WorldWideScience

Sample records for metal industry

  1. Metals industry seeks economic comeback

    International Nuclear Information System (INIS)

    Nappi, C.

    1993-01-01

    The North American minerals and metals industry has experienced a shockwave of change during the past two decades but is making a gallant comeback attempt, says Carmine Nappi, a mineral economist at the University of Montreal in Canada. Beginning in the mid-1970s, demand for major metals-aluminum, copper, lead, nickel, and zinc-dropped precipitately as the industrialized world shifted from a products to a services economy and as manufacturers discovered ways to make their products lighter, smaller, and more efficient. At the same time, Nappi says, rising energy and environmental costs pushed mining costs upward and squeezed profit margins, while foreign competitors stepped up their pressure. As a result, more than 7,000 US jobs in the minerals and metals industry were lost between 1980 and 1985. The value of mining production dropped $3.3 billion, and the industry went from $1.9 billion in profits to $900 million in losses. The industry responded to the crisis in different ways, Nappi says. Most zinc producers simply shut down, and many aluminum smelters, especially in the Southeast, also became resigned to their fate. Copper producers, however, fought back, changed the ways they did business, and survived. While conceding that the North American minerals and metals industry may never be as robust again as it was two decades ago, Nappi says the recent changes have slowed, and in some cases reversed, the hemorrhaging

  2. The Danish fabricated metal industry:

    DEFF Research Database (Denmark)

    Hansen, Teis

    2010-01-01

    This paper aims to contribute to the knowledge on innovation processes in low- and medium-low-tech industries. Today, industries characterised as high-tech are perceived to be central to economic development, as the research intensity shields them from competition from low-wage countries....... This is less the case for low-tech industries, but their economic importance continues to be large, however. It is thus interesting to analyse how they manage to remain competitive. The analysis focuses on a case study of the fabricated metal industry by identifying the innovation strategies followed by firms...... located in a part of Jutland, where this industry has experienced growth. It is found that the ability to create tailor-made solutions is central to the competitiveness of these medium-low-tech firms. Knowledge is thus highly important, yet in different ways than for high-tech industries. This illustrates...

  3. Biotechnology for the extractive metals industries

    Science.gov (United States)

    Brierley, James A.

    1990-01-01

    Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.

  4. Development of industrial utilization of metallic sodium

    International Nuclear Information System (INIS)

    Yuhara, Shunichi

    1995-01-01

    Sodium exists in large quantity, being ranked to 6th in the existence proportion of elements, and takes 2.83% of the matters composing earth crust. Sodium is an alkali metal which is light weight, chemically very active and a strong reducing substance. It is excellent in the compatibility with iron and steel materials, and it possesses good heat conduction and flow characteristics and stable nuclear characteristics. Since the industrial production of sodium became practical, its utilization was developed as the reducing agent and catalyst in chemical industry, the core coolant and heat transport medium for nuclear reactors, the material composing the secondary batteries for storing electric power, and the auxiliaries for metal refining and so on. The industrial production of metallic sodium is carried out by the electrolysis of melted salt, namely Downs process. The production of metallic sodium in Japan is 3000-6000 t yearly, and its import is 300-350 t. Its main use is for organic chemical industry including dye production. The grades of metallic sodium products and their uses are shown. The utilization of sodium for large fast reactors, the utilization of NaK as the heat transport and cooling medium for space use nuclear reactors and deep sea fast reactor system, and the utilization of sodium as the catalyst in dye production, for silicon carbide fiber production and for agricultural and medical chemical production are reported. (K.I.)

  5. Proposed industrial recovered materials utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    The introductory chapter provides a discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. It discusses these industries in terms of resource characteristics, industry technology, pollution control requirements, market structure, the economics of recycling, and the issues involved in econometrically estimating scrap supply response behavior. It further presents the methodology established by DOE for the metals, textiles, rubber, and pulp and paper industries. The areas in which government policies might have a significant impact on the utilization of primary and secondary metals and on any recycling targets between now and 1987 are noted. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33. The profiles include such topics as industry structure, process technology, materials and recycling flow, and future trends. Chapter 4 specifically covers the evaluation of recycling targets for the ferrous, aluminum, copper, zinc, and lead industries. (MCW)

  6. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recycling flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)

  7. Ferrous and common nonferrous metals industries and associated scrap metals: a review

    International Nuclear Information System (INIS)

    Mautz, E.W.

    1975-11-01

    Literature on the common metals industries, scrap metal relationships, and transportation aspects has been reviewed as background information in a study to determine the feasibility of a portable melting facility for radioactively contaminated metals. This report draws substantially on government-sponsored studies. Aluminum, copper, iron and steel, and nickel metal industries are discussed from the viewpoints of the general industry characteristics, primary metal production processes, and secondary metal processing aspects. 46 references, 10 tables

  8. Utility industry evaluation of the metal fuel facility and metal fuel performance for liquid metal reactors

    International Nuclear Information System (INIS)

    Burstein, S.; Gibbons, J.P.; High, M.D.; O'Boyle, D.R.; Pickens, T.A.; Pilmer, D.F.; Tomonto, J.R.; Weinberg, C.J.

    1990-02-01

    A team of utility industry representatives evaluated the liquid metal reactor metal fuel process and facility conceptual design being developed by Argonne National Laboratory (ANL) under Department of Energy sponsorship. The utility team concluded that a highly competent ANL team was making impressive progress in developing high performance advanced metal fuel and an economic processing and fabrication technology. The utility team concluded that the potential benefits of advanced metal fuel justified the development program, but that, at this early stage, there are considerable uncertainties in predicting the net overall economic benefit of metal fuel. Specific comments and recommendations are provided as a contribution towards enhancing the development program. 6 refs

  9. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  10. Guangxi non-ferrous metal industry speeding up its restructuring

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Non-ferrous metal industry in Guangxi takes an important position in China.However,the waste of resources is severe due to its simple industrial structure,small size of enterprises, sloppy technology,scattered layout,obstructed market and indiscriminate mining.Starting from last year,Guangxi began the project of building a world-influential non-ferrous metal

  11. Mechanical Design of Metal Dome for Industrial Application

    Science.gov (United States)

    Jin-Chee Liu, Thomas; Chen, Li-Wei; Lin, Nai-Pin

    2018-02-01

    In this paper, the mechanical design of metal domes is studied using finite element analysis. The snap-through behavior of a practical button design that uses a metal dome is found. In addition, the individual click ratio and maximum force for a variety of metal domes are determined. This paper provides guidance on button design for industrial engineers.

  12. A review of metal release in the food industry

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Rasmussen, Anette Alsted; Hilbert, Lisbeth Rischel

    2006-01-01

    processes, storing equipment as well as cleaning and sanitising procedures are reviewed. Stainless steel is the most widely used metallic material in the food industry; however other metals and their alloys are also briefly treated. The review deals with phenomena mainly relating to electrochemical......The objective of this review is to outline literature on metal release in the food industry. Key results are reviewed from publications with high scientific level as well as papers with focus on industrial aspects. Examples of food products with a corrosive effect are given, and cases concerning...

  13. Removal Of Heavy Metals From Industrial Wastewaters Using Local ...

    African Journals Online (AJOL)

    Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminum sulphate and ferric chloride in order to determine and compare their effectiveness in removing heavy metal contents from the wastewaters. The percentage removal of the metals from the ...

  14. Management Model Applicable to Metallic Materials Industry

    Directory of Open Access Journals (Sweden)

    Adrian Ioana

    2013-02-01

    Full Text Available This paper presents an algorithmic analysis of the marketing mix in metallurgy. It also analyzes the main correlations and their optimizing possibilities through an efficient management. Thus, both the effect and the importance of the marketing mix, for components (the four “P-s” areanalyzed in the materials’ industry, but their correlations as well, with the goal to optimize the specific management. There are briefly presented the main correlations between the 4 marketing mix components (the 4 “P-s” for a product within the materials’ industry, including aspects regarding specific management.Keywords: Management Model, Materials Industry, Marketing Mix, Correlations.

  15. The Relevance of Metal Recycling for Nuclear Industry Decommissioning Programmes

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, P.J., E-mail: nea@nea.fr [OECD Nuclear Energy Agency, Paris (France)

    2011-07-15

    The large amount of scrap metal arising from the decommissioning of nuclear facilities may present significant problems in the event that the facility owners seek to implement a management strategy based largely or fully on disposal in dedicated disposal facilities. Depending on whether disposal facilities currently exist or need to be developed, this option can be very expensive. Also, public reluctance to accept the expansion of existing disposal facilities, or the siting of new ones, mean that the disposal option should be used only after a wide consideration of all available management options. A comparison of health, environmental and socio-economic impacts of the recycling of lightly contaminated scrap metal, as compared with equivalent impacts associated with the production of replacement material, suggests that recycling has significant overall advantages. With present-day technologies, a large proportion of the metal waste from decommissioning can be decontaminated to clearance levels because most of the contamination is on or near the surface of the metal. In purely economic terms, it makes little sense for lightly contaminated scrap metal from decommissioning, which tends to be of high quality, to be removed from the supply chain and replaced with metal from newly-mined ore. In many countries, the metal recycling industry remains reluctant to accept metal from decommissioning. In Germany, the recycling industry and the decommissioning industry have worked together to develop an approach whereby such material is accepted for melting and the recycled material and is then used for certain defined end uses. Sweden also uses dedicated melting facilities for the recycling of metal from the nuclear industry. Following this approach, the needs of the decommissioning industry are being met in a way that also addresses the needs of the recycling industry. (author)

  16. Metal Separations and Recovery in the Mining Industry

    Science.gov (United States)

    Izatt, Steven R.; Bruening, Ronald L.; Izatt, Neil E.

    2012-11-01

    Molecular Recognition Technology (MRT) plays an important role in the hydrometallurgical processing dissolved entities in solutions in the mining industry. The status of this industry with respect to sustainability and environmental issues is presented and discussed. The roles of MRT and ion exchange in metal separation and recovery processes in the mining industry are discussed and evaluated. Examples of MRT separation processes of interest to the mining community are given involving gold, cobalt purification by extraction of trace cadmium, rhenium, and platinum group metals (PGMs). MRT processes are shown to be sustainable, economically viable, energy efficient, and environmentally friendly, and to have a low carbon footprint.

  17. Methods for recovering precious metals from industrial waste

    Science.gov (United States)

    Canda, L.; Heput, T.; Ardelean, E.

    2016-02-01

    The accelerated rate of industrialization increases the demand for precious metals, while high quality natural resources are diminished quantitatively, with significant operating costs. Precious metals recovery can be successfully made from waste, considered to be secondary sources of raw material. In recent years, concerns and interest of researchers for more increasing efficient methods to recover these metals, taking into account the more severe environmental protection legislation. Precious metals are used in a wide range of applications, both in electronic and communications equipment, spacecraft and jet aircraft engines and for mobile phones or catalytic converters. The most commonly recovered precious metals are: gold from jewellery and electronics, silver from X- ray films and photographic emulsions, industrial applications (catalysts, batteries, glass/mirrors), jewellery; platinum group metals from catalytic converters, catalysts for the refining of crude oil, industrial catalysts, nitric acid manufacturing plant, the carbon-based catalyst, e-waste. An important aspect is the economic viability of recycling processes related to complex waste flows. Hydrometallurgical and pyrometallurgical routes are the most important ways of processing electrical and electronic equipment waste. The necessity of recovering precious metals has opened new opportunities for future research.

  18. Dermatitis in small-scale metal industries

    Energy Technology Data Exchange (ETDEWEB)

    Coenraads, P J; Foo, S C; Phoon, W O; Lun, K C

    1985-03-01

    A survey in 21 small metal factories in Singapore revealed that 6.6% of 751 workers (530 male, 221 female) had a skin disorder on their hands and arms. Dermatitis accounted for 4.5% (34 cases) and follicular rashes for 1% (8 cases). Positive patch tests were found in 23% (8 cases) of those with dermatitis and in 9.8% (21 workers) of a control group without any skin problem. Dermatitis was found to be associated with exposure to solvents. Simultaneous analysis of various exposure/risk factors by multiple logistic regression indicated a significant effect of combined exposure to oils and solvents (interaction). Being over 35 years of age was also a significant risk factor, whereas the role of contact allergy, detected by patch testing, was less pronounced.

  19. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  20. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2015-10-01

    Full Text Available Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  1. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review.

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-10-09

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  2. Metal and engineering industry in the Finnish economy

    International Nuclear Information System (INIS)

    Maeenpaeae, I.; Viitanen, M.; Juutinen, A.

    1996-01-01

    The study analyses quantitatively the position, internal structures and environmental aspects of the metal sector (basic metal industry, mechanical engineering, electronics and electrotechnics) in the recent past of the Finnish economy. The changes in the sector by the year 2005 are assessed by means of a macroeconomic simulation model as well. The future development of the metal sector by the year 2005 was assessed by the FMS model system, for which a detailed metal sector sub-model was constructed. The scenario of the general development of the Finnish economy was tuned so that it corresponds as closely as possible to the recent basic projections of the economy made by the government authorities. Three scenarios for the metal sector were constructed: base scenario, rapid and slow growth scenarios. In the base scenario the production volume of the metal sector grows by 6 per cent annually between 1994-2005 while the annual growth rate of the whole industry is 4 per cent and that of the GDP 3 per cent. In the rapid growth scenario, the growth rate of the metal sector goes up to 10 per cent and in the slow growth scenario down to 3 per cent. In the assessment of environmental effects of the metal sector are included energy consumption, emissions into the air, use on natural resources, waste formation and recycling of metals. Although the production volume of the metal sector almost doubles between 1990 - 2000, the consumption of primary energy grows only about one fourth and that of the electricity by 50 per cent

  3. Estimation of Pb from metal and electroplating industrial waste by ...

    African Journals Online (AJOL)

    The concentration of lead in sediment and liquid waste samples of selected metal electroplating industries was measured by atomic absorption spectrophotometer. The data obtained revealed that lead content in liquid wastes varies in the range of 0.582-14.97 mg L-1 and 1.300-757.8 mg Kg-1 in sediments. Removal of ...

  4. Removal of heavy metal from industrial wastewater using hydrogen ...

    African Journals Online (AJOL)

    The batch removal of heavy metals lead (Pb), zinc (Zn) and copper (Cu) from industrial wastewater effluent under different experimental conditions using hydrogen peroxide was investigated. Experimental results indicated that at pH 6.5, pre-treatment analysis gave the following values: Pb 57.63 mg/l, Zn 18.9 mg/l and Cu ...

  5. Determination of Heavy Metal Levels in Various Industrial Waste Waters

    Directory of Open Access Journals (Sweden)

    Mustafa Şahin Dündar

    2012-06-01

    Full Text Available Important part of the environmetal pollution consists of waste water and water pollution. The water polluted by anthropogenical, industrial, and agricultural originated sources are defined as waste waters which are the main pollution sources for reservoirs, rivers, lakes, and seas. In this work, waste waters of leather, textile, automotive side, and metal plating industries were used to determine the levels of Cu, Zn, Cr, Pb and Ni by using Flame Atomic Absorption Spectrometer. As a result, highest mean levels of copper in supernatants of plating and textile industries were observed as 377,18 ng ml-1, respectively 103 ng ml-1 lead and 963,6 ng ml-1 nickel in plating industry, 1068,2 ng ml-1 zinc and 14557,1 ng ml-1 chromium in plating and leather industries were determined.

  6. Progress of liquid metal technology and application in energy industries

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kamei, Mitsuru; Nei, Hiromichi.

    1990-01-01

    Liquid metals are excellent energy transport media, and recently remarkable development has been observed in the technology of handling sodium and the machinery and equipment. In nuclear fusion, the development of the use of lithium as the coolant is advanced. For space technology, attention has been paid from the early stage to various liquid metals. For general industries, liquid metals have been used for high temperature heat pipes and the utilization of solar heat, and mercury vapor turbines were manufactured for trial. Besides, attention is paid anew to liquid metal MHD electric power generation. The development of the NaS batteries for electric cars and electric power storage and the interchange of liquid metal technology with the fields of iron and steel, metallurgy and so on advance. It is expected that liquid metal technology bears future advanced energy engineering while deepening the interchange with other advanced fields also in order to reactivate atomic energy technology. Liquid metals have the features of high electric and thermal conductivities, chemical activity and opaque property as metals, and fluidity and relatively high boiling point and melting point as liquids. FBRs, fusion reactors and the power sources for space use are described. (K.I.)

  7. An anthropometric study of Serbian metal industry workers.

    Science.gov (United States)

    Omić, S; Brkić, V K Spasojevic; Golubović, T A; Brkić, A D; Klarin, M M

    2017-01-01

    There are recent studies using new industrial workers' anthropometric data in different countries, but for Serbia such data are not available. This study is the first anthropometric study of Serbian metal industry workers in the country, whose labor force is increasingly employed both on local and international markets. The metal industry is one of Serbia's most important economic sectors. To this end, we collected the basic static anthropometric dimensions of 122 industrial workers and used principal components analysis (PCA) to obtain multivariate anthropometric models. To confirm the results, the dimensions of an additional 50 workers were collected. The PCA methodology was also compared with the percentile method. Comparing both data samples, we found that 96% of the participants are within the tolerance ellipsoid. According to this study, multivariate modeling covers a larger extent of the intended population proportion compared to percentiles. The results of this research are useful for the designers of metal industry workstations. This information can be used in dimensioning the workplace, thus increasing job satisfaction, reducing the risk of injuries and fatalities, and consequently increasing productivity and safety.

  8. The Recovery of Zinc Heavy Metal from Industrial Liquid Waste

    International Nuclear Information System (INIS)

    Panggabean, Sahat M.

    2000-01-01

    It had been studied the recovery of zinc heavy metal from liquid waste of electroplating industry located at East Jakarta. The aim of this study was to minimize the waste arisen from industrial activities by taking out zinc metal in order to reused on-site. The method of recovery was two steps precipitation using NaOH reagent and pH variation. The first step of precipitation at pH optimum around 6 yielded iron metal. The second step at pH optimum around 10 yielded zinc metal. The zinc metal was taken out assessed to the possibility of reused at that fabric. By applying its, it will yield the volume reduction of sludge waste about 36.1% or 53.2% of zinc metal containing in the waste. It means the cost of waste treatment will be lower. Beside its, the effluent arisen from the method had fulfill the maximum limit and it allowed to release to the environment. (author)

  9. The industry of metallic rare earths (R.E.)

    International Nuclear Information System (INIS)

    Poirier, P.

    1979-01-01

    The following subjects are discussed: rare earths resources (rare earths abondance and world reserves, main ores). Rare earths separation and purification (ionic exchange, solvent extraction). Metallic rare earths and their mixtures, metallothermic reduction of oxides or fluorides (Ca, Mg, Al, Si or rare earth metals), Co-reduction process for intermetallic compounds (SmCo 5 ). Industrial applications of metallic rare earths (traditional applications such as flints, nodular cast iron, steel refining, magnesium industrie, applications under development such as rare earths/cobalt magnets, LaNi 5 for hydrogen storage, special alloys (automotive post combustion), magnetostrictive alloys). Economical problems: rare earth are elements relatively abundant and often at easily accessible prices. However, this group of 15 elements are liable to certain economical restraints. It is difficult to crack ore for only one rare earth. Availability of one given rare earth must be associated with the other corresponding rare earths to absorb all the other rare earths in other applications. Rare-earth industry has a strong expanding rate. 20% per year average for 6 years with Rhone-Poulenc. Thanks to their exceptional, specific characteristics rare earths have a bright future particularly for their metals

  10. Atmospheric corrosion of metals in industrial city environment

    Directory of Open Access Journals (Sweden)

    Elzbieta Kusmierek

    2015-06-01

    Full Text Available Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  11. Atmospheric corrosion of metals in industrial city environment.

    Science.gov (United States)

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  12. Knowledge-oriented strategies in the metal industry (empirical studies

    Directory of Open Access Journals (Sweden)

    A. Krawczyk-Sołtys

    2016-07-01

    Full Text Available The aim of this article is an attempt to determine which knowledge-oriented strategies can give metal industry enterprises the best results in achieving and maintaining a competitive advantage. To determine which of these discussed in the literature and implemented in various organizations knowledge-oriented strategies may prove to be the most effective in the metal industry, empirical research has begun. A chosen strategy of knowledge management and supporting strategies are the basis of a choice of methods and means of intended implementation. The choice of a specific knowledge management strategy may also result in the need for changes in an organization, particularly in an information system, internal communication, work organization and human resource management.

  13. Removal and recovery of heavy metals of residual water industrial

    International Nuclear Information System (INIS)

    Gil P, Edison

    1999-01-01

    On the next work the state of the art about the different methods and technologies for the present removal and recovery of heavy metals for the de-contamination and control of industrial wastewater is presented. Further more, it is introduce a removal alternative for chromium (III) and chromium (V I) using a solid waste material as an adsorbent, obtaining successful results which makes this proposal circumscribe into the clean technology program and residues bag

  14. Atmospheric corrosion of metals in industrial city environment

    OpenAIRE

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the s...

  15. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    Science.gov (United States)

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  16. Removal of heavy metal from industrial effluents using Baker's yeast

    Science.gov (United States)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  17. Metals as radio-enhancers in oncology: The industry perspective

    Energy Technology Data Exchange (ETDEWEB)

    Pottier, Agnés, E-mail: agnes.pottier@nanobiotix.com; Borghi, Elsa; Levy, Laurent

    2015-12-18

    Radio-enhancers, metal-based nanosized agents, could play a key role in oncology. They may unlock the potential of radiotherapy by enhancing the radiation dose deposit within tumors when the ionizing radiation source is ‘on’, while exhibiting chemically inert behavior in cellular and subcellular systems when the radiation beam is ‘off’. Important decision points support the development of these new type of therapeutic agents originated from nanotechnology. Here, we discuss from an industry perspective, the interest of developing radio-enhancer agents to improve tumor control, the relevance of nanotechnology to achieve adequate therapeutic attributes, and present some considerations for their development in oncology. - Highlights: • Oncology is a field of high unmet medical need. • Despites of its widespread usage, radiation therapy presents a narrow therapeutic window. • High density material at the nanoscale may enhance radiation dose deposit from cancer cells. • Metal-based nanosized radio-enhancers could unlock the potential of radiotherapy.

  18. Taiwan's industrial heavy metal pollution threatens terrestrial biota

    International Nuclear Information System (INIS)

    Hsu, M.J.; Selvaraj, K.; Agoramoorthy, G.

    2006-01-01

    The bioconcentration levels of essential (Cu, Fe, Mg, Mn, and Zn) and non-essential (As, Cd, Hg, Pb, and Sn) elements have been investigated in different terrestrial biota such as fungi, plant, earthworm, snail, crab, insect, amphibian, lizard, snake, and bat including the associated soil, to investigate the ecosystem health status in Kenting National Park, Taiwan. High bioconcentrations of Cd, Hg, and Sn in snail, earthworm, crab, lizard, snake, and bat indicated a contaminated terrestrial ecosystem. High concentrations of Cd, Hg, and Sn in plant species, effective bioaccumulation of Cd by earthworm, snail, crab and bat, as well as very high levels of Hg found in invertebrates, amphibians, and reptiles revealed a strong influence from industrial pollution on the biotic community. This study for the first time presents data on the impact of heavy metal pollution on various terrestrial organisms in Taiwan. - Metal effects occur at any terrestrial levels in Taiwan

  19. Recycling decontaminated scrap metal from the nuclear industry

    International Nuclear Information System (INIS)

    Bordas, F.

    2000-01-01

    The Commissariat a l'Energie Atomique (CEA) has set up a pilot program for recycling decontaminated scrap metal. In decommissioning its enriched uranium production facilities at Pierrelatte, the CEA has accumulated some 700 metric tons of scrap metal from dismantled uranium hexafluoride transport containers. The containers were decontaminated by SOCATRI at the Tricastin site, then cut up and recycled by a steelmaker. The project was submitted to the Ionizing Radiation Protection Office, the Nuclear Facilities Safety Division and the Regional Directorate for Industry, Research and Environmental Protection for approval. It was also submitted to the Ministry of Industry's Nuclear Information and Safety Council and to the Permanent Secretariat for Industrial Pollution Problems (an informational group chaired by the Prefect of the Provence Alpes-Cote d Azur region and including representatives of local and regional authorities, associations, elected officials and the media). The permit was granted for this program under the terms of a prefectorial decree stipulating additional requirements for the steelmaker, and contingent on the demonstration of full control over the operations, demonstrated traceability and the absence of any significant harmful effects. The key elements of this demonstration include the choice of operators, identification of the objects, itemization of the operations, discrimination of operators, the contractual framework of the operations, the signature of agreements by the CEA with SOCATRI and with the steelmaker, documentary monitoring of the operations, contradictory inspections and measurements, second-level inspection by the CEA/Valrho, audits of the operators and impact assessments. All the procedures of operations related to the scrap metal are described in quality assurance documents. (author)

  20. Summary of industrial impacts from recycled radioactive scrap metals

    International Nuclear Information System (INIS)

    Dehmel, J.-C.; Harrop, J.; MacKinney, J.A.

    1995-01-01

    During operation, decontamination, and dismantlement, nuclear facilities are generating significant quantities of radioactive scrap metal (RSM). Future decommissioning will generate even more RSM. The petroleum industry also generates RSM in the form of equipment contaminated with naturally occurring radioactivity. Finally, the accidental melting of radioactive sources in steel mills has generated smaller amounts of contaminated metals. Steel mills, smelters, and foundries could recycle these materials, which might then appear in finished products or as feedstocks used by other industries. If introduced in this manner, residual radioactivity can adversely affect the performance of certain products. Such products include computers and other devices that rely on integrated circuits. The most important effect of residual radioactivity on integrated circuits is a phenomenon known as 'single event upsets or soft errors.' Radioactivity can also adversely affect the performance of products such as photographic film and components designed to measure the presence of radioactivity. Radioactivity that raises background count-rates to higher levels could affect the performance of radiation monitoring systems and analytical equipment. Higher background count-rates would lead to reduced sensitivity and lower resolution in spectroscopic systems. The computer, photographic, and radiation measurement industries have taken steps to minimize the impact of residual radioactivity on their products. These steps include monitoring manufacturing processes, specifying material acceptance standards, and screening suppliers. As RSM is recycled, these steps may become more important and more costly. This paper characterizes potentially impacted industries and vulnerability and effects due to the presence of residual radioactivity. Finally, the paper describes practices used to limit the impact of residual radioactivity. (J.P.N.)

  1. Towards Industrial Application of Damage Models for Sheet Metal Forming

    Science.gov (United States)

    Doig, M.; Roll, K.

    2011-05-01

    Due to global warming and financial situation the demand to reduce the CO2-emission and the production costs leads to the permanent development of new materials. In the automotive industry the occupant safety is an additional condition. Bringing these arguments together the preferable approach for lightweight design of car components, especially for body-in-white, is the use of modern steels. Such steel grades, also called advanced high strength steels (AHSS), exhibit a high strength as well as a high formability. Not only their material behavior but also the damage behavior of AHSS is different compared to the performances of standard steels. Conventional methods for the damage prediction in the industry like the forming limit curve (FLC) are not reliable for AHSS. Physically based damage models are often used in crash and bulk forming simulations. The still open question is the industrial application of these models for sheet metal forming. This paper evaluates the Gurson-Tvergaard-Needleman (GTN) model and the model of Lemaitre within commercial codes with a goal of industrial application.

  2. Impact of industrial effluents on geochemical association of metals within intertidal sediments of a creek

    Digital Repository Service at National Institute of Oceanography (India)

    Volvoikar, S.P.; Nayak, G.N.

    Metal speciation studies were carried out on three intertidal core sediments of the industrially impacted Dudh creek located along west coast of India Metals indicated a drastic increase in the bioavailable fraction towards the surface of the cores...

  3. 279 Watt Metal-Wrap-Through module using industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Guillevin, N.; Heurtault, B.; Geerligs, L.J.; Anker, J.; Van Aken, B.B.; Bennett, I.J.; Jansen, M.J.; Berkeveld, L.D.; Weeber, A.W.; Bultman, J.H. [ECN Solar Energy, PO Box 1, 1755 ZG Petten (Netherlands); Wenchao, Zhao; Jianming, Wang; Ziqian, Wang; Yingle, Chen; Yanlong, Shen; Zhiyan, Hu; Gaofei, Li; Jianhui, Chen; Bo, Yu; Shuquan, Tian; Jingfeng, Xiong [Yingli Solar, 3399 Chaoyang North Street, Baoding (China)

    2012-09-15

    This paper describes results of metal wrap through (MWT) cells produced from n-type Czochralski silicon wafers, and modules produced from those cells. The use of n-type silicon as base material allows for high efficiencies: for front emitter contacted industrial cells, efficiencies up to 20% have been reported. MWT cells allow even higher cell efficiency due to reduced front metal coverage, and additionally full back-contacting of the MWT cells in a module results in reduced cell to module (CTM) fill factor losses. MWT cells were produced by industrial process technologies. The efficiency of the MWT cells reproducibly exceeds the efficiency of front contact cells based on the same technology by about 0.2-0.3%, and routes for further improvement are analyzed. 60-cell modules were produced from both types of cells (MWT and H-pattern front emitter). In a direct module performance comparison, the MWT module, based on integrated backfoil, produced 3% higher power output than the comparable tabbed front emitter contact module. CTM current differences arise from the higher packing density, and in this experiment from a lower reflectance of the backfoil, in MWT modules. CTM FF differences are related to resistive losses in copper circuitry on the backfoil versus tabs. The CTM FF loss of the MWT module was reduced by 2.2%abs compared to the tabbed front emitter contact module. Finally, simple process optimizations were tested to improve the n-type MWT cell and module efficiency. A module made using MWT cells of 19.6% average efficiency resulted in a power output of 279W. The cell and module results are analyzed and routes for improvements are discussed.

  4. Radioactive contamination in metal recycling industry - an environmental issue

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2012-01-01

    Metal recycling has become an important industrial activity worldwide; it is seen as being socially and environmentally beneficial because it conserves natural ore resources and saves energy. However, there have been several accidents over the past decades involving orphan radioactive sources or other radioactive material that were inadvertently collected as metal scrap that was destined for recycling. The consequences of these accidents have been serious with regard to the protection of people and the environment from the harmful effects of ionizing radiation as well as from an economic point of view. India produces and exports steel products to various countries. In the recent years there were rejection and return of steel products as they were found to be contaminated with trace quantities of radioactive materials. During investigation of incidents of radioactive contamination in steel products exported from India, it was observed that steel products are contaminated with low level radioactivity. Though radioactivity level in steel products is found to be too low to pose any significant hazards to the handling personnel or to the users or the public at large, its presence is undesirable and need to be probed as to how it has entered in the steel products. Atomic Energy Regulatory Board (AERB) has investigated the incidents of such nature in the recent past and it is gathered that the steel products are made out of steel produced in a foundry where metal scrap containing radioactive material has been used. In this talk, incidents of radioactive contamination, its roots cause, and its radiological impact on person, property and environment, lessons learnt, remedial measures and international concerns will be discussed

  5. Study on waste waters of metal finishing industries around Lahore metropolitan area

    International Nuclear Information System (INIS)

    Khan, Izhar-ul-Haq; Mahmood, F.; Tufail, S.; Naeem, M.

    2002-01-01

    Study was undertaken on the waste water samples from metal finishing industries of Lahore metropolitan area for the evaluation of metallic impurities. The metal finishing industry was classified into three categories i. e. medium scale, small scale and cottage scale industry. About 93 wastewater samples were collected from various metal finishing industries around Lahore metropolitan area. In addition to toxic elements like cadmium, nickel and zinc the other parameters such as hydrogen ion concentration (pH), Electrical conductivity (EC) and Total Dissolved Salts (TDS) were also determined. (author)

  6. The use of natural and industrial aluminosilicates in the process of adsorption of heavy metals ions

    OpenAIRE

    Tsvetkova, A.; Akayev, O.

    2010-01-01

    The analysis of periodic scientific publications and patent literature was made, in which the possibilities of using natural and industrial silicon-containing compounds as adsorbents of ions of heavy metals are generalized. The conditions of adsorption, as well as the numerical values of the adsorption capacity of the studied materials are described Key words: adsorption, natural and industrial aluminosilicates, heavy metals ions.

  7. Recycling of metals from metal containing industrial wastes by means of plasma

    International Nuclear Information System (INIS)

    Burkhard, R.

    1995-01-01

    Recovery of metals from complex mixed wastes is a challenging task of modern material and waste management strategies. Thermal methods are an important tool in this respect. Plasma turned out to be particularly useful for treatment of complex or toxic wastes and residuals. In order to study the recycling parameters and behaviour of different metal containing wastes at reasonable costs, two pilot plasma plants have been used and metal containing, industrial wastes like spent Raney-Nickel catalysts, copper and aluminium drosses, MMC's, scrap, and others were investigated. The heart of the plasma equipment used is the Rotating Hearth (PRH) with a central base orifice. The hearth of the furnace rotates with a speed which prevents the melt from dripping. For pouring, the rotational speed is lowered, which allows the melt to be dripped into a mould. The RIF2 is equipped with a transferred plasma torch which can be operated up to 200 kW. The furnace is equipped with a secondary combustion chamber (SCC). The gases leaving the SCC go through a quench/scrubber. A powerful fan maintains underpressure in the whole system. Waste and additives can be fed through a nitrogen-purged port batchwise or with a screw feeder. The main components of the waste material investigated are nickel and aluminium in Raney-Nickel. The goal to recycle it is to produce NiFe-alloys for further use in the steel industry, or even NiAl-alloy for new catalyst production by using aluminium scrap as reducing and alloying element respectively. Aluminium dross occurs as an unavoidable by-product of all aluminium melting operations. It consists of metallic aluminium, oxides, nitrides, and salts. The separation of the aluminium phase from the oxides is the main task for recycling the aluminium. The general result is: recovery of metals out of complex mixed waste by using plasma rotating hearth technology and appropriate furnace modifications is feasible and ecological-economically interesting. (author) 147

  8. Metal Recovery from Industrial Solid Waste — Contribution to Resource Sustainability

    Science.gov (United States)

    Yang, Yongxiang

    Increased demand of metals has driven the accelerated mining and metallurgical production in recent years, causing fast depletion of primary metals resources. On the contrary, the mining and metallurgical industry generates large amount of solid residues and waste such as tailings, slags, flue dust and leach residues, with relative low valuable metal contents. On the other hand, end-of-life (EoL) consumer products form another significant resources. The current technology and processes for primary metals production are not readily applicable for direct metals extraction from these waste materials, and special adaptation and tailor-made processes are required. In the present paper, various solid waste resources are reviewed, and current technologies and R&D trends are discussed. The recent research at author's group is illustrated for providing potential solutions to future resource problems, including metal recovery from MSW incinerator bottom ashes, zinc recovery from industrial ashes and residues, and rare earth metals recovery from EoL permanent magnets.

  9. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    Science.gov (United States)

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J. C.

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (I geo), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution. PMID:22645468

  10. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    Directory of Open Access Journals (Sweden)

    Ehsanul Kabir

    2012-01-01

    Full Text Available There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo, calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  11. Heavy metal levels in soil samples from highly industrialized Lagos ...

    African Journals Online (AJOL)

    Anyakora

    2013-09-05

    Sep 5, 2013 ... The effect of heavy metals on the environment is of serious concern and threatens life in all forms. Environmental ... have affected the quality of soil due to contamination of soil with heavy metals and the consequent effects on the ..... tested for remediation of chromium-contaminated soils. (Collen, 2003).

  12. Estimation of heavy metals in dust fall samples from three different industrial areas of Karachi

    International Nuclear Information System (INIS)

    Hashmi, D.R.; Khan, F.A.; Shareef, A.; Bano, A.B.; Munshi, A.B.

    2010-01-01

    The study of accumulation of heavy metals, Fe, Cu, Mn, Zn, Pb and Cd, in the dust fall samples, collected from three selected industrial areas of Karachi, showed the level of heavy metals to decrease gradually from sites of high activity to those of low activity such as from roundabouts to main roads to side roads. Concentration of heavy metal showed a variation of the order Fe>Zn>Pb>Mn>Cu>Cd. Iron had the highest concentration in all the sampling areas in the range of 1.947 +- 0.00 to 30.039 +- 0.01 mg/g. Lower values were observed for Cd with respective ranges of 0.001 +- 0.00 to 0.009 +- 0.01 mg/g. The results suggested that heavy metal pollution in the dust fall samples of industrial areas may be due to automobile and industrial exhaust from different industrial units. (author)

  13. MULTI-CRITERIA PROGRAMMING METHODS AND PRODUCTION PLAN OPTIMIZATION PROBLEM SOLVING IN METAL INDUSTRY

    OpenAIRE

    Tunjo Perić; Željko Mandić

    2017-01-01

    This paper presents the production plan optimization in the metal industry considered as a multi-criteria programming problem. We first provided the definition of the multi-criteria programming problem and classification of the multicriteria programming methods. Then we applied two multi-criteria programming methods (the STEM method and the PROMETHEE method) in solving a problem of multi-criteria optimization production plan in a company from the metal industry. The obtained resul...

  14. assessment of atmospheric metal depositions in the industrial areas

    African Journals Online (AJOL)

    Osondu

    and Ogun states house many industries which are assumed to have impacted the states. It is in ... southwest Nigeria were assessed to determine the extent of air pollution of these areas. ... of pollutants but are expensive and risks of ... Island) served as the Control site for Lagos ..... cement industry on accumulation of heavy.

  15. A case in support of implementing innovative bio-processes in the metal mining industry

    NARCIS (Netherlands)

    Sanchez Andrea, I.; Stams, A.J.M.; Weijma, J.; Gonzalez Contreras, P.A.; Dijkman, H.; Rozendal, R.A.; Johnson, D.B.

    2016-01-01

    The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements.

  16. A case in support of implementing innovative bio-processes in the metal mining industry.

    Science.gov (United States)

    Sánchez-Andrea, Irene; Stams, Alfons J M; Weijma, Jan; Gonzalez Contreras, Paula; Dijkman, Henk; Rozendal, Rene A; Johnson, D Barrie

    2016-06-01

    The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements. Typically about 99% of solid material hauled to, and ground at, the land surface currently ends up as waste (rock dumps and mineral tailings). Exposure of these to air and water frequently leads to the formation of acidic, metal-contaminated run-off waters, referred to as acid mine drainage, which constitutes a severe threat to the environment. Formation of acid drainage is a natural phenomenon involving various species of lithotrophic (literally 'rock-eating') bacteria and archaea, which oxidize reduced forms of iron and/or sulfur. However, other microorganisms that reduce inorganic sulfur compounds can essentially reverse this process. These microorganisms can be applied on industrial scale to precipitate metals from industrial mineral leachates and acid mine drainage streams, resulting in a net improvement in metal recovery, while minimizing the amounts of leachable metals to the tailings storage dams. Here, we advocate that more extensive exploitation of microorganisms in metal mining operations could be an important way to green up the industry, reducing environmental risks and improving the efficiency and the economy of metal recovery. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. [Heavy Metals Pollution in Topsoil from Dagang Industry Area and Its Ecological Risk Assessment].

    Science.gov (United States)

    Zhang, Qian; Chen, Zong-juan; Peng, Chang-sheng; Li, Fa-sheng; Gu, Qing-bao

    2015-11-01

    Based on previous studies and field investigation of Dagang industry area in Tianjin, a total of 128 topsoil samples were collected, and contents of 10 heavy metals (As, Cd, Cr, Co, Cu, Pb, Ni, V, Zn and Hg) were determined. The geoaccumulation index and geostatistics were applied to examine the degree of contamination and spatial distribution of heavy metals in topsoil. The assessment on ecological risk of heavy metals was carried out using Hakanson's method, and the main resources of the heavy metals were analyzed as well. It was found that As, Cd and Co had the highest proportions exceeding Tianjin background value, which were 100%, 97.66% and 96.88%, respectively; the heavy-metal content increased to some extent comparing with that in 2004, and the pollutions of As and Cd were the worst, and other metals were at moderate pollution level or below. The ecological risks of heavy metals were different in topsoil with different land use types, the farmland soil in the southwest as well as soils adjacent to the industrial land were at relatively high potential ecological risk level, and the integrated ecological risk index reached up to 1 437.37. Analysis of correlation and principal component showed that traffic and transportation as well as agricultural activities might be the main resources of heavy metals in the area, besides, the industrial activities in the region might also affect the accumulation of heavy metals.

  18. Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater

    Science.gov (United States)

    Hussain, Athar; Maitra, Jaya; Khan, Kashif Ali

    2017-12-01

    Heavy metals are usually released into water bodies from industrial/domestic effluents such as metal plating industries, mining and tanneries. Adsorption is a fundamental process in the physiochemical treatment of wastewaters because of its low cost. Great efforts have been made to use the economically efficient and unconventional adsorbents to adsorb heavy metals from aqueous solutions, such as plant wastes and agricultural waste. Biochar mixed with chitosan after crosslinking can be casted into membranes, beads and solutions which can be effectively utilized as an adsorbent for metal ion uptake. Keeping these facts into consideration, the present study was undertaken with the objective to determine the effect of various proportions of biochar-modified chitosan membranes on the sorption characteristics of different heavy metals like Cu, Pb, As and Cd along with comparison of sorption characteristics between industrial waste water samples containing multi-metals and standard synthetic stock solution containing a particular metal. It is apparent from the results that the bioadsorbent prepared from biochar and chitosan are low-cost efficacious resource due to its easy availability. It is also eco-friendly material for making adsorbent for abstraction of heavy metals from aqueous solution. This adsorbent can be best utilized for adsorption of heavy metals.

  19. Trace Analysis of Heavy Metals in Ground Waters of Vijayawada Industrial Area

    Science.gov (United States)

    Tadiboyina, Ravisankar; Ptsrk, Prasada Rao

    2016-01-01

    In recent years, the new environmental problem are arising due to industrial hazard wastage, global climate change, ground water contamination and etc., gives an attention to protect environment.one of the major source of contamination of ground water is improper discharge of industrial effluents these effluents contains so many heavy metals which…

  20. Workplace Basic Skills in the Metal Casting Industry for World Class Process and Technology.

    Science.gov (United States)

    Rasmussen, Bonnie

    A workplace basic skills project for the metal casting industry was established jointly by Central Alabama Community College and Robinson Foundry, Inc. Evaluation of the project was made through a commercial test of hourly workers' general literacy level gains, instructor-developed pre- and posttests of mastery of the industrial process and…

  1. A study on the treatment of industrial wastewater containing heavy metals

    International Nuclear Information System (INIS)

    Yoon, Myoung Hwan; Jang, In Soon; Park, Jang Jin; Choi, Chang Shik; Lee, Yoon Hwan; Shin, Jin Myoung

    1993-06-01

    It is essential to treat heavy metals contained in industrial wastewater safely and economically for the protection of the environment. An effective method of separating heavy metals using acornic acid for the first time in the world must be utilized for wastewater treatment. One of the merits of this method lies in its cheap treatment cost. Furthermore, the secondary contamination, which occurs often when chemical purifiers are used, could be minimized. Another advantage of utilizing the acornic acid is that various kinds of heavy metals contained in industrial wastewater can be purified at once. The final purpose of this project is to commercialize the method by 1994. (Auther)

  2. Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan

    Directory of Open Access Journals (Sweden)

    Iqra Azam

    2015-01-01

    Full Text Available To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia, an acridid grasshopper (Oxya hyla hyla, and a nymphalid butterfly (Danaus chrysippus near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p<0.05. Hierarchical cluster analysis (HACA was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala, S9 (End of HalsiNala, and S1 (Start of HalsiNala, whereas lowest value was detected at site S6 (Kalra Khasa located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring.

  3. Assessment of Atmospheric Metal Depositions in the Industrial ...

    African Journals Online (AJOL)

    These metals contributed differently to the pollution of the study areas. ... It is hoped that the results of this study would inform the Government and the citizens ... certainly help in taking proactive steps that will help to reduce the pollution load.

  4. Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry

    International Nuclear Information System (INIS)

    Ren Shenggang; Hu Zhen

    2012-01-01

    We adopted the refined Laspeyres index approach to explore the impacts of industry scale, energy mix, energy intensity and utility mix on the total carbon dioxide emissions from the Chinese nonferrous metals industry for the period 1996–2008. In addition, we calculated the trend of decoupling effects in nonferrous metals industry in China by presenting a theoretical framework for decoupling. As the results suggest, Chinese nonferrous metals industry has gone through four decoupling stages: strong negative decoupling stage (1996–1998), weak decoupling stage (1999–2000), expensive negative decoupling stage (2001–2003) and weak decoupling stage (2004–2008). We have analyzed the reasons for each phase. Generally speaking, the rapid growth of the industry is the most important factor responsible for the increase of CO 2 emissions, and the change in energy mix was mainly due to the increased proportion of electric energy consumption that has contributed to the increase of CO 2 emissions. Reduction of energy intensity has contributed significantly to emissions decrease, and the utility mix effect has also contributed to the emission decrease to some extent. - Highlights: ► We calculate the decoupling effects of CO 2 from Chinese nonferrous metals industry. ► Results demonstrate that the industry has gone through four decoupling stages. ► The output effect is most important for the increase of CO 2 emissions. ► Reduction of energy intensity has contributed significantly to emissions decrease.

  5. INFLUENCE OF MINING AND METAL INDUSTRY ON PHYSCIA LICHENS

    Directory of Open Access Journals (Sweden)

    Kachinskaya V.V.

    2015-04-01

    Full Text Available The comparative analysis of lichens Physcia. Рopulation at different levels of aerotechnogenic pollution of industrial mining – metallurgical complex of Krivyi Rig Basin. In the highway area there was found the worsening living conditions of thallus at the lichens Physcia, manifested in the reduction of a projective cover and reducing of the size of thallus with the increasing of the degree of their damage. It is set that specific composition and conformities to law of distribution of cladinas is determined the type of the industrial loading. Predominance at the lichens of crustaceous cladinas, insignificant participation of fissile cladinas and complete absence of bushy forms is the possible consequence of industrial influence. We registered some 3 species of epiphytic lichens, namely Phaeophyscia nigricans, Physcia tenella, Physcia adscendens in a residential zone, while on conditional control area we found Physcia orbicularis. The dominant species was scum-like shape Phaeophyscia nigricans, Physcia adscendens, Physcia tenella, while on conditional control region we marked predominance of Physcia orbicularis and did not registered bushy lichens form. We also divided the lichens into two groups according to the resistance towards air pollution - moderate (2 species, Phaeophyscia nigricans, Physcia tenella and toxic-resistant (2 species, Physcia orbicularis, Physcia adscendens. Epiphytic lichens in terms of residential areas compared to conventionally control area characterized by a decrease of morphometric parameters of the melt. Key results can be used to predict the state of ecosystems using lichenoindication in terms of industrial regions of Ukraine.

  6. Application of the dynamic characterization of metals in automotive industry

    Science.gov (United States)

    D'Aiuto, Fabio; De Caro, Daniele; Federici, Claudio; Tedesco, Michele M.; Ziggiotti, Alessandro; Cadoni, Ezio

    2015-09-01

    This paper presents the experimental methodology used by R&D EMEA - Global Materials Labs Department to test metals at high strain rate of 500 s-1. The implementation of dynamic results in commercial FEM Software LS - DYNA for crash simulation are presented. The effects of the strain rate on the tensile properties of metals, used in automotive field, are evaluated using results obtained from a direct tension split Hopkinson bar, built in collaboration with the University of Applied Sciences of Southern Switzerland DynaMat Lab. Finally the complete mechanical characterization of the Magnesium alloy AZ31B is presented, from static up to dynamic tests, showing its applications in FCA (Fiat Chrysler Automobiles), problems and future developments.

  7. Fungal biotrap for retrieval of heavy metals from industrial wastewaters

    International Nuclear Information System (INIS)

    Crusberg, T.C.; Weathers, P.; Baker, E.

    1989-01-01

    Biotraps are living cells or specific cell components capable of removing or stabilizing toxic substances form waste streams. The fungus Penicillium ochro-chloron was discovered growing in an electroplating wastewater stream in Japan. It is not only tolerant to very high concentrations of divalent metal ions, but it can effectively remove heavy metals (such as uranium cadmium, nickel, etc.) from almost any aqueous waste stream. This paper discussed P. ochro-chloron biotrap which was prepared by growing spores in a glucose-minimal salts medium supplemented with 0.5 percent Tween 80 for 5 days with constant gentle agitation. The while mycelia beads 4-6 mm dia. were treated in a Buchner funnel with 80% ethanol to kill the cells, 15 percent sodium carbonate/bicarbonate pH 9.5, and then resuspended in an aqueous slurry at pH 4.0. The mycelia beads were used as an adsorbent in a batch experiment to determine copper-to-mycelia binding. This system should be capable of heavy metal uptake and recovery from both electroplating wastewaters and contaminated aqueous environments. The use of this fungus biotrap will rival synthetic cation environments. The use of this fungus biotrap will rival synthetic cation exchange resins because of lower cost, lower weight per unit of exchange capacity and ease of application

  8. Study of radiation portal monitor and its application to metal recycling industry

    International Nuclear Information System (INIS)

    Pujol, L.; Lara-Calleja, S.; Suarez-Navarro, M. J.; Gonzalez-Gonzalez, J. A.

    2009-01-01

    The industry of the iron and the steel in one of the most important sectors in Spain for its economic development. the recycling of metallic materials as well as the import of metallic scrap is very significant. Several reports on accidental dispersion or smelting of radioactive sources in metal recycling industries confirm the possibility that radioactive material might be mixed with scrap. In consequence, this type of accident shows the necessity of a rigorous and specific radiation control of the sector. The control of these materials with radioactive content can be carried out with radiation portal monitors installed at the entrance of these industries. The detection of radioactive materials presents special features as the continuous background acquisition or the minimisation of the relatively large number of innocent/nuisance detections. In the present work, we study a radiation portal monitor, the FHT-1388-T Thermo-Eberline. This is one of the usual radiation portal systems installed at the entrance of the metal recycling industry. Se study the characteristics and parameters of this portal monitor to optimise its use. furthermore, we propose some rapid tests for radiation portal systems in metal recycling industry. (Author) 16 refs

  9. Heavy metal concentrations and distribution in surface soils of the Bassa Industrial Zone 1, Douala, Cameroon

    International Nuclear Information System (INIS)

    Asaah, Victor A.; Abimbola, Akinlolu F.; Suh, Cheo E.

    2006-01-01

    Partial extraction was carried out on 33 soil samples collected from the Bassa Industrial Zone 1, Douala, Cameroon. From the samples analyzed the following metal concentrations (range) were obtained (in ppm): Ag (0-1.3), As (0-64), Cd(0-7.3), Co(0-31), Cr(34-423), Cu(12-909), Mn(55-3282), Mo(0-81.6), Ni(9-284), Pb (0-3320), Sb (0-30), Sc (0.6-7.5), V (26-110), Zn (30-3782) and Fe (in wt%) (1.50-47.31). Results obtained reveal background and anomalous populations for most of the metals except Sc and V, which have only background populations. Multi-element geochemical anomalies occur within the vicinity of industries, waste dump sites, metal workshops and mechanical workshops. R-mode factor analysis reveals three element associations and two singular elements (As, Cd) accounting for 94% of the total data variance. The three associations are: Ag-Cu-Cr-Fe-Mn-Mo-Ni-Sb; Co-Cu-Pb-Sb-Zn and Sc-V. The geoaccumulation indices show that soils in the Bassa Industrial Zone are moderately to very highly pollute. These metal-laden soils constitute a major health risk to the local population and a cause for concern. This study successfully relates the concentration and distribution of toxic metals in the soils of Bassa Industrial Zone to urban effluents generated mainly from industrial activities. (author)

  10. Response of magnetic properties to heavy metal pollution in dust from three industrial cities in China

    International Nuclear Information System (INIS)

    Zhu, Zongmin; Li, Zhonggen; Bi, Xiangyang; Han, Zhixuan; Yu, Genhua

    2013-01-01

    Highlights: ► Elevated magnetic particles and heavy metals coexist in dust. ► Morphology and mineralogy of magnetic particles were studied by SEM-EDX and XRD. ► Magnetic minerals in the dust consist of magnetite, hematite, and metallic iron. ► Impact of metallic iron particles and multi-sources of metal pollutants was notable. -- Abstract: Magnetic method is a reliable and powerful technique for identification of the relative contribution of industrial pollutants. However, it has not been fully applied in urban area impacted by non-ferrous metal (NFM) smelting/processing activities. The aim of this study is to explore the applicability of magnetic methods for detecting heavy metal contamination in dust from three NFM smelting/processing industrial cities (Ezhou, Zhuzhou, and Hezhang) in China. The enhancements of magnetic susceptibility (MS) and saturation isothermal remanent magnetization (SIRM) together with heavy metals were significant in the studied areas in comparison with the background values. Scanning electron microscope (SEM) analysis revealed that magnetic particles in dust from Ezhou were dominated by spherules, while those from Zhuzhou and Hezhang were mainly consisted of irregular-shaped particles. κ–T curves and X-ray diffraction (XRD) analyses indicated that the magnetic particles from Ezhou were dominated by magnetite and metallic iron, whereas those from Zhuzhou and Hezhang were consisted of magnetite and hematite. Our study indicates that magnetic properties of the dust are sensitive to the NFM smelting/processing related heavy metal pollutants. However, the relationship between magnetic parameters and heavy metals was influenced by the presence of metallic iron particles and multi-sources of metal pollutants

  11. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...

  12. Applications of inorganic mass spectrometry in metal analysis of high-tech industry

    International Nuclear Information System (INIS)

    Ling Yongjian; Wang Shimin; Li Peiling; Chen Lizhen

    2007-01-01

    The metals in the nature are closely related to the progress of human culture and economic activities. Various kinds of metals are continuously being applied to new processes and products. During the effect by biogeochemical cycle, metals were released to environmental compartments, such as air, water, soil, and living organisms. The deficiency in knowledge, poor management, greedy, and bad intention usually leads to serious environmental pollution, eco-environment damage, and human poisoning. Effective analysis of metal concentrations and species during economic activities and eco-environment is an important research and survey subject. Internationally, the establishment of high-tech industrial park has become the major means to simultaneously improve living quality and broaden economic activity. High-tech industry uses metals. It is mandatory to control the distribution of metals in feed, process, product, waste, environment, and the life-cycle. This report is based on our experience with inorganic mass spectrometry focusing on the use of secondary ion mass spectrometry (SIMS) and inductively-coupled mass spectrometry (ICP-MS) in metal analysis of high-tech industrial parts. The report includes (1) The use of SIMS for analyzing impurity in depth and on surface demonstrates the importance of integrating trace metal, depth profile, micro-area, and surface analyses. (2) Survey ambient heavy metals (As, Be, Cd, Dr, Hg, Mn, Ni and Pb) around industrial parks and compare the findings to stack heavy metals. The results demonstrate that ICP-MS is indispensable to help reveal heavy metal distribution in industrial park ambient air and clarify suspected polluting sources. (3) Research and develop analytical method to determine metal impurities (Na, K, Mg, Ca, Cu, Fe, Mn, Li and Al) in photoresist. The method uses a novel nitric acid digestion technique to convert photoresist into carbon dioxide and water, followed by ICP-MS analysis of high-purity nitric acid recovery

  13. Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan.

    Science.gov (United States)

    Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra

    2015-01-01

    To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring.

  14. Assessment of heavy metals leaching from (biochar obtained from industrial sewage sludge

    Directory of Open Access Journals (Sweden)

    Julija Pečkytė

    2015-10-01

    Full Text Available Biochar can be produced from many various feedstock including biomass residues such as straw, branches, sawdust and other agricultural and forestry waste. One of the alternatives is to obtain biochar from industrial sewage sludge, however, the use of such a product could be limited due to high quantities of heavy metals in the biochar as a product. Total concentration of heavy metals provides only limited information on the behavior of heavy metals, therefore, batch leaching and up-flow percolation leaching tests were applied to study the leaching of heavy metals (Cd, Pb, Cr, Ni, Zn, Cu from (biochar produced from two types of sewage sludge: from paper mill and leather industries.

  15. Metal-containing residues from industry and in the environment: geobiotechnological urban mining.

    Science.gov (United States)

    Glombitza, Franz; Reichel, Susan

    2014-01-01

    This chapter explains the manifold geobiotechnological possibilities to separate industrial valuable metals from various industrial residues and stored waste products of the past. In addition to an overview of the different microbially catalyzed chemical reactions applicable for a separation of metals and details of published studies, results of many individual investigations from various research projects are described. These concern the separation of rare earth elements from phosphorous production slags, the attempts of tin leaching from mining flotation residues, the separation of metals from spent catalysts, or the treatment of ashes as valuable metal-containing material. The residues of environmental technologies are integrated into this overview as well. The description of the different known microbial processes offers starting points for suitable and new technologies. In addition to the application of chemolithoautotrophic microorganisms the use of heterotrophic microorganisms is explained.

  16. Use of constructed wetland for the removal of heavy metals from industrial wastewater.

    Science.gov (United States)

    Khan, Sardar; Ahmad, Irshad; Shah, M Tahir; Rehman, Shafiqur; Khaliq, Abdul

    2009-08-01

    This study was conducted to investigate the effectiveness of a continuous free surface flow wetland for removal of heavy metals from industrial wastewater, in Gadoon Amazai Industrial Estate (GAIE), Swabi, Pakistan. Industrial wastewater samples were collected from the in-let, out-let and all cells of the constructed wetland (CW) and analyzed for heavy metals such as lead (Pb), cadmium (Cd), iron (Fe), nickel (Ni), chromium (Cr) and copper (Cu) using standard methods. Similarly, samples of aquatic macrophytes and sediments were also analyzed for selected heavy metals. Results indicate that the removal efficiencies of the CW for Pb, Cd, Fe, Ni, Cr, and Cu were 50%, 91.9%, 74.1%, 40.9%, 89%, and 48.3%, respectively. Furthermore, the performance of the CW was efficient enough to remove the heavy metals, particularly Cd, Fe, and Cu, from the industrial wastewater fed to it. However, it is suggested that the metal removal efficiency of the CW can be further enhanced by using proper management of vegetation and area expansion of the present CW.

  17. Improvement Bio sorption of Heavy Metals from Industrial Wastewater Using Azolla

    International Nuclear Information System (INIS)

    Kotb, E.A.

    2012-01-01

    This study aims to improve the removal process which is vital for some heavy metals and natural radionuclides from industrial wastewater by bio sorption using living organisms with rapid growth as a trial to increase the efficient use of those organisms in the removal process is vital for the toxic elements. Bio sorption of heavy metal (Copper, Manganese, Iron, Zinc, Lead and Strontium) from industrial waste water (contaminated) with six different time periods for Azolla growth. The results indicate that Azolla plant able to on the absorption of ions of heavy elements and Sr and was up to the maximum absorption of most of the elements at a concentration of 50% of polluted water + 50% fresh water so we recommend using the plant Azolla as bio sorbent in the disposal and collection of heavy metals and radionuclides from industrial waste water and deal with it safely to humans and the environment. The results obtained confirm the ability of the fern to grow and absorb ion of heavy metal when mixed with industrial waste water and other sources of polluted water and act as bio filter. The optimum conditions for maximum removal of heavy metals were also determined. Study was conducted on recycling municipal wastewaters for cultivation of Azollamicrophylla biomass, which is used for inoculation into paddy fields as N bio fertilizer and has other applications as green manure,animal feed and bio filter.

  18. Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures

    Energy Technology Data Exchange (ETDEWEB)

    Toivola, Minna; Ahlskog, Fredrik; Lund, Peter [Laboratory of Advanced Energy Systems, Department of Engineering Physics and Mathematics, Helsinki University of Technology, P.O. Box 4100, FIN-02015 TKK (Finland)

    2006-11-06

    Direct integration of dye-sensitized solar cells (DSSC) onto industrial sheet metals has been studied. The stability of the metals, including zinc-coated and plain carbon steel, stainless steel and copper in a standard iodine electrolyte was investigated with soaking and encapsulation tests. Stainless and carbon steel showed sufficient stability and were used as the cell counter-electrodes, yielding cells with energy conversion efficiencies of 3.6% and 3.1%, respectively. A DSSC built on flexible steel substrates is a promising approach especially from the viewpoint of large-scale, cost-effective industrial manufacturing of the cells. (author)

  19. State-of-the-art of furnace recuperation in the primary metals industry: technical briefing report

    Energy Technology Data Exchange (ETDEWEB)

    Moore, N.L.

    1983-08-01

    Existing and emerging recuperator technology is identified, as well as the technical and economic issues in applying such technology. An overview of recuperation and its relevance to the primary metals industry is presented. Design considerations, equipment, and energy and cost savings of five recuperator applications in the primary metals industry are examined. Three applications include a case history of a recent recuperator installation. A cost engineering analysis of recuperator technology is included to ensure that technically feasible engineering projects are also economically attractive business ventures. An overview of emerging recuperation technology is presented.

  20. MULTI-CRITERIA PROGRAMMING METHODS AND PRODUCTION PLAN OPTIMIZATION PROBLEM SOLVING IN METAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Tunjo Perić

    2017-09-01

    Full Text Available This paper presents the production plan optimization in the metal industry considered as a multi-criteria programming problem. We first provided the definition of the multi-criteria programming problem and classification of the multicriteria programming methods. Then we applied two multi-criteria programming methods (the STEM method and the PROMETHEE method in solving a problem of multi-criteria optimization production plan in a company from the metal industry. The obtained results indicate a high efficiency of the applied methods in solving the problem.

  1. Slow improvements of metal exposure, health- and breeding conditions of pied flycatchers (Ficedula hypoleuca) after decreased industrial heavy metal emissions

    International Nuclear Information System (INIS)

    Berglund, A.M.M.; Nyholm, N.E.I.

    2011-01-01

    The environment around metal industries, such as smelters, is often highly contaminated due to continuous deposition of metals. We studied nest box breeding populations of pied flycatchers (Ficedula hypoleuca) in a well-studied pollution gradient from a sulfide ore smelter in Northern Sweden, after reduced aerial metal emissions (by 93-99%) from the smelter. The deposition of arsenic, cadmium, copper and zinc (based on moss samples) reflected the reduced emissions fairly well. However, nestling pied flycatchers had similar concentrations of these elements and mercury in tissues (bone, liver and blood) and feces in the 2000s, as in the 1980s, when the emissions were substantially higher. The exposure to high metal concentrations in the close vicinity of the smelter resulted in inhibited ALAD activities, depressed hemoglobin and hematocrit levels and increased mortality of nestlings. Our results indicate that in the highly contaminated environment around the smelter, nestlings reflected the slowly cycling soil pool, rather than the atmospheric deposition, and the concentration in soils plays an important role for the response of pied flycatchers to reduced atmospheric deposition. - Highlights: → Pied flycatchers were studied in a pollution gradient from a sulfide smelter. → Metal emissions from the smelter have decreased substantially. → Nestling birds still had high metal concentrations in tissues. → Health and survival rates of nestlings were negatively affected. → Recovery of birds is not expected in the near future.

  2. Slow improvements of metal exposure, health- and breeding conditions of pied flycatchers (Ficedula hypoleuca) after decreased industrial heavy metal emissions

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, A.M.M., E-mail: asa.berglund@emg.umu.se; Nyholm, N.E.I.

    2011-09-15

    The environment around metal industries, such as smelters, is often highly contaminated due to continuous deposition of metals. We studied nest box breeding populations of pied flycatchers (Ficedula hypoleuca) in a well-studied pollution gradient from a sulfide ore smelter in Northern Sweden, after reduced aerial metal emissions (by 93-99%) from the smelter. The deposition of arsenic, cadmium, copper and zinc (based on moss samples) reflected the reduced emissions fairly well. However, nestling pied flycatchers had similar concentrations of these elements and mercury in tissues (bone, liver and blood) and feces in the 2000s, as in the 1980s, when the emissions were substantially higher. The exposure to high metal concentrations in the close vicinity of the smelter resulted in inhibited ALAD activities, depressed hemoglobin and hematocrit levels and increased mortality of nestlings. Our results indicate that in the highly contaminated environment around the smelter, nestlings reflected the slowly cycling soil pool, rather than the atmospheric deposition, and the concentration in soils plays an important role for the response of pied flycatchers to reduced atmospheric deposition. - Highlights: {yields} Pied flycatchers were studied in a pollution gradient from a sulfide smelter. {yields} Metal emissions from the smelter have decreased substantially. {yields} Nestling birds still had high metal concentrations in tissues. {yields} Health and survival rates of nestlings were negatively affected. {yields} Recovery of birds is not expected in the near future.

  3. Trade in the telecoupling framework: evidence from the metals industry

    Directory of Open Access Journals (Sweden)

    Hang Xiong

    2018-03-01

    Full Text Available As a conceptual framework for understanding contemporary sustainability challenges, telecoupling emphasizes the importance of socioeconomic and environmental interactions over long distances. These long-distance interactions can occur through multiple human activities. We focus on international trade, a major channel of telecoupling flows, and in particular on the international trade of metals. We use the data of physical products and embedded greenhouse gas (GHG emissions trade in the World Input-Output Database (WIOD to quantitatively examine how countries contribute to both economic and environmental flows through the trade of metals, but also how that contribution varies depending on their position in the global value chain (GVC of contemporary international trade. This analysis is built on previously developed techniques for decomposing gross exports of products, which we apply to examine embedded GHG emissions. We make comparisons between countries' contributions to flows of economic value versus embedded GHG emissions, but also examine contributions beyond total volumes of trade and bilateral trade. Specifically, we quantify the economic and environmental spillover effects that occur in contemporary international trade because of the GVC in which flows of intermediate goods form components in other subsequently traded goods. We interpret differences between countries' contributions to the flows of economic value versus embedded GHG emissions as being related to the intensity and efficiency of resource use during production. In turn, differences in contributions to direct trade flows versus spillover flows are related to their positions in the GVC. Subsequently, we discuss other elements of the telecoupling framework in trade, i.e., agents, causes, and effects. Quantitatively incorporating these telecoupling framework elements alongside spillover flows will enable investigation of dynamics and relationships that traditional trade theories

  4. Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan

    OpenAIRE

    Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra

    2015-01-01

    To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insec...

  5. Industrial biotemplating saves precious metals in catalysts; Industrielles Biotemplating zur Einsparung von Edelmetallen in Katalysatoren

    Energy Technology Data Exchange (ETDEWEB)

    Hofinger, Juergen; Roos, Steffen; Zirpel, Kevin; Wengrzik, Stefanie [Namos GmbH, Dresden (Germany)

    2009-07-15

    Modern molecular biology provides the tools to design surfaces on the nanometer scale. This opens the way to a breakthrough innovation, which can optimize many industrial processes. In a proof-of-concept study, scientists were able to successfully reduce the amount of precious metals required for a diesel oxidation catalyst. This was the first successful application, and right now the biotemplating technology awaits further development for other applications involving catalytic processes or specifically designed surfaces for industrial processes. (orig.)

  6. Industrial applications of ion implantation into metal surfaces

    International Nuclear Information System (INIS)

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry

  7. A landscape-scale approach to examining the fate of atmospherically derived industrial metals in the surficial environment.

    Science.gov (United States)

    Stromsoe, Nicola; Marx, Samuel K; McGowan, Hamish A; Callow, Nikolaus; Heijnis, Henk; Zawadzki, Atun

    2015-02-01

    Industrial metals are now ubiquitous within the atmosphere and their deposition represents a potential source of contamination to surficial environments. Few studies, however, have examined the environmental fate of atmospheric industrial metals within different surface environments. In this study, patterns of accumulation of atmospherically transported industrial metals were investigated within the surface environments of the Snowy Mountains, Australia. Metals, including Pb, Sb, Cr and Mo, were enriched in aerosols collected in the Snowy Mountains by 3.5-50 times pre-industrial concentrations. In sedimentary environments (soils, lakes and reservoirs) metals showed varying degrees of enrichment. Differences were attributed to the relative degree of atmospheric input, metal sensitivity to enrichment, catchment area and metal behaviour following deposition. In settings where atmospheric deposition dominated (ombrotrophic peat mires in the upper parts of catchments), metal enrichment patterns most closely resembled those in collected aerosols. However, even in these environments significant dilution (by 5-7 times) occurred. The most sensitive industrial metals (those with the lowest natural concentration; Cd, Ag, Sb and Mo) were enriched throughout the studied environments. However, in alpine tarn-lakes no other metals were enriched, due to the dilution of pollutant-metals by catchment derived sediment. In reservoirs, which were located lower within catchments, industrial metals exhibited more complex patterns. Particle reactive metals (e.g. Pb) displayed little enrichment, implying that they were retained up catchment, whereas more soluble metals (e.g., Cu and Zn) showed evidence of concentration. These same metals (Cu and Zn) were depleted in soils, implying that they are preferentially transported through catchments. Enrichment of other metals (e.g. Cd) varied between reservoirs as a function of contributing catchment area. Overall this study showed that the fate

  8. Management of metal-bearing industrial solid waste by stabilization/solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Sunitha, C.; Palanivelu, K. [Anna University, Chennai (India). Centre for Environmental Studies

    2005-07-01

    Metal-bearing sludge from an electroplating industry was immobilised by the solidification stabilisation treatment method. Reduction of the leachability of metals from the waste was studied in different combinations of waste and additives - cement, lime and fly ash. The study revealed that the optimum proportion for cement: metal hydroxide sludge: fly ash as 1:2:2 is the best. The encapsulation efficiency calculated for the metals such as Cu, Cr, Ni, Pb, and Zn was above 92%. The unconfined compressive strength (UCS) for the developed block was found to be 11.5 kg/cm{sup 2} after curing. The toxicity characteristic leach test (TCLP) test reveals that the heavy metal content in the leachate was well below the maximum permissible limit of WHO drinking water standard. 10 refs., 6 tabs.

  9. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania

    Science.gov (United States)

    Rossi, R.; Bain, D.; Hillman, A. L.; Pompeani, D. P.; Abbott, M. B.

    2015-12-01

    The remobilization of legacy contamination stored in floodplain sediments remains a threat to ecosystem and human health, particularly with potential changes in global precipitation patterns and flooding regimes. Vehicular and industrial emissions are often the dominant, recognized source of anthropogenic trace metal loadings to ecosystems today. However, loadings from early industrial activities are poorly characterized and potential sources of trace metal inputs. While potential trace metal contamination from these activities is recognized (e.g., the historical use of lead arsenate as a pesticide), the magnitude and distribution of legacy contamination is often unknown. This presentation reconstructs a lake sediment record of trace metal inputs from an oxbow lake in Southwestern Pennsylvania. Sediment cores were analyzed for major and trace metal chemistry, carbon to nitrogen ratios, bulk density, and magnetic susceptibility. Sediment trace metal chemistry in this approximately 250 year record (180 cm) record changes in land use and industry both in the 19th century and the 20th century. Of particular interest is early 19th century loadings of arsenic and calcium to the lake, likely attributable to pesticides and lime used in tanning processes near the lake. After this period of tanning dominated inputs, sediment barium concentrations rise, likely reflecting the onset of coal mining operations and resulting discharge of acid mine drainage to surface waters. In the 20th century portion of our record (70 -20 cm), patterns in sediment zinc, cadmium, and lead concentrations are dominated by the opening and closing of the nearby Donora Zinc Works and the American Steel & Wire Works, infamous facilities in the history of air quality regulation. The most recent sediment chemistry records periods include the enactment of air pollution legislation (~ 35 cm), and the phase out of tetraethyl leaded gasoline (~30 cm). Our study documents the impact of early industry in the

  10. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Colin A. [Department of Geology, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3 (Canada)], E-mail: cacooke@ualberta.ca; Abbott, Mark B. [Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3 (Canada); Section of Anthropology, Carnegie Museum of Natural History, Pittsburgh, PA 15206 (United States)

    2008-04-15

    To date, few studies have investigated the environmental legacy associated with industrialization in the South American Andes. Here, we present an environmental archive of industrial pollution from {sup 210}Pb-dated lake cores recovered from Laguna Chipian, located near the Cerro de Pasco metallurgical region and Laguna Pirhuacocha, located near the Morococha mining region and the La Oroya smelting complex. At Laguna Chipian, trace metal concentrations increase beginning {approx} 1900 AD, coincident with the construction of the central Peruvian railway, and the rapid industrial development of the Cerro de Pasco region. Trace metal concentrations and fluxes peak during the 1950s before subsequently declining up-core (though remaining well above background levels). While Colonial mining and smelting operations are known to have occurred at Cerro de Pasco since at least 1630 AD, our sediment record preserves no associated metal deposition. Based on our {sup 14}C and {sup 210}Pb data, we suggest that this is due to a depositional hiatus, rather than a lack of regional Colonial pollution. At Laguna Pirhuacocha, industrial trace metal deposition first begins {approx} 1925 AD, rapidly increasing after {approx} 1950 AD and peaking during either the 1970s or 1990s. Trace metal concentrations from these lakes are comparable to some of the most polluted lakes in North America and Europe. There appears to be little diagenetic alteration of the trace metal record at either lake, the exception being arsenic (As) accumulation at Laguna Pirhuacocha. There, a correlation between As and the redox-sensitive element manganese (Mn) suggests that the sedimentary As burden is undergoing diagenetic migration towards the sediment-water interface. This mobility has contributed to surface sediment As concentrations in excess of 1100 {mu}g g{sup -1}. The results presented here chronicle a rapidly changing Andean environment, and highlight a need for future research in the rate and magnitude

  11. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru.

    Science.gov (United States)

    Cooke, Colin A; Abbott, Mark B

    2008-04-15

    To date, few studies have investigated the environmental legacy associated with industrialization in the South American Andes. Here, we present an environmental archive of industrial pollution from (210)Pb-dated lake cores recovered from Laguna Chipian, located near the Cerro de Pasco metallurgical region and Laguna Pirhuacocha, located near the Morococha mining region and the La Oroya smelting complex. At Laguna Chipian, trace metal concentrations increase beginning ~1900 AD, coincident with the construction of the central Peruvian railway, and the rapid industrial development of the Cerro de Pasco region. Trace metal concentrations and fluxes peak during the 1950s before subsequently declining up-core (though remaining well above background levels). While Colonial mining and smelting operations are known to have occurred at Cerro de Pasco since at least 1630 AD, our sediment record preserves no associated metal deposition. Based on our (14)C and (210)Pb data, we suggest that this is due to a depositional hiatus, rather than a lack of regional Colonial pollution. At Laguna Pirhuacocha, industrial trace metal deposition first begins ~1925 AD, rapidly increasing after ~1950 AD and peaking during either the 1970s or 1990s. Trace metal concentrations from these lakes are comparable to some of the most polluted lakes in North America and Europe. There appears to be little diagenetic alteration of the trace metal record at either lake, the exception being arsenic (As) accumulation at Laguna Pirhuacocha. There, a correlation between As and the redox-sensitive element manganese (Mn) suggests that the sedimentary As burden is undergoing diagenetic migration towards the sediment-water interface. This mobility has contributed to surface sediment As concentrations in excess of 1100 microg g(-1). The results presented here chronicle a rapidly changing Andean environment, and highlight a need for future research in the rate and magnitude of atmospheric metal pollution.

  12. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru

    International Nuclear Information System (INIS)

    Cooke, Colin A.; Abbott, Mark B.

    2008-01-01

    To date, few studies have investigated the environmental legacy associated with industrialization in the South American Andes. Here, we present an environmental archive of industrial pollution from 210 Pb-dated lake cores recovered from Laguna Chipian, located near the Cerro de Pasco metallurgical region and Laguna Pirhuacocha, located near the Morococha mining region and the La Oroya smelting complex. At Laguna Chipian, trace metal concentrations increase beginning ∼ 1900 AD, coincident with the construction of the central Peruvian railway, and the rapid industrial development of the Cerro de Pasco region. Trace metal concentrations and fluxes peak during the 1950s before subsequently declining up-core (though remaining well above background levels). While Colonial mining and smelting operations are known to have occurred at Cerro de Pasco since at least 1630 AD, our sediment record preserves no associated metal deposition. Based on our 14 C and 210 Pb data, we suggest that this is due to a depositional hiatus, rather than a lack of regional Colonial pollution. At Laguna Pirhuacocha, industrial trace metal deposition first begins ∼ 1925 AD, rapidly increasing after ∼ 1950 AD and peaking during either the 1970s or 1990s. Trace metal concentrations from these lakes are comparable to some of the most polluted lakes in North America and Europe. There appears to be little diagenetic alteration of the trace metal record at either lake, the exception being arsenic (As) accumulation at Laguna Pirhuacocha. There, a correlation between As and the redox-sensitive element manganese (Mn) suggests that the sedimentary As burden is undergoing diagenetic migration towards the sediment-water interface. This mobility has contributed to surface sediment As concentrations in excess of 1100 μg g -1 . The results presented here chronicle a rapidly changing Andean environment, and highlight a need for future research in the rate and magnitude of atmospheric metal pollution

  13. Biological recovery of metals, sulfur and water in the mining and metallurgical industry

    NARCIS (Netherlands)

    Weijma, J.; Copini, C.F.M.; Buisman, C.J.N.; Schultz, C.E.

    2002-01-01

    Metals of particular interest in acid mine drainage and industrial wastewaters include copper, zinc, cadmium, arsenic, manganese, aluminum, lead, nickel, silver, mercury, chromium, uranium and iron, in a concentration that can range from 106 to 102 g/l. The composition of such wastewater reflects

  14. Process of technology management in SMEs of the metal processing industry – the case study investigation

    Directory of Open Access Journals (Sweden)

    Krawczyk-Dembicka Elżbieta

    2017-03-01

    Full Text Available The main purpose of this work is to identify the factors that influence the process of technology management in the sector of small- and medium-sized enterprises of the metal processing industry, considering the shape and course required to achieve modern operation conditions by enterprises in the market.

  15. Chemical speciation of trace metals in the industrial sludge of Dhaka City, Bangladesh.

    Science.gov (United States)

    Islam, Md Saiful; Al-Mamun, Md Habibullah; Feng, Ye; Tokumura, Masahiro; Masunaga, Shigeki

    2017-07-01

    The objective of this study was to assess total concentration and chemical fractionation of trace metals in the industrial wastewater and sludge collected from seven different types of industries in Dhaka City, Bangladesh. The sludge from industries is either dumped on landfills or reused as secondary resources in order to preserve natural resources. Metals were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The ranges of Cr, Ni, Cu, As, Cd, and Pb in the sludges were 1.4-9,470, 4.8-994, 12.8-444, 2.2-224, 1.9-46.0 and 1.3-87.0 mg/kg, respectively. As a whole, the average concentrations of trace metals in samples were in the decreasing order of Cr > Ni > Cu > As > Pb > Cd. The results of the Community Bureau of Reference (BCR) sequential extraction showed that the studied metals were predominantly associated with the residual fraction followed by the oxidizable fraction. The study revealed that the mobile fractions of trace metals are poorly predictable from the total content, and bioavailability of all fractions of elements tends to decrease.

  16. [Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park].

    Science.gov (United States)

    Li, Jiong-Hui; Weng, Shan; Fang, Jing; Huang, Jia-Lei; Lu, Fang-Hua; Lu, Yu-Hao; Zhang, Hong-Ming

    2014-04-01

    The pollution status and potential ecological risks of heavy metal in soils around Haining electroplating industrial park were studied. Hakanson index approach was used to assess the ecological hazards of heavy metals in soils. Results showed that average concentrations of six heavy metals (Cu, Ni, Pb, Zn, Cd and Cr) in the soils were lower than the secondary criteria of environmental quality standard for soils, indicating limited harmful effects on the plants and the environment in general. Though the average soil concentrations were low, heavy metal concentrations in six sampling points located at the side of road still exceeded the criteria, with excessive rate of 13%. Statistic analysis showed that concentrations of Cu and Cd in roadside soils were significantly higher than those in non-roadside soils, indicating that the excessive heavy metal accumulations in the soil closely related with traffic transport. The average potential ecological hazard index of soils around Haining electroplating industrial park was 46.6, suggesting a slightly ecological harm. However, the potential ecological hazard index of soils with excessive heavy metals was 220-278, suggesting the medium ecological hazards. Cd was the most seriously ecological hazard factor.

  17. Metals interaction tested in children’s hair originating from industrial and rural areas

    Directory of Open Access Journals (Sweden)

    Jerzy Kwapulinski

    2014-09-01

    Full Text Available Introduction. Different biological samples (blood, gallstone, teeth, hair serve as a biomarker of exposure to metals for many years. This method appeared to be useful not only in clinical medicine, but also in the studies on the environment. Aim. The study is to compare the amount of selected metals in children’s hair residing in industrial and rural areas. Material and methods. Research of occurrence of 12 metals in children’s hair at the age of 7, 10 and 14 living in an industrial (Nowy Bytom town and a rural (Strumień town areas has been presented. Determination of Pb, Cd, Ni, Co Na, K, Mg, Zn, Cu, Mn, Fe and Ca was carried out by atomic absorption spectrophotometry (AAS using a spectrometer PerkinElmer 400. Results. In the case of seven-year old children, regardless of gender a common mechanism of co-occurrence was noticed for manganese and calcium, manganese and magnesium, calcium and magnesium, sodium and potassium. Apart from the correlation of metals for the seven-year-old-children mentioned, in case of ten-year old children, an additional correlation between calcium and zinc appears. Conclusion: The amount of some metals in the hair with the diversified possibility of interaction between the metals themselves and their relation to gender and age of children revealed different environmental exposure.

  18. GROWTH STRATEGIES OF MULTINATIONAL COMPANIES STUDY CASE: PRECIOUS METALS JEWELRY RETAIL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Raluca Daniela RIZEA

    2015-04-01

    Full Text Available The turbulent start of the new century has brought new challenges for firms, industries and countries. This paper investigates business and growth strategies of multinational companies within the precious metals jewelry retail industry. The main objective is to identify whether a company’s performance is determined by its growth strategy or not. The purposes for the research are: to understand what kind of business models and strategies global precious metals jewelry retailers pursue, what growth strategies global jewelry retailers pursue and if there is a link between a company’s growth strategy and its profitability. Least but not last, the findings are reviewed on their transferability to other industries. The findings regarding the business models and growth strategies pursued are that all of them are based on Porter’s generic strategies as well as internationalization and diversification but there is no specific preference given to any of the strategic elements.

  19. Reuse of nuclear byproducts, NaF and HF in metal glass industries

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.W.; Lee, H.W. [Korea Power Engineering Co., Inc., Kyunggi-do (Korea, Republic of); Yoo, S.H.; Moon, H.S.; Cho, N.C. [Korea Nuclear Fuel Co., Ltd., Daejon (Korea, Republic of)

    1997-02-01

    A study has been performed to evaluate the radiological safety and feasibility associated with reuse of NaF(Sodium Fluoride) and HF(Hydrofluoric Acid) which are generated as byproducts from the nuclear fuel fabrication process. The investigation of oversea`s experience reveals that the byproduct materials are most often used in the metal and glass industries. For the radiological safety evaluation, the uranium radioactivities in the byproduct materials were examined and shown to be less than radioactivities in natural materials. The radiation doses to plant personnel and the general public were assessed to be very small and could be ignored. The Korea nuclear regulatory body permits the reuse of NaF in the metal industry on the basis of associated radioactivity being {open_quote}below regulatory concern{close_quote}. HF is now under review for reuse acceptability in the steel and glass industries.

  20. Seamount mineral deposits: A source of rare metals for high technology industries

    Science.gov (United States)

    Hein, James R.; Conrad, Tracey A.; Staudigel, Hubert

    2010-01-01

    The near exponential growth in Earth’s population and the global economy puts increasing constraints on our planet’s finite supply of natural metal resources, and, consequently, there is an increasing need for new sources to supply high-tech industries. To date, effectively all of our raw-metal resources are produced at land-based sites. Except for nearshore placer deposits, the marine environment has been largely excluded from metal mining due to technological difficulties, even though it covers more than 70% of the planet. The case can be made that deep-water seabed mining is inevitable in the future, owing to the critical and strategic metal needs for human society. In this paper, we evaluate the case that seamounts offer significant potential for mining.

  1. Heavy metal contamination in the vicinity of an industrial area near Bucharest.

    Science.gov (United States)

    Velea, Teodor; Gherghe, Liliana; Predica, Vasile; Krebs, Rolf

    2009-08-01

    Heavy metals such as lead are well known to cause harmful health effects. Especially children are particularly susceptible to increased levels of lead in their blood. It is also a fact that lead concentration is increasing in the environment due to increased anthropogenic activity. The risk of heavy metal contamination is pronounced in the environment adjacent to large industrial complexes. In a combined case study, the environmental pollution by heavy metals was related to children's health in the vicinity of an industrial area located 4 km south-east from Bucharest about 2 km east from the nearest town-Pantelimon. This site includes companies processing different, nonferrous solid wastes for recovery of heavy metals and producing different nonferrous alloys and lead batteries. In this paper, mainly the results of environmental sampling and analyses are summarized. Water, soil, and atmospheric deposition samples were collected from different locations within 3 km from the industrial area. For comparison, samples were also taken from Bucharest. Water samples were filtered (open collecting pots were used on nine different sites between August and November 2006. At most sampling locations, the heavy metal concentrations in soil decrease with increasing distance to the presumably major source of pollution. Highest heavy metal concentrations were found in 10-20 cm soil depths. There were also decreasing heavy metal concentrations for atmospheric deposition with increasing distance to the industrial site. In surface and groundwater samples, traces of zinc, copper and lead were detected. The heavy metal concentrations in soil were increased in the study area, mostly under legal action limits in low-concern areas (e.g., 1,000 mg Pb/kg dry soil), but often above action limits for high-concern areas (100 mg Pb/kg dry soil) such as populated areas. The soluble lead concentrations in water samples indicate a need for monitoring and assessing water quality in more detail. The

  2. Heavy Metal In Food Ingredients In Oil Refi nery Industrial Area, Dumai

    Directory of Open Access Journals (Sweden)

    Dian Sundari

    2016-06-01

    Full Text Available Background: Industrial waste generally contains a lot of heavy metals such as Plumbum (Pb, Arsenic (As, Cadmium(Cd and Mercury (Hg, which can contaminate the surrounding environment and cause health problems. Bioaccumulation ofheavy metals from the environment can occur in foodstuffs. The study aims to determine levels of heavy metals Pb, Cd, Asand Hg in foodstuffs in the oil refi nery industry. Methods: The analytical method used Atomic Absorption Spectrophotometer(AAS. Samples were taken from two locations, namely: the exposed area and non exposed area. The sample consisted ofcassava, papaya leaves, fern leaves, cassava leaves, guava, papaya and catfi sh. Results: The analysis showed levels ofmetals As in all samples at exposed locations is below the maximum limit of SNI, the location is not exposed only in catfi shlevels of As (2.042 mg/kg exceeds the SNI. Cd levels of both locations are not detected. Pb levels in catfi sh in exposedlocations (1,109 mg/kg exceeds the SNI. Hg levels in leaves of papaya, cassava leaves, fern leaves, cassava and fruitpapaya exceed SNI. Conclusion: There has been a heavy metal contamination in foodstuffs. Recommendation: Thelocal people are advised to be careful when consuming food stuffs from oil refi nery industrial area.

  3. Noise-induced hearing loss in small-scale metal industry in Nepal.

    Science.gov (United States)

    Whittaker, J D; Robinson, T; Acharya, A; Singh, D; Smith, M

    2014-10-01

    There has been no previous research to demonstrate the risk of noise-induced hearing loss in industry in Nepal. Limited research on occupational noise-induced hearing loss has been conducted within small-scale industry worldwide, despite it being a substantial and growing cause of deafness in the developing world. The study involved a cross-sectional audiometric assessment, with questionnaire-based examinations of noise and occupational history, and workplace noise level assessment. A total of 115 metal workers and 123 hotel workers (control subjects) were recruited. Noise-induced hearing loss prevalence was 30.4 per cent in metal workers and 4.1 per cent in hotel workers, with a significant odds ratio of 10.3. Except for age and time in occupation, none of the demographic factors were significant in predicting outcomes in regression analyses. When adjusted for this finding, and previous noise-exposed occupations, the odds ratio was 13.8. Workplace noise was significantly different between the groups, ranging from 65.3 to 84.7 dBA in metal worker sites, and from 51.4 to 68.6 dBA in the control sites. Metal workers appear to have a greater risk of noise-induced hearing loss than controls. Additional research on occupational noise-induced hearing loss in Nepal and small-scale industry globally is needed.

  4. Metal mining to the aid of the oil sands? Lateral opportunities in industrial cross-breeding

    Energy Technology Data Exchange (ETDEWEB)

    Sabag, S.F. [Dumont Nickel Inc., Toronto, ON (Canada)

    2009-07-01

    This paper demonstrated how oil sands operations can benefit from supporting innovative low cost metal mining to enhance their eco-footprint. Northeast Alberta contains large accumulations of recoverable metals, hosted in metal bearing black shales. Immense low grade polymetallic zones were discovered in 1995 but could not be exploited with existing recovery technologies. However, significant advances in bioleaching of metals from polymetallic black shale deposits have propelled this new deposit type to the forefront over the past 5 years as a long term future source of metals. Compared to traditional smelting and refining, bioleaching has lower Capex/Opex, lower eco-footprint and less energy dependence. Envisaged metal mining in the black shales of northeast Alberta can benefit oil sands operations by consuming large amounts of waste sulfur while also providing collateral opportunities for carbon sinks/offsets. Black shales have the capacity to sequester carbon dioxide (CO{sub 2}). Dumont Nickel Inc. is advancing 6 polymetallic black shale projects in northeast Alberta over 2,500 km{sup 2} with potential for hosting up to 20 billion tons in six 50-100 km{sup 2} deposits. The projects present opportunities to develop low footprint metal mines, to use run-of-river hydro, to harvest waste heat, and to combine local technologies to create a new valuable industry independent of energy markets.

  5. Recovery of uranium and accompanying metals from various types of industrial wastes

    International Nuclear Information System (INIS)

    Chajduk, E.; Danko, B.; Gajda, D.; Zakrzewska, G.; Harasimowicz, M.; Bieluszka, P.

    2014-01-01

    On January 28"t"h 2014 the Program of Polish Nuclear Energy was signed by Polish Government. According to this program Poland has to secure a constant supply of uranium for Polish NPPs in the future. Uranium in Poland occurs in Vistula Spit area in sandstone rocks and Podlasie Depression area in black dictyonema shales, which are low grade ores. Scarce uranium resources stimulate interest in its recovery from secondary resources as potential raw materials. Industrial wastes and by-products were considered as a source of uranium in this studies. Apart from uranium other valuable metals (e.g. vanadium, molybdenum or lanthanides) were recovered to improve the economy of the process. Three types of industrial wastes were examined: flotation tailings from the copper industry, phosphoric acid from the fertilizer industry and fracturing fluid from shale gas exploitation. Metals from flotation tailings were separated in two steps: 1) acidic leaching of the flotation waste using sulfuric acid solution and 2) separation of metals by ion-exchange chromatography. All the liquid samples were analyzed by ICP-MS method to determine the separation efficiency of the process. Uranium was recovered from phosphoric acid by high-pressure membrane filtration or by extraction/stripping integrated processes applying membrane modules Liquid-Cel® Extra-Flow (Celgard). Aqueous solutions after hydraulic fracturing are very diverse in terms of chemical composition, depending on borehole and fracturing technology applied. The content of various substances in backflow fluid depends on mechanical behavior and chemical composition of shale. Organic matter content in this type of waste did not exceed 1% usually, but the salinity is high. Initially, organic pollutants were removed and next the fluid was purified by combined various ion-exchangers. Individual metals were selectively eluted from ion-exchanger by combination of different eluents. The content of metals in samples was analyzed by ICP

  6. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Directory of Open Access Journals (Sweden)

    Yang Guan

    2014-07-01

    Full Text Available Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1 Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2 The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3 The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4 The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies.

  7. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Science.gov (United States)

    Guan, Yang; Shao, Chaofeng; Ju, Meiting

    2014-01-01

    Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies. PMID:25032743

  8. Maintaining and increasing the contribution made to South Africa by the minerals and metals industry

    International Nuclear Information System (INIS)

    Jochens, P.R.

    1985-01-01

    This review article first highligts the past performance of the industry and discusses the manner in which the development of the industry has followed a logical progression from mining to the production of mineral and metal products of specification purity. Then the numerous constraints against a greater contribution by the industry are enumerated. Attention is drawn to the extent of further processing that can be undertaken in the context of mining and metallurgical processing, not only to indicate the benefits that can be derived from the added-value conferred on a mineral or metal commodity during each stage of its further processing, but also to point out some important corollaries of further processing. The many opportunities and challenges for an increased contribution by the minerals and metals industry are then reviewed. This major section includes a list of commodities for which increased penetration of export markets could be sought because the increasing resistance level (a term developed in this paper) has not been attained: a list of commodities that are imported at present, many of which could be produced locally on the basis of identified resources and expertise; a list of commodities for which additional uses should be developed so that South Africa, which possesses the largest reserves and is the largest exporter, can increase its production rate; and examples of commodities for which further processing is still at an early stage

  9. The use of sugar and alcohol industry waste in the adsorption of potentially toxic metals.

    Science.gov (United States)

    Santos, Oseas Silva; Mendonça, André Gustavo Ribeiro; Santos, Josué Carinhanha Caldas; Silva, Amanda Paulina Bezerra; Costa, Silvanio Silverio Lopes; Oliveira, Luciana Camargo; Carmo, Janaina Braga; Botero, Wander Gustavo

    2016-01-01

    One of the waste products of the industrial process of the sugar and alcohol agribusiness is filter cake (FC). This waste product has high levels of organic matter, mainly proteins and lipids, and is rich in calcium, nitrogen, potassium and phosphorous. In this work we characterized samples of FC from sugar and alcohol industries located in sugarcane-producing regions in Brazil and assessed the adsorption of potentially toxic metals (Cu(II), Cd(II), Pb(II), Ni(II) and Cr(III)) by this waste in mono- and multi-elemental systems, seeking to use FC as an adsorbent in contaminated environments. The characterization of FCs showed significant differences between the samples and the adsorption studies showed retention of over 90% of potentially toxic metals. In a competitive environment (multi-metallic solution), the FC was effective in adsorbing all metals except lead, but less effective compared to the mono-metallic solution. These results show the potential for use of this residue as an adsorbent in contaminated environments.

  10. Environmental and Body Concentrations of Heavy Metals at Sites Near and Distant from Industrial Complexes in Ulsan, Korea.

    Science.gov (United States)

    Sung, Joo Hyun; Oh, Inbo; Kim, Ahra; Lee, Jiho; Sim, Chang Sun; Yoo, Cheolin; Park, Sang Jin; Kim, Geun Bae; Kim, Yangho

    2018-01-29

    Industrial pollution may affect the heavy metal body burden of people living near industrial complexes. We determined the average concentrations of atmospheric heavy metals in areas close to and distant from industrial complexes in Korea, and the body concentrations of these heavy metals in residents living near and distant from these facilities. The atmospheric data of heavy metals (lead and cadmium) were from the Regional Air Monitoring Network in Ulsan. We recruited 1,148 participants, 872 who lived near an industrial complex ("exposed" group) and 276 who lived distant from industrial complexes ("non-exposed" group), and measured their concentrations of blood lead, urinary cadmium, and urinary total mercury. The results showed that atmospheric and human concentrations of heavy metals were higher in areas near industrial complexes. In addition, residents living near industrial complexes had higher individual and combined concentrations (cadmium + lead + mercury) of heavy metals. We conclude that residents living near industrial complexes are exposed to high concentrations of heavy metals, and should be carefully monitored. © 2018 The Korean Academy of Medical Sciences.

  11. Heavy-metal contamination of agricultural soils irrigated with industrial effluents

    International Nuclear Information System (INIS)

    Nabi, G.; Ashraf, M.; Aslam, M. R.

    2001-01-01

    Pakistan is facing a thread of degradation of water and land-resources by industrial effluents. To evaluated the suitability of these effluents as a source of irrigation for agriculture and the study their effects on soil chemical properties, experiments were conducted in the industrial area of Sheikhupura, where effluent from Paper and Board Mill (PBM), Leather Industry (LI) and Fertilizer Industry (FI) were being used for irrigation. At each site, two fields were selected, one irrigated with industrial effluents and the other with tube-well/canal water. The soil samples were collected and analyzed for pH, ECe, SAR and for heavy metals, such as Cu, Cd, Cr, Zn, Pb, Mn, Fe, Al and Ni. Soil receiving effluent from LI showed higher ECe and SAR values, as compared to the soils receiving other effluents. The concentration of Al was high in the soil irrigated with LI effluent. The Mn and Fe contents were higher in soils irrigated with PBM effluent. Effluent from LI is not fit for irrigation, since its recipient soil showed high concentration of Cr and also high sodicity values. Except Cr, the heavy metals were not of environmental concern. (author)

  12. Development of fluoric compound treatment system in conversion for recycle in metal industry

    International Nuclear Information System (INIS)

    Kim, P.O.; Cho, N.C.

    1998-01-01

    Korea Nuclear Fuel Company (KNFC) has been operating AUC conversion process from UF 6 to UO 2 from 1990. In 1997, KNFC constructed another conversion line called dry conversion to meet the increasing demand for nuclear fuel fabrication. In the dry conversion, two kinds of hydrofluoric acid (HF) are produced as a by-product. The first one is 50% concentration HF and the other one is diluted HF ranging from 10% to 49%. The high concentration HF can be used in metal industry, but there is no use for diluted one. The diluted HF should be disposed of as liquid waste after some treatment. To solve this problem we have developed the process to convert the diluted hydrofluoric acid to the sodium fluoride, which is readily used in the metal industry. By developing the process we could make a contribution to the environment as well as cost reduction in manufacturing nuclear fuel. (author)

  13. Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals

    Science.gov (United States)

    Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.

    2017-02-01

    The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.

  14. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.

    Science.gov (United States)

    Bobbitt, N Scott; Mendonca, Matthew L; Howarth, Ashlee J; Islamoglu, Timur; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q

    2017-06-06

    Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent experimental and computational work pertaining to the capture of several industrially-relevant toxic chemicals, including NH 3 , SO 2 , NO 2 , H 2 S, and some volatile organic compounds, with particular emphasis on the challenging issue of designing materials that selectively adsorb these chemicals in the presence of water. We also examine recent research on the capture and catalytic degradation of chemical warfare agents such as sarin and sulfur mustard using metal-organic frameworks.

  15. The Minimization of Organic and Metallic Industrial Waste Via LEMNA MINOR Concentration

    Science.gov (United States)

    1992-12-30

    from municipal and industrial waste waters. Duckweed is a floating, widespread and fast-growing plant. It is smal, 3asy to cultivate and highly sensitive...and Cairns, J. Jr., "Accumulation and Depuration of Metals by Duckweed (Lemna perpusilla)," Ecotoxicology and Environmental Safety, 5, 87-96, 1981...to separate substances of different densities. calla: a plant of the arum family, native to South Africa, but cultivated in the United States, and

  16. Monitoring of hazardous metals in ruderal vegetation as evidence of industrial and anthropogenic emissions

    International Nuclear Information System (INIS)

    Jurani, M.; Chmielewska, E.; Husekova, Z.; Ursinyova, M.

    2010-01-01

    The major share of environmental pollution in Bratislava loaded area is the petrochemical industry, energy and transport. Aggregated emissions of pollutants according to published data are currently declining. The aim of our research is monitoring of heavy metals (Zn, Cu, Cr, As, Pb, Cd, Ni) in selected species of ruderal vegetation (family Asteraceae and Salicaceae) in the adjacent southeast area of Bratislava (air side of Slovnaft).

  17. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment.

    Science.gov (United States)

    Yang, Qianqi; Li, Zhiyuan; Lu, Xiaoning; Duan, Qiannan; Huang, Lei; Bi, Jun

    2018-06-14

    Soil heavy metal pollution has been becoming serious and widespread in China. To date, there are few studies assessing the nationwide soil heavy metal pollution induced by industrial and agricultural activities in China. This review obtained heavy metal concentrations in soils of 402 industrial sites and 1041 agricultural sites in China throughout the document retrieval. Based on the database, this review assessed soil heavy metal concentration and estimated the ecological and health risks on a national scale. The results revealed that heavy metal pollution and associated risks posed by cadmium (Cd), lead (Pb) and arsenic (As) are more serious. Besides, heavy metal pollution and associated risks in industrial regions are severer than those in agricultural regions, meanwhile, those in southeast China are severer than those in northwest China. It is worth noting that children are more likely to be affected by heavy metal pollution than adults. Based on the assessment results, Cd, Pb and As are determined as the priority control heavy metals; mining areas are the priority control areas compared to other areas in industrial regions; food crop plantations are the priority control areas in agricultural regions; and children are determined as the priority protection population group. This paper provides a comprehensive ecological and health risk assessment on the heavy metals in soils in Chinese industrial and agricultural regions and thus provides insights for the policymakers regarding exposure reduction and management. Copyright © 2018. Published by Elsevier B.V.

  18. Prevention of hand eczema in the metal-working industry: risk awareness and behaviour of metal worker apprentices.

    Science.gov (United States)

    Itschner, L; Hinnen, U; Elsner, P

    1996-01-01

    In the metal-working industry, occupational hand eczema is very common and often due to contact with cutting fluids. Since it can be avoided by adequate protective measures, prevention plays an important role. However, the effectiveness of prevention depends heavily on the employees' awareness of this health risk. The study aimed to collect information on the attitude of metal worker apprentices towards the risk of occupational skin disorders and skin protection since it is believed that their attitude at the beginning of the education will guide their future risk behaviour. By means of a questionnaire, 79 metal worker apprentices were interviewed about their awareness of dermal risk factors and their risk behaviour at work. The apprentices are very badly informed about skin diseases and skin care. Most of them are not concerned about developing occupational skin problems, and they declared having obtained very little information about this subject. Considering this finding, it seems urgent to intensify health and safety education already at the beginning of the apprenticeship.

  19. No contaminant methods for the bio films formation control on metallic surfaces of industrial interest

    International Nuclear Information System (INIS)

    Gomez de Saravia, S. G.; Guiamet, P. S.

    2003-01-01

    The aim of this paper was the control of aerobic and anaerobic bacterial biofilms formation on metal surfaces of industrial interest such as stainless steel and mild steel. A natural biocida obtained of an aqueous extract of seeds of black mustard (Brassica nigra) and mixtures of immunoglobulins IgA, IgG, and IgM were used. Microscopic techniques like scanning electron microscopy (SEM) and epifluorescens microscopy were used for observing bacterial adhesion of the metal surfaces. A marked inhibition of bacterial adherence was observed when an immunoglobulin film was formed on the metal surface. When the natural biocide was used, an important decrease in the number of microorganisms in the biofilms was observed. (Author) 8 refs

  20. Appraisal of venomous metals in selected crops and vegetables from industrial areas of the Punjab Province

    International Nuclear Information System (INIS)

    Husaini, S.N.; Matiullah; Arif, M.

    2011-01-01

    Due to the inadequate water sources, usually sewerage water and industrial effluents are being use for irrigation of the agricultural land around the industrial areas in Pakistan wherein crops and vegetables are cultivated. As untreated effluents contain heavy elements, toxic metals and organic pollutants that may find its way through food chain to general public and may cause health hazards. It is, therefore, mandatory to assess the toxic metals in such crops and vegetables. In this regard, samples of corn, millet, cabbage, spinach and potato were collected within the vicinity of industrial areas of the Faisalabad and Gujranwala regions. The food samples were analyzed using neutron activation analysis (NAA) technique. The highest concentration values of Arsenic (1.9 ± 0.1 μg/g) and Cobalt (0.85 ± 0.01 μg/g) were found in cabbage whereas Manganese (91.6 ± 0.2 μg/g), Antimony (0.15 ± 0.03 μg/g) and Selenium (1.1 ± 0.1 μg/g) were observed in spinach and Chromium (9.63 ± 1.3 μg/g) was found in millet crop. The observed concentrations of all the toxic and heavy metals in crops and vegetables are higher than those reported in the literature. (author)

  1. Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: metal surface treatment industry.

    Science.gov (United States)

    Gartiser, Stefan; Hafner, Christoph; Hercher, Christoph; Kronenberger-Schäfer, Kerstin; Paschke, Albrecht

    2010-06-01

    Toxicity testing has become a suitable tool for wastewater evaluation included in several reference documents on best available techniques of the Integrated Pollution Prevention and Control (IPPC) Directive. The IPPC Directive requires that for direct dischargers as well as for indirect dischargers, the same best available techniques should be applied. Within the study, the whole effluent assessment approach of OSPAR has been applied for determining persistent toxicity of indirectly discharged wastewater from the metal surface treatment industry. Twenty wastewater samples from the printed circuit board and electroplating industries which indirectly discharged their wastewater to municipal wastewater treatment plants (WWTP) have been considered in the study. In all factories, the wastewater partial flows were separated in collecting tanks and physicochemically treated in-house. For assessing the behaviour of the wastewater samples in WWTPs, all samples were biologically pretreated for 7 days in the Zahn-Wellens test before ecotoxicity testing. Thus, persistent toxicity could be discriminated from non-persistent toxicity caused, e.g. by ammonium or readily biodegradable compounds. The fish egg test with Danio rerio, the Daphnia magna acute toxicity test, the algae test with Desmodesmus subspicatus, the Vibrio fischeri assay and the plant growth test with Lemna minor have been applied. All tests have been carried out according to well-established DIN or ISO standards and the lowest ineffective dilution (LID) concept. Additionally, genotoxicity was tested in the umu assay. The potential bioaccumulating substances (PBS) were determined by solid-phase micro-extraction and referred to the reference compound 2,3-dimethylnaphthalene. The chemical oxygen demand (COD) and total organic carbon (TOC) values of the effluents were in the range of 30-2,850 mg L(-1) (COD) and 2-614 mg L(-1) (TOC). With respect to the metal concentrations, all samples were not heavily polluted. The

  2. East Calcutta wetlands as a sink of industrial heavy metals. A PIXE study

    International Nuclear Information System (INIS)

    Chatterjee, S.; Chattopadhyay, B.; Mukhopadhyay, S.K.; Mohanta, B.; Sudarshan, M.; Chakraborty, A.

    2007-01-01

    Industrial wastes are considered as critical factors for disturbing natural ecosystems. The East Calcutta Wetlands, a Ramsar site in West Bengal, India, receives composite industrial effluents, subsequently bringing various kinds of heavy metals throughout the year. This wastewater is being utilized by the local people for pisciculture. The present investigation was carried out to study 1) elemental distribution various components of the wetland and 2) potentiality of water hyacinth in metal amelioration. Water and sediments were collected from four different spots along a wastewater-carrying canal having a stretch of 40 km from the source point to the final confluence with river and from the wastewater fed fishpond. Fish (three common carps viz. Labeo rohita, Cirrhinus mrigala and Oreochromis niloticus) and water hyacinth were collected from fishpond mentioned above. Samples were analyzed by PIXE with 3 MeV tandem Pelletron. Cr, which is a known metal contaminant of tannery effluent, was detected along with S, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, As, Br, Rb, Sr, Zr. Variable concentrations of some elements like Ca, Fe, Zn in different fish organs was noted in the experiment. Accumulation of Cr, Cu from the water bodies by water hyacinth suggesting their crucial role in heavy metal amelioration. (author)

  3. Soil metal concentrations and toxicity: Associations with distances to industrial facilities and implications for human health

    International Nuclear Information System (INIS)

    Aelion, C. Marjorie; Davis, Harley T.; McDermott, Suzanne; Lawson, Andrew B.

    2009-01-01

    Urban and rural areas may have different levels of environmental contamination and different potential sources of exposure. Many metals, i.e., arsenic (As), lead (Pb), and mercury (Hg), have well-documented negative neurological effects, and the developing fetus and young children are particularly at risk. Using a database of mother and child pairs, three areas were identified: a rural area with no increased prevalence of mental retardation and developmental delay (MR/DD) (Area A), and a rural area (Area B) and an urban area (Area C) with significantly higher prevalence of MR/DD in children as compared to the state-wide average. Areas were mapped and surface soil samples were collected from nodes of a uniform grid. Samples were analyzed for As, barium (Ba), beryllium (Be), chromium (Cr), copper (Cu), Pb, manganese (Mn), nickel (Ni), and Hg concentrations and for soil toxicity, and correlated to identify potential common sources. ArcGIS was used to determine distances between sample locations and industrial facilities, which were correlated with both metal concentrations and soil toxicity. Results indicated that all metal concentrations (except Be and Hg) in Area C were significantly greater than those in Areas A and B (p ≤ 0.0001) and that Area C had fewer correlations between metals suggesting more varied sources of metals than in rural areas. Area C also had a large number of facilities whose distances were significantly correlated with metals, particularly Cr (maximum r = 0.33; p = 0.0002), and with soil toxicity (maximum r = 0.25; p = 0.007) over a large spatial scale. Arsenic was not associated with distance to any facility and may have a different anthropogenic, or natural source. In contrast to Area C, both rural areas had lower concentrations of metals, lower soil toxicity, and a small number of facilities with significant associations between distance and soil metals

  4. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water

    Directory of Open Access Journals (Sweden)

    Michael B. Ellison

    2014-05-01

    Full Text Available The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation of metals. The experiments used Ash Dam water from Tarong power station in Queensland, which is contaminated by multiple metals (Al, Cd, Ni and Zn and metalloids (As and Se in excess of Australian water quality guidelines. All species had consistent growth rates in Ash Dam water, despite significant differences in their growth rates in “clean” water. A species isolated from the Ash Dam water itself was not better suited to the bioremediation of that waste water. While there were differences in the temporal pattern of the bioconcentration of metals by the three species, over the course of the experiment, all three species bioconcentrated the same elements preferentially and to a similar extent. All species bioconcentrated metals (Cu, Mn, Ni, Cd and Zn more rapidly than metalloids (As, Mo and Se. Therefore, bioremediation in situ will be most rapid and complete for metals. Overall, all three species of freshwater macroalgae had the ability to grow in waste water and bioconcentrate elements, with a consistent affinity for the key metals that are regulated by Australian and international water quality guidelines. Together, these characteristics make Oedogonium a clear target for scaled bioremediation programs across a range of geographic regions.

  5. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water.

    Science.gov (United States)

    Ellison, Michael B; de Nys, Rocky; Paul, Nicholas A; Roberts, David A

    2014-01-01

    The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation of metals. The experiments used Ash Dam water from Tarong power station in Queensland, which is contaminated by multiple metals (Al, Cd, Ni and Zn) and metalloids (As and Se) in excess of Australian water quality guidelines. All species had consistent growth rates in Ash Dam water, despite significant differences in their growth rates in "clean" water. A species isolated from the Ash Dam water itself was not better suited to the bioremediation of that waste water. While there were differences in the temporal pattern of the bioconcentration of metals by the three species, over the course of the experiment, all three species bioconcentrated the same elements preferentially and to a similar extent. All species bioconcentrated metals (Cu, Mn, Ni, Cd and Zn) more rapidly than metalloids (As, Mo and Se). Therefore, bioremediation in situ will be most rapid and complete for metals. Overall, all three species of freshwater macroalgae had the ability to grow in waste water and bioconcentrate elements, with a consistent affinity for the key metals that are regulated by Australian and international water quality guidelines. Together, these characteristics make Oedogonium a clear target for scaled bioremediation programs across a range of geographic regions.

  6. Distribution to heavy metals in sediments of the Venice Lagoon: The role of the industrial area

    International Nuclear Information System (INIS)

    Frignani, M.; Bellucci, L.G.; Ravanelli, M.; Paolucci, D.

    1999-01-01

    The Venice Lagoon has been heavily polluted both from diffuse and direct sources. It has been recently established that the atmospheric delivery of contaminants to the lagoon can be very significant in zones far from direct sources, but the influence of the industrial area of Porto Marghera, though widely recognized, has not been entirely described and quantified. In order to assess the temporal and spatial variability of metal pollution, and to better understand the contribution of the industrial channels as sources of contaminants, in May 1996 we sampled 18 stations in the lagoon and 9 in the channels of the industrial area of Porto Marghera. At each site a short core, 10 cm long, was taken and immediately extruded to obtain 4 slices 2-2.5 cm thick. Sediment samples have been analysed for As, Cd, Pb, and Zn after acid extraction

  7. Wear Behavior of Aluminium Metal Matrix Composite Prepared from Industrial Waste

    Directory of Open Access Journals (Sweden)

    L. Francis Xavier

    2016-01-01

    Full Text Available With an increase in the population and industrialization, a lot of valuable natural resources are depleted to prepare and manufacture products. However industrialization on the other hand has waste disposal issues, causing dust and environmental pollution. In this work, Aluminium Metal Matrix Composite is prepared by reinforcing 10 wt% and 20 wt% of wet grinder stone dust particles an industrial waste obtained during processing of quarry rocks which are available in nature. In the composite materials design wear is a very important criterion requiring consideration which ensures the materials reliability in applications where they come in contact with the environment and other surfaces. Dry sliding wear test was carried out using pin-on-disc apparatus on the prepared composites. The results reveal that increasing the reinforcement content from 10 wt% to 20 wt% increases the resistance to wear rate.

  8. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  9. Best practices in energy management: Experience with IAC assessments in the metals fabrication industry

    International Nuclear Information System (INIS)

    Clark, W.J.; Birkmire, L.K.

    1999-01-01

    The Industrial Technology and Energy Management (ITEM) division of the University City Science Center played a managerial role in founding and establishing the Energy Analysis and Diagnostic Center (EADC) program, now known as the Industrial Assessment Center (IAC) program. ITEM is responsible for the field management of 15 IACs in the western US. This DOE funded program utilizes teams of engineering faculty and students to conduct assessments of small to medium-size plants to identify cost savings by conserving energy, minimizing waste, and improving productivity. These assessments are provided at no direct cost to participating manufacturers, who are under no obligation to act on any recommendations. Centers managed by ITEM have conducted assessments in more than 700 plants in the metals fabrication industry (SIC 34). Recommendations made have the potential to reduce energy costs by about 10% on average. The average metals fabrication plant served achieved a 5.7% reduction in annual energy costs. These cost savings are accompanied by a reduction in energy usage of about 1.2 x 10 12 Btu/yr. Another benefit of the program is that it provides hands-on industrial experience and energy efficiency training for engineering students who will take these skills into industry. Since the program began more than 20 years ago, IACs have served less than 2% of the plants in this industry. To provide an effective means for plant managers to access and utilize the knowledge gained over the years ITEM has summarized recommendations that identify specific actions that plant management can take to save money

  10. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

    Science.gov (United States)

    Yıldırım, Gülşen; Tokalıoğlu, Şerife

    2016-02-01

    A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (dust samples on the mobility of the metals was investigated using the modified BCR procedure. The mobility sequence based on the sum of the first three phases (for grain size) was: Cd (71.3)>Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Removal of metals from industrial wastewater and urban runoff by mineral and bio-based sorbents.

    Science.gov (United States)

    Gogoi, Harshita; Leiviskä, Tiina; Heiderscheidt, Elisangela; Postila, Heini; Tanskanen, Juha

    2018-03-01

    The study was performed to evaluate chemically modified biosorbents, hydrochloric acid treated peat (HCl-P) and citric acid treated sawdust (Citric acid-SD) for their metal removal capacity from dilute industrial wastewater and urban runoff and compare their efficiency with that of commercially available mineral sorbents (AQM PalPower M10 and AQM PalPower T5M5 magnetite). Batch and column experiments were conducted using real water samples to assess the sorbents' metal sorption capacity. AQM PalPower M10 (consisting mainly of magnesium, iron and silicon oxides) exhibited excellent Zn removal from both industrial wastewater and spiked runoff water samples even at low dosages (0.1 g/L and 0.05 g/L, respectively). The high degree of Zn removal was associated with the release of hydroxyl ions from the sorbent and subsequent precipitation of zinc hydroxide. The biosorbents removed Ni and Cr better than AQM PalPower M10 from industrial wastewater and performed well in removing Cr and Cu from spiked runoff water, although at higher dosages (0.3-0.75 g/L). The main mechanism of sorption by biosorbents was ion exchange. The sorbents required a short contact time to reach equilibrium (15-30 min) in both tested water samples. AQM PalPower T5M5 magnetite was the worst performing sorbent, leaching Zn into both industrial and runoff water and Ni into runoff water. Column tests revealed that both HCl-P and AQM PalPower M10 were able to remove metals, although some leaching was witnessed, especially As from AQM PalPower M10. The low hydraulic conductivity observed for HCl-P may restrict the possibilities of using such small particle size peat material in a filter-type passive system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Occupational accidents and affecting factors of metal industry in a factory in Ankara

    Directory of Open Access Journals (Sweden)

    Buket Gulhan

    2012-08-01

    Full Text Available Abstract Objective:According to the statistics of the Social Security Institution, 18672 occupational accidents occurred in the metal industry in 2008 in Turkey. Whereas 78 of these accidents resulted in death, 252 people became permanently incapable of working. In 2008, 369677 working days were lost as a result of occupational accidents. Evaluating the reasons for and the results of accidents in the metal industry and contributing to the development of recommendations for prevention in accordance with the information obtained. Method: The study was conducted with 201 of 210 workers working in heavy metal manufacturing and construction in the building company between April 2008 and June 2008. Results: The frequency of occupational accidents among the metal workers was 22% between January 2007 and June 2008. The reasons for the workers’ accidents are listed as; insufficient use of personal protective equipment (44%, carelessness (37%, and personal reasons, not to be taken of security measures at machines and looms/ unsuitable machines (both 17%.Conclusion: The study demonstrates that the accidents mostly occur because of failure to use of personal protective equipment, insufficient vocational training. Key Words: Occupational, accident, metal industry, preventionAnkara’da bir metal sanayi fabrikasında iş kazaları ve etkileyen faktörler Özet Amaç: 2008 yılında Sosyal Güvenlik Kurumu’nun verilerine göre metal sanayisinde 18672 iş kazası meydana gelmiş ve 369677 işgünü kaybı olmuştur.  Bu kazalardan 78 tanesi ölümle sonuçlanırken, 252 kişi kalıcı olarak işgöremez hale gelmiştir. Metal sanayisinde meydana gelen kazaların sebep ve sonuçlarını inceleyerek, elde edilen bilgiler doğrultusunda kazaların önlenmesine yönelik tavsiyelerin geliştirilmesi amaçlanmıştır. Yöntem: Araştırma, Ankara’da faaliyet gösteren ağır metal imalat, konstrüksiyon ve inşaat sanayi şirketinde 2008 Nisan-2008 Haziran d

  13. Editorial input for the right price: tobacco industry support for a sheet metal indoor air quality manual.

    Science.gov (United States)

    Campbell, Richard; Balbach, Edith

    2013-01-01

    Following legal action in the 1990s, internal tobacco industry documents became public, allowing unprecedented insight into the industry's relationships with outside organizations. During the 1980s and 1990s, the National Energy Management Institute (NEMI), established by the Sheet Metal Workers International Association and the Sheet Metal and Air Conditioning Contractors' National Association, (SMACNA) received tobacco industry funding to establish an indoor air quality services program. But the arrangement also required NEMI to serve as an advocate for industry efforts to defeat indoor smoking bans by arguing that ventilation was a more appropriate solution to environmental tobacco smoke. Drawing on tobacco industry documents, this paper describes a striking example of the ethical compromises that accompanied NEMI's collaboration with the tobacco industry, highlighting the solicitation of tobacco industry financial support for a SMACNA indoor air quality manual in exchange for sanitizing references to the health impact of environmental tobacco smoke prior to publication.

  14. Influence of industrial heavy metal pollution on soil free-living nematode population

    International Nuclear Information System (INIS)

    Pen-Mouratov, Stanislav; Shukurov, Nosir; Steinberger, Yosef

    2008-01-01

    The effect of distance from a heavy metal pollution source on the soil nematode community (trophic structure, sex structure, and taxa composition) was investigated along a 15-km transect originating at the Almalyk Industrial Complex, Uzbekistan (pollution source). The soil nematode community was exposed to heavy metal influence both directly and through soil properties changes. Pollution effect on the density and biomass of soil free-living nematodes was found to be highest at pollution source, with fungivores and plant parasites dominating at the upper and deeper soil layers next to the pollution source. These groups decreased along the transect, yielding domination to bacteria- and fungi-feeders. The sex ratio of nematode communities was found to be dependent on heavy metal pollution levels, with the juveniles being the most sensitive nematode group. The Maturity and modified Maturity Indices, reflecting the degree of disturbance of the soil ecosystem, were found to be the most sensitive indices. - Trophic structure and sex ratio of soil nematode population are sensitive tools for monitoring industrial pollution

  15. Influence of industrial heavy metal pollution on soil free-living nematode population

    Energy Technology Data Exchange (ETDEWEB)

    Pen-Mouratov, Stanislav [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 (Israel); Shukurov, Nosir [Institute of Geology and Geophysics, Academy of Sciences, Tashkent 700041 (Uzbekistan); Steinberger, Yosef [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 (Israel)], E-mail: steinby@mail.biu.ac.il

    2008-03-15

    The effect of distance from a heavy metal pollution source on the soil nematode community (trophic structure, sex structure, and taxa composition) was investigated along a 15-km transect originating at the Almalyk Industrial Complex, Uzbekistan (pollution source). The soil nematode community was exposed to heavy metal influence both directly and through soil properties changes. Pollution effect on the density and biomass of soil free-living nematodes was found to be highest at pollution source, with fungivores and plant parasites dominating at the upper and deeper soil layers next to the pollution source. These groups decreased along the transect, yielding domination to bacteria- and fungi-feeders. The sex ratio of nematode communities was found to be dependent on heavy metal pollution levels, with the juveniles being the most sensitive nematode group. The Maturity and modified Maturity Indices, reflecting the degree of disturbance of the soil ecosystem, were found to be the most sensitive indices. - Trophic structure and sex ratio of soil nematode population are sensitive tools for monitoring industrial pollution.

  16. Valorization of mine rejects and industrial wastes for the recovery of some strategic and critical metals

    International Nuclear Information System (INIS)

    Sreenivas, T.; Dey, G K.; Anand Rao, K.

    2017-01-01

    Strategic and critical metals (SCM) resources form important components in safety and security design of any country. Uneven distribution of SCM resources as well as lack of technical expertise in manufacture of end-products makes many nations vulnerable to external pulls and pressures. India is making determined bid to surmount these difficulties by constantly upgrading its scientific and engineering expertise to address issues related to resources and materials manufacturing technologies. It is a well known fact that India is a resource starved country with respect to many of the strategic and critical metals (SCM). The demand for the SCM is met mostly by import of finished products and to a lesser extent by recycle of used products. In these days of growing inclination towards 'sustainable development' valorization of industrial waste for securing valuable metals including those of SCM category is worth pursuing, more so for a country like India. With this premise, we present in this paper representative case studies which depict technical feasibility of using industrial waste as a source for some important SCM, namely Nd, Y, Co and W. The wastes used for valorization are the mine tailings or rejects of different ores like copper, gold, uranium and fly ash generated from a coal-fired thermal power plant. (author)

  17. Contemplating the feasibility of vermiculate blended chitosan for heavy metal removal from simulated industrial wastewater

    Science.gov (United States)

    Prakash, N.; Soundarrajan, M.; Arungalai Vendan, S.; Sudha, P. N.; Renganathan, N. G.

    2017-12-01

    Wastewater contaminated by heavy metals pose great challenges as they are non biodegradable, toxic and carcinogenic to the soil and aquifers. Vermiculite blended with chitosan have been used to remove Cr(VI) and Cd(II) from the industrial wastewater. The results indicate that the vermiculite blended with chitosan adsorb Cr(VI) and Cd(II) from industrial waste water. Batch adsorption experiments were performed as a function of pH 5.0 and 5.5 respectively for chromium and cadmium. The adsorption rate was observed to be 72 and 71 % of chromium and cadmium respectively. The initial optimum contact time for Cr(VI) was 300 min with 59.2 % adsorption and 300 min for Cd(II) with 71.5 % adsorption. Whereas, at 4-6 there is saturation, increasing the solid to liquid ratio for chitosan biopolymers increases the number of active sites available for adsorption. The optimum pH required for maximum adsorption was found to be 5.0 and 5.5 for chromium and cadmium respectively. The experimental equilibrium adsorption data were fitted using Langmuir and Freundlich equations. It was observed that adsorption kinetics of both the metal ions on vermiculite blended chitosan is well be analyzed with pseudo-second-order model. The negative free energy change of adsorption indicates that the process was spontaneous and vermiculite blended chitosan was a favourable adsorbent for both the metals.

  18. Assessment of the toxicity level of an industrial eco-system for its hazardous metals

    International Nuclear Information System (INIS)

    Husaini, S.N.; Matiullah; Arif, M.

    2011-01-01

    Pakistan is an agricultural country, yet it is facing a serious threat due to the shortage of water resources and degradation of the agricultural land by the pollution of industrial effluents. A limited number of the current industries are equipped with proper operating treatment plants. Generally, the untreated effluents are disposed off to the open environment which is used for irrigation purposes. Therefore, vegetables and crops grown around the industrial areas is a major potential source of metal poisoning which pose a serious risk to the general public. Hence, study of the toxicity level in vegetables and crops is highly desirable. In this regard, systematic studies have been carried out to determine concentration levels of toxic elements in the samples of vegetables, crops, effluents and soil collected from the industrial areas of the Faisalabad. After processing, these samples were analyzed using neutron activation analysis and atomic absorption spectrometric techniques. The highest concentrations of toxic metals were observed for As (2.73 ± 0.34) in cabbage, Cd (1.5 ± 0.1), Ni (5.1 ± 0.9) and Pb (4.3 ± 0.2) in corn, Co (0.65 ± 0.02), and Sb (0.09 ± 0.01) in carrot, Cr (9.63 ± 1.3), Mn (46.5 ± 4.2) and Se (1.03 ± 0.1) in millet, Cu (11.3 ± 1.1) in tomato vegetables and crop samples. Although, the observed toxicity levels in vegetables and crop samples were higher than those grown in non-industrial areas, yet these toxicity levels are within the safe recommended limits. (author)

  19. Energy demand forecasting in Iranian metal industry using linear and nonlinear models based on evolutionary algorithms

    International Nuclear Information System (INIS)

    Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.

    2012-01-01

    Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector

  20. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations.

    Science.gov (United States)

    Jacukowicz-Sobala, Irena; Ociński, Daniel; Kociołek-Balawejder, Elżbieta

    2015-07-01

    Industrial wastes with a high iron or aluminium oxide content are produced in huge quantities as by-products of water treatment (water treatment residuals), bauxite processing (red mud) and hard and brown coal burning in power plants (fly ash). Although they vary in their composition, the wastes have one thing in common--a high content of amorphous iron and/or aluminium oxides with a large specific surface area, whereby this group of wastes shows very good adsorbability towards heavy metals, arsenates, selenates, etc. But their physical form makes their utilisation quite difficult, since it is not easy to separate the spent sorbent from the solution and high bed hydraulic resistances occur in dynamic regime processes. Nevertheless, because of the potential benefits of utilising the wastes in industrial effluent treatment, this issue attracts much attention today. This study describes in detail the waste generation processes, the chemical structure of the wastes, their physicochemical properties, and the mechanisms of fixing heavy metals and semimetals on the surface of iron and aluminium oxides. Typical compositions of wastes generated in selected industrial plants are given. A detailed survey of the literature on the adsorption applications of the wastes, including methods of their thermal and chemical activation, as well as regeneration of the spent sorbents, is presented. The existing and potential ways of modifying the physical form of the discussed group of wastes, making it possible to overcome the basic limitation on their practical use, are discussed. © The Author(s) 2015.

  1. Options report for the mining, non-ferrous metal smelting and refining industry

    International Nuclear Information System (INIS)

    1999-10-01

    This plant level analysis involved the study of three Canadian mines from ore extraction to refining. Energy consumption and GHG emissions from each facility were examined, along with projects to reduce these emissions. Results showed variation in emissions between firms by orders of magnitude, and while GHG reducing projects do exist, many are not implemented for economic and business reasons. Nevertheless, a modelling analysis of the mining industry as a whole showed that the industry should be able to reduce its GH emissions to within range of the Kyoto target. Enhanced voluntary initiatives, already supported by the industry, are seen as the most cost effective means of achieving these emission reductions. Industry experts suggest more effort to be expended on identifying GHG reducing technologies and competing projects with higher returns on investment. There is incontrovertible evidence that energy efficiency measures are often not implemented by the industry because their return on investment are not as attractive as those associated with process improvement projects. With appropriate assistance from government, such as funding for comprehensive energy audits similar to the plant level analysis done for this report, funding for carrying out the detailed economic evaluation of these projects, help with specialized human resources to participate in enhanced voluntary activities (such as the energy audits and life cycle cost/benefit analysis), and financial incentives to create more attractive returns on investment for energy efficiency/GHG emission reduction projects, the Canadian mining industry will be, and can be, part of the solution towards reducing GHG emissions. Other avenues that could be helpful in this effort include exporting Canadian mining technology to aid in reaching a global solution to a global problem, recognition for the Canadian mining industry for its northern operations, credit for Canada for embodied energy in exports, and recycling to

  2. Hyper accumulators of heavy metals of industrial areas of Islamabad and Rawalpindi

    International Nuclear Information System (INIS)

    Nazir, A.; Malik, R.N.; Ajaib, M.; Khan, N.; Siddiqui, M.F.

    2011-01-01

    Contamination of heavy metals is one of the major threats to water and soil as well as human health. Phytoremediation has been used to remediate metal-contaminated sites. This study evaluated the potential of 23 plant species growing on contaminated sites in Industrial areas of the Islamabad and Rawalpindi. Plant root, shoot and the soil samples were collected and analyzed for selected metal concentration values. To evaluate the potential of plant species for phyto remediation: Bioconcentration Factor (BCF), Biological Accumulation Coefficient (BAC) and Biological Transfer Coefficient (BCF) were calculated. The concentration of Pb in soils varied from 2-29 mg/kg, Zn from 28.82-172.56 mg/ kg, Cu from 8.88-306 mg/kg, respectively. The concentration of Pb in plant shoots varied from 1.0 to 39 mg/kg, Zn from 17.25 to 194.03 mg/kg, Cu from 0.65 to 171.83 mg/kg. The concentration of Pb in roots of plant varied 1-43 mg/kg, Zn from 3.34-116.16 mg/kg, Cu from 3.35- 416.89 mg/kg. Brachiaria raptans and Malvastrum coromandelianum were found most suitable for phyto stabilization of sites contaminated with Pb and Cu (BCF= 18 and 9.12). Considering the BAC values, 15 species for Pb, two species for Cu, five species for Zn possessed the characteristics of hyper accumulator, none of the plant species was found as hyper accumulator; however plants with high BCF (metal concentration ratio of plant root to soil) and low BTC (metal concentration ratio of plants shoots to roots) have the potential for phyto stabilization and phyto extraction. The results of this study can be used for management and decontamination of soils with heavy metals using plant species having phyto remediation potential/characteristics. (author)

  3. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals

    International Nuclear Information System (INIS)

    Lin, Yu-Chi; Hsu, Shih-Chieh; Chou, Charles C.-K.; Zhang, Renjian; Wu, Yunfei; Kao, Shuh-Ji; Luo, Li; Huang, Chao-Hao; Lin, Shuen-Hsin; Huang, Yi-Tang

    2016-01-01

    Airborne particulate matter (PM) was collected in Beijing between 24 February and 12 March 2014 to investigate chemical characteristics and potential industrial sources of aerosols along with health risk of haze events. Results showed secondary inorganic aerosol was the major contributor to PM_2_._5 during haze days. Utilizing specific elements, including Fe, La, Tl and As, as fingerprinting tracers, four emission sources, namely iron and steel manufacturing, petroleum refining, cement plant, and coal combustion were explicitly identified; their elevated contributions to PM during haze days were also estimated. The average cancer risk from exposure to inhalable PM toxic metals was 1.53 × 10"−"4 on haze days, which is one order of magnitude higher than in other developed cities. These findings suggested heavy industries emit large amounts of not only primary PM but also precursor gas pollutants, leading to secondary aerosol formation and harm to human health during haze days. - Highlights: • Secondary inorganic aerosol is a major contributor to haze formation in Beijing. • Elevated contributions of iron manufacturing, cement plant and petroleum refining to primary PM on haze days are found. • The estimated excess cancer risk due to inhalable PM in Beijing is much higher than in other developed cities around the world. - In this paper, the elevated contributions of iron/steel manufacturing, cement plant and petroleum refining to primary PM on haze days has been quantitatively estimated.

  4. Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China.

    Science.gov (United States)

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources.

  5. [Metallic content of water sources and drinkable water in industrial cities of Murmansk region].

    Science.gov (United States)

    Doushkina, E V; Dudarev, A A; Sladkova, Yu N; Zachinskaya, I Yu; Chupakhin, V S; Goushchin, I V; Talykova, L V; Nikanov, A N

    2015-01-01

    Performed in 2013, sampling of centralized and noncentralized water-supply and analysis of engineering technology materials on household water use in 6 cities of Murmansk region (Nikel, Zapolyarny, Olenegorsk, Montchegorsk, Apatity, Kirovsk), subjected to industrial emissions, enabled to evaluate and compare levels of 15 metals in water sources (lakes and springs) and the cities' drinkable waters. Findings are that some cities lack sanitary protection zones for water sources, most cities require preliminary water processing, water desinfection involves only chlorination. Concentrations of most metals in water samples from all the cities at the points of water intake, water preparation and water supply are within the hygienic norms. But values significantly (2-5 times) exceeding MACs (both in water sources and in drinkable waters of the cities) were seen for aluminium in Kirovsk city and for nickel in Zapolarny and Nikel cities. To decrease effects of aluminium, nickel and their compounds in the three cities' residents (and preserve health of the population and offsprings), the authors necessitate specification and adaptation of measures to purify the drinkable waters from the pollutants. In all the cities studied, significantly increased concentrations of iron and other metals were seen during water transportation from the source to the city supply--that necessitates replacement of depreciated water supply systems by modern ones. Water taken from Petchenga region springs demonstrated relatively low levels of metals, except from strontium and barium.

  6. The Chinese nonferrous metals industry-energy use and CO2 emissions

    International Nuclear Information System (INIS)

    Wang Yanjia; Chandler, William

    2010-01-01

    China is the largest nonferrous metals producer in the world and largest consumer for six kinds of common nonferrous metals including copper, aluminum, zinc, lead, nickel and tin. This paper provides an overview of the nonferrous metals industry in China, from a CO 2 emissions reduction perspective. It addresses energy use disaggregated by energy carrier and by province. It focuses on an analysis of energy efficiency in the production of aluminum, copper and nickel. A few large-scale enterprises produce most of the aluminum, copper and nickel in China, and use manufacturing facilities that were built within the last 20 years or have recently upgraded their main production equipment and processes. The energy efficiency of these operations is not particularly low compared to international practice. A large number of small and medium-sized enterprises (SME) operate nonferrous metals production facilities which rank low in energy efficiency and therefore are highly energy intensive per unit of physical output. Backward production capacity would be phased out continuously by enforcing the energy intensity norms.

  7. Heavy metals in industrially emitted particulate matter in Ile-Ife, Nigeria.

    Science.gov (United States)

    Ogundele, Lasun T; Owoade, Oyediran K; Hopke, Philip K; Olise, Felix S

    2017-07-01

    Iron and steel smelting facilities generate large quantities of airborne particulate matter (PM) through their various activities and production processes. The resulting PM that contains a variety of heavy metals has potentially detrimental impacts on human health and the environment. This study was conducted to assess the potential health effects of the pollution from the heavy metals in the airborne PM sampled in the vicinity of secondary smelting operations in Ile-Ife, Nigeria. X-ray fluorescence (XRF) was used to determine the elemental concentration of Pb, Cr, Cd, Zn, Mn, As, Fe, Cu, and Ni in the size-segregated PM samples. Pollution Indices (PI) consisting of Contamination Factor (CF), Degree of Contamination (DC) and Pollution Index Load (PLI) and Target Hazard Quotient (THQ) were employed to assess the pollution risk associated with the heavy metals in the PM. CF, DC and PLI values were 332 and >1, respectively for the three sites, indicating deterioration of the ambient air quality in the vicinity of the smelter. The heavy metals in the airborne PM pose a severe health risk to people living in vicinity of the facility and to its workers. The diminished air quality with the associated health risks directly depends on the industrial emissions from steel production and control measures are recommended to mitigate the likely risks. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Soil Heavy Metal Pollution and Risk Assessment in Shenyang Industrial District, Northeast China

    Science.gov (United States)

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources. PMID:25997173

  9. Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China.

    Directory of Open Access Journals (Sweden)

    Xudong Jiao

    Full Text Available To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti, copper (Cu, lead (Pb, zinc (Zn, cobalt (Co, nickel (Ni, chromium (Cr and arsenic (As. Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995. There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources.

  10. Corrosion behavior of metals and alloys in marine-industrial environment

    Directory of Open Access Journals (Sweden)

    Mariappan Natesan, Subbiah Selvaraj, Tharmakkannu Manickam and Gopalachari Venkatachari

    2008-01-01

    Full Text Available This work deals with atmospheric corrosion to assess the degrading effects of air pollutants on ferrous and non-ferrous metals and alloys, which are mostly used as engineering materials. An exposure study was conducted in the Tuticorin port area located on the east coast of South India, in the Gulf of Mannar with Sri Lanka to the southeast. Common engineering materials, namely mild steel, galvanized iron, Zn, Al, Cu and Cu–Zn alloys (Cu–27Zn, Cu–30Zn and Cu–37Zn, were used in the investigation. The site was chosen where the metals are exposed to marine and industrial atmospheres. Seasonal 1 to 12 month corrosion losses of these metals and alloys were determined by a weight loss method. The weight losses showed strong corrosion of mild steel, galvanized iron, Cu and Zn and minor effect on Al and Cu–Zn alloys. Linear regression analysis was conducted to study the mechanism of corrosion. The composition of corrosion products formed on the metal surfaces was identified by x-ray diffraction and Fourier transform infrared spectroscopy.

  11. Binding of Industrial Deposits of Heavy Metals and Arsenic in the Soil by 3-Aminopropyltrimethoxysilane

    Directory of Open Access Journals (Sweden)

    Grzesiak Piotr

    2014-06-01

    Full Text Available The results of the research studies concerning binding of heavy metals and arsenic (HM+As, occurring in soils affected by emissions from Głogów Copper Smelter and Refinery, by silane nanomaterial have been described. The content of heavy metals and arsenic was determined by AAS and the effectiveness of heavy metals and arsenic binding by 3-Aminopropyltrimethoxysilane was examined. The total leaching level of impurities in those fractions was 73.26% Cu, 74.7% – Pb, 79.5% Zn, 65.81% – Cd and 55.55% As. The studies demonstrated that the total binding of heavy metals and arsenic with nanomaterial in all fractions was about as follows: 20.5% Cu, 9.5% Pb, 7.1% Zn, 25.3% Cd and 10.89% As. The results presented how the safety of food can be cultivated around industrial area, as the currently used soil stabilization technique of HM by soil pH does not guarantee their stable blocking in a sorptive complex.

  12. What are we missing? Scope 3 greenhouse gas emissions accounting in the metals and minerals industry

    Science.gov (United States)

    Greene, Suzanne E.

    2018-05-01

    Metal and mineral companies have significant greenhouse gas emissions in their upstream and downstream value chains due to outsourced extraction, beneficiation and transportation activities, depending on a firm's business model. While many companies move towards more transparent reporting of corporate greenhouse gas emissions, value chain emissions remain difficult to capture, particularly in the global supply chain. Incomplete reports make it difficult for companies to track emissions reductions goals or implement sustainable supply chain improvements, especially for commodity products that form the base of many other sector's value chains. Using voluntarily-reported CDP data, this paper sheds light on hotspots in value chain emissions for individual metal and mineral companies, and for the sector as a whole. The state of value chain emissions reporting for the industry is discussed in general, with a focus on where emissions could potentially be underestimated and how estimates could be improved.

  13. Taiwan's industrial heavy metal pollution threatens terrestrial biota

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, M.J. [Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Selvaraj, K. [Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Agoramoorthy, G. [Department of Pharmacy, Tajen University, Yanpu, Pingtung 907, Taiwan (China)]. E-mail: agoram@mail.tajen.edu.tw

    2006-09-15

    The bioconcentration levels of essential (Cu, Fe, Mg, Mn, and Zn) and non-essential (As, Cd, Hg, Pb, and Sn) elements have been investigated in different terrestrial biota such as fungi, plant, earthworm, snail, crab, insect, amphibian, lizard, snake, and bat including the associated soil, to investigate the ecosystem health status in Kenting National Park, Taiwan. High bioconcentrations of Cd, Hg, and Sn in snail, earthworm, crab, lizard, snake, and bat indicated a contaminated terrestrial ecosystem. High concentrations of Cd, Hg, and Sn in plant species, effective bioaccumulation of Cd by earthworm, snail, crab and bat, as well as very high levels of Hg found in invertebrates, amphibians, and reptiles revealed a strong influence from industrial pollution on the biotic community. This study for the first time presents data on the impact of heavy metal pollution on various terrestrial organisms in Taiwan. - Metal effects occur at any terrestrial levels in Taiwan.

  14. Optimization of electrocoagulation (EC) process for the purification of a real industrial wastewater from toxic metals.

    Science.gov (United States)

    Gatsios, Evangelos; Hahladakis, John N; Gidarakos, Evangelos

    2015-05-01

    In the present work, the efficiency evaluation of electrocoagulation (EC) in removing toxic metals from a real industrial wastewater, collected from Aspropyrgos, Athens, Greece was investigated. Manganese (Mn), copper (Cu) and zinc (Zn) at respective concentrations of 5 mg/L, 5 mg/L and 10 mg/L were present in the wastewater (pH=6), originated from the wastes produced by EBO-PYRKAL munitions industry and Hellenic Petroleum Elefsis Refineries. The effect of operational parameters such as electrode combination and distance, applied current, initial pH and initial metal concentration, was studied. The results indicated that Cu and Zn were totally removed in all experiments, while Mn exhibited equally high removal percentages (approximately 90%). Decreasing the initial pH and increasing the distance between electrodes, resulted in a negative effect on the efficiency and energy consumption of the process. On the other hand, increasing the applied current, favored metal removal but resulted in a power consumption increase. Different initial concentrations did not affect metal removal efficiency. The optimal results, regarding both cost and EC efficiency, were obtained with a combination of iron electrodes, at 2 cm distance, at initial current of 0.1 A and pH=6. After 90 min of treatment, maximum removal percentages obtained were 89% for Mn, 100% for Cu and 100% for Zn, at an energy consumption of 2.55 kWh/m(3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Ionization detector for aerosol air pollution detection and ventilation control in the metal processing industry

    International Nuclear Information System (INIS)

    Kovacs, Istvan

    1989-01-01

    An indicator and measuring instrument was developed for the continuous monitoring, recording and indicating aerosol mass concentrations in mechanical workshops, like in metal cutting, welding or forming industries, for air pollution control and ventilation of the atmosphere in the workshops. An ionization chamber containing alpha radiation source was modified for this purpose, and a suitable electronic circuit was built for the measurement of ionization current. The calibration of the ionization aerosol detectors was performed for welding smoke and oil mist. They were suitable for continuous monitoring of workshop atmospheres and controlling ventilation equipment, or as portable instruments, for the rapid inspection of air pollution. (R.P.) 4 refs.; 3 figs

  16. New perspectives for the petroleum industry. Bioprocesses for the selective removal of sulphur, nitrogen and metals

    International Nuclear Information System (INIS)

    Zerlia, T.

    2000-01-01

    Fuel biocatalytic conversion is a process that removes, through selective enzyme-catalyzed reactions, sulphur, nitrogen and metals. The mild operating conditions, the specificity of reactions and the quality of coproducts (particularly the organo sulphur compounds, a source for the petrochemical industry) are just a few of the attractive aspects of this new technology which could open a new world of possibilities in the technology and in the environmental impact of fuels. The paper shows the state-of-the-art of the research and applications of bioprocesses to the petroleum field [it

  17. Rehabilitation of river sediments contaminated by heavy metals from tanning industries using the phytoextraction technique

    Science.gov (United States)

    Beltrá Castillo, Juan Carlos; García Orenes, Fuensanta; Mora Navarro, José; Murcia Navarro, Francisco Jose; Zornoza Belmonte, Raúl; Faz Cano, Ángel; Gómez-Garrido, Melisa

    2017-04-01

    Leather tanning is an industrial sector of great tradition in Spain that has progressively evolved until it has reached a high degree of technification in the present. However, in its early days, the leather tanning industry has always been considered a dirty and polluting activity, mainly due to the water spills that ended up in the river channels. The Guadalentin Valley between Lorca and Murcia (SE Spain) is characterised by intensive crop and pig production, and an extensive agroalimentary and leather tannery industry. These anthropogenic sources have released salts and metals such as copper (Cu), zinc (Zn) and chromium (Cr) into Guadalentin river. Up to 2003, wastewater was discharged directly to the dry river, immediately upstream of the urban nucleus of Lorca, without any previous treatment. It contained high concentrations of inorganic salts and heavy metals (Cu, Zn and Cr). Spills, in some events, had a flow of 10 000 m3 d-1, with concentration of Cr over 500 mg L-1. Phytoremediation is a sustainable alternative that allows the environmental rehabilitation of fluvial dry sediments through the transfer of heavy metals from the contaminated soils to the native vegetation present. Atriplex halimus, salsola oppositifolia, suaeda vera and tamarix africana were the most representative autochthonous phytoextractor species that were planted to study the degree of decontamination of dry river sediments before planting and 12 months after planting. The sediments characterization was done by a sampling grid of 40 000 m2 (500 m x 8 m) where samples were taken at 3 depths (0-20 cm, 20-50 cm and 5-100 cm) every 50 m. A vegetation study was carried out by random plots of 10 m x 10 m. The results indicated that after 12 months the vegetation cover increased between 35% and 70%. The degree of contamination of Cu, Zn and Cr of the river dry sediments decreased slightly, being the atriplex halimus the plant specie that presented the highest value of the bioaccumulation factor

  18. Current trends in degradation assesment on metallic materials of industrial components

    International Nuclear Information System (INIS)

    Herrera Palma, Victoria

    2007-01-01

    To needs to assess objectively a structural integrity analysis in nuclear and termal power-, oil- and chemical- industry system, represents a large challenge for engineer and researches related to Materials Science, equipment manufactures or users. These systems share many of their problems with regards to aging mechanism of components metallic materials, high replacement costs and increasing requirements on efficiency and safety. This paper makes an attempt to give an overview of the current trends on material damage and residual life assessment for installation of power-, oil- and chemical industry. Some of the currently existing ideas on components inspection, as an activity for damage detection are shown. A summary on mechanism of material damage and experimental techniques for their characterization is also presented. Finally, some analytical methods with wide appliance in materials damage evaluation and residual life assesment of components are described

  19. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    International Nuclear Information System (INIS)

    Peña-Fernández, A.; Lobo-Bedmar, M.C.; González-Muñoz, M.J.

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation

  20. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Fernández, A. [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain); Lobo-Bedmar, M.C. [Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Finca el Encín, Crta. Madrid-Barcelona Km, 38.2, 28800 Alcalá de Henares, Madrid (Spain); González-Muñoz, M.J., E-mail: mariajose.gonzalez@uah.es [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain)

    2015-01-15

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation.

  1. CADDIS Volume 2. Sources, Stressors and Responses: Metals - Point Sources from Industry

    Science.gov (United States)

    Introduction to the metals module, when to list metals as a candidate cause, ways to measure metals, simple and detailed conceptual diagrams for metals, metals module references and literature reviews.

  2. Studies of toxic metals removal in industrial wastewater after electron-beam treatment

    International Nuclear Information System (INIS)

    Ribeiro, Marcia Almeida

    2002-01-01

    The Advanced Oxidation Process, using electron-beam, have been studied by scientific community due to its capacity to mineralize the toxic organic compound from highly reactive radical's formation. The electron-beam treatment process has been adopted by several countries for organic compounds removal and to effluents and sewers biological degradation. In this work, studies of metals removal in the simulated aqueous solutions and in the actual industrial effluents were carried out, using electron-beam treatment. The effluents samples were collected at ETE/SABESP (Governmental Wastewater Treatment Plant) in Suzano, SP city. The sampling was outlined at three distinctive sites: Industrial Receiver Unit, Medium Bar, and Final Effluent. The effluents samples were irradiated using different irradiation doses (20, 50, 100, 200 and 500 kGy). The removal behavior of metals Ca, CI, S, P, K, Al, Fe, As, Ni, Cr, Zn, Si, Co, Mn, As, Se, Cd, Hg and Pb was verified. The elements determination was accomplished with the x-ray fluorescence (WD-XRFS) technique using Fundamental Parameters method and thin film samples. The elements Fe, Zn, Cr and Co presented a removal > 99% to 200 kGy of irradiation dose in industrial effluent. At the same dose, P, Al and Si presented a removal of 81.8%, 97.6% and 98.7%, respectively. Ca and S were removed more than 80% at 20 kGy and Na, CI and K did not presented any degree of removal. As, Se, Cd, Hg and Pb removal was studied in the simulated aqueous solutions and industrial effluents with scavengers addition (EDTA and HCOONa). The elements As and Hg presented a removal of 92% and 99%, respectively, with HCOONa, at 500 kGy irradiation dose. The Se presented a 96.5% removal at same irradiation dose without scavengers addition. The removal of Cd and Pb did not give a significant removal, once all of the assay were carried out in the oxidant medium. (author)

  3. Porous Metal Filters for Gas and Liquid Applications in the Nuclear Industry

    International Nuclear Information System (INIS)

    Kenneth, Rubow

    2009-01-01

    Sintered metal media are ideally suited for use in the most demanding industrial applications where long life is required and often other media are not cost-effective solution. As examples, filtration technology utilizing sintered metal media provides excellent performance in numerous liquid/solids and gas/solid separation applications found in the handling and processing of fluids containing radioactive materials. Many types of filter media, ranging from single use (disposable) to semi-permanent, are utilized today for separation of particulate matter. However, semi-permanent media are usually cleanable, either on or off-line, and are intended for sustainable, often multi-year, operating life in harsh environments. These harsh environments, which may involve corrosive fluids, high temperatures, high pressures or pressure spikes, often requiring continuous filtration service, are ideally suited for all-metal filtration systems employing semi-permanent sintered metal media. Sintered metal media, usually fabricated into tubular metal elements, have proven high particle removal efficiency and demonstrated reliability that uniquely afford excellent performance for demanding liquid/solids and gas/solids separation processes. The filter element and, in certain cases, the entire filter are weldable; therefore, the inherent sealing eliminates the need for potentially problematic seals. These media provide a positive barrier to ensure particulate removal to protect downstream equipment, for product separation, and/or to meet health, safety and environmental regulations. Typical applications for sintered metal media include: 1) gas and liquid filter systems used in various nuclear and radioactive waste processing applications, 2) an all-metal High Efficiency Particulate Air (HEPA) filter developed under Department of Energy (DOE) funding as an alternative to traditional HEPA filters fabricated with conventional glass fibers used on High Level Waste (HLW) tank ventilation

  4. Hazardous Heavy metal distribution in Dahuofang catchment, Fushun, Liaoning, an important industry city in China: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Gang [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Bejing (China); The CAS/Shandong Provincial Key Laboratory of Coastal Environmental Process, Yantai Institute of Coastal Zone Research, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai (China); Wu, Ji-You [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Bejing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Shao, Hong-Bo [The CAS/Shandong Provincial Key Laboratory of Coastal Environmental Process, Yantai Institute of Coastal Zone Research, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai (China); Institute for Life Sciences, Qingdao University of Science and Technology (QUST), Qingdao (China)

    2012-12-15

    Located in Liaoning Province, one of the traditional heavy industrial areas in China, Dahuofang Reservoir provides drinking water for nearly 30 000 000 citizens, as well as industrial and agricultural water for dozens of several cities and rural areas. The distribution of hazardous heavy metals is described in several types of soil, crops, and in different industrial or mining areas and main sewage irrigation areas. Five possible reasons that may cause the pollution are analyzed and listed. Also we provide some pragmatic suggestions for the remediation of heavy metals in contaminated soils. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Assessment of heavy metals in the industrial effluents, tube-wells and municipal supplied water of Dehradun, India.

    Science.gov (United States)

    Kulshrestha, Shail; Awasthi, Alok; Dabral, S K

    2013-07-01

    The bio-geochemical cycles of metals involve the lands, rivers, oceans and the atmosphere. Although a large number of metals are introduced to the water bodies during their mining and extraction processes and geochemical weathering of rocks, but the role of domestic and industrial wastes is predominant and of much concern. Increased industrial activities has increased the incidence of percolation of toxic metal ions to the soil and water bodies and presently their presence in ecosystem, have reached to an alarming level that environmentalists are finding it difficult to enforce control measures. Human activities and large number of small and big industrial units are increasingly discharging deleterious metals present in the effluents and wastes, to the environment and aquatic systems and have contaminated heavily even the ground water. The toxic metals have a great tendency of bioaccumulation through which they enter the food chain system and ultimately affect adversely the life on this planet Earth in various ways. Further, due to contamination of irrigation system by the harmful Chemicals and toxic metals, the farm products, vegetables, fruits, potable water and even milk is not spared. This paper describes the assessment of the heavy metal concentration in various industrial effluents of the surrounding area. Various physico-chemical characteristics of the effluents collected from various sites are also reported. To assess the status of ground water quality, water samples from four tube wells of different localities of the area and four drinking water samples supplied by Municipal Distribution System were also analyzed.

  6. Analysis of Heavy Metal in Electrocoagulated Metal Hydroxide Sludge (EMHS from the Textile Industry by Energy Dispersive X-Ray Fluorescence (EDXRF

    Directory of Open Access Journals (Sweden)

    Tanveer Mehedi Adyel

    2012-12-01

    Full Text Available Environmental pollution due to discharges of heavy metal containing sludge from textile industries is a common nuisance in Bangladesh, where no treatment of sludge is carried out before final disposals. Energy Dispersive X-ray Fluorescence (EDXRF was employed in the present study to analyze the heavy metal content of Electrocoagulated Metal Hydroxide Sludge (EMHS collected from a composite textile industry. Thirteen heavy metals, viz., Mn, Ti, Cu, Zn, Ni, Sr, V, Cr, Zr, Hg, Cd, Nb and Ga, were detected. Mn, Ni, Cu, Zn and Cd exceeded the permissible limit to apply the EMHS in agricultural land. Cr, Ni, Cu and Zn were compared to the values of the European legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control landfilled. EMHS was categorized as class I and needs to be deposited in controlled landfills.

  7. Six sigma implementation and its effects on configuration management related to metal industry

    International Nuclear Information System (INIS)

    Tariq, M.M.; Ahmad, S.F.; Mahmoo, A.; Kalsoom, T.

    2006-01-01

    This paper discusses the implementation of Six Sigma and its effects on Configuration Management (CM) of metal industry. The basic idea behind the Six Sigma philosophy is to continuously reduce product and process variation. Design for Six Sigma (DFSS) methodology generates new processes, products, services, plants, etc., whereas Define, Measure, Analyze, Improve and Control (DMAIC) methodology improves existing processes, products, services, designs, plants, etc. The DFSS project stages are summarized as Identify, Design, Optimize, and Validate (IDOV). Role of CM for DFSS and DMAIC will be discussed. Seven steps for Six Sigma introduction in new management strategy and the other seven steps for Six Sigma improvement implementation shall be discussed indicating possible role of CM. Tasks of Black Belt leader in Six Sigma implementation are very important. The expected outcomes of Six Sigma efforts are: Faster and more robust product development. More efficient and capable manufacturing processes and, more confident overall business performance. The investigation and knowledge of Six Sigma effects produced in metals industry on CM will increase the effectiveness of each other, and it will be a better, reliable and well documented approach towards Six Sigma. (author)

  8. Specific training in Radiation Protection for workers in the scrap metal recycling industry in Spain

    International Nuclear Information System (INIS)

    Correa Sainz, C.; Ortiz Ramis, T.; Pinilla Matos, J.L.; Fuentes Fuentes, L.; Gonzalez, C.O.

    2006-01-01

    Enresa, as signatory of the Spanish Protocol on radiological surveillance of metal materials, collaborates in the training programme for workers in the metal recycling sector. Since 1998 a total of 16 training courses have been held with a total of 332 workers from smelting and recovery companies. Furthermore information and publicity campaigns have been held for employees in the metal industry. Two types of courses are held: a Basic Course directed at first responders and an specialized Advanced Course concentrating on radiological characterisation of detected material. The evaluation of the courses by the participants has always been very positive, with the Basic Course being more popular. The practical classes are very much appreciated by the participants. In the future the Basic Course will be held once or twice per year, according to demand, and the Advanced Course will be held every two years as a minimum and always providing there is a minimum number of participants. Refresher courses for workers who are already carrying out the tasks of localisation, segregation and characterisation of radioactive material are also planned. (authors)

  9. Specific training in Radiation Protection for workers in the scrap metal recycling industry in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Correa Sainz, C.; Ortiz Ramis, T. [ENRESA. Madrid (Spain); Pinilla Matos, J.L.; Fuentes Fuentes, L. [ENRESA. Centro de Almacenamiento El Cabril, Cordoba (Spain); Gonzalez, C.O. [AdQ, Madrid (Spain)

    2006-07-01

    Enresa, as signatory of the Spanish Protocol on radiological surveillance of metal materials, collaborates in the training programme for workers in the metal recycling sector. Since 1998 a total of 16 training courses have been held with a total of 332 workers from smelting and recovery companies. Furthermore information and publicity campaigns have been held for employees in the metal industry. Two types of courses are held: a Basic Course directed at first responders and an specialized Advanced Course concentrating on radiological characterisation of detected material. The evaluation of the courses by the participants has always been very positive, with the Basic Course being more popular. The practical classes are very much appreciated by the participants. In the future the Basic Course will be held once or twice per year, according to demand, and the Advanced Course will be held every two years as a minimum and always providing there is a minimum number of participants. Refresher courses for workers who are already carrying out the tasks of localisation, segregation and characterisation of radioactive material are also planned. (authors)

  10. Blood biomonitoring of metals in subjects living near abandoned mining and active industrial areas.

    Science.gov (United States)

    Madeddu, Roberto; Tolu, Paola; Asara, Yolande; Farace, Cristiano; Forte, Giovanni; Bocca, Beatrice

    2013-07-01

    A human blood biomonitoring campaign to detect the environmental exposure to metals (Cd, Cu, Cr, Mn, Pb and Zn) in 265 subjects was performed in the South-Western part of Sardinia (an Italian island) that is a particular area with a great history of coal and metal mining (Pb/Zn mainly) activities and large industrial structures (as metallurgy). Subjects living near the industrial plant area had geometric means (GM) of blood Cd (0.79 μg/l), Cu (971 μg/l), Mn (12.2 μg/l), and Pb (55.7 μg/l) significantly higher than controls (Cd, 0.47 μg/l; Cu, 900 μg/l; Mn 9.98 μg/l; Pb, 26.5 μg/l) and than people living nearby the past mining sites. Subjects living next to one dismissed mine were statistically higher in blood Cu (GM, 1,022 μg/l) and Pb (GM, 41.4 μg/l) concentrations than controls. No differences were observed in people living in the different mining sites, and this might be related to the decennial disclosure of mines and the adoption of environmental remediation programmes. Some interindividual variables influenced blood biomonitoring data, as smoke and age for Cd, gender for Cu, age, sex and alcohol for Pb, and age for Zn. Moreover, blood metal levels of the whole population were similar to reference values representative of the Sardinian population and acceptably safe according to currently available health guidelines.

  11. Multivariate analysis of heavy metal contaminations in seawater and sediments from a heavily industrialized harbor in Southern Taiwan

    International Nuclear Information System (INIS)

    Lin, Yung-Chang; Chang-Chien, Guo-Ping; Chiang, Pen-Chi; Chen, Wei-Hsiang; Lin, Yuan-Chung

    2013-01-01

    Highlights: • Kaohsiung Harbor is the largest international commercial port in Taiwan. • The metal distributions in the seawater and sediments were investigated. • Many metals exhibited higher levels of enrichment inside the harbor. • Multivariate statistical analysis was used to characterize the metal pollutions. • Two complex arrays of contamination behaviors exist inside and outside the harbor. -- Abstract: Heavy metal pollution, including chromium, zinc, arsenic, cadmium, mercury, copper, lead, and aluminum, in the largest industrial harbor in southern Taiwan was investigated. Increasing metal contamination was observed by monitoring heavy metal concentrations in seawater and sediments and estimating the enrichment factors, particularly those inside the harbor. Compared to other metal-polluted harbors worldwide, the presence of chromium in the sediments was relatively high. Excluding the background contribution, the harbor area was polluted by outflows from river mouths, wastewater discharging pipes, and point sources near industrial activities within the harbor. It is shown by principal component and cluster analyses that metal contamination was affected by a wide range of different and complex contamination mechanisms inside and outside the harbor, suggesting managing the pollution using straightforward strategies, i.e., solutions that only consider a single source or single pathway of metal emissions, is problematic

  12. Analysis of precious metals at parts-per-billion levels in industrial applications

    International Nuclear Information System (INIS)

    Tickner, James; O'Dwyer, Joel; Roach, Greg; Smith, Michael; Van Haarlem, Yves

    2015-01-01

    Precious metals, including gold and the platinum group metals (notable Pt, Pd and Rh), are mined commercially at concentrations of a few parts-per-million and below. Mining and processing operations demand sensitive and rapid analysis at concentrations down to about 100 parts-per-billion (ppb). In this paper, we discuss two technologies being developed to meet this challenge: X-ray fluorescence (XRF) and gamma-activation analysis (GAA). We have designed on-stream XRF analysers capable of measuring targeted elements in slurries with precisions in the 35–70 ppb range. For the past two years, two on-stream analysers have been in continuous operation at a precious metals concentrator plant. The simultaneous measurement of feed and waste stream grades provides real-time information on metal recovery, allowing changes in operating conditions and plant upsets to be detected and corrected more rapidly. Separately, we have been developing GAA for the measurement of gold as a replacement for the traditional laboratory fire-assay process. High-energy Bremsstrahlung X-rays are used to excite gold via the 197 Au(γ,γ′) 197 Au-M reaction, and the gamma-rays released in the decay of the meta-state are then counted. We report on work to significantly improve accuracy and detection limits. - Highlights: • X-ray fluorescence analysis at sub-parts-per-million concentration in bulk materials. • Gamma activation analysis of gold at high accuracy and low concentrations. • Use of advanced Monte Carlo techniques to optimise radiation-based analysers. • Industrial application of XRF and GAA technologies for minerals processing.

  13. Content and the forms of heavy metals in bottom sediments in the zone of industrial pollution sources ,

    Directory of Open Access Journals (Sweden)

    Voytyuk Y.Y.

    2014-12-01

    Full Text Available Regularities in the distribution of heavy metals in sediments in the zone of influence of the steel industry in Mariupol are installed. The study results of the forms of occurrence of Zn, Pb, Cu, Cr, Ni are represented. Ecological and geochemical assessment of sediment contamination by heavy metals is performed. The main sources of pollution of bottom sediments are air borne emissions from industrial plants, hydrogenous pollution in industrial sewage entering the water, sewage sludge, ash dumps, slag, ore, sludge, oil spills and salt solutions. Pollution hydrogenous sediments may be significant, contaminated sediments are a source of long-term contamination of water, even after cessation of discharges into rivers untreated wastewater. The environmental condition of bottom sediments in gross content of heavy metals is little information because they do not reflect the transformation and further migration to adjacent environment. The study forms of giving objective information for ecological and geochemical evaluation. The study forms of heavy metals in the sediments carried by successive extracts. Concentrations of heavy metals in the extracts determined by atomic absorption spectrometer analysis CAS-115. It was established that a number of elements typical of exceeding their content in bottom sediments of the background values, due likely to their technogenic origin. Man-made pollution of bottom sediments. Mariupol has disrupted the natural form of the ratio of heavy metals. In the studied sediments form ion exchange increased content of heavy metals, which contributes to their migration in the aquatic environment.

  14. Bioaccumulation of selected heavy metals and histopathological and hematobiochemical alterations in backyard chickens reared in an industrial area, India.

    Science.gov (United States)

    Kar, Indrajit; Mukhopadhayay, Sunit Kumar; Patra, Amlan Kumar; Pradhan, Saktipada

    2018-02-01

    This study was carried out to determine the concentrations of four heavy metals, cadmium (Cd), lead (Pb), copper (Cu), and cobalt (Co), and histopathological lesions in tissues of chickens reared in an industrial area of West Bengal, India. In particular, Mejhia Block was selected as a heavy metal-exposed area and Vatar Block (120 km away from industrially polluted areas) as a reference site. Samples were collected from the backyard chickens in these areas. Concentrations of heavy metals in soil, water, feedstuffs, tissues (liver, kidney, spleen, lung, and muscle), and droppings were greater (p  kidney > lung > spleen > muscle. Heavy metal concentrations were greater in older chickens (> 1 year) than in young chickens (heavy metal exposure. Histological changes revealed necrotic lesions and tubulitis in the kidney, degeneration and necrosis in liver parenchyma, and periarteriolitis, peribronchiolitis, and presence of hemosiderin pigment in the lung of chickens in the exposed site. Results indicated that backyard chickens in heavy metal-exposed site may show pathological lesions in different tissues due to accumulation of heavy metals, and thus, the consumption of chicken meat from the industrially exposed site may pose a potential health risk to local residents of polluted sites.

  15. Investigation Effect of Biorhythm on Work-Related Accidents in The Metal Industry (A Short Report

    Directory of Open Access Journals (Sweden)

    Ehsanollah Habibi

    2016-07-01

    Full Text Available Biorhythm is one of the newest subjects in the field of cognition of mental ergonomics which can be very effective in reduction of work-related accidents or mistakes with no apparent reason. With evaluating Biorhythm individuals can intervention action to reduce job accidents carried out. Thus, the aim of this study was to determine the relationship Biorhythm and work-related accidents in the metal industry. This research is a cross-sectional and analytical-descriptive in the metal industrial Isfahan city of 120 work-related accidents during 2015. The required information was collected from available documents in HSE unit of the company biorhythm charts were drawn based on a date of accidents and participants birthdays, using natural Biorhythm Software V3.02 Conduct. Finally، the data were analyzed using spss version 20 and descriptive statistics.This study showed that the frequency of accidents in critical days and negative section of physical cycle was more than expected. Also the frequency of accidents in critical days and negative section of emotional and intellectual cycles was less than expected. Most type of injury, including cuts to 35.8 percent and the lowest type of injury was torsion with 5 percent. Most limb injury, hands and fingers with 51.7 percent and the lowest limb injury were back at 2.5 percent. Accidents outbreak in physical cycles was 38.3 percent. These 120 accidents in additionally were causing 120 loss of working days in effect accident. Most percent of loss of working days were for 20 to 30 days with of 39.2 percent. Most percent of loss of working days were for 20 to 30 days with of 39.2 percent. Due to the physical nature of the work activities in the metal industry can be stated that the study showed that in physical work activities, frequency of accidents in critical days and negative section of physical cycle in which the person is not physically ready to do the job was more than expected. Therefore, by training

  16. Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model

    Science.gov (United States)

    Chen, Bing; Stein, Ariel F.; Maldonado, Pabla Guerrero; Sanchez de la Campa, Ana M.; Gonzalez-Castanedo, Yolanda; Castell, Nuria; de la Rosa, Jesus D.

    2013-06-01

    This study presents a description of the emission, transport, dispersion, and deposition of heavy metals contained in atmospheric aerosols emitted from a large industrial complex in southern Spain using the HYSPLIT model coupled with high- (MM5) and low-resolution (GDAS) meteorological simulations. The dispersion model was configured to simulate eight size fractions (17 μm) of metals based on direct measurements taken at the industrial emission stacks. Twelve stacks in four plants were studied and the stacks showed considerable differences for both emission fluxes and size ranges of metals. We model the dispersion of six major metals; Cr, Co, Ni, La, Zn, and Mo, which represent 77% of the total mass of the 43 measured elements. The prediction shows that the modeled industrial emissions produce an enrichment of heavy metals by a factor of 2-5 for local receptor sites when compared to urban and rural background areas in Spain. The HYSPLIT predictions based on the meteorological fields from MM5 show reasonable consistence with the temporal evolution of concentrations of Cr, Co, and Ni observed at three sites downwind of the industrial area. The magnitude of concentrations of metals at two receptors was underestimated for both MM5 (by a factor of 2-3) and GDAS (by a factor of 4-5) meteorological runs. The model prediction shows that heavy metal pollution from industrial emissions in this area is dominated by the ultra-fine (<0.66 μm) and fine (<2.5 μm) size fractions.

  17. Separation tests of heavy metals in samples of industrial wastes through flotation

    International Nuclear Information System (INIS)

    Abrego L, J.

    1995-12-01

    Samples of residual muds, taken at the exit of the filter-press of the water treatment plant of a galvanoplastics industry in Lerma, Estado de Mexico, its were prepared for its qualitative and quantitative analysis. Likewise, the residual waters of the cistern located at the end of the electrodeposition process, was subjected to qualitative chemical analysis for the neutron activation technique and to quantitative analysis by atomic absorption spectrometry. The samples were treated by a flotation process by means of the one which it was studied the heavy metals removal. The results show that the AP-845 collector is the one that better it fulfilled the objectives since, it solves the problem, unless by the copper that although their concentration in the residual waters drop a lot, it was not inside the standard. (Author)

  18. Regulating specific organic substances and heavy metals in industrial wastewater discharged to municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Munk, L.; Pedersen, F.

    1994-01-01

    Due to the extension of wastewater treatment plants to nutrient removal and the development towards reuse of sludge m agriculture, new guidelines for regulating industrial discharges m Denmark were needed. The paper describes how a concept for regulating the discharge of specific organic substances...... substances, present knowledge of fate and effects in biological treatment plants is too scarce to underpin the setting of general standards. Therefore, it has been decided to base the developed priority system on the data used in the EEC-system for classification of hazardous chemicals. This includes ready...... degradability, defined by the OECD-test, bio-sorption and bio-accumulation, defined by the octanol/water distribution coefficient and toxic effects on water organisms. Several potential effects of seven heavy metals have been evaluated, and the most critical effects were found to be the quality criteria...

  19. New trends for non-ferrous metals in the electrical engineering industry

    International Nuclear Information System (INIS)

    Singer, R.F.

    1989-01-01

    The non-ferrous metals copper, aluminium and nickel are of major importance to the electrical engineering industry. Copper is used for magnet wire, underground cable and overhead contact wire, and aluminium is important for overhead power transmission lines. Nickel alloys are employed as gas turbine blades in power generation. An important new trend in the conductor area is rapid solidification for improved combinations of strength and conductivity. Another new trend is the Conform continuous extrusion process which can decrease cost and increase quality. New high temperature superconductors might change the conductor market completely, but only on the long run. Nickel base blading materials will see considerable improvements from oxide dispersion strengthening and directional solidification. In summary, non-ferrous materials technology for electrical engineering applications is on the move and considerable improvements can be expected within the next decade. (orig.) [de

  20. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.

    Science.gov (United States)

    Kamika, Ilunga; Momba, Maggy N B

    2013-02-06

    Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Significant differences (p metal-removal and the presence of certain metal-resistant genes indicated that the selected microbial isolates used both passive (biosorptive) and active (bioaccumulation) mechanisms to remove heavy metals from industrial wastewater. This study

  1. Evaluation of toxic metals in the industrial effluents and their segregation through peanut husk fence for pollution abatement

    International Nuclear Information System (INIS)

    Husaini, S.N.; Zaidi, J.H.; Matiullah; Akram, M.

    2011-01-01

    The industrial pollution is exponentially growing in the developing countries due to the discharge of untreated effluents from the industries in the open atmosphere. This may cause severe health hazards in the general public. To reduce this effect, it is essential to remove the toxic and heavy metals from the effluents before their disposal into the biosphere. In this context, samples of the effluents were collected from the textile/yarn, ceramics and pulp/paper industries and the concentrations of the toxic metal ions were determined using neutron activation analysis (NAA) technique. The observed concentration values of the As, Cr and Fe ions, in the unprocessed industrial effluents, were 4.91 ± 0.8, 9.67 ± 0.7 and 9.71 ± 0.8 mg/L, respectively which was well above the standard recommended limits (i.e. 1.0, 1.0 and 2.0 mg/L, respectively). In order to remove the toxic metal ions from the effluents, the samples were treated with pea nut husk fence. After this treatment, 91.5% arsenic, 81.9% chromium and 66.5% iron metal ions were successfully removed from the effluents. Then the treated effluents contained concerned toxic metal ions concentrations within the permissible limits as recommended by the national environmental quality standards (NEQS). (author)

  2. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain).

    Science.gov (United States)

    Peña-Fernández, A; Lobo-Bedmar, M C; González-Muñoz, M J

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Multivariate Analyses of Heavy Metals in Surface Soil Around an Organized Industrial Area in Eskisehir, Turkey.

    Science.gov (United States)

    Malkoc, S; Yazici, B

    2017-02-01

    A total of 50 surface industrial area soil in Eskisehir, Turkey were collected and the concentrations of As, Cr, Cd, Co, Cu, Ni, Pb, Zn, Fe and Mg, at 11.34, 95.8, 1.37, 15.28, 33.06, 143.65, 14.34, 78.79 mg/kg, 188.80% and 78.70%, respectively. The EF values for As, Cu, Pb and Zn at a number of sampling sites were found to be the highest among metals. Igeo-index results show that the study area is moderately polluted with respect to As, Cd, Ni. According to guideline values of Turkey Environmental Quality Standard for Soils, there is no problem for Pb, but the Cd values are fairly high. However, Cr, Cu, Ni and Zn values mostly exceed the limits. Cluster analyses suggested that soil the contaminator values are homogenous in those sub classes. The prevention and remediation of the heavy metal soil pollution should focus on these high-risk areas in the future.

  4. Determination of metallic elements in soils and plants in industrial and urban sites

    Energy Technology Data Exchange (ETDEWEB)

    Delearte, E; Nangniot, P; Impens, R

    1973-01-01

    The first phase of a program to study metals in soils and plants in industrial and urban sites is reported. The metals analyzed were copper, cobalt, nickel, zinc, lead, and cadmium. The soil samples were taken at increasing distances from potential emission sources with respect to dominant wind directions. Ubiquitous plants, such as Tussilago farfara L., Plantago major L., Mercurialis annua L., and Agrostis velgaris With. were used as samples for differential oscillopolarographic analyses. Soil samples taken around a zinc ore roasting plant showed very high zinc contents, and irregular distribution of cadmium and copper. Plant samples taken at different distances from the plant revealed rapid reduction of the copper, zinc, and cadmium levels with increasing distance. Very high concentrations of copper were found in plants around a petroleum refinery. Leaves of Aeer platanoides variety Schwedlerii in a town contained an average of 14.1 ppM copper, 0.7 ppM cobalt, 5.4 ppM nickel, 160 ppM zinc, 145 ppM lead, and 0.08 ppM cadmium, relative to the dry weight. The findings indicate that samples should be obtained over a period of sufficient length.

  5. Physico-Chemical parameters and trace-metals concentration in effluents from various industries in vicinity of Lahore

    International Nuclear Information System (INIS)

    Gulfraz, M.; Ahmad, T.; Afzal, H.

    2003-01-01

    Increasing problem of pollution has become serious in almost all big cities of Pakistan. The industrial effluents (Liquid waste) discharged by different industries are drained into streams/nallahs, which ultimately join the waterways (streams, lakes, rivers or sea). The effluent samples from five industries, like Tanneries, Chemicals, Pharmaceuticals, Fertilizers and metal/electroplating, working in Lahore, Sheikhupura and Kalashahkaku were selected for analysis. The parameters, like Temperature, pH, conductivity, hardness, alkalinity, total dissolved solids, chemical oxygen demands, phosphate, nitrate, nitrite, major cations (Na, K, Ca, Mg) and heavy/trace metals, were studied. The results were compared with National environmental Quality standards (NEQS). It was further observed that when effluents of industries join fresh water of stream, lakes or rivers, this causes severe water-pollution and damages the flora and fauna. Suggestions for effective control of water-pollution are also given. (author)

  6. Valorization of titanium metal wastes as tanning agent used in leather industry

    International Nuclear Information System (INIS)

    Crudu, Marian; Deselnicu, Viorica; Deselnicu, Dana Corina; Albu, Luminita

    2014-01-01

    Highlights: • Valorization of titanium wastes which cannot be recycled in metallurgical industry. • Transferring Ti waste into raw materials for obtaining Ti based tanning agent. • Characterization of new Ti based tanning agents and leather tanned with them. • Characterization of sewage waste water and sludge resulted from leather manufacture. • Analysis of the impact of main metal component of Ti waste. - Abstract: The development of new tanning agents and new technologies in the leather sector is required to cope with the increasingly higher environmental pressure on the current tanning materials and processes such as tanning with chromium salts. In this paper, the use of titanium wastes (cuttings) resulting from the process of obtaining highly pure titanium (ingots), for the synthesis of new tanning agent and tanning bovine hides with new tanning agent, as alternative to tanning with chromium salts are investigated. For this purpose, Ti waste and Ti-based tanning agent were characterized for metal content by inductively coupled plasma mass spectrometry (ICP-MS) and chemical analysis; the tanned leather (wet white leather) was characterized by Scanning Electron Microscope/Energy Dispersive Using X-ray (Analysis). SEM/EDX analysis for metal content; Differential scanning calorimetric (DSC), Micro-Hot-Table and standard shrinkage temperature showing a hydrothermal stability (ranged from 75.3 to 77 °C) and chemical analysis showing the leather is tanned and can be processed through the subsequent mechanical operations (splitting, shaving). On the other hand, an analysis of major minor trace substances from Ti-end waste (especially vanadium content) in new tanning agent and wet white leather (not detected) and residue stream was performed and showed that leachability of vanadium is acceptable. The results obtained show that new tanning agent obtained from Ti end waste can be used for tanning bovine hides, as eco-friendly alternative for chrome tanning

  7. Phytoaccumulation of heavy metals in natural plants thriving on wastewater effluent at Hattar industrial estate, Pakistan.

    Science.gov (United States)

    Irshad, Muhammad; Ahmad, Sajjad; Pervez, Arshid; Inoue, Mitsuhiro

    2015-01-01

    The objective of this research was to compare the potential of native plants for the phytoaccumulation of heavy metals (HM). Thirteen predominant plant species (including trees, bushes and grasses) namely Ricinus communis, Ipomoea carnea, Cannabis sativa, Parthenium hysterophorus, Acacia nilotica, Dalbergia sissoo, Acacia modesta, Solanum nigrum, Xanthium stromarium, Chenopodium album, Cynodon dactylon, Eleusine indica, and Dactyloctenium aegyptium were collected from the wastewater originated from Hattar industrial estate of Pakistan, Plants shoots and roots were analyzed for heavy metals/metalloid: Pb, Cr, Cd, Zn, Fe, Ni, and As. Among plant species, the accumulation potential for HM varied depending on the type of element. Regardless of the plant species, HM concentrations varied in the order of Fe>Zn>Cr>Pb>Ni>Cd>As. Tree species of R. communis, A. nilotica, A. modesta, and D. sissoo exhibited an enhanced concentrations of metals. Accumulation pattern of Fe, Pb, Cd, and As in plants could be related to the HM composition of soil and wastewater. Most of the species exhibited higher HM composition in the root as compared to shoot. The species that found with greater ability to absorb HM in the root, got higher HM concentrations in its shoot. Shoot tissue concentrations of HM were attained by the species as D. sissoo>A. modesta>A. nilotica>R. communis>I. carnea>C. album>E. indica>P. hysterophorus>S. nigrum>C. sativa>D. aegyptium>X. strumarium>C. dactylon. Based on results, tree plants were noticed as higher accumulators of HM in polluted soils.

  8. Valorization of titanium metal wastes as tanning agent used in leather industry

    Energy Technology Data Exchange (ETDEWEB)

    Crudu, Marian, E-mail: mariancrudu@yahoo.com [The National Research and Development Institute for Textiles and Leather – Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., Bucharest (Romania); Deselnicu, Viorica, E-mail: viorica.deselnicu@icpi.ro [The National Research and Development Institute for Textiles and Leather – Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., Bucharest (Romania); Deselnicu, Dana Corina, E-mail: d_deselnicu@yahoo.com [University Politehnica Bucharest, Splaiul Independentei Nr. 313, Sector 6, RO-060042 Bucharest (Romania); Albu, Luminita, E-mail: luminita.albu@gmail.com [The National Research and Development Institute for Textiles and Leather – Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., Bucharest (Romania)

    2014-10-15

    Highlights: • Valorization of titanium wastes which cannot be recycled in metallurgical industry. • Transferring Ti waste into raw materials for obtaining Ti based tanning agent. • Characterization of new Ti based tanning agents and leather tanned with them. • Characterization of sewage waste water and sludge resulted from leather manufacture. • Analysis of the impact of main metal component of Ti waste. - Abstract: The development of new tanning agents and new technologies in the leather sector is required to cope with the increasingly higher environmental pressure on the current tanning materials and processes such as tanning with chromium salts. In this paper, the use of titanium wastes (cuttings) resulting from the process of obtaining highly pure titanium (ingots), for the synthesis of new tanning agent and tanning bovine hides with new tanning agent, as alternative to tanning with chromium salts are investigated. For this purpose, Ti waste and Ti-based tanning agent were characterized for metal content by inductively coupled plasma mass spectrometry (ICP-MS) and chemical analysis; the tanned leather (wet white leather) was characterized by Scanning Electron Microscope/Energy Dispersive Using X-ray (Analysis). SEM/EDX analysis for metal content; Differential scanning calorimetric (DSC), Micro-Hot-Table and standard shrinkage temperature showing a hydrothermal stability (ranged from 75.3 to 77 °C) and chemical analysis showing the leather is tanned and can be processed through the subsequent mechanical operations (splitting, shaving). On the other hand, an analysis of major minor trace substances from Ti-end waste (especially vanadium content) in new tanning agent and wet white leather (not detected) and residue stream was performed and showed that leachability of vanadium is acceptable. The results obtained show that new tanning agent obtained from Ti end waste can be used for tanning bovine hides, as eco-friendly alternative for chrome tanning.

  9. Simultaneous Exposure to Heavy Metals among Residents in the Industrial Complex: Korean National Cohort Study

    Directory of Open Access Journals (Sweden)

    Heejin Park

    2015-05-01

    Full Text Available A survey was conducted to evaluate the multi-exposure level and correlation among toxic metal biomarkers (Cd, Pb, and Hg. A total of 592 individuals who participated in the survey were residents near an industrial complex in Gwangyang and Yeosu (exposed group and of Hadong and Namhae (control group in southern Korea from May 2007 to November 2010. The Gwangyang and Yeosu area exposed groups had slightly higher blood Pb (2.21 and 1.90 µg/dL, urinary Cd observed values (2.20 and 1.46 µg/L, urinary Cd with a urinary creatinine correction (1.43 and 1.25 µg/g Cr, and urinary Hg observed values (2.26 and 0.98 µg/L in women participants than those in the Hadong and Namhae area (control group. Blood Pb (3.18 and 2.55 µg/dL, urinary Hg observed values (1.14 and 0.92 µg/L, and urinary Hg with a urinary creatinine correction (1.06 and 0.96 µg/L for male participants were also slightly higher than those in the Hadong and Namhae area (control group. The correlation among urinary Cd, Hg and Pb concentrations in the blood was significant. We suggest that the exposed group of residents were simultaneously exposed to Pb, Cd, and Hg from contaminated ambient air originating from the iron manufacturing industrial complex.

  10. Energy Dispersive X-Ray Fluorescent Analysis of Soil in the Vicinity of Industrial Areas and Heavy Metal Pollution Assessment

    Science.gov (United States)

    Singh, V.; Joshi, G. C.; Bisht, D.

    2017-05-01

    The soil of two agricultural sites near an industrial area was investigated for heavy metal pollution using energy dispersive X-ray fluorescence (EDXRF). The concentration values for 17 elements were determined in the soil samples including eight heavy metal elements, i.e., Fe, Ni, As, Pb, Mn, Cr, Cu, and Zn. The soil near a pulp and paper mill was found to be highly polluted by the heavy metals. The concentration data obtained by EDXRF were further examined by calculating the pollution index and Nemerow integrated pollution index.

  11. Heavy Metals in Suburban Ecosystems of Industrial Centres and Ways of their Reduction

    Directory of Open Access Journals (Sweden)

    Onistratenko Nikolay Vladimirovich

    2016-09-01

    Full Text Available Technogenic contamination of ecosystems is one of the main dangers of our time. In order to reduce the harmful effects of this contamination and to provide cost-effective and environmentally safe food production methods, we are forced to look for ways of reliable analysis of the environmental situation, the selection systems of animal husbandry and regulations for the degree of impact of pollutants on the elements of the agroecosystem. This article presents the results of studies aimed at assessing the plight of the environment of a large industrial centre, and its anthropogenic impacts on every element of the suburban ecosystems. It presents data on maintenance and migration of anthropogenous pollutants in the trophic chains of pasturable ecosystems of the suburb of Volgograd. The authors have listed the industrial enterprises as the key sources of pollution. The features of the distribution of xenobiotics in the tissues and organs of calves and heifers of different breeds were analysed in the study. Conclusions were drawn on the accumulation of heavy metals and arsenic in cattle, and the impact of this factor on the quality of production. A comparative assessment of the resistance of different breeds of cows to the action of toxicants in the environment of the Lower Volga region was carried out. Ways to decrease the impact of pollutants on the cattle organism have also been suggested. The article pays attention to the environmental pollution of the industrial centre, the influence of these processes on all elements of an ecosystem including humans, and offers ways to minimize the damage.

  12. Utilisation of fly ash for the management of heavy metal containing primary chemical sludge generated in a leather manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Sekaran, G.; Rao, B.P.; Ghanamani, A.; Rajamani, S. [Central Leather Research Institute, Chennai (India). Dept. of Environmental Technology

    2003-07-01

    The present study aims at disposal of primary chemical sludge generated in the tanning industry by solidification and stabilization process using flyash generated from thermal power plant along with binders and also on evaluating the leachability of heavy metal from the solidified product. The primary chemical sludge containing heavy metals iron and chromium were obtained from a garment leather manufacturing company at Chennai in India. The sludge was dried in open environment and it was powdered to fine size in a grinder. Binding increases stabilization of heavy metal in calcined sludge with refractory binders such as clay, fly ash, lime and ordinary Portland cement. Fly ash can be considered as the additional binder for producing stronger bricks, with high metal fixation efficiency, and minimum rate of removal of heavy metal and minimum diffusion co-efficient. 15 refs., 5 figs., 5 tabs.

  13. High power n-type metal-wrap-through cells and modules using industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Guillevin, N.; Heurtault, B.J.B.; Geerligs, L.J.; Van Aken, B.B.; Bennett, I.J.; Jansen, M.J.; Weeber, A.W.; Bultman, J.H. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Jianming, Wang; Ziqian, Wang; Jinye, Zhai; Zhiliang, Wan; Shuquan, Tian; Wenchao, Zhao; Zhiyan, Hu; Gaofei, Li; Bo, Yu; Jingfeng, Xiong [Yingli Green Energy Holding Co.,Ltd. 3399 North Chaoyang Avenue, Baoding (China)

    2013-10-15

    This paper reviews our recent progress in the development of metal wrap through (MWT) cells and modules, produced from n-type Czochralski silicon wafers. The use of n-type silicon as base material allows for high efficiencies: for front emitter-contacted industrial cells, efficiencies above 20% have been reported. N-type MWT (nMWT) cells produced by industrial process technologies allow even higher efficiency due to reduced front metal coverage. Based on the same industrial technology, the efficiency of the bifacial n-MWT cells exceeds the efficiency of the n-type front-and-rear contact and bifacial 'Pasha' technology (n-Pasha) by 0.1-0.2% absolute, with a maximum nMWT efficiency of 20.1% so far. Additionally, full back-contacting of the MWT cells in a module results in reduced cell to module (CTM) fill factor losses. In a direct 60-cell module performance comparison, the n-MWT module, based on integrated backfoil, produced 3% higher power output than the comparable tabbed front emitter-contacted n-Pasha module. Thanks to reduced resistive losses in copper circuitry on the backfoil compared to traditional tabs, the CTM FF loss of the MWT module was reduced by about 2.2%abs. compared to the tabbed front emitter contact module. A full-size module made using MWT cells of 19.6% average efficiency resulted in a power output close to 280W. Latest results of the development of the n-MWT technology at cell and module level are discussed in this paper, including a recent direct comparison run between n-MWT and n-Pasha cells and results of n-MWT cells from 140{mu}m thin mono-crystalline wafers, with only very slight loss (1% of Isc) for the thin cells. Also reverse characteristics and effects of reverse bias for extended time at cell and module level are reported, where we find a higher tolerance of MWT modules than tabbed front contact modules for hotspots.

  14. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries.

    Science.gov (United States)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-29

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  15. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    Science.gov (United States)

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-04-01

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  16. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-09-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  17. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide

    International Nuclear Information System (INIS)

    2014-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as … well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  18. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  19. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  20. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  1. Investigation of the influence of pretreatment parameters on the surface characteristics of amorphous metal for use in power industry

    Science.gov (United States)

    Nieroda, Jolanta; Rybak, Andrzej; Kmita, Grzegorz; Sitarz, Maciej

    2018-05-01

    Metallic glasses are metallic materials, which exhibit an amorphous structure. These are mostly three or more component alloys, and some of them are magnetic metals. Materials of this kind are characterized by high electrical resistivity and at the same time exhibit very good magnetic properties (e.g. low-magnetization loss). The above mentioned properties are very useful in electrical engineering industry and this material is more and more popular as a substance for high-efficiency electrical devices production. This industry area is still evolving, and thus even higher efficiency of apparatus based on amorphous material is expected. A raw material must be carefully investigated and characterized before the main production process is started. Presented work contains results of complementary examination of amorphous metal Metglas 2605. Studies involve two ways to obtain clean and oxidized surface with high reactivity, namely degreasing followed by annealing process and plasma treatment. The amorphous metal parameters were examined by means of several techniques: surface free energy (SFE) measurements by sessile drop method, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and both ex situ and in situ Raman spectroscopy. Additionally, influence of plasma parameters on wetting properties were optimized in systematic way with Design of Experiments (DOE) method. A wide range of used methods allow to fully investigate the amorphous metal material during preliminary preparation of surface. Obtained results provide information about appropriate parameters that should be applied in order to obtain highly reactive surface with functional oxide layer on it.

  2. Raw Materials Synthesis from Heavy Metal Industry Effluents with Bioremediation and Phytomining: A Biomimetic Resource Management Approach

    Directory of Open Access Journals (Sweden)

    Salmah B. Karman

    2015-01-01

    Full Text Available Heavy metal wastewater poses a threat to human life and causes significant environmental problems. Bioremediation provides a sustainable waste management technique that uses organisms to remove heavy metals from contaminated water through a variety of different processes. Biosorption involves the use of biomass, such as plant extracts and microorganisms (bacteria, fungi, algae, yeast, and represents a low-cost and environmentally friendly method of bioremediation and resource management. Biosorption-based biosynthesis is proposed as a means of removing heavy metals from wastewaters and soils as it aids the development of heavy metal nanoparticles that may have an application within the technology industry. Phytomining provides a further green method of managing the metal content of wastewater. These approaches represent a viable means of removing toxic chemicals from the effluent produced during the process of manufacturing, and the bioremediation process, furthermore, has the potential to save metal resources from depletion. Biomimetic resource management comprises bioremediation, biosorption, biosynthesis, phytomining, and further methods that provide innovative ways of interpreting waste and pollutants as raw materials for research and industry, inspired by materials, structures, and processes in living nature.

  3. Electrodeposition in molten salts of metals used in nuclear industry: hafnium and uranium

    International Nuclear Information System (INIS)

    Serrano, K.

    1998-01-01

    The aim of this work is to study the electrodeposition in molten salts of metals used in nuclear industry: hafnium and uranium. The experiment is carried out in a molten alkaline halogenide medium in a temperature range between 670 and 750 degrees Celsius. The first part of this work concerns more particularly the electrochemical behaviour of the hafnium and uranium ions in the electrolytic solution. The reduction mechanisms of these ions have been studied by the use of three methods: cyclic voltametry, chrono-potentiometry and square wave voltametry. Results have shown that the process of metal deposition is difficult to explain because secondary reactions (as for instance: adsorption phenomena or cathodic deposit dissolution) occur. The uranium germination has then been studied by modelling of chrono-amperograms. The experiments have shown that the deposition is the result of the initial uranium crystal growth and depends on the electrolyte diffusion. The second part of this work deals with the implementation of hafnium and uranium deposition taking into account the preceding mechanistic studies. Depositions have all been observed by physical methods as for instance scanning electron microscopy. Particular experimental solutions (soluble anode, addition of fluoride ions to the electrolyte) have been used. The obtained deposition of hafnium is smooth and adheres very well to the substrate. The uranium depositions have been implemented with the use of a soluble anode. Uranium is deposited in a dendritic shape to the cathode. It has also been shown that the electro-kinetic parameters (temperature, uranium ions concentration, current density) have not an important influence on the dendritic morphology of the deposition. This morphology could be the consequence of particular convection movements to the surface of the cathode. (O.M.)

  4. Noise-induced hearing loss in Korean workers: co-exposure to organic solvents and heavy metals in nationwide industries.

    Directory of Open Access Journals (Sweden)

    Yoon-Hyeong Choi

    Full Text Available BACKGROUND: Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. METHODS: We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents and subject-specific health outcomes (e.g., audiometric examination were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA (i.e., means of 2, 3, and 4 kHz were computed. RESULTS: In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. CONCLUSION: This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks.

  5. Noise-induced hearing loss in Korean workers: co-exposure to organic solvents and heavy metals in nationwide industries.

    Science.gov (United States)

    Choi, Yoon-Hyeong; Kim, KyooSang

    2014-01-01

    Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents) and subject-specific health outcomes (e.g., audiometric examination) were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA) (i.e., means of 2, 3, and 4 kHz) were computed. In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks.

  6. Noise-Induced Hearing Loss in Korean Workers: Co-Exposure to Organic Solvents and Heavy Metals in Nationwide Industries

    Science.gov (United States)

    Choi, Yoon-Hyeong; Kim, KyooSang

    2014-01-01

    Background Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. Methods We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents) and subject-specific health outcomes (e.g., audiometric examination) were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA) (i.e., means of 2, 3, and 4 kHz) were computed. Results In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. Conclusion This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks. PMID:24870407

  7. Use of mud from metallic surface treatment industries as additive to ceramic matrices

    Directory of Open Access Journals (Sweden)

    Corpas Iglesias, F. A.

    2011-06-01

    Full Text Available Ceramic processing is one of the most efficient and environmentally friendly solutions to the enormous amounts of industrial mud produced in metal surface treatments. Moreover, ceramized products may represent an important secondary source to replace clay materials and cut down manufacturing costs. After characterization, in order to prepare specimens by uniaxial die pressing, mud was incorporated into a clay matrix at rates between 1 and 5 wt %. Compression strength, linear contraction, suction capacity and water absorption of the moulded materials were evaluated. Finally, metal leakage was characterized through chemical analysis of lixiviates. The results showed an improvement in mechanical properties following the incorporation of mud into the ceramic materials. The resulting materials meet health and safety regulations regarding dangerous waste recycling.

    La ceramización es una de las soluciones más eficientes y medioambientalmente más ecológicas para las enormes cantidades de lodos industriales que se producen en el tratamiento de superficies metálicas. Además estos lodos convenientemente ceramizados pueden representar una fuente de materia prima que sustituya en parte el consumo de arcilla, lo que se traduce en una disminución de los costes de fabricación. Tras caracterizarse, los lodos fueron incorporados en la matriz cerámica en proporciones desde el 1% hasta el 5%, fabricándose así piezas cerámicas por compresión uniaxial en seco. A las piezas conformadas se les midieron una serie de características tecnológicas tales como la resistencia a la compresión, la contracción lineal, capacidad de succión y la absorción de agua. Finalmente se realizaron análisis químicos de lixiviados para evaluar la liberación al medio de metales. Los resultados conseguidos muestran una mejora de las propiedades mecánicas tras la inclusión de los lodos en matrices cerámicas. Los materiales así fabricados satisfacen la normativa

  8. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    Science.gov (United States)

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control

  9. Laser Induced Forward Transfer of High Viscosity Silver Paste for New Metallization Methods in Photovoltaic and Flexible Electronics Industry

    Science.gov (United States)

    Chen, Y.; Munoz-Martin, D.; Morales, M.; Molpeceres, C.; Sánchez-Cortezon, E.; Murillo-Gutierrez, J.

    Laser Induced Forward Transfer (LIFT) has been studied in the past as a promising approach for precise metallization in electronics using metallic inks and pastes. In this work we present large area metallization using LIFT of fully commercial silver-based pastes initially designed for solar cell screen-printing. We discuss the mechanisms for the material transfer both in ns and ps regimes of irradiation of these high viscosity materials, and the potential use of this technique in the photovoltaic industry (both in standard c-Si solar cells and thin film technologies) and flexible electronics devices. In particular we summarize the results of our group in this field, demonstrating that our approach is capable of improving the aspect ratio of the standard metallization patterns achieved with screen-printing technologies in those technological fields and, in addition, of fulfilling the requirements imposed by the mechanical properties of the substrates in flexible electronic applications.

  10. Tracking environmental impacts in global product chains - Rare Earth Metals and other critical metals used in the cleantech industry

    Energy Technology Data Exchange (ETDEWEB)

    Pathan, A.; Schilli, A.; Johansson, J.; Vehvilaeinen, I.; Larsson, A.; Hutter, J.

    2013-03-15

    Metals form a central part of the global economy, but their extraction and supply are linked to several environmental and social concerns. This study aims to create a picture of the supply chain of Rare Earth Metals (REMs) and other critical metals used in the clean technology (cleantech) sectors of electric vehicles and solar panels. The study examines how Nordic cleantech companies are aware and acting on the challenges related to the lifecycle of these metals and what are the potentials to minimise environmental and social impacts. Recommendations of the study can be summarised as three initiatives: establishment of an awareness platform and roundtable initiative (short-term), research and information gathering (mid-term), and development of closed-loop solutions (long-term). (Author)

  11. Industry

    International Nuclear Information System (INIS)

    Schindler, I.; Wiesenberger, H.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of the industry in Austria. It gives a review of the structure and types of the industry, the legal framework and environmental policy of industrial relevance. The environmental situation of the industry in Austria is analyzed in detail, concerning air pollution (SO 2 , NO x , CO 2 , CO, CH 4 , N 2 O, NH 3 , Pb, Cd, Hg, dioxin, furans), waste water, waste management and deposit, energy and water consumption. The state of the art in respect of the IPPC-directives (European Integrated Pollution Prevention and Control Bureau) concerning the best available techniques of the different industry sectors is outlined. The application of European laws and regulations in the Austrian industry is described. (a.n.)

  12. Evaluation of potential for reuse of industrial wastewater using metal-immobilized catalysts and reverse osmosis.

    Science.gov (United States)

    Choi, Jeongyun; Chung, Jinwook

    2015-04-01

    This report describes a novel technology of reusing the wastewater discharged from the display manufacturing industry through an advanced oxidation process (AOP) with a metal-immobilized catalyst and reverse osmosis (RO) in the pilot scale. The reclaimed water generated from the etching and cleaning processes in display manufacturing facilities was low-strength organic wastewater and was required to be recycled to secure a water source. For the reuse of reclaimed water to ultrapure water (UPW), a combination of solid-phase AOP and RO was implemented. The removal efficiency of TOC by solid-phase AOP and RO was 92%. Specifically, the optimal acid, pH, and H2O2 concentrations in the solid-phase AOP were determined. With regard to water quality and operating costs, the combination of solid-phase AOP and RO was superior to activated carbon/RO and ultraviolet AOP/anion polisher/coal carbon. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Determination of Some Heavy Metals In The Environment of SADAT Industrial City

    International Nuclear Information System (INIS)

    Nassef, M.; EI-Tahawy, M.S.; Hannigan, R.; EL Sayed, K.A.

    2007-01-01

    The aim of this study was to assess the heavy metal concentration in the soil and the groundwater of Sadat City in Egypt and its relation to the highly developed industrial activities in that area. The levels of Pb, Cr, Cu, Cd, Zr, and V were determined in the groundwater samples (as drinking water supplies) and also the same elements in the soil samples. 10 soil samples and 18 groundwater samples were collected from the city. The soil and the groundwater samples were analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The concentration of Pb, Cr, Cu, Cd, Zr, and V measured (in ppm) in the soil samples ranged from 0.48 to 11.3, 0.36 to 2.56, 43.7 to 304.0, 0.34 to 2.64, 0.209 to 21.7, and 0.10 to 17.0, respectively. The concentration of Pb, Cr, Cu, Cd, Zr, and V measured (in ppb) in the groundwater samples of all studied wells ranged from 0.11 to 41.32, 0.10 to 2.63, 0.14 to 5.76, 0.03 to 21.7, 11.4 to 134, and 0.08 to 5.08, respectively. The levels of Pb and Zr exceeded the threshold limits set by the WHO health-based guideline for drinking water in some studied groundwater wells

  14. Silver-free Metallization Technology for Producing High Efficiency, Industrial Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, Lynne M [Technic Inc; Munoz, Krystal [Technic Inc.; Karas, Joseph [Arizona State Univ., Tempe, AZ (United States); Bowden, Stuart [Arizona State Univ., Tempe, AZ (United States); Rand, James A; Gallegos, Anthony [Technic Inc.; Tyson, Tom [Technic Inc.; Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2018-03-30

    The goal of this project is to provide a commercially viable Ag-free metallization technology that will both reduce cost and increase efficiency of standard silicon solar cells. By removing silver from the front grid metallization and replacing it with lower cost nickel, copper, and tin metal, the front grid direct materials costs will decrease. This reduction in material costs should provide a path to meeting the Sunshot 2020 goal of $1 / WDC. As of today, plated contacts are not widely implemented in large scale manufacturing. For organizations that wish to implement pilot scale manufacturing, only two equipment choices exist. These equipment manufacturers do not supply plating chemistry. The main goal of this project is to provide a chemistry and equipment solution to the industry that enables reliable manufacturing of plated contacts marked by passing reliability results and higher efficiencies than silver paste front grid contacts. To date, there have been several key findings that point to plated contacts performing equal to or better than the current state of the art silver paste contacts. Poor adhesion and reliability concerns are a few of the hurdles for plated contacts, specifically plated nickel directly on silicon. A key finding of the Phase 1 budget period is that the plated contacts have the same adhesion as the silver paste controls. This is a huge win for plated contacts. With very little optimization work, state of the art electrical results for plated contacts on laser ablated lines have been demonstrated with efficiencies up to 19.1% and fill factors ~80% on grid lines 40-50 um wide. The silver paste controls with similar line widths demonstrate similar electrical results. By optimizing the emitter and grid design for the plated contacts, it is expected that the electrical performance will exceed the silver paste controls. In addition, cells plated using Technic chemistry and equipment pass reliability testing; i.e. 1000 hours damp heat and 200

  15. Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India.

    Science.gov (United States)

    Pradhan, Jatindra Kumar; Kumar, Sudhir

    2014-01-01

    Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.

  16. Potential for energy conservaton in the metal forming industries. Progress report, July 1, 1978-August 15, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Avitzur, B.; Beidleman, C.R.; Smackey, B.M.

    1979-08-01

    Reduced energy consumption and improved product attributes are realizable benefits that are achievable through the adoption of optimal metal forming techniques. With the meteoric rise in energy costs, certain segments of the metal forming industries have accelerated their efforts in switching from energy intensive manufacturing techniques, e.g., casting, to metal forming, and, furthermore, from hot forming and machined components to cold forming, notably the automotive industry. The first year results of a two year study that will identify and document potential energy and cost savings associated with the adoption of low energy consumption techniques are presented. When compared with techniques requiring energy for hot forming, heat treatments, and excess or scrap material, the utilizaton of alternative metal forming processes offer considerable promise for energy savings. Descriptions of savings achieved by a combination of analytical methods and imaginative new processes are provided in the form of specific industrial case studies. The elimination of defects through the use of an analytical criteria for the prevention of the central burst is presented. Such available criteria for central burst serve as a justification for the desirability to develop criteria for the prevention of fishskin and other defects. Other savings which may be possible through the development of new technologies are included in an Appendix entitled: Recent Developments in Wire Making. One specific new process, Continuous Hydrostatic Extrusion, has been developed at Western Electric and is described in detail.

  17. Laboratory Study on Possibility of Using Eichhornia To Decrease The Concentrations of Some Heavy Metals in Industrial Wastewater

    International Nuclear Information System (INIS)

    Alia, T.; Juniedi, H.; Salama, L.

    2009-01-01

    In this study Eichhornia crassipes was used under varying conditions of heavy metals concentrations, due to typical study for wastewater concentrations from the batteries factories, to decrease them. Moreover, the concentrations in different media of the plants have been distributed depending on the Response Surface design for three factors 100- 300 mg Pb/l, 15-50 mg Cd/l, 5-10 mg Mn/l which are the concentrations of heavy metals in the wastewater of batteries factories. The experiment has continued for fourteen days in which a study has been made for the current changes over the plants endurance for the different concentrations by continuing the morphologic changes which have appeared through this period. The heavy metals concentrations of the media were measured during two days. At the end of the experiment, analyses for metals were also carried out on the plant samples to determine the effect of different media on metal accumulation by roots and aerial parts of the plants. The results showed that the plant can absorb heavy metals from the industrial wastewater which is polluted by them, but at certain concentrations. It is unable to survive in a mixture of high heavy metals concentrations of these three factors together (Pb, Cd, Mn). (author)

  18. The Distribution and Health Risk Assessment of Metals in Soils in the Vicinity of Industrial Sites in Dongguan, China

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2016-08-01

    Full Text Available Exponential industrialization and rapid urbanization have resulted in contamination of soil by metals from anthropogenic sources in Dongguan, China. The aims of this research were to determine the concentration and distribution of various metals (arsenic (As, cadmium (Cd, chromium (Cr, copper (Cu, mercury (Hg, nickel (Ni, lead (Pb and zinc (Zn in soils and identify their potential health risks for local residents. A total of 106 soil samples were collected from the vicinity of industrial sites in Dongguan. Two types of samples were collected from each site: topsoil (0–20 cm, TS and shallow soil (20–50 cm, SS. Results showed that the soils were contaminated by metals and pollution was mainly focused on TS. The geoaccumulation index (Igeo and pollution indexes (PI implied that there was a slight increase in the concentrations of Cd, Cu, Hg, Ni, and Pb, but the metal pollution caused by industrial activities was less severe, and elements of As and Cr exhibited non-pollution level. The risk assessment results suggested that there was a potential health risk associated with As and Cr exposure for residents because the carcinogenic risks of As and Cr via corresponding exposure pathways exceeded the safety limit of 10−6 (the acceptable level of carcinogenic risk for humans. Furthermore, oral ingestion and inhalation of soil particles are the main exposure pathways for As and Cr to enter the human body. This study may provide basic information of metal pollution control and human health protection in the vicinity of industrial regions.

  19. The metal industry in Norway: Economy, employment and emission of climate gases; Metallindustrien i Norge: Oekonomi, sysselsetting og utslipp av klimagasser

    Energy Technology Data Exchange (ETDEWEB)

    Godal, Odd

    1998-11-01

    This document presents various types of data on the metal industry in Norway as a basis for further analysis and discussion. Being energy intensive, the Norwegian metal industry has profited from the availability of hydroelectric power. The factories are often located in sparsely populated areas. In the production of aluminium, carbon dioxide is emitted to the atmosphere. A table lists all the Norwegian smelteries and their emissions of the greenhouse gases. Some of these emissions are fluoride gases with heating potentials up to 9200 times that of carbon dioxide. The emissions of SF6 are small in mass, but large in heating effect, 23900 times that of carbon dioxide. The total emission of climate gases from Norway is 59 million ton CO2 equivalents and 11% of this is due to the part of the metal industry described in this document. The total consumption of electricity of the factories included in this analysis is 25 TWh, which is 2/3 of the consumption by private households. The metal industry is not work intensive; the last twenty years the numbers of employees have decreased by 50%. But these factories are very important for the local communities. The metal industry is exposed to competition; the large fluctuation in prices on metals leads to fluctuation in the profit of the companies. Finally the report discusses the metal industry in a global context. Norway is committed to the Kyoto Protocol and the impact of this commitment on the metal industry is not clear. 2 refs., 8 figs., 9 tabs.

  20. Pollution and health risk assessment of industrial and residential area based on metal and metalloids contents in soil and sediment samples from and around the petrochemical industry, Serbia

    Science.gov (United States)

    Relic, Dubravka; Sakan, Sanja; Andjelkovic, Ivan; Djordjevic, Dragana

    2017-04-01

    Within this study the investigation of pollution state of metal and metalloids contamination in soils and sediments samples of the petrochemical and nearby residential area is present. The pseudo-total concentrations of Ba, Cd, Co, Cu, Cr, Mn, Ni, Pb, V, Zn, As, Hg, and Se were monitored with ICP/OES. The pollution indices applied in this work, such as the enrichment factor, the pollution load index, the total enrichment factor, and the ecological risk index showed that some of the soil and sediment samples were highly polluted by Hg, Ba, Pb, Cd, Cr Cu and Zn. The highest pollution indices were calculated for Hg in samples from the petrochemical area: chloralkali plant, electrolysis factory, mercury disposal area, and in samples from the waste channel. The pollution indices of the samples from the residential area indicated that this area is not polluted by investigated elements. Besides the pollution indices, the metal and metalloids concentrations were used in the equations for calculating the health risk criteria. We calculate no carcinogenic and carcinogenic risks for the composite worker and residential people by usage adequate equations. In analyzed samples, the no carcinogenic risks were lower than 1. The highest values of carcinogenic risk were obtained in sediment samples from the waste channel within the petrochemical industry and the metal that mostly contributes to the highest carcinogenic risk is Cr. Correlation analysis of pollution indices and carcinogenic risks calculated from the residential area samples showed good correlations while this is not the case for an industrial area.

  1. The competitiveness of metallurgy and metal products industry in Spain; La competitividad de las industrias metalurgica y de productos metalicos en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Mateos Torres, C.

    2012-07-01

    This article analyzes the competitiveness of metallurgy and manufacture of metal products sectors, in which the Industrial Observatory of the Metal Sector has studied the key factors of innovation for competitiveness. It includes a reference to the competitive situation of the Spanish iron and steel industry. Furthermore, the investments carried out by both sectors under the Competitiveness Promotion Programme for Strategic Industrial Sectors during the years 2009-2011 are analyzed. (Author)

  2. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    Directory of Open Access Journals (Sweden)

    Kamika Ilunga

    2013-02-01

    Full Text Available Abstract Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively compared to other test isolates. This was also revealed with significant COD increases (p Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49% followed by Bacillus licheniformis (Al-23% and Zn-53% and Peranema sp. (Cd-42%. None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes. Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p Peranema sp. as a potential candidate for the bioremediation of heavy-metals in wastewater treatment, in addition to Pseudomonas

  3. Roles of Co element in Fe-based bulk metallic glasses utilizing industrial FeB alloy as raw material

    Directory of Open Access Journals (Sweden)

    Shouyuan Wang

    2017-08-01

    Full Text Available A series of Fe-based bulk metallic glasses were fabricated by a conventional copper mold casting method using a kind of Fe-B industrial raw alloy. It is found that Fe-B-Y-Nb bulk metallic glass with 3 at% of Co addition possesses the best glass forming ability, thermal stability, hardness, magnetic property and anti-corrosion property. The hardness test result indicates a synchronically trend with glass-forming ability parameters. The excellent glass-forming ability and a combination of good mechanical and functional properties suggest that the alloys in this work might be good candidates for commercial use.

  4. Arqueología Industrial: Conservación del Patrimonio Minero-Metalúrgico madrileño

    OpenAIRE

    Mazadiego Martínez, Luis Felipe; Puche Riart, Octavio

    2001-01-01

    Acaba de finalizar la segunda fase del Proyecto de Investigación de título "Arqueología Industrial: Conservación del Patrimonio Minero- Metalúrgico madrileño", que, financiado por la Comunidad de Madrid, han realizado Octavio Puche (Director), Luis F. Mazadiego, Angel García Cortés y Luis Fernández. El objetivo general del mismo ha sido "evaluar, clasificar y catalogar los elementos, relacionados con el ámbito minero y metalúrgico, existentes en la provincia de Madrid".

  5. Metals in coastal zones impacted with urban and industrial wastes: Insights on the metal accumulation pattern in fish species

    Science.gov (United States)

    La Colla, Noelia S.; Botté, Sandra E.; Marcovecchio, Jorge E.

    2018-05-01

    The pollution of aquatic environments is a worldwide problem of difficult solution since these areas are used for the disposal and dilution of anthropogenic wastes. This study evaluated the concentrations of Cd, Cu, Ni and Zn in the gills, liver and muscle tissues of six economically important fish species from the Bahía Blanca estuary in Argentina, a coastal environment that is under anthropogenic pressure. Metal contents in 147 fish samples were determined by digestion and a subsequent analysis with an ICP OES. The concentrations (μg/g, wet weight) of each metal in the fish tissues ranged from below the limit of detection for the four metals to 5.2 in the case of Cd, 340 for Cu, 20 for Ni, and 101 for Zn. The results suggested that metal burden in fishes varied with the species and metal elements, with Cd, Cu and Zn mean maximum accumulation towards the liver tissue. Ni showed a high number of samples with concentrations below the limit of detection. Among species, Cynoscion guatucupa was found to have the highest concentrations of Cu and Zn in the liver tissues, whereas the gills and liver tissues of Mustelus schmitti showed the lowest levels of Ni and Zn. As regards the human health risks, two samples of muscle tissue belonging to C. guatucupa reached to Cd levels that exceeded the permissible levels for human consumption. Moreover, the estimated daily intakes calculated suggest that people would not experience significant health risks from the intake of individual metals through fish consumption.

  6. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China

    Directory of Open Access Journals (Sweden)

    Bifeng Hu

    2018-04-01

    Full Text Available Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI and Nemerow integrated pollution index (NIPI were calculated for every surface sample (0–20 cm to assess the degree of heavy metal pollution. Ordinary kriging (OK was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK. The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution.

  7. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China

    Science.gov (United States)

    Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan

    2018-01-01

    Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0–20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution. PMID:29642623

  8. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China.

    Science.gov (United States)

    Hu, Bifeng; Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan; Shi, Zhou

    2018-04-10

    Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0-20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution.

  9. Advances in the development of ovonic nickel metal hydride batteries for industrial and electric vehicles

    International Nuclear Information System (INIS)

    Venkatesan, S.; Fetcenko, M.A.; Dhar, S.K.; Ovshinsky, S.R.

    1991-01-01

    This paper reports that increasing concerns over urban pollution and continued uncertainties about oil supplies have forced the government and industry to refocus their attention on electric vehicles. Despite enormous expenditures in research and development for the ideal battery system, no commercially viable candidate has emerged. The battery systems being considered today due to renewed environmental concerns are still the same systems that were so extensively tested over the last 15 years. For immediate application, an electric vehicle designer has very little choice other than the lead-acid battery despite the fact that energy density is so low as to make vehicle range inadequate, as well as the need for replacement every 20,000 miles. The high energy density projections of Na-S and other so-called high energy batteries have proven to be significantly less in practical modules and there are still concern over cycle life which can be attained under aggressive conditions, reliability under freeze/thaw cycling and consequences resulting from high temperature operation. The conventional nickel-based systems (Ni- Zn, Ni-Fe, Ni-Cd) provide near term higher energy density as compared to lead-acid, but still do not address other important issues such as long life, the need for maintenance-free operation, the use of nontoxic materials and low cost. Against this background, the development of Ovonic Nickel-Metal Hydride (Ni-MH) batteries for electric vehicles has been rapid and successful. Ovonic No-Mh battery technology is uniquely qualified for electric vehicles due to its high energy density, high discharge rate capability, non-toxic alloys, long cycle life. low cost, tolerance to abuse and ability to be sealed for totally maintenance free operation

  10. Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters

    Directory of Open Access Journals (Sweden)

    Élise Euvrard

    2016-08-01

    Full Text Available In this study, a polymer, prepared by crosslinking cyclodextrin (CD by means of a polycarboxylic acid, was used for the removal of pollutants from spiked solutions and discharge waters from the surface treatment industry. In spiked solutions containing five metals, sixteen polycyclic aromatic hydrocarbons (PAH and three alkylphenols (AP, the material exhibited high adsorption capacities: >99% of Co2+, Ni2+ and Zn2+ were removed, between 65 and 82% of the PAHs, as well as 69 to 90% of the APs. Due to the structure of the polymer and its specific characteristics, such as the presence of carboxylic groups and CD cavities, the adsorption mechanism involves four main interactions: ion exchange, electrostatic interactions and precipitation for metal removal, and inclusion complexes for organics removal. In industrial discharge waters, competition effects appeared, especially because of the presence of calcium at high concentrations, which competed with other pollutants for the adsorption sites of the adsorbent.

  11. Industrialization

    African Journals Online (AJOL)

    Lucy

    . African states as ... regarded as the most important ingredients that went to add value to land and labour in order for countries ... B. Sutcliffe Industry and Underdevelopment (Massachusetts Addison – Wesley Publishing Company. 1971), pp.

  12. Industrialization

    African Journals Online (AJOL)

    Lucy

    scholar, Walt W. Rostow presented and supported this line of thought in his analysis of ... A Brief Historical Background of Industrialization in Africa ... indicative) The western model allowed for the political economy to be shaped by market.

  13. Industrial inline PVD metallization for silicon solar cells with laser fired contacts leading to 21.8% efficiency

    OpenAIRE

    Nekarda, J.; Reinwand, D.; Hartmann, P.; Preu, R.

    2010-01-01

    In this contribution we present the latest results of our experiments in regard to an industrially feasible inline physical vapor deposition (PVD) metallization method for the rear side of passivated solar cells. In an earlier publication, the quality of such processed layers and the feasibility of the tool was already shown and compared with a commonly used laboratory process based on electron beam evaporation. Since then a difference in the Voc potential in the range of ~ 4 mV between both ...

  14. Characterization and application of dried plants to remove heavy metals, nitrate, and phosphate ions from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Chiban, Mohamed; Soudani, Amina; Sinan, Fouad [Department of Chemistry, Faculty of Sciences, Agadir (Morocco); Tahrouch, Saida [Department of Biology, Faculty of Sciences, Agadir (Morocco); Persin, Michel [European Membrane Institute, CRNS, Montpellier (France)

    2011-04-15

    Low cost adsorbents were prepared from dried plants for the removal of heavy metals, nitrate, and phosphate ions from industrial wastewaters. The efficiency of these adsorbents was investigated using batch adsorption technique at room temperature. The dried plant particles were characterized by N{sub 2} at 77 K adsorption, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and phytochemical screening. The adsorption experiments showed that the microparticles of the dried plants presented a good adsorption of heavy metals, phosphate, and nitrate ions from real wastewaters. This adsorption increased with increasing contact time. The equilibrium time was found to be 30 min for heavy metals and nitrate ions and 240 min for phosphate ions. After the adsorption process, the Pb(II) concentrations, as well as those of Cd(II), Cu(II), and Zn(II) were below the European drinking water norms concentrations. The percentage removal of heavy metals, nitrates, and phosphates from industrial wastewaters by dried plants was {proportional_to}94% for Cd{sup 2+}, {proportional_to}92% for Cu{sup 2+}, {proportional_to}99% for Pb{sup 2+}, {proportional_to}97% for Zn{sup 2+}, {proportional_to}100% for NO{sub 3}{sup -} and {proportional_to}77% for PO{sub 4}{sup 3-} ions. It is proved that dried plants can be one alternative source for low cost absorbents to remove heavy metals, nitrate, and phosphate ions from municipal and industrial wastewaters. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Seasonal AVS-SEM relationship in sediments and potential bioavailability of metals in industrialized estuary, southeastern Brazil.

    Science.gov (United States)

    Nizoli, Erico Casare; Luiz-Silva, Wanilson

    2012-04-01

    In anoxic sediments, as those found in estuaries, the mobility of metals can be controlled by the formation of stable sulfide complexes. The potential bioavailability of a metal can then be predicted on the basis of the acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) criterion. Distributions of AVS and SEM (Hg, Cu, Pb, Cd, Zn, and Ni) along the sediment profiles were determined seasonally for three rivers that constitute the Santos-Cubatão estuarine system (SE Brazil), which is located in one of the most industrialized areas of Latin America. AVS and SEM concentrations varied significantly, from 0.04 to 31.9 μmol g(-1) and 0.086-6.659 μmol g(-1), respectively. The highest AVS levels in sediments were detected in the winter, whereas high SEM values predominated in the summer. Considering SEM-AVS molar differences as a parameter to evaluate potential bioavailability, sediments nearest to the industrial area represent higher risk to biota, especially during the summer. It is due to relatively low AVS values and not necessarily high concentrations of metals.

  16. Evaluation of solubility in simulated lung fluid of metals present in the slag from a metallurgical industry to produce metallic zinc.

    Science.gov (United States)

    Lima, Rosilda M G; Carneiro, Luana G; Afonso, Júlio C; Cunha, Kenya M D

    2013-01-01

    The objective of this study was to determine the solubility parameters (rapid and slow dissolution rates, rapid and slow dissolution fractions) for nickel, cadmium, zinc and manganese compounds present in a pile of slag accumulated under exposure to weathering. This slag was generated by a metallurgical industry that produced zinc and zinc alloys from hemimorphite (Zn(4)(OH)(2)Si(2)O(7).H(2)O) and willemite (Zn(2)SiO(4)) minerals. A static dissolution test in vitro was used to determine the solubility parameters and Gamble's solution was used as the simulated lung fluid (SLF), on a time basis ranging from 10 min to 1 year. The metal concentrations in the slag samples and in the SLF were determined using Particle Induced X-rays Emission (PIXE). There are significant differences in terms of solubility parameters among the metals. The results indicated that the zinc, nickel, cadmium and manganese compounds present in the slag were moderately soluble in the SLF. The rapid dissolution fractions of these metals are associated with their sulfates. In conclusion, this study confirms the harmful effects on the neighboring population of the airborne particles containing these metals that came from the slag.

  17. Heavy Metal Presence in Two Different Types of Ice Cream: Artisanal Ice Cream (Italian Gelato) and Industrial Ice Cream.

    Science.gov (United States)

    Conficoni, D; Alberghini, L; Bissacco, E; Ferioli, M; Giaccone, V

    2017-03-01

    Ice cream, a popular product worldwide, is usually a milk-based product with other types of ingredients (fruit, eggs, cocoa, dried fruit, additives, and others). Different materials are used to obtain the desired taste, texture, consistency, and appearance of the final product. This study surveyed ice cream products available in Italy for heavy metals (lead, cadmium, chromium, tin, and arsenic). The differences between artisanal and industrial ice cream were also investigated because of the importance in the Italian diet and the diffusion of this ready-to-eat food. Ice cream sampling was performed between October 2010 and February 2011 in the northeast of Italy. A total of 100 samples were randomly collected from different sources: 50 industrial samples produced by 19 different brands were collected in coffee bars and supermarkets; 50 artisanal ice cream samples were gathered at nine different artisanal ice cream shops. Ten wooden sticks of industrial ice cream were analyzed in parallel to the ice cream. All samples were negative for arsenic and mercury. None of the artisanal ice cream samples were positive for lead and tin; 18% of the industrial ice cream samples were positive. All positive lead samples were higher than the legal limit stated for milk (0.02 mg/kg). All industrial ice cream samples were negative for cadmium, but cadmium was present in 10% of the artisanal ice cream samples. Chromium was found in 26% of the artisanal and in 58% of the industrial ice cream samples. The heavy metals found in the wooden sticks were different from the corresponding ice cream, pointing out the lack of cross-contamination between the products. Considering the results and the amount of ice cream consumed during the year, contamination through ice cream is a low risk for the Italian population, even though there is need for further analysis.

  18. Source contribution and risk assessment of airborne toxic metals by neutron activation analysis in Taejeon industrial complex area - Concentration analysis and health risk assessment of airborne toxic metals in Taejeon 1,2 industrial Complex

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Jang, M. S.; Nam, B. H.; Yun, M. J. [Chungnam National Univ., Taejeon (Korea)

    2000-04-01

    The study centers on one-year continual concentration analysis using ICP-MS and on health risk assessment of 15 airborne toxic metals in Taejeon 1,2 industrial complex. About 1-year arithmetic mean of human carcinogen, arsenic, hexavalent chromium and nickel subsulfide is 6.05, 2.40 and 2.81 ng/m{sup 3} while the mean of probable human carcinogen, beryllium, cadmium and lead is 0.06, 3.92, 145.99 ng/m{sup 3}, respectively. And the long-term arithmetic mean concentration of non-carcinogenic metal, manganese is 44.60 ng/m{sup 3}. The point risk estimate for the inhalation of carcinogenic metals is 7.0 X10{sup -5}, which is higher than a risk standard of 10{sup -5}. The risk from human carcinogens is 6.2X10{sup -5}, while that from probable human carcinogens is 8.0X10{sup -6}, respectively. About 86 % of the cancer risk is due to the inhalation of human carcinogens, arsenic and hexavalent chromium. Thus, it is necessary to properly manage both arsenic and hexavalent chromium risk in Taejeon 1,2 industrial complex. 37 refs., 13 figs., 9 tabs. (Author)

  19. BACTERIAL POPULATION DYNAMICS IN WASTE OILY EMULSIONS FROM THE METAL-PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Paweł Kaszycki

    2014-07-01

    Full Text Available Oil-containing wastewaters are regarded as main industrial pollutants of soil and water environments. They can occur as free-floating oil, unstable or stable oil-in-water (O/W emulsions, and in the case of extreme organic load, as water-in-oil (W/O emulsions. In this study two types of oily effluents, a typical O/W emulsion marked as E1 and a W/O emulsion E2, both discharged by local metal processing plants were examined to test their toxicity to microbial communities and the ability to serve as nutrient sources for bacterial growth. The organic contaminant load of the samples was evaluated on the basis of chemical oxygen demand (COD parameter values and was equal to 48 200 mg O2·dm-3 and >300 000 mg O2·dm-3 for E1 and E2, respectively.Both emulsions proved to be non toxic to bacterial communities and were shown to contain biodiverse autochthonous microflora consisting of several bacterial strains adapted to the presence of xenobiotics (the total of 1.36 · 106 CFU·cm-3 and 1.72 · 105 CFU·cm-3 was determined for E1 and E2, respectively. These indigenous bacteria as well as exogenously inoculated specialized allochthonous microorganisms were biostimulated so as to proliferate within the wastewater environment whose organic content served as the only source of carbon. The most favorable cultivation conditions were determined as fully aerobic growth at the temperature of 25 ºC. In 9 to 18 day-tests, autochthonous as well as bioaugmented allochthonous bacterial population dynamics were monitored. For both emulsions tested there was a dramatic increase (up to three orders of magnitude in bacterial frequency, as compared to the respective initial values. The resultant high biomass densities suggest that the effluents are susceptible to bioremediation. A preliminary xenobiotic biodegradation test confirmed that mixed auto- and allochthonous bacterial consortia obtained upon inoculation of the samples with microbiocenoses preselected for efficient

  20. Heavy Metals (Mg, Mn, Ni and Sn contamination in Soil Samples of Ahvaz II Industrial Estate of Iran in 2013

    Directory of Open Access Journals (Sweden)

    Soheil l Sobhanardakani

    2016-04-01

    Full Text Available Background & Aims of the Study: Due to the rapid industrial development in Khuzestan province of Iran during recent years, this study was performed to analyze the variation of metals concentrations (Mg, Mn, Ni, and Sn in soil samples of Ahvaz II Industrial estate during the spring season of 2013. Materials & Methods: In this experimental study, 27 topsoil samples were collected from nine stations. The intensity of the soil contamination was evaluated, using a contamination factor (Cf and geo-accumulation index (I-geo. Results:  The mean soil concentrations (in mg kg-1 (dry weight were in ranged within 870-1144 (Mg, 188-300 (Mn, 93-199 (Ni and 9-15 (Sn. The data indicated that the I-geo value for all metals falls in class ‘1’. Also the Cf value for Mg and Mn falls in class ‘0’, the Cf value for Sn falls in class ‘1’ and the Cf value for Ni falls in the classes of ‘1’ and ‘2’. The result of the Pearson correlation showed that there were significant positive associations between all metals. Conclusions: According to the results which were achieved by a cluster analysis, there were significant positive associations among all metals based on Pearson correlation coefficient, especially between Ni and Sn; also both of them with Mn. Because the Ni originates from oil sources it can be resulted that Mn and Sn originate from oil sources, too. Therefore, industrial activities and exploitation of oil reservoirs are the main cause of pollution in that area. Also, it can be concluded that, with increasing the distance from the source of pollution, the accumulation of contaminants in the soil samples decreased.

  1. An eco-sustainable green approach for heavy metals management: two case studies of developing industrial region.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2012-01-01

    Multifaceted issues or paradigm of sustainable development should be appropriately addressed in the discipline of environmental management. Pollution of the biosphere with toxic metals has accelerated dramatically since the beginning of the Industrial Revolution. In present review, comparative assessment of traditional chemical technologies and phytoremediation has been reviewed particularly in the context of cost-effectiveness. The potential of phytoremediation and green chemicals in heavy metals management has been described critically. Further, the review explores our work on phytoremediation as green technology during the last 6 years and hand in hand addresses the various ecological issues, benefits and constraints pertaining to heavy metal pollution of aquatic ecosystems and its phytoremediation as first case study. Second case study demonstrates the possible health implications associated with use of metal contaminated wastewater for irrigation in peri-urban areas of developing world. Our researches revealed wetland plants/macrophytes as ideal bio-system for heavy metals removal in terms of both ecology and economy, when compared with chemical treatments. However, there are several constraints or limitations in the use of aquatic plants for phytoremediation in microcosm as well as mesocosm conditions. On the basis of our past researches, an eco-sustainable model has been proposed in order to resolve the certain constraints imposed in two case studies. In relation to future prospect, phytoremediation technology for enhanced heavy metal accumulation is still in embryonic stage and needs more attention in gene manipulation area. Moreover, harvesting and recycling tools needs more extensive research. A multidisciplinary research effort that integrates the work of natural sciences, environmental engineers and policy makers is essential for greater success of green technologies as a potent tool of heavy metals management.

  2. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay

    Energy Technology Data Exchange (ETDEWEB)

    Singh, I.B. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India)]. E-mail: ibsingh58@yahoo.com; Chaturvedi, K. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India); Morchhale, R.K. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India); Yegneswaran, A.H. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India)

    2007-03-06

    Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 deg. C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 deg. C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 deg. C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.

  3. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China.

    Science.gov (United States)

    Xu, Xianghua; Zhao, Yongcun; Zhao, Xiaoyan; Wang, Yudong; Deng, Wenjing

    2014-10-01

    The rapid industrialization and urbanization in developing countries have increased pollution by heavy metals, which is a concern for human health and the environment. In this study, 230 surface soil samples (0-20cm) were collected from agricultural areas of Jiaxing, a rapidly industrializing area in the Yangtze Delta of China. Sequential Gaussian simulation (SGS) and multivariate factorial kriging analysis (FKA) were used to identify and explore the sources of heavy metal pollution for eight metals (Cu, Zn, Pb, Cr, Ni, Cd, Hg and As). Localized hot-spots of pollution were identified for Cu, Zn, Pb, Cr, Ni and Cd with area percentages of 0.48 percent, 0.58 percent, 2.84 percent, 2.41 percent, 0.74 percent, and 0.68 percent, respectively. The areas with Hg pollution covered approximately 38 percent whereas no potential pollution risk was found for As. The soil parent material and point sources of pollution had significant influences on Cr, Ni, Cu, Zn and Cd levels, except for the influence of agricultural management practices also accounted for micro-scale variations (nugget effect) for Cu and Zn pollution. Short-range (4km) diffusion processes had a significant influence on Cu levels, although they did not appear to be the dominant sources of Zn and Cd variation. The short-range diffusion pollution arising from current and historic industrial emissions and urbanization, and long-range (33km) variations in soil parent materials and/or diffusion jointly determined the current concentrations of soil Pb. The sources of Hg pollution risk may be attributed to the atmosphere deposition of industrial emission and historical use of Hg-containing pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Translocation of metals in pea plants grown on various amendment of electroplating industrial sludge.

    Science.gov (United States)

    Bose, Sutapa; Chandrayan, Sudarshana; Rai, Vivek; Bhattacharyya, A K; Ramanathan, A L

    2008-07-01

    A pot-culture experiment was conducted to observe the effects of acidic sludge addition to the soils on bioavailability and uptake of heavy metals in different parts of pea plant as well as its influence on the growth of that plant. It is observed from our result the abundances of total and bio-available heavy metals in sludge vary as follows: Fe>Mn>Cr>Ni>Cu>Pb>Zn>Cd and Fe>Ni>Mn>Cr>Cu>Zn>Pb>Cd. Sludge applications increased both the total metals, DTPA-extractable metals and total N in the soils. On the other hand lime application has decreased the bioavailability of heavy metals with no change in total N in sludge amended soils. Organic carbon showed positive correlation with all metals except Zn, Cr and Pb. CEC also showed a strong positive correlation (R(2)>0.7) with the low translocation efficiency of pea plants. The value of translocation factor from shoot to seed was found to be smaller than root to shoot of pea plants. Our study thus shows that pea plants were found to be well adapted to the soil amended with 10% sludge with 0.5% lime treatment, minimizing most of the all metal uptake in the shoot of that plant. So, on the basis of the present study, possible treatment may be recommended for the secure disposal of acidic electroplating sludge.

  5. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries

    OpenAIRE

    Thevenon F; Graham ND; Chiaradia M; Arpagaus P; Wildi W; Pote J

    2011-01-01

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century i...

  6. Risk Assessment of Heavy Metals Contamination in Soils and Selected Crops in Zanjan Urban and Industrial Regions

    Directory of Open Access Journals (Sweden)

    A. Afshari

    2016-02-01

    Full Text Available Introduction: Heavy metals are types of elements naturally present in soil or enter into soil as a result of human activities. The most important route of exposure to heavy metals is daily intake of food. Crops grown in contaminated soil (due to mining activities, industrial operations and agriculture may contain high concentrations of heavy metals. Also closeness to cities and industrial centers can have a great influence on the accumulation of heavy metals to agricultural products grown in the region. The study aimed to determine the concentration of heavy metals in soil and agricultural products around urban and industrial areas of Zanjan province (North West of Iran and consumption hazard probability. Materials and Methods: Soil (75 samples of soil from a depth of 0 to 10 cm and plant (101 samples samples, in the summer 2011, were randomly taken from industrial areas as follow: tomatoes (Lycopersicum esculentum M, wheat seed (Triticum vulgare, barley seeds (Hordeum vulgare, alfalfa shoots (Medicago sativa L., potato tubers (Solanumtuberosum L., apple fruit, vegetables and fruits such as Dill (Aniethum graveolens L., leek (Allium porrum L., Gardencress (Barbara verna L. and basil (Ocimum basilicum L.. Plant samples were then washed with distilled water, oven dried for48 hours at a temperature of 70 ´C until constant weight was attained and then they digested using 2 M hydrochloric acid (HCl and nitric acid digestion in 5 M. Concentrations of heavy metals in the soil and crops were determined by atomic absorption spectrometry. DTPA extraction of metals by Lindsay and Norvell (1978 method and sequential extraction method by Tessier et al. (1979 were performed. Statistical analysis was accomplished using the software SPSS 16.0 and the comparison of mean values was done using the Duncan test at the 5% level of significance. Results and Discussion: The magnitude of variations for total copper was from 11.5 to 352.5 (average 52.4, zinc was from 96

  7. Effective information campaign for management of exposure to hand-arm vibration in the metal and construction industries.

    Science.gov (United States)

    Sauni, Riitta; Toivio, Pauliina; Esko, Toppila; Pääkkönen, Rauno; Uitti, Jukka

    2015-01-01

    European Directive 2002/44/EC defines employers' responsibilities in the risk management of hand-arm vibration (HAV). However, the directive is still not completely implemented in all risk industries. The aim of our study was to determine whether it is possible to improve the recognition and management of the risks of HAV at workplaces with a one-year information campaign. A questionnaire on opinions and measures for controlling HAV exposure at workplaces was sent to all occupational safety representatives and occupational safety managers in the construction and metal industry in Finland (n=1887) and once again to those who responded to the first questionnaire (n=961) one year after the campaign. The campaign increased recognition of HAV in risk assessment from 57.0% to 68.3% (p=.001), increased measures to decrease exposure to HAV from 54.6% to 64.2% (p=.006) and increased the number of programmes to control the risks due to HAV (p<.001). The information campaign, which focuses on the construction and metal industries, proved to be effective in increasing the awareness of the risks of HAV and the measures needed to control exposure to HAV. A similar campaign can be recommended in the case of risks specific to certain occupations.

  8. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  9. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    OpenAIRE

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resis...

  10. Removal of some heavy metals from industrial waste water using polyacrylamide ferric antimonate as new ion exchange material

    International Nuclear Information System (INIS)

    El-Aryan, Y.F.A.

    2011-01-01

    Composite ion exchangers consist of one or more ion exchangers combined with another material, which can be inorganic or organic and may it be an ion exchanger. The reason for manufacturing a composite material is to produce a granular material, with sufficient strength for column use, from ion exchangers that do not form, or only form weak, granules themselves. Attempts in this study are focused to prepare composite ion exchangers for treatment of wastewater. Heavy metals when present in water in concentrations exceeding the permitted limits are injurious to the health. Hence, it is very important to treat such waters to remove the metal ions present before it is supplied for any useful purpose. Therefore, many investigations have studied to develop more effective process to treat such waste stream. Ion-exchange has been widely adopted in heavy metal containing wastewater and most of the ion-exchangers (i.e. ion-exchange media) currently being used are commercially mass-produced organic resins.Therefore, the main aim of this work is directed to find the optimum conditions for removal of some heavy metals from industrial waste water.1-Preparation of polyacrylamide ferric antimonate composite.2-Characterization of the prepared exchanger using IR spectra, X-ray diffraction pattern, DTA and TG analyses.3-Chemical stability, capacity and equilibrium measurements will be determined on the materials using at different conditions (ph heating temperature and reaction temperature).4-Kinetic studies of some heavy metals.5-Ion exchange isotherm.6-Breakthrough curves for removal of the investigated metal ions on the prepared exchanger under certain condition.

  11. Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb(II).

    Science.gov (United States)

    Gola, Deepak; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2017-10-01

    Presence of industrial dyes and heavy metal as a contaminant in environment poses a great risk to human health. In order to develop a potential technology for remediation of dyes (Reactive remazol red, Yellow 3RS, Indanthrene blue and Vat novatic grey) and heavy metal [Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI) and Pb(II)] contamination, present study was performed with entomopathogenic fungi, Beauveria bassiana (MTCC no. 4580). High dye removal (88-97%) was observed during the growth of B. bassiana while removal percentage for heavy metals ranged from 58 to 75%. Further, detailed investigations were performed with Pb(II) in terms of growth kinetics, effect of process parameters and mechanism of removal. Growth rate decreased from 0.118 h -1 (control) to 0.031 h -1 , showing 28% reduction in biomass at 30 mg L -1 Pb(II) with 58.4% metal removal. Maximum Pb(II) removal was observed at 30 °C, neutral pH and 30 mg L -1 initial metal concentration. FTIR analysis indicated the changes induced by Pb(II) in functional groups on biomass surface. Further, microscopic analysis (SEM and atomic force microscopy (AFM)) was performed to understand the changes in cell surface morphology of the fungal cell. SEM micrograph showed a clear deformation of fungal hyphae, whereas AFM studies proved the increase in surface roughness (RSM) in comparison to control cell. Homogenous bioaccumulation of Pb(II) inside the fungal cell was clearly depicted by TEM-high-angle annular dark field coupled with EDX. Present study provides an insight into the mechanism of Pb(II) bioremediation and strengthens the significance of using entomopathogenic fungus such as B. bassiana for metal and dye removal.

  12. Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters

    International Nuclear Information System (INIS)

    Perez, R.M.; Cabrera, G.; Gomez, J.M.; Abalos, A.; Cantero, D.

    2010-01-01

    The precipitation of chromium(III), copper(II), manganese(II) and zinc(II) by biogenic hydrogen sulfide generated by sulfate-reducing bacteria, Desulfovibrio sp., and the degradation of total petroleum hydrocarbons (TPH) in the presence of heavy metal by Pseudomonas aeruginosa AT18 have been carried out. An anaerobic stirred tank reactor was used to generate hydrogen sulfide with Desulfovibrio sp. culture and the precipitation of more than 95% of each metal was achieved in 24 h (metal solutions contained: 60, 49, 50 and 80 mg L -1 of chromium, copper, manganese and zinc sulfates). A stirred tank reactor with P. aeruginosa AT18, in the presence of the heavy metal solution and 2% (v/v) of petroleum, led to the degradation of 60% of the total petroleum hydrocarbons and the removal of Cr(III) 99%, Cu(II) 93%, Zn(II) 46% and Mn(II) 88% in the medium through biosorption phenomena. These results enabled the development of an integrated system in which the two processes were combined. The overall aim of the study was achieved, with 84% of TPH degraded and all of the metals completely removed. Work is currently underway aimed at improving this system (decrease in operation time, culture of P. aeruginosa in anaerobic conditions) in an effort to apply this process in the bioremediation of natural media contaminated with heavy metals and petroleum.

  13. Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan

    International Nuclear Information System (INIS)

    Malik, R.N.; Husain, S.Z.; Nazir, I.

    2010-01-01

    This study was designed to assess total contents of 6 toxic metals viz., Pb, Cu, Zn, Co, Ni, and Cr in the soil and plant samples of 16 plant species collected from industrial zone of Islamabad, Pakistan. The concentration, transfer and accumulation of metals from soil to roots and shoots was evaluated in terms of Biological Concentration Factor (BCF), Translocation Factor (TF) and Bioaccumulation Coefficient (BAC). Total metal concentrations of Pb, Zn, Cu, Co, Ni, and Cr in soils varied between 2.0-29.0, 61.9-172.6, 8.9 to 357.4, 7.3-24.7, 41.4-59.3, and 40.2-927.2 mg/kg. Total metal concentrations pattern in roots were: Cu>Cr>Zn>Ni>Pb>Co. Grasses showed relatively higher total Zn concentration. Accumulation of Cu was highest in shoots followed by Zn, Cr, Pb, Co and Ni. None of plant species were identified as hyper accumulator; however, based on BCFs, TFs, and BACs values, most of the studied species have potential for phyto stabilization and phyto extraction. Parthenium hysterophoirus L., and Amaranthus viridis L., is suggested for phytoextraction of Pb and Ni, whereas, Partulaca oleracea L., Brachiaria reptans (L.) Gard. and Hubb., Solanum nigrum L., and Xanthium stromarium L., for hytostabilization of soils contaminated with Pb and Cu. (author)

  14. APPLICATION OF METAL RESISTANT BACTERIA BY MUTATIONAL ENHANCMENT TECHNIQUE FOR BIOREMEDIATION OF COPPER AND ZINC FROM INDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    M. R. Shakibaie ، A. Khosravan ، A. Frahmand ، S. Zare

    2008-10-01

    Full Text Available In this research, using mutation in the metal resistant bacteria, the bioremediation of the copper and zinc from copper factory effluents was investigated. Wastewater effluents from flocculation and rolling mill sections of a factory in the city of Kerman were collected and used for further experiments. 20 strains of Pseudomonas spp. were isolated from soil and effluents surrounding factory and identified by microbiological methods. Minimum inhibitory concentrations for copper (Cu and zinc (Zn were determined by agar dilution method. Those strains that exhibited highest minimum inhibitory concentrations values to the metals (5mM were subjected to 400-3200 mg/L concentrations of the three mutagenic agents, acriflavine, acridine orange and ethidium bromide. After determination of subinhibitory concentrations, the minimum inhibitory concentrations values for copper and zinc metal ions were again determined, which showed more than 10 fold increase in minimum inhibitory concentrations value (10 mM for Cu and 20 mM for Zn with P≤0.05. The atomic absorption spectroscopy of dried biomass obtained from resistant strains after exposure to mutagenic agents revealed that strains 13 accumulate the highest amount of intracellular copper (0.35% Cu/mg dried biomass and strain 10 showed highest accumulation of zinc (0.3% Zn/mg dried biomass respectively with P≤0.05. From above results it was concluded that the treatment of industrial waste containing heavy metals by artificially mutated bacteria may be appropriate solution for effluent disposal problems.

  15. Lixiviation of heavy metals of hazardous industrial wastes by means of thermostatized columns and design of a pilot plant

    International Nuclear Information System (INIS)

    Vite T, J.; Leon, C.C. de; Vite T, M.; Soto T, J.L.

    2006-01-01

    The purpose of this work was to evaluate the efficiency of lixiviation of heavy metals, using thermostatized columns and hazardous industrial residual wastes: those by the volume with which are generated and its high toxicity, its represent a great problem for it treatment and disposition, in this work a diagram of a pilot plant for extraction of heavy metals is included. The process and equipment were patented in United States and in Mexico. For the development of this study four thermostated columns were used that were coupled. The waste were finely milled and suspended in an aqueous pulp adding of 10 - 40gL -1 of mineral acid or sodium hydroxide until reaching an interval of pH of 2,5,7 and 10. Its were used of 4-10 gL -1 of a reducer agent and of 0.3-1.5 g of a surfactant agent. In some cases with this method was possible to remove until 100% of heavy metals. It was used Plasma Emission Spectroscopy to determine the concentrations of the cations in the lixiviation liquors. For studying the metallic alloys the X-ray diffraction technique was used. (Author)

  16. Removal of heavy metals from industrial wastewaters using amine-functionalized nanoporous carbon as a novel sorbent

    International Nuclear Information System (INIS)

    Sayar, O.; Khan, S.J.; Amini, M.M.; Moghadamzadeh, H.; Sadeghi, O.

    2013-01-01

    Nano-porous carbon (NPC) was synthesized by hydrothermal condensation of fructose and characterized by X-ray powder diffraction and also nitrogen adsorption analysis. It was then modified with amino groups and used as a sorbent for the removal of heavy metal ions. The formation of amino-modified NPC was confirmed by X-ray powder diffraction, infrared spectroscopy, thermogravimetric and elemental analysis. NPC was applied for removal of Pb(II), Cd(II), Ni(II) and Cu(II) ions. The effects of sample pH and the adsorption kinetics were studied, and the adsorption capacity was determined. The sorbent was applied to the removal of heavy metal ions in industrial waste water samples. (author)

  17. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 μm, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  18. Rubber pad forming - Efficient approach for the manufacturing of complex structured sheet metal blanks for food industry

    Science.gov (United States)

    Spoelstra, Paul; Djakow, Eugen; Homberg, Werner

    2017-10-01

    The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.

  19. Removal of Heavy Metals from Synthesis Industrial Wastewater Using Local Isolated Candida Utilis and Aspergillus Niger as Bio-Filter

    OpenAIRE

    Safaa Abd Alrasool Ali

    2013-01-01

    In this study biomass filter of Candida Utilis which isolated from food sample in Baghdad local market and Aspergillus Niger which isolated from Baghdad soil used to biosorption heavy metals from synthesis industrial wastewater. two bio-filters were designed as cylindrical Perspex with height 10cm, diameter 3cm as a shell and inside their are layers of Sponge were prepare as the size of diameter of the cylindrical filter with thickness of 2cm arrange inside it, biomass production were 6 g of ...

  20. Iron and steel industry and non-ferrous metal production - the electrical energy consumption and energy efficiency

    International Nuclear Information System (INIS)

    Blazhev, Blagoja; Sofeski, Slobodan

    2002-01-01

    Companies of iron and steel industry and non-ferrous metal production are the largest individual consumers of electricity and other forms of energy. This paper presents the electricity consumption in the last twenty-year period as well as data for their contribution in creating the gross domestic product (GDP) and engagement of labor force in the country. For some of the companies there is data for energy efficiency (kWh/t i.e. MJ/t) in last five years. (Original)

  1. Consumo de energía eléctrica en el sector industrial : metales, siderurgia y gases industriales

    OpenAIRE

    Martínez de la Cruz, Carlos Javier

    2011-01-01

    En este PFC se analiza el consumo industrial de electricidad en nuestro país, en los sectores de Siderurgia, Metales y Gases industriales, que forman una parte de la demanda eléctrica de España y que también será analizada con detalle. De los procesos de siderurgia, se estudian la producción integral y la no integral, para la metalurgia no férrea, el PFC se centra en a producción de zinc, y en el sector de gases industriales, se estudia el proceso de fraccionamiento del aire, q...

  2. Metallic materials for the hydrogen energy industry and main gas pipelines: complex physical problems of aging, embrittlement, and failure

    International Nuclear Information System (INIS)

    Nechaev, Yu S

    2008-01-01

    The possibilities of effective solutions of relevant technological problems are considered based on the analysis of fundamental physical aspects, elucidation of the micromechanisms and interrelations of aging and hydrogen embrittlement of materials in the hydrogen industry and gas-main industries. The adverse effects these mechanisms and processes have on the service properties and technological lifetime of materials are analyzed. The concomitant fundamental process of formation of carbohydride-like and other nanosegregation structures at dislocations (with the segregation capacity 1 to 1.5 orders of magnitude greater than in the widely used Cottrell 'atmosphere' model) and grain boundaries is discussed, as is the way in which these structures affect technological processes (aging, hydrogen embrittlement, stress corrosion damage, and failure) and the physicomechanical properties of the metallic materials (including the technological lifetimes of pipeline steels). (reviews of topical problems)

  3. APPLICATION OF PAN/PANI COMPOSITE MEMBRANES IN PURIFICATION OF INDUSTRIAL WASTEWATER GENERATED DURING PROCESSING OF METALS

    Directory of Open Access Journals (Sweden)

    Beata Fryczkowska

    2017-04-01

    Full Text Available The paper presents results of research on the use of composite membranes of polyacrylonitrile (PAN doped polyaniline (PANI to remove contaminations of industrial wastewater generated during the processing of metals. Wastewater obtained from industry was pre-treated with the flocculant Magnafloc®336, and then the supernatant solution was introduced into the ultrafiltration cell, AMICON (Millipore equipped in the previously prepared polymer membrane. Using spectrophotometer UV-Vis (HACH and atomic absorption spectrometry (AAS pollution indicators was marked before and after the integrated purification proces, to determine the degree of removal of selected ions from wastewater. As a result of flocculation from wastewater there have been removed phosphates (79%, chlorides (11-14%, sulfates (2-10% and iron (36-92%, cobalt (~ 80%, cadmium (~ 31% and nickel (~ 25%. However, the pressure membrane process almost completely removed zinc, copper and cadmium (~ 100%, iron (by a further 43-69% and phosphate anions, which was a little.

  4. Physical and thermal waste utilisation in the nonferrous metal industry; Stoffliche und thermische Abfallverwertung in der Nichteisenmetallindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, F. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1998-09-01

    In its amended form the German Household Waste Technical Code favours physical and thermal utilisation of wastes against dumping. Industrial processes offer various ways of utilising wastes with a high calorific value, e.g. in nonferrous metal production. Besides portraying this branch of industry in Germany the present paper investigates to what extent this topic has already found coverage and what potential it holds for the utilisation of wastes. By way of example it describes a successful demonstration of the physical utilisation of sewage sludge in lead production. [Deutsch] Die Neugestaltung der TA Siedlungsabfall favorisiert die thermische und stoffliche Verwertung von Abfallstoffen gegenueber der Deponierung. Moeglichkeiten fuer die Verwertung heizwertreicher Abfaelle bieten auch industrielle Produktionsprozesse, z.B. auch in der Nichteisenmetallerzeugung. Neben einer Charakterisierung der Branche wird untersucht, inwieweit dieses Thema bereits aufgegriffen worden ist und welches Verwertungspotential zur Verfuegung steht. An einem Beispiel wird die erfolgreiche Demonstration der stofflichen Verwertung von Klaerschlamm in der Bleierzeugung dargestellt. (orig.)

  5. Metal Pollution of Forest Phytomass from Uranium Industry in Czech Republic and Its Ecological Management Perspectives

    Directory of Open Access Journals (Sweden)

    David Juřička

    2017-01-01

    Full Text Available The paper is focused on the issue of metals migration within the forest environment affected by deep mining of metals and the possibility how to immobilize them using an environment-friendly method. First, the paper presents the information about metal content in the tree leaves in alluvial recipients polluted by metals from uranium deep mining at Dolní Rožínka, the Czech Republic. X-ray fluorescence analysis of dried leaves results showed the increased content of Cu, Fe, Mn, Ni, Rb, Sr, Zn and U; it corresponds to the most seriously polluted areas in the world comparing with the scientific literature. However, statistically, we did not succeed to demonstrate in none of areas of interest the element heterogeneity between the upper, middle and lower streams segments. Element habitat homogeneity can be caused by current stand species composition where Picea abies L. dominates and this fact results in the negative impact on the soil pH since it is a primary factor of metals immobilization in the ecosystem and their transformation into toxic variations. Within the area of interest, there is demonstrated positive effect of reconstruction of forest stands, which are close to the dominating deciduous trees, especially Fagus silvatica L. This management change in the selected interested forest stands can result in Ca supply of up to 39 kg.ha-1 from strictly natural sources, which might be a perspective alternative to liming.

  6. Metal concentration of liquid effluents and surroundings of a pharmaceutical industry

    Directory of Open Access Journals (Sweden)

    E.I. Adeyeye

    2007-04-01

    Full Text Available Major and trace metals (Mg, Na, K, Ca, Fe, Zn, Cu, Sn, Al, Pb, As, Cr, Cd, Mn and Ti in liquid effluents, soil sediments and plant parts (roots and leaves from Tisco Nigeria Limited, Akure, were determined in both open effluent channel and closed direct tank. The plant in the open effluent channel was Pennisetum purpureum while the one around the direct tank was Chloris pilosa. The correlation coefficient (Cc of the metals in the open channel gave the values: soil sediments/water (0.61, roots/leaves (0.709; and (0.34, (0.91, respectively, in direct tank. F-test values showed that 67 % of the metals were significantly different (p < 0.05 among the samples. The soil sediments would serve as reservoir for all the metals determined. This was also the case for both plant roots with species variation. The plant leaves showed evidence of bioaccumulation of some metals. The high levels of Pb, As and Cd in the samples call for concern as environmental contaminants.

  7. Industrial Application of Open Pore Ceramic Foam for Molten Metal Filtration

    Science.gov (United States)

    Gauckler, L. J.; Waeber, M. M.; Conti, C.; Jacob-Dulière, M.

    Ceramic foam filters were used for industrial filtration of aluminum. Results are compared with laboratory experiments which are in good agreement with trajectory analyses of deep bed filtration for the early stage of filtration.

  8. Temporal variations of heavy metals in coral Porites lutea from Guangdong Province, China: Influences from industrial pollution, climate and economic factors

    Science.gov (United States)

    Peng, Z.; Liu, J.; Zhou, C.; Nie, B.; Chen, T.

    2006-01-01

    The eight heavy metals Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb have been determined in samples of coral Porites lutea collected from Dafangji Island waters (21°21′N, 111°11′E), Dianbai County, Guangdong Province, China, by the ICP-MS method. The samples represent the growth of coral in the period of 1982–2001. The results showed that the waters were polluted by the heavy metals Cu, Ni, Zn, and Pb in certain years, but not by other metals. The contamination may have come from industrial sources, including electroplating, metallurgy, mining, and aquatic industries in the coastal areas.

  9. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water

    OpenAIRE

    Michael B. Ellison; Rocky de Nys; Nicholas A. Paul; David A. Roberts

    2014-01-01

    The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation...

  10. Metals anomalies in foraminiferal shells as indicators for industrial pollution: a case study from the Mediterranean coast of Israel

    Science.gov (United States)

    Titelboim, Danna; Sadekov, Aleksey; Almogi-Labin, Ahuva; Herut, Barak; Kucera, Michal; Abramovich, Sigal

    2017-04-01

    In recent years we have been witnessing a considerable growth of industrial facilities along coastal areas. Some of these have major economical and national importance yet their operation can introduce a wide range of chemicals that might contaminate the coastal area and impact local ecosystems and our health. Among some of these harmful chemicals are metals that are introduced to the coastal environment by some of these facilities. Here we present a novel approach for monitoring low-level industrial pollution in coastal environments based on anomalies in metal concentration within foraminiferal shells. Living foraminifera are used as bio-indicators of the environmental status of any marine habitat. As unicellular organisms with short life and reproductive cycles, they are extremely sensitive to long and short-term changes. The majority of foraminifera precipitate CaCO3 (low-Mg-calcite, high-Mg calcite or rarely aragonite tests). Their calcareous shells are precipitated by a mechanism that involves direct seawater vacuolization which reflects the chemical composition of the ambient water. For this reason the geochemical composition of their shells is particularly applicable as a tool for marine environmental monitoring. Material for this study was obtained during the monthly campaigns of a biomonitoring project (2012-2015) of a heat polluted area and of a nearby natural clean station off the northern Mediterranean coast of Israel. Essentially, monitoring of water chemistry in both habitats showed no indications of presence of heavy metal contamination. Yet, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of two common local foraminifera the hyaline species Pararotalia calcariformata and the miliolid species Lachlanella sp. 1 that were collected alive from both areas, recorded presence of various metals (Mn, Cu, Zn, Ba, Pb) within their shells. Metal concentrations within the miliolid species were significantly higher than those of

  11. Application of biotechnology in management of industrial wastes containing toxic metals

    Energy Technology Data Exchange (ETDEWEB)

    Barton, L L; Fekete, F A; Huybrechts, M M.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Biology; Sillerud, L O [Los Alamos National Lab., NM (United States); Blacke, II, R C [Meharry Medical Coll., Nashville, TN (United States); Pigg, C J [Sandia National Labs., Albuquerque, NM (United States)

    1994-01-01

    The role of microorganisms in transformation and absorption of metals in the environment is examined in this article. Understanding the metabolic processes by which microorganisms interact with toxic metals is paramount for any bioremediation process dealing with restoration of toxic waste site. Bacteria, fungi, and yeast that displayed resistance to lead, mercury, or chromium were isolated from the environment. Cotolerance studies revealed that many of these organisms could grow in high concentrations of several different toxic elements. Transformation of chromium, mercury, and lead was displayed by means of the isolated bacterial strains. Data regarding the activities of these organisms can provide a basis for use of metal/tolerant organisms in bioremediation of toxic wastes containing mercury, chromium, and lead. (author) 1 fig., 7 tabs., 28 refs.

  12. Metal distribution in urban soil around steel industry beside Queen Alia Airport, Jordan.

    Science.gov (United States)

    Al-Khashman, Omar A; Shawabkeh, Reyad A

    2009-12-01

    The objective of this study was to assess the extent and severity of metal contamination in urban soil around Queen Alia Airport, Jordan. Thirty-two soil samples were collected around steel manufacturing plants located in the Al-Jiza area, south Jordan, around the Queen Alia Airport. The samples were obtained at two depths, 0-10 and 10-20 cm, and were analyzed by atomic absorption spectrophotometry for lead (Pb), zinc (Zn), cadmium (Cd), iron (Fe), copper (Cu) and chromium (Cr) levels. The physicochemical factors believed to affect the mobility of metals in the soil of the study area were also examined, including pH, electrical conductivity, total organic matter, calcium carbonate (CaCO(3)) content and cation exchange capacity. The high concentrations of Pb, Zn and Cd in the soil samples were found to be related to anthropogenic sources, such as the steel manufacturing plants, agriculture and traffic emissions, with the highest concentrations of these metals close to the site of the steel plants; in contrast the concentration of Cr was low in the soil sampled close to the steel plants. The metals were concentrated in the surface soil, and concentrations decreased with increasing depth, reflecting the physical properties of the soil and its alkaline pH. The mineralogical composition of the topsoil, identified by X-ray diffraction, was predominantly quartz, calcite, dolomite and minor minerals, such as gypsum and clay minerals. Metal concentrations were compared using one-way analysis of variance (ANOVA) to compute the statistical significance of the mean. The results of the ANOVA showed significant differences between sites for Pb, Cd and Cu, but no significant differences for the remaining metals tested. Factor analysis revealed that polluted soil occurs predominantly at sites around the steel plants and that there is no significant variation in the characteristics of the unpolluted soil, which are uniform in the study area.

  13. Determination of naturally occurring radioactive materials and heavy metals in soil sample at industrial site area Gebeng, Pahang

    International Nuclear Information System (INIS)

    Muhammad Dzulkhairi Zulkifly

    2012-01-01

    A study has been carried out to determine the natural occurring radioactivity and heavy metal at an industrial site area Gebeng, Pahang. Sampling has been done in four different stations. This study has been carried out to determine the natural radioactivity ( 238 U, 232 Th, 40 K and 226 Ra) and heavy metal in soil sample. Natural radioactivities were determined using Gamma Spectrometry System, the heavy metal determination was done using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The result for analysis radioactivity concentration showed that Uranium-238 were in the range of 28.18 ± 4.78 Bq/ kg - 39.63 ± 4.79 Bq/ kg, while the concentration for Thorium-232 were in the range of 45.66 ± 5.49 Bq/ kg - 72.43 ± 9.47 Bq/ kg and for the Radium-226, the concentration were in the range of 8.93 ± 1.15 Bq/ kg - 14.29 ± 2.61 Bq/ kg. The concentration of Potassium-40 were in the range of 51.06 ± 12.18 Bq/ kg - 426.28 ± 137.70 Bq/ kg. 8 heavy metals have been found from the four different stations which are Al, Fe, V, Mn, Cr, Cu, Zn and Pb. Fe show the highest concentration among the other heavy metal while Pb show the lowest concentration. From this study, the specific activities of natural radionuclide in almost all stations were below the world limit average for soil, which is 35 Bq/ kg for Uranium-238 and Radium-226, while Thorium-232 and Potassium-40 were above the world limit average which are 30 Bq/ kg and 400 Bq/ kg. (author)

  14. Abrasive blasting, a technique for the industrial decontamination of metal components and concrete blocks from decommissioning to unconditional release levels

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    When decommissioning nuclear installations, large quantities of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has gone to recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can considered to be a first order ecological priority in order to limit the quantities of radioactive wastes for final disposal and to reduce the technical and economic problems involved with the management of radioactive wastes. It will help as well to make economic use of primary material and to conserve natural resources of basic material for future generations. In a demonstration programme, Belgoprocess has shown that it is economically interesting to decontaminate metal components to unconditional release levels using dry abrasive blasting techniques, the unit cost for decontamination being only 30 % of the global cost for radioactive waste treatment, conditioning, storage and disposal. As a result, an industrial dry abrasive blasting unit was installed in the Belgoprocess central decontamination infrastructure. At the end of December 2006, more than 1,128 Mg of contaminated metal has been treated as well as 313 Mg of concrete blocks. The paper gives an overview of the experience relating to the decontamination of metal material and concrete blocks at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium as well from the decontamination of concrete containers by abrasive blasting. (authors)

  15. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    Science.gov (United States)

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-06-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.

  16. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J; Choi, J

    2007-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials

  17. Testing and modelling of industrial tribo-systems for sheet metal forming

    DEFF Research Database (Denmark)

    Friis, Kasper Leth; Nielsen, Peter Søe; Bay, Niels

    2008-01-01

    Galling is a well-known problem in sheet metal forming of tribological difficult materials such as stainless steel. In this work new, environmentally friendly lubricants and wear resistant tool materials are tested in a laboratory environment using a strip reduction test as well as in a real...

  18. Influence of urbanization and industrialization on metal enrichment of sediment cores from Shantou Bay, South China

    International Nuclear Information System (INIS)

    Qiao, Yongmin; Yang, Yang; Zhao, Jiangang; Tao, Ran; Xu, Ronghua

    2013-01-01

    Four sediment cores were collected to investigate geochemical sources and to assess enrichment and pollution of metals in sediments from Shantou Bay, an area experiencing rapid economic development on the Southeastern Coast of China. The results indicated that the concentrations of the majority of metals showed a decrease with depth, with overall maximum values in the top layers, and that different sampling locations in the Bay received slightly different types of inputs. Three major sources were identified by correlation analysis and principal component analysis: river inputs, metropolitan, and port facilities discharge. Calculation of a pollution load index revealed overall low values, but the enrichment factor values for Pb and Cd were typically high for all cores. The mean concentrations of Cu, Pb, Zn and to some extent Cd exceeded the Effects-Range-Low values in the majority of the cases, indicating that there were possible ecotoxicological risks to organisms in Shantou Bay. -- Highlights: •Metals had downward decrease with overall maximum value at top layers. •River input, metropolitan and port facilities discharge are identified as major sources. •Pb and Cd are mainly enriched metals. •Cu, Pb, Zn and Cd had potential ecotoxicological risks to organisms in Shantou Bay. -- Shantou Bay was polluted by Cd, Cu, Pb and Zn, and showed an increase trend along time. River input, metropolitan and port facilities were identified as their sources based on multi-analysis

  19. 78 FR 26289 - Guides for the Jewelry, Precious Metals, and Pewter Industries: Public Roundtable

    Science.gov (United States)

    2013-05-06

    ..., DC 20580. SUPPLEMENTARY INFORMATION: I. Introduction The FTC commenced its regulatory review of the.... Comments in two areas merit further exploration prior to making Commission proposals: (1) The marketing of... number. A. Marketing of Alloy Products Containing Precious Metals in Amounts Below Minimum Thresholds The...

  20. Separation tests of heavy metals in samples of industrial wastes through flotation; Pruebas de separacion de metales pesados en muestras de residuos industriales mediante flotacion

    Energy Technology Data Exchange (ETDEWEB)

    Abrego L, J

    1995-12-15

    Samples of residual muds, taken at the exit of the filter-press of the water treatment plant of a galvanoplastics industry in Lerma, Estado de Mexico, its were prepared for its qualitative and quantitative analysis. Likewise, the residual waters of the cistern located at the end of the electrodeposition process, was subjected to qualitative chemical analysis for the neutron activation technique and to quantitative analysis by atomic absorption spectrometry. The samples were treated by a flotation process by means of the one which it was studied the heavy metals removal. The results show that the AP-845 collector is the one that better it fulfilled the objectives since, it solves the problem, unless by the copper that although their concentration in the residual waters drop a lot, it was not inside the standard. (Author)

  1. Investigation and Identification of Types and Amounts of Heavy Metals in Soil of an Industrial Area

    Directory of Open Access Journals (Sweden)

    Majid Mohammadhosseini

    2014-12-01

    Full Text Available This study was mainly designed to investigate and identify the amounts and types of heavy metals in the soils of National Iranian Oil Refining & Distribution Company in Shahrood region and tried to establish a logical relation between the presence of heavy metals and their damage on vegetation. In addition, considering the power of drained soil and due to the proximity of ground water in Shahrood region, conducting this study provides a better insight into recognition of the possible contamination centers of drinking waters. The gridding and selective method was used for sampling step. Accordingly, five sub-samples were taken from each grid and finally after mixing all of the sub-samples, the final samples were obtained with an average weight of 400 grams prior to sending to the laboratory. To determine the total concentration of heavy metals in soil, extraction was done using concentrated solutions of HCl and HNO3. The total concentration of the heavy metals of chromium, cobalt and nickel were measured using an ICP-MS instrument, and the rest of the elements using an XRF device. The results explicitly indicated that the quantities of nickel, lead, zinc and strontium in patient samples exceeded the standard, and the other elements were lower than their standard limits. More specifically, the contents of lead and strontium in both normal and patient samples were higher than their standard contents. Moreover, the majority of the vegetation loss across the affected areas was caused by heavy metal accumulation, particularly nickel, lead, zinc, and strontium.

  2. Archaeological analogous and industrials for deep storage: study of the archaeological metallic piece

    International Nuclear Information System (INIS)

    Criado Portal, A. J.; Martinez Garcia, J. A.; Calabres Molina, R.; Garcia abajo, A.; Penco Valenzuela, F.; Lecanda Esteban, J. A.; Garcia Bartual, M.; Jimenez Gonzalez, J. M.; Bravo Munoz, E.; Rodriguez Lobo, L. M.; Fernandez Cascos, T.; Fernandes Cordero, O.; Montero Ruiz, I.

    2000-01-01

    The aim of present research is to obtain information about archaeological analogous of iron and steel, useful for the model of deep geological repository (AGP). The analogous examined have remained buried between 1400 and 2400 years, in very assorted geochemical environments. The extraction of the archaeological pieces has been accomplished according to normalised protocols, trying to carry to the laboratory so the piece as its burial environment, avoiding all possible pollution. Trying to the archaeological analogous could provide valuable information to the AGP model, the study has been directed to related the physical-chemical characteristics of the terrain respect to the deterioration of the archaeological metallic piece. The geology of the surrounding terrain to the archaeological deposit, the geomorphological study of the terrain and data from the analysis of ground: pH, wetness, porosity, organic matter contents, bacteria presence, sulphates, carbonates, chlorides, etc., have allowed to explain the physical-chemical phenomena suffered by the archaeological iron and steel pieces. Also, an exhaustive study of the archaeological piece has been accomplished, concerning the microstructure of the corrosion layer and of the not deteriorated metallic rest. Obtained information concerns different items, such as corrosion velocity and formations of oxide layers, diffusion of chemical elements from the corrosion layer to the metal and viceversa, and structural changes in oxide layers and in the metallic remains by structural ageing. Obtained data have allowed to develop a mathematical model for calculation of corrosion velocity in buried iron and steels, based on physical-chemical variables of grounds, chemical composition and thermomechanical treatment given to the metal during its manufacture. (Author)

  3. Rfa method application for determination of heavy metals content in foods and industrial raw products

    International Nuclear Information System (INIS)

    Matveeva, I.M.

    1999-01-01

    The issue of improvement of the people's lives quality is considered to be of the highest priority according to the U N classification. It is known that its solution lies with the quality of drinking water and foods, which is defined, to a great extent, by the ecological situation of a concrete living region. As a rule, the existing methods of food analysis are mostly meant for determination of one chemical substance in a certain food. The analysis methods developed by authors are versatile and allow determining the quantitative content of Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Zr, Mo, Pb, Bi in the widely used basic foods and industrial raw products according to the common analytical scheme. The methods sensitivity allows determining the MCL of the toxic substances in foods and industrial raw products, specified in 'Medical and biological requirements and health-related quality standards in regards to the industrial raw products and foods

  4. Optimizing complex supply chains. Applications in the petroleum, shipping and metal industries

    International Nuclear Information System (INIS)

    Ulstein, Nina Linn

    2005-01-01

    plants. The model gives a description of Elkem's supply chain, and gives planners the possib ility to explore alternative decisions and study the effects in economic and physical terms. The main contribution from this paper consists of presenting a successful application of an optimization tool, used in a critical decision making process for the company. The paper also offers useful insight into the process of developing and applying the model. The paper is co-authored by Marielle Christiansen, Roar Groenhaug, Nick Magnussen and Marius M. Solomon, and has been submitted to Interfaces. Paper 4: Supply Chain Design in the Metals Production Industry under Uncertainty in Future Prices and Demands This paper describes a stochastic extension to the planning Mol described in Paper 3. The two-stage stochastic model includes alternative scenarios for future developments in market prices and demand. This help Elkem identify robust strategies with regard to future changes in the market. The stochastic model is a large scale MIP problem and a specialised solution algorithm is proposed for solving practical problem instances. The algorithm decomposes the problem per scenario and applies global branching on first-stage variables to re-establish non-anticipativity. The main contribution from this paper is to model and solve a real-world stochastic supply chain design problem. This includes presenting a solution algorithm which enables the solution of practical problem instances. The paper has been submitted to the European Journal of Operational Research. (Author)

  5. A novel bioreactor system for simultaneous mutli-metal leaching from industrial pyrite ash: Effect of agitation and sulphur dosage.

    Science.gov (United States)

    Panda, Sandeep; Akcil, Ata; Mishra, Srabani; Erust, Ceren

    2018-01-15

    Simultaneous multi-metal leaching from industrial pyrite ash is reported for the first time using a novel bioreactor system that allows natural diffusion of atmospheric O 2 and CO 2 along with the required temperature maintenance. The waste containing economically important metals (Cu, Co, Zn & As) was leached using an adapted consortium of meso-acidophilic Fe 2+ and S oxidising bacteria. The unique property of the sample supported adequate growth and activity of the acidophiles, thereby, driving the (bio) chemical reactions. Oxido-reductive potentials were seen to improve with time and the system's pH lowered as a result of active S oxidation. Increase in sulphur dosage (>1g/L) and agitation speed (>150rpm) did not bear any significant effect on metal dissolution. The consortium was able to leach 94.01% Cu (11.75% dissolution/d), 98.54% Co (12.3% dissolution/d), 75.95% Zn (9.49% dissolution/d) and 60.80% As (7.6% dissolution/d) at 150rpm, 1g/L sulphur, 30°C in 8days. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions

    International Nuclear Information System (INIS)

    Berlizov, A.N.; Blum, O.B.; Filby, R.H.; Malyuk, I.A.; Tryshyn, V.V.

    2007-01-01

    A comparative study of the capabilities of black poplar-tree (Populus nigra L.) bark as a biomonitor of atmospheric heavy-metal pollution is reported. Performance indicators (concentrations and enrichment factors) of heavy metal bioaccumulation of bark were compared to the corresponding indicators of epiphytic lichens Xanthoria parietina (L.) Th. Fr. and Physcia adscendens (Fr.) H. Oliver, collected simultaneously with bark samples within the Kiev urban-industrial conurbation. The concentrations of 40 minor and trace elements in the samples were measured by a combination of epithermal and instrumental neutron activation analysis (NAA) using a 10 MW nuclear research reactor WWR-M as the neutron source. Statistical analysis of the data was carried out using non-parametric tests. It was shown that for the majority of the elements determined a good correlation exists between their concentrations in bark and in the lichen species. The accumulation capability of the bark was found to be as effective as, and in some cases better, for both types of lichens. Based on the background levels and variations of the elemental concentration in black poplar-tree bark, threshold values for the enrichment factors were established. For a number of elements (As, Au, Ce, Co, Cr, Cu, La, Mn, Mo, Ni, Sb, Sm, Ti, Th, U, V, W) an interspecies calibration was performed. An optimized pre-irradiation treatment of the bark sample was employed which efficiently separated the most informative external layer from the deeper layers of the bark and thus minimized variations of the element concentrations. Results of this study support black poplar-tree bark as an alternative to epiphytic lichens for heavy metal air pollution monitoring in urban and industrial regions, where severe environmental conditions may result in scarcity or even lack of the indicator species

  7. Microbial assisted phyto extraction of metals and growth of soybean (glycine max l. merrill) on industrial waste water contaminated soil

    International Nuclear Information System (INIS)

    Ali, I.; Bano, A.

    2012-01-01

    Pots experiments were made to investigate the role of effective microorganisms (EM) in improving phyto extraction of metals (Cd/sup +2/ and Mn/sup +2/) and growth of soybean plant in industrial waste water polluted soil. Waste water applications to soil were made in four different dilutions (i.e. 25%, 50%, 75% and 100%). Effective microorganisms were added into waste water prior to application. Effect of treatments on growth parameters was studied. The Cd/sup +2/ and Mn/sup +2/ concentrations in different parts of plant were measured by Atomic Absorption Spectrophotometer. Plant height significantly increased at all treatments except at 25% waste water treatment. Plant dry biomass and oil contents in seed significantly increased with all treatments compared to control but were higher at low concentration of waste water. Waste water treatments significantly increased the Cd and Mn accumulation in plant while inoculation of EM further enhanced the metals accumulation. The maximum accumulation of Cd and Mn found in plant treated with 100% waste water in combination with effective microorganisms. At harvest, the Cd/sup +2/ concentration decreased in leaves but increased in roots followed by stem > seeds, while, Mn/sup +2/ accumulation increased in leaves followed by roots > stem > seeds. Conclusively, EM enhanced the phyto extraction of Cd and Mn and also increased the oil contents in soybean on polluted soil. These findings suggest further investigation to find out a suitable concentration of industrial waste water in combination with EM for better growth of soybean and improving phyto extraction of metals. (author)

  8. Impacts and Policy Implications of Metals Effluent Discharge into Rivers within Industrial Zones: A Sub-Saharan Perspective from Ethiopia

    Science.gov (United States)

    Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K.

    2018-04-01

    Kombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines. Cu concentrations were low in all effluents. Pb concentrations were high in the tannery effluent, but did not exceed emission guidelines. As expected, no metal emission guidelines were exceeded for the brewery, textile and meat processing effluents. Median Cr and Zn concentrations in the Leyole river in the effluent mixing zones downstream of the tannery and steel processing plant increased by factors of 52 (2660 compared with 51 µg Cr/L) and 5 (520 compared with 110 µg Zn/L), respectively, compared with stations further upstream. This poses substantial ecological risks downstream. Comparison with emission guidelines indicates poor environmental management by industries and regulating institutions. Despite appropriate legislation, no clear measures have yet been taken to control industrial discharges, with apparent mismatch between environmental enforcement and investment policies. Effluent management, treatment technologies and operational capacity of environmental institutions were identified as key improvement areas to adopt progressive sustainable development.

  9. Materials damaging and rupture - Volumes 1-2. General remarks, metallic materials. Non-metallic materials and biomaterials, assemblies and industrial problems

    International Nuclear Information System (INIS)

    Clavel, M.; Bompard, P.

    2009-01-01

    The rupture and damaging of materials and structures is almost always and unwanted events which may have catastrophic consequences. Even if the mechanical failure causes can often be analyzed using a thorough knowledge of materials behaviour, the forecasting and prevention of failures remain difficult. While the macroscopic mechanical behaviour is often the result of average effects at the structure or microstructure scale, the damage is very often the result of the combination of load peaks, of localization effects and of microstructure defects. This book, presented in two volumes, takes stock of the state-of-the-art of the knowledge gained in the understanding and modelling of rupture and damaging phenomena of materials and structure, mostly of metallic type. It gives an outline of the available knowledge for other classes of materials (ceramics, biomaterials, geo-materials..) and for different types of applications (aeronautics, nuclear industry). Finally, it examines the delicate problem, but very important in practice, of the behaviour of assemblies. Content: Vol.1 - physical mechanisms of materials damaging and rupture; rupture mechanics; cyclic plasticity and fatigue crack growth; fatigue crack propagation; environment-induced cracking; contacts and surfaces. Vol.2 - glasses and ceramics; natural environments: soils and rocks; mechanical behaviour of biological solid materials: the human bone; contribution of simulation to the understanding of rupture mechanisms; assemblies damaging and rupture; industrial cases (behaviour of PWR pressure vessel steels, and thermal and mechanical stresses in turbojet engines). (J.S.)

  10. Lighter, greener and strong: developing light metals for application in the aerospace industry

    CSIR Research Space (South Africa)

    Du Preez, W

    2010-08-01

    Full Text Available per SR-71 Drivers of the South African Titanium Industry SA’s Space Programme (mid ’80s – mid ’90s): Titanium (Ti-6Al-4V) in satellites Medical applications (’90s – present): Titanium orthopaedic implants Titanium dental implants © CSIR 2010...

  11. Metal-bearing fine particle sources in a coastal industrialized environment

    Czech Academy of Sciences Publication Activity Database

    Mbengue, Saliou; Alleman, L. Y.; Flament, P.

    2017-01-01

    Roč. 183, jan (2017), s. 202-211 ISSN 0169-8095 Institutional support: RVO:67179843 Keywords : PM2.5 * Trace elements * Industrial emissions * Sources apportionment Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.778, year: 2016

  12. A study on the treatment process of industrial wastewater related to heavy metal wastewater

    International Nuclear Information System (INIS)

    Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Kim, M. J.; Son, J. S.; Park, H. S.

    1999-08-01

    The supernatant from metal wastewater by using magnesium hydroxide and dolomite was used to treat dyeing wastewater. In the case of magnesium hydroxide. In the case of magnesium hydroxide, the optimum dosage was 10 % (v/v) for supernatant A and 3 % (v/v) for separation B. Color turbidity and COD removal was 99 to 100 % , 85 to 97 % and 43 to 53 %, respectively. In the case of dolomite, the optimum dosage was 30 % (v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96 to 99 %, 62 to 91 % and 52 to 53 %, respectively. In dyeing wastewater treatment by using supernatant from metal wastewater, the cost of chemicals was reduced by about 80 %

  13. Determination of Metal Contents of Various Fibers Used in Textile Industry by MP-AES

    Directory of Open Access Journals (Sweden)

    Şana Sungur

    2015-01-01

    Full Text Available The concentrations of metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Tl, and Zn in various textile fibers (cotton, acrylic, polyester, nylon, viscose, and polypropylene of different colors (red, white, green, blue, yellow, orange, black, brown, purple, pink, navy, burgundy, beige, and grey were determined by microwave plasma-atomic emission spectroscopy (MP-AES. Textile fibers were collected from the various textile plants in Gaziantep-Kahramanmaraş, Turkey. Heavy metals concentrations in all examined textile fibers after wet digestion were found to be high, whereas in the artificial sweat extract they were low. The only lead concentrations in textile fibers analyzed after extraction in the artificial sweat solution were found higher than limit values given by Oeko-Tex.

  14. Sol gel coatings doped with Ce ions deposited on industrial applications metals

    International Nuclear Information System (INIS)

    Pepe, A; Aparicio, M; Duran, A; Cere, S

    2004-01-01

    Compounds that contain chromates as corrosion inhibitors are widely used. Since these compounds are highly toxic, enormous efforts are being made to replace them. The lanthanides, especially cerium, have the right properties for this substitution. Different substrates can be protected by a variety of coatings. The sol-gel derived films can be deposited on different metals or alloys to increase their resistance to corrosion or to modify their surface properties by doped with different substances that can increase their protective strength, by combining the barrier capacity of the hybrid coating with the inhibitory properties of the cerium. This work presents the conditions for obtaining soles doped with cerium III and IV salts at room temperature and humidity. The parameters are also described for obtaining coatings by free immersion-extraction of fissures and pores on metallic substrates (stainless steel AISI 304). The behavior with corrosion of the coated samples was characterized with electrochemical tests (CW)

  15. Behavior and fate of heavy metals in the composting of industrial tannery sludge

    International Nuclear Information System (INIS)

    Mahdi Ahmed; Azni Idris; Omer, S.R.S.

    2007-01-01

    It is known that heavy metals, when in high enough concentrations, have the potential to be both phyto toxic and zoo toxic. Heavy metals are frequently found as contaminants in tannery sludge. Any sludge that is subsequently segregated for composting theoretically has the potential to retain the possible contamination. To date, there have been a limited number of publications addressing this issue. most reports have concentrated on the types of heavy metals found in the composting process. As such, this investigation aimed to identify the fate of chromium, cadmium, copper, lead and zinc, concentrations in tannery sludge throughout a fifty day composting cycle. The results of this study showed a general increase in the removal of Cr, Cd, Pb and to a much smaller extent Zn and Cu, evident by a decrease in their overall concentrations within the solid fraction of the final product, by 38.5, 33.3, 31.2, 22.6 and 11.8 percent respectively. (author)

  16. Empirical analyses on the development trend of non-ferrous metal industry under China’s new normal

    Science.gov (United States)

    Li, C. X.; Liu, C. X.; Zhang, Q. L.

    2017-08-01

    The CGE model of Yunnan’s macro economy was constructed based on the input-output data of Yunnan in 2012, and the development trend of the non-ferrous metals industry (NMI) under the China’s new normal was simulated. In view of this, according to different expected economic growth, and optimized economic structure, the impact on development of Yunnan NMI was simulated. The results show that the NMI growth rate is expected to decline when the economic growth show a downward trend, but the change of the proportion is relatively small. Moreover, the structure in proportion was adjusted to realize the economic structure optimization, while the proportion of NMI in GDP will decline. In contrast, the biggest influence on the NMI is the change of economic structure. From the statistics of last two years, we can see that NMI is growing, and at the same time, its proportion is declining, which is consistent with the results of simulation. But the adjustment of economic structure will take a long time. It is need to improve the proportion of deep-processing industry, extend the industrial chain, enhance the value chain, so as to be made good use of resource advantage.

  17. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.

    Science.gov (United States)

    Lum, A Fontem; Ngwa, E S A; Chikoye, D; Suh, C E

    2014-01-01

    Phytoremediation is a promising option for reclaiming soils contaminated with toxic metals, using plants with high potentials for extraction, stabilization and hyperaccumulation. This study was conducted in Cameroon, at the Bassa Industrial Zone of Douala in 2011, to assess the total content of 19 heavy metals and 5 other elements in soils and phytoremediation potential of 12 weeds. Partial extraction was carried out in soil, plant root and shoot samples. Phytoremediation potential was evaluated in terms of the Biological Concentration Factor, Translocation Factor and Biological Accumulation Coefficient. The detectable content of the heavy metals in soils was Cu:70-179, Pb:8-130, Zn:200-971, Ni:74-296, Co:31-90, Mn:1983-4139, V:165-383, Cr:42-1054, Ba:26-239, Sc:21-56, Al:6.11-9.84, Th:7-22, Sr:30-190, La:52-115, Zr:111-341, Y:10-49, Nb:90-172 in mg kg(-1), and Ti:2.73-4.09 and Fe:12-16.24 in wt%. The contamination index revealed that the soils were slightly to heavily contaminated while the geoaccumulation index showed that the soils ranged from unpolluted to highly polluted. The concentration of heavy metals was ranked as Zn > Ni > Cu > V > Mn > Sc > Co > Pb and Cr in the roots and Mn > Zn > Ni > Cu > Sc > Co > V > Pb > Cr > Fe in the shoots. Dissotis rotundifolia and Kyllinga erecta had phytoextraction potentials for Pb and Paspalum orbicularefor Fe. Eleusine indica and K. erecta had phytostabilisation potential for soils contaminated with Cu and Pb, respectively.

  18. DMAIC Application and Fault Analysis of Metal Packaging in the Canning Industry

    Directory of Open Access Journals (Sweden)

    Rafael Santos de Souza

    2017-11-01

    Full Text Available In the food industry, quality assurance is strongly associated with consumer safety and the risk of compromising the purity of products. Specifically, in the canning industries, rusty, dented or bulging cans may contain bacteria and cause foodborne illness. This article discusses the application of DMAIC and failure analysis to reduce the number of crushed cans in a canning industry. The methodology was of an applied nature, with an exploratory objective, a qualitative and quantitative approach and a case study method used. Through statistical analysis, it was found that the amount of dented packaging in the production process, which comprises the steps of filling, seaming and basketing, was high. The step with the highest number of crushed cans between three stages was seaming. This was followed by the application of FMEA failure analysis related to the use of an automated seaming machine. Finally, an action plan was roposed to solve the problem of cans crushed in the seaming step and the results demonstrate the improvements obtained before the target after 4 months (August-November 2015.

  19. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-03-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  20. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-01-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  1. Mortality among population with exposure to industrial air pollution containing nickel and other toxic metals.

    Science.gov (United States)

    Pasanen, Kari; Pukkala, Eero; Turunen, Anu W; Patama, Toni; Jussila, Ilkka; Makkonen, Sari; Salonen, Raimo O; Verkasalo, Pia K

    2012-05-01

    To assess disease mortality among people with exposure to metal-rich particulate air pollution. We conducted a cohort study on mortality from 1981 to 2005 among 33,573 people living near a nickel/copper smelter in Harjavalta, Finland. Nickel concentration in soil humus was selected as an indicator for long-term exposure. Relative risks--adjusted for age, socioeconomic status, and calendar period--were calculated for three exposure zones. The relative risks for diseases of the circulatory system by increasing exposure were 0.93 (95% confidence interval = 0.79 to 1.09), 1.20 (1.04 to 1.39), and 1.18 (1.00 to 1.39) among men and 1.01 (0.88 to 1.17), 1.20 (1.04 to 1.38), and 1.14 (0.97 to 1.33) among women. Exclusion of smelter workers from the cohort did not materially change the results. Long-term environmental exposure to metal-rich air pollution was associated with increased mortality from circulatory diseases.

  2. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    International Nuclear Information System (INIS)

    Nelson, E; John Gladden, J

    2007-01-01

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments

  3. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E; John Gladden, J

    2007-03-22

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

  4. Noise Pollution Status in a Metal Melting Industry and the Map of Its Isosonic Curve

    Directory of Open Access Journals (Sweden)

    Forouharmajd

    2015-10-01

    Full Text Available Background Steel industry is one of the most important industries of each country and noise pollution is one of the very annoying factors in this industry that causes various diseases; above all, the damage to the auditory system of the work force is high. Therefore, the assessment of noise pollution and the identification of the sources and causes of its creation are inevitable for controlling and teaching the prevention programs and hearing protection. Objectives This study aimed to draw the noise map of isosonic curves and assess the noise pollution using Surfer modeling software. Materials and Methods In the present study, first, preliminary maps and stationing were drawn, and then, the measurement of the sound pressure level and the octave band analysis were performed by a noise measurement device called Casella-CEL 445; then, after recording the data in software of Surfer version 8, they were used for drawing the isosonic curves. Results The results of the peripheral measurements showed that the maximum sound pressure of level 109 dBA was related to the electric arc furnace. A map of the graphic isosonic curves showed most of the noise pollution in the following areas: furnace, casting, tundishes, and the cooling beds. Conclusions According to the factory noise map, except for the control rooms with 81 dBA noise, other cases of measuring stations were higher than the standard exposure of 85 dBA noise. As a result, the implementation of control strategies, such as inspection and performance of control systems and insulation of the control room to prevent unnecessary exposure noise, are necessary.

  5. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries.

    Science.gov (United States)

    Thevenon, Florian; Graham, Neil D; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John

    2011-12-15

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750-1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (>100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Functionalized nanostructured silica by tetradentate-amine chelating ligand as efficient heavy metals adsorbent : Applications to industrial effluent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shahbazi, Afsaneh [Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Younesi, Habibollah [Tarbiat Modares University, Noor (Iran, Islamic Republic of); Badiei, Alireza [University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Organofunctionalized nanostructured silica SBA-15 with tri(2-aminoethyl)amine tetradentate-amine ligand was synthesized and applied as adsorbent for the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from both synthetic wastewater and real paper mill and electroplating industrial effluents. The prepared materials were characterized by XRD, N{sub 2} adsorption-desorption, TGA, and FT-IR analysis. The Tren-SBA-15 was found to be a fast adsorbent for heavy metal ions from single solution with affinity for Cu{sup 2+}, Pb{sup 2+}, than for Cd{sup 2+} due to the complicated impacts of metal ion electronegativity. The kinetic rate constant decreased with increasing metal ion concentration due to increasing of ion repulsion force. The equilibrium batch experimental data is well described by the Langmuir isotherm. The maximum adsorption capacity was 1.85 mmol g{sup -1} for Cu{sup 2+}, 1.34 mmol g{sup -1} for Pb{sup 2+}, and 1.08 mmol g{sup -1} for Cd{sup 2+} at the optimized adsorption conditions (pH=4, T=323 K, t=2 h, C0=3 mmol L{sup -1}, and adsorbent dose=1 g L{sup -1}). All Gibbs energy was negative as expected for spontaneous interactions, and the positive entropic values from 103.7 to 138.7 J mol{sup -1} K{sup -1} also reinforced this favorable adsorption process in heterogeneous system. Experiment with real wastewaters showed that approximately a half fraction of the total amount of studied metal ions was removed within the first cycle of adsorption. Hence, desorption experiments were performed by 0.3M HCl eluent, and Tren-SBA-15 successfully reused for four adsorption/desorption cycles to complete removal of metal ions from real effluents. The regenerated Tren-SBA-15 displayed almost similar adsorption capacity of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} even after four recycles. The results suggest that Tren-SBA-15 is a good candidate as an adsorbent in the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from aqueous solutions.

  7. Bioaccumulation of selected heavy metals by the water fern, Azolla filiculoides Lam. in a wetland ecosystem affected by sewage, mine and industrial pollution

    Energy Technology Data Exchange (ETDEWEB)

    Wet, L.P.D. de; Schoonbee, H.J.; Pretorius, J.; Bezuidenhout, L.M. (Rand Afrikaans University, Johannesburg (South Africa). Depts. of Zoology and Botany, Research Unit for Aquatic and Terrestrial Ecosystems)

    1990-10-01

    The bio-accumulation of the heavy metals, Fe, Cu, Ni, Pb, Zn, Mn and Cr by the water fern, Azolla filiculoides Lam. in a wetland ecosystem polluted by effluents from sewage works, mines and industries was investigated. Results showed that the different metals can be accumulated by the water fern at concentration levels not necessarily related to their actual concentrations in the aquatic environment, as measured in this case, in the bottom sediments. 45 refs., 1 fig., 3 tabs.

  8. Biocorrosion and biofouling of metals and alloys of industrial usage. Present state of the art at the beginning of the new millennium

    OpenAIRE

    Videla, H. A.

    2003-01-01

    An overview on the present state of the art on Biocorrosion and Biofouling of metals and alloys of industrial usage is offered on the basis of the experience gathered in our laboratory over 25 years of research. The key concepts to understand the main effects of microorganisms on metal decay are briefly discussed. New trends in monitoring and control strategies to mitigate biocorrosion and biofouling deleterious effects are also described. Several relevant cases of biocorrosion studied by our...

  9. Heavy Metal Contamination in Urban Soils II Comparison of Urban Park Soils Between Two Cities with Different City and Industrial Activities

    OpenAIRE

    KOMAI, Yutaka

    1981-01-01

    A comparative investigation on the state of heavy metal contamination in park soils of two cities with different city and industrial activities was carried out. Sakai and Kishiwada, both situated in southern Osaka Prefecture, were chosen as the investigated cities which had similar natural conditions but different human activities. Park soils were regarded as suitable sites for the investigation of heavy metal problem in urban environments. Samples were taken at 34 parks distributed widely in...

  10. The Impact of Quality Culture and Leadership on Customer Relationship in Organizations from the Romanian Metal Construction Industry

    Directory of Open Access Journals (Sweden)

    Liviu Ilieș

    2017-11-01

    Full Text Available The current paper is part of a wider research that has as general objective to develop an evaluation and analysis model for the total quality management (TQM system to identify best practices that determine its’ performance, in order to improve it. The research is focused on organizations from the metal construction industry. The sample consists of organizations from Romania operating in the before mentioned area, which have a consolidated position in the market and conducted efforts in implementing TQM systems. The data analysis was conducted through quantitative research methods, based on statistical processing. Regarding the research tools used for data collection, a survey based on a questionnaire was employed. The designed and pre-tested questionnaire contains items based on factors considered important in analysing and evaluating the TQM system, based on the evaluation criteria of the EFQM European Excellence Award (European Foundation for Quality Management, which provides credibility to the research. The objective of the present research is analysing the components of the TQM system, leadership and quality culture, in companies from the Romanian metal construction industry and their influence on customer relationship. The empirical research was conducted between September 2014 and August 2015, and the study is based on questioning 263 managers from 23 companies. The main research results show a very strong positive relation between the variables leadership, quality culture and customer relationship. It was also noticed that the management team of the analysed organizations is concerned with the continuous quality improvement process and that efforts are made for satisfying and exceeding customers’ expectations, thus existing the premises for creating customers’ dedicated organizations and achieving long term excellence. A surprising result concerning the leadership style favourable to quality culture’s development was obtained

  11. Safety-Culture Exploration in Taiwan’s Metal Industries: Identifying the Workers’ Background Influence on Safety Climate

    Directory of Open Access Journals (Sweden)

    Shu-Chiang Lin

    2017-10-01

    Full Text Available The present study aims to assess the safety-climate level in Taiwan’s metal industries, as well as to identify the influence of workers’ backgrounds on the safety climate. An earlier report showed that a poor safety culture was related to the cause of accidents in Taiwan’s traditional manufacturing industries. This study surveyed a total of 839 workers who voluntarily participated and completed the safety-culture questionnaires. These workers were from a Taiwanese metal company and its five satellite companies. Three safety-climate factors, namely safety perception, safety communication and safety-management systems, were assessed. Confirmatory factor analysis (CFA was conducted by developing structural equation modeling to ensure the questionnaire’s validity. The influence of workers’ backgrounds on the safety climate was identified by using one-way ANOVA. The reliability result of the questionnaire was above the acceptable level. The overall safety-climate score was 4.22 out of a five-point scale for safety perception, 4.23 for safety-management systems and 3.97 for safety communication. The scores indicate a good level of safety climate, with room for improvement in safety communication. Additionally, the influence of workers’ backgrounds on the safety climate was confirmed. Based on the validity test, it was also found that the questionnaire could be improved by reconstructing its questions in its development process in order to increase the safety-climate model’s reliability and validity, as well as its model fit.

  12. Assessment of levels and 'health-effects' of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques

    International Nuclear Information System (INIS)

    2008-01-01

    The International Atomic Energy Agency (IAEA) has been supporting, over the years, several coordinated research programmes (CRPs) on various research topics related to environmental issues impacting human health. The primary aim of these CRPs has been to help enhance the research and development capabilities in the Member States, particularly among developing countries; to identify the sources of various environmental contaminants and evaluate their fate; and to provide for the basis of improved health among human populations by the use of nuclear and related analytical techniques. The CRP on Assessment of Levels and Health-Effects of Airborne Particulate Matter in Mining, Metal Refining and Metal Working Industries using nuclear and related analytical techniques focused on improving the competence for research on workplace monitoring in a variety of industrial environments. The personal monitoring of the APM (airborne particulate matter) of the exposed workforce was carried out for the first time by many participants. Nuclear and related analytical techniques, including the application of proton micro-beam, were used to generate the trace element concentration profiles in various biomarkers tissues of the exposed workers. The quality assurance/quality control (QA/QC) aspects related to the CRP were addressed through intercomparison analyses of APM on filter paper samples and freeze dried human urine samples to generate validated data. These data have helped to generate correlations between the occupational exposure measured and the magnitude of the biological response. Such new information is essential to evolve procedures to considerably reduce/eliminate the pollutants in the workplace environment and to make informed decisions on the evolution of standards in working environments aimed at preserving the health of workers. The purpose of this TECDOC is to provide an overview of the activities performed under the CRP by the participants. The overall achievements

  13. On The Generation of Interferometric Colors in High Purity and Technical Grade Aluminum: An Alternative Green Process for Metal Finishing Industry

    International Nuclear Information System (INIS)

    Chen, Yuting; Santos, Abel; Ho, Daena; Wang, Ye; Kumeria, Tushar; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-01-01

    Graphical abstract: Toward green processes in metal finishing industry by rationally designed electrochemical anodization. Biomimetic photonic films based on nanoporous anodic alumina produced in high purity and technical grade aluminum foils display vivid colors that can be precisely tuned across the visible spectrum. The presented method is a solid rationale aimed toward green processes for metal finishing industry. - Highlights: • Environmentally friendly approach to color aluminum through biomimetic photonic films. • Nanoporous anodic alumina distributed Bragg Reflectors (NAA-DBRs). • Rationally designed galvanostatic pulse anodization approach. • Macroscopic and microscopic differences in high purity and technical grade aluminum. • Substitute method for conventional coloring processes in metal finishing industry. - Abstract: Metal finishing industry is one of the leading pollutants worldwide and green approaches are urgently needed in order to address health and environmental issues associated with this industrial activity. Herein, we present an environmentally friendly approach aimed to overcome some of these issues by coloring aluminum through biomimetic photonic films based on nanoporous anodic alumina distributed Bragg Reflectors (NAA-DBRs). Our study aims to compare the macroscopic and microscopic differences between the resulting photonic films produced in high purity and technical grade aluminum in terms of color features, appearance, electrochemical behavior and internal nanoporous structure in order to establish a solid rationale toward optimal fabrication processes that can be readily incorporated into industrial methodologies. The obtained results reveal that our approach, based on a rational galvanostatic pulse anodization approach, makes it possible to precisely generate a complete palette of colors in both types of aluminum substrates. As a result of its versatility, this method could become a promising alternative to substitute

  14. Evaluation of the toxicity of fluids employed in the metallic tool industrial machining using aquatic ecotoxicology

    International Nuclear Information System (INIS)

    Coelho, Ricardo dos Santos

    2006-01-01

    Eco toxicological analyses have being used to monitor environmental samples, industrial effluents and complex substances. With the objective to analyze the toxicity of cutting fluids used in the machinery industry, acute toxicity test with species of three different trophic levels: Vibrio fischeri, Daphnia similis, Daphnia laevis e Danio rerio, were performing. The samples of fluids were analyzed by COD, phenol, pH, color, density and surfactants. The physical and chemical parameters are the according with the brazilian law, CONAMA 357 (D.O.U. 2005). The results of the toxicity tests showed that the cutting fluids have high toxicity to the organisms used in this study and the gamma radiation treatment was not efficient to decrease the matrix. The biodegradation in soil demonstrated be effective to the cutting fluids and the indigenous bacteria were identified and isolated to possible treatment of soils contaminated with these kinds of substances. The monitoring and management of residues of cutting fluids are necessary to preservation of aquatic live, in consequence of their high toxicity. (author)

  15. Evaluation of the information quality in a company of metal-mechanical industry

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto Spiegel Gualazzi

    2012-11-01

    Full Text Available This paper presents the application of an instrument for assessing the quality of information based on attributes such as accuracy, reliability, performance, among others. This instrument was applied in order to evaluate and identify ineffective information in a specific scenario of an engineering company in the metal-mechanic sector from the point of view of users of technical information. The case study aimed to demonstrate the applicability and functionality of the assessment instrument, the interest of people in evaluating their information and, finally, evaluate the scope of their results. The result of this evaluation allowed the company researched a plan of action to correct problems in its processes and identified inaccuracies in the information, indicating that the problem was solved by the method of problem solving.

  16. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries

    Energy Technology Data Exchange (ETDEWEB)

    Thevenon, Florian, E-mail: Florian.Thevenon@yahoo.fr [Institute F.-A. Forel, University of Geneva, Versoix (Switzerland); Graham, Neil D. [Institute F.-A. Forel, University of Geneva, Versoix (Switzerland); Chiaradia, Massimo [Department of Mineralogy, University of Geneva, Geneva (Switzerland); Arpagaus, Philippe; Wildi, Walter; Pote, John [Institute F.-A. Forel, University of Geneva, Versoix (Switzerland)

    2011-12-15

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750-1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (> 100 {mu}g Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. Highlights: Black-Right-Pointing-Pointer Natural sources

  17. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries

    International Nuclear Information System (INIS)

    Thevenon, Florian; Graham, Neil D.; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John

    2011-01-01

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750–1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (> 100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. Highlights: ► Natural sources dominated trace element

  18. Valorization of titanium metal wastes as tanning agent used in leather industry.

    Science.gov (United States)

    Crudu, Marian; Deselnicu, Viorica; Deselnicu, Dana Corina; Albu, Luminita

    2014-10-01

    The development of new tanning agents and new technologies in the leather sector is required to cope with the increasingly higher environmental pressure on the current tanning materials and processes such as tanning with chromium salts. In this paper, the use of titanium wastes (cuttings) resulting from the process of obtaining highly pure titanium (ingots), for the synthesis of new tanning agent and tanning bovine hides with new tanning agent, as alternative to tanning with chromium salts are investigated. For this purpose, Ti waste and Ti-based tanning agent were characterized for metal content by inductively coupled plasma mass spectrometry (ICP-MS) and chemical analysis; the tanned leather (wet white leather) was characterized by Scanning Electron Microscope/Energy Dispersive Using X-ray (Analysis). SEM/EDX analysis for metal content; Differential scanning calorimetric (DSC), Micro-Hot-Table and standard shrinkage temperature showing a hydrothermal stability (ranged from 75.3 to 77°C) and chemical analysis showing the leather is tanned and can be processed through the subsequent mechanical operations (splitting, shaving). On the other hand, an analysis of major minor trace substances from Ti-end waste (especially vanadium content) in new tanning agent and wet white leather (not detected) and residue stream was performed and showed that leachability of vanadium is acceptable. The results obtained show that new tanning agent obtained from Ti end waste can be used for tanning bovine hides, as eco-friendly alternative for chrome tanning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Performance of metal compound on thermolysis and electrolysis on sugar industries waste water treatment: COD and color removal with sludge analysis (batch-experiment)

    Science.gov (United States)

    Sahu, Omprakash

    2017-10-01

    The sugar cane industry is one of the most water demanding industries. Sugar industries consume and generate excess amount of water. The generated water contains organic compounds, which would cause pollution. The aim of this research work is to study the effectiveness of metal compound for treatment of sugar industry waste water by thermolysis and electrolysis process. The result shows ferrous metal catalyst shows 80 and 85 % chemical oxygen demand and color removal at pH 6, optimum mass loading 4 kg/m3, treatment temperature 85 °C and treatment time 9 h. When ferrous material was used as electrode, maximum 81 % chemical oxygen demand and 84 % color removal at pH 6, current density 156 Am-2, treatment time 120 min and anode consumption 0.7 g for 1.5 L wastewater were obtained.

  20. Assessment of heavy metals and metalloids in tissues of two frog species: Rana tigrina and Euphlyctis cyanophlyctis from industrial city Sialkot, Pakistan.

    Science.gov (United States)

    Qureshi, Irfan Zia; Kashif, Zeshan; Hashmi, Muhammad Zaffar; Su, Xiaomei; Malik, Riffat Naseem; Ullah, Kalim; Hu, Jinxing; Dawood, Muhammad

    2015-09-01

    In the present study, we investigated the concentrations of Ni, Fe, Pb, Cu, Co, Zn, Cd, Mn, and Cr in selected body tissues (liver, stomach, kidney, heart, lungs, and skeletal muscles) of two frog species: Rana tigrina and Euphlyctis cyanophlyctis captured from industrial wastewater of Sialkot city known worldwide for its tanning industry. The both frog species had darker appearance, distinctively different wet body weight, and snout-vent length. The results revealed that the heavy metal concentrations were high in the samples collected from industrial sites as compared to non-industrial sites. The different tissues of R. tigrina and E. cyanophlyctis exhibited little significant differences from two sites. The concentrations of heavy metals were more in tissues of R. tigrina as compared to E. cyanophlyctis. Mean concentration of Cd, Fe, Ni, Mn, Cu, and Cr was comparatively greater in R. tigrina, whereas Pb and Co were higher in E. cyanophlyctis. The concentration of Cu and Cd in the liver and kidney were relatively more in both species as compared to other organs. Further, the results indicated that frogs collected from industrial sites showed decreased body length and weight, and greater metal accumulation. The results will help the authorities for the conservation of these frog species which are under the influence of heavy metal contamination.

  1. Adsorption of heavy metals by bio-chars produced from pyrolysis of paper mulberry from simulated industrial wastewater

    International Nuclear Information System (INIS)

    Adil, S.; Asma, M.

    2014-01-01

    Paper mulberry bio-char (by-product of pyrolysis) was evaluated for the removal of heavy metals (Cd, Cr, Cu, Zn and Pb) from simulated industrial waste water. The surface properties and surface area of the bio-char was found suitable for metal adsorption. Batch sorption studies for adsorption potential of paper mulberry bio-char for Cd, Cr, Cu, Pb and Zn were investigated under different experimental conditions of pH, temperature and contact time. Maximum removal efficiency of Cd, Cu, Pb and Zn was 97.8, 76.8, 85.6, and 82.2 % respectively at pH 12 while maximum removal of Cr was recorded (98%) at pH 2. The removal efficiency showed different behaviour at different contact times. Maximum removal efficiency of Cd, Cr, Zn was 81, 86, 61.4% at contact time of 3 hr. The maximum removal of Cu was 64.2% observed at a contact time of 4 hours while the maximum removal of Pb and Zn was 85% at contact time of 2 hr. The values of the thermodynamic parameters, enthalpy delta H, Gibbs free energy delta G of sorption and entropy delta So were calculated to define endothermic or exothermic behavior of the sorbent used. Negative value of delta G for Cd, Cu, Cr and Pb indicated paper mulberry bio-char as a feasible sorbent for the efficient removal of Cd, Cu, Cr and Pb. Negative value of delta H was observed for Cd and Pb indicating that the adsorption process is exothermic while positive value of delta H was calculated for Cu, Cr and Zn showed that the adsorption is endothermic. The results obtained showed that plant residue bio-char can act as an effective sorbent for the removal of heavy metals from aqueous solutions. (author)

  2. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability.

    Science.gov (United States)

    Mäkelä, Mikko; Watkins, Gary; Pöykiö, Risto; Nurmesniemi, Hannu; Dahl, Olli

    2012-03-15

    Industrial residue application to soil was investigated by integrating granulated blast furnace or converter steel slag with residues from the pulp and paper industry in various formulations. Specimen analysis included relevant physicochemical properties, total element concentrations (HCl+HNO3 digestion, USEPA 3051) and chemical speciation of chosen heavy metals (CH3COOH, NH2OH·HCl and H2O2+H2O2+CH3COONH4, the BCR method). Produced matrices showed liming effects comparable to commercial ground limestone and included significant quantities of soluble vital nutrients. The use of converter steel slag, however, led to significant increases in the total concentrations of Cr and V. Subsequently, total Cr was attested to occur as Cr(III) by Na2CO3+NaOH digestion followed by IC UV/VIS-PCR (USEPA 3060A). Additionally, 80.6% of the total concentration of Cr (370 mg kg(-1), d.w.) occurred in the residual fraction. However, 46.0% of the total concentration of V (2470 mg kg(-1), d.w.) occurred in the easily reduced fraction indicating potential bioavailability. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Adsorption of Heavy Metals From Industrial Wastes Using Membranes Prepared by Radiation Grafting

    International Nuclear Information System (INIS)

    Hegazy, E. A.; Kamal, H.; Maziad, N.; Dessouki, A.M.; Aly, H.F.

    1999-01-01

    Preparation of synthetic membranes using simultaneous radiation grafting of acrylic acid (AAc) and styrene (Sty) individually and in a binary monomers mixture onto polypropylene (PP) has been carried out. The effect of preparation conditions such as irradiation dose, monomer and inhibitor concentration, comonomer composition on the grafting yield was investigated. The thermal stability and mechanical properties were also investigated as a function of degree of grafting. Accordingly the possibility of its practical use in industrial waste treatment is determined. The prepared cation-exchange membranes possess good mechanical properties, high thermal stability and good characteristics for separation processes. These membranes have also good affinity toward the adsorption or chelation with Fe 3+ , Pb 2+ , and Cd 2+ ions either in a mixture or exists alone in the solution

  4. Trace Metal Inventories and Lead Isotopic Composition Chronicle a Forest Fire’s Remobilization of Industrial Contaminants Deposited in the Angeles National Forest

    OpenAIRE

    Odigie, Kingsley O.; Flegal, A. Russell

    2014-01-01

    The amounts of labile trace metals: [Co] (3 to 11 µg g−1), [Cu] (15 to 69 µg g−1), [Ni] (6 to 15 µg g−1), [Pb] (7 to 42 µg g−1), and [Zn] (65 to 500 µg g−1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlation...

  5. Treatment of heavy metal polluted industrial wastewater by a new water treatment process: ballasted electroflocculation.

    Science.gov (United States)

    Brahmi, Khaled; Bouguerra, Wided; Harbi, Soumaya; Elaloui, Elimame; Loungou, Mouna; Hamrouni, Béchir

    2018-02-15

    This laboratory study investigated the parameters efficiency of the new technology: ballasted electro-flocculation (BEF) using aluminum (Al) electrodes to remove cadmium and zinc from industrial mining wastewater (MWW). The principle of the BEF process is based on the use of micro-sand and polymer together to increase the weight of the flocs and the rate at which they settle is radically changing the electrocoagulation-electroflocculation settling methodology. Based on the examination of the operation parameters one by one, the best removal percentage was obtained at a current intensity of 2A, a the flow rate of 20L/h, a micro-sand dose of 6g/L, a polyéthylèneimine (PEI) polymer dose of 100mg, the contact times of 30min, a stirring speed of 50 RPM, a monopolar configuration of the electrodes, and an electrodes number of 10. The results showed that the flow rate and the current density have a preponderant effect on the variability of the quality of the settled water. In comparison, filterability was found to be more sensitive to number of electrodes, micro sand dosages and current density. It was dependent on the ratio of microsand to PEI polymer dosage, and improved when this ratio increased. Response surface methodology was applied to evaluate the main effects and interactions among stirring speed, polymer dose, current intensity, and electrodes number. The removal of Cd and Zn from industrial MWW was done for very low cost of 0.1TND/m 3 equivalent to 0.04€/m 3 . The investigation of BEF process proposes a highly cost-effective wastewater treatment method if compared to Actiflo TM and electrocoagulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Measurement of the thermophysical properties of industrial liquid metallic alloys by non-contact calorimetry under reduced gravity

    International Nuclear Information System (INIS)

    Wunderlich, R.K.; Fecht, H.-J.

    2001-01-01

    Full Text: The numerical modeling of casting and solidification is becoming of increased importance in industrial process design. While the numerical algorithms have made large progress towards real process design and optimization, there is a pronounced lack of precise thermophysical input data. This lack is caused by the high chemical reactivity of many metallic alloys in the liquid phase making conventional measurement techniques such as differential thermal analysis difficult if at all possible to apply. In this contribution we report about a project planning to use containerless electromagnetic processing under reduced gravity conditions for thermophysical property measurement of industrially relevant alloys. Alloys of interest are, among others, Ti-alloys, Ni-base superalloys, and steels. In preparation of this project, a survey among leading European industries was conducted revealing properties such as melting range, fraction solid/liquid, specific heat capacity, enthalpy, as well as density, viscosity and surface tension as properties most in need. Non-contact calorimetry of electromagnetically levitated specimens was developed for an investigation of the thermophysical properties of Zr-alloys in the liquid phase. These methods have been applied successfully under reduced gravity conditions on board spacelab to the measurement of the specific heat capacity by modulation calorimetry, the enthalpy of fusion, the total hemispherical emissivity and for an effective thermal conductivity. Specific examples from these experiments demonstrating the applicability of these methods for quantitative calorimetry as well as application at higher Biot numbers will be discussed. New developments include modulation calorimetry in the two phase region for the measurement of the fraction solid. (author)

  7. Control of Transboundary Movement of Radioactive Material Inadvertently Incorporated into Scrap Metal and Semi-finished Products of the Metal Recycling Industries. Results of the Meetings Conducted to Develop a Draft Code of Conduct

    International Nuclear Information System (INIS)

    2014-02-01

    In 2010, the IAEA initiated the development of a code of conduct on the transboundary movement of radioactive material inadvertently incorporated into scrap metal and semi- finished products of the metal recycling industries (Metal Recycling Code of Conduct). The Metal Recycling Code of Conduct was intended to harmonize the approaches of Member States in relation to the discovery of radioactive material that may inadvertently be present in scrap metals and semi-finished products subject to transboundary movement, and their safe handling and management to facilitate regulatory control. The Metal Recycling Code of Conduct was envisaged as being complementary to the Safety Guide on Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries (IAEA Safety Standards Series No. SSG-17), which provides recommendations, principally within a national context, on the protection of workers, members of the public and the environment in relation to the control of radioactive material inadvertently incorporated in scrap metal. In February 2013, the third open-ended meeting of technical and legal experts to develop the Metal Recycling Code of Conduct was organized. The objective of this meeting was to address the comments received from Member States and to finalize the text of the draft Metal Recycling Code of Conduct. Representatives from 55 Member States, one non-Member State and the EU, together with seven observers from the metal recycling industry, reviewed the comments and revised the draft accordingly. In September 2013, in Resolution GC(57)/RES/9, the IAEA General Conference recorded that it 'Appreciates the intensive efforts undertaken by the Secretariat to develop a code of conduct on the transboundary movement of scrap metal, or materials produced from scrap metal, that may inadvertently contain radioactive material, and encourages the Secretariat to make the results of the discussion conducted on this issue available to

  8. Theoretical and practical investigation into sustainable metal joining process for the automotive industry

    International Nuclear Information System (INIS)

    Al-Jader, M A; Cullen, J D; Shaw, Andy; Al-Shamma'a, A I

    2011-01-01

    Currently there are about 4300 weld points on the average steel vehicle. Errors and problems due to tip damage and wear can cause great losses due to production line downtime. Current industrial monitoring systems check the quality of the nugget after processing 15 cars average once every two weeks. The nuggets are examined off line using a destructive process, which takes approximately 10 days to complete causing a long delay in the production process. In this paper a simulation results using software package, SORPAS, will be presented to determined the sustainability factors in spot welding process including Voltage, Current, Force, Water cooling rates, Material thicknesses and usage. The experimental results of various spot welding processes will be investigated and reported. The correlation of experimental results shows that SORPAS simulations can be used as an off line measurement to reduce factory energy usage. This paper also provides an overview of electrode current selection and its variance over the lifetime of the electrode tip, and describes the proposed analysis system for the selection of welding parameters for the spot welding process, as the electrode tip wears.

  9. Pyrolisator Coal to be Cokes (Coal Cokes Casting Metal Industry Standard

    Directory of Open Access Journals (Sweden)

    Sukamto

    2016-01-01

    Full Text Available Pyrolisis of coal is partial combustion to reduce total moisture, volatile matter and sulfur contens and increase the calorific value of coal. The results of pyrolysis of coal is coke. At the laboratory level studies, pyrolisis done in batch using different calorie, namely 5800, 6000, 6300 kcal/kg and a time of 15-60 minutes and the temperature 400-800°C. Maximum results obtained total moisture (0.44%, fixed carbon (89%, volatile matter (2.4%, sulfur content (undetected and ash (7.2%. Then applied to the scale miniplant with continuous processes using multitube pyrolisator which are designed to operate in the temperature range 400-800°C and a flow rate of 240-730 kg/h, obtained coal cokes that meets industry quality standards, namely TM (0.42%, FC (90.40%, VM (2.16%, S (not detected, Ash (6.8% incalori 6300 kcal/h, a flow rate of 240 kg / h and temperatures between 600-700°C

  10. Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China

    International Nuclear Information System (INIS)

    Zhong, Buqing; Liang, Tao; Wang, Lingqing; Li, Kexin

    2014-01-01

    An extensive soil survey was conducted to study pollution sources and delineate contamination of heavy metals in one of the metalliferous industrial bases, in the karst areas of southwest China. A total of 597 topsoil samples were collected and the concentrations of five heavy metals, namely Cd, As (metalloid), Pb, Hg and Cr were analyzed. Stochastic models including a conditional inference tree (CIT) and a finite mixture distribution model (FMDM) were applied to identify the sources and partition the contribution from natural and anthropogenic sources for heavy metal in topsoils of the study area. Regression trees for Cd, As, Pb and Hg were proved to depend mostly on indicators of anthropogenic activities such as industrial type and distance from urban area, while the regression tree for Cr was found to be mainly influenced by the geogenic characteristics. The FMDM analysis showed that the geometric means of modeled background values for Cd, As, Pb, Hg and Cr were close to their background values previously reported in the study area, while the contamination of Cd and Hg were widespread in the study area, imposing potentially detrimental effects on organisms through the food chain. Finally, the probabilities of single and multiple heavy metals exceeding the threshold values derived from the FMDM were estimated using indicator kriging (IK) and multivariate indicator kriging (MVIK). The high probabilities exceeding the thresholds of heavy metals were associated with metalliferous production and atmospheric deposition of heavy metals transported from the urban and industrial areas. Geostatistics coupled with stochastic models provide an effective way to delineate multiple heavy metal pollution to facilitate improved environmental management. - Highlights: • Conditional inference tree can identify variables controlling metal distribution. • Finite mixture distribution model can partition natural and anthropogenic sources. • Geostatistics with stochastic models

  11. Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Buqing; Liang, Tao, E-mail: liangt@igsnrr.ac.cn; Wang, Lingqing; Li, Kexin

    2014-08-15

    An extensive soil survey was conducted to study pollution sources and delineate contamination of heavy metals in one of the metalliferous industrial bases, in the karst areas of southwest China. A total of 597 topsoil samples were collected and the concentrations of five heavy metals, namely Cd, As (metalloid), Pb, Hg and Cr were analyzed. Stochastic models including a conditional inference tree (CIT) and a finite mixture distribution model (FMDM) were applied to identify the sources and partition the contribution from natural and anthropogenic sources for heavy metal in topsoils of the study area. Regression trees for Cd, As, Pb and Hg were proved to depend mostly on indicators of anthropogenic activities such as industrial type and distance from urban area, while the regression tree for Cr was found to be mainly influenced by the geogenic characteristics. The FMDM analysis showed that the geometric means of modeled background values for Cd, As, Pb, Hg and Cr were close to their background values previously reported in the study area, while the contamination of Cd and Hg were widespread in the study area, imposing potentially detrimental effects on organisms through the food chain. Finally, the probabilities of single and multiple heavy metals exceeding the threshold values derived from the FMDM were estimated using indicator kriging (IK) and multivariate indicator kriging (MVIK). The high probabilities exceeding the thresholds of heavy metals were associated with metalliferous production and atmospheric deposition of heavy metals transported from the urban and industrial areas. Geostatistics coupled with stochastic models provide an effective way to delineate multiple heavy metal pollution to facilitate improved environmental management. - Highlights: • Conditional inference tree can identify variables controlling metal distribution. • Finite mixture distribution model can partition natural and anthropogenic sources. • Geostatistics with stochastic models

  12. Development of advanced metallic coatings resistant to corrosion in high temperature industrial atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T.; Bender, R.; Rosado, C.; Schuetze, M. [DECHEMA e.V., Frankfurt am Main (Germany)

    2004-07-01

    Following the experimental results that {gamma}-TiAl is highly resistant in reducing sulfidizing atmospheres the development of Ti-Al-co-diffusion coatings produced in a single step pack cementation process was started. The appropriate diffusion powder compositions were selected using thermodynamical calculations. Different Al-Ti-, Al-Si- and Al-Ti-Si-diffusion coatings were successfully applied on austenitic steels as well as Ni-base materials and showed excellent behaviour in reducing sulfidizing atmospheres with high carbon contents (CH{sub 4} - 1% CO - 1% CO{sub 2} - 10% H{sub 2} - 7% H{sub 2}S) up to 700 deg. C, under metal dusting conditions (H{sub 2} - 25 CO - 2% H{sub 2}O and CO - 2.4% CO{sub 2} - 1% CH{sub 4} - 9.4% N{sub 2} - 23.4% H{sub 2} - 0.2% H{sub 2}O - 1 ppm H{sub 2}S-0.3 ppm HCl) at temperatures of 620 deg. C and 700 deg. C. The application of diffusion coatings on ferritic materials has to be modified due to the specific requirements on the mechanical properties which are affected by the heat treatment during the diffusion process. TiAl was also applied by the HVOF thermal spray method on ferritic steels. Due to similarity of the thermal expansion coefficients this substrate-coating system proved to be mechanically very stable also under thermal cycling conditions. (authors)

  13. Practice and prospects of creation of equipment for reprocessing and utilization of contaminated metal wastes of plants of nuclear industry in Russia

    International Nuclear Information System (INIS)

    Popov, G.P.

    2005-01-01

    Program of reprocessing and utilization of metallic radioactive wastes exists in Russia. In the framework of this program in nuclear industry it is accumulated forty years experience on taking-off-service, disassembly, decontamination and reprocessing of technological facilities. Some technical characteristics of the units used for these operations are represented [ru

  14. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    Science.gov (United States)

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  15. Heavy metal (Pb, Cu, Zn and Cd content in wine produced from grape cultivar Mavrud, grown in an industrially polluted region

    Directory of Open Access Journals (Sweden)

    Violina Angelova

    1999-09-01

    Full Text Available The investigation was carried out in the period 1991-1993 with cv. Mavrud, grown in the region with a major industrial pollutant the Non-Ferrous-Metal Works (NFMW and a region with no industrial pollutants (as a control. The heavy metal content in soil, grapes and wine was determined. Most of the heavy metals in the grapes precipitate during fermentation into the sediments, which is the reason for their significantly lower content in the wine. Water washing of grape before processing leads to about 2 time decrease in the Pb, Cu, Zn and Cd contents of wine. The pre-washing of grapes does not lead to any quality deterioration in the wine produced. The amounts of Cu, Zn and Cd in the wine from cv. Mavrud, grown in the region of the NFMW-Plovdiv, are lower than the maximum admissible levels, while the Pb content exceeds them about two times.

  16. Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site.

    Science.gov (United States)

    Lorestani, B; Yousefi, N; Cheraghi, M; Farmany, A

    2013-12-01

    With the development of urbanization and industrialization, soils have become increasingly polluted by heavy metals. Phytoremediation, an emerging cost-effective, nonintrusive, and aesthetically pleasing technology that uses the remarkable ability of plants to concentrate elements, can be potentially used to remediate metal-contaminated sites. In this research, two processes of phytoremediation (phytoextraction and phytostabilization) were surveyed in some plant species around an industrial town in the Hamedan Province in the central-western part of Iran. To this purpose, shoots and roots of the seven plant species and the associated soil samples were collected and analyzed by measuring Pb, Fe, Mn, Cu, and Zn concentrations using ICP-AES and then calculating the biological absorption coefficient, bioconcentration factor, and translocation factor parameters for each element. The obtained results showed that among the collected plants, Salsola soda is the most effective species for phytoextraction and phytostabilization and Cirsium arvense has the potential for phytostabilization of the measured heavy metals.

  17. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Lieve [Katholieke Universiteit Leuven, Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion, Celestijnenlaan 300A, B-3001 Leuven (Heverlee) (Belgium)]. E-mail: lieve.helsen@mech.kuleuven.be; Hacala, Amelie [Company Thermya, 1 rue Nicolas Appert, 33140 Villenave d' Ornon (France)]. E-mail: hacala@thermya.com

    2006-10-11

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 {mu}m) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 {mu}m)

  18. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    International Nuclear Information System (INIS)

    Helsen, Lieve; Hacala, Amelie

    2006-01-01

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 μm) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 μm)

  19. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    International Nuclear Information System (INIS)

    Voglar, Grega E.; Lestan, Domen

    2011-01-01

    Highlights: → We assess the feasibility of using soil S/S for industrial land reclamation. → Retarders, accelerators, plasticizers were used in S/S cementitious formulation. → We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg -1 of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm -2 achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  20. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    Energy Technology Data Exchange (ETDEWEB)

    Voglar, Grega E. [RDA - Regional Development Agency Celje, Kidriceva ulica 25, 3000 Celje (Slovenia); Lestan, Domen, E-mail: domen.lestan@bf.uni-lj.si [Agronomy Department, Centre for Soil and Environmental Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia)

    2011-08-30

    Highlights: {yields} We assess the feasibility of using soil S/S for industrial land reclamation. {yields} Retarders, accelerators, plasticizers were used in S/S cementitious formulation. {yields} We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg{sup -1} of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm{sup -2} achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  1. Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China.

    Science.gov (United States)

    Zhong, Buqing; Liang, Tao; Wang, Lingqing; Li, Kexin

    2014-08-15

    An extensive soil survey was conducted to study pollution sources and delineate contamination of heavy metals in one of the metalliferous industrial bases, in the karst areas of southwest China. A total of 597 topsoil samples were collected and the concentrations of five heavy metals, namely Cd, As (metalloid), Pb, Hg and Cr were analyzed. Stochastic models including a conditional inference tree (CIT) and a finite mixture distribution model (FMDM) were applied to identify the sources and partition the contribution from natural and anthropogenic sources for heavy metal in topsoils of the study area. Regression trees for Cd, As, Pb and Hg were proved to depend mostly on indicators of anthropogenic activities such as industrial type and distance from urban area, while the regression tree for Cr was found to be mainly influenced by the geogenic characteristics. The FMDM analysis showed that the geometric means of modeled background values for Cd, As, Pb, Hg and Cr were close to their background values previously reported in the study area, while the contamination of Cd and Hg were widespread in the study area, imposing potentially detrimental effects on organisms through the food chain. Finally, the probabilities of single and multiple heavy metals exceeding the threshold values derived from the FMDM were estimated using indicator kriging (IK) and multivariate indicator kriging (MVIK). The high probabilities exceeding the thresholds of heavy metals were associated with metalliferous production and atmospheric deposition of heavy metals transported from the urban and industrial areas. Geostatistics coupled with stochastic models provide an effective way to delineate multiple heavy metal pollution to facilitate improved environmental management. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Use of pre-industrial floodplain lake sediments to establish baseline river metal concentrations downstream of Alberta oil sands: a new approach for detecting pollution of rivers

    International Nuclear Information System (INIS)

    Wiklund, Johan A; Hall, Roland I; Farwell, Andrea J; George Dixon, D; Wolfe, Brent B; Edwards, Thomas WD

    2014-01-01

    In the Alberta oil sands region, insufficient knowledge of pre-disturbance reference conditions has undermined the ability of the Regional Aquatics Monitoring Program (RAMP) to detect pollution of the Athabasca River, because sampling began three decades after the industry started and the river naturally erodes oil-bearing strata. Here, we apply a novel approach to characterize pre-industrial reference metal concentrations in river sediment downstream of Alberta oil sands development by analyzing metal concentrations in sediments deposited in floodplain lakes of the Athabasca Delta during 1700–1916, when they were strongly influenced by Athabasca River floodwaters. We compared results to metal concentrations in surficial bottom sediments sampled by RAMP (2010–2013) at downstream sites of the Athabasca River and distributaries. When normalized to lithium content, concentrations of vanadium (a metal of concern in the oil sands region) and other priority pollutants (Be, Cd, Cr, Cu, Pb, Ni, Zn) in nearly all of the RAMP river sediment samples lie below the upper 95% prediction interval linearly extrapolated from the river-derived lake sediments. Assuming the RAMP protocols obtained recently deposited sediment, this indicates that the metal concentrations in downstream Athabasca River sediment have not increased above pre-disturbance levels. Reference conditions derived from the lake sediment data were used to develop profiles of metal residual concentrations versus time for the RAMP river sediment data, which provides an excellent tool for decision-makers to identify and quantify levels of metal pollution for any given sample, and to monitor for future trends. We recommend that the approach be applied to resurrect the utility of RAMP data at other river sampling locations closer to the development, and for ongoing risk assessment. The approach is also readily transferable to other rivers where insufficient pre-disturbance reference data impairs an ability to

  3. Development of a surfactant liquid membrane extraction process for the cleansing of industrial aqueous effluents containing metallic cation traces

    International Nuclear Information System (INIS)

    Rapaumbya Akaye, Guy-Roland

    1994-01-01

    The purpose of this work was to develop a process of surfactant liquid membrane extraction to purify industrial waste solution containing Cu(II), Fe(III), and Zn(II) (about 0,1 g/L). The extractant is the ammonium salt of Cyanex 306 and Aliquat 336. The first part of this work deals with the study of the liquid-liquid extraction of the metals. The efficiency of the extractant has been shown for the extraction of each metal alone and for Cu(II) and Zn(II) in the case of a mixture of the three metals. During this study we have observed that Fe(III) is reduced to Fe(II) (which is not extracted by the salt of Cyanex 301) in presence of Cu(II) and the quaternary ammonium salt (Aliquat 336). The optimisation of the experimental conditions for the discontinuous surfactant liquid membrane process led us to choose the following composition of the emulsion: 1,5 % of Cyanex 301 salt, 2,5 % of ECA 4360, dodecan. The internal phase is an aqueous solution containing 3,5 mol/L of NaOH and 0,5 mol/L tri-ethanolamin The residual concentration of Cu(II) and Zn(II) in the external phase is very low. In the case of iron, only 60 % are extracted because of the reduction phenomenon (10 % in liquid-liquid extraction). The realisation of the continuous process in pulsed column, after optimisation of hydrodynamics conditions, leads to similar results. In stationary conditions, we obtain a raffinate containing less than 0,5 mg/L of Cu(II) and Zn(II) and 36 mg/L of iron. The internal phase contains about 2 g/L of Cu(II) an Zn(II). We tried and minimize the reduction of Fe(III) in surfactant liquid membrane process. Less than 16 % of iron cannot be reduced. This leads to a purification of only 84 % In the basis of these results, processes of purification have been proposed for effluents of various composition. They enable to purify the effluent and besides to concentrate the pollutants about twenty times. (author) [fr

  4. Practical study on the electrochemical simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater using a packed-bed cathode

    Directory of Open Access Journals (Sweden)

    Meshaal F. Alebrahim

    2017-06-01

    Full Text Available In this work, electrochemical-simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater containing different ratios of copper to zinc was studied using a packed-bed continuous-recirculation flow electrolytic reactor. The total nominal initial concentration of both metals, circulating rate of flow and nominal initial pH were held constant. Parameters affecting the removal percent and current efficiency of removal, such as applied current and time of electrolysis were investigated. Results revealed that increased current intensity accelerated the removal of metals and diminish current efficiency. It was also observed that selective removal of both metals is possible when the applied current was of small intensity. Moreover, the factors that led to loss of faradaic efficiency were discussed.

  5. Assessment of heavy metal and bacterial pollution in coastal aquifers from SIPCOT industrial zones, Gulf of Mannar, South Coast of Tamil Nadu, India

    Science.gov (United States)

    Selvam, S.; Antony Ravindran, A.; Venkatramanan, S.; Singaraja, C.

    2017-05-01

    Heavy metals and microbiological contamination were investigated in groundwater in the industrial and coastal city of Thoothukudi. The main sources of drinking water in this area are water bores which are dug up to the depth of 10-50 m in almost every house. A number of chemical and pharmaceutical industries have been established since past three decades. Effluents from these industries are reportedly being directly discharged onto surrounding land, irrigation fields and surface water bodies forming point and non-point sources of contamination for groundwater in the study area. The study consists of the determination of physico-chemical properties, trace metals, heavy metals and microbiological quality of drinking water. Heavy metals were analysed using Inductively Coupled Plasma Mass Spectrometry and compared with the (WHO in Guidelines for drinking water quality, 2004) standards. The organic contamination was detected in terms of most probable number (MPN) test in order to find out faecal coliforms that were identified through biochemical tests. A comparison of the results of groundwater samples with WHO guidelines reveals that most of the groundwater samples are heavily contaminated with heavy metals like arsenic, selenium, lead, boron, aluminium, iron and vanadium. The selenium level was higher than 0.01 mg/l in 82 % of the study area and the arsenic concentration exceeded 0.01 mg/l in 42 % of the area. The results reveal that heavy metal contamination in the area is mainly due to the discharge of effluents from copper industries, alkali chemical industry, fertiliser industry, thermal power plant and sea food industries. The results showed that there are pollutions for the groundwater, and the total Coliform means values ranged from 0.6-145 MPN ml-1, faecal Coliform ranged from 2.2-143 MPN ml-1, Escherichia coli ranged from 0.9 to 40 MPN ml-1 and faecal streptococci ranged from 10-9.20 × 102 CFU ml-1. The coastal regions are highly contaminated with total

  6. Health interventions for the metal working industry: which is the most cost-effective? A study from a developing country.

    Science.gov (United States)

    Salinas, A M; Villarreal, E; Nuñez, G M; Garza, M E; Briones, H; Navarro, O

    2002-05-01

    This study ranked the cost-effectiveness of health interventions in the metal working industry in a developing country. Data were based on 82 034 workers of the Northern region of Mexico. Effectiveness was measured through 'healthy life years' (HeaLYs) gained. Costs were estimated per worker according to type and appropriate inputs from selected health interventions. 'Hand' was the anatomical region that yielded the most gain of HeaLYs and amputation was the injury that yielded the most gain of HeaLYs. The most effective health intervention corresponded to training, followed by medical care, education, helmets, safety shoes, lumbar supports, safety goggles, gloves and safety aprons. In dollar terms, education presented the best cost-effectiveness ratio (US$637) and safety aprons presented the worst cost-effectiveness ratio (US$1 147 770). Training proved to be a very expensive intervention, but presented the best effectiveness outcome and the second best cost-effectiveness ratio (US$2084). Cost-effectiveness analyses in developing countries are critical. Corporations might not have the same funds and technology as those in developed countries or multinational companies.

  7. Energy industry

    Science.gov (United States)

    Staszak, Katarzyna; Wieszczycka, Karolina

    2018-04-01

    The potential sources of metals from energy industries are discussed. The discussion is organized based on two main metal-contains wastes from power plants: ashes, slags from combustion process and spent catalysts from selective catalytic NOx reduction process with ammonia, known as SCR. The compositions, methods of metals recovery, based mainly on leaching process, and their further application are presented. Solid coal combustion wastes are sources of various compounds such as silica, alumina, iron oxide, and calcium. In the case of the spent SCR catalysts mainly two metals are considered: vanadium and tungsten - basic components of industrial ones.

  8. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China

    International Nuclear Information System (INIS)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-01-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. -- Highlights: •Large-scale Pb/Zn smelters contributed to elevated trace elements in the street dust. •The hard alloy processing caused the enrichment of a few elements. •Cd, In, Zn, Ag and Pb were the most polluted elements. •Northwestern Zhuzhou suffered severe contamination for a range of trace elements. -- Pb/Zn smelting and hard alloy processing operations have caused seriously contamination of trace metal/metalloids in the street dust

  9. A National Assistance Extension Program for Metal Casting: a foundation industry. Final report for the period February 16, 1994 through May 15, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The TRP award was proposed as an umbrella project to build infrastructure and extract lessons about providing extension-enabling services to the metal casting industry through the national network of Manufacturing Technology Center`s (MTC`s). It targeted four discrete task areas required for the MCC to service the contemplated needs of industry, and in which the MCC had secured substantial involvement of partner organizations. Task areas identified included Counter-Gravitational Casting, Synchronous Manufacturing, Technology Deployment, and Facility and Laboratory Improvements. Each of the task areas includes specific subtasks which are described.

  10. Multi-element characterization and source identification of trace metal in road dust from an industrial city in semi-humid area of Northwest China

    International Nuclear Information System (INIS)

    Mengmeng Zhang; Xinwei Lu; Hao Chen; Panpan Gao; Yi Fu

    2015-01-01

    Concentrations and sources of multi-elements in road dusts from an industrial city of northwest China were determined. Dust samples have elevated concentrations of Co, Cr, Cu, Pb, Zn, Sr and Ba. The dusts were mainly moderate enrichment by Co and Pb, minimal enrichment to moderate enrichment by Sr and Zn, and deficiency to minimal enrichment by other trace metals. Mn, V, Y, La, Hf, Th and U originated from soil. Cu, Pb, Cr, Ba and Sr mainly derived from traffic. Co, Zr, Ni, Ga, As and Zn have mixed sources of nature, industry and traffic. (author)

  11. Synthesis of Poly(hydroxamic Acid-Poly(amidoxime Chelating Ligands for Removal of Metals from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    M. R. Lutfor

    2011-01-01

    Full Text Available Synthesis of poly(hydroxamic acid-poly(amidoxime chelating ligands were carried out from poly(methyl acrylate-co-acrylonitrile grafted sago starch and hydroxylamine in alkaline medium. The binding property of metal ions was performed and maximum sorption capacity of the copper was 3.20 mmol/ g and the rate of exchange of some metals was faster, i.e. t½ ≈ 7 min (average. Two types of wastewater containing chromium, zinc, nickel, copper and iron, etc. were used and the heavy metal recovery was found to be highly efficient, about 99% of the metals could be removed from the metal plating wastewater.

  12. Shop Math for the Metal Trades. Combination Welder Apprentice, Machinist Helper, Precision Metal Finisher, Sheet Metal Worker Apprentice. A Report on Metal Trades Industry Certified, Single-Concept, Mathematical Learning Projects to Eliminate Student Math Fears.

    Science.gov (United States)

    Newton, Lawrence R.

    This project (1) identifies basic and functional mathematics skills (shop mathematics skills), (2) provides pretests on these functional mathematics skills, and (3) provides student learning projects (project sheets) that prepare metal trades students to read, understand, and apply mathematics and measuring skills that meet entry-level job…

  13. Evaluation of heavy metals in atmospheric emissions from automotive industry by total reflection X-ray fluorescence with synchrotron radiation

    International Nuclear Information System (INIS)

    Moreira, Silvana; Weber Neto, Jose; Vives, Ana Elisa Sirito de

    2009-01-01

    This study had as goal to determine heavy metals and other elements (Ba, Br, Ca, Pb, Cl, Cr, Sr, Fe, Mn, Ni, K, Si, Ti and Zn) in atmospheric pollutants generated by an automotive industry located in the city of Engenheiro Coelho, state of Sao Paulo, Brazil. The sampling and sample preparation procedures were based on methods established by the Company of Sanitation and Technology (CETESB L9.234) and also by the Environmental Protection Agency (EPA - Method 29). The analysis was performed at XRF Beamline (D09B-XRF) in the Synchrotron Light Source Laboratory (Campinas/SP). A white beam of synchrotron radiation was used for sample and standard excitation which were irradiated by 100 seconds. For X-ray lines detection, a Ge (HP) detector with 150 eV of resolution at 5.9 keV was employed. For zinc, iron, barium, calcium and potassium, the values obtained were in the range of 30 mg/Nm 3 and, for other elements, the concentrations were approximately 1 mg/Nm 3 . The sum of As, Be, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, Te and Zn concentration was compared with the limits established by CONAMA 264/1999 and SEMA 041/2002 resolutions (7.0 mg/Nm 3 ) and it was observed that, for all samples, sums are higher than the permissive value mainly due to the high concentration of zinc. Detection limits for SR-TXRF technique were 0.10 μg/Nm 3 for Pb and 0.02 μg/Nm 3 for Zn. (author)

  14. Evaluation of heavy metals in atmospheric emissions from automotive industry by total reflection X-ray fluorescence with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Weber Neto, Jose, E-mail: silvana@fec.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Saneamento e Ambiente; Vives, Ana Elisa Sirito de, E-mail: aesvives@unimep.b [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo

    2009-07-01

    This study had as goal to determine heavy metals and other elements (Ba, Br, Ca, Pb, Cl, Cr, Sr, Fe, Mn, Ni, K, Si, Ti and Zn) in atmospheric pollutants generated by an automotive industry located in the city of Engenheiro Coelho, state of Sao Paulo, Brazil. The sampling and sample preparation procedures were based on methods established by the Company of Sanitation and Technology (CETESB L9.234) and also by the Environmental Protection Agency (EPA - Method 29). The analysis was performed at XRF Beamline (D09B-XRF) in the Synchrotron Light Source Laboratory (Campinas/SP). A white beam of synchrotron radiation was used for sample and standard excitation which were irradiated by 100 seconds. For X-ray lines detection, a Ge (HP) detector with 150 eV of resolution at 5.9 keV was employed. For zinc, iron, barium, calcium and potassium, the values obtained were in the range of 30 mg/Nm{sup 3} and, for other elements, the concentrations were approximately 1 mg/Nm{sup 3}. The sum of As, Be, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, Te and Zn concentration was compared with the limits established by CONAMA 264/1999 and SEMA 041/2002 resolutions (7.0 mg/Nm{sup 3}) and it was observed that, for all samples, sums are higher than the permissive value mainly due to the high concentration of zinc. Detection limits for SR-TXRF technique were 0.10 mug/Nm{sup 3} for Pb and 0.02 mug/Nm{sup 3} for Zn. (author)

  15. Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater.

    Science.gov (United States)

    Meng, Qingpeng; Chen, Hong; Lin, Junzhong; Lin, Zhang; Sun, Junliang

    2017-06-01

    High quality zeolite A was synthesized through a hydrothermal process using alkaline-assisted pre-activated halloysite mineral as the alumina and silica source. The synthesis conditions employed in this study were finely tuned by varying the activating temperature, sodium hydroxide content, water content and Si/Al ratio. The obtained zeolite A showed excellent adsorption properties for both single metal cation solutions and mixed cation solutions when the concentrations of the mixed cations were comparable with those in polluted natural river water and industrial wastewater. High adsorptive capacities for Ag + (123.05mg/g) and Pb 2+ (227.70mg/g) were achieved using the synthesized zeolite A. This observation indicates that the zeolite A synthesized from alkaline-assisted pre-activated halloysite can be used as a low-cost and relatively effective adsorbent to purify heavy metal cation polluted natural river water and industrial wastewater. Copyright © 2016. Published by Elsevier B.V.

  16. Heavy metals and polycyclic aromatic hydrocarbons in sludge from three industrial wastewater treatment plants of the industrial parks of Isfahan province

    Directory of Open Access Journals (Sweden)

    Saeed Mardan

    2015-01-01

    Conclusion: The concentration and composition of PAHs and HMs in sewage sludge varied and depended mainly on the quantity and type of industrial wastewater accepted by the WWTPs. There is a pyrene in sewage samples that is a carcinogenic. The concentration of HMs in sewage sludge was above of standard levels. Finally, we are not recommended the using of industrial sewage sludge in agriculture because of the high value of HMs was found in samples.

  17. Rubber industry

    Science.gov (United States)

    Staszak, Maciej

    2018-03-01

    Following chapter presents short introductory description of rubber and rubber industry. The main problem of rubber industry is the way of the usage of spent tires. Furthermore very important group of problems arise considering the metal and nonmetal additives which are significant component of the vulcanized rubber. The key attention is dedicated to typical ways of rubber usage in utilization and recovery of metals from spent rubber materials concentrating specifically on used tires processing. The method of recovery of rare metals from rubber tires was described. The rubber debris finds widest use in the field of waste metal solutions processing. The environmental pollution caused by metals poses serious threat to humans. Several applications of the use of waste rubber debris to remove metals from environmental waters were described. Moreover, the agriculture usage of waste tire rubber debris is described, presenting systems where the rubber material can be useful as a soil replacement.

  18. Spatial distribution, environmental risk and source of heavy metals in street dust from an industrial city in semi-arid area of China

    Directory of Open Access Journals (Sweden)

    Han Xiufeng

    2017-06-01

    Full Text Available Environmental risks associated with Co, Cr, Cu, Mn, Ni, Pb, V and Zn in street dust collected from Baotou, a medium-sized industrial city in a semi-arid area of northwest China, were assessed by using enrichment factor and the potential ecological index. Their spatial distributions and sources in the dust were analyzed on the basis of geostatistical methods and multivariate statistical analysis, respectively. The results indicate that street dust in Baotou has elevated heavy metal concentrations, especially of Co, Cr, Cu, Pb and Zn. Co in the dust was significantly enriched. Cr and Pb were from moderate to significant enrichment. Cu and Zn were from minimal to moderate enrichment, whereas Mn, Ni and V in the dust were from deficient to minimal enrichment. The ecological risk levels of Co and Pb in the dust were moderate to considerable and low to moderate, respectively, whereas those of other heavy metals studied in the dust presented low ecological risk. Different distribution patterns were found among the analyzed heavy metals. Three main sources of these heavy metals were identified. Cr, Mn, Ni and V originated from nature and industrial activities. Cu, Pb and Zn derived mainly from traffic sources, and Co was mainly from construction sources.

  19. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China.

    Science.gov (United States)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-11-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Eriophorum angustifolium and Lolium perenne metabolic adaptations to metals- and metalloids-induced anomalies in the vicinity of a chemical industrial complex.

    Science.gov (United States)

    Anjum, Naser A; Ahmad, Iqbal; Rodrigues, Sónia M; Henriques, Bruno; Cruz, Nuno; Coelho, Cláudia; Pacheco, Mário; Duarte, Armando C; Pereira, Eduarda

    2013-01-01

    As plants constitute the foundation of the food chain, concerns have been raised about the possibility of toxic concentrations of metals and metalloids being transported from plants to the higher food chain strata. In this perspective, the use of important phytotoxicity endpoints may be of utmost significance in assessing the hazardous nature of metals and metalloids and also in developing ecological soil screening levels. The current study aimed to investigate the role of glutathione (GSH) and its associated enzymes in the metabolic adaptation of two grass species namely Eriophorum angustifolium Honck. and Lolium perenne L. to metals and metalloids stress in the vicinity of a chemical industrial complex (Estarreja, Portugal). Soil and plant samples were collected from contaminated (C) and non-contaminated (reference, R) sites, respectively, near and away from the Estarreja Chemical Complex, Portugal. Soils (from 0 to 10 and 10 to 20 cm depths) were analyzed for pH, organic carbon, and metals and metalloids concentrations. Plant samples were processed fresh for physiological and biochemical estimations, while oven-dried plant samples were used for metals and metalloids determinations following standard methodologies. Both soils and plants from the industrial area exhibited differential concentrations of major metals and metalloids including As, Cu, Hg, Pb, and Zn. In particular, L. perenne shoot displayed significantly higher and lower concentrations of Pb and As, respectively at contaminated site (vs. E. angustifolium). Irrespective of sites, L. perenne shoot exhibited significantly higher total GSH pool, oxidized glutathione (GSSG) and oxidized protein (vs. E. angustifolium). Additionally, severe damages to photosynthetic pigments, proteins, cellular membrane integrity (in terms of electrolyte leakage), and lipid peroxidation were also perceptible in L. perenne shoot. Contrarily, irrespective of the sites, activities of catalase and GSH-regenerating enzyme, GSH

  1. Trace metal inventories and lead isotopic composition chronicle a forest fire's remobilization of industrial contaminants deposited in the angeles national forest.

    Science.gov (United States)

    Odigie, Kingsley O; Flegal, A Russell

    2014-01-01

    The amounts of labile trace metals: [Co] (3 to 11 µg g-1), [Cu] (15 to 69 µg g-1), [Ni] (6 to 15 µg g-1), [Pb] (7 to 42 µg g-1), and [Zn] (65 to 500 µg g-1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb) that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change.

  2. Trace metal inventories and lead isotopic composition chronicle a forest fire's remobilization of industrial contaminants deposited in the angeles national forest.

    Directory of Open Access Journals (Sweden)

    Kingsley O Odigie

    Full Text Available The amounts of labile trace metals: [Co] (3 to 11 µg g-1, [Cu] (15 to 69 µg g-1, [Ni] (6 to 15 µg g-1, [Pb] (7 to 42 µg g-1, and [Zn] (65 to 500 µg g-1 in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change.

  3. Trace Metal Inventories and Lead Isotopic Composition Chronicle a Forest Fire’s Remobilization of Industrial Contaminants Deposited in the Angeles National Forest

    Science.gov (United States)

    Odigie, Kingsley O.; Flegal, A. Russell

    2014-01-01

    The amounts of labile trace metals: [Co] (3 to 11 µg g−1), [Cu] (15 to 69 µg g−1), [Ni] (6 to 15 µg g−1), [Pb] (7 to 42 µg g−1), and [Zn] (65 to 500 µg g−1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb) that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change. PMID:25259524

  4. Industrial fabrication of an optical security device for document protection using plasmon resonant transmission through a thin corrugated metallic film embedded on a plastic foil

    Science.gov (United States)

    Sauvage-Vincent, Jean; Jourlin, Yves; Tonchev, Svetlen; Veillas, Colette; Claude, Pedri; Parriaux, Olivier

    2012-06-01

    Known since a long time in polymer banknotes and presented in the few years in paper banknotes, the principle of windowed documents has been currently extended to ID documents. We present an innovative solution which combines resonant transmission and Zero Order Device technologies and which is dedicated to improve windows in terms of the overt security level. With this R&D program, Hologram Industries targeted to obtain an overt visual security device that should be readily checked in transmission in the same manner as the established paper watermark. The proposed solution is based on the propagation of resonant modes in a thin continuous corrugated metallic layer embedded (encapsulated) between two dielectric layers of near equal refractive index. The mode of most interest is the Long Range Plasmon Mode. The coupling condition to the Long Range Mode is principally related to the corrugation, the metal layer thickness and the index of the two dielectric layers. If the condition of the mode excitation through the grating is fulfilled, a predetermined wavelength will be coupled to the Long Range Plasmon Mode. This mode will propagate at each metal/dielectric interface with a low loss and will concentrate the electric field inside the metal layer. This effect of coupling enables the transmission of a peak at this wavelength through the metallic layer. It defines the so called "extraordinary resonant transmission".

  5. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization.

    Science.gov (United States)

    Hu, Yuanan; Liu, Xueping; Bai, Jinmei; Shih, Kaimin; Zeng, Eddy Y; Cheng, Hefa

    2013-09-01

    Heavy metals in the surface soils from lands of six different use types in one of the world's most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma-mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2 × 10(4) km(2)) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas > waste disposal/treatment sites ∼ industrial areas > agricultural lands ∼ forest lands > water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.

  6. Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters

    Science.gov (United States)

    Vystavna, Yuliya

    2014-05-01

    The research focuses on the monitoring of trace metals and pharmaceuticals as potential anthropogenic indicators of industrial and urban influences on surface water in poorly gauged transboundary Ukraine/Russia region. This study includes analysis of tracers use for the indication of water pollution events, including controlled and emerging discharges, and discussion of the detection method of these chemicals. The following criteria were proposed for the evaluation of indicators: specificity (physical chemical properties), variability (spatial and temporal) and practicality (capacity of the sampling and analytical techniques). The combination of grab and passive water sampling (i.e. DGT and POCIS) procedure was applied for the determination of dissolved and labile trace metals (Ag, Cd, Cr, Cu, Ni, Pb and Zn) and pharmaceuticals (carbamazepine, diazepam, paracetamol, caffeine, diclofenac and ketoprofen). Samples were analysed using ICP - MS (trace metals) and LC-MS/MS ESI +/- (pharmaceuticals). Our results demonstrate the distinctive spatial and temporal patterns of trace elements distribution along an urban watercourse. Accordingly, two general groups of trace metals have been discriminated: 'stable' (Cd and Cr) and 'time-varying' (Cu, Zn, Ni and Pb). The relationship Cd >> Cu > Ag > Cr ≥ Zn was proposed as an anthropogenic signature of the industrial and urban activities pressuring the environment from point sources (municipal wastewaters) and the group Pb - Ni was discussed as a relevant fingerprint of the economic activity (industry and transport) mainly from non-point sources (run-off, atmospheric depositions, etc.). Pharmaceuticals with contrasting hydro-chemical properties of molecules (water solubility, bioaccumulation, persistence during wastewater treatment processes) were discriminated on conservative, labile and with combined properties in order to provide information on wastewater treatment plant efficiency, punctual events (e.g. accidents on sewage

  7. The Influence of Industrial Waste on Pesticide and Heavy Metal Conetnts in Cipinang-Sunter River Water Jakarta

    International Nuclear Information System (INIS)

    Ulfa, T S; Mellawati, J; Sofni, M C

    1996-01-01

    The measurement of pesticide and heavy metal contents of river water in upperstream (around some factories), and downstream (housing area), along Cipinang-Sunter river Jakarta, on February-June 1996 had been done. The aim of the measurement was to get information about the influence of factories waste on pesticide and heavy metal contents in the Cipinang river water. Gas and liquid chromatographis were used to measure the pesticide content and X-ray fluorecence spectrometry was used to measure the heavy metals content. Result of the measurements showed that Cipinang river water has contained some organochlorin pesticides, i.e., BHC, a and b endosulfan, dieldrin, pp-DDE, and heavy metals, i.e., Ti, V, Cr, Fe, Ni, Cu, Zn, and Pb

  8. X-ray diffraction of the diminution in the concentration of heavy metals from industrial waste water sludge

    International Nuclear Information System (INIS)

    Carreno de Leon, M.C.

    1996-01-01

    We worked with an apparatus and process patented for Jaime Vite Torres, in the United States of America, for extracting simultaneously toxic and value metals from foundry sands. In this research, we used similar devices to remove toxic metals of waste water sludge. Generation of solid wastes including dangerous in 1992 in Mexico were 450,000 ton/day in accordance with the National Institut of Ecology (INE-SEDESOL 1992). With the apparatus and process of the present work we obtained two important points, whic are: a) the recovery of metals in solution which can be recycled and, b) an important reduction in the toxic of the wastes which one treated can be handled as normal waste with important savings. From among the metals which it is possible to recover one can mention among others: Au, Pt, Ag, Cr, Mn, Co, Pb, Al, Ni and others. (Author)

  9. Metal bioaccumulation and mutagenesis in a Tradescantia clone following long-term exposure to soils from urban industrial areas and closed landfills.

    Science.gov (United States)

    Čėsnienė, Tatjana; Kleizaitė, Violeta; Bondzinskaitė, Skaistė; Taraškevičius, Ričardas; Žvingila, Donatas; Šiukšta, Raimondas; Rančelis, Vytautas

    2017-11-01

    Soil mutagens, particularly metals, may persist long after the source of pollution has been removed, representing a hazard to plants, animals, and humans in or near contaminated areas. Often, due to urban growth, previous land uses may be forgotten and hazards overlooked. We exposed Tradescantia clone #4430 plants to soil from two industrial areas (with different former uses) and two urban waste landfills in the city of Vilnius, all of which were long disused. Two modes of exposure were used: long-term exposure of growing plants in test soils for 0.5 or 1.0y, and short-term exposure of cuttings to water and dimethyl sulfoxide (DMSO) soil extracts. An increased frequency of micronuclei (MN) was observed with both modes of exposure. The concentrations of 24 metals and other elements were analyzed in the test soils and in above-ground plant parts, under both exposure modes, and the concentration coefficients (Cc) for various elements, the total contamination index (Zs) for soils and plants, and the bioaccumulation factor (BAF) for plants were calculated. These measurements allow a comparison of the contamination levels of soils and plants with equalized values. Metal accumulation levels in plants and soils showed significant differences, providing a better understanding of the genotoxicity of soils from closed landfills and highlighting the need to determine the concentrations of metals and other genotoxicants in plants in relation to genotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Lixiviation of heavy metals of hazardous industrial wastes by means of thermostatized columns and design of a pilot plant; Lixiviacion de metales pesados de residuos industriales peligrosos por medio de columnas termostatizadas y diseno de una planta piloto

    Energy Technology Data Exchange (ETDEWEB)

    Vite T, J.; Leon, C.C. de [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Vite T, M.; Soto T, J.L. [IPN, SEPI, ESIME 07738 Mexico D.F. (Mexico)]. e-mail: jvite@nuclear.inin.mx

    2006-07-01

    purpose of this work was to evaluate the efficiency of lixiviation of heavy metals, using thermostatized columns and hazardous industrial residual wastes: those by the volume with which are generated and its high toxicity, its represent a great problem for it treatment and disposition, in this work a diagram of a pilot plant for extraction of heavy metals is included. The process and equipment were patented in United States and in Mexico. For the development of this study four thermostated columns were used that were coupled. The waste were finely milled and suspended in an aqueous pulp adding of 10 - 40gL{sup -1} of mineral acid or sodium hydroxide until reaching an interval of pH of 2,5,7 and 10. Its were used of 4-10 gL{sup -1} of a reducer agent and of 0.3-1.5 g of a surfactant agent. In some cases with this method was possible to remove until 100% of heavy metals. It was used Plasma Emission Spectroscopy to determine the concentrations of the cations in the lixiviation liquors. For studying the metallic alloys the X-ray diffraction technique was used. (Author)

  11. European Legislation to Prevent Loss of Control of Sources and to Recover Orphan Sources, and Other Requirements Relevant to the Scrap Metal Industry

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, A.; Tanner, V.; Mundigl, S., E-mail: augustin.janssens@ec.europa.eu [European Commission (Luxembourg)

    2011-07-15

    European legislation (Council Directive 2003/122/EURATOM) has been adopted with regard to the control of high-activity sealed radioactive sources (HASS). This Directive is now part of an overall recast of current radiation protection legislation. At the same time the main Directive, 96/29/EURATOM, laying down Basic Safety Standards (BSS) for the health protection of the general public and workers against the dangers of ionizing radiation, is being revised in the light of the new recommendations of the International Commission on Radiological Protection (ICRP). The provisions for exemption and clearance are a further relevant feature of the new BSS. The current issues emerging from the revision and recast of the BSS are discussed, in the framework of the need to protect the scrap metal industry from orphan sources and to manage contaminated metal products. (author)

  12. Development of the Method of Bacterial Leaching of Metals out of Low-Grade Ores, Rocks, and Industrial Wastes Using Neutron Activation Analysis

    CERN Document Server

    Tsertsvadze, L A; Petriashvili, Sh G; Chutkerashvili, D G; Kirkesali, E I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2001-01-01

    The results of preliminary investigations aimed at the development of an economical and easy to apply technique of bacterial leaching of rare and valuable metals out of low-grade ores, complex composition ores, rocks, and industrial wastes in Georgia are discussed. The main groups of microbiological community of the peat suspension used in the experiments of bacterial leaching are investigated and the activity of particular microorganisms in the leaching of probes with different mineral compositions is assessed. The element composition of the primary and processed samples was investigated by the epithermal neutron activation analysis method and the enrichment/subtraction level is estimated for various elements. The efficiency of the developed technique to purify wastes, extract some scrace metals, and enrich ores or rocks in some elements, e.g. Au, U, Th, Cs, Sr, Rb, Sc, Zr, Hf, Ta, Gd, Er, Lu, Ce, etc., is demonstrated.

  13. Bioavailability and phytotoxicity of heavy metals in soils affected by nickel-processing industry in northern Fennoscandia

    International Nuclear Information System (INIS)

    Koptsik, G.; Koptsik, S.; Aamlid, D.

    2007-01-01

    Long-term effects of air pollution have caused strong soil contamination and severe damage to trees and ground vegetation in forest ecosystems in Russia and Norway, in areas near the Pechenganikel smelter, one of the largest emitters of sulfur dioxide in Europe. This paper presented the results of a study that analysed the effects of soil pollution, in particular of nickel and copper pollutants on forest vegetation in surroundings of the smelter. The paper discussed the objects and methods for the study which involved collection of plant and soil samples from almost 100 monitoring plots. Results were discussed in terms of heavy metals in trees and ground vegetation, heavy metals in soils, and plant-soil relationships. Phytotoxicological risk of excess metal input and remediation approaches were also discussed. It was concluded that all of the plant species that were tested exhibited high concentrations of heavy metals, especially nickel and copper and that changes in composition of plant tissues could be explained by changes in element concentrations in soil organic layers where the low pH kept the metals in a bioavailable form. 28 refs., 1 tab, 6 figs

  14. Evaluation of solubility in simulated lung fluid of metals present in the sludge from a metallurgical industry to produce metallic zinc

    International Nuclear Information System (INIS)

    Lima, Rosilda Maria Gomes de

    2012-01-01

    The objective of this study was to determine the solubility parameters (rapid and slow dissolution rates, rapid and slow dissolution fractions) metal particles present in a pile of sludge accumulated under exposure to weathering from the Cia Mercantil Inga, located at the Ilha da Madeira, Sepetiba Bay, Rio de Janeiro. Plant samples collected in the neighboring of the pile and bioindicators placed in the region and collected after some months indicated that the inhabitants of Ilha da Madeira have been exposed to trace elements such zinc, cadmium, mercury and lead, produced during the processing of zinc minerals (hemimorphite - Zn 4 (OH) 2 Si 2 O 7 .H 2 O, and willemite - Zn 2 SiO 4 ). A static dissolution test in vitro was used to determine the solubility parameters using a simulated lung fluid (SLF), on a time basis ranging from 10 min to 1 year. The metal concentrations in the sludge samples and in the SLF were determined using Particle Induced X-rays Emission (PIXE). In conclusion, this study confirms the harmful effects on the neighboring population of the airborne particles containing these metals that came from the sludge. The solubility parameters obtained for Zn, Cd, Cr, Ni and Mn present in the rapid dissolution fraction in SLF were 0.945; 0.473; 0.226; 0.300 and 0.497, respectively, and the corresponding times for half life of dissolution of the rapid fraction were f r = 2.082 days; f r = 0.09 days; f r = 0.37 days; f r = 0.332 days ad f r = 0.99 days; for the slow dissolution fraction times were f r = 146.95 days; f r = 63 days; f r = 86.64 days; f r = 79.66 days and f r = 59.84 days. These values indicate that these metals present a moderate absorption level in SLF, and may be classified as M type, according to the International Commission on Radiological Protection (ICRP). The use of solubility parameters allowed a better description of the kinetic behaviour of the sludge in the human body and, therefore, a better evaluation of the worker’s risk to

  15. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, E., E-mail: eva.schreck@ensat.fr [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); Foucault, Y. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); STCM, Societe de Traitements Chimiques des Metaux, 30 Avenue de Fondeyre 31200 Toulouse (France); Sarret, G. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Sobanska, S. [LASIR (UMR CNRS 8516), Universite de Lille 1, Bat. C5, 59655 Villeneuve d' Ascq cedex (France); Cecillon, L. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Castrec-Rouelle, M. [Universite Pierre and Marie Curie (UPMC-Paris 6), Bioemco (Biogeochimie et Ecologie des Milieux Continentaux), Site Jussieu, Tour 56, 4 Place Jussieu, 75252 Paris cedex 05 (France); Uzu, G. [Laboratoire d' Aerologie (UMR 5560), OMP, UPS 14, Avenue Edouard Belin, 31400 Toulouse (France); GET (UMR 5563), IRD, 14, Avenue Edouard Belin, 31400 Toulouse (France); Dumat, C. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France)

    2012-06-15

    Fine and ultrafine metallic particulate matters (PMs) are emitted from metallurgic activities in peri-urban zones into the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer of metals and metalloids and their fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM (Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting from the emissions of a battery-recycling factory. Metal and metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead secondary species (PbCO{sub 3} and organic Pb). Some compounds were internalized in their primary form (PbSO{sub 4}) underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are proposed as two major mechanisms involved in foliar uptake of particulate matter. - Graphical abstract: Overall picture of performed observations and mechanisms potentially involved in lead foliar uptake. Highlights: Black-Right-Pointing-Pointer Foliar uptake of metallic particulate matter (PM) is of environmental and health concerns. Black-Right-Pointing-Pointer The leaf morphology influences the adsorption

  16. Proposal for the award of an industrial support contract for minor metalwork, metal fittings, cladding and roofing at CERN

    CERN Document Server

    2006-01-01

    This document concerns the award of a contract for minor metalwork, metal fittings, cladding and roofing at CERN. The Finance Committee is invited to agree to the negotiation of a contract with the firm INIZIATIVE INDUSTRIALI SRL (IT), the lowest bidder, for the provision of minor metalwork, metal fittings, cladding and roofing at CERN for three years for a total amount not exceeding 1 467 895 euros (2 258 301 Swiss francs), not subject to revision for two years. The contract will include options for two one-year extensions beyond the initial three-year period.

  17. Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from South France

    Czech Academy of Sciences Publication Activity Database

    Desenfant, F.; Petrovský, Eduard; Rochette, P.

    2004-01-01

    Roč. 152, 1/4 (2004), s. 297-312 ISSN 0049-6979 R&D Projects: GA AV ČR KSK3012103 Institutional research plan: CEZ:AV0Z3012916 Keywords : Arc river * heavy metals * magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.058, year: 2004

  18. Content of metals and metabolites in honey originated from the vicinity of industrial town Kosice (eastern Slovakia)

    Czech Academy of Sciences Publication Activity Database

    Kováčik, J.; Grúz, Jiří; Bíba, Ondřej; Hedbavny, J.

    2016-01-01

    Roč. 23, č. 5 (2016), s. 4531-4540 ISSN 0944-1344 R&D Projects: GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : Antioxidants * Food safety * Heavy metals Subject RIV: EF - Botanics Impact factor: 2.741, year: 2016

  19. A fiber optic sensor with a metal organic framework as a sensing material for trace levels of water in industrial gases.

    Science.gov (United States)

    Ohira, Shin-Ichi; Miki, Yusuke; Matsuzaki, Toru; Nakamura, Nao; Sato, Yu-ki; Hirose, Yasuo; Toda, Kei

    2015-07-30

    Industrial gases such as nitrogen, oxygen, argon, and helium are easily contaminated with water during production, transfer and use, because there is a high volume fraction of water in the atmosphere (approximately 1.2% estimated with the average annual atmospheric temperature and relative humidity). Even trace water (industrial gases can cause quality problems in the process such as production of semiconductors. Therefore, it is important to monitor and to control trace water levels in industrial gases at each supplying step, and especially during their use. In the present study, a fiber optic gas sensor was investigated for monitoring trace water levels in industrial gases. The sensor consists of a film containing a metal organic framework (MOF). MOFs are made of metals coordinated to organic ligands, and have mesoscale pores that adsorb gas molecules. When the MOF, copper benzene-1,3,5-tricarboxylate (Cu-BTC), was used as a sensing material, we investigated the color of Cu-BTC with water adsorption changed both in depth and tone. Cu-BTC crystals appeared deep blue in dry gases, and then changed to light blue in wet gases. An optical gas sensor with the Cu-BTC film was developed using a light emitting diode as the light source and a photodiode as the light intensity detector. The sensor showed a reversible response to trace water, did not require heating to remove the adsorbed water molecules. The sample gas flow rate did not affect the sensitivity. The obtained limit of detection was 40 parts per billion by volume (ppbv). The response time for sample gas containing 2.5 ppmvH2O was 23 s. The standard deviation obtained for daily analysis of 1.0 ppmvH2O standard gas over 20 days was 9%. Furthermore, the type of industrial gas did not affect the sensitivity. These properties mean the sensor will be applicable to trace water detection in various industrial gases. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Biocorrosion and biofouling of metals and alloys of industrial usage. present state of the art at the beginning of the new millennium

    International Nuclear Information System (INIS)

    Videla, H. A.

    2003-01-01

    An overview on the present state of the art on Biocorrosion and Biofouling of metals and alloys of industrial usage is offered on the basis of the experience gathered in our laboratory over 25 years of research. The key concepts to understand the main effects of microorganisms on metal decay are briefly discussed. new trends in monitoring and control strategies to mitigate biocorrosion and biofouling deleterious effects are also described. Several relevant cases of biocorrosion studied by our research group are successively described: i) biocorrosion of aluminum and its alloys by fungal contaminants of jet fuels; ii) Sulfate-reducing bacteria SRB induced corrosion of steel; iii) biocorrosion and biofouling interactions in the marine environment: iv) monitoring strategies for assessing biocorrosion in industrial water systems; v) microbial inhibition of corrosion; vi) use and limitations of electrochemical techniques for evaluating biocorrosion effects. The future perspective of the field is made considering the potential of innovative techniques in microscopy (environmental scanning electron microscopy, confocal scanning laser microscopy, atomic force microscopy), new spectroscopy techniques used for the study of corrosion products and biofilms (energy dispersion X-ray analysis, X-ray photoelectron spectroscopy, electron microprobe analysis) and electrochemistry (electrochemical impedance spectroscopy, electrochemical noise analysis. (Author) 53 refs

  1. Biocorrosion and biofouling of metals and alloys of industrial usage. present state of the art at the beginning of the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    Videla, H. A.

    2003-07-01

    An overview on the present state of the art on Biocorrosion and Biofouling of metals and alloys of industrial usage is offered on the basis of the experience gathered in our laboratory over 25 years of research. The key concepts to understand the main effects of microorganisms on metal decay are briefly discussed. new trends in monitoring and control strategies to mitigate biocorrosion and biofouling deleterious effects are also described. Several relevant cases of biocorrosion studied by our research group are successively described: i) biocorrosion of aluminum and its alloys by fungal contaminants of jet fuels; ii) Sulfate-reducing bacteria SRB induced corrosion of steel; iii) biocorrosion and biofouling interactions in the marine environment: iv) monitoring strategies for assessing biocorrosion in industrial water systems; v) microbial inhibition of corrosion; vi) use and limitations of electrochemical techniques for evaluating biocorrosion effects. The future perspective of the field is made considering the potential of innovative techniques in microscopy (environmental scanning electron microscopy, confocal scanning laser microscopy, atomic force microscopy), new spectroscopy techniques used for the study of corrosion products and biofilms (energy dispersion X-ray analysis, X-ray photoelectron spectroscopy, electron microprobe analysis) and electrochemistry (electrochemical impedance spectroscopy, electrochemical noise analysis. (Author) 53 refs.

  2. Geochemical Assessment and Spatial Analysis of Heavy Metals in the Surface Sediments in the Eastern Beibu Gulf: A Reflection on the Industrial Development of the South China Coast

    Science.gov (United States)

    Lin, Jing; Qian, Bihua; Wu, Zhai; Huang, Peng; Chen, Kai; Li, Tianyao; Cai, Minggang

    2018-01-01

    The Beibu Gulf (also named the Gulf of Tonkin), located in the northwest of the South China Sea, is representative of a bay suffering from turbulence and contamination associated with rapid industrialization and urbanization. In this study, we aim to provide the novel baseline levels of heavy metals for the research area. Concentrations of five heavy metals (i.e., Cu, Pb, Zn, Cd and Cr) were determined in surface sediments from 35 sites in the eastern Beibu Gulf. The heavy metal content varied from 6.72 to 25.95 mg/kg for Cu, 16.99 to 57.98 mg/kg for Pb, 73.15 to 112.25 mg/kg for Zn, 0.03 to 0.12 mg/kg for Cd, and 20.69 to 56.47 mg/kg for Cr, respectively. With respect to the Chinese sediment quality criteria, sediments in the eastern Beibu Gulf have not been significantly affected by coastal metal pollutions. The results deduced from the geoaccumulation index (Igeo) showed that the study area has been slightly polluted by Pb, which might be caused by non-point sources. Relatively high concentrations of Cu, Pb and Cd were found around the coastal areas of Guangxi province, the Leizhou Peninsula and the northwest coast of Hainan Island, whereas the highest concentrations of Zn and Cr were found on the northwest coast of Hainan Island. Spatial distribution patterns of the heavy metals showed that bioavailable fractions of Pb were higher than in the residual fractions, while Cu and Cd concentrations in exchangeable and carbonate fractions were relatively higher than those in the bioavailable fractions. Hierarchical clustering analysis suggested that the sampling stations could be separated into three groups with different geographical distributions. Accompanying their similar spatial distribution in the study area, significant correlation coefficients among Cu, Cd and Pb were also found, indicating that these three metals might have had similar sources. Overall, the results indicated that the distribution of these heavy metals in the surface sediments collected from

  3. High-frequency current application in industry for heating of non-metallic materials. Session 4 N. 4. 2

    Energy Technology Data Exchange (ETDEWEB)

    Bezmenov, F V; Dashkevich, I P; Dobrovolskaya, V I; Fedorova, I G; Shamov, A N; Vasiliev, A S

    1984-01-01

    Large scale industrial development of induction heating requires high operating efficiencies. This resulted in extending the research and development in the fiels of static frequency inverters and its circuits. Medium frequency sub-stations for centralized feeding of heating units are widely introduced into industry. Techno-economical parameters of induction heating strongly depend of proper choice and monitoring of heating conditions. Systems of analog and digital control for electro-heat processes and for power source operational conditions are considered. Large attention is drawn to the development of high capacity radio frequency power source for welding. Some questions arising from the computer design techniques adopted for industrial heating uits and power sources are described. Modes of combined solution of two and three-dimensional systems as well as hydrodynamic problems are presented.

  4. Assessment of levels and 'health-effects' of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-01-15

    The International Atomic Energy Agency (IAEA) has been supporting, over the years, several coordinated research programmes (CRPs) on various research topics related to environmental issues impacting human health. A variety of industrial environments such as: galvanisation, iron and steel production, steel construction, coal fired thermal power plants, mining and mineral beneficiation of monazite, zinc smelters, and phosphate fertilizer production plants were included in this CRP. Toxic elements specific for particular industries as potential pollutants were monitored within individual projects. The CRP focussed on the use of nuclear and related analytical techniques for studies of exposure to inorganic constituents and radionuclides from naturally occurring radioactive materials (NORMs), in the workplaces and their impacts on the health of the workers. The objectives were to: develop strategies and techniques for sampling of workplace airborne particulate matter (APM) and of bio-markers (e.g. hair, blood, nails, teeth, urine, breath) of exposed and non-exposed individuals; develop reliable analytical procedures for the analysis of such samples, using nuclear and related analytical techniques; carry out workplace and personal monitoring surveys, and assess workers' exposure to toxic elements on the basis of measurements results. This document provides an overview of the activities performed under the CRP by the participants. The overall achievements are summarized and those aspects that require a further deeper look are also pointed out. The individual country reports include details on the progress made by the respective participants during the CRP period.

  5. CO2 emissions: mineral carbonation and Finnish pulp and paper industry (CO2 Nordic Plus) and use of serpentinites in energy and metal industry (ECOSERP)

    International Nuclear Information System (INIS)

    Fogelholm, C.-J.; Raiski, T.; Teir, S.

    2007-01-01

    Abstract Mineral carbonation has been investigated at Helsinki University of Technology (TKK), laboratory of energy engineering and environmental protection since year 2000. The Finnish Technology Agency Tekes and the Finnish Recovery Boiler Committee are funding through the ClimBus technology programme, in conjunction with the Nordic Energy Research Programme, the research regarding the application of ex situ mineral carbonation processes. One aspect is to verify the possible use of mineral carbonation for the separation, utilisation and long-term storage of carbon dioxide (CO 2 ) in the pulp and paper industry. The Geological Survey of Finland (GTK) has been screening since 2004 the location, quality and suitability of the Finnish processed serpentine and stoped serpentinite storage of mines and in situ serpentinite bodies of ultramafic rock formations for mineral carbonation of CO 2 . Tekes and the GTK are funding development work through the ClimBus technology programme on the utilisation of serpentine and serpentinite for CO 2 sequestration purposes, based on economical and environmental evaluation of mineral and mining processing operations. Also the options for other use of serpentine and serpentinite are evaluated. The most promising magnesium- and calcium-based sources for carbonation are by-products of mining processes of ultramafic rocks (such as serpentinites and serpentine) and steelmaking slags. Carbonated minerals could possibly be used as paper coating materials (PCC), fillers or construction materials. For magnesium carbonate new markets and applications must be developed. (orig.)

  6. CO2 emissions: mineral carbonation and Finnish pulp and paper industry (CONordicPlus) and use of serpentinites in energy and metal industry (ECOSERP)

    International Nuclear Information System (INIS)

    Fogelholm, C.J.; Raiski, T.; Teir, S.

    2006-01-01

    Mineral carbonation has been investigated at Helsinki University of Technology (TKK), laboratory of energy engineering and environmental protection since year 2000. The Finnish Technology Agency Tekes and the Finnish Recovery Boiler Committee are funding through the ClimBus technology programme, in conjunction with the Nordic Energy Research Programme, the research regarding the application of ex situ mineral carbonation processes. One aspect is to verify the possible use of mineral carbonation for the separation, utilisation and long-term storage of carbon dioxide (CO2) in the pulp and paper industry. The Geological Survey of Finland (GTK) has been screening since 2004 the location, quality and suitability of the Finnish processed serpentine and stopped serpentinite storage of mines and in situ serpentinite bodies of ultramafic rock formations for mineral carbonation of CO2. Tekes and the GTK are funding development work through the ClimBus technology programme on the utilisation of serpentine and serpentinite for CO2 sequestration purposes, based on economical and environmental evaluation of mineral and mining processing operations. Also the options for other use of serpentine and serpentinite are evaluated. The most promising magnesium and calcium-based sources for carbonation are by products of mining processes of ultramafic rocks (such as serpentinites and serpentine) and steelmaking slags. Carbonated minerals could possibly be used as paper coating materials (PCC), fillers or construction materials. For magnesium carbonate new markets and applications must be developed. (orig.)

  7. Biomonitoring of urinary metals in a population living in the vicinity of industrial sources: a comparison with the general population of Andalusia, Spain.

    Science.gov (United States)

    Aguilera, Inmaculada; Daponte, Antonio; Gil, Fernando; Hernández, Antonio F; Godoy, Patricia; Pla, Antonio; Ramos, Juan Luis

    2008-12-15

    The Ria of Huelva (south-west Spain) is one of the most polluted fluvial-estuarine systems in the world. Industrial activity delivers huge amounts of pollutants to the local environment, particularly heavy metals and arsenic. Here we aimed to determine urinary levels of As, Cd, Cr, Cu and Ni in a representative sample (n=857) of adults living in the Ria of Huelva. Levels were compared to those from a representative sample of 861 adults of the general urban population of Andalusia (southern Spain) and multiple regression models were developed to identify individual factors associated with urinary levels of these elements. Arsenic levels were significantly higher in the Ria of Huelva as compared to other Andalusian cities, whereas Cd and Ni levels were significantly lower. Despite these differences, levels in both groups were similar to the reference values reported in previous studies for general population. Age, gender, diet and lifestyle were the major factors contributing to the interindividual variation in urinary metals. In conclusion, despite living in a highly polluted area, the population of the Ria of Huelva failed to show higher urinary levels of the studied metals as compared to a reference urban population of the same region.

  8. Seasonal variation in bacterial heavy metal bio sorption in water samples from Eziama river near soap and brewery industries and environmental health implications

    International Nuclear Information System (INIS)

    Kanu, I.; Achi, O. K.; Ezeronye, O. U.; Anyanwu, E. C.

    2006-01-01

    Seasonal variation in bacterial heavy metals bio sorption from soap and brewery industrial effluent samples from Eziama River in Abia State were analyzed for Pb, Hg, Fe, Zn, As, and Mn, using atomic absorption spectrophotometry. Bioaccumulation of the metals by bacteria showed the following trend > Fe >Zn >As > Pb > Mn (Rainy Season) and Zn > Fe > Mn > As > Hg > Pb (Dry season). Statistical analysis using of variance (ANOVA) showed significant differences in concentrations of Pb, Hg, Fe, Zn, As, and Mn level between the sampling zones at Eziama River. Seasonal changes in heavy metal concentrations, showed increases in Pb, Fe, and As from 1.32 x 10 5m g/L in the rainy season to 1.42 x 10 5m g/L in the dry season. Fe increased from 40.35 x 10 5m g/L to 42.1 x 10 5m g/L while As increased from 2.32 to 2.48 x 10 5m g/L with a net increases of +56 and + 69 x 10 5m g/L respectively. However, Hg, Zn, and Mn concentrations decreased in the rainy season from 40.54 x 10 5m g/L to 39.24 x l0 5m g/L 1.65 to 0.62 x l0 5m g/L respectively

  9. Characterization and environmental risk assessment of heavy metals in construction and demolition wastes from five sources (chemical, metallurgical and light industries, and residential and recycled aggregates).

    Science.gov (United States)

    Gao, Xiaofeng; Gu, Yilu; Xie, Tian; Zhen, Guangyin; Huang, Sheng; Zhao, Youcai

    2015-06-01

    Total concentrations of heavy metals (Cu, Zn, Pb, Cr, Cd, and Ni) were measured among 63 samples of construction and demolition (C&D) wastes collected from chemical, metallurgical and light industries, and residential and recycled aggregates within China for risk assessment. The heavy metal contamination was primarily concentrated in the chemical and metallurgical industries, especially in the electroplating factory and zinc smelting plant. High concentrations of Cd were found in light industry samples, while the residential and recycled aggregate samples were severely polluted by Zn. Six most polluted samples were selected for deep research. Mineralogical analysis by X-ray fluorescence (XRF) spectrometry and X-ray diffraction (XRD), combined with element speciation through European Community Bureau of Reference (BCR) sequential extraction, revealed that a relatively slight corrosion happened in the four samples from electroplating plants but high transfer ability for large quantities of Zn and Cu. Lead arsenate existed in the acid extractable fraction in CI7-8 and potassium chromium oxide existed in the mobility fraction. High concentration of Cr could be in amorphous forms existing in CI9. The high content of sodium in the two samples from zinc smelter plants suggested severe deposition and erosion on the workshop floor. Large quantities of Cu existed as copper halide and most of the Zn appeared to be zinc, zinc oxide, barium zinc oxide, and zincite. From the results of the risk assessment code (RAC), the samples from the electroplating factory posed a very high risk of Zn, Cu, and Cr, a high risk of Ni, a middle risk of Pb, and a low risk of Cd. The samples from the zinc smelting plant presented a high risk of Zn, a middle risk of Cu, and a low risk of Pb, Cr, Cd, and Ni.

  10. Assessment of heavy metal pollution in surface soils and plant material in the post-industrial city of Katowice, Poland.

    Science.gov (United States)

    Steindor, Karolina A; Franiel, Izabella J; Bierza, Wojciech M; Pawlak, Beata; Palowski, Bernard F

    2016-01-01

    This investigation was undertaken to assess the level of environment pollution by biological monitoring. The leaves and bark of popular ornamental trees Acer pseudoplatanus L. and Acer platanoides L. and soil from the sampling sites were used to perform heavy metals pollution monitoring in urban areas with different pollution sources, as well to investigate the suitability of the leaves and bark as bioindicators of Pb, Zn, Cd and Cu pollution. Plant samples were collected at nine locations classified into three pollution groups based on metal content in the soils. The chosen pollution indices were used to assess the level of contamination according to background values. Soils in the Katowice area are found to be relatively heavily contaminated with Pb, Zn and Cd. Both of the maple tree species did not statistically differ in terms of the investigated elements' concentration in leaves or bark. Only bark samples reflected the pollution level, showing differences between the sampling points, and therefore are recommended for biomonitoring purposes.

  11. Synthesis and Characterization of Iron Oxide Nanoparticles and Applications in the Removal of Heavy Metals from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Zuolian Cheng

    2012-01-01

    Full Text Available This study investigated the applicability of maghemite (γ-Fe2O3 nanoparticles for the selective removal of toxic heavy metals from electroplating wastewater. The maghemite nanoparticles of 60 nm were synthesized using a coprecipitation method and characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM equipped with energy dispersive X-ray spectroscopy (EDX. Batch experiments were carried out for the removal of Pb2+ ions from aqueous solutions by maghemite nanoparticles. The effects of contact time, initial concentration of Pb2+ ions, solution pH, and salinity on the amount of Pb2+ removed were investigated. The adsorption process was found to be highly pH dependent, which made the nanoparticles selectively adsorb this metal from wastewater. The adsorption of Pb2+ reached equilibrium rapidly within 15 min and the adsorption data were well fitted with the Langmuir isotherm.

  12. Synthesis of New Schiff Base from Natural Products for Remediation of Water Pollution with Heavy Metals in Industrial Areas

    Directory of Open Access Journals (Sweden)

    Reham Hassan

    2013-01-01

    Full Text Available A resin of [5-((E-1-(ethylimino ethyl-4, 7-dimethoxy benzofuran-6-ol] Schiff base (EEDB was prepared, characterized, and successfully applied in the removal of Cu (II ions from aqueous real samples. While the metal cation was detected using ICP-OES, the prepared Schiff base resin was characterized by means of FTIR, 1HNMR, mass spectral data, and elemental analysis. Various factors affecting the uptake behavior such as pH (2–12, contact time, effect of initial metal concentration (10–250 ppm, and effect of Schiff base weight (0.1–1.5 gm were studied. The adsorption process was relatively fast and equilibrium was established after about 60 min. The optimum initial pH was 8.0 at a metal ion concentration (100 ppm. Under the optimized conditions, the removal of Cu (II from real samples of tap water was applied and the removal efficiency reached nearly 85%. The biological activity for Schiff base was also investigated. The results showed that there is no significant difference between the effects of Schiff base on serum (alanine amino transferase ALT and creatinine concentration activities in treated mice and control, at confidence limits 95%.

  13. Investigations of biofilms in the sewerage system of a highly contaminated industrial and mining area for the localization of heavy metal sources. Final report

    International Nuclear Information System (INIS)

    Cichos, C.; Singliar, U.

    1993-02-01

    The high heavy metal loading of the river Freiberger Mulde is largely caused by contaminations arising from the drainage area of the town of Freiberg. The diffuse input from the dewatering surface likely makes an important contribution to this pollution. The elimination of the reasons for the pollutant input into the sewerage and, thus, for the extremely high contamination of the sewage sludges requires a localization of sources and transport ways. For this purpose the method of investigation of biofilms on the sewer surface can be applied as a reliable method. For the industrial and mining area of Freiberg besides the different branches of industry especially the secondary emissions from deposits of old mining and metallurgical plants as well as from the extremely loaded surface of soil play an important role. The investigation of sewerage biofilms in the area considered have shown that the input of nickel and tin into the sewer is mainly caused by industry. Sources of zinc and copper above all are domestic wastewaters, whereas lead is originated from the surface run-off. Especially high pollutions of arsen and cadmium were found obviously arising from mining and production scraps. The results obtained should be the basis of activities for definite interruption of the pollutant input into the sewer system. They are a contribution to the restoration of the hydrographical network of Mulde/Elbe. (orig.) [de

  14. Utilization of hair and nails as bio-indicators of contamination by heavy and toxic metals in industrial workers

    International Nuclear Information System (INIS)

    Vilhena Schayer Sabino, Claudia de; Silva, Ascanio Barros F.E.; Fernandes, Marcio Prado; Amaral, Angela Maria; Franco, Milton Batista; Guedes, Joao Bosco; Francisco, Dovenir; Castro de Assis, Adilson de.

    1996-01-01

    Instrumental neutron activation analysis and atomic absorption spectrometry were performed on scalp hair and fingernail samples collected from a group of heavily exposed healthy mail industrial workers. The concentration of trace elements (As, Cd, Cr, Hg, Ni, Pb and Sb) were evaluated and compared for scalp and fingernails. Comparative studies demonstrated that concentration of certain elements were greater than those corresponding to non-exposed workers. (author). 4 refs., 6 tabs

  15. Selection Of Employees In The Metal Industry Based On Competences, On The Example Of A Designer Position

    Directory of Open Access Journals (Sweden)

    Skrzypek Katarzyna

    2015-06-01

    Full Text Available The selection of an effective team of employees is crucial to proper management of the company. The success of the project often depends on the competencies of employees who carry out those projects. Therefore, the selection of the workers, whose competences complement each other in terms of subject matter, in terms of personality, and also in practical terms, is very important. This article presents the proposal of applying the FAHP (fuzzy analytic hierarchy process and TOPSIS (technique for order preference by similarity to an ideal solution methods as a tool to facilitate the management of human resources in the metal production factories based on the skills of employees.

  16. First Industrial Tests of a Drum Monitor Matrix Correction for the Fissile Mass Measurement in Large Volume Historic Metallic Residues with the Differential Die-away Technique

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, R.; Passard, C.; Perot, B.; Batifol, M.; Vandamme, J.C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance, (France); Grassi, G. [AREVA NC, 1 place Jean-Millier, 92084 Paris-La-Defense cedex (France)

    2015-07-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT. In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (NML) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor ({sup 3}He proportional counter inside the measurement cavity). A previous study performed with the NML R and D measurement cell PROMETHEE 6 has shown the feasibility of method, and the capability of MCNP simulations to correctly reproduce experimental data and to assess the performances of the proposed correction. A next step of the study has focused on the performance assessment of the method on the industrial station using numerical simulation. A correlation between the prompt calibration coefficient of the {sup 239}Pu signal and the drum monitor signal was established using the MCNPX computer code and a fractional factorial experimental design composed of matrix parameters representative of the variation range of historical waste. Calculations have showed that the method allows the assay of the fissile mass with an uncertainty within a factor of 2, while the matrix effect without correction ranges on 2 decades. In this paper, we present and discuss the first experimental tests on the industrial ACC measurement system. A calculation vs. experiment benchmark has been achieved by performing dedicated calibration measurement with a representative drum and {sup 235}U samples. The preliminary comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the

  17. First Industrial Tests of a Drum Monitor Matrix Correction for the Fissile Mass Measurement in Large Volume Historic Metallic Residues with the Differential Die-away Technique

    International Nuclear Information System (INIS)

    Antoni, R.; Passard, C.; Perot, B.; Batifol, M.; Vandamme, J.C.; Grassi, G.

    2015-01-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT. In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (NML) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor ( 3 He proportional counter inside the measurement cavity). A previous study performed with the NML R and D measurement cell PROMETHEE 6 has shown the feasibility of method, and the capability of MCNP simulations to correctly reproduce experimental data and to assess the performances of the proposed correction. A next step of the study has focused on the performance assessment of the method on the industrial station using numerical simulation. A correlation between the prompt calibration coefficient of the 239 Pu signal and the drum monitor signal was established using the MCNPX computer code and a fractional factorial experimental design composed of matrix parameters representative of the variation range of historical waste. Calculations have showed that the method allows the assay of the fissile mass with an uncertainty within a factor of 2, while the matrix effect without correction ranges on 2 decades. In this paper, we present and discuss the first experimental tests on the industrial ACC measurement system. A calculation vs. experiment benchmark has been achieved by performing dedicated calibration measurement with a representative drum and 235 U samples. The preliminary comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the modeling approach

  18. Use of scenedesmus for the removal of nutrients and heavy metals from waste waters of the textile industry

    OpenAIRE

    Pérez Silva, Karen Rocío; Vega Bolaños, Asly Michell; Hernández Rodríguez, Luisa Carolina; Parra Ospina, David Alejandro; Ballen Segura, Miguel Ángel

    2016-01-01

    Introduction: This article is a derivative research product from the project “Use of waste waters as alternative substrate to generate microalgae biomass”, developed by the Environmental and Bioprocessing Engineering Research Incubator (SIIAB) of the Universidad Sergio Arboleda. The project was implemented during the year 2015. The objective of the research was to evaluate the use microalgae Scenedesmus sp. as a processing tool of industrial waste waters produced in a textile company located ...

  19. Long-term changes of heavy metal and sulphur concentrations in ecosystems of the Taymyr Peninsula (Russian Federation) North of the Norilsk Industrial Complex.

    Science.gov (United States)

    Zhulidov, Alexander V; Robarts, Richard D; Pavlov, Dmitry F; Kämäri, J; Gurtovaya, Tatiana Yu; Meriläinen, J J; Pospelov, Igor N

    2011-10-01

    The Norilsk industrial ore smelting complex (Taymyr Peninsula, Russian Federation) has significantly impacted many components of local terrestrial and aquatic environments. Whether it has had a major impact on the wider Russian Arctic remains controversial as studies are scarce. From 1986 to 2004, data on heavy metal (Cu, Ni, Zn, Hg, Cd and Hg) concentrations in fish (burbot), moss, lichens, periphyton, hydric soils and snow in and around Norilsk and the most northern parts of the Taymyr Peninsula were analysed. Very high concentrations of Cu (203 μg L⁻¹ ± 51 μg L⁻¹) and Ni (113 μg L⁻¹ ± 15 μg L⁻¹) were found in the water of the Schuchya River close to Norilsk. Heavy metal concentrations in burbot liver were highest in Lake Pyasino near Norilsk compared to other study regions that were >100 km distant. From 1989-1996, Cu (121 μg L⁻¹ ± 39 μg L⁻¹ SD), Zn (150 μg L⁻¹) ± 70 μg L⁻¹) and Ni (149 μg L⁻¹ ± 72 μg L⁻¹) snow concentrations were greatest in Norilsk, but were low elsewhere. By 2004, these concentrations had dropped significantly, especially for Cu-74 μg L⁻¹ (±18.7 μg L⁻¹ SD), Zn-81.7 μg L⁻¹ (± 31.3 μg L⁻¹ SD) and Ni-80 μg L⁻¹(±18.0 μg L⁻¹ SD). Norilsk and its surroundings are subject to heavy pollution from the Norilsk metallurgical industry but these are absent from the greater Arctic region due to the prevailing winds and the Byrranga Mountains. Pollution abatement measures have been made so further investigations are necessary in order to assess their efficiency.

  20. Influence of industry on pollution of the environment and human population with natural radionuclides and heavy metals

    International Nuclear Information System (INIS)

    Jaworowski, Z.

    1982-01-01

    The rate of fallout of 226 Ra depending on the distance from industrial emission sources has been evaluated. Contamination of soil with natural radionuclides in industrial and rural regions of Poland has been compared with the concentration of radionuclides in ash of aerophytic plants. An increase of airborne pollutants in precipitation in Southern Poland has been compared with an increase of the concentration of pollutants in pine trees. Samples of human bones from Southern Poland have been checked for contents of lead. It has been found that in 20th century concentration of lead decreased to a level not much higher than natural. The level of 226 Ra in Polish population had been decreasing during the last 100 years. This points to the conclusion that human skeleton is well protected as the level of radionuclides was not related to the level of environmental pollution. The concentration of 226 Ra in air is steadily increasing and an upward transport leads to its wide distribution. (E.G.M.)

  1. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Rachwał, Marzena; Magiera, Tadeusz; Wawer, Małgorzata

    2015-11-01

    Application of integrated magnetic, geochemical and mineralogical methods for qualitative and quantitative assessment of forest topsoils exposed to the industrial emissions was the objective of this manuscript. Volume magnetic susceptibility (κ) in three areas of southern Poland close to the coke and metallurgical plants was measured directly in the field. Representative topsoil samples were collected for further chemical and mineralogical analyses. Topsoil magnetic susceptibility in the studied areas depended mainly on the content of technogenic magnetic particles (TMPs) and decreased downwind at increasing distance from the emitters. In the vicinity of coking plants a high amount of polycyclic aromatic hydrocarbons (PAHs) was observed, especially the most carcinogenic ones with four- and five-member rings. No significant concentration of TMPs (estimated on the base of κ values) and heavy metals (HM) was observed in area where the coke plant was the only pollution source. In areas with both coke and metallurgical industry, higher amounts of TMPs, PAHs and HM were detected. Morphological and mineralogical analyses of TMPs separated from contaminated soil samples revealed their high heterogeneity in respect of morphology, grain size, mineral and chemical constitution. Pollution load index and toxicity equivalent concentration of PAHs used for soil quality assessment indicated its high level of pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The shock and spall response of three industrially important hexagonal close-packed metals: magnesium, titanium and zirconium.

    Science.gov (United States)

    Hazell, P J; Appleby-Thomas, G J; Wielewski, E; Escobedo, J P

    2014-08-28

    Magnesium, titanium and zirconium and their alloys are extensively used in industrial and military applications where they would be subjected to extreme environments of high stress and strain-rate loading. Their hexagonal close-packed (HCP) crystal lattice structures present interesting challenges for optimizing their mechanical response under such loading conditions. In this paper, we review how these materials respond to shock loading via plate-impact experiments. We also discuss the relationship between a heterogeneous and anisotropic microstructure, typical of HCP materials, and the directional dependency of the elastic limit and, in some cases, the strength prior to failure. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Radiation induced environmental remediation of Cr(VI) heavy metal in aerated neutral solution under simulated industrial effluent

    Energy Technology Data Exchange (ETDEWEB)

    Djouider, Fathi; Aljohani, Mohammed S. [King Abdulaziz Univ., Jeddah (Saudi Arabia). Nuclear Engineering Dept.

    2017-08-01

    Cr(VI) compounds are major water contaminants in most industrial effluents, due to their carcinogenicity, while Cr(III) is an important element for human metabolism. In a previous work, we showed that Cr(VI) was radiolytically reduced to Cr(III) by the CO{sub 2}{sup -.} radical at pH 3 N{sub 2}O-saturated solution in the presence of formate. Here in the present work, this removal was investigated by steady state irradiation and pulse radiolysis in aerated solution at neutral pH, which is close to natural conditions in most wastewaters, where the reducing agent is the superoxide radical anion O{sub 2}{sup -.} The degradation of Cr(VI) increased linearly with the absorbed dose and was significantly enhanced by the added formate but not by the radiolitically produced hydrogen peroxide at this pH. The rate constant for this reduction was found to be 1.28 x 10{sup 8} M{sup -1} s{sup -1} and the absorption spectrum of Cr(V) transient species was obtained. A partial recovery of Cr(VI) is observed over a period of ca. 5 ms following a second order kinetics with a rate constant 8.0 x 10{sup 6} M{sup -1} s{sup -1}. These outcomes suggest that gamma-irradiation of Cr(VI)-contaminated wastewaters and industrial effluents in presence of formate can be simple, effective and economical means for the remediation of this major contaminant.

  5. Biocorrosion and biofouling of metals and alloys of industrial usage. Present state of the art at the beginning of the new millennium

    Directory of Open Access Journals (Sweden)

    Videla, H. A.

    2003-12-01

    Full Text Available An overview on the present state of the art on Biocorrosion and Biofouling of metals and alloys of industrial usage is offered on the basis of the experience gathered in our laboratory over 25 years of research. The key concepts to understand the main effects of microorganisms on metal decay are briefly discussed. New trends in monitoring and control strategies to mitigate biocorrosion and biofouling deleterious effects are also described. Several relevant cases of biocorrosion studied by our research group are successively described: i biocorrosion of aluminum and its alloys by fungal contaminants of jet fuels; ii Sulfate-reducing bacteria SRB induced corrosion of steel; iii biocorrosion and biofouling interactions in the marine environment; iv monitoring strategies for assessing biocorrosion in industrial water systems; v microbial inhibition of corrosion; vi use and limitations of electrochemical techniques for evaluating biocorrosion effects. The future perspective of the field is made considering the potential of innovative techniques in microscopy (environmental scanning electron microscopy, confocal scanning laser microscopy, atomic force microscopy, new spectroscopical techniques used for the study of corrosion products and biofilms (energy dispersion X-ray analysis, X-ray photoelectron spectroscopy, electron microprobe analysis and electrochemistry (electrochemical impedance spectroscopy, electrochemical noise analysis.

    Se ofrece una revisión del estado actual del conocimiento sobre Biocorrosión y Biofouling de metales y aleaciones de uso industrial basada en la experiencia desarrollada en nuestro laboratorio durante 25 años de investigación en el área. Se discuten brevemente los conceptos clave necesarios para entender los principales efectos de los microorganismos en el deterioro de los metales. También se presentan las nuevas tendencias seguidas para el monitoreo y las nuevas estrategias de control para mitigar

  6. Chemical and petrochemical industry

    Science.gov (United States)

    Staszak, Katarzyna

    2018-03-01

    The potential sources of various metals in chemical and petrochemical processes are discussed. Special emphasis is put on the catalysts used in the industry. Their main applications, compositions, especially metal contents are presented both for fresh and spent ones. The focus is on the main types of metals used in catalysts: the platinum-group metals, the rare-earth elements, and the variety of transition metals. The analysis suggested that chemical and petrochemical sectors can be considered as the secondary source of metals. Because the utilization of spent refinery catalysts for metal recovery is potentially viable, different methods were applied. The conventional approaches used in metal reclamation as hydrometallurgy and pyrometallurgy, as well as new methods include bioleaching, were described. Some industrial solutions for metal recovery from spent solution were also presented.

  7. Bioavailability and bioaccumulation of heavy metals of several soils and sediments (from industrialized urban areas) for Eisenia fetida.

    Science.gov (United States)

    Coelho, C; Foret, C; Bazin, C; Leduc, L; Hammada, M; Inácio, M; Bedell, J P

    2018-09-01

    Soils and sediments are susceptible to anthropogenic contamination with Metallic Trace Elements (MTEs) and it can present some risks to ecosystems and human health. The levels of Cd, Cu, Fe, Ni, Pb and Zn were assessed in soils (C, G, K, L) from Estarreja (Portugal) and sediments from a stormwater basin in Lyon (DJG), a harbour (LDB) and a Rhône river site (TRS) (France). An ecotoxicological study was performed with Eisenia fetida (E. fetida) to infer about potential transfer risks to the soil invertebrates. To assess risks associated with MTEs contamination, it is important to know their total concentrations, fractionation and the potential available fractions. CaCl 2 , DTPA and NaOAc extractions were performed to assess the extractable and available MTEs fractions. The studied sediments were much more contaminated than the soils for all the MTEs analysed. The trace elements fraction linked with DTPA extraction shows higher values when compared with the NaOAc and the CaCl 2 pools. Low mortality effects were recorded in the tests with E. fetida. The MTEs levels in soils and sediments and the concentrations bioaccumulated in adult earthworms contributed to a reduction in the number of juveniles produced. E. fetida adults and juveniles accumulated ETMs as follows: Cd > Cu = Zn > Ni > Pb > Fe. Determined BAFs were mostly lower than 1 with some higher values for Cd, Cu and Zn. Calculated SET and ERITME indexes allowed to classify the samples from the most to the less toxic for E. fetida as: LDB > DJG > L > G > C > K > TRS. Despite this order of toxicity, the earthworms exposed to the sediment TRS presented the lowest reproduction rate. The combination of "chemical" measurements with the calculation of BAFs, but especially SET and ERITME indexes can be a useful tool in risk assessment. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine Valley: PCDD/Fs, PCBs and trace metal evidence.

    Science.gov (United States)

    Guéguen, Florence; Stille, Peter; Millet, Maurice

    2011-09-01

    Tree barks were used as biomonitors to evaluate past atmospheric pollution within and around the industrial zones of Strasbourg (France) and Kehl (Germany) in the Rhine Valley. The here estimated residence time for trace metals, PCBs and PCDD/Fs in tree bark is >10 years. Thus, all pollution observed by tree bark biomonitoring can be older than 10 years. The PCB baseline concentration (sum of seven PCB indicators (Σ(7)PCB(ind))) determined on tree barks from a remote area in the Vosges mountains is 4 ng g(-1) and corresponds to 0.36 × 10(-3)ng toxic equivalent (TEQ) g(-1) for the dioxin-like PCBs (DL-PCBs). The northern Rhine harbor suffered especially from steel plant, waste incinerator and thermal power plant emissions. The polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) concentrations analyzed in tree barks from this industrial area range between 392 and 1420 ng kg(-1) dry-weight (dw) corresponding to 3.9 ng TEQ(PCDD/Fs) kg(-1) to 17.8 ng TEQ(PCDD/Fs) kg(-1), respectively. Highest PCDD/F values of 7.2 ng TEQ kg(-1) to 17.8 ng TEQ kg(-1) have been observed close to and at a distance of fires might have been the reasons of these PCB enrichments. Other urban environments of the cities of Kehl and Strasbourg show significantly lower Σ(7)PCB(ind) concentrations. They suffer especially from road and river traffic and have typically Σ(7)PCB(ind) concentrations ranging from 11 ng g(-1) to 29 ng g(-1). The PCB concentration of 29 ng g(-1) has been found in tree bark close to the railway station of Strasbourg. Nevertheless, the corresponding TEQ(DL-PCB) are low and range between 0.2 × 10(-3) ng TEQ g(-1) and 7 × 10(-3) ng TEQ g(-1). Samples collected near road traffic are enriched in Fe, Sb, Sn and Pb. Cd enrichments were found close to almost all types of industries. Rural environments not far from industrial sites suffered from organic and inorganic pollution. In this case, TEQ(DL-PCB) values may reach up to 58 × 10(-3) ng TEQ g(-1) and the

  9. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives.

    Science.gov (United States)

    Voglar, Grega E; Leštan, Domen

    2011-08-30

    In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085mg kg(-1) of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12N mm(-2) achieved after S/S with CAC+PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC+Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The optimisation of electrokinetic remediation for heavy metals and radioactivity contamination on Holyrood-Lunas soil (acrisol species) in Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia

    International Nuclear Information System (INIS)

    Mohamed Johar, S.; Embong, Z.

    2015-01-01

    The optimisation of electrokinetic remediation of an alluvial soil, locally named as Holyrood-Lunas from Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia, had been conducted in this research. This particular soil was chosen due to its relatively high level of background radiation in a range between 139.2 and 539.4 nGy h -1 . As the background radiation is correlated to the amount of parent nuclides, 238 U and 232 Th, hence, a remediation technique, such as electrokinetic, is very useful in reducing these particular concentrations of heavy metal and radionuclides in soils. Several series of electrokinetics experiments were performed in laboratory scale in order to study the influence of certain electrokinetic parameters in soil. The concentration before (pre-electrokinetic) and after the experiment (post-electrokinetic) was determined via X-ray fluorescence (XRF) analysis technique. The best electrokinetic parameter that contributed to the highest achievable concentration removal of heavy metals and radionuclides on each experimental series was incorporated into a final electrokinetic experiment. Here, High Pure Germanium (HPGe) was used for radioactivity elemental analysis. The XRF results suggested that the most optimised electrokinetic parameters for Cr, Ni, Zn, As, Pb, Th and U were 3.0 h, 90 volts, 22.0 cm, plate-shaped electrode by 8 x 8 cm and in 1-D configuration order whereas the selected optimised electrokinetic parameters gave very low reduction of 238 U and 232 Th at 0.23 ± 2.64 and 2.74 ± 23.78 ppm, respectively. (authors)

  11. The optimisation of electrokinetic remediation for heavy metals and radioactivity contamination on Holyrood-Lunas soil (acrisol species) in Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia.

    Science.gov (United States)

    Mohamed Johar, S; Embong, Z

    2015-11-01

    The optimisation of electrokinetic remediation of an alluvial soil, locally named as Holyrood-Lunas from Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia, had been conducted in this research. This particular soil was chosen due to its relatively high level of background radiation in a range between 139.2 and 539.4 nGy h(-1). As the background radiation is correlated to the amount of parent nuclides, (238)U and (232)Th, hence, a remediation technique, such as electrokinetic, is very useful in reducing these particular concentrations of heavy metal and radionuclides in soils. Several series of electrokinetics experiments were performed in laboratory scale in order to study the influence of certain electrokinetic parameters in soil. The concentration before (pre-electrokinetic) and after the experiment (post-electrokinetic) was determined via X-ray fluorescence (XRF) analysis technique. The best electrokinetic parameter that contributed to the highest achievable concentration removal of heavy metals and radionuclides on each experimental series was incorporated into a final electrokinetic experiment. Here, High Pure Germanium (HPGe) was used for radioactivity elemental analysis. The XRF results suggested that the most optimised electrokinetic parameters for Cr, Ni, Zn, As, Pb, Th and U were 3.0 h, 90 volts, 22.0 cm, plate-shaped electrode by 8 × 8 cm and in 1-D configuration order whereas the selected optimised electrokinetic parameters gave very low reduction of (238)U and (232)Th at 0.23 ± 2.64 and 2.74 ± 23.78 ppm, respectively. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. The use of nuclear and related techniques for the studies of possible health impact of airborne particulate matter in a metal industry

    International Nuclear Information System (INIS)

    Djojosubroto, Harjoto; Supriatna, Dadang; Kumolowati, Endang; Widjajakusuma, Benjamin

    2000-01-01

    Various processes in an industry may produce gases and fine airborne particulate matters. Elements and hazardous chemicals in the fine particulate matters may enter the human body through inhalation and direct contact with the skin. Excessive inhalation and contact with the fine airborne particulate matter may lead to intoxication due to excessive intake of the hazardous chemicals and toxic elements. The elements will be accumulated in human organs, such as liver, kidneys and brain, manifest in clinical syndromes such as hypertension, renal failure and neurological symptoms and signs. The absorbed elements are excreted through the urinary tract as urine. They also can be excreted through hair and nails. Elevated blood and urinary aluminum levels have been observed after occupational exposure to various aluminum compounds. This phenomenon indicates the absorption through inhalation, as there are no data indicating significant dermal absorption for aluminum. Absorption of chromium compounds in the workplace occurs mainly through inhalation. The absorption is dependent on the valence and solubility of the particular chromium species. Some elements such as trivalent chromium ions are readily cleared from the blood, but hexavalent chromium ions are retained much longer in the blood. The aluminum compounds vary greatly in their toxic and carcinogenic effects. Although the trivalent chromium is readily excreted, continuous intake may cause the blood chromium level to be higher than normal. These elements may either have an deleterious effect on, or be considered essential for human health. In this study, the levels and health effects of airborne particulate matter in the workplace are assessed by elemental quantification of blood, hair and nail of workers in a metal industry and in airborne particulate samples that are collected at the workplace. The present report represents progress of activities following the first Research Co-ordination Meeting 1997 in Vienna

  13. Metal Exposure and Associated Health Risk to Human Beings by Street Dust in a Heavily Industrialized City of Hunan Province, Central China

    Directory of Open Access Journals (Sweden)

    Guangyi Sun

    2017-03-01

    Full Text Available Fifty-five urban street dust samples were collected from Zhuzhou, an industrial city in central China and analyzed for a range of toxic elements. Potential carcinogenic and non-carcinogenic health effects on children and adults due to exposure to street dust were assessed. Concerning the two subgroups, the child cohort is confronted with considerably greater health risks than adults. According to the Hazard Quotient (HQ method, ingestion of dust particles poses primary risk to children and adults, followed by dermal contact and inhalation for all of the metals investigated except Hg, for which inhalation of its elemental vapor constitute a slightly higher risk than ingestion. For children, Pb, As, Cd, Cr, Hg and Sb exposure were deemed as the highest contributors to non-cancer health risks, while As and Cr represent an enhanced cancer risk for children. For adults, risk indicator values for both cancer and non-cancer effects obtained were within the safety threshold. In a comparison with other locations within and outside mainland China, exposure to arsenic is prominent for the population of Zhuzhou, indicating more attention and preventive actions should been taken.

  14. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 11: Computer-Aided Manufacturing & Advanced CNC, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    Science.gov (United States)

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  15. Proceedings of the 6. international symposium on waste processing and recycling in the mineral and metallurgical industries : WALSIM : water, air and land sustainability issues in mineral and metal extraction

    International Nuclear Information System (INIS)

    Jia, C.Q.; Pickles, C.A.; Brienne, S.; Rao, S.R.

    2008-01-01

    The proceedings of the 2008 conference of metallurgists of CIM includes a collection 7 separate symposia, namely (1) aerospace materials and manufacturing, (2) water, air and land sustainability issues in mineral and metal extraction (WALSIM), (3) current status and future trends of functional nanometers, (4) recent developments in advanced high strength steels processing, (5) corrosion and wear of materials, (6) advanced characterization techniques applied to mineral, metals and materials, and (7) management in metallurgy. The WALSIM symposium dealt with environmental issues, with particular reference to the three topics of water, air and land sustainability associated with mineral and metal extraction, processing and fabrication. It provided an opportunity for scientists, engineers and plant operators to report on work aimed at achieving more efficient, environmentally sound and sustainable performance of the mineral and metals industry by enabling related organizations to exchange information on the latest developments in this field of activity with considerations of both industry and society. The sessions were entitled: resource recovery from waste material; by-products processing of slag, fly ash and electric arc furnace dust; metal recycling; wastewater and effluent treatment; gaseous pollutants treatment; and, sustainability and basic research. The symposium featured 43 presentations, of which 17 have been catalogued separately for inclusion in this database. refs., tabs., figs

  16. Proceedings of the 6. international symposium on waste processing and recycling in the mineral and metallurgical industries : WALSIM : water, air and land sustainability issues in mineral and metal extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jia, C.Q. [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry; Pickles, C.A. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mining Engineering; Brienne, S. [Teck Cominco Metals Ltd., Trail, BC (Canada). Applied Research and Engineering; Rao, S.R. [McGill Univ., Montreal, PQ (Canada). Dept. of Mining and Materials Engineering] (eds.)

    2008-07-01

    The proceedings of the 2008 conference of metallurgists of CIM includes a collection 7 separate symposia, namely (1) aerospace materials and manufacturing, (2) water, air and land sustainability issues in mineral and metal extraction (WALSIM), (3) current status and future trends of functional nanometers, (4) recent developments in advanced high strength steels processing, (5) corrosion and wear of materials, (6) advanced characterization techniques applied to mineral, metals and materials, and (7) management in metallurgy. The WALSIM symposium dealt with environmental issues, with particular reference to the three topics of water, air and land sustainability associated with mineral and metal extraction, processing and fabrication. It provided an opportunity for scientists, engineers and plant operators to report on work aimed at achieving more efficient, environmentally sound and sustainable performance of the mineral and metals industry by enabling related organizations to exchange information on the latest developments in this field of activity with considerations of both industry and society. The sessions were entitled: resource recovery from waste material; by-products processing of slag, fly ash and electric arc furnace dust; metal recycling; wastewater and effluent treatment; gaseous pollutants treatment; and, sustainability and basic research. The symposium featured 43 presentations, of which 17 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  17. Condição ocular entre trabalhadores de uma indústria metalúrgica brasileira Ocular condition in a brazilian ironmaster industry

    Directory of Open Access Journals (Sweden)

    Thais Zamudio Igami

    2008-10-01

    Full Text Available OBJETIVO: Avaliar a condição ocular em população de trabalhadores de uma indústria metalúrgica paulista. MÉTODOS: Amostra de 2516 funcionários de uma fábrica na cidade de São Paulo foi submetida a uma avaliação oftalmológica como exame ocupacional periódico. Foi aplicado um questionário e realizado o exame de acuidade visual (Snellen e teste de Ishihara. Os funcionários com acuidade visual menor que 0,7 ou com diferenças maior que duas linhas ou que apresentassem alguma queixa ocular, passaram por avaliação complementar (biomicroscopia, refração, tonometria e fundo de olho. Prescreveu-se óculos conforme indicação. RESULTADOS: Houve predomínio do sexo masculino (62,5% e faixa etária de 20 a 29 anos (41%. A maioria não apresentava antecedentes oculares (97,6% ou sistêmicos (96,6%.A acuidade visual estava acima de 0,7 em 95,5% dos olhos e 84% não utilizavam correção. O diagnóstico final foi exame normal em 55% dos casos, presbiopia em 13.6%, astigmatismo miópico em 10% e hipermetrópico em 7,7% dos indivíduos. Baixa visão foi encontrada em 2,4%, cegueira unilateral em 0,4%, não havendo casos de cegueira ou de deficiência visual entre os trabalhadores. As principais causas de baixa visão foram erros refrativos e ambliopia. CONCLUSÃO: A maioria dos funcionários da indústria pesquisada apresentava exame oftalmológico normal e nenhum deles apresentava cegueira bilateral.PURPOSE: To evaluate the ocular condition in a brazilian ironmaster industry. METHOD: A prospective study was conducted in 2516 employees from an ironmaster brazilian industry in São Paulo city, Brazil. A questionnaire was applied and visual acuity and Ishihara test were performed in every individual. A complete ophthalmic evaluation (slit lamp examination, fundoscopy, tonometry and refractometry was done when the visual acuity was worse than 0.7 or when the worker had a greater diference between the eyes (more than two lines or when there were

  18. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Spanish Edition); Control de fuentes huérfanas y otros materiales radiactivos en las industrias de reciclado y producción de metales. Guía de seguridad específica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  19. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail: Swain@iae.re.kr [Institute for Advanced Engineering (IAE), Advanced Materials & Processing Center, Yongin-Si 449-863 (Korea, Republic of); Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo [Institute for Advanced Engineering (IAE), Advanced Materials & Processing Center, Yongin-Si 449-863 (Korea, Republic of); Lee, Kun-Jae [Department of Energy Engineering, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-07-15

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga{sub 0.97}N{sub 0.9}O{sub 0.09} is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga{sub 0.97}N{sub 0.9}O{sub 0.09} of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4 M HCl, 100 °C and pulp density of 100 kg/m{sup 3,} respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. - Highlights: • Waste MOCVD dust is treated through mechanochemical leaching. • GaN is hardly leached, and converted to NaGaO{sub 2} through ball milling and annealing. • Process for gallium recovery from waste MOCVD dust has been developed. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} is revealed. • Solid-state chemistry involved in this process is reported.

  20. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  1. Metal Accumulation in Surface Sediment of the Urban and Industrial Coastal Area of the Municipality of Moa (Cuba: Distribution and Pollution Assessment

    Directory of Open Access Journals (Sweden)

    Yosbanis Cervantes-Guerra

    2017-04-01

    Full Text Available The investigation is to evaluate the accumulation of ten elements (Al, Cr, Fe, Mn, Ni, Co, As, Cu, Pb and Zn in surface sediments from the urban and industrial coastal area of Moa. Human activity has influenced the region, which has been developing in one of the most important mining regions of Cuba since the middle of the past century. Two methods were used to assess the contamination of the sediments: the estimation of metal enrichment by calculating the index of geo-accumulation (Igeo and the interpretation of the data obtained based on quality criteria. The overall range of concentrations is 15.7 - 83.5 mg g-1 for aluminum, 1.4 – 17.9 mg g-1 for chromium, 22.8 - 379.5 mg g-1 for iron, 1.5 - 56.2 mg g-1 for manganese, 0.9 – 6.2 mg g-1 for nickel, 56 - 1094 µg g-1 for cobalt, 6 - 126 µg g-1 for arsenic, 17 to 146 µg g-1 for copper, 6 - 66 µg g-1 for lead, and 64 - 576 µg g-1 for zinc. The results obtained from the studied coastal zone show a high level of pollution in surface sediments. The spatial distribution of the elements varied according to the analyzed elements: Al, Cr, Fe and Ni showed high levels of concentration throughout the studied zone; Mn, Co, Cu, As and Zn are in a higher proportion in Moa Bay Cay. In the case of As and Pb, higher concentrations were located at the deltas of Moa and Cayo Guam rivers and also in some areas in the west of the bay.

  2. Development and characterization of ceramic composites alumina-titania based reinforced with lanthanum oxide for fabrication of inert coatings for metallic tanks of the oil industry

    International Nuclear Information System (INIS)

    Bandeira, J.M.; Yadava, Y.P.; Silva, N.D.G.; Ferreira, R.A.S.

    2016-01-01

    Crude petroleum is highly corrosive causing superficial degradation in metallic tanks used for storage and transportation of this material, which causes a serious problem in the oil industry. An alternative to solve this problem is to use some kind of coating that is inert to this kind of corrosion. Alumina and titania are interesting materials for several engineering applications because, when compared with other ceramic materials, they present superior mechanical properties, e.g. high mechanical strength, good chemical stability and high fracture toughness combined with good wear resistance and a coefficient of thermal expansion close to the iron's, which makes them fit to use in ceramic hardening process and coating. In this paper, alumina-titania ceramic composites with 5%, 10%, 15% and 20% of titania (TiO2) and reinforced with 2% of lanthanum oxide of were produced by thermo-mechanical processing and sintering techniques at 1350 deg C. In these composites, microstructure and mechanical properties were analyzed using X-ray spectroscopy, optical microscopy, scanning electron microscopy and Vickers hardness in order to evaluate their applicability. X-ray spectroscopy showed the formation of composite without the presence of other phases. Optical microscopy and scanning electron microscopy showed a homogeneous microstructure in terms of particle size and distribution. Vickers hardness test showed a gradual decrease in hardness with the addition of titania. The composite with 5% of titania and 2% of lanthanum oxide is the best choice for structural applications. The composites were submerged in crude petroleum for 30 days to study their stability in such environment. Through the analysis of X-ray spectroscopy, optical microscopy and Vickers hardness before and after the submersion in crude petroleum, it was not observed structural or microstructural degradation nether alterations in mechanical properties. This way, it was concluded that these composites have good

  3. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces.

    Science.gov (United States)

    Huang, Guanxing; Zhang, Ming; Liu, Chunyan; Li, Liangping; Chen, Zongyu

    2018-09-01

    Urbanization and industrialization have increased groundwater resource demands, and may drive the change of heavy metal(loid)s and organic chemicals in groundwater in the Pearl River Delta (PRD), southern China. Thus, a comprehensive understanding of the distributions, sources, and driving forces of heavy metal(loid)s and organic chemicals in groundwater in the PRD is vital for water resource management in this region. In this study, eight heavy metal(loid)s and fifty-five organic chemicals in groundwater across the PRD were investigated. The results show that undrinkable groundwater related to heavy metal(loid)s was mainly due to high concentrations of Fe (19.3%) and As (6.8%). Eighteen organic contaminants were detected in groundwater in the PRD, where the most frequently detected organic contaminant was naphthalene, and its detection rate was 2.51%. In 5.3% of all groundwater samples, one or more organic contaminants were found. All detected organic contaminants, except ones without allowable limits, in groundwater were at concentrations below allowable limits of China. The mean concentrations of heavy metal(loid)s in granular aquifers were higher than those in fissured and karst aquifers, especially for Fe and As. Except Se, the mean concentrations of other heavy metal(loid)s and the frequency of detection of organic contaminants in groundwater in urbanized and peri-urban areas were higher than those in non-urbanized areas, especially for Hg, Co, and organic contaminants. Fe, As, and Se in groundwater mainly originated from the release of Fe/As/Se rich sediments. The former two were driven by reduction reactions, while the latter was driven by oxidation resulting from the infiltration of NO 3 - . In contrast, other five heavy metal(loid)s and organic contaminants in groundwater mainly originated from the anthropogenic sources, such as the infiltration of industrial sewage. It is evident that urbanization and industrialization are two powerful driving forces for

  4. South Africa's mineral industry

    International Nuclear Information System (INIS)

    1985-06-01

    The main aim of the Minerals Bureau in presenting this annual review is to provide an up-to-date reference document on the current state of the mineral industry in South Africa. This includes a brief look at the production, trade, economy, resources and deposits of precious metals and minerals, energy minerals, metallic minerals, and non-metallic minerals. One article discusses the production, trade, export, deposits and economy of uranium

  5. Remediation and upgrading of old, inadequate waste management facilities. Integrated waste management system for rare earth and rare metal industry at Sillamaee, Estonia, former uranium facility

    International Nuclear Information System (INIS)

    Kaasik, Tonis; Siinmaa, Anti

    2001-01-01

    Full text: The Sillamaee Metallurgical Plant was built in 1946-1948 at Sillamaee, in North-East Estonia, ca 190 km from Tallinn. Target product was uranium, mostly in form of yellow cake (U 3 O 8 ) for Soviet nuclear program. Uranium ore processing continued from 1948 to 1977, totally 4,013,000 tons of uranium ore were processed at Sillamaee plant. In early 1970s the plant introduced a new production line - rare earth elements. Rare earths were until 1991 produced from loparite (later from semi-processed loparite) - rare earths, niobium, tantalum and NORM-containing ore for Kola peninsula, Russia; later. All wastes were, as typical to hydrometallurgical processing all over the world, discharged to a large, 40 ha liquid waste depository - tailings pond, what in Sillamaee case was designed to discharge all liquid constituents slowly to the Baltic Sea. All uranium related activities were stopped in 1990, when only rare earth and rare metal production lines remained operational. The plant was 100 % privatized in 1997 and is today operated by Silmet Ltd., processing annually up to 8 000 tons of rare earth and 2000 tons of niobium and tantalum ores. Like all industries, inherited from Soviet times, Silmet plant is today facing a serious challenge to upgrading technologies towards waste minimizations process efficiency. The historical tailings pond, containing ca 1800 tons of natural uranium and ca 800 tons of thorium, was found geotechnically unstable and leaking to the Baltic Sea, in mid 90s. Being a problem of common Baltic concern, an international remediation project was initiated by Estonian Government and plant operator in 1998. In cooperation with Estonian, Finnish, Swedish, Danish and Norwegian Governments and with assistance by the European Union, the tailings pond will be environmentally remediated - dams stabilized and surface covered, by end of 2006. Close-down and environmental remediation of the tailings pond provides plant an ultimate challenge of

  6. Assessment of natural and artificial radioactivity levels and radiation hazards and their relation to heavy metals in the industrial area of Port Said city, Egypt.

    Science.gov (United States)

    Attia, T E; Shendi, E H; Shehata, M A

    2015-02-01

    A detailed gamma ray spectrometry survey was carried out to make an action in environmental impact assessment of urbanization and industrialization on Port Said city, Egypt. The concentrations of the measured radioelements U-238, Th-232 in ppm, and K-40 %, in addition to the total counts of three selected randomly dumping sites (A, B, and C) were mapped. The concentration maps represent a base line for the radioactivity in the study area in order to detect any future radioactive contamination. These concentrations are ranging between 0.2 and 21 ppm for U-238 and 0.01 to 13.4 ppm for Th-232 as well as 0.15 to 3.8 % for K-40, whereas the total count values range from 8.7 to 123.6 uR. Moreover, the dose rate was mapped using the same spectrometer and survey parameters in order to assess the radiological effect of these radioelements. The dose rate values range from 0.12 to 1.61 mSv/year. Eighteen soil samples were collected from the sites with high radioelement concentrations and dose rates to determine the activity concentrations of Ra-226, Th-232, and K-40 using HPGe spectrometer. The activity concentrations of Ra-226, Th-232, and K-40 in the measured samples range from 18.03 to 398.66 Bq kg(-1), 5.28 to 75.7 Bq kg(-1), and 3,237.88 to 583.12 Bq kg(-1), respectively. In addition to analyze heavy metal for two high reading samples (a 1 and a 10) which give concentrations of Cd and Zn elements (a 1 40 ppm and a 10 42 ppm) and (a 1 0.90 ppm and a 10 0.97 ppm), respectively, that are in the range of phosphate fertilizer products that suggested a dumped man-made waste in site A. All indicate that the measured values for the soil samples in the two sites of three falls within the world ranges of soil in areas with normal levels of radioactivity, while site A shows a potential radiological risk for human beings, and it is important to carry out dose assessment program with a specifically detailed monitoring program periodically.

  7. Gradual Accumulation of Heavy Metals in an Industrial Wheat Crop from Uranium Mine Soil and the Potential Use of the Herbage

    Directory of Open Access Journals (Sweden)

    Gerhard Gramss

    2016-10-01

    Full Text Available Testing the quality of heavy-metal (HM excluder plants from non-remediable metalliferous soils could help to meet the growing demands for food, forage, and industrial crops. Field cultures of the winter wheat cv. JB Asano were therefore established on re-cultivated uranium mine soil (A and the adjacent non-contaminated soil (C. Twenty elements were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS from soils and plant sections of post-winter seedlings, anthesis-state, and mature plants to record within-plant levels of essential and toxic minerals during ripening and to estimate the (reuse of the soil-A herbage in husbandry and in HM-sensitive fermentations. Non-permissible HM loads (mg∙kg−1∙DW of soil A in Cd, Cu, and Zn of 40.4, 261, and 2890, respectively, initiated the corresponding phytotoxic concentrations in roots and of Zn in shoots from the seedling state to maturity as well as of Cd in the foliage of seedlings. At anthesis, shoot concentrations in Ca, Cd, Fe, Mg, Mn, and Zn and in As, Cr, Pb, and U had fallen to a mean of 20% to increase to 46% during maturation. The respective shoot concentrations in C-grown plants diminished from anthesis (50% to maturity (27%. They were drastically up/down-regulated at the rachis-grain interface to compose the genetically determined metallome of the grain during mineral relocations from adjacent sink tissues. Soil A caused yield losses of straw and grain down to 47.7% and 39.5%, respectively. Nevertheless, pronounced HM excluder properties made Cd concentrations of 1.6–3.08 in straw and 1.2 in grains the only factors that violated hygiene guidelines of forage (1. It is estimated that grains and the less-contaminated green herbage from soil A may serve as forage supplement. Applying soil A grains up to 3 and 12 in Cd and Cu, respectively, and the mature straw as bioenergy feedstock could impair the efficacy of ethanol fermentation by Saccharomyces cerevisiae.

  8. Sustainable Industrial Production

    DEFF Research Database (Denmark)

    Christensen, Irene

    2015-01-01

    The purpose of this case is to create awareness about a somewhat unfamiliar industry that accounts for over €3 billion in Scandinavia and £5,6 billion in the UK, the Metals recycling industry. The case features a Scandinavian Company and includes several perspectives from managerial disciplines...

  9. Advanced Industrial Materials Program

    Science.gov (United States)

    Stooksbury, F.

    1994-06-01

    The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  10. Modern electrochemistry and industry

    International Nuclear Information System (INIS)

    Kim, Sun Yong

    1985-04-01

    This book is divided into fifteen chapters on modern electrochemistry and industry. The contents of this book are electrochemistry and industry, electrochemistry for electrolyte like ionic mobility quantity of activity of electrolyte, potential balance system like cell potential, concentration cell and membrane potential, electrochemical kinetics, electrochemistry for surfactant, electrochemistry for electrolysis test such as polarography, chronopotentiometry and Cyclic voltametry, electrolysis reactor NaOH electrolysis industry, H 2 O electrolysis, molten metal electrolysis, copper electrolysis, battery and electro-organic chemistry.

  11. The use of nuclear and related techniques for the studies of airborne particulate matter in workplace including tissue analysis and possible impacts on human health in a metal industry

    International Nuclear Information System (INIS)

    Widjajakusuma, B.; Djojosubroto, H.; Kumolowati, E.

    1998-01-01

    Various processes in a metal industry may produce gases and fine airborne particulate matter that hazardous to human health. The present study deals with assessment of levels and health effects of airborne particulate matter in a metal industry. The objective is achieved by determination of elemental levels in blood, nail and hair of workers and airborne particulate matter that are collected from their workplace. The elemental levels in blood, nail and hair of the workers will be compared to those of control. Their health condition are examined by medical examination and biochemical analysis of their blood. The blood was drawn following an overnight fast before breakfast, by means of I.V. catheter into three polyethylene tubes. The blood samples in the first tubes were sent to clinical laboratory for biochemical examination. Those in the second and third tubes, which are considered free from metal contamination by the needle of the catheter, are used for trace element study. Sera in the polyethylene tubes were separated from erythrocyte by centrifugation, then cooled by liquid nitrogen and freeze dried. Approximately 1 g of toe nail and hair samples were taken respectively from every worker. To eliminate grease and surface contamination the hair samples were rinse with acetone. Airborne particulate samples were collected from the workplace using Gent sampler. These samples are ready for elemental analysis. Results of biochemical analysis and medical examinations of the workers are presented in this report. The correlation among various parameters will be determined by statistical analysis. (author)

  12. X-ray diffraction of the diminution in the concentration of heavy metals from industrial waste water sludge; Estudio por difraccion de rayos X de la disminucion de la concentracion de metales en solidos de aguas residuales industriales

    Energy Technology Data Exchange (ETDEWEB)

    Carreno de Leon, M C

    1997-12-31

    We worked with an apparatus and process patented for Jaime Vite Torres, in the United States of America, for extracting simultaneously toxic and value metals from foundry sands. In this research, we used similar devices to remove toxic metals of waste water sludge. Generation of solid wastes including dangerous in 1992 in Mexico were 450,000 ton/day in accordance with the National Institut of Ecology (INE-SEDESOL 1992). With the apparatus and process of the present work we obtained two important points, whic are: (a) the recovery of metals in solution which can be recycled and, (b) an important reduction in the toxic of the wastes which one treated can be handled as normal waste with important savings. From among the metals which it is possible to recover one can mention among others: Au, Pt, Ag, Cr, Mn, Co, Pb, Al, Ni and others. (Author).

  13. Metallic foams adapt themselves to aerospace industry requirements; Les mousses metalliques s'adaptent aux exigences de l'aeronautique

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Th.

    2004-10-01

    The piling up of hollow metal spheres leads to a material capable of absorbing mechanical, thermal or acoustic energy. Such materials are jointly developed by laboratories of the ONERA and CNRS (INPG of Grenoble and INSA of Lyon, France) for aerospace applications. The hollow spheres are made of metal powder coated polystyrene balls which are assembled by sintering in an ordered or random structure. Short paper. (J.S.)

  14. Treatment of food-agro (sugar industry wastewater with copper metal and salt: Chemical oxidation and electro-oxidation combined study in batch mode

    Directory of Open Access Journals (Sweden)

    Anurag Tiwari

    2017-06-01

    Full Text Available Sugar industry is one of the major industries which have been included in the polluting industries list by the World Bank. Different pollution monitoring agencies like State and National Pollution Control Boards have been made compulsory for each industry to set up a waste water treatment plants. In treatment system, single treatments of effluent are not effective to manage the dischargeable limit. So an attempted has been made to treat sugar industry wastewater with electrochemical and chemical process by using copper as electrode and chemical. Electrochemical process shows 81% chemical oxygen demand and 83.5% color reduction at pH 6, electrode distance 20 mm, current density 178 A m−2 and 120 min treatment time. The combined treatment results show 98% chemical oxygen demand and 99.5% color removal at 8 mM mass loading and pH 6 with copper sulphate.

  15. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste.

    Science.gov (United States)

    Chandra, Ram; Kumar, Vineet

    2017-01-01

    The safe disposal of post-methanated distillery sludge (PMDS) in the environment is challenging due to high concentrations of heavy metals along with other complex organic pollutants. The study has revealed that PMDS contained high amounts of Fe (2403), Zn (210), Mn (126), Cu (73.62), Cr (21.825), Pb (16.33) and Ni (13.425 mg kg -1 ) along with melanoidins and other co-pollutants. The phytoextraction pattern in 15 potential native plants growing on sludge showed that the Blumea lacera, Parthenium hysterophorous, Setaria viridis, Chenopodium album, Cannabis sativa, Basella alba, Tricosanthes dioica, Amaranthus spinosus L., Achyranthes sp., Dhatura stramonium, Sacchrum munja and Croton bonplandianum were noted as root accumulator for Fe, Zn and Mn, while S. munja, P. hysterophorous, C. sativa, C. album, T. dioica, D. stramonium, B. lacera, B. alba, Kalanchoe pinnata and Achyranthes sp. were found as shoot accumulator for Fe. In addition, A. spinosus L. was found as shoot accumulator for Zn and Mn. Similarly, all plants found as leaf accumulator for Fe, Zn and Mn except A. spinosus L. and Ricinus communis. Further, the BCF of all tested plants were noted 1. This revealed that metal bioavailability to plant is poor due to strong complexation of heavy metals with organic pollutants. This gives a strong evidence of hyperaccumulation for the tested metals from complex distillery waste. Furthermore, the TEM observations of root of P. hysterophorous, C. sativa, Solanum nigrum and R. communis showed formation of multi-nucleolus, multi-vacuoles and deposition of metal granules in cellular component of roots as a plant adaptation mechanism for phytoextraction of heavy metal-rich polluted site. Hence, these native plants may be used as a tool for in situ phytoremediation and eco-restoration of industrial waste-contaminated site.

  16. Metalcasting: Filtering Molten Metal

    International Nuclear Information System (INIS)

    Lauren Poole; Lee Recca

    1999-01-01

    A more efficient method has been created to filter cast molten metal for impurities. Read about the resulting energy and money savings that can accrue to many different industries from the use of this exciting new technology

  17. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  18. Archaeological analogous and industrials for deep storage: study of the archaeological metallic piece; Analogos arqueologicos e industriales para almacenamientos profundos: estudio de piezas arqueologicas metalicas

    Energy Technology Data Exchange (ETDEWEB)

    Criado Portal, A J; Martinez Garcia, J A; Calabres Molina, R; Garcia abajo, A; Penco Valenzuela, F; Lecanda Esteban, J A; Garcia Bartual, M; Jimenez Gonzalez, J M; Bravo Munoz, E; Rodriguez Lobo, L M; Fernandez Cascos, T; Fernandes Cordero, O; Montero Ruiz, I

    2000-07-01

    The aim of present research is to obtain information about archaeological analogous of iron and steel, useful for the model of deep geological repository (AGP). The analogous examined have remained buried between 1400 and 2400 years, in very assorted geochemical environments. The extraction of the archaeological pieces has been accomplished according to normalised protocols, trying to carry to the laboratory so the piece as its burial environment, avoiding all possible pollution. Trying to the archaeological analogous could provide valuable information to the AGP model, the study has been directed to related the physical-chemical characteristics of the terrain respect to the deterioration of the archaeological metallic piece. The geology of the surrounding terrain to the archaeological deposit, the geomorphological study of the terrain and data from the analysis of ground: pH, wetness, porosity, organic matter contents, bacteria presence, sulphates, carbonates, chlorides, etc., have allowed to explain the physical-chemical phenomena suffered by the archaeological iron and steel pieces. Also, an exhaustive study of the archaeological piece has been accomplished, concerning the microstructure of the corrosion layer and of the not deteriorated metallic rest. Obtained information concerns different items, such as corrosion velocity and formations of oxide layers, diffusion of chemical elements from the corrosion layer to the metal and viceversa, and structural changes in oxide layers and in the metallic remains by structural ageing. Obtained data have allowed to develop a mathematical model for calculation of corrosion velocity in buried iron and steels, based on physical-chemical variables of grounds, chemical composition and thermomechanical treatment given to the metal during its manufacture. (Author)

  19. Mosses as indicators of atmospheric metal deposition in an industrial area of southern Brazil Musgos como indicadores da deposição atmosférica de metais em uma área industrial do sul do Brasil

    Directory of Open Access Journals (Sweden)

    Aline Correa Mazzoni

    2012-09-01

    Full Text Available Caxias do Sul hosts the second largest metal-mechanic pole in Brazil, which increases the risk of atmospheric contamination. With the aim of identifying species that might be useful as indicators of atmospheric deposition of metals, 15 species of mosses from an urban and a rural setting were analyzed and compared with specimens deposited at the Herbarium of the Universidade de Caxias do Sul. Metal concentrations (Zn, Ni, Cd, Cr, Cu and Pb were determined using Atomic Absorption Spectrometry (AAS. The Mann-Whitney test indicated concentrations of Zn, Cu, Pb and Cr that were significantly different between the urban and rural areas. Additionally, Concentrations of Zn, Cd, Cu and Pb were significantly higher in recently collected samples. The species Thuidium tomentosum Besch., Sematophyllum subpinnatum (Brid. E. Britton, Helicodontium capillare (Hedw. A. Jaeger, Schlotheimia jamesonii (W.-Arnott Brid. and Meteorium deppei (Hornsch. ex Müll. Hal. Mitt. are potential biomonitors of atmospheric metal deposition.Caxias do Sul sedia o segundo maior pólo metal mecânico do Brasil, apresentando elevado risco de contaminação atmosférica. Com o objetivo de identificar espécies úteis como indicadoras da deposição atmosférica de metais, foram analisadas 15 espécies de musgos procedentes da zona urbana e da área rural e espécimens depositados no Herbário da Universidade de Caxias do Sul. Os metais (Zn, Ni, Cd, Cr, Cu e Pb foram determinados por meio de Espectrometria de Absorção Atômica (AAS. O Teste de Mann-Whitney indicou diferenças significativas nas concentrações de Zn, Cu, Pb e Cr entre as áreas urbana e rural. Um aumento significativo na presença de Zn, Cd, Cu e Pb foi evidenciado nas amostras recentes. As espécies Thuidium tomentosum Besch., Sematophyllum subpinnatum (Brid. E. Britton, Helicodontium capillare (Hedw. A. Jaeger, Schlotheimia jamesonii (W.-Arnott Brid. e Meteorium deppei (Hornsch. ex Müll. Hal. Mitt. são indicadas

  20. Fiscal 1999 report on results of R and D of industrial science and technology that creates new industry. Development of super metal technology (development of technology for innovative metallic material); 1999 nendo super metal no gijutsu kaihatsu seika hokokusho. Kakushinteki kinzoku sokei zairyo no gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With the purpose of obtaining higher strength/toughness and higher anticorrosion in metallic materials, R and D was conducted on technologies for grain refining/dispersing and for amorphous bulk formed bodies, with fiscal 1999 results compiled. In the technological study on grain refinement and dispersion, austenitic stainless steel and 12Cr ferrite steel were used, with creative manufacturing carried out for microcrystallized structure materials by a powder metallurgy method. The result of the study revealed that suppressing grain growth by carbide or oxide was important for grain refinement, and that homogenizing the inside of a material by hot forging after solidification forming was essential for ductility improvement. In the development of the technology for amorphous bulk formed bodies, a laser heating type forming test device was designed and manufactured, with a technique examined in which bulk amorphous of a complex-shaped article was formed through rapid quenching of amorphous alloy powder by laser. This year, a trial production was performed for the laminated solidified bodies of Ni amorphous alloy powder, and the basic data was thereby collected such as feeding of the powder and conditions of the laser irradiation. (NEDO)

  1. Honeycomb metal panel

    International Nuclear Information System (INIS)

    1979-01-01

    Product constituted by a honeycomb metal panel that can be employed to advantage for manufacturing lagging by sandwiching it between two plane sheets, utilized in particular in the nuclear industry where lagging has to have a very long life strength. The honeycomb metal panel is made of an expanded metal extrusion previously cut so as to form, after additional drawing, a honeycomb structure with square or rectangular cells with a plane surface [fr

  2. Knowledge-based metals & materials

    OpenAIRE

    Sasson, Amir

    2011-01-01

    This study presents the Norwegian metal and material industry (defined as all metal and material related firms located in Norway, regardless of ownership) and evaluates the industry according to the underlying dimensions of a global knowledge hub - cluster attractiveness, education attractiveness, talent attractiveness, R&D and innovation attractiveness, ownership attractiveness, environmental attractiveness and cluster dynamics.

  3. Industrial water treatment with heavy metals through zeolites and bioremediation systems with aquatic plants especially Eichhornia crassipes. State of art review

    OpenAIRE

    Uriel Fernando Carreño-Sayago

    2014-01-01

    In this review we explore different opportunities to use a cheap natural material for removing and retention of heavy metals from polluted waters by waste of different processes. Two research systems will be addressed: the first through a material known as zeolite or more generally porous  luminosilicates, which may be synthesized or extracted from the mines of clays and minerals, being used in its natural state or after modification processes and doping. The other mechanism is bioremediation...

  4. Lead and the London Metal Exchange — a happy marriage? The outlook for prices and pricing issues confronting the lead industry

    Science.gov (United States)

    Keen, A.

    The outlook for the supply-demand balance for refined lead is addressed and takes into account the growing non-fundamental forces on price determination. The market for refined lead is presently experiencing its first year of surplus since the major crisis of the early 1990s. Earlier in the decade, the dissolution of the Soviet Union and recession in developed economies led to a significant rise in London Metal Exchange (LME) stocks. An acceleration absorbed these stocks in an 18-month period in the mid-1990s, and LME lead prices reacted to the market deficit by peaking above US900. Since then the market has balanced, yet prices have declined steadily to less that 50% of their peak levels. It is argued that, on fundamental grounds, prices have fallen below justified levels. As much of the reason for this depression between 1997 and 1999 has been the generally depressive effect of the Asian economic crisis on financial markets, the level of lead prices may now be due for a correction. Other metals have begun to increase during the first half of 1999 and lead, given its neutral fundamental outlook, is now poised to participate in the generally more buoyant moods across LME metals. An increase of approximately 10% in average LME 3-month settlement prices is forecast and will result in annual average prices of US 570/tonne over the course of 1999. Monthly averages and spot prices are predicted to exceed this level, particularly during peak third-quarter demand.

  5. Effect of addition of sewage sludge and coal sludge on bioavailability of selected metals in the waste from the zinc and lead industry.

    Science.gov (United States)

    Sobik-Szołtysek, Jolanta; Wystalska, Katarzyna; Grobelak, Anna

    2017-07-01

    This study evaluated the content of bioavailable forms of selected heavy metals present in the waste from Zn and Pb processing that can potentially have an effect on the observed difficulties in reclamation of landfills with this waste. The particular focus of the study was on iron because its potential excess or deficiency may be one of the causes of the failure in biological reclamation. The study confirmed that despite high content of total iron in waste (mean value of 200.975gkg -1 ), this metal is present in the forms not available to plants (mean: 0.00009gkg -1 ). The study attempted to increase its potential bioavailability through preparation of the mixtures of this waste with additions in the form of sewage sludge and coal sludge in different proportions. Combination of waste with 10% of coal sludge and sewage sludge using the contents of 10%, 20% and 30% increased the amounts of bioavailable iron forms to the level defined as sufficient for adequate plant growth. The Lepidum sativum test was used to evaluate phytotoxicity of waste and the mixtures prepared based on this waste. The results did not show unambiguously that the presence of heavy metals in the waste had a negative effect on the growth of test plant roots. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Co-ordinated research project on assessment of levels and health-effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. Report on the second research co-ordination meeting

    International Nuclear Information System (INIS)

    2000-01-01

    Overall objectives: To demonstrate the applicability of nuclear and related techniques in studies that may impact on human health, giving emphasis to the solution of problems that have been identified to be of high priority in national and international programmes for sustainable development. Specific objectives: To develop strategies and techniques for sampling of workplace airborne particulate matter (APM) and of human tissues and body fluids (hair, blood, etc.) of exposed and non-exposed persons; To development suitable analytical procedures for analysis of such types of samples, using nuclear and related analytical techniques; To carry out workplace and personal monitoring of APM and characterise the health effects of such exposure in terms of the observed elemental concentration; To carry out tissue analyses of the workers so exposed for biological monitoring and the health effects studies. Achievements: a) Specific industries not previously monitored in individual countries have been targeted in respect of pollution assessment. Some examples are: Stainless steel processing and construction; Galvanising industry; Zinc smelting operations; Mineral fertiliser industry. b) Validation of analytical techniques through quality control exercises: NAT-3 Interlaboratory comparison for the determination of trace and minor elements in urban dust artificially loaded on air filters; NAT-4 Proficiency test on selected trace elements in lyophilised urine and air filters. c) Capacity building through the establishment of new multidisciplinary teams, personnel training and laboratory expertise. d) The sampling procedures have been harmonised through: The application of the ''Gent'' sampler for APM collection, IAEA procedures and IUPAC guidelines for sampling and sample handling of hair, blood and urine. e) All participants performed surveys on targeted industries and selected pollutants. f) The scientific output of the CRP is materialised in various national and international

  7. Research report of FY 1997 on the industrial science and technology development. Technology development of super-metal (technology development of nano-amorphous structural control materials); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku seika hokokusho. Super metal no gijutsu kaihatsu (nano-amorphous kozo seigyo zairyo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development of the innovative metals have been conducted, by which the weight reduction of members can be done by drastically improving the strength compared with conventional metals. For the high-rate cluster deposition and super plastic forming technologies, research and development of aluminum-based light-weight materials have been conducted, which provides excellent strength, toughness, and super plastic formability at room temperature. For the high-density energy utilization and control technology (amorphous-A), super-metals have been investigated as high dew point and corrosion resistance materials used for waste incinerators operated under the very severe conditions. These are expected to be applied to the apparatuses and equipment due to their excellent properties. For the controlled cooling technology (amorphous-B), super-metals with excellent soft magnetic characteristics and degree of shape freedom have been investigated for high performance and high efficiency devices including electric/electronic/communication devices, power transmission devices, and various industrial devices and parts. These are expected to contribute to the creation of new markets and the improvement of international competitive force. 123 refs., 160 figs., 33 tabs.

  8. Finnish industry's energy requirement

    International Nuclear Information System (INIS)

    Punnonen, J.

    2000-01-01

    Industry uses around half of the electricity consumed in Finland. In 1999, this amounted to 42.3 TWh and 420 PJ of fuel. Despite the continual improvements that have been made in energy efficiency, energy needs look set to continue growing at nearly 2% a year. Finnish industrial output rose by some 5.5% in 1999. In energy-intensive sectors such as pulp and paper, output rose by 3.4%, in the metal industry by 4%, and in the chemical industry by 3.1%. Growth across Finnish industry is largely focused on the electrical and electronics industries, however, where growth last year was 24.3% The Finnish forest products industry used a total of 26.1 TWh of electricity last year, up 1% on 1998. This small increase was the result of the industry's lower-than-average operating rate in the early part of the year The metal industry used 7.2 TWh of electricity, an increase of 5.8% on 1998. Usage in the chemical industry rose by 2% to 5.2 TWh. Usage by the rest of industry totalled 3.8 TWh, up 2.3% on 1998. All in all, industry's use of electricity rose by 2% in 1999 to 42,3 TWh. Increased demand on industry's main markets in Europe will serve to boost industrial output and export growth this year. This increased demand will be particularly felt in energy-intensive industries in the shape of an increased demand for electricity. Overall, electricity demand is expected to grow by 3% this year, 1% more than industry's longterm projected electricity usage growth figure of 2%. The structure of industry's fuel use in Finland has changed significantly over the last 25 years. Oil, for example, now accounts for only some 10% of fuel use compared to the 40% typical around the time of the first oil crisis. Oil has been replaced by biofuels, peat, and natural gas. The pulp and paper industry is the largest industrial user of renewable energy sources in Finland, and uses wood-related fuels to cover nearly 70% of its fuel needs

  9. Industrial Fuel Flexibility Workshop

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  10. Sulfur‐Limonene Polysulfide: A Material Synthesized Entirely from Industrial By‐Products and Its Use in Removing Toxic Metals from Water and Soil

    Science.gov (United States)

    Crockett, Michael P.; Evans, Austin M.; Worthington, Max J. H.; Albuquerque, Inês S.; Slattery, Ashley D.; Gibson, Christopher T.; Campbell, Jonathan A.; Lewis, David A.; Bernardes, Gonçalo J. L.

    2015-01-01

    Abstract A polysulfide material was synthesized by the direct reaction of sulfur and d‐limonene, by‐products of the petroleum and citrus industries, respectively. The resulting material was processed into functional coatings or molded into solid devices for the removal of palladium and mercury salts from water and soil. The binding of mercury(II) to the sulfur‐limonene polysulfide resulted in a color change. These properties motivate application in next‐generation environmental remediation and mercury sensing. PMID:26481099

  11. Hacia una nueva política industrial. Los proyectos de producción de metales no ferrosos en la Argentina durante la Segunda Guerra Mundial

    OpenAIRE

    Rougier, Marcelo

    2012-01-01

    Este artículo analiza las características que adquirió la producción de metales no ferrosos haciendo foco en las dificultades que se generaron para un importante sector elaborador que importaba la materia prima básica durante la Segunda Guerra Mundial, con especial énfasis en la industria del aluminio. En particular, se estudiarán sobre la base de fuentes primarias los proyectos desarrollados en aquellos años para superar esas dificultades, entre los cuales descollaron los elaborados por la D...

  12. A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry

    DEFF Research Database (Denmark)

    Petrinic, Irena; Korenak, Jasmina; Povodnik, Damijan

    2015-01-01

    that the ultrafiltration-reverse osmosis treatment removed between 91.3% and 99.8% of the contaminants from the effluent, such as metal elements, organic, and inorganic compounds. Contaminants such as suspended solids, nickel, ammonium nitrogen, sulphate nitrogen, chemical oxygen demand, and biochemical oxygen demand were...... completely removed, the concentrations in the permeate being under the detection limits, thus the quality of the ultrafiltration-reverse osmosis process met the reuse criteria. This demonstrates the technological feasibility of wastewater reuse during electro-plating processes and the pre-treatment of powder...

  13. Evaluation of solubility in simulated lung fluid of metals present in the sludge from a metallurgical industry to produce metallic zinc; Avaliacao da solubilidade em liquido pulmonar simulado dos metais presentes no rejeito gerado por uma industria metalurgica de zinco

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Rosilda Maria Gomes de

    2012-07-01

    The objective of this study was to determine the solubility parameters (rapid and slow dissolution rates, rapid and slow dissolution fractions) metal particles present in a pile of sludge accumulated under exposure to weathering from the Cia Mercantil Inga, located at the Ilha da Madeira, Sepetiba Bay, Rio de Janeiro. Plant samples collected in the neighboring of the pile and bioindicators placed in the region and collected after some months indicated that the inhabitants of Ilha da Madeira have been exposed to trace elements such zinc, cadmium, mercury and lead, produced during the processing of zinc minerals (hemimorphite - Zn{sub 4}(OH){sub 2}Si{sub 2}O{sub 7}.H{sub 2}O, and willemite - Zn{sub 2}SiO{sub 4}). A static dissolution test in vitro was used to determine the solubility parameters using a simulated lung fluid (SLF), on a time basis ranging from 10 min to 1 year. The metal concentrations in the sludge samples and in the SLF were determined using Particle Induced X-rays Emission (PIXE). In conclusion, this study confirms the harmful effects on the neighboring population of the airborne particles containing these metals that came from the sludge. The solubility parameters obtained for Zn, Cd, Cr, Ni and Mn present in the rapid dissolution fraction in SLF were 0.945; 0.473; 0.226; 0.300 and 0.497, respectively, and the corresponding times for half life of dissolution of the rapid fraction were f{sub r} = 2.082 days; f{sub r} = 0.09 days; f{sub r} = 0.37 days; f{sub r} = 0.332 days ad f{sub r} = 0.99 days; for the slow dissolution fraction times were f{sub r} = 146.95 days; f{sub r} = 63 days; f{sub r} = 86.64 days; f{sub r} = 79.66 days and f{sub r} = 59.84 days. These values indicate that these metals present a moderate absorption level in SLF, and may be classified as M type, according to the International Commission on Radiological Protection (ICRP). The use of solubility parameters allowed a better description of the kinetic behaviour of the sludge in

  14. Industrial uses of boron compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, H [Eurotungstene; Thevenot, F

    1978-06-01

    A review includes a section on the use in the chemical industry of some transition-metal borides as heterogeneous catalysts in the hydrogenation and dehydrogenation of organic compounds and in fuel cells.

  15. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  16. Radioactive contamination of recycled metals

    International Nuclear Information System (INIS)

    Lubenau, J.O.; Cool, D.A.; Yusko, J.G.

    1996-01-01

    Radioactive sources commingled with metal scrap have become a major problem for the metals recycling industry worldwide. Worldwide there have been 38 confirmed reports of radioactive sources accidentally smelted with recycled metal. In some instances, contaminated metal products were subsequently distributed. The metal mills, their products and byproducts from the metal making process such as slags, crosses and dusts from furnaces can become contaminated. In the U.S., imported ferrous metal products such as reinforcement bars, pipe flanges, table legs and fencing components have been found contaminated with taco. U.S. steel mills have unintentionally smelted radioactive sources on 16 occasions. The resulting cost for decontamination waste disposal and temporary closure of the steel mill is typically USD 10,000,000 and has been as much as USD 23,000,000. Other metal recycling industries that have been affected by this problem include aluminum, copper, zinc, gold, lead and vanadium. (author)

  17. The history and future of thermal sprayed galvanically active metallic anticorrosion coatings used on pipelines and steel structures in the oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Rodijnen, Fred van [Sulzer Metco, Duisburg (Germany)

    2008-07-01

    Since its invention by M. U. Schoop in the beginning of the 20th century, thermal spray has been used for corrosion protection applications in naval, on-shore, submerged and atmospheric environments. Thermally sprayed coatings of zinc, zinc alloys, aluminum and aluminum alloys are currently the most popular materials used for active corrosion protection of steel and concrete, which can be applied using either of the widely known thermal spray processes of combustion wire or electric arc wire. In the oil and gas exploration and production industry, corrosion protection applications using these technologies have evolved since the early sixties. Thermal spray technology has successfully been used to protect steel-based materials from corrosion in many different fields of application like platforms and pipelines. The most used material in the oil and gas industry is TSA (Thermally Sprayed Aluminum) coating. TSA coatings, with a lifetime of 25 to 30 years, require no maintenance except for cosmetic reasons when painted. The surface temperature of a TSA can go as high as 480 deg C. Although TS (Thermal Spray) is an older process, the number of applications and the number of m{sup 2} it is applied to is still increasing resulting from its maintenance-free and reliable active corrosion-protection features. (author)

  18. Industrial water treatment with heavy metals through zeolites and bioremediation systems with aquatic plants especially Eichhornia crassipes. State of art review

    Directory of Open Access Journals (Sweden)

    Uriel Fernando Carreño-Sayago

    2014-12-01

    Full Text Available In this review we explore different opportunities to use a cheap natural material for removing and retention of heavy metals from polluted waters by waste of different processes. Two research systems will be addressed: the first through a material known as zeolite or more generally porous  luminosilicates, which may be synthesized or extracted from the mines of clays and minerals, being used in its natural state or after modification processes and doping. The other mechanism is bioremediation through algae, some bacteria and especially aquatic plants such as Eichhornia crassipes (water hyacinth. We will evaluate the viability of joining these two types complementing each other. Investigations into the feasibility of Eichhornia crassipes (water hyacinth as feedstock for biofuels are also reviewed.

  19. Size-selective pulmonary dose indices for metal-working fluid aerosols in machining and grinding operations in the automobile manufacturing industry.

    Science.gov (United States)

    Woskie, S R; Smith, T J; Hallock, M F; Hammond, S K; Rosenthal, F; Eisen, E A; Kriebel, D; Greaves, I A

    1994-01-01

    The current metal-working fluid exposures at three locations that manufacture automotive parts were assessed in conjunction with epidemiological studies of the mortality and respiratory morbidity experiences of workers at these plants. A rationale is presented for selecting and characterizing epidemiologic exposure groups in this environment. More than 475 full-shift personal aerosol samples were taken using a two-stage personal cascade impactor with median size cut-offs of 9.8 microns and 3.5 microns, plus a backup filter. For a sample of 403 workers exposed to aerosols of machining or grinding fluids, the mean total exposure was 706 micrograms/m3 (standard error (SE) = 21 micrograms/m3). Among 72 assemblers unexposed to machining fluids, the mean total exposure was 187 +/- 10 (SE) micrograms/m3. An analysis of variance model identified factors significantly associated with exposure level and permitted estimates of exposure for workers in the unsampled machine type/metal-working fluid groups. Comparison of the results obtained from personal impactor samples with predictions from an aerosol-deposition model for the human respiratory tract showed high correlation. However, the amount collected on the impactor stage underestimates extrathoracic deposition and overestimates tracheobronchial and alveolar deposition, as calculated by the deposition model. When both the impactor concentration and the deposition-model concentration were used to estimate cumulative thoracic concentrations for the worklives of a subset of auto workers, there was no significant difference in the rank order of the subjects' cumulative concentration. However, the cumulative impactor concentration values were significantly higher than the cumulative deposition-model concentration values for the subjects.

  20. Industrial irradiation

    International Nuclear Information System (INIS)

    Stirling, Andrew

    1995-01-01

    Production lines for rubber gloves would not appear to have much in common with particle physics laboratories, but they both use accelerators. Electron beam irradiation is often used in industry to improve the quality of manufactured goods or to reduce production cost. Products range from computer disks, shrink packaging, tyres, cables, and plastics to hot water pipes. Some products, such as medical goods, cosmetics and certain foodstuffs, are sterilized in this way. In electron beam irradiation, electrons penetrate materials creating showers of low energy electrons. After many collisions these electrons have the correct energy to create chemically active sites. They may either break molecular bonds or activate a site which promotes a new chemical linkage. This industrial irradiation can be exploited in three ways: breaking down a biological molecule usually renders it useless and kills the organism; breaking an organic molecule can change its toxicity or function; and crosslinking a polymer can strengthen it. In addition to traditional gamma irradiation using isotopes, industrial irradiation uses three accelerator configurations, each type defining an energy range, and consequently the electron penetration depth. For energies up to 750 kV, the accelerator consists of a DC potential applied to a simple wire anode and the electrons extracted through a slot in a coaxially mounted cylindrical cathode. In the 1-5 MeV range, the Cockcroft-Walton or Dynamitron( R ) accelerators are normally used. To achieve the high potentials in these DC accelerators, insulating SF6 gas and large dimension vessels separate the anode and cathode; proprietary techniques distinguish the various commercial models available. Above 5 MeV, the size of DC accelerators render them impractical, and more compact radiofrequency-driven linear accelerators are used. Irradiation electron beams are actually 'sprayed' over the product using a magnetic deflection system. Lower energy beams of

  1. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  2. RESEARCH ON HEAVY METAL POLLUTION OF THE RIVER MUREŞ IN HUNEDOARA COUNTY DUE TRIBUTARIES AFFECTED BY HUMAN ACTIVITIES, INDUSTRIAL AND MINING

    Directory of Open Access Journals (Sweden)

    SZOLLOSI-MOŢA ANDREI

    2014-05-01

    Full Text Available Mureş crosses over a length of 105 km, a broad tectonic corridor between mountains Şureanu, Poiana Rusca Mountains and the Apuseni Mountains in the north. Hunedoara County has significant quantities of mineral resources, mining specific activities effectively represents one of the main economic sectors. Ore processing gave rise to significant amounts of mining waste. Tailings dams and waste dumps obtained from ore processing in preparation plants are large and have led to changes in the morphology of the area. The purpose of this study is to examine the degree of pollution of the river Mures in Hunedoara county, with heavy metals due to various human activities. For monitoring and evaluation in terms of water quality of the river Mures and studying the degree and effects of pollution were collected and analyzed water samples from Mures River and tributaries from the main mining areas, such Certej. Samples were analyzed by emission spectrometry with inductively coupled plasma and the results of measurements allowed us to assess the degree of pollution of the aquatic environment and sediments . The effects of mining waste on the environment persists for a long time , even after the operation closed. Rehabilitation mining areas and those adjacent to improve the quality of life, as a prerequisite for sustainable development.

  3. Detection, in real time, of metallic pollutants present in the industrial atmospheric effluents by inductively coupled plasma torch; Detection, en temps reel, d'elements metalliques presents dans les rejets atmospheriques industriels par torche a plasma a couplage inductif

    Energy Technology Data Exchange (ETDEWEB)

    Vacher, D.

    2001-12-15

    This work is devoted to the development of a process of detection in real time of metallic pollutants present in industrial atmospheric effluents. The method of measurement is the atomic spectrometry of emission coupled to an ICP torch (Inductively coupled Plasma). The technology of the fluidized beds is used as system of introduction of the metallic particles into the ICP torch, the interest of the principle of detection resting on the stamping from the usual procedure of calibration of the analytical system. The results are presented in two parts. The first relates to the diagnosis of plasmas formed with various mixtures of N{sub 2}/O{sub 2} which one corresponds to pure air, the second presents the setting process of detection in real time starting from the intensities ratios of the spectral lines of the metallic element with those of the plasma-producing element (argon or pure air) The study of the diagnosis of plasmas made up of mixtures N{sub 2}/O{sub 2} relates to the determination of the atomic excitation temperature from the spectral lines of the copper element and the evaluation of the thermal disequilibrium q Te/Th. This last is obtained by considering the mass enthalpy of various mixtures N{sub 2}/O{sub 2}. The existence of a small thermal disequilibrium is highlighted. The study of detection in real time by ICP torch, without calibration of the system, is based on three points: - spectroscopic data processing to determine the values of the intensities ratios of spectral lines; - the insertion of the intensities ratios and the characteristics of plasma (argon or pure air) into a calculation code of plasma composition; - the comparison of the mass flux values of the metallic pollutants, in real time, obtained by experiments with those resulting from the elutriation calculation, term which defines the phenomenon of entrainment of the particles out of the fluidized bed. The results made it possible to show the similarity of the analytical system response

  4. Metals in leafy vegetables grown in Addis Ababa and toxicological ...

    African Journals Online (AJOL)

    Metals in leafy vegetables grown in Addis Ababa and toxicological implications. ... the leafy vegetables is attributed to plant differences in tolerance to heavy metals. ... Treatment of industrial effluents and phyto-extraction of excess metals from ...

  5. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  6. The Efficient Removal of Heavy Metal Ions from Industry Effluents Using Waste Biomass as Low-Cost Adsorbent: Thermodynamic and Kinetic Models

    Science.gov (United States)

    Indhumathi, Ponnuswamy; Sathiyaraj, Subbaiyan; Koelmel, Jeremy P.; Shoba, Srinivasan U.; Jayabalakrishnan, Chinnasamy; Saravanabhavan, Munusamy

    2018-05-01

    The ability of green micro algae Chlorella vulgaris for biosorption of Cu(II) ions from an aqueous solution was studied. The biosorption process was affected by the solution pH, contact time, temperature and initial Cu(II) concentration. Experimental data were analyzed in terms of pseudo-first order, pseudo-second order and intra particle diffusion models. Results showed that the sorption process of Cu(II) ions followed pseudo-second order kinetics. The sorption data of Cu(II) ions are fitted to Langmuir, Freundlich, and Redlich-Peterson isotherms, and the Temkin isotherm. The thermodynamic study shows the Cu(II) biosorption was exothermic in nature. The Cu(II) ions were recovered effectively from Chlorella vulgaris biomass using 0.1 M H2SO4 with up to 90.3% recovery, allowing for recycling of the Cu. Green algae from freshwater bodies showed significant potential for Cu(II) removal and recovery from industrial wastewater.

  7. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  8. Eco-friendly Development Of Industry

    International Nuclear Information System (INIS)

    An, Gi Cheol; Park, Hun; Lee, Dong Jin; Ryu, Sang Hui

    1998-02-01

    This book reports eco-friendly development of industry, which has summary on bring up the issue and research way and system of research. It deals with current state of affairs on eco-friendly development of industry and the case of developed countries such as necessity and meaning of eco-friendly development industry, prospect and change of the tendency, environmental issue by field in Korea like the steel industry, nonferrous metal industry, auto industry, and cement industry and general policy for eco-friendly development of industry.

  9. The effect of physical and psychosocial occupational factors on the chronicity of low back pain in the workers of Iranian metal industry: a cohort study.

    Science.gov (United States)

    Aghilinejad, Mashallah; Tavakolifard, Negah; Mortazavi, Sayed Aliakbar; Kabir Mokamelkhah, Elahe; Sotudehmanesh, Akbar; Mortazavi, Seyed Alireza

    2015-01-01

    Low back pain (LBP) is one of the most common problems among the workers of different industries. The role of occupational factors in causing the LBP has been indicated previously. LBP has great socio-economic costs and most of its costs are related to the chronic LBP. The aim of this study was to identify the occupational risk factors that are related to the progression of the LBP from acute to chronic phase. This cohort study has been conducted on 185 workers with acute LBP. Information related to their occupational exposure at baseline has been measured with a valid questionnaire using the self-report approach. Patients follow up was done monthly for three months after the start of the pain. Those workers whose occupational exposure had not changed during the follow up were divided into two groups of chronic LBP (n = 49) and cured (n = 136) according to the duration of the pain period (more or less than 3 months), and their job exposures were compared. Among the physical and psychosocial risk factors, social support (OR= 0.466, CI= 0.231- 0.940) and job satisfaction (OR= 0.455, CI= 0.232-0.891), and lifting weights more than 15kg (OR=2.482, CI= 1.274-4.834) indicated a significant relationship with the chronicity of the LBP. After putting the variables into the regression model, only lifting>15kg remained statistically significant. According to the observed relationship between these occupational risk factors (social support, job satisfaction, lifting>15kg) and the chronicity of the LBP, there is hope that eliminating these factors in the workers with acute LBP will prevent its progression to the chronic phase.

  10. Effects of energy policy on industry

    Energy Technology Data Exchange (ETDEWEB)

    Carling, A; Dargay, J; Oettinger, C; Sohlman, A

    1978-06-01

    This report contains results from a number of studies of energy consumption in Swedish manufacturing industries and of the sensitivity of different industrial sectors to energy taxation and other kinds of energy policy measures. These studies have been concentrated to three energy-intensive sectors, namely the pulp and paper industry; mining and metal production (especially iron mines and the steel industry); and the brick, cement, and lime industry.

  11. Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity.

    Science.gov (United States)

    Arfaeinia, Hossein; Nabipour, Iraj; Ostovar, Afshin; Asadgol, Zahra; Abuee, Ehsan; Keshtkar, Mozhgan; Dobaradaran, Sina

    2016-05-01

    Sediment samples from the coastal area of Asaluyeh harbor were collected during autumn and spring 2015. The acid-volatile sulfide (AVS) and simultaneously extracted metals (SEMs) were measured to assess the sediment quality and potential ecological risks. The average concentrations (and relative standard deviation (RSD)) of AVS in the industrial sediments were 12.32 μmol/g (36.91) and 6.34 μmol/g (80.05) in autumn and spring, respectively, while in the urban area, these values were 0.44 μmol/g (123.50) and 0.31 μmol/g (160.0) in autumn and spring, respectively. The average concentrations of SEM (and RSD) in the industrial sediments were 15.02 μmol/g (14.38) and 12.34 μmol/g (20.65) in autumn and spring, respectively, while in the urban area, these values were 1.10 μmol/g (43.03) and 1.06 μmol/g (55.59) in autumn and spring, respectively. Zn was the predominant component (34.25-86.24 %) of SEM, while the corresponding value for Cd, much more toxic ingredient, was less than 1 %. Some of the coastal sediments in the harbor of Asaluyeh (20 and 47 % in autumn and spring, respectively) had expected adverse biological effects based on the suggested criterion by United States Environmental Protection Agency (USEPA), while most stations (80 and 53 % in autumn and spring, respectively) had uncertain adverse effects.

  12. Metal recovery via geobiotechnology

    International Nuclear Information System (INIS)

    Hedrich, Sabrina; Schippers, Axel

    2017-01-01

    Specialized acidophilic bacteria and archaea are able to extract valuable metals such as copper, gold, cobalt, nickel, zinc, and uranium from sulfide ores. This process is known as bioleaching and its application in the mining industry as biomining. Laboratory studies also demonstrated bioleaching of oxide ores such as laterites and of mining residues such as mine tailings as well as metal recycling from waste (secondary mining). Metals being leached have to be recovered from acidic polymetallic solutions (mine and process waters) which is possible via biosorption or biomineralisation.

  13. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  14. Industrial Engineering

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally).......Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally)....

  15. Farmaceutische industrie

    NARCIS (Netherlands)

    Ros JPM; van der Poel P; Etman EJ; Montfoort JA; LAE

    1995-01-01

    Dit rapport over de farmaceutische industrie is gepubliceerd binnen het Samenwerkingsproject Procesbeschrijvingen Industrie Nederland (SPIN). In het kader van dit project is informatie verzameld over industriele bedrijven of industriele processen ter ondersteuning van het overheidsbeleid op het

  16. Removal of heavy metals from metal-containing effluent by yeast ...

    African Journals Online (AJOL)

    Removal of heavy metals from metal-containing effluent by yeast biomass. ... Research studies have described this phenomenon of fast initial sorption with a ... chrome and tin from the chrome and tin effluents of a local iron and steel industry.

  17. Current status of the DIN EN 13480-3. Metallic industrial piping. Design and calculati