2016-09-01

    Full Text Available This study aims at analysing the extent in which production in construction and engine manufacturing influence the basic metals manufacturing at the level of European Union zone, for a period of 105 months, January 2007 - September 2015, by means of the model of multifactorial linear regression. This model can be utilized in determining the necessary quantity of basic metals under the conditions of knowing the evolution of production in construction branch and in motor vehicles, trailers and semi-trailers branch.

  8. Evaluation of solubility in simulated lung fluid of metals present in the sludge from a metallurgical industry to produce metallic zinc

    International Nuclear Information System (INIS)

    Lima, Rosilda Maria Gomes de

    2012-01-01

    The objective of this study was to determine the solubility parameters (rapid and slow dissolution rates, rapid and slow dissolution fractions) metal particles present in a pile of sludge accumulated under exposure to weathering from the Cia Mercantil Inga, located at the Ilha da Madeira, Sepetiba Bay, Rio de Janeiro. Plant samples collected in the neighboring of the pile and bioindicators placed in the region and collected after some months indicated that the inhabitants of Ilha da Madeira have been exposed to trace elements such zinc, cadmium, mercury and lead, produced during the processing of zinc minerals (hemimorphite - Zn 4 (OH) 2 Si 2 O 7 .H 2 O, and willemite - Zn 2 SiO 4 ). A static dissolution test in vitro was used to determine the solubility parameters using a simulated lung fluid (SLF), on a time basis ranging from 10 min to 1 year. The metal concentrations in the sludge samples and in the SLF were determined using Particle Induced X-rays Emission (PIXE). In conclusion, this study confirms the harmful effects on the neighboring population of the airborne particles containing these metals that came from the sludge. The solubility parameters obtained for Zn, Cd, Cr, Ni and Mn present in the rapid dissolution fraction in SLF were 0.945; 0.473; 0.226; 0.300 and 0.497, respectively, and the corresponding times for half life of dissolution of the rapid fraction were f r = 2.082 days; f r = 0.09 days; f r = 0.37 days; f r = 0.332 days ad f r = 0.99 days; for the slow dissolution fraction times were f r = 146.95 days; f r = 63 days; f r = 86.64 days; f r = 79.66 days and f r = 59.84 days. These values indicate that these metals present a moderate absorption level in SLF, and may be classified as M type, according to the International Commission on Radiological Protection (ICRP). The use of solubility parameters allowed a better description of the kinetic behaviour of the sludge in the human body and, therefore, a better evaluation of the worker’s risk to

  9. Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater.

    Science.gov (United States)

    Phetphaisit, Chor Wayakron; Yuanyang, Siriwan; Chaiyasith, Wipharat Chuachuad

    2016-01-15

    Bio-adsorbent modified natural rubber (modified NR) was prepared, by placing the sulfonic acid functional group on the isoprene chain. This modification was carried out with the aim to prepare material capable to remove heavy metals from aqueous solution. The structures of modified NR materials were characterized by FT-IR and NMR spectroscopies. Thermal gravimetric analysis of modified NR showed that the initial degradation temperature of rubber decreases with increasing amount of polyacrylamido-2-methyl-1-propane sulfonic acid (PAMPS) in the structure. In addition, water uptake of the rubber based materials was studied as a function of time and content of PAMPS. The influence of the amount of PAMPS grafted onto NR, time, pH, concentration of metal ions, temperature, and regeneration were studied in terms of their influence on the adsorption of heavy metals (Pb(2+), Cd(2+) and Cu(2+)). The adsorption isotherms of Pb(2+) and Cd(2+) were fitted to the Freundlich isotherm model, while Cu(2+) was fitted to the Langmuir isotherm. However, the results from these two isotherms resulted in a similar behavior. The adsorption capacity of the modified NR for the various heavy metals was in the following order: Pb(2+)∼Cd(2+)>Cu(2+). The maximum adsorption capacities of Pb(2+), Cd(2+), and Cu(2+) were 272.7, 267.2, and 89.7 mg/g of modified rubber, respectively. Moreover, the modified natural rubber was used for the removal of metal ions in real samples of industrial effluents where the efficiency and regeneration were also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Content of metals and metabolites in honey originated from the vicinity of industrial town Kosice (eastern Slovakia)

    Czech Academy of Sciences Publication Activity Database

    Kováčik, J.; Grúz, Jiří; Bíba, Ondřej; Hedbavny, J.

    2016-01-01

    Roč. 23, č. 5 (2016), s. 4531-4540 ISSN 0944-1344 R&D Projects: GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : Antioxidants * Food safety * Heavy metals Subject RIV: EF - Botanics Impact factor: 2.741, year: 2016

  11. The use of total reflectance X-ray fluorescence (TXRF) for the determination of metals in the pharmaceutical industry.

    Science.gov (United States)

    Antosz, Frederick J; Xiang, Yanqiao; Diaz, Angel R; Jensen, Andrew J

    2012-03-25

    The control of residual metals in active pharmaceutical ingredients (API's) and intermediates is critical because of their potential toxic effects. A variety of technologies are available to measure residual metals in pharmaceutical compounds including, AAS, ICP-AES, and ICP-MS. The newest technology is total reflectance X-ray fluorescence spectroscopy (TXRF) which uses primary X-rays to excite atoms which then emit secondary X-rays. The emitted X-rays are characteristic of the individual elements present, and the intensities of the emitted X-rays are proportional to the concentrations of the elements present in the sample. The benefits of TXRF are that it is essentially unaffected by matrix effects, is very sensitive (ppb's), requires small amounts of sample (5-10 mg), and requires very little sample preparation time. During this study, TXRF was used to quantitatively measure residual metals in API's and intermediates and such topics as sample preparation, sensitivity, linearity, reproducibility and accuracy are discussed. The results obtained by TXRF were compared with those obtained by ICP-MS for the same samples for Pd and Cu measurement, and statistical analysis indicated that the results obtained by the two technologies are equivalent at the 95% confidence level. A comparison is also made of the capabilities of the instruments using a tungsten (W) or a molybdenum (Mo) source for excitation. Both instruments could be used for the quantitative determination of residual metals in pharmaceuticals. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. British Industries Collaborative Exponential Programme. Vol. I. Introduction: Exponential experiments on rods and tubes of natural uranium metal

    International Nuclear Information System (INIS)

    1963-03-01

    The experimental techniques used in the performance of exponential buckling measurements are described. The results are given of buckling measurements on a wide range of graphite lattices in which the fuel elements consisted of rods or tubes of natural uranium metal. The observed buckling values are correlated with theory. (author)

  13. Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from South France

    Czech Academy of Sciences Publication Activity Database

    Desenfant, F.; Petrovský, Eduard; Rochette, P.

    2004-01-01

    Roč. 152, 1/4 (2004), s. 297-312 ISSN 0049-6979 R&D Projects: GA AV ČR KSK3012103 Institutional research plan: CEZ:AV0Z3012916 Keywords : Arc river * heavy metals * magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.058, year: 2004

  14. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils.

    Science.gov (United States)

    Sharaff, Murali; Kamat, Shalmali; Archana, G

    2017-04-01

    Agricultural sites irrigated for long term with water polluted by industrial effluents containing heavy metals might adversely affect the soil microbial communities and crop yield. Hence it is important to study rhizobacterial communities and their metal tolerance in such affected agricultural fields to restore soil fertility and ecosystem. Present work deals with the study of rhizobacterial communities from plants grown in copper (Cu) contaminated agricultural fields along the industrial zone of Gujarat, India and are compared with communities from a Cu mine site. Microbial communities from rhizosphere soil samples varied in the magnitude of their Cu tolerance index indicating differences in long term pollution effects. Culture dependent denaturing gradient gel electrophoresis (CD-DGGE) of bacterial communities revealed the diverse composition at the sampling sites and a reduced total diversity due to Cu toxicity. Analysis of 16S rRNA gene diversity of Cu tolerant rhizobacteria revealed the predominance of Enterobacter spp. and Pseudomonas spp. under Cu stress conditions. Cu tolerant bacterial isolates that were able to promote growth of mung bean plants in vitro under Cu stress were obtained from these samples. Cu tolerant rhizobacterium P36 identified as Enterobacter sp. exhibited multiple plant growth promoting traits and significantly alleviated Cu toxicity to mung bean plants by reducing the accumulation of Cu in plant roots and promoted the plant growth in CuSO 4 amended soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Multivariate analysis of the data and speciation of heavy metals in street dust samples from the Organized Industrial District in Kayseri (Turkey)

    Science.gov (United States)

    Tokalıoğlu, Şerife; Kartal, Şenol

    The concentrations of metals (Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) in 29 dust samples collected from the streets of the Organized Industrial District (OID) in Kayseri (Turkey) were determined by flame atomic absorption spectrometry (FAAS). The modified three-step BCR sequential extraction procedure was used in order to evaluate mobility, availability and persistence of trace elements in street dust samples. Multivariate statistical analysis was applied to the obtained data. Three operationally defined fractions isolated using the BCR procedure were: acid extractable, reducible, and oxidizable. The mobility sequence based on the sum of the BCR sequential extraction stages was: Cd (93.3%)>Zn (83.8%)>Pb (77.2%)>Co (75.9%)>Mn (73.0%)>Ni (60.1%)>Cu (59.0%)>Cr (58.6%). Correlation analysis, principal component analysis (PCA) and cluster analysis (CA) were applied to the data matrix to evaluate the analytical results and to identify the possible pollution sources of metals. PCA revealed that the sampling area was mainly influenced from three sources, namely industrial, traffic and natural sources. Validation of the analytical results was checked by analysis of the BCR-701 certified reference material.

  16. Apply Woods Model in the Predictions of Ambient Air Particles and Metallic Elements (Mn, Fe, Zn, Cr, and Cu at Industrial, Suburban/Coastal, and Residential Sampling Sites

    Directory of Open Access Journals (Sweden)

    Guor-Cheng Fang

    2012-01-01

    Full Text Available The main purpose for this study was to monitor ambient air particles and metallic elements (Mn, Fe, Zn, Cr, and Cu in total suspended particulates (TSPs concentration, dry deposition at three characteristic sampling sites of central Taiwan. Additionally, the calculated/measured dry deposition flux ratios of ambient air particles and metallic elements were calculated with Woods models at these three characteristic sampling sites during years of 2009-2010. As for ambient air particles, the results indicated that the Woods model generated the most accurate dry deposition prediction results when particle size was 18 μm in this study. The results also indicated that the Woods model exhibited better dry deposition prediction performance when the particle size was greater than 10 μm for the ambient air metallic elements in this study. Finally, as for Quan-xing sampling site, the main sources were many industrial factories under process around these regions and were severely polluted areas. In addition, the highest average dry deposition for Mn, Fe, Zn, and Cu species occurred at Bei-shi sampling site, and the main sources were the nearby science park, fossil fuel combustion, and Taichung thermal power plant (TTPP. Additionally, as for He-mei sampling site, the main sources were subjected to traffic mobile emissions.

  17. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 1: Executive Summary, of a 15-Volume Set of Skills Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    Science.gov (United States)

    Texas State Technical Coll., Waco.

    The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…

  18. Assessment of heavy metal pollution in surface soils and plant material in the post-industrial city of Katowice, Poland.

    Science.gov (United States)

    Steindor, Karolina A; Franiel, Izabella J; Bierza, Wojciech M; Pawlak, Beata; Palowski, Bernard F

    2016-01-01

    This investigation was undertaken to assess the level of environment pollution by biological monitoring. The leaves and bark of popular ornamental trees Acer pseudoplatanus L. and Acer platanoides L. and soil from the sampling sites were used to perform heavy metals pollution monitoring in urban areas with different pollution sources, as well to investigate the suitability of the leaves and bark as bioindicators of Pb, Zn, Cd and Cu pollution. Plant samples were collected at nine locations classified into three pollution groups based on metal content in the soils. The chosen pollution indices were used to assess the level of contamination according to background values. Soils in the Katowice area are found to be relatively heavily contaminated with Pb, Zn and Cd. Both of the maple tree species did not statistically differ in terms of the investigated elements' concentration in leaves or bark. Only bark samples reflected the pollution level, showing differences between the sampling points, and therefore are recommended for biomonitoring purposes.

  19. Synthesis of New Schiff Base from Natural Products for Remediation of Water Pollution with Heavy Metals in Industrial Areas

    Directory of Open Access Journals (Sweden)

    Reham Hassan

    2013-01-01

    Full Text Available A resin of [5-((E-1-(ethylimino ethyl-4, 7-dimethoxy benzofuran-6-ol] Schiff base (EEDB was prepared, characterized, and successfully applied in the removal of Cu (II ions from aqueous real samples. While the metal cation was detected using ICP-OES, the prepared Schiff base resin was characterized by means of FTIR, 1HNMR, mass spectral data, and elemental analysis. Various factors affecting the uptake behavior such as pH (2–12, contact time, effect of initial metal concentration (10–250 ppm, and effect of Schiff base weight (0.1–1.5 gm were studied. The adsorption process was relatively fast and equilibrium was established after about 60 min. The optimum initial pH was 8.0 at a metal ion concentration (100 ppm. Under the optimized conditions, the removal of Cu (II from real samples of tap water was applied and the removal efficiency reached nearly 85%. The biological activity for Schiff base was also investigated. The results showed that there is no significant difference between the effects of Schiff base on serum (alanine amino transferase ALT and creatinine concentration activities in treated mice and control, at confidence limits 95%.

  20. Investigations of biofilms in the sewerage system of a highly contaminated industrial and mining area for the localization of heavy metal sources. Final report

    International Nuclear Information System (INIS)

    Cichos, C.; Singliar, U.

    1993-02-01

    The high heavy metal loading of the river Freiberger Mulde is largely caused by contaminations arising from the drainage area of the town of Freiberg. The diffuse input from the dewatering surface likely makes an important contribution to this pollution. The elimination of the reasons for the pollutant input into the sewerage and, thus, for the extremely high contamination of the sewage sludges requires a localization of sources and transport ways. For this purpose the method of investigation of biofilms on the sewer surface can be applied as a reliable method. For the industrial and mining area of Freiberg besides the different branches of industry especially the secondary emissions from deposits of old mining and metallurgical plants as well as from the extremely loaded surface of soil play an important role. The investigation of sewerage biofilms in the area considered have shown that the input of nickel and tin into the sewer is mainly caused by industry. Sources of zinc and copper above all are domestic wastewaters, whereas lead is originated from the surface run-off. Especially high pollutions of arsen and cadmium were found obviously arising from mining and production scraps. The results obtained should be the basis of activities for definite interruption of the pollutant input into the sewer system. They are a contribution to the restoration of the hydrographical network of Mulde/Elbe. (orig.) [de

  1. Utilization of hair and nails as bio-indicators of contamination by heavy and toxic metals in industrial workers

    International Nuclear Information System (INIS)

    Vilhena Schayer Sabino, Claudia de; Silva, Ascanio Barros F.E.; Fernandes, Marcio Prado; Amaral, Angela Maria; Franco, Milton Batista; Guedes, Joao Bosco; Francisco, Dovenir; Castro de Assis, Adilson de.

    1996-01-01

    Instrumental neutron activation analysis and atomic absorption spectrometry were performed on scalp hair and fingernail samples collected from a group of heavily exposed healthy mail industrial workers. The concentration of trace elements (As, Cd, Cr, Hg, Ni, Pb and Sb) were evaluated and compared for scalp and fingernails. Comparative studies demonstrated that concentration of certain elements were greater than those corresponding to non-exposed workers. (author). 4 refs., 6 tabs

  2. Selection Of Employees In The Metal Industry Based On Competences, On The Example Of A Designer Position

    Directory of Open Access Journals (Sweden)

    Skrzypek Katarzyna

    2015-06-01

    Full Text Available The selection of an effective team of employees is crucial to proper management of the company. The success of the project often depends on the competencies of employees who carry out those projects. Therefore, the selection of the workers, whose competences complement each other in terms of subject matter, in terms of personality, and also in practical terms, is very important. This article presents the proposal of applying the FAHP (fuzzy analytic hierarchy process and TOPSIS (technique for order preference by similarity to an ideal solution methods as a tool to facilitate the management of human resources in the metal production factories based on the skills of employees.

  3. Heavy Metals Exposure on Urbanized and Industrial polluted territories and Effects on Functional State of Systems of different cohorts of population in Crimean region of Ukraine

    Directory of Open Access Journals (Sweden)

    Evstafyeva E. V.

    2013-04-01

    Full Text Available On urbanized and industrial territories in Crimean region of Ukraine with exceedances of critical loads for heavy metals (HM different cohorts of population were examined. Content of toxic HM (Hg, Pb, Cd, Ni in hair of healthy children and adult mainly did not exceeded, but level of essential HM (Fe, Zn, Cu, Mn frequently was decreased. The differences of HM content in some special cohorts (mental retardation, autonomic nervous system dysfunction, sportsman was revealed. Content of HM in 375 samples of venous and umbilical cord blood, placenta, breast milk of puerperants and their new-born children strongly varied. Correlation analysis by Spearman and multiple regression analysis shown not so close but statistically significant relationships between levels of HM and functional state of central and autonomic nervous, immune and cardio-vascular systems, their different sensitivity to different HM in distinct cohorts of population.

  4. Long-term changes of heavy metal and sulphur concentrations in ecosystems of the Taymyr Peninsula (Russian Federation) North of the Norilsk Industrial Complex.

    Science.gov (United States)

    Zhulidov, Alexander V; Robarts, Richard D; Pavlov, Dmitry F; Kämäri, J; Gurtovaya, Tatiana Yu; Meriläinen, J J; Pospelov, Igor N

    2011-10-01

    The Norilsk industrial ore smelting complex (Taymyr Peninsula, Russian Federation) has significantly impacted many components of local terrestrial and aquatic environments. Whether it has had a major impact on the wider Russian Arctic remains controversial as studies are scarce. From 1986 to 2004, data on heavy metal (Cu, Ni, Zn, Hg, Cd and Hg) concentrations in fish (burbot), moss, lichens, periphyton, hydric soils and snow in and around Norilsk and the most northern parts of the Taymyr Peninsula were analysed. Very high concentrations of Cu (203 μg L⁻¹ ± 51 μg L⁻¹) and Ni (113 μg L⁻¹ ± 15 μg L⁻¹) were found in the water of the Schuchya River close to Norilsk. Heavy metal concentrations in burbot liver were highest in Lake Pyasino near Norilsk compared to other study regions that were >100 km distant. From 1989-1996, Cu (121 μg L⁻¹ ± 39 μg L⁻¹ SD), Zn (150 μg L⁻¹) ± 70 μg L⁻¹) and Ni (149 μg L⁻¹ ± 72 μg L⁻¹) snow concentrations were greatest in Norilsk, but were low elsewhere. By 2004, these concentrations had dropped significantly, especially for Cu-74 μg L⁻¹ (±18.7 μg L⁻¹ SD), Zn-81.7 μg L⁻¹ (± 31.3 μg L⁻¹ SD) and Ni-80 μg L⁻¹(±18.0 μg L⁻¹ SD). Norilsk and its surroundings are subject to heavy pollution from the Norilsk metallurgical industry but these are absent from the greater Arctic region due to the prevailing winds and the Byrranga Mountains. Pollution abatement measures have been made so further investigations are necessary in order to assess their efficiency.

  5. Influence of industry on pollution of the environment and human population with natural radionuclides and heavy metals

    International Nuclear Information System (INIS)

    Jaworowski, Z.

    1982-01-01

    The rate of fallout of 226 Ra depending on the distance from industrial emission sources has been evaluated. Contamination of soil with natural radionuclides in industrial and rural regions of Poland has been compared with the concentration of radionuclides in ash of aerophytic plants. An increase of airborne pollutants in precipitation in Southern Poland has been compared with an increase of the concentration of pollutants in pine trees. Samples of human bones from Southern Poland have been checked for contents of lead. It has been found that in 20th century concentration of lead decreased to a level not much higher than natural. The level of 226 Ra in Polish population had been decreasing during the last 100 years. This points to the conclusion that human skeleton is well protected as the level of radionuclides was not related to the level of environmental pollution. The concentration of 226 Ra in air is steadily increasing and an upward transport leads to its wide distribution. (E.G.M.)

  6. Speciation of heavy metals in street dust samples from Sakarya I. Organized industrial district using the BCR sequential extraction procedure by ICP-OES

    Directory of Open Access Journals (Sweden)

    N. Ozcan

    2013-05-01

    Full Text Available This paper focuses on the concentrations of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn in 20 dust samples collected from the streets of the Organized Industrial District in Sakarya, Turkey using sequential extraction procedure were determined by ICP-OES. The three-step BCR sequential extraction procedure was used in order to evaluate mobility, availability and persistence of heavy elements in street dust samples. Three operationally defined fractions isolated using the BCR procedure was: acid extractable, reducible, and oxidizable. The mobility sequence based on the sum of the BCR sequential extraction stages: Cd (82.3% > Mn (80.0% > Zn (78.8% > Cu (70.2% > Ni (65.9% > Pb (63.8% > Cr (47.3% > Co (32.6%. Validation of the analytical results was checked by analysis of the BCR-701 certified reference material. The concentrations of metals in the street dust samples have been shown a decrease after the each extraction stage.

  7. Assessments of natural radioactivity and determination of heavy metals in soil around industrial dumpsites in Sango-Ota, Ogun state, Nigeria

    Directory of Open Access Journals (Sweden)

    Augustine Kolapo Ademola

    2014-01-01

    Full Text Available The activity concentration of natural radionuclides in soil samples from industrial dumpsites in Sango-Ota were determined using gamma-ray spectrometry with NaI(Tl detector. The mean activity concentration of 226 Ra, 232 Th and 40 K was 3.0 ± 1.2, 33.3 ± 9.8 and 122.1 ± 20.6 Bqkg−1 , respectively. Radium equivalent activities were calculated to assess the hazards arising from the use of the soil sample in agriculture. All the calculated values were lower than the world average. The mean concentration of heavy metals in the soil samples were 33.6, 2.9, 3.8, 2.7, 48.9, 1,5, 34.5 and 0.8 mg l -1 for Cu, Mg, Ca, P, Fe, Pb, Zn and Cd, respectively. The concentrations of Cd, Cu and Pb were higher than the natural permissible range in soil. Therefore, the government should discourage the use of the soil around dumpsites for planting because of the presence of heavy metals in the sites.

  8. Case study: heavy metals and fluoride contents in the materials of Syrian phosphate industry and in the vicinity of phosphogypsum piles.

    Science.gov (United States)

    Al Attar, L; Al-Oudat, M; Shamali, K; Abdul Ghany, B; Kanakri, S

    2012-01-01

    This study focuses on the determination of heavy metals and fluoride concentrations in the Syrian phosphate industry and in the vicinity of the phosphogypsum (PG) piles. Four sampling campaigns were carried out, in which 86 soil, 139 plant, 30 air particulate, 16 water, 12 PG, 6 phosphate ore (raw and treated) and 3 fertilizer samples were collected. Differential pulse anode stripping voltammetry was used for Pb and Cd determination, atomic absorption spectrometry was used for Zn, Cr and Cu determination, and instrumental neutron activation analysis was used for Se, Ni, As and Hg determination. Fluoride concentration was determined via fluoride ion selective electrode. The data revealed that most of the heavy metals were retained in the fertilizer. Fluoride content in PG was 0.47%. The presence of PG piles showed no impact on the run-off and ground and lake waters in the area. However, fluoride concentration was double the permissible airborne threshold in the sites to the east of the PG piles because of the prevailing wind in the region. Similarly, enhanced concentrations of fluoride were recorded for the eastern soil samples. The content of heavy metals in plants was element- and plant-specific and influenced by the element concentration in soil, the soil texture and the pH. The maximal mean of fluoride was found in the plants species of the eastern sites (699 mg kg(-1)), which mainly related to PG erosion and airborne deposition. Thus, the main impact of the PG piles was to increase the concentration of fluoride in the surrounding area. A national action should be taken to regulate PG piles.

  9. Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Rachwał, Marzena; Magiera, Tadeusz; Wawer, Małgorzata

    2015-11-01

    Application of integrated magnetic, geochemical and mineralogical methods for qualitative and quantitative assessment of forest topsoils exposed to the industrial emissions was the objective of this manuscript. Volume magnetic susceptibility (κ) in three areas of southern Poland close to the coke and metallurgical plants was measured directly in the field. Representative topsoil samples were collected for further chemical and mineralogical analyses. Topsoil magnetic susceptibility in the studied areas depended mainly on the content of technogenic magnetic particles (TMPs) and decreased downwind at increasing distance from the emitters. In the vicinity of coking plants a high amount of polycyclic aromatic hydrocarbons (PAHs) was observed, especially the most carcinogenic ones with four- and five-member rings. No significant concentration of TMPs (estimated on the base of κ values) and heavy metals (HM) was observed in area where the coke plant was the only pollution source. In areas with both coke and metallurgical industry, higher amounts of TMPs, PAHs and HM were detected. Morphological and mineralogical analyses of TMPs separated from contaminated soil samples revealed their high heterogeneity in respect of morphology, grain size, mineral and chemical constitution. Pollution load index and toxicity equivalent concentration of PAHs used for soil quality assessment indicated its high level of pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Metal-Organic Coordination Complexes Serve the Electronic Industry as Low-Value Dielectric Constant Ferroelectric Material

    Science.gov (United States)

    Ahmad, Nazir; Kotru, P. N.

    2017-10-01

    Single crystals of praseodymium tartrate dihydrate possessing excellent ferroelectric, non-linear optical (NLO) properties and exhibiting remarkably flat habit faces are successfully grown by gel technique. The most predominant habit face is identified to be {101}. The dielectric behaviour recorded on {101} planes of single crystals exhibit a dielectric anomaly at 245°C, revealing a ferroelectric transition which is supported by thermal and polarisation versus electric field studies. The optical measurement leads to a band gap of 5.13 eV which is shown to be in good agreement with the studies of high-resolution x-ray diffraction (HRXRD), transport properties and NLO behaviour of the material. Absence of grain boundaries, thermal stability, ferroelectric and NLO behaviour supports the grown single crystal to find its place in microelectronic industry as a multifunctional material.

  11. The distribution of blood concentrations of lead (Pb), cadmium (Cd), chromium (Cr) and manganese (Mn) in residents of the German Ruhr area and its potential association with occupational exposure in metal industry and/or other risk factors.

    Science.gov (United States)

    Bonberg, Nadine; Pesch, Beate; Ulrich, Nadin; Moebus, Susanne; Eisele, Lewin; Marr, Anja; Arendt, Marina; Jöckel, Karl-Heinz; Brüning, Thomas; Weiss, Tobias

    2017-08-01

    This study investigated the metal distribution in blood samples from the general population and the risk of having high metal concentration for metal workers. Metal concentrations were determined in archived blood samples from 1411 men and 1410 women (median age 59 and 57 years, respectively) collected at baseline (2000-2003) of the prospective Heinz Nixdorf Recall Study. Retrospective information on working in metal industry was obtained from previous follow-up survey (2011-2014). Odds ratios (ORs) with 95% confidence intervals (CI) of having a metal concentration >90th percentile (P90) for working in metal industry were calculated using logistic regression with adjustment for covariates. More men than women worked in metal industry (57 vs. 3 at baseline). Male metal workers had increased blood lead (Pb) (OR: 2.86; 95% CI: 1.38-5.91) and manganese (Mn) (OR: 2.92; 95% CI: 1.46-5.81). Smoking (≥30 cigarettes/day) strongly influenced cadmium (Cd) in blood (OR: 168; 95% CI: 55-510). Women had higher Mn (8.92μg/L) and Cd (0.36μg/L) concentrations than men (Mn: 8.11μg/L; Cd: 0.29μg/L). Blood Pb in women (29.2μg/L) was lower than in men (33.2μg/L). None of the studied risk factors was significantly associated with chromium and nickel concentrations above their 90th percentiles. In this population-based cohort we found evidence that working in metal industry was predictive for having elevated blood Pb and Mn concentrations. However, the 95th percentiles of all investigated metals were not significantly influenced by metal-related occupations. The present study is supportive for gender-specific reference values to limit occupational exposure to Mn and Pb. The strong influence of smoking on blood Cd hinders establishing reference values. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Radiation induced environmental remediation of Cr(VI) heavy metal in aerated neutral solution under simulated industrial effluent

    Energy Technology Data Exchange (ETDEWEB)

    Djouider, Fathi; Aljohani, Mohammed S. [King Abdulaziz Univ., Jeddah (Saudi Arabia). Nuclear Engineering Dept.

    2017-08-01

    Cr(VI) compounds are major water contaminants in most industrial effluents, due to their carcinogenicity, while Cr(III) is an important element for human metabolism. In a previous work, we showed that Cr(VI) was radiolytically reduced to Cr(III) by the CO{sub 2}{sup -.} radical at pH 3 N{sub 2}O-saturated solution in the presence of formate. Here in the present work, this removal was investigated by steady state irradiation and pulse radiolysis in aerated solution at neutral pH, which is close to natural conditions in most wastewaters, where the reducing agent is the superoxide radical anion O{sub 2}{sup -.} The degradation of Cr(VI) increased linearly with the absorbed dose and was significantly enhanced by the added formate but not by the radiolitically produced hydrogen peroxide at this pH. The rate constant for this reduction was found to be 1.28 x 10{sup 8} M{sup -1} s{sup -1} and the absorption spectrum of Cr(V) transient species was obtained. A partial recovery of Cr(VI) is observed over a period of ca. 5 ms following a second order kinetics with a rate constant 8.0 x 10{sup 6} M{sup -1} s{sup -1}. These outcomes suggest that gamma-irradiation of Cr(VI)-contaminated wastewaters and industrial effluents in presence of formate can be simple, effective and economical means for the remediation of this major contaminant.

  13. Biocorrosion and biofouling of metals and alloys of industrial usage. Present state of the art at the beginning of the new millennium

    Directory of Open Access Journals (Sweden)

    Videla, H. A.

    2003-12-01

    Full Text Available An overview on the present state of the art on Biocorrosion and Biofouling of metals and alloys of industrial usage is offered on the basis of the experience gathered in our laboratory over 25 years of research. The key concepts to understand the main effects of microorganisms on metal decay are briefly discussed. New trends in monitoring and control strategies to mitigate biocorrosion and biofouling deleterious effects are also described. Several relevant cases of biocorrosion studied by our research group are successively described: i biocorrosion of aluminum and its alloys by fungal contaminants of jet fuels; ii Sulfate-reducing bacteria SRB induced corrosion of steel; iii biocorrosion and biofouling interactions in the marine environment; iv monitoring strategies for assessing biocorrosion in industrial water systems; v microbial inhibition of corrosion; vi use and limitations of electrochemical techniques for evaluating biocorrosion effects. The future perspective of the field is made considering the potential of innovative techniques in microscopy (environmental scanning electron microscopy, confocal scanning laser microscopy, atomic force microscopy, new spectroscopical techniques used for the study of corrosion products and biofilms (energy dispersion X-ray analysis, X-ray photoelectron spectroscopy, electron microprobe analysis and electrochemistry (electrochemical impedance spectroscopy, electrochemical noise analysis.

    Se ofrece una revisión del estado actual del conocimiento sobre Biocorrosión y Biofouling de metales y aleaciones de uso industrial basada en la experiencia desarrollada en nuestro laboratorio durante 25 años de investigación en el área. Se discuten brevemente los conceptos clave necesarios para entender los principales efectos de los microorganismos en el deterioro de los metales. También se presentan las nuevas tendencias seguidas para el monitoreo y las nuevas estrategias de control para mitigar

  14. Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine Valley: PCDD/Fs, PCBs and trace metal evidence.

    Science.gov (United States)

    Guéguen, Florence; Stille, Peter; Millet, Maurice

    2011-09-01

    Tree barks were used as biomonitors to evaluate past atmospheric pollution within and around the industrial zones of Strasbourg (France) and Kehl (Germany) in the Rhine Valley. The here estimated residence time for trace metals, PCBs and PCDD/Fs in tree bark is >10 years. Thus, all pollution observed by tree bark biomonitoring can be older than 10 years. The PCB baseline concentration (sum of seven PCB indicators (Σ(7)PCB(ind))) determined on tree barks from a remote area in the Vosges mountains is 4 ng g(-1) and corresponds to 0.36 × 10(-3)ng toxic equivalent (TEQ) g(-1) for the dioxin-like PCBs (DL-PCBs). The northern Rhine harbor suffered especially from steel plant, waste incinerator and thermal power plant emissions. The polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) concentrations analyzed in tree barks from this industrial area range between 392 and 1420 ng kg(-1) dry-weight (dw) corresponding to 3.9 ng TEQ(PCDD/Fs) kg(-1) to 17.8 ng TEQ(PCDD/Fs) kg(-1), respectively. Highest PCDD/F values of 7.2 ng TEQ kg(-1) to 17.8 ng TEQ kg(-1) have been observed close to and at a distance of pollutions since recent long-term measurements at the same sites indicate that the atmospheric PCB concentrations are close to baseline. Emissions from an old landfill of waste and/or great fires might have been the reasons of these PCB enrichments. Other urban environments of the cities of Kehl and Strasbourg show significantly lower Σ(7)PCB(ind) concentrations. They suffer especially from road and river traffic and have typically Σ(7)PCB(ind) concentrations ranging from 11 ng g(-1) to 29 ng g(-1). The PCB concentration of 29 ng g(-1) has been found in tree bark close to the railway station of Strasbourg. Nevertheless, the corresponding TEQ(DL-PCB) are low and range between 0.2 × 10(-3) ng TEQ g(-1) and 7 × 10(-3) ng TEQ g(-1). Samples collected near road traffic are enriched in Fe, Sb, Sn and Pb. Cd enrichments were found close to almost all types of industries

  15. Multivariate statistical analysis of heavy metals pollution in industrial area and its comparison with relatively less polluted area: a case study from the City of Peshawar and district Dir Lower.

    Science.gov (United States)

    Jan, F Akbar; Ishaq, M; Ihsanullah, I; Asim, S M

    2010-04-15

    Multivariate and univariate statistical techniques i.e., cluster analysis PCA, regression and correlation analysis, one way ANOVA, were applied to the metal data of effluents soil and ground water to point out the contribution of different industries towards the metals pollution, their source identification and distribution. The samples were collected from different industries and different downstream points of the main effluents stream and from the relatively less polluted area considered as control area. The samples were analyzed for metal concentration levels by flame atomic absorption spectrophotometer. The metal concentration data in the three media of the polluted area were compared with background data and control data as well as with the WHO safe limits. The results showed that soil has high metals concentration compared to effluents and water. The data also showed elevated levels of Mn and Pb in water that are 8.268 and 2.971 mg/L, respectively. Principal component analysis along with regression analysis showed that the elevated levels of metals in the effluents contaminate adjacent soil and ultimately the ground water. The other elements Co, Cd, Ni and Cu were also found to have correlation in the three media. 2009 Elsevier B.V. All rights reserved.

  16. The optimisation of electrokinetic remediation for heavy metals and radioactivity contamination on Holyrood-Lunas soil (acrisol species) in Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia

    International Nuclear Information System (INIS)

    Mohamed Johar, S.; Embong, Z.

    2015-01-01

    The optimisation of electrokinetic remediation of an alluvial soil, locally named as Holyrood-Lunas from Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia, had been conducted in this research. This particular soil was chosen due to its relatively high level of background radiation in a range between 139.2 and 539.4 nGy h -1 . As the background radiation is correlated to the amount of parent nuclides, 238 U and 232 Th, hence, a remediation technique, such as electrokinetic, is very useful in reducing these particular concentrations of heavy metal and radionuclides in soils. Several series of electrokinetics experiments were performed in laboratory scale in order to study the influence of certain electrokinetic parameters in soil. The concentration before (pre-electrokinetic) and after the experiment (post-electrokinetic) was determined via X-ray fluorescence (XRF) analysis technique. The best electrokinetic parameter that contributed to the highest achievable concentration removal of heavy metals and radionuclides on each experimental series was incorporated into a final electrokinetic experiment. Here, High Pure Germanium (HPGe) was used for radioactivity elemental analysis. The XRF results suggested that the most optimised electrokinetic parameters for Cr, Ni, Zn, As, Pb, Th and U were 3.0 h, 90 volts, 22.0 cm, plate-shaped electrode by 8 x 8 cm and in 1-D configuration order whereas the selected optimised electrokinetic parameters gave very low reduction of 238 U and 232 Th at 0.23 ± 2.64 and 2.74 ± 23.78 ppm, respectively. (authors)

  17. The optimisation of electrokinetic remediation for heavy metals and radioactivity contamination on Holyrood-Lunas soil (acrisol species) in Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia.

    Science.gov (United States)

    Mohamed Johar, S; Embong, Z

    2015-11-01

    The optimisation of electrokinetic remediation of an alluvial soil, locally named as Holyrood-Lunas from Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia, had been conducted in this research. This particular soil was chosen due to its relatively high level of background radiation in a range between 139.2 and 539.4 nGy h(-1). As the background radiation is correlated to the amount of parent nuclides, (238)U and (232)Th, hence, a remediation technique, such as electrokinetic, is very useful in reducing these particular concentrations of heavy metal and radionuclides in soils. Several series of electrokinetics experiments were performed in laboratory scale in order to study the influence of certain electrokinetic parameters in soil. The concentration before (pre-electrokinetic) and after the experiment (post-electrokinetic) was determined via X-ray fluorescence (XRF) analysis technique. The best electrokinetic parameter that contributed to the highest achievable concentration removal of heavy metals and radionuclides on each experimental series was incorporated into a final electrokinetic experiment. Here, High Pure Germanium (HPGe) was used for radioactivity elemental analysis. The XRF results suggested that the most optimised electrokinetic parameters for Cr, Ni, Zn, As, Pb, Th and U were 3.0 h, 90 volts, 22.0 cm, plate-shaped electrode by 8 × 8 cm and in 1-D configuration order whereas the selected optimised electrokinetic parameters gave very low reduction of (238)U and (232)Th at 0.23 ± 2.64 and 2.74 ± 23.78 ppm, respectively. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Assessing the performance of four leading-edge pXRF devices for trace metal measurement on contaminated soils in industrial and mining context (Wallonia, South Belgium).

    Science.gov (United States)

    Vandeuren, Aubry; Pereira, Benoît; Sonnet, Philippe

    2017-04-01

    In many countries, large areas where mining and smelting activities took place in the past now exhibit elevated soil metal concentration levels. In Belgium, as in many European countries, soil assays are performed by aqua regia digestion and ICP measurement which is a cost- and time-expensive protocol. The aim of this study is to assess if this protocol could be approximated or replaced by portable XRF measurement as this method is fast, low cost and can be used in situ. This study first focused on the evaluation of the performance of four leading-edge pXRF devices for measuring metal concentrations in a collection of Belgian soil samples from industrial and mining context and non-contaminated areas. Four soil preparation protocols were then tested with one device, involving (1) measurement on fresh soil, (2) in situ sample drying and sieving, (3) in laboratory sample drying and sieving and (4) in laboratory sample drying, sieving and crushing. The comparison of the pXRF devices showed that the performance of each device varies depending on the element measured. The precision of the XRF measurement and correlation with aqua regia measurement protocol both increased for most of the elements when drying and sieving soil samples. However, for Cu and Pb, the four devices provide good measurement results whatever the sample preparation protocol. Finally, we proved the suitability of pXRF devices on a real-world case study by delineating the extent of Pb soil contamination by in situ pXRF measurement on fresh soil.

  19. Prevalência de sintomas osteomusculares e fatores associados em trabalhadores de uma indústria metalúrgica de Canoas - RS Prevalence of musculoskeletal symptoms and associated factors among metal industry workers in Canoas - RS

    Directory of Open Access Journals (Sweden)

    Daiana Picoloto

    2008-04-01

    Full Text Available A saúde do trabalhador é um campo da saúde coletiva que vem criando espaços para a identificação e prevenção de doenças relacionadas ao trabalho, em especial as osteomusculares, em função da sua abrangência e magnitude. Desta forma, foi realizado um estudo objetivando conhecer os sintomas osteomusculares apresentados pelos trabalhadores de uma indústria metalúrgica do município de Canoas-RS e a associação destes com variáveis sociodemográficas e ocupacionais. Trata-se de um estudo transversal, realizado na maior indústria metalúrgica de Canoas-RS, com a utilização de dois questionários para coleta de dados, o primeiro para obtenção das variáveis demográficas, ocupacionais e hábitos de vida e o segundo para identificar a prevalência de sintomas osteomusculares (Questionário Nórdico de Sintomas Osteomusculares. Como resultado, encontrou-se que 75,2% dos trabalhadores relataram algum tipo de sintoma osteomuscular nos últimos doze meses, 53,3% nos últimos sete dias e 38,5% já tiveram afastamento devido ao problema. Observou-se, também, associação entre sintoma osteomuscular e as variáveis sexo, faixa etária, ocupação e escolaridade. Por conseguinte, constata-se que a prevalência de sintomas osteomusculares em trabalhadores é alta, necessitando de ações de prevenção e promoção à saúde nos ambientes de trabalho.Workers health is a field of community health that has opened spaces for identifying and preventing work-related diseases, especially musculoskeletal disorders in view of their extent and magnitude. We conducted thus a cross-sectional study in the biggest metal industry in the city of Canoas - RS, aimed at identifying the musculoskeletal symptoms of a group of metal industry workers and the association of these symptoms with socio-demographic and occupational variables. Two questionnaires were employed for gathering data: the first one was used to collect information on demographic and

  20. The use of nuclear and related techniques for the studies of possible health impact of airborne particulate matter in a metal industry

    International Nuclear Information System (INIS)

    Djojosubroto, Harjoto; Supriatna, Dadang; Kumolowati, Endang; Widjajakusuma, Benjamin

    2000-01-01

    Various processes in an industry may produce gases and fine airborne particulate matters. Elements and hazardous chemicals in the fine particulate matters may enter the human body through inhalation and direct contact with the skin. Excessive inhalation and contact with the fine airborne particulate matter may lead to intoxication due to excessive intake of the hazardous chemicals and toxic elements. The elements will be accumulated in human organs, such as liver, kidneys and brain, manifest in clinical syndromes such as hypertension, renal failure and neurological symptoms and signs. The absorbed elements are excreted through the urinary tract as urine. They also can be excreted through hair and nails. Elevated blood and urinary aluminum levels have been observed after occupational exposure to various aluminum compounds. This phenomenon indicates the absorption through inhalation, as there are no data indicating significant dermal absorption for aluminum. Absorption of chromium compounds in the workplace occurs mainly through inhalation. The absorption is dependent on the valence and solubility of the particular chromium species. Some elements such as trivalent chromium ions are readily cleared from the blood, but hexavalent chromium ions are retained much longer in the blood. The aluminum compounds vary greatly in their toxic and carcinogenic effects. Although the trivalent chromium is readily excreted, continuous intake may cause the blood chromium level to be higher than normal. These elements may either have an deleterious effect on, or be considered essential for human health. In this study, the levels and health effects of airborne particulate matter in the workplace are assessed by elemental quantification of blood, hair and nail of workers in a metal industry and in airborne particulate samples that are collected at the workplace. The present report represents progress of activities following the first Research Co-ordination Meeting 1997 in Vienna

  1. Neurotoxicity of metals.

    Science.gov (United States)

    Caito, Samuel; Aschner, Michael

    2015-01-01

    Metals are frequently used in industry and represent a major source of toxin exposure for workers. For this reason governmental agencies regulate the amount of metal exposure permissible for worker safety. While essential metals serve physiologic roles, metals pose significant health risks upon acute and chronic exposure to high levels. The central nervous system is particularly vulnerable to metals. The brain readily accumulates metals, which under physiologic conditions are incorporated into essential metalloproteins required for neuronal health and energy homeostasis. Severe consequences can arise from circumstances of excess essential metals or exposure to toxic nonessential metal. Herein, we discuss sources of occupational metal exposure, metal homeostasis in the human body, susceptibility of the nervous system to metals, detoxification, detection of metals in biologic samples, and chelation therapeutic strategies. The neurologic pathology and physiology following aluminum, arsenic, lead, manganese, mercury, and trimethyltin exposures are highlighted as classic examples of metal-induced neurotoxicity. © 2015 Elsevier B.V. All rights reserved.

  2. Metal Exposure and Associated Health Risk to Human Beings by Street Dust in a Heavily Industrialized City of Hunan Province, Central China.

    Science.gov (United States)

    Sun, Guangyi; Li, Zhonggen; Liu, Ting; Chen, Ji; Wu, Tingting; Feng, Xinbin

    2017-03-03

    Fifty-five urban street dust samples were collected from Zhuzhou, an industrial city in central China and analyzed for a range of toxic elements. Potential carcinogenic and non-carcinogenic health effects on children and adults due to exposure to street dust were assessed. Concerning the two subgroups, the child cohort is confronted with considerably greater health risks than adults. According to the Hazard Quotient (HQ) method, ingestion of dust particles poses primary risk to children and adults, followed by dermal contact and inhalation for all of the metals investigated except Hg, for which inhalation of its elemental vapor constitute a slightly higher risk than ingestion. For children, Pb, As, Cd, Cr, Hg and Sb exposure were deemed as the highest contributors to non-cancer health risks, while As and Cr represent an enhanced cancer risk for children. For adults, risk indicator values for both cancer and non-cancer effects obtained were within the safety threshold. In a comparison with other locations within and outside mainland China, exposure to arsenic is prominent for the population of Zhuzhou, indicating more attention and preventive actions should been taken.

  3. Metal Exposure and Associated Health Risk to Human Beings by Street Dust in a Heavily Industrialized City of Hunan Province, Central China

    Directory of Open Access Journals (Sweden)

    Guangyi Sun

    2017-03-01

    Full Text Available Fifty-five urban street dust samples were collected from Zhuzhou, an industrial city in central China and analyzed for a range of toxic elements. Potential carcinogenic and non-carcinogenic health effects on children and adults due to exposure to street dust were assessed. Concerning the two subgroups, the child cohort is confronted with considerably greater health risks than adults. According to the Hazard Quotient (HQ method, ingestion of dust particles poses primary risk to children and adults, followed by dermal contact and inhalation for all of the metals investigated except Hg, for which inhalation of its elemental vapor constitute a slightly higher risk than ingestion. For children, Pb, As, Cd, Cr, Hg and Sb exposure were deemed as the highest contributors to non-cancer health risks, while As and Cr represent an enhanced cancer risk for children. For adults, risk indicator values for both cancer and non-cancer effects obtained were within the safety threshold. In a comparison with other locations within and outside mainland China, exposure to arsenic is prominent for the population of Zhuzhou, indicating more attention and preventive actions should been taken.

  4. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 11: Computer-Aided Manufacturing & Advanced CNC, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    Science.gov (United States)

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  5. Proceedings of the 6. international symposium on waste processing and recycling in the mineral and metallurgical industries : WALSIM : water, air and land sustainability issues in mineral and metal extraction

    International Nuclear Information System (INIS)

    Jia, C.Q.; Pickles, C.A.; Brienne, S.; Rao, S.R.

    2008-01-01

    The proceedings of the 2008 conference of metallurgists of CIM includes a collection 7 separate symposia, namely (1) aerospace materials and manufacturing, (2) water, air and land sustainability issues in mineral and metal extraction (WALSIM), (3) current status and future trends of functional nanometers, (4) recent developments in advanced high strength steels processing, (5) corrosion and wear of materials, (6) advanced characterization techniques applied to mineral, metals and materials, and (7) management in metallurgy. The WALSIM symposium dealt with environmental issues, with particular reference to the three topics of water, air and land sustainability associated with mineral and metal extraction, processing and fabrication. It provided an opportunity for scientists, engineers and plant operators to report on work aimed at achieving more efficient, environmentally sound and sustainable performance of the mineral and metals industry by enabling related organizations to exchange information on the latest developments in this field of activity with considerations of both industry and society. The sessions were entitled: resource recovery from waste material; by-products processing of slag, fly ash and electric arc furnace dust; metal recycling; wastewater and effluent treatment; gaseous pollutants treatment; and, sustainability and basic research. The symposium featured 43 presentations, of which 17 have been catalogued separately for inclusion in this database. refs., tabs., figs

  6. Estudio de los metales contenidos en aire, agua y sedimentos en un área urbana - rural con influencia industrial ubicada en la Zona Metropolitana de Puebla, México

    OpenAIRE

    Morales García, Sandra Soledad

    2015-01-01

    Por la importancia que tienen los metales y metaloides en el ambiente es propicio conocer su composición y dilucidar sobre las fuentes naturales o antropogénicas que los generan. Esta investigación permitio determinar la concentración de metales y As en aire, agua y sedimentos dentro de un ambiente urbano-rural con influencia industrial en la Zona Metropolitana de la Ciudad de Puebla (region centro-oeste de México). El objetivo del trabajo fue establecer estadísticamente asociaciones entre lo...

  7. Condição ocular entre trabalhadores de uma indústria metalúrgica brasileira Ocular condition in a brazilian ironmaster industry

    Directory of Open Access Journals (Sweden)

    Thais Zamudio Igami

    2008-10-01

    Full Text Available OBJETIVO: Avaliar a condição ocular em população de trabalhadores de uma indústria metalúrgica paulista. MÉTODOS: Amostra de 2516 funcionários de uma fábrica na cidade de São Paulo foi submetida a uma avaliação oftalmológica como exame ocupacional periódico. Foi aplicado um questionário e realizado o exame de acuidade visual (Snellen e teste de Ishihara. Os funcionários com acuidade visual menor que 0,7 ou com diferenças maior que duas linhas ou que apresentassem alguma queixa ocular, passaram por avaliação complementar (biomicroscopia, refração, tonometria e fundo de olho. Prescreveu-se óculos conforme indicação. RESULTADOS: Houve predomínio do sexo masculino (62,5% e faixa etária de 20 a 29 anos (41%. A maioria não apresentava antecedentes oculares (97,6% ou sistêmicos (96,6%.A acuidade visual estava acima de 0,7 em 95,5% dos olhos e 84% não utilizavam correção. O diagnóstico final foi exame normal em 55% dos casos, presbiopia em 13.6%, astigmatismo miópico em 10% e hipermetrópico em 7,7% dos indivíduos. Baixa visão foi encontrada em 2,4%, cegueira unilateral em 0,4%, não havendo casos de cegueira ou de deficiência visual entre os trabalhadores. As principais causas de baixa visão foram erros refrativos e ambliopia. CONCLUSÃO: A maioria dos funcionários da indústria pesquisada apresentava exame oftalmológico normal e nenhum deles apresentava cegueira bilateral.PURPOSE: To evaluate the ocular condition in a brazilian ironmaster industry. METHOD: A prospective study was conducted in 2516 employees from an ironmaster brazilian industry in São Paulo city, Brazil. A questionnaire was applied and visual acuity and Ishihara test were performed in every individual. A complete ophthalmic evaluation (slit lamp examination, fundoscopy, tonometry and refractometry was done when the visual acuity was worse than 0.7 or when the worker had a greater diference between the eyes (more than two lines or when there were

  8. Development and characterization of ceramic composites alumina-titania based reinforced with lanthanum oxide for fabrication of inert coatings for metallic tanks of the oil industry

    International Nuclear Information System (INIS)

    Bandeira, J.M.; Yadava, Y.P.; Silva, N.D.G.; Ferreira, R.A.S.

    2016-01-01

    Crude petroleum is highly corrosive causing superficial degradation in metallic tanks used for storage and transportation of this material, which causes a serious problem in the oil industry. An alternative to solve this problem is to use some kind of coating that is inert to this kind of corrosion. Alumina and titania are interesting materials for several engineering applications because, when compared with other ceramic materials, they present superior mechanical properties, e.g. high mechanical strength, good chemical stability and high fracture toughness combined with good wear resistance and a coefficient of thermal expansion close to the iron's, which makes them fit to use in ceramic hardening process and coating. In this paper, alumina-titania ceramic composites with 5%, 10%, 15% and 20% of titania (TiO2) and reinforced with 2% of lanthanum oxide of were produced by thermo-mechanical processing and sintering techniques at 1350 deg C. In these composites, microstructure and mechanical properties were analyzed using X-ray spectroscopy, optical microscopy, scanning electron microscopy and Vickers hardness in order to evaluate their applicability. X-ray spectroscopy showed the formation of composite without the presence of other phases. Optical microscopy and scanning electron microscopy showed a homogeneous microstructure in terms of particle size and distribution. Vickers hardness test showed a gradual decrease in hardness with the addition of titania. The composite with 5% of titania and 2% of lanthanum oxide is the best choice for structural applications. The composites were submerged in crude petroleum for 30 days to study their stability in such environment. Through the analysis of X-ray spectroscopy, optical microscopy and Vickers hardness before and after the submersion in crude petroleum, it was not observed structural or microstructural degradation nether alterations in mechanical properties. This way, it was concluded that these composites have

  9. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  10. South Africa's mineral industry

    International Nuclear Information System (INIS)

    1985-06-01

    The main aim of the Minerals Bureau in presenting this annual review is to provide an up-to-date reference document on the current state of the mineral industry in South Africa. This includes a brief look at the production, trade, economy, resources and deposits of precious metals and minerals, energy minerals, metallic minerals, and non-metallic minerals. One article discusses the production, trade, export, deposits and economy of uranium

  11. Sustainable Industrial Production

    DEFF Research Database (Denmark)

    Christensen, Irene

    2015-01-01

    The purpose of this case is to create awareness about a somewhat unfamiliar industry that accounts for over €3 billion in Scandinavia and £5,6 billion in the UK, the Metals recycling industry. The case features a Scandinavian Company and includes several perspectives from managerial disciplines s...

  12. Sustainable Industrial Production

    DEFF Research Database (Denmark)

    Christensen, Irene

    2015-01-01

    The purpose of this case is to create awareness about a somewhat unfamiliar industry that accounts for over €3 billion in Scandinavia and £5,6 billion in the UK, the Metals recycling industry. The case features a Scandinavian Company and includes several perspectives from managerial disciplines...

  13. Evaluation of Extremely Low Frequency (ELF Electromagnetic Fields and Their Probable Relationship with Hematological Changes among Operators in Heavy Metal Industry

    Directory of Open Access Journals (Sweden)

    Mehdi Roknian

    2009-12-01

    Full Text Available Introduction: It is important that biological and health effects from the induction of currents and fields in the body by extremely low frequency (ELF fields are fully explored to determine the effects produced at the molecular, cellular and organ levels. The objective of this study was to evaluate the intensity of ELF electromagnetic fields and its probable relationship with hematological changes among operators in a heavy metal industry site. This is a case study. In the present study, 205 workers exposed to electromagnetic fields (EMF were working in four categories: (1 induction furnace workers, (2 induction hardening workers, (3 welders, (4 computer operators. Material and Methods: A variety of methods for exposure assessment have been devised and applied to epidemiological studies of the effects of EMF in occupational settings. The methods range from rather crude job-classification methods, to sophisticated job-exposure matrix (JEM modeling based on personal exposure measurements and reconstruction of past exposure. Monitoring procedures were carried out to measure the levels of exposure to ELF electric and magnetic fields. The strength of the electric and magnetic fields were measured by a dosimetric method (NIOSH 203.Workers’ blood samples were collected and analyzed for identifying different blood parameters. The results of hematological changes of workers in their medical files were also used for evaluation. Results: Measurements showed a high strength of ELF field at the induction furnace workplace. Total electric field ranged from 2.3 to 2452.3 V/M and magnetic field from 1 to 325.1 μT. In other workshops including induction hardening, total electric field ranged from 2.45 to 68.5 V/M, magnetic field from 1.3 to 20.4 μT, total electric field from 1.02 to 11.23 V/M, magnetic field from 0.12 to 3.25 μT in the welding department and finally for computer operators this range was 20.1 to 186.2 V/M for electric field and 0.07 to 0

  14. Gradual Accumulation of Heavy Metals in an Industrial Wheat Crop from Uranium Mine Soil and the Potential Use of the Herbage

    Directory of Open Access Journals (Sweden)

    Gerhard Gramss

    2016-10-01

    Full Text Available Testing the quality of heavy-metal (HM excluder plants from non-remediable metalliferous soils could help to meet the growing demands for food, forage, and industrial crops. Field cultures of the winter wheat cv. JB Asano were therefore established on re-cultivated uranium mine soil (A and the adjacent non-contaminated soil (C. Twenty elements were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS from soils and plant sections of post-winter seedlings, anthesis-state, and mature plants to record within-plant levels of essential and toxic minerals during ripening and to estimate the (reuse of the soil-A herbage in husbandry and in HM-sensitive fermentations. Non-permissible HM loads (mg∙kg−1∙DW of soil A in Cd, Cu, and Zn of 40.4, 261, and 2890, respectively, initiated the corresponding phytotoxic concentrations in roots and of Zn in shoots from the seedling state to maturity as well as of Cd in the foliage of seedlings. At anthesis, shoot concentrations in Ca, Cd, Fe, Mg, Mn, and Zn and in As, Cr, Pb, and U had fallen to a mean of 20% to increase to 46% during maturation. The respective shoot concentrations in C-grown plants diminished from anthesis (50% to maturity (27%. They were drastically up/down-regulated at the rachis-grain interface to compose the genetically determined metallome of the grain during mineral relocations from adjacent sink tissues. Soil A caused yield losses of straw and grain down to 47.7% and 39.5%, respectively. Nevertheless, pronounced HM excluder properties made Cd concentrations of 1.6–3.08 in straw and 1.2 in grains the only factors that violated hygiene guidelines of forage (1. It is estimated that grains and the less-contaminated green herbage from soil A may serve as forage supplement. Applying soil A grains up to 3 and 12 in Cd and Cu, respectively, and the mature straw as bioenergy feedstock could impair the efficacy of ethanol fermentation by Saccharomyces cerevisiae.

  15. The use of nuclear and related techniques for the studies of airborne particulate matter in workplace including tissue analysis and possible impacts on human health in a metal industry

    International Nuclear Information System (INIS)

    Widjajakusuma, B.; Djojosubroto, H.; Kumolowati, E.

    1998-01-01

    Various processes in a metal industry may produce gases and fine airborne particulate matter that hazardous to human health. The present study deals with assessment of levels and health effects of airborne particulate matter in a metal industry. The objective is achieved by determination of elemental levels in blood, nail and hair of workers and airborne particulate matter that are collected from their workplace. The elemental levels in blood, nail and hair of the workers will be compared to those of control. Their health condition are examined by medical examination and biochemical analysis of their blood. The blood was drawn following an overnight fast before breakfast, by means of I.V. catheter into three polyethylene tubes. The blood samples in the first tubes were sent to clinical laboratory for biochemical examination. Those in the second and third tubes, which are considered free from metal contamination by the needle of the catheter, are used for trace element study. Sera in the polyethylene tubes were separated from erythrocyte by centrifugation, then cooled by liquid nitrogen and freeze dried. Approximately 1 g of toe nail and hair samples were taken respectively from every worker. To eliminate grease and surface contamination the hair samples were rinse with acetone. Airborne particulate samples were collected from the workplace using Gent sampler. These samples are ready for elemental analysis. Results of biochemical analysis and medical examinations of the workers are presented in this report. The correlation among various parameters will be determined by statistical analysis. (author)

  16. Novel, One-Step, Chromate-Free Coatings Containing Anticorrosion Pigments for Metals That Can Be Used in a Variety of Industries

    National Research Council Canada - National Science Library

    Ashirgade, A; Puomi, P; van Ooij, W. J; Bafna, S; Seth, A; Shivane, C

    2007-01-01

    .... Such primers can be applied on any bare metal, provided it is reasonably clean. These primers are based on water-dispersed organic resins and organofunctional silanes, which assure good adhesion both to the substrate and the overcoat...

  17. Treatment of food-agro (sugar industry wastewater with copper metal and salt: Chemical oxidation and electro-oxidation combined study in batch mode

    Directory of Open Access Journals (Sweden)

    Anurag Tiwari

    2017-06-01

    Full Text Available Sugar industry is one of the major industries which have been included in the polluting industries list by the World Bank. Different pollution monitoring agencies like State and National Pollution Control Boards have been made compulsory for each industry to set up a waste water treatment plants. In treatment system, single treatments of effluent are not effective to manage the dischargeable limit. So an attempted has been made to treat sugar industry wastewater with electrochemical and chemical process by using copper as electrode and chemical. Electrochemical process shows 81% chemical oxygen demand and 83.5% color reduction at pH 6, electrode distance 20 mm, current density 178 A m−2 and 120 min treatment time. The combined treatment results show 98% chemical oxygen demand and 99.5% color removal at 8 mM mass loading and pH 6 with copper sulphate.

  18. Applications of metallic hydrides technology in solar energy conversion and application, and industrial thermic wastes; Aplicacao da tecnologia dos hidretos metalicos na conversao e aproveitamento da energia solar e residuos termicos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.P. da [Universidade Estadual de Campinas, SP (Brazil). Lab. de Hidrogenio

    1990-12-31

    The conversion and utilization of solar energy and of industrial thermic wastes may be attained through innumerable types of thermic machines. This paper describes one of these machines, based on metallic hydrides technology (compounds formed by reversible chemistry reaction of certain metals with hydrogen), in which the gas is absorbed at low pressure and temperature (10 atm; 30-50 deg C) and, by means of any thermic source, it is liberated at high pressure and temperature (50-100 atm; 200-300 deg C). The cyclic operation of the process enables various uses of these machines, either in open circuits (compression and hydrogen pumping) or closed circuits (refrigeration systems or electricity generation). 13 refs., 6 figs

  19. Instalación eléctrica de baja tensión y centro de transformación de una nave para reciclaje industrial de hierros y metales

    OpenAIRE

    Anaut Garde, Miguel

    2010-01-01

    El objeto del proyecto es la definición y justificación de la instalación eléctrica en B.T. en la adecuación de una nave y campa para reciclaje industrial de hierros y metales ubicada en la parcela nº 2.4 del P.S.I.S. “Área Industrial de la Meseta de Salinas” en Salinas de Pamplona, Cendea de Galar (Navarra), todo ello teniendo en cuenta el cumplimiento del Reglamento electrotécnico en Baja tensión de 2002. Al mismo tiempo y en cumplimiento de la normativa vigente se pretende d...

  20. Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions.

    Science.gov (United States)

    Guittonny-Philippe, Anna; Masotti, Véronique; Höhener, Patrick; Boudenne, Jean-Luc; Viglione, Julien; Laffont-Schwob, Isabelle

    2014-03-01

    In the Mediterranean area, surface waters often have low discharge or renewal rates, hence metal contamination from industrialised catchments can have a high negative impact on the physico-chemical and biological water quality. In a context of climate and anthropological changes, it is necessary to provide an integrative approach for the prevention and control of metal pollution, in order to limit its impact on water resources, biodiversity, trophic network and human health. For this purpose, introduction of constructed wetlands (CWs) between natural aquatic ecosystems and industrialised zones or catchments is a promising strategy for eco-remediation. Analysis of the literature has shown that further research must be done to improve CW design, selection and management of wetland plant species and catchment organisation, in order to ensure the effectiveness of CWs in Mediterranean environments. Firstly, the parameters of basin design that have the greatest influence on metal removal processes must be identified, in order to better focus rhizospheric processes on specific purification objectives. We have summarised in a single diagram the relationships between the design parameters of a CW basin and the physico-chemical and biological processes of metal removal, on the basis of 21 mutually consistent papers. Secondly, in order to optimise the selection and distribution of helophytes in CWs, it is necessary to identify criteria of choice for the plant species that will best fit the remediation objectives and environmental and economic constraints. We have analysed the factors determining plant metal uptake efficiency in CWs on the basis of a qualitative meta-analysis of 13 studies with a view to determine whether the part played by metal uptake by plants is relevant in comparison with the other removal processes. Thirdly, we analysed the parameters to consider for establishing suitable management strategies for CWs and how they affect the whole CW design process

  1. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  2. Mosses as indicators of atmospheric metal deposition in an industrial area of southern Brazil Musgos como indicadores da deposição atmosférica de metais em uma área industrial do sul do Brasil

    Directory of Open Access Journals (Sweden)

    Aline Correa Mazzoni

    2012-09-01

    Full Text Available Caxias do Sul hosts the second largest metal-mechanic pole in Brazil, which increases the risk of atmospheric contamination. With the aim of identifying species that might be useful as indicators of atmospheric deposition of metals, 15 species of mosses from an urban and a rural setting were analyzed and compared with specimens deposited at the Herbarium of the Universidade de Caxias do Sul. Metal concentrations (Zn, Ni, Cd, Cr, Cu and Pb were determined using Atomic Absorption Spectrometry (AAS. The Mann-Whitney test indicated concentrations of Zn, Cu, Pb and Cr that were significantly different between the urban and rural areas. Additionally, Concentrations of Zn, Cd, Cu and Pb were significantly higher in recently collected samples. The species Thuidium tomentosum Besch., Sematophyllum subpinnatum (Brid. E. Britton, Helicodontium capillare (Hedw. A. Jaeger, Schlotheimia jamesonii (W.-Arnott Brid. and Meteorium deppei (Hornsch. ex Müll. Hal. Mitt. are potential biomonitors of atmospheric metal deposition.Caxias do Sul sedia o segundo maior pólo metal mecânico do Brasil, apresentando elevado risco de contaminação atmosférica. Com o objetivo de identificar espécies úteis como indicadoras da deposição atmosférica de metais, foram analisadas 15 espécies de musgos procedentes da zona urbana e da área rural e espécimens depositados no Herbário da Universidade de Caxias do Sul. Os metais (Zn, Ni, Cd, Cr, Cu e Pb foram determinados por meio de Espectrometria de Absorção Atômica (AAS. O Teste de Mann-Whitney indicou diferenças significativas nas concentrações de Zn, Cu, Pb e Cr entre as áreas urbana e rural. Um aumento significativo na presença de Zn, Cd, Cu e Pb foi evidenciado nas amostras recentes. As espécies Thuidium tomentosum Besch., Sematophyllum subpinnatum (Brid. E. Britton, Helicodontium capillare (Hedw. A. Jaeger, Schlotheimia jamesonii (W.-Arnott Brid. e Meteorium deppei (Hornsch. ex Müll. Hal. Mitt. são indicadas

  3. Archaeological analogous and industrials for deep storage: study of the archaeological metallic piece; Analogos arqueologicos e industriales para almacenamientos profundos: estudio de piezas arqueologicas metalicas

    Energy Technology Data Exchange (ETDEWEB)

    Criado Portal, A. J.; Martinez Garcia, J. A.; Calabres Molina, R.; Garcia abajo, A.; Penco Valenzuela, F.; Lecanda Esteban, J. A.; Garcia Bartual, M.; Jimenez Gonzalez, J. M.; Bravo Munoz, E.; Rodriguez Lobo, L. M.; Fernandez Cascos, T.; Fernandes Cordero, O.; Montero Ruiz, I.

    2000-07-01

    The aim of present research is to obtain information about archaeological analogous of iron and steel, useful for the model of deep geological repository (AGP). The analogous examined have remained buried between 1400 and 2400 years, in very assorted geochemical environments. The extraction of the archaeological pieces has been accomplished according to normalised protocols, trying to carry to the laboratory so the piece as its burial environment, avoiding all possible pollution. Trying to the archaeological analogous could provide valuable information to the AGP model, the study has been directed to related the physical-chemical characteristics of the terrain respect to the deterioration of the archaeological metallic piece. The geology of the surrounding terrain to the archaeological deposit, the geomorphological study of the terrain and data from the analysis of ground: pH, wetness, porosity, organic matter contents, bacteria presence, sulphates, carbonates, chlorides, etc., have allowed to explain the physical-chemical phenomena suffered by the archaeological iron and steel pieces. Also, an exhaustive study of the archaeological piece has been accomplished, concerning the microstructure of the corrosion layer and of the not deteriorated metallic rest. Obtained information concerns different items, such as corrosion velocity and formations of oxide layers, diffusion of chemical elements from the corrosion layer to the metal and viceversa, and structural changes in oxide layers and in the metallic remains by structural ageing. Obtained data have allowed to develop a mathematical model for calculation of corrosion velocity in buried iron and steels, based on physical-chemical variables of grounds, chemical composition and thermomechanical treatment given to the metal during its manufacture. (Author)

  4. Industrial Fuel Flexibility Workshop

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  5. Industrial water treatment with heavy metals through zeolites and bioremediation systems with aquatic plants especially Eichhornia crassipes. State of art review

    OpenAIRE

    Uriel Fernando Carreño-Sayago

    2014-01-01

    In this review we explore different opportunities to use a cheap natural material for removing and retention of heavy metals from polluted waters by waste of different processes. Two research systems will be addressed: the first through a material known as zeolite or more generally porous  luminosilicates, which may be synthesized or extracted from the mines of clays and minerals, being used in its natural state or after modification processes and doping. The other mechanism is bioremediation...

  6. Effect of addition of sewage sludge and coal sludge on bioavailability of selected metals in the waste from the zinc and lead industry.

    Science.gov (United States)

    Sobik-Szołtysek, Jolanta; Wystalska, Katarzyna; Grobelak, Anna

    2017-07-01

    This study evaluated the content of bioavailable forms of selected heavy metals present in the waste from Zn and Pb processing that can potentially have an effect on the observed difficulties in reclamation of landfills with this waste. The particular focus of the study was on iron because its potential excess or deficiency may be one of the causes of the failure in biological reclamation. The study confirmed that despite high content of total iron in waste (mean value of 200.975gkg -1 ), this metal is present in the forms not available to plants (mean: 0.00009gkg -1 ). The study attempted to increase its potential bioavailability through preparation of the mixtures of this waste with additions in the form of sewage sludge and coal sludge in different proportions. Combination of waste with 10% of coal sludge and sewage sludge using the contents of 10%, 20% and 30% increased the amounts of bioavailable iron forms to the level defined as sufficient for adequate plant growth. The Lepidum sativum test was used to evaluate phytotoxicity of waste and the mixtures prepared based on this waste. The results did not show unambiguously that the presence of heavy metals in the waste had a negative effect on the growth of test plant roots. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Lead and the London Metal Exchange — a happy marriage? The outlook for prices and pricing issues confronting the lead industry

    Science.gov (United States)

    Keen, A.

    The outlook for the supply-demand balance for refined lead is addressed and takes into account the growing non-fundamental forces on price determination. The market for refined lead is presently experiencing its first year of surplus since the major crisis of the early 1990s. Earlier in the decade, the dissolution of the Soviet Union and recession in developed economies led to a significant rise in London Metal Exchange (LME) stocks. An acceleration absorbed these stocks in an 18-month period in the mid-1990s, and LME lead prices reacted to the market deficit by peaking above US900. Since then the market has balanced, yet prices have declined steadily to less that 50% of their peak levels. It is argued that, on fundamental grounds, prices have fallen below justified levels. As much of the reason for this depression between 1997 and 1999 has been the generally depressive effect of the Asian economic crisis on financial markets, the level of lead prices may now be due for a correction. Other metals have begun to increase during the first half of 1999 and lead, given its neutral fundamental outlook, is now poised to participate in the generally more buoyant moods across LME metals. An increase of approximately 10% in average LME 3-month settlement prices is forecast and will result in annual average prices of US 570/tonne over the course of 1999. Monthly averages and spot prices are predicted to exceed this level, particularly during peak third-quarter demand.

  8. Co-ordinated research project on assessment of levels and health-effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. Report on the second research co-ordination meeting

    International Nuclear Information System (INIS)

    2000-01-01

    Overall objectives: To demonstrate the applicability of nuclear and related techniques in studies that may impact on human health, giving emphasis to the solution of problems that have been identified to be of high priority in national and international programmes for sustainable development. Specific objectives: To develop strategies and techniques for sampling of workplace airborne particulate matter (APM) and of human tissues and body fluids (hair, blood, etc.) of exposed and non-exposed persons; To development suitable analytical procedures for analysis of such types of samples, using nuclear and related analytical techniques; To carry out workplace and personal monitoring of APM and characterise the health effects of such exposure in terms of the observed elemental concentration; To carry out tissue analyses of the workers so exposed for biological monitoring and the health effects studies. Achievements: a) Specific industries not previously monitored in individual countries have been targeted in respect of pollution assessment. Some examples are: Stainless steel processing and construction; Galvanising industry; Zinc smelting operations; Mineral fertiliser industry. b) Validation of analytical techniques through quality control exercises: NAT-3 Interlaboratory comparison for the determination of trace and minor elements in urban dust artificially loaded on air filters; NAT-4 Proficiency test on selected trace elements in lyophilised urine and air filters. c) Capacity building through the establishment of new multidisciplinary teams, personnel training and laboratory expertise. d) The sampling procedures have been harmonised through: The application of the ''Gent'' sampler for APM collection, IAEA procedures and IUPAC guidelines for sampling and sample handling of hair, blood and urine. e) All participants performed surveys on targeted industries and selected pollutants. f) The scientific output of the CRP is materialised in various national and international

  9. Research report of FY 1997 on the industrial science and technology development. Technology development of super-metal (technology development of nano-amorphous structural control materials); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku seika hokokusho. Super metal no gijutsu kaihatsu (nano-amorphous kozo seigyo zairyo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development of the innovative metals have been conducted, by which the weight reduction of members can be done by drastically improving the strength compared with conventional metals. For the high-rate cluster deposition and super plastic forming technologies, research and development of aluminum-based light-weight materials have been conducted, which provides excellent strength, toughness, and super plastic formability at room temperature. For the high-density energy utilization and control technology (amorphous-A), super-metals have been investigated as high dew point and corrosion resistance materials used for waste incinerators operated under the very severe conditions. These are expected to be applied to the apparatuses and equipment due to their excellent properties. For the controlled cooling technology (amorphous-B), super-metals with excellent soft magnetic characteristics and degree of shape freedom have been investigated for high performance and high efficiency devices including electric/electronic/communication devices, power transmission devices, and various industrial devices and parts. These are expected to contribute to the creation of new markets and the improvement of international competitive force. 123 refs., 160 figs., 33 tabs.

  10. Why general purpose technologies matter in innovation systems : The case of artificial intelligence in the mining and metal producing industry of Sweden

    OpenAIRE

    Karakaya, Emrah

    2017-01-01

    There are many signs indicating that artificial intelligence – reproduction of the cognitive functions that humans have such as learning and problem solving by machines– has been spreading among various industries. The rise of artificial intelligence – as this article conceptualize as a general purpose technology –   is affecting not only the cognitive dimension of technological innovation systems but also the organizational, institutional and economic dimensions. However, from a technologica...

  11. Sulfur‐Limonene Polysulfide: A Material Synthesized Entirely from Industrial By‐Products and Its Use in Removing Toxic Metals from Water and Soil

    Science.gov (United States)

    Crockett, Michael P.; Evans, Austin M.; Worthington, Max J. H.; Albuquerque, Inês S.; Slattery, Ashley D.; Gibson, Christopher T.; Campbell, Jonathan A.; Lewis, David A.; Bernardes, Gonçalo J. L.

    2015-01-01

    Abstract A polysulfide material was synthesized by the direct reaction of sulfur and d‐limonene, by‐products of the petroleum and citrus industries, respectively. The resulting material was processed into functional coatings or molded into solid devices for the removal of palladium and mercury salts from water and soil. The binding of mercury(II) to the sulfur‐limonene polysulfide resulted in a color change. These properties motivate application in next‐generation environmental remediation and mercury sensing. PMID:26481099

  12. Assessing the performance of four leading-edge pXRF devices for trace metal measurement on contaminated soils in industrial and mining context (Wallonia, South Belgium)

    OpenAIRE

    Vandeuren, Aubry; Sonnet, Philippe; Pereira, Benoît; Xyrafis, Stratos; European Geosciences Union (EGU) 2017

    2017-01-01

    In many countries, large areas where mining and smelting activities took place in the past now exhibit elevated soil metal concentration levels. In Belgium, as in many European countries, soil assays are performed by aqua regia digestion and ICP measurement which is a cost- and time-expensive protocol. The aim of this study is to assess if this protocol could be approximated or replaced by portable XRF measurement as this method is fast, low cost and can be used in situ. This study first focu...

  13. Evaluation of solubility in simulated lung fluid of metals present in the sludge from a metallurgical industry to produce metallic zinc; Avaliacao da solubilidade em liquido pulmonar simulado dos metais presentes no rejeito gerado por uma industria metalurgica de zinco

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Rosilda Maria Gomes de

    2012-07-01

    The objective of this study was to determine the solubility parameters (rapid and slow dissolution rates, rapid and slow dissolution fractions) metal particles present in a pile of sludge accumulated under exposure to weathering from the Cia Mercantil Inga, located at the Ilha da Madeira, Sepetiba Bay, Rio de Janeiro. Plant samples collected in the neighboring of the pile and bioindicators placed in the region and collected after some months indicated that the inhabitants of Ilha da Madeira have been exposed to trace elements such zinc, cadmium, mercury and lead, produced during the processing of zinc minerals (hemimorphite - Zn{sub 4}(OH){sub 2}Si{sub 2}O{sub 7}.H{sub 2}O, and willemite - Zn{sub 2}SiO{sub 4}). A static dissolution test in vitro was used to determine the solubility parameters using a simulated lung fluid (SLF), on a time basis ranging from 10 min to 1 year. The metal concentrations in the sludge samples and in the SLF were determined using Particle Induced X-rays Emission (PIXE). In conclusion, this study confirms the harmful effects on the neighboring population of the airborne particles containing these metals that came from the sludge. The solubility parameters obtained for Zn, Cd, Cr, Ni and Mn present in the rapid dissolution fraction in SLF were 0.945; 0.473; 0.226; 0.300 and 0.497, respectively, and the corresponding times for half life of dissolution of the rapid fraction were f{sub r} = 2.082 days; f{sub r} = 0.09 days; f{sub r} = 0.37 days; f{sub r} = 0.332 days ad f{sub r} = 0.99 days; for the slow dissolution fraction times were f{sub r} = 146.95 days; f{sub r} = 63 days; f{sub r} = 86.64 days; f{sub r} = 79.66 days and f{sub r} = 59.84 days. These values indicate that these metals present a moderate absorption level in SLF, and may be classified as M type, according to the International Commission on Radiological Protection (ICRP). The use of solubility parameters allowed a better description of the kinetic behaviour of the sludge in

  14. La resistencia obrera en el largo plazo: racionalización industrial y luchas obreras en una coyuntura crítica (1954-1956. El caso metalúrgico

    Directory of Open Access Journals (Sweden)

    Nicolás Ferraro

    2012-12-01

    Full Text Available A mediados de los años cincuenta el punto de discusión central en las relaciones capital-trabajo era el nivel de productividad. Esta cuestión había acompañado al gobierno peronista desde sus mismos inicios pero fue recién luego de la crisis de comienzos de década que se convirtió en el eje de la discusión económica Luego del derrocamiento de Juan Domingo Perón en septiembre de 1955, el gobierno de la “Revolución Libertadora” se propuso como meta llevar a cabo lo que el peronismo no había podido realizar: restablecer el orden en las fábricas, concretar ese triunfo político que sentara desde la base de la estructura industrial las condiciones necesarias para dar nuevo impulso al proceso de acumulación. Este texto busca profundizar en el estudio de la racionalización industrial y luchas obreras en esta coyuntura crítica (1954-1956. Para esto consideramos fundamental el caso metalúrgico, tanto por lo que representa la rama al interior de la industria argentina de posguerra como por los niveles de organización y conflicto obrero. En este trabajo nos proponemos realizar una doble operación. Por un lado, aportar a los relatos existentes sobre la huelga metalúrgica de 1956 nueva información a partir del uso de fuentes no utilizadas por sus autores. Por otro, comparar los hechos de 1956 con los de 1954 y así realizar una exploración que llame la atención sobre las semejanzas de los planteos y resultados en contextos indudablemente diferentes.

  15. Evaluation of the toxicity of fluids employed in the metallic tool industrial machining using aquatic ecotoxicology;Avaliacao da toxicidade de fluidos de usinagem atraves da ecotoxicologia aquatica

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Ricardo dos Santos

    2006-07-01

    Eco toxicological analyses have being used to monitor environmental samples, industrial effluents and complex substances. With the objective to analyze the toxicity of cutting fluids used in the machinery industry, acute toxicity test with species of three different trophic levels: Vibrio fischeri, Daphnia similis, Daphnia laevis e Danio rerio, were performing. The samples of fluids were analyzed by COD, phenol, pH, color, density and surfactants. The physical and chemical parameters are the according with the brazilian law, CONAMA 357 (D.O.U. 2005). The results of the toxicity tests showed that the cutting fluids have high toxicity to the organisms used in this study and the gamma radiation treatment was not efficient to decrease the matrix. The biodegradation in soil demonstrated be effective to the cutting fluids and the indigenous bacteria were identified and isolated to possible treatment of soils contaminated with these kinds of substances. The monitoring and management of residues of cutting fluids are necessary to preservation of aquatic live, in consequence of their high toxicity. (author)

  16. Effect of annealing on the spectral and optical characteristics of nano ZnO: Evaluation of adsorption of toxic metal ions from industrial waste water.

    Science.gov (United States)

    Radhakrishnan, Asha; Rejani, P; Shanavas Khan, J; Beena, B

    2016-11-01

    The present work accentuates an unexploited and environmentally benign method of synthesizing ZnO nanomaterials using Sugar cane juice. The synthesized nanomaterials were characterized by XRD, SEM, TEM, BET, EDS and FTIR. UV-visible and photoluminescence studies were also carried out to understand the absorption properties of synthesized nanomaterial. From the adsorption studies, it would be clear that synthesized ZnO should be used as an effective adsorbent for Pb(ll) and Cd(ll) removal. The kinetic data followed the pseudo-second-order model. The equilibrium attained at 120min and isotherm follows the order Sips>Langmuir>Freundlich. The adsorption-desorption studies conducted over 6 cycles illustrate the viability and repeated use of the adsorbent for the removal of Pb(ll)and Cd(ll) from aqueous solutions. The practical efficiency and usefulness of the adsorbent was tested using real industrial wastewater also. Cytotoxicity result shows that, ZnO was biocompatible at lower concentrations, and it was used as an ecofriendly nanoadsorbent for industrial and environmental applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Industrial water treatment with heavy metals through zeolites and bioremediation systems with aquatic plants especially Eichhornia crassipes. State of art review

    Directory of Open Access Journals (Sweden)

    Uriel Fernando Carreño-Sayago

    2014-12-01

    Full Text Available In this review we explore different opportunities to use a cheap natural material for removing and retention of heavy metals from polluted waters by waste of different processes. Two research systems will be addressed: the first through a material known as zeolite or more generally porous  luminosilicates, which may be synthesized or extracted from the mines of clays and minerals, being used in its natural state or after modification processes and doping. The other mechanism is bioremediation through algae, some bacteria and especially aquatic plants such as Eichhornia crassipes (water hyacinth. We will evaluate the viability of joining these two types complementing each other. Investigations into the feasibility of Eichhornia crassipes (water hyacinth as feedstock for biofuels are also reviewed.

  18. A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry

    DEFF Research Database (Denmark)

    Petrinic, Irena; Korenak, Jasmina; Povodnik, Damijan

    2015-01-01

    studied the technical and economic feasibilities of adding an ultrafiltration process as a pre-treatment for removing dissolved and colloidal contaminants >0.4μm, and to eliminate membrane fouling before a final reverse osmosis process resulting in permeate that would meet reuse criteria. The results show...... that the ultrafiltration-reverse osmosis treatment removed between 91.3% and 99.8% of the contaminants from the effluent, such as metal elements, organic, and inorganic compounds. Contaminants such as suspended solids, nickel, ammonium nitrogen, sulphate nitrogen, chemical oxygen demand, and biochemical oxygen demand were...... completely removed, the concentrations in the permeate being under the detection limits, thus the quality of the ultrafiltration-reverse osmosis process met the reuse criteria. This demonstrates the technological feasibility of wastewater reuse during electro-plating processes and the pre-treatment of powder...

  19. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  20. Metal separation from multi metallic solutions by grape stalks

    OpenAIRE

    Stevens, Bas

    2016-01-01

    With the rapid development of various industries such as mine and metallurgy, wastewaters containing metals are directly or indirectly discharged into the environment. One of the most dangerous effluents discharged are Acid Mine Drainage (AMD), the outflows of acidic waters from metal mines. This water needs to be treated so it can be reused and the metal ions in this polluted water can be recuperated. The metals that occur in the polluted water are difficult to eliminate. To e...

  1. Embrittlement by liquid and solid metals

    International Nuclear Information System (INIS)

    Kamdar, M.H.

    1984-01-01

    This volume presents research on the phenomena of both liquid- and solid-metal induced embrittlement of metals and their occurrence in many important industries. In this book, review papers are presented on liquid-metal embrittlement, solid-metal embrittlement, and liquid- and solid-metal embrittlement of industrial metals and alloys. In addition, several papers presented cover parts of extensive investigations at the General Electric Company concerning liquid- and solid-metal embrittlement of zirconium nuclear fuel cladding tubes and possible means for preventing embrittlement of zirconium

  2. Industry Employment

    Science.gov (United States)

    Occupational Outlook Quarterly, 2012

    2012-01-01

    This article illustrates projected employment change by industry and industry sector over 2010-20 decade. Workers are grouped into an industry according to the type of good produced or service provided by the establishment for which they work. Industry employment projections are shown in terms of numeric change (growth or decline in the total…

  3. RESEARCH ON HEAVY METAL POLLUTION OF THE RIVER MUREŞ IN HUNEDOARA COUNTY DUE TRIBUTARIES AFFECTED BY HUMAN ACTIVITIES, INDUSTRIAL AND MINING

    Directory of Open Access Journals (Sweden)

    SZOLLOSI-MOŢA ANDREI

    2014-05-01

    Full Text Available Mureş crosses over a length of 105 km, a broad tectonic corridor between mountains Şureanu, Poiana Rusca Mountains and the Apuseni Mountains in the north. Hunedoara County has significant quantities of mineral resources, mining specific activities effectively represents one of the main economic sectors. Ore processing gave rise to significant amounts of mining waste. Tailings dams and waste dumps obtained from ore processing in preparation plants are large and have led to changes in the morphology of the area. The purpose of this study is to examine the degree of pollution of the river Mures in Hunedoara county, with heavy metals due to various human activities. For monitoring and evaluation in terms of water quality of the river Mures and studying the degree and effects of pollution were collected and analyzed water samples from Mures River and tributaries from the main mining areas, such Certej. Samples were analyzed by emission spectrometry with inductively coupled plasma and the results of measurements allowed us to assess the degree of pollution of the aquatic environment and sediments . The effects of mining waste on the environment persists for a long time , even after the operation closed. Rehabilitation mining areas and those adjacent to improve the quality of life, as a prerequisite for sustainable development.

  4. Detection, in real time, of metallic pollutants present in the industrial atmospheric effluents by inductively coupled plasma torch; Detection, en temps reel, d'elements metalliques presents dans les rejets atmospheriques industriels par torche a plasma a couplage inductif

    Energy Technology Data Exchange (ETDEWEB)

    Vacher, D.

    2001-12-15

    This work is devoted to the development of a process of detection in real time of metallic pollutants present in industrial atmospheric effluents. The method of measurement is the atomic spectrometry of emission coupled to an ICP torch (Inductively coupled Plasma). The technology of the fluidized beds is used as system of introduction of the metallic particles into the ICP torch, the interest of the principle of detection resting on the stamping from the usual procedure of calibration of the analytical system. The results are presented in two parts. The first relates to the diagnosis of plasmas formed with various mixtures of N{sub 2}/O{sub 2} which one corresponds to pure air, the second presents the setting process of detection in real time starting from the intensities ratios of the spectral lines of the metallic element with those of the plasma-producing element (argon or pure air) The study of the diagnosis of plasmas made up of mixtures N{sub 2}/O{sub 2} relates to the determination of the atomic excitation temperature from the spectral lines of the copper element and the evaluation of the thermal disequilibrium q Te/Th. This last is obtained by considering the mass enthalpy of various mixtures N{sub 2}/O{sub 2}. The existence of a small thermal disequilibrium is highlighted. The study of detection in real time by ICP torch, without calibration of the system, is based on three points: - spectroscopic data processing to determine the values of the intensities ratios of spectral lines; - the insertion of the intensities ratios and the characteristics of plasma (argon or pure air) into a calculation code of plasma composition; - the comparison of the mass flux values of the metallic pollutants, in real time, obtained by experiments with those resulting from the elutriation calculation, term which defines the phenomenon of entrainment of the particles out of the fluidized bed. The results made it possible to show the similarity of the analytical system response

  5. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  6. Spatial patterns of chemical contamination (metals, PAHs, PCBs, PCDDs/PCDFS) in sediments of a non-industrialized but densely populated coral atoll/small island state (Bermuda).

    Science.gov (United States)

    Jones, Ross J

    2011-06-01

    There is a recognized dearth of standard environmental quality data in the wider Caribbean area, especially on coral atolls/small island states. Extensive surveys of sediment contamination (n=109 samples) in Bermuda revealed a wide spectrum of environmental quality. Zinc and especially copper levels were elevated at some locations, associated with boating (antifouling paints and boatyard discharges). Mercury contamination was surprisingly prevalent, with total levels as high as 12mg kg(-1)DW, although methyl mercury levels were quite low. PAH, PCB and PCDD/PCDF contamination was detected a several hotspots associated with road run-off, a marine landfill, and a former US Naval annexe. NOAA sediment quality guidelines were exceeded at several locations, indicating biological effects are possible, or at some locations probable. Overall, and despite lack of industrialization, anthropogenic chemicals in sediments of the atoll presented a risk to benthic biodiversity at a number of hotspots suggesting a need for sediment management strategies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Study on the Control of Rare Earth Metals and Their Behaviors in the Industrial Practical Production of Q420q Structural Bridge Steel Plate

    Directory of Open Access Journals (Sweden)

    Rensheng Chu

    2018-04-01

    Full Text Available Rare earth (RE addition can refine and change the shape/distribution of inclusions in steel to improve its strength and toughness. In this paper, the control of RE, specifically Ce and La, and their behaviors in the practical industrial production of high-strength structural steel with 420 MPa yield strength were studied. In particular, the interactions between RE and Al, Nb, S, O were investigated, with the aim of improving the steel toughness and welding performance. The impact energy of the plate with RE is approximately 50 J higher than the regular plate without RE. The toughness of the plate from ladle furnace (LF refining with RE addition is better than the one from Ruhrstahl and Hereaeus (RH refining. The RE inclusions could induce the intragranular ferrite and refine the grain size to the preferred size. After welding at the heat input of 200 kJ/cm, the grain size at the heat affected zone was found to be the finest in the plate from the LF process with RE addition. Notably, the microstructure of ferrite was quasi-polygonal.

  8. Annual Industrial Capabilities Report to Congress

    Science.gov (United States)

    2010-05-01

    Objection Nickel-based Superalloy Powder Metals Applied Materials Semitool No Objection Epitaxy / Vapor-deposition ATK Eagle Industries No Objection...access to the limited supply of super alloys and specialty metals products (i.e., chromium, cobalt , lithium, rare earth and platinum group metals

  9. Measurement of natural radioactive nuclide concentrations in various metal ores used as industrial raw materials in Japan and estimation of dose received by workers handling them.

    Science.gov (United States)

    Iwaoka, Kazuki; Tagami, Keiko; Yonehara, Hidenori

    2009-11-01

    Natural resources such as ores and rocks contain natural radioactive nuclides at various concentrations. If these resources contain high concentrations of natural radioactive nuclides, workers handling them might be exposed to significant levels of radiation. Therefore, it is important to investigate the radioactive activity in these resources. In this study, concentrations of radioactive nuclides in Th, Zr, Ti, Mo, Mn, Al, W, Zn, V, and Cr ores used as industrial raw materials in Japan were investigated. The concentrations of (238)U and (232)Th were determined by inductively coupled plasma mass spectrometry (ICP-MS), while those of (226)Ra, (228)Ra, and (40)K were determined by gamma-ray spectrum. We found the concentrations of (238)U series, (232)Th series, and (40)K in Ti, Mo, Mn, Al, W, Zn, V, and Cr ores to be lower than the critical values defined by regulatory requirements as described in the International Atomic Energy Agency (IAEA) Safety Guide. The doses received by workers handling these materials were estimated by using methods for dose assessment given in a report by the European Commission. In transport, indoor storage, and outdoor storage scenarios, an effective dose due to the use of Th ore was above 4.3 x 10(-2)Sv y(-1), which was higher than that of the other ores. The maximum value of effective doses for other ores was estimated to be about 4.5 x 10(-4)Sv y(-1), which was lower than intervention exemption levels (1.0 x 10(-3)Sv y(-1)) given in International Commission of Radiological Protection (ICRP) Publication 82.

  10. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  11. Industrial Engineering

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally).......Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally)....

  12. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-02-07

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  13. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  14. Industrial symbiosis

    DEFF Research Database (Denmark)

    Sacchi, Romain; Remmen, Arne

    2017-01-01

    This study examines the development of industrial symbiosis through a practical model for physical, organizational, and social interactions in six different cases from around the world. The results provide a framework that can be used by industrial symbiosis practitioners to facilitate the creation...... of synergy in industrial areas....

  15. Industrial electrification

    International Nuclear Information System (INIS)

    Melvin, J.G.

    1983-03-01

    The technical and economic scope for industrial process electrification in Canada is assessed in the light of increasing costs of combustion fuels relative to electricity. It is concluded that electricity is capable of providing an increasing share of industrial energy, eventually aproaching 100 percent. The relatively low cost of electricity in Canada offers industry the opportunity of a head start in process electrification with consequent advantages in world markets both for industrial products and for electrical process equipment and technology. A method is described to promote the necessary innovation by providing access to technology and financing. The potential growth of electricity demand due to industrial electrification is estimated

  16. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    of the industrial waste may in periods, depending on market opportunities and prices, be traded as secondary rawmaterials. Production-specificwaste from primary production, for example steel slag, is not included in the current presentation. In some countries industries must be approved or licensed and as part......Industrial waste is waste from industrial production and manufacturing. Industry covers many industrial sectors and within each sector large variations are found in terms of which raw materials are used, which production technology is used and which products are produced. Available data on unit...... generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...

  17. Metal recovery via geobiotechnology

    International Nuclear Information System (INIS)

    Hedrich, Sabrina; Schippers, Axel

    2017-01-01

    Specialized acidophilic bacteria and archaea are able to extract valuable metals such as copper, gold, cobalt, nickel, zinc, and uranium from sulfide ores. This process is known as bioleaching and its application in the mining industry as biomining. Laboratory studies also demonstrated bioleaching of oxide ores such as laterites and of mining residues such as mine tailings as well as metal recycling from waste (secondary mining). Metals being leached have to be recovered from acidic polymetallic solutions (mine and process waters) which is possible via biosorption or biomineralisation.

  18. The elements Se, Hg, Cr, Sb, Fe, Zn, Co, and Rb were investigated by neutron activation analysis in blood serum of leukemia patients and workers of metal coating industries

    International Nuclear Information System (INIS)

    Taheriean, Ali Akbar.

    1992-02-01

    Current universal interests in trace element studies are being spurred by our needs to determine trace element requirements and tolerance by organism, including relationships to animal and human health and disease, evaluate the potential bio magnification and bio toxicity of trace elements. The element Se, Hg, Cr, Sb, Fe, Zn, Co, and Rb were investigated in blood serum of 24 leukemia patients and 20 workers of metal coating of industries, using neutron activation analysis and gamma ray counting high purity germanium detector, it was possible to determine the above mentioned trace elements with great accuracy. The result of these investigations are described briefly. In the blood serum of leukemia patients, which were collected from Ali Asghar children Hospital, some increase of Fe and decrease of Se could be found, whereas the amount variation of other trace elements were negligible. The amount of Zn in the blood serum of these workers by comparison with 60 normal man indicates no change. Due to importance of trace elements in the human health we suggest that this investigation must be prolonged using more samples

  19. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  20. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo......M hip implant. A Danish surveillance programme has been initiated addressing these problems....

  1. Industrial Robots.

    Science.gov (United States)

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  2. 2001 Industry Studies: Services Industry

    National Research Council Canada - National Science Library

    Cervone, Michael

    2001-01-01

    .... has maintained its economic strength in traditional services industries such as transportation, tourism, public utilities, finance and insurance, accounting, engineering, architecture, medical, legal...

  3. Industry honoured

    CERN Multimedia

    2008-01-01

    CERN has organised a day to thank industry for its exceptional contributions to the LHC project. Lucio Rossi addresses CERN’s industrial partners in the Main Auditorium.The LHC inauguration provided an opportunity for CERN to thank all those who have contributed to transforming this technological dream into reality. Industry has been a major player in this adventure. Over the last decade it has lent its support to CERN’s teams and participating institutes in developing, building and assembling the machine, its experiments and the computing infrastructure. CERN involved its industrial partners in the LHC inauguration by organising a special industry prize-giving day on 20 October. Over 70 firms accepted the invitation. The firms not only made fundamental contributions to the project, but some have also supported LHC events in 2008 and the inauguration ceremony through generous donations, which have been coordinated by Carmen Dell’Erba, who is responsible for secu...

  4. Different interactions of fungi with toxic metals

    OpenAIRE

    Fanelli, Corrado; Fabbri, Anna Adele; Pilo, Giuseppina; Luongo, Laura; Corazza, Luciana; Melis, Pietro

    1994-01-01

    Many papers have reported the uptake and translocation of toxic metals and radionuclides to fruit bodies of edible fungi and also to mycelia biomass. Our aim is to study how to reduce the metal phytotoxicity by mychorrizal fungi pointing at land reclamation and at the detoxification of metal/radionuclides-containing industrial effluents.

  5. Industrious Landscaping

    DEFF Research Database (Denmark)

    Brichet, Nathalia Sofie; Hastrup, Frida

    2018-01-01

    This article offers a history of landscaping at Søby brown coal beds – a former mining site in western Denmark. Exploring this industrial landscape through a series of projects that have made different natural resources appear, we argue that what is even recognized as resources shifts over time...... has been seen interchangeably to rest with brown coal business, inexpensive estates for do-it-yourself people, pasture for grazing, and recreational forest, among other things. We discuss these rifts in landscaping, motivated by what we refer to as industriousness, to show that in an industrial site...

  6. Industrial ecology.

    Science.gov (United States)

    Patel, C K

    1992-01-01

    Industrial ecology addresses issues that will impact future production, use, and disposal technologies; proper use of the concept should reduce significantly the resources devoted to potential remediation in the future. This cradle-to-reincarnation production philosophy includes industrial processes that are environmentally sound and products that are environmentally safe during use and economically recyclable after use without adverse impact on the environment or on the net cost to society. This will require an industry-university-government round table to set the strategy and agenda for progress. PMID:11607254

  7. Mining Industry Energy Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-07-01

    The Industrial Technologies Program (ITP) relies on analytical studies to identify large energy reduction opportunities in energy-intensive industries and uses these results to guide its R&D portfolio. The energy bandwidth illustrates the total energy-saving opportunity that exists in the industry if the current processes are improved by implementing more energy-efficient practices and by using advanced technologies. This bandwidth analysis report was conducted to assist the ITP Mining R&D program in identifying energy-saving opportunities in coal, metals, and mineral mining. These opportunities were analyzed in key mining processes of blasting, dewatering, drilling, digging, ventilation, materials handling, crushing, grinding, and separations.

  8. Industrial applications of thermal sprayed coatings in Venezuelan steelmaking industry

    International Nuclear Information System (INIS)

    Liscano, S; Gil, L; Nuñez, E; Zerpa, R

    2013-01-01

    The metal components subjected to high temperature conditions, abrasive wear, corrosion, impact, etc.; tend to present degradation of manufacturing material, causing the failure imminent of the component. One of the alternatives to minimize or eliminate such effect is the application of ceramic coatings, which are thermal insulators and exhibit high mechanical strength. Its extreme hardness, coupled with the low friction properties and chemical stability, allowing its use in a wide variety of applications. Therefore, the following paper describes the application of thermal sprayed coatings obtained by HVOF and Plasma technologies like alternative to protect the metallic equipment in different venezuelan industrial sectors, such as to operate under aggressive conditions of service, such as the steelmaking nationals industries. This study presents applications cases of ceramic-based coatings, in order to minimize the sticking of metallic material in components of reduction reactor of FINMET® and MIDREXTM process

  9. Industrial pioneers

    NARCIS (Netherlands)

    Wassink, J.

    2014-01-01

    With their knowledge of metallurgy, mechanics and thermodynamics, mechanical engineers had to give shape to the industrial revolution in the Netherlands 150 years ago. This revolution only slowly gathered momentum, however, especially in comparison with England.

  10. Electronics Industry

    National Research Council Canada - National Science Library

    Ginter, Michael J; Andersen, James L; Becker, John A; Belliveau, Gerald E; Eppich, Frank J; Awai, Herman T; Hanko, David J; Hughes, Bob; Jones, Douglas; Larson, Kelly J

    2007-01-01

    .... The report is the culmination of a focused series of classroom seminar sessions and meetings with industry, government, and academic leaders through field studies in the metropolitan Washington, D.C...

  11. Industrial practices

    International Nuclear Information System (INIS)

    Velasquez Torrez, Patricia Irma

    1999-01-01

    This document reports the industrial practices carried out by the author viewing the requirements fulfilled for obtention the academic degree in chemical engineering of the San Andres University - Bolivia

  12. Industry consolidation

    OpenAIRE

    Coimbra, Diogo

    2017-01-01

    The following case study is intended to describe the evolution of the American cable industry and the corporate actions pursued by its operators and sponsors since 1990’s. Charter Communications and Time Warner Cable, respectively the fourth- and second-largest cable operators, have been chosen to represent the industry trend of horizontal consolidation. On May 23, 2015, both firms agreed to merge forming New Charter, along with parallel Charter’s acquisition of Bright House Networks. Even th...

  13. Co-ordinated research project on assessment of levels and health-effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. Report on the first research co-ordination meeting (RCM)

    International Nuclear Information System (INIS)

    1998-01-01

    The objectives of the CRP are to: (1) improve competence for research on workplace monitoring in terms of proper sampling and analytical procedures, (2) obtain relevant and reliable data on sources and levels of workplace pollution in various countries, (3) promote a better understanding of methods for the interpretation of such data including occupational heath studies, and (4) encourage closer collaboration between analytical scientists and researchers in the field of occupational health in the countries concerned. The CRP focuses on the use of nuclear and related analytical techniques for the following kinds of studies: (1) strategies and techniques for sampling of workplace airborne particulate matter and of human tissues and body fluids (hair, blood, etc.) sampling of exposed and non-exposed persons; (2) development of suitable analytical procedures for analysis of such types of samples; (3) workplace and personal monitoring of airborne particulate matter in the mining, refining and metal working industries, and the health effects of such exposure; and (4) tissue analysis of the workers exposed for biological monitoring and the health effects studies. This report includes the core and supplementary programme of the CRP; technical aspects of sampling, analysis, data processing, and quality assurance; and organizational aspects. The report includes also 10 papers contributed by the participants. Each individual contribution was indexed and provided with an abstract

  14. Pumps for nuclear industry

    International Nuclear Information System (INIS)

    Tanguy, L.

    1978-01-01

    In order to meet the requirements of nuclear industry for the transfer of corrosive, toxic, humidity sensitive or very pure gases, different types of pumps were developped and commercialized. Their main characteristics are to prevent pollution of the transfered fluid by avoiding any contact between this fluid and the lubricated parts of the machine, and to prevent a contamination of the atmosphere or of the fluid by a total tightness. Patellar pumps have been particularly developped because the metallic bellows are quite reliable and resistant in this configuration. Two types are described: patellar pumps without friction and barrel pumps whose pistons are provided with rings sliding in the cylinders without lubrication [fr

  15. Assessment of trace metal contamination of soils around Oluyole ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of metals contamination of the soils around Oluyole industrial estate in Ibadan. Oluyole industrial estate has heavy concentration of manufacturing industries that generate a lot of waste products capable of introducing metals into the environment. Consequently, twenty-one ...

  16. Industrial pollutions is an environmental issue of Karachi urban area

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Abro, M.I.; Essani, A.

    2005-01-01

    The Industrial pollution is one of the serious Environmental issues of the Karachi urban area, categorized as air pollution and water pollution. The localization more the 6000 industries in Karachi urban area at four different sites of Sindh industrial trading estate, Landhi industrial trading estate, Korangi industrial area west Warf industrials, Port Qasim industrial. Area and Hub industrial are near Karachi city. The major iron and steel industries includes Pakistan steel mills and its allied industries at Bin Qasim more than 100 re-rolling industries are located at site area. Karachi ship yard engineering works, Peoples steel Mill, automobile industries and various manufacturing industries which requires metal and its alloy in manufacturing of product mostly located at Bin Qasim, Korangi, and Shershah site areas. None of the industrial sector contain the waster treatment or recycling plant. The ill planted growth of Karachi and its industries caused the environmental degradation of the city and its coastal areas complete with massive mangrove destruction, air water, fishing, and agriculture possessing a potential threat to the lives of more than 10 million citizens. The environmental issues of the metal related industries include the scrap, waste and pollution. Scrapes am waste of the metal industries can be reused in other manufacturing of engineering materials or recycled to produce the new material. However the pollution is the one of the major environmental issue related with the metal industries which need the considerable research and development work in order to over come the serve environmental issues of the urban areas. This article reviews and identifies the level of industrial pollution emphasized on metal related industries of the Karachi urban areas. (author)

  17. Industrial gases

    International Nuclear Information System (INIS)

    Hunter, D.; Jackson, D.; Coeyman, M.

    1993-01-01

    Industrial gas companies have fought hard to boost sales and hold margins in the tough economic climate, and investments are well down from their 1989-'91 peak. But 'our industry is still very strong long term' says Alain Joly, CEO of industry leader L'Air Liquide (AL). By 1994, if a European and Japanese recovery follows through on one in the U.S., 'we could see major [investment] commitments starting again,' he says. 'Noncryogenic production technology is lowering the cost of gas-making possible new applications, oxygen is getting plenty of attention in the environmental area, and hydrogen also fits into the environmental thrust,' says Bob Lovett, executive v.p./gases and equipment with Air Products ampersand Chemicals (AP). Through the 1990's, 'Industrial gases could grow even faster than in the past decade,' he says. Virtually a new generation of new gases applications should become reality by the mid-1990s, says John Campbell, of industry consultants J.R. Campbell ampersand Associates (Lexington, MA). Big new oxygen volumes will be required for powder coal injection in blast furnaces-boosting a steel mill's requirement as much as 40% and coal gasification/combined cycle (CGCC). Increased oil refinery hydroprocessing needs promise hydrogen requirements

  18. Analysis of metal samples

    International Nuclear Information System (INIS)

    Ramirez T, J.J.; Lopez M, J.; Sandoval J, A.R.; Villasenor S, P.; Aspiazu F, J.A.

    2001-01-01

    An elemental analysis, metallographic and of phases was realized in order to determine the oxidation states of Fe contained in three metallic pieces: block, plate and cylinder of unknown material. Results are presented from the elemental analysis which was carried out in the Tandem Accelerator of ININ by Proton induced X-ray emission (PIXE). The phase analysis was carried out by X-ray diffraction which allowed to know the type of alloy or alloys formed. The combined application of nuclear techniques with metallographic techniques allows the integral characterization of industrial metals. (Author)

  19. Antimicrobial Polymers with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Humberto Palza

    2015-01-01

    Full Text Available Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms.

  20. Dor orofacial e absenteísmo em trabalhadores da indústria metalúrgica e mecânica Orofacial pain and absenteeism in workers of the metallurgic and mechanics industry

    Directory of Open Access Journals (Sweden)

    Josimari Telino de Lacerda

    2008-12-01

    Full Text Available O objetivo do estudo foi verificar a prevalência de dor orofacial e sua relação com absenteísmo em trabalhadores do setor metalúrgico e mecânico do município de Xanxerê, Santa Catarina. Realizou-se um estudo transversal envolvendo todos os trabalhadores do sexo masculino (n = 480 das 13 indústrias do setor no município. As informações foram coletadas por meio de entrevistas estruturadas. Informações sócio-demográficas, prevalência, severidade e localização de dor orofacial no último semestre, bem como sobre falta ao trabalho devido à dor orofacial, compuseram o questionário. Dados de identificação, setor e turno de trabalho foram coletados nos departamentos de recursos humanos das empresas. Os dados foram analisados por meio de estatística descritiva e testes de associação de qui-quadrado de Pearson entre absenteísmo e dor orofacial. A prevalência de dor orofacial foi de 66,1%, sendo dor de dente provocada ou dor de dente espontânea os tipos mais frequentes. O absenteísmo devido a dor orofacial no último semestre foi relatado por 9,3% dos trabalhadores, mostrando-se associado à dor de dente espontânea (p The objective of this study was to assess the prevalence of orofacial pain and its association with absenteeism in worke rs of the metallurgic and mechanics industry of the city of Xanxerê, Brazil. A cross sectional study was performed involving all male workers(n=480 of the 13 industries of the sector in the city. The information was collected by means of structured interviews. Socio-demographic information, prevalence, severity and localization of orofacial pain in the last semester as well as on absenteeism due to orofacial pain formed the questionnaire. Identification data, work sector and shift were collected in the departments of human resources of the companies. The data were assessed using descriptive statistics and Pearson chi-squared tests between absenteeism and pain in the orofacial region. The

  1. New metals

    International Nuclear Information System (INIS)

    Bergqvist, U.

    1983-12-01

    The aim of this report is to estimate the exposure to various metals and metal compounds and discuss the available information of the possible toxic effects of these metals and compounds. In the first section, some metals are defined as those with either a large or a fast increasing exposure to living organisms. The available information on toxicity is discussed in the second section. In the third section interesting metals are defined as compounds having a large exposure and an apparent insufficient knowledge of their possible toxic effects. Comments on each of these metals are also to be found in the third section. (G.B.)

  2. Industrious Landscaping

    DEFF Research Database (Denmark)

    Brichet, Nathalia Sofie; Hastrup, Frida

    2018-01-01

    This article offers a history of landscaping at Søby brown coal beds – a former mining site in western Denmark. Exploring this industrial landscape through a series of projects that have made different natural resources appear, we argue that what is even recognized as resources shifts over time...... has been seen interchangeably to rest with brown coal business, inexpensive estates for do-it-yourself people, pasture for grazing, and recreational forest, among other things. We discuss these rifts in landscaping, motivated by what we refer to as industriousness, to show that in an industrial site...... analysis of shifting landscape projects and has an essential methodological corollary, namely that fieldwork must be improvisational, situated, and humble. Rather than finding the ‘right’ field materials for a canonical landscape history of Søby, we develop a method of ‘dustballing’ – being blown here...

  3. Industrial sector

    International Nuclear Information System (INIS)

    Ainul Hayati Daud; Hazmimi Kasim

    2010-01-01

    The industrial sector is categorized as related to among others, the provision of technical and engineering services, supply of products, testing and troubleshooting of parts, systems and industrial plants, quality control and assurance as well as manufacturing and processing. A total of 161 entities comprising 47 public agencies and 114 private companies were selected for the study in this sector. The majority of the public agencies, 87 %, operate in Peninsular Malaysia. The remainders were located in Sabah and Sarawak. The findings of the study on both public agencies and private companies are presented in subsequent sections of this chapter. (author)

  4. Industrial Networks

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    network” should not be seen as an organizational form but as a perspective that can be used to enrich one's understanding of organizations. The industrial network perspective has three basic building blocks: actors, resources, and activities. The three building blocks and their relations constitute...... the focus of operations management from managing the own organization to continuously developing and managing a network of external and internal resources forming a production system. This perspective may be called managing an “extraprise” rather than an “enterprise.” It should be noted that “an industrial...

  5. Industrial Networks

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    the focus of operations management from managing the own organization to continuously developing and managing a network of external and internal resources forming a production system. This perspective may be called managing an “extraprise” rather than an “enterprise.” It should be noted that “an industrial...... network” should not be seen as an organizational form but as a perspective that can be used to enrich one's understanding of organizations. The industrial network perspective has three basic building blocks: actors, resources, and activities. The three building blocks and their relations constitute...

  6. Supporting industries energy and environmental profile

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  7. Energy conservation in mechanical industry; Maitrise de l`energie dans les industries mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The workshop is composed of 12 communications on the theme of energy consumption, conservation and management in industry, and more especially in metal industry: evaluation of the energy savings potential in the French industry; official energy diagnosis procedure in buildings; the French national gas utility policy for energy conservation and economical performance in industry; energy conservation with speed variators for electric motors; energy audits and energy metering for conservation objectives. Examples of energy efficient systems or energy audits in various industrial sectors (compressed air, industrial buildings, heat treatments, curing...) are also presented. The electric power quality EDF`s contract is also discussed

  8. N-acyl thioureas - selective ligands for complexing of heavy metals and noble metals

    International Nuclear Information System (INIS)

    Schuster, M.

    1992-01-01

    Acyl thioureas are complexing agents for heavy metals that are easily produced and very stable. Their favourable toxicological data make them particularly suitable for industrial applications, e.g. detoxification of metallic process solutions or solvent extraction of metals. (orig.) [de

  9. Plant responses to metal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Briat, J.F. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie moleculaire des plantes, CNRS, URA 2133; Lebrun, M. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie vegetale appliquee

    1999-01-01

    Increased metal concentration in the soils, up to toxic levels, is becoming an important environmental problem. Safety rule evolution will require solutions in order to cope with food safety rules, and to freeze metal leakage from heavily metal-poisoned soils, such as those from industrial fallows. In this context, plants could serve to develop bio-assays in order to promote new standards, more realistic than the mass of a given metal per kg of soil, that does not consider the metal bio-disponibility. Plants could also be used for phyto-extraction and/or phyto-stabilization. To reach these objectives, a genetic approach could be useful to generate metal-tolerant plants with enough biomass. In this work is more particularly studied the plant responses to metal toxicity. Metal toxicity for living organisms involves oxidative and /or genotoxic mechanisms. Plant protection against metal toxicity occurs, at least in part, through control of root metal uptake and of long distance metal transport. Inside cells, proteins such as ferritins and metallothioneins, and glutathione-derived peptides named phyto-chelatins, participate in excess metal storage and detoxification. Low molecular weight organic molecules, mainly organic acids and amino acids and their derivatives, also play an important role in plant metal homeostasis. When these systems are overloaded, oxidative stress defense mechanisms are activated. Molecular and cellular knowledge of these processes will be necessary to improve plant metal resistance. Occurrence of naturally tolerant plants which hyper accumulate metals provides helpful tools for this research. (authors) 130 refs.

  10. Fermentation Industry.

    Science.gov (United States)

    Grady, C. P. L., Jr.; Grady, J. K.

    1978-01-01

    Presents a literature review of wastes from the fermentation industry, covering publications of 1976-77. This review focuses on: (1) alcoholic beverage production; (2) pharmaceuticals and biochemicals production; and (3) biomass production. A list of 62 references is also presented. (HM)

  11. Industrial garnet

    Science.gov (United States)

    Olson, D.W.

    2013-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet’s angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  12. Metallurgy: No more tears for metal 3D printing

    Science.gov (United States)

    Todd, Iain

    2017-09-01

    3D printing could revolutionize manufacturing processes involving metals, but few industrially useful alloys are compatible with the technique. A method has been developed that might open up the 3D printing of all metals. See Letter p.365

  13. EVALUASI BEBAN FISIOLOGIS PADA INDUSTRI MANUFAKTUR (INDUSTRI PEMBUATAN KOMPONEN PESAWAT TERBANG DAN INDUSTRI SEPATU

    Directory of Open Access Journals (Sweden)

    Donny Richardo Sitohang

    2012-02-01

    Full Text Available Studi ini meneliti beban fisiologis yang dialami pekerja pada industri manufaktur, tepatnya pada industri pembuatan komponen pesawat terbang dan industri pembuatan sepatu. Pada industri pembuatan komponen pesawat terbang pekerjaan yang akan diteliti beban fisiologisnya adalah pekerjaan assembly, machining,dan metal forming. Untuk industri sepatu pekerjaan yang akan diamati adalah pekerjaan pola, jahit dan potong. Penelitian ini melibatkan 10 orang responden pada setiap jenis pekerjaan. Pada industri pembuatan komponen pesawat terbang nilai rata-rata denyut jantung kerja untuk pekerjaan assembly adalah sebesar 82.9±7,1 denyut/menit, untuk pekerjaan machining sebesar 79.9±9,5 denyut/menit, dan untuk pekerjaan metal forming sebesar 88,8 ±11,2  denyut/menit. Nilai rata-rata konsumsi oksigen relatif pada pekerjaan assembly adalah sebesar 20,8±4%, pekerjaan machining 23,1±5%, dan pekerjaan metal forming 26,4 ± 8%. Sedangkan pada industri pembuatan sepatu nilai denyut jantung kerja rata-rata untuk pekerjaan pola adalah 82±5,3 denyut/menit, pekerjaan jahit 84,5±6,1 denyut/menit, dan pekerjaan potong 88,4±11,5 denyut/menit. Nilai rata-rata konsumsi oksigen relatif pada pekerjaan pola adalah sebesar 15,8±5%, pekerjaan jahit 15,9±4%, dan pekerjaan potong 18±7%. Secara umum intensitas beban kerja fisik pada aktivitas yang diteliti baik pada industri pembuatan komponen pesawat terbang maupun industri pembuatan sepatu bersifat ringan dan masih berada dalam batas yang direkomendasikan. Kata kunci : Beban kerja fisiologis, Konsumsi Oksigen, Denyut Jantung, Skala Borg       Generally, the purpose of this study is to evaluate work physical capacity of Indonesian Aerospace production division operators and shoe industry operators. In this study, physiological workloads were evaluated in assembly, machining, and metal forming tasks (Indonesian Aerospace pattern making activity, sewing, and cutting (shoe industry using three indicators (heart rate

  14. Metal lagging

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1974-01-01

    The metal lagging described is characterized by the fact that it is formed of closed sacks composed of an elastic metal mass, compressed in an outer envelope made of a fine mesh metal fabric. The metal mass is composed of stainless steel wool stuffed into the envelope. This lagging is particularly intended for the thermal protection of the end slab of LMFBR type reactors [fr

  15. Heavy Metals in ToxCast: Relevance to Food Safety (SOT)

    Science.gov (United States)

    Human exposure to heavy metals occurs through food contamination due to industrial processes, vehicle emissions and farming methods. Specific toxicity endpoints have been associated with metal exposures, e.g. lead and neurotoxicity; however, numerous varieties of heavy metals hav...

  16. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  17. growth pattern and the industrial development of the lagos region, nigeria

    Directory of Open Access Journals (Sweden)

    Dickson Dare Ajayi

    2013-07-01

    Full Text Available This paper examines the nature, growth and spatial pattern of industries within the Lagos Region. Industrial activities in this region grew progressively over the year from mere brickwork, palm oil mills, printing press, soap factory, and metal container factory to capital intensive manufacturing. Indeed, the number of industrial establishments increased from 122 in 1962 to 637 in 1993. Lagos developed into Nigeria's leading industrial center; especially following the expansion in its service and administrative sectors. Whereas, chemicals and pharmaceutical; and basic metal, iron and steel and fabricated metal products industry groups dominate in industrial scene, wood and wood products (including furniture; and non-metallic mineral products are rare. The spatial pattern shows that industrial establishments vary amongst the industrial estates/areas, and also among the industry groups. Ikeja/Ogballsheri industrial estate/area dominates the industrial scene.

  18. Functional memory metals

    International Nuclear Information System (INIS)

    Dunne, D.P.

    2000-01-01

    The field of shape memory phenomena in metals and alloys has developed in a sporadic fashion from a scientific curiosity to a vigorously growing niche industry, over a period close to a full working lifetime. Memory metal research and development is replete with scientist and engineer 'true believers', who can finally feel content that their longstanding confidence in the potential of these unusual functional materials has not been misplaced. This paper reviews the current range of medical and non-medical systems and devices which are based on memory metals and attempts to predict trends in applications over the next decade. The market is dominated by Ni Ti alloys which have proved to exhibit the best and most reproducible properties for application in a wide range of medical and non-medical devices

  19. Industrial vision

    DEFF Research Database (Denmark)

    Knudsen, Ole

    1998-01-01

    This dissertation is concerned with the introduction of vision-based application s in the ship building industry. The industrial research project is divided into a natural seq uence of developments, from basic theoretical projective image generation via CAD and subpixel analysis to a description...... is present ed, and the variability of the parameters is examined and described. The concept of using CAD together with vision information is based on the fact that all items processed at OSS have an associated complete 3D CAD model that is accessible at all production states. This concept gives numerous...... possibilities for using vision in applications which otherwise would be very difficult to automate. The requirement for low tolerances in production is, despite the huge dimensions of the items involved, extreme. This fact makes great demands on the ability to do robust sub pixel estimation. A new method based...

  20. Industry trends

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This section discusses the US energy supply and demand situation including projections for energy use, the clean coal industry (constraints of regulation on investment in new technologies, technology trends, and current pollution control efficiency), opportunities in clean coal technology (Phase 2 requirements of Title 4 of the Clean Air Act, scrubber demand for lime and limestone, and demand for low sulfur coal), and the international market of clean coal technologies

  1. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  2. Nanotoxicity: the toxicity research progress of metal and metal-containing nanoparticles.

    Science.gov (United States)

    Ding, Lingling; Liu, Zhidong; Aggrey, Mike Okweesi; Li, Chunhua; Chen, Jing; Tong, Ling

    2015-01-01

    Along with the exuberant development of nanotechnology, a large number of nanoformulations or non materials are successfully applied in the clinics, biomedicine, cosmetics and industry. Despite some unique advantages of nanoformulations, there exist potentially worrying toxic effects, particularly those related to metal and metal-containing nanoparticles (NPs). Although various researches have been conducted to assess the metallic and metal-containing nanoparticles toxic effects, only little is known about the toxicity expressive types and evaluation, reasons and mechanisms, influencing factors and research methods of metal and metal-containing nanotoxicity. Therefore, it is of importance to acquire a better understanding of metal and metal-containing nanoparticles toxicity for medical application. This review presents a summary on the metal and metal-containing nanoparticles toxicity research progress consulting relevant literature.

  3. Industrial robot

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, R.H.

    1987-06-09

    This patent describes a three axis outer arm assembly for an industrial robot comprising: a hand assembly including a frame member, a transverse wrist pin mounted to the frame member, and a wrist rotary member rotatably mounted with respect to the frame member; a first tubular member, with the wrist pin of the hand assembly being transversely mounted at one end thereof, a second tubular member rotatably mounted coaxially within the first tubular member; first gear means; a second gear means; drive means; and means mounting the second and third tubular members.

  4. Industrial ventilation

    Science.gov (United States)

    Goodfellow, H. D.

    Industrial ventilation design methodology, using computers and using fluid dynamic models, is considered. It is noted that the design of a ventilation system must be incorporated into the plant design and layout at the earliest conceptual stage of the project. A checklist of activities concerning the methodology for the design of a ventilation system for a new facility is given. A flow diagram of the computer ventilation model shows a typical input, the initialization and iteration loop, and the output. The application of the fluid dynamic modeling techniques include external and internal flow fields, and individual sources of heat and contaminants. Major activities for a ventilation field test program are also addressed.

  5. Industrial goals

    International Nuclear Information System (INIS)

    Martin, P.

    2005-01-01

    The aim of the third seminar on pellet-clad interaction, which held at Aix en Provence (France) from 9-11 march 2004, was to draw a comprehensive picture of current understanding of pellet clad interaction and its impact on the fuel rod under the widest possible conditions. This document provides the summaries of the five sessions: opening and industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in-pile rod behaviour, modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  6. Metallic nanomesh

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Sun, Tianyi; Guo, Chuanfei

    2018-02-20

    A transparent flexible nanomesh having at least one conductive element and sheet resistance less than 300.OMEGA./.quadrature. when stretched to a strain of 200% in at least one direction. The nanomesh is formed by depositing a sacrificial film, depositing, etching, and oxidizing a first metal layer on the film, etching the sacrificial film, depositing a second metal layer, and removing the first metal layer to form a nanomesh on the substrate.

  7. Actions within the field of industrial field

    International Nuclear Information System (INIS)

    Rueda, C.; Ortiz, M. T.; Fernandez, J.

    2009-01-01

    The are some industrial activities in which radioactive sources are used as a tool for industrial gauging gammagraphy or density and moisture testing of soils. There are others in which radioactive materials are present in a collateral way, as in the NORM industry in which there are naturally occurring radioactive materials such as starting materials, sub product or waste. Finally, radioactive materials or sources may be present in the industry accidentally such as in the case of scrap metals processing industries or in other industries in which orphan sources may be present as a consequence of activities carried out in the past. The UTPR can provide technically qualified personnel for specific assessment in radiation protection to all of these industrial installations together with the adequate means to carry out operations with radioactive sources in both a safe and correct way. (Author)

  8. VLSI metallization

    CERN Document Server

    Einspruch, Norman G; Gildenblat, Gennady Sh

    1987-01-01

    VLSI Electronics Microstructure Science, Volume 15: VLSI Metallization discusses the various issues and problems related to VLSI metallization. It details the available solutions and presents emerging trends.This volume is comprised of 10 chapters. The two introductory chapters, Chapter 1 and 2 serve as general references for the electrical and metallurgical properties of thin conducting films. Subsequent chapters review the various aspects of VLSI metallization. The order of presentation has been chosen to follow the common processing sequence. In Chapter 3, some relevant metal deposition tec

  9. Toxic metals and autophagy.

    Science.gov (United States)

    Chatterjee, Sarmishtha; Sarkar, Shuvasree; Bhattacharya, Shelley

    2014-11-17

    The earth's resources are finite, and it can no longer be considered a source of inexhaustible bounty for the human population. However, this realization has not been able to contain the human desire for rapid industrialization. The collateral to overusing environmental resources is the high-level contamination of undesirable toxic metals, leading to bioaccumulation and cellular damage. Cytopathological features of biological systems represent a key variable in several diseases. A review of the literature revealed that autophagy (PCDII), a high-capacity process, may consist of selective elimination of vital organelles and/or proteins that intiate mechanisms of cytoprotection and homeostasis in different biological systems under normal physiological and stress conditions. However, the biological system does survive under various environmental stressors. Currently, there is no consensus that specifies a particular response as being a dependable biomarker of toxicology. Autophagy has been recorded as the initial response of a cell to a toxic metal in a concentration- and time-dependent manner. Various signaling pathways are triggered through cellular proteins and/or protein kinases that can lead to autophagy, apoptosis (or necroptosis), and necrosis. Although the role of autophagy in tumorigenesis is associated with promoting tumor cell survival and/or acting as a tumor suppressive mechanism, PCDII in metal-induced toxicity has not been extensively studied. The aim of this review is to analyze the comparative cytotoxicity of metals/metalloids and nanoparticles (As, Cd, Cr, Hg, Fe, and metal-NP) in cells enduring autophagy. It is noted that metals/metalloids and nanoparticles prefer ATG8/LC3 as a potent inducer of autophagy in several cell lines or animal cells. MAP kinases, death protein kinases, PI3K, AKT, mTOR, and AMP kinase have been found to be the major components of autophagy induction or inhibition in the context of cellular responses to metals/metalloids and

  10. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  11. Heavy Metal Contaminated Soil Treatment: Conceptual Development

    Science.gov (United States)

    1987-02-01

    associated with Army industrial )perations. Activities that contributed to soil contaminatioa included equipment rebuilding and repair, munitions maiufacturing...Hazardous Waste Engineering Research Laboratory, U.S. EPA, Cincinnati, Ohio 45268 (undated). 2. Personal communication with Dennis Hotaling , Technical...been used in several chemical industry installations to treat metal bearing wastewaters. NaBH 4 is a strong reducing agent which can reduce many metal

  12. Energy consumption in France's industry. Conjuncture note

    International Nuclear Information System (INIS)

    2015-04-01

    Energy consumption in the industry represents today 1/5 of France's end-use energy consumption. Gas and electricity are the most consumed and represent 2/3 of the overall. The 5 most energy consuming industries are the following: paper and cardboard industry, food industry, rubber, plastic and other non-metallic mineral products industry, metallurgy and chemical industry. The reduction of the industry's energy consumption is explained by the decline of production, but above all by the energy efficiency improvement of the sector. Technological innovations in production means have indeed led to reduce energy consumption

  13. Elemental metals for environmental remediation: lessons from hydrometallurgy

    OpenAIRE

    Crane, R. A.; Noubactep, C.

    2012-01-01

    In the mining industry, the separation of economically valuable metals from gangue materials is a well established process. As part of this field, hydrometallurgy uses chemical fluids (leachates) of acidic or basic pH to dissolve the target metal(s) for subsequent concentration, purification and recovery. The type and concentration of the leach solution is typically controlled to allow selective dissolution of the target metal(s), and other parameters such as oxidation potentia...

  14. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Swartzbaugh, J.; Sturgill, J.; Cormier, B.; Williams, H.D.

    1992-01-01

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  15. Heavy metals in equine biological components

    Directory of Open Access Journals (Sweden)

    Maria Verônica de Souza

    2014-02-01

    Full Text Available The objective of this research was to determine the concentration of heavy metals in the blood (Pb, Ni and Cd, serum (Cu and Zn and hair (Pb, Ni, Cd, Cu and Zn of horses raised in non-industrial and industrial areas (with steel mill, and to verify the possibility to use these data as indicators of environmental pollution. The samples were collected during summer and winter, aiming to verify animal contamination related to environment and season of the year. Copper and Zn contents determined in the serum and Cd and Ni contents obtained in the blood indicated no contamination effects of industries. For some animals, contents of Pb in the blood were higher than those considered acceptable for the species, but without relationship with industrialization and without clinical signs of Pb intoxication. The heavy metals evaluated on the hair of horses in this study were not increased with the presence of industries, but Cu and Cd contents were influenced by the season. The contents of some heavy metals in biological components analyzed were influenced by season sampling; however, serum, blood and hair may not be suitable to indicate differences in environmental contamination between the two contrasting areas. Most part of the heavy metal contents was lower or close to the reference values for horses. Serum, blood and hair components from horses may not be effective as indicators of environmental pollution with heavy metals. Industrialization and seasons have no effects on most part of heavy metals contents from those components.

  16. Microbial Remediation of Metals in Soils

    Science.gov (United States)

    Hietala, K. A.; Roane, T. M.

    Of metal-contaminated systems, metal-contaminated soils present the greatest challenge to remediation efforts because of the structural, physical, chemical, and biological heterogeneities encountered in soils. One of the confounding issues surrounding metal remediation is that metals can be readily re-mobilized, requiring constant monitoring of metal toxicity in sites where metals are not removed. Excessive metal content in soils can impact air, surface water, and groundwater quality. However, our understanding of how metals affect organisms, from bacteria to plants and animals, and our ability to negate the toxicity of metals are in their infancies. The ubiquity of metal contamination in developing and industrialized areas of the world make remediation of soils via removal, containment, and/or detoxification of metals a primary concern. Recent examples of the health and environmental consequences of metal contamination include arsenic in drinking water (Wang and Wai 2004), mercury levels in fish (Jewett and Duffy 2007), and metal uptake by agricultural crops (Howe et al. 2005). The goal of this chapter is to summarize the traditional approaches and recent developments using microorganisms and microbial products to address metal toxicity and remediation.

  17. Industrial radiography

    International Nuclear Information System (INIS)

    1992-01-01

    Industrial radiography is a non-destructive testing (NDT) method which allows components to be examined for flaws without interfering with their usefulness. It is one of a number of inspection methods which are commonly used in industry to control the quality of manufactured products and to monitor their performance in service. Because of its involvement in organizing training courses in all the common NDT methods in regional projects in Asia and the Pacific and Latin America and the Caribbean and in many country programmes, the Agency is aware of the importance of standardizing as far as possible the syllabi and training course notes used by the many experts who are involved in presenting the training courses. IAEA-TECDOC-628 ''Training Guidelines in Non-destructive Testing'' presents syllabi which were developed by an Agency executed UNDP project in Latin America and the Caribbean taking into account the developmental work done by the International Committee for Non-destructive Testing. Experience gained from using the radiography syllabi from TECDOC-628 at national and regional radiography training courses in the Agency executed UNDP project in Asia and the Pacific (RAS/86/073) showed that some guidance needed to be given to radiography experts engaged in teaching at these courses on the material which should be covered. The IAEA/UNDP Asia and Pacific Project National NDT Coordinators therefore undertook to prepare Radiography Training Course Notes which could be used by experts to prepare lectures for Level 1,2 and 3 radiography personnel. The notes have been expanded to cover most topics in a more complete manner than that possible at a Level 1, 2 or 3 training course and can now be used as source material for NDT personnel interested in expanding their knowledge of radiography. Refs, figs and tabs