WorldWideScience

Sample records for metal fuel fast

  1. Irradiation behavior of metallic fast reactor fuels

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985

  2. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  3. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  4. Development of metallic fuels for fast reactors

    International Nuclear Information System (INIS)

    Singh, R.P.

    2011-01-01

    A very rapid growth rate of 100-fold increase in the next 50 years has been targeted for nuclear energy in India for which metallic fuel will be introduced in FBRs after 2020. Many innovative and challenging fuel design concepts for metal fuels are under consideration, which require extensive research and development work to generate database for the designers. The designs under active considerations are one in which the fuel will either be sodium bonded ternary U-15Pu-6Zr alloy or mechanically/sodium bonded binary U-15Pu alloy with a Zr liner between the fuel and the clad. The decision on the choice of the fuel will be based on test fuel irradiations in FBTR, subsequent PIE results, modeling studies and closing the fuel cycle through pyrometallurgical route. The development of metallic fuel is being pursued jointly by BARC and IGCAR. While the mechanical bonding concept with Pu-U alloy as fuel is being pursued at BARC, sodium bonding concept is being developed at IGCAR. BARC has already established the fabrication route for the mechanical bonding of U-Zr alloy, through co-swaging route. The properties of the fuels are evaluated. The fabrication of U-Pu alloy fuel pins through this route is now under development. It is now proposed to carry out the irradiation of test fuel pins, fabricated through both the routes, in FBTR in order to select the route for further development. This will be followed by subassembly level irradiation in FBTR to obtain experience on large scale fabrication of metallic fuel and to establish its performance

  5. Metallic uranium as fuel for fast reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de

    1988-01-01

    This paper presents a first overview of the use of metallic uranium and its alloys as an option for fuel for rapid reactors. Aspects are discussed concerning uranium alloys which present high solubility in the gamma phase. (author)

  6. Fast Flux Test Facility metal fuel pin fabrication

    International Nuclear Information System (INIS)

    Benecke, M.W.; Dittmer, J.O.; Feigenbutz, L.V.

    1989-05-01

    A new initiative to develop, irradiate, and qualify a binary uranium/zirconium metal fuel system in the Fast Flux Test Facility (FFTF) has been implemented by the Westinghouse Hanford Company for the US Department of Energy. Metal fuel test assemblies have been designed and fabricated and are now being irradiated in FFTF to provide the data needed to support the potential use of binary fuels in FFTF and other liquid metal reactors. These development efforts support licensing activities for metal fuel use in near-term advanced liquid metal reactors. New metal fuel pin design features, fabrication development, and fabrication processes for three metal fuel tests will be described and their irradiation status reported in this paper. 11 figs

  7. Alternative Fabrication of Recycling Fast Reactor Metal Fuel

    International Nuclear Information System (INIS)

    Kim, Ki-Hwan; Kim, Jong Hwan; Song, Hoon; Kim, Hyung-Tae; Lee, Chan-Bock

    2015-01-01

    Metal fuels such as U-Zr/U-Pu-Zr alloys have been considered as a nuclear fuel for a sodium-cooled fast reactor (SFR) related to the closed fuel cycle for managing minor actinides and reducing a high radioactivity levels since the 1980s. In order to develop innovative fabrication method of metal fuel for preventing the evaporation of volatile elements such as Am, modified casting under inert atmosphere has been applied for metal fuel slugs for SFR. Alternative fabrication method of fuel slugs has been introduced to develop an improved fabrication process of metal fuel for preventing the evaporation of volatile elements. In this study, metal fuel slugs for SFR have been fabricated by modified casting method, and characterized to evaluate the feasibility of the alternative fabrication method. In order to prevent evaporation of volatile elements such as Am and improve quality of fuel slugs, alternative fabrication methods of metal fuel slugs have been studied in KAERI. U-10Zr-5Mn fuel slug containing volatile surrogate element Mn was soundly cast by modified injection casting under modest pressure. Evaporation of Mn during alternative casting could not be detected by chemical analysis. Mn element was most recovered with prevention of evaporation by alternative casting. Modified injection casting has been selected as an alternative fabrication method in KAERI, considering evaporation prevention, and proven benefits of high productivity, high yield, and good remote control

  8. Fabrication of metallic fuel for fast breeder reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arbind; Mittal, R.K.; Prasad, R.S.; Mahule, N.; Kumar, Arun; Prasad, G.J.

    2012-01-01

    Natural uranium oxide fuelled PHWRs comprises of first stage of Indian nuclear power programme. Liquid metal fast breeder reactors fuelled by Pu (from PHWR's) form the second stage. A shorter reactor doubling time is essential in order to accelerate the nuclear power growth in India. Metallic fuels are known to provide shorter doubling times, necessitating to be used as driver fuel for fast breeder reactors. One of the fabrication routes for metallic fuels having random grain orientation, is injection casting technique. The technique finds its basis in an elementary physical concept - the possibility of supporting a liquid column within a tube, by the application of a pressure difference across the liquid interface inside and outside the tube. At AFD, BARC a facility has been set-up for injection casting of uranium rods in quartz tube moulds, demoulding of cast rods, end-shearing of rods and an automated inspection system for inspection of fuel rods with respect to mass, length, diameter and diameter variation along the length and internal and external porosities/voids. All the above facilities have been set-up in glove boxes and have successfully been used for fabrication of uranium bearing fuel rods. The facility has been designed for fabrication and inspection of Pu-bearing metallic fuels also, if required

  9. Fuel damage during off-normal transients in metal-fueled fast reactors

    International Nuclear Information System (INIS)

    Kramer, J.M.; Bauer, T.H.

    1990-01-01

    Fuel damage during off-normal transients is a key issue in the safety of fast reactors because the fuel pin cladding provides the primary barrier to the release of radioactive materials. Part of the Safety Task of the Integral Fast Reactor Program is to provide assessments of the damage and margins to failure for metallic fuels over the wide range of transients that must be considered in safety analyses. This paper reviews the current status of the analytical and experimental programs that are providing the bases for these assessments. 13 refs., 2 figs

  10. Pyrometallurgical processing of Integral Fast Reactor metal fuels

    International Nuclear Information System (INIS)

    Battles, J.E.; Miller, W.E.; Gay, E.C.

    1991-01-01

    The pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor is now in an advanced state of development. This process involves electrorefining spent fuel with a cadmium anode, solid and liquid cathodes, and a molten salt electrolyte (LiCl-KCl) at 500 degrees C. The initial process feasibility and flowsheet verification studies have been conducted in a laboratory-scale electrorefiner. Based on these studies, a dual cathode approach has been adopted, where uranium is recovered on a solid cathode mandrel and uranium-plutonium is recovered in a liquid cadmium cathode. Consolidation and purification (salt and cadmium removal) of uranium and uranium-plutonium products from the electrorefiner have been successful. The process is being developed with the aid of an engineering-scale electrorefiner, which has been successfully operated for more than three years. In this electrorefiner, uranium has been electrotransported from the cadmium anode to a solid cathode in 10 kg quantities. Also, anodic dissolution of 10 kg batches of chopped, simulated fuel (U--10% Zr) has been demonstrated. Development of the liquid cadmium cathode for recovering uranium-plutonium is under way

  11. Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

    OpenAIRE

    Chan Bock Lee; Jin Sik Cheon; Sung Ho Kim; Jeong-Yong Park; Hyung-Kook Joo

    2016-01-01

    Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U–Zr fuel is a driver for the initial core of the PGSFR, and U–transuranics (TRU)–Zr fuel will gradually replace U–Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U–Zr fuel, work on U–Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U–TRU–Zr fuel uses TRU recovered through pyroelectrochem...

  12. Technology of Fabrication for Sodium-cooled Fast Reactor Metallic Fuel

    International Nuclear Information System (INIS)

    Oh, S. J.; Kim, K. H.; Lee, C. T.; Ryu, H. J.; Ko, Y. M.; Woo, W. M.; Jang, S. J.; Lee, Y. S.; Lee, C. B.

    2008-02-01

    The fabrication process of metallic fuel for SFR(sodium fast reactor) of Generation-IV candidate reactors is composed of the fabrication of fuel pin, fuel rod, and fuel assembly. The key technology of the fabrication process for SFR can be referred to the fabrication technology of fuel pin. As SFR fuel contains MA(minor actinide) elements proceeding the recycling of actinide elements, it is so important to extinguish MA during irradiation in SFR, included in nuclear fuel through collection of volatile MA elements during fabrication of fuel pin. Hence, it is an imminent circumstance to develop the fabrication process of fuel pin. This report is an state-of art report related to the characteristics of irradiation performance for U-Zr- Pu metallic fuel, and the apparatus and the technology of conventional injection casting process. In addition, to overcome the drawbacks of the conventional injection casting and the U-Zr-Pu fuel, new fabrication technologies such as the gravity casting process, the casting of fuel pin to metal-barrier mold, the fabrication of particulate metallic fuel utilizing centrifugal atomization is surveyed and summarized. The development of new U-10Mo-X metallic fuel as nuclear fuel having a single phase in the temperature range between 550 and 950 .deg. C, reducing the re-distribution of the fuel elements and improving the compatibility between fuel and cladding, is also surveyed and summarized

  13. Thermal performance of fresh mixed-oxide fuel in a fast flux LMR [liquid metal reactor

    International Nuclear Information System (INIS)

    Ethridge, J.L.; Baker, R.B.

    1985-01-01

    A test was designed and irradiated to provide power-to-melt (heat generation rate necessary to initiate centerline fuel melting) data for fresh mixed-oxide UO 2 -PuO 2 fuel irradiated in a fast neutron flux under prototypic liquid metal reactor (LMR) conditions. The fuel pin parameters were selected to envelope allowable fabrication ranges and address mass production of LMR fuel using sintered-to-size techniques. The test included fuel pins with variations in fabrication technique, pellet density, fuel-to-cladding gap, Pu concentration, and fuel oxygen-to-metal ratios. The resulting data base has reestablished the expected power-to-melt in mixed-oxide fuels during initial reactor startup when the fuel temperatures are expected to be the highest. Calibration of heat transfer models of fuel pin performance codes with these data are providing more accurate capability for predicting steady-state thermal behavior of current and future mixed-oxide LMR fuels

  14. Reprocessing technology of liquid metal cooled fast breeder reactor fuel

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Broothaerts, J.; Heylen, P.R.; Eschrich, H.; Geel, J. van

    1974-11-01

    All the important aspects of LMFBR fuel reprocessing are critically reviewed in this report. Storage and transportation techniques using sodium, inert gas, lead, molten salts and organic coolants are comparatively discussed in connection with cooling time and de-activation techniques. Decladding and fuel disaggregation of UO 2 -PuO 2 fuel are reviewed according to the present state of R and D in the main nuclear powers. Strong emphasis is put on on voloxidation, mechanical pulverization and molten salt disaggregation in connection with volatilization of gaseous fission products. Release of fission gases and the resulting off-gas treatment are discussed in connection with cooling time, burn up and dissagregation techniques. The review is limited to tritium, iodine xenon-krypton and radioactive airborne particulates. Dissolution, solvent extraction and plutonium purification problems specifically connected to LMFBR fuel are reviewed with emphasis on the differences between LWR and fast fuel reprocessing. Finally the categories of wastes produced by reprocessing are analysed according to their origin in the plant and their alpha emitters content. The suitable waste treatment techniques are discussed in connection with the nature of the wastes and the ultimate disposal technique. (author)

  15. FFTF [fast flux tests facility] metal fuel pin sodium bond quality verification

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1989-01-01

    The Fast Flux Tests Facility (FFTF) Series III driver fuel design consists of U-10 Zr fuel slugs contained in a ferritic alloy cladding. A liquid-metal, sodium bond between the fuel and cladding is required to prevent unacceptable temperatures during operation. Excessive voiding or porosity in the sodium thermal bond could result in localized fuel melting during irradiation. It is therefore imperative that bond quality be verified during fabrication of these metal fuel pins prior to irradiation. Cladding stripping of two spare metal fuel pins was successfully performed to inspect the quality of the sodium thermal bond and to compare observed defects in the bond with eddy current measurements. Bond quality was found to be generally good, thereby confirming the fabrication process used to bond the fuel and cladding with liquid-metal sodium to be acceptable. Observed porosity distribution in the sodium bond correlated well with eddy current indications

  16. Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Chan Bock Lee

    2016-10-01

    Full Text Available Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR to be built by 2028. U–Zr fuel is a driver for the initial core of the PGSFR, and U–transuranics (TRU–Zr fuel will gradually replace U–Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U–Zr fuel, work on U–Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U–TRU–Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic–martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  17. Metal fuel development and verification for prototype generation- IV Sodium- Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Cheon, Jin Sik; Kim, Sung Ho; Park, Jeong Yong; Joo, Hyung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U -transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  18. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The reference fuel for Integral Fast Reactor (IFR) is a ternary U-Pu-Zr alloy with a low swelling austenitic or ferritic stainless steel cladding. It is known that low melting point eutectics may form in such metallic fuel-cladding systems which could contribute to cladding failure under accident conditions. This paper will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel

  19. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David [Argonne National Lab. (ANL), Argonne, IL (United States); Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  20. Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors

    Science.gov (United States)

    Brehm, Jr., William F.; Colburn, Richard P.

    1982-01-01

    An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

  1. Validation of models for the analysis of the transient behavior of metallic fast reactor fuel

    International Nuclear Information System (INIS)

    Kramer, J.M.; Hughes, T.H.; Gruber, E.E.

    1989-01-01

    The Integral Fast Reactor (IFR) concept being developed at Argonne National Laboratory has prompted a renewed interest in U-Pu-Zr metal alloys as a fuel for sodium-cooled fast reactors. Part of the attractiveness of the IFR concept is the improvement in reactor safety margins through inherent features of a metal-fueled LMR core. In order to demonstrate these safety margins it is necessary to have computer codes available to analyze the detailed response of metallic fuel to a wide range of accident initiators. Two of the codes that play a key role in assessing this response are the STARS fission gas behavior code and the FPIN2 fuel pin mechanics code. Verification and validation are two important components in the development of models and computer codes. Verification demonstrates through comparison of calculations with analytical solutions that the methodology and algorithms correctly solve the equations that govern the phenomena being modeled. Validation, on the other hand, demonstrates through comparison with data that the phenomena are being modeled correctly. Both components are necessary in order to have the confidence to extrapolate the calculations to reactor accident conditions. This paper presents the results of recent progress in the validation of models for the analysis of the behavior of metallic fast reactor fuel. 9 refs., 7 figs

  2. Current liquid metal cooled fast reactor concepts: use of the dry reprocess fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee Won; Jeong, C. J.; Yang, M. S

    2003-03-01

    Recent Liquid metal cooled Fast Reactor (LFR) concepts are reviewed for investigating the potential usability of the Dry Reprocess Fuel (DRF). The LFRs have been categorized into two different types: the sodium cooled and the lead cooled systems. In each category, overall design and engineering concepts are collected which includes those of S-PRISM, AFR300, STAR, ENHS and more. Specially, the nuclear fuel types which can be used in these LFRs, have been summarized and their thermal, physical and neutronic characteristics are tabulated. This study does not suggest the best-matching LFR for the DRF, but shows good possibility that the DRF fuel can be used in future LFRs.

  3. Current liquid metal cooled fast reactor concepts: use of the dry reprocess fuel

    International Nuclear Information System (INIS)

    Park, Jee Won; Jeong, C. J.; Yang, M. S.

    2003-03-01

    Recent Liquid metal cooled Fast Reactor (LFR) concepts are reviewed for investigating the potential usability of the Dry Reprocess Fuel (DRF). The LFRs have been categorized into two different types: the sodium cooled and the lead cooled systems. In each category, overall design and engineering concepts are collected which includes those of S-PRISM, AFR300, STAR, ENHS and more. Specially, the nuclear fuel types which can be used in these LFRs, have been summarized and their thermal, physical and neutronic characteristics are tabulated. This study does not suggest the best-matching LFR for the DRF, but shows good possibility that the DRF fuel can be used in future LFRs

  4. Volatile Elements Retention During Injection Casting of Metallic Fuel Slug for a Recycling Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Jong-Hwan; Song, Hoon; Kim, Hyung-Tae; Oh, Seok-Jin; Kuk, Seoung-Woo; Keum, Chang-Woon; Lee, Jung-Won; Kim, Ki-Hwan; Lee, Chan-Bock

    2015-01-01

    The as-cast fuels prepared by injection casting were sound and the internal integrities were found to be satisfactory through gamma-ray radiography. U and Zr were uniform throughout the matrix of the slug, and the impurities, i.e., oxygen, carbon, and nitrogen, satisfied the specification of the total impurities of less than 2000 ppm. The losses of the volatile Mn were effectively controlled using argon over pressures, and dynamic pumping for a period of time before injection showed no detrimental effect on the Mn loss by vaporization. This result suggests that volatile minor actinide-bearing fuels for SFRs can be prepared by improved injection methods. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, several injection casting methods were applied in order to prepare metallic fuel for an fast reactor that control the transport of volatile elements during fuel melting and casting. Mn was selected as a surrogate alloy since it possesses a total vapor pressure equivalent to that of a volatile minor actinide-bearing fuel. U.10Zr and U.10Zr.5Mn (wt%) metallic fuels were injection cast under various casting conditions and their soundness was characterized

  5. Mixing requirements for the limiting fuel-coolant interactions in liquid metal fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Jr, W F

    1976-11-01

    An estimation of the mixing requirements for the limiting fuel-coolant interactions in two specific liquid metal cooled fast reactors, the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR), has been undertaken. The mixing requirements were represented in terms of the limiting mixing time constants. These constants were determined with the Argonne parametric FCI Computer Model for a range of core involvements. Specifically, fuel masses used ranged from as low as one-seventh of the core to a full core involvement. In general, conservative values for additional FCI input parameters were assumed such that the results would be conservative. With the results in hand, several mechanisms were investigated to determine what limiting effects they could have on the mixing rates of the fuel and coolant during an FCI. The energy requirements for mixing were investigated. The results, however, provided no limiting effects. A solidification limited fragmentation model was also investigated. Although this model provided no absolute limiting effects, it did show that fuel particle sizes of a certain size could indeed limit the fuel-coolant mixing rates. Additionally, the limiting effects were found to be much less significant for UC fuel. The third mechanism that was investigated concerned the limiting effects of the finite fuel release rates as a result of TOP accidents in the FFTF. Equivalent mixing time constants based on the fuel release rates were shown to be greater than the limiting values. Thus, this mechanism was shown to be limiting for the particular accident sequence investigated.

  6. Modeling the behavior of metallic fast reactor fuels during extended transients

    International Nuclear Information System (INIS)

    Kramer, J.M.; Liu, Y.Y.; Billone, M.C.; Tsai, H.C.

    1993-01-01

    Passive safety features in metal-fueled reactors utilizing the Integral Fast Reactor (IFR) fuel system make it possible to avoid core damage for extended time periods even when automatic scram system fail to operate or heat removal systems are severely degraded. The time scale for these transients are intermediate between those that have traditionally been analyzed in fast reactor safety assessments and those of normal operation. Consequently, it has been necessary to validate models and computer codes (FPIN2 and LIFE-METAL) for application to this intermediate time regime. Results from out-of-reactor Whole Pin Furnace tests are being used for this purpose. Pretest predictions for tests FM-1 through FM-6 have been performed and calculations have been compared with the experimental measurements. (orig.)

  7. A fuel freezing model for liquid-metal fast breeder reactor hypothetical core disruptive accidents

    Energy Technology Data Exchange (ETDEWEB)

    Best, F.R.; Erdman, C.; Wayne, D.

    1985-01-01

    A proposed fuel freezing mechanism for molten UO2 fuel penetrating a steel channel was investigated in the course of liquid-metal-cooled fast breeder reactor hypothetical core disruptiv accident safety studies. The fuel crust deposited on an underlying melting steel wall was analyzed as being subjected to two stresses one due to the pressure difference between the flowing fuel and the stagnant molten steel layer, and the other resulting from the temperature variation through the crust thickness. Analyses based on the proposed freezing mechanism and comparisons with fuel freezing experiments confirmed that fuel freezing occurs in three modes. For initially low steel wall temperatures, the fuel crust was stable and grew to occlude the channel. At high steel wall temperatures (above 1070 K), instantaneous wall melting leading to steel entrainment was calculated to occur with final penetration depending on the refreezing of the entrained steel. Between these two extremes, the stress developed within the crust at the steel melting front exceeds the critical buckling value, the crust ruptures, and steel is injected into the fuel flow. Freezing is dominated by the fuel/steel mixture. The theoretical penetration distances and freezing times were in good agreement with the experimental results with no more than 20% error involved.

  8. Fast reactors with axial arrangement of oxide and metal fuels in the core

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Ilyunin, V.G.; Matveev, V.I.; Murogov, V.M.; Proshkin, A.A.; Rudneva, V.Ya.; Shmelev, A.N.

    1980-01-01

    Problems of using metal fuel in fast reactor (FR) core are discussed Results are given of the calculation of two-dimentional (R-Z) FR version having a composed core with the combined usage of oxide and metal fuels having parameters close to optimal from the point of view of fuel breeding rate, an oxide subzone having increased enrichment and a decreased proper conversion ratio. A reactor is considered where metallic fuel elements are placed from the side of ''cold'' coolant inlet (400-480 deg C), and oxide fuel elements - in the region where the coolant has a higher temperature (500-560 deg C). It is shown that the new fuel breeding rate in such a reactor can be increased by 20-30% as compared with an oxide fuel reactor. Growth of the total conversion ratio is mainly stipulated with the increase of the inner conversion ratio of the core (CRC) which is important not only from the point of view of nuclear fuel breeding rate but also the optimization of the mode of powerful fast reactor operation with provision for the change in reactivity in the process of its continuous operation. The fact, that the core version under investigation has a CRC value slightly exceeding unit, stipulates considerably less reactivity change as compared with the oxide version in the process of the reactor operation and permits at a constant reactor control system power to significantly increase the time between reloadings and, therefore, to increase the NPP load factor which is of great importance both from the point of view of economy and the improvement of operation conditions as well as of reactor operation reliability. It is concluded on the base of the analysis of the results obtained that FRs with the combined usage of oxide and metal fuels having an increased specific load and increased conversion ratio as compared with the oxide fuel FRs provide a higher rate of development of the whole nuclear power balanced with respect to the fuel [ru

  9. Modeling the behavior of metallic fast reactor fuels during extended transients

    International Nuclear Information System (INIS)

    Kramer, J.M.; Liu, Y.Y.; Billone, M.C.; Tsai, H.C.

    1992-01-01

    Passive safety features in the metal-fueled Integral Fast Reactor (IFR) make it possible to avoid core damage for extended time periods even when automatic scram systems fail to operate or heat removal systems are severely degraded. The time scale for these transients are intermediate between those that have traditionally been analyzed in fast reactor safety assessments and those of normal operation. Consequently, it has been necessary to validate models and computer codes (FPIN2 and LIFE-METAL) for application to this time regime. Results from out-of-reactor Whole Pin Furnace tests are being used for this purpose. Pretest predictions for tests FM-1 through FM-6 have been performed and calculations have been compared with the experimental measurements

  10. Study on Doppler coefficient for metallic fuel fast reactor added hydrogeneous moderator

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Naohiro; Iwasaki, Tomohiko; Tsujimoto, Kazuhumi [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Osugi, Toshitaka; Okajima, Shigeaki; Andoh, Masaki; Nemoto, Tatsuo; Mukaiyama, Takehiko

    1998-01-01

    A series of mock-up experiments for moderator added metallic fast reactor core was carried out at FCA to obtain the experimental verification for improvement of reactivity coefficients. Softened neutron spectrum increases Doppler effect by a factor of 2, and flatter adjoint neutron spectrum decreases Na void effect by a factor of 0.6 when hydrogen to heavy metal atomic number ratio is increased from 0.02 to 0.13. The experimental results are analyzed with SLALOM and CITATION-FBR, which is the standard design code system for a fast reactor at JAERI, and SRAC95 and CITATION-FBR. The present code system gives generally good agreement with the experimental results, especially by the use of the latter, the dependence of the Doppler effect to the hydrogen to fuel element atomic number density ratio is disappeared. Therefore, it looks possible to use the present code system for the conceptual design of a fast reactor system with hydrogeneous materials. (author)

  11. Run-Beyond-Cladding-Breach (RBCB) test results for the Integral Fast Reactor (IFR) metallic fuels program

    International Nuclear Information System (INIS)

    Batte, G.L.; Hoffman, G.L.

    1990-01-01

    In 1984 Argonne National Laboratory (ANL) began an aggressive program of research and development based on the concept of a closed system for fast-reactor power generation and on-site fuel reprocessing, exclusively designed around the use of metallic fuel. This is the Integral Fast Reactor (IFR). Although the Experimental Breeder Reactor-II (EBR-II) has used metallic fuel since its creation 25 yeas ago, in 1985 ANL began a study of the characteristics and behavior of an advanced-design metallic fuel based on uranium-zirconium (U-Zr) and uranium-plutonium-zirconium (U-Pu-Zr) alloys. During the past five years several areas were addressed concerning the performance of this fuel system. In all instances of testing the metallic fuel has demonstrated its ability to perform reliably to high burnups under varying design conditions. This paper will present one area of testing which concerns the fuel system's performance under breach conditions. It is the purpose of this paper to document the observed post-breach behavior of this advanced-design metallic fuel. 2 figs., 1 tab

  12. A Mechanistic Source Term Calculation for a Metal Fuel Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2017-06-26

    A mechanistic source term (MST) calculation attempts to realistically assess the transport and release of radionuclides from a reactor system to the environment during a specific accident sequence. The U.S. Nuclear Regulatory Commission (NRC) has repeatedly stated its expectation that advanced reactor vendors will utilize an MST during the U.S. reactor licensing process. As part of a project to examine possible impediments to sodium fast reactor (SFR) licensing in the U.S., an analysis was conducted regarding the current capabilities to perform an MST for a metal fuel SFR. The purpose of the project was to identify and prioritize any gaps in current computational tools, and the associated database, for the accurate assessment of an MST. The results of the study demonstrate that an SFR MST is possible with current tools and data, but several gaps exist that may lead to possibly unacceptable levels of uncertainty, depending on the goals of the MST analysis.

  13. Technical feasibility of an Integral Fast Reactor (IFR) as a future option for fast reactor cycles. Integrate a small metal-fueled fast reactor and pyroprocessing facilities

    International Nuclear Information System (INIS)

    Tanaka, Nobuo

    2017-01-01

    Integral Fast Reactor that integrated fast reactor and pyrorocessing facilities developed by Argonne National Laboratory in the U.S. is an excellent nuclear fuel cycle system for passive safety, nuclear non-proliferation, and reduction in radioactive waste. In addition, this system can be considered as a technology applicable to the treatment of the fuel debris caused by the Fukushima Daiichi Nuclear Power Station accident. This study assessed the time required for debris processing, safety of the facilities, and construction cost when using this technology, and examined technological possibility including future technological issues. In a small metal-fueled reactor, it is important to design the core that achieves both of reduction in combustion reactivity and reduction in coolant reactivity. In system design, calorimetric analysis, structure soundness assessment, seismic feasibility establishment study, etc. are important. Regarding safety, research and testing are necessary on the capabilities of passive reactor shutdown and reactor core cooling as well as measures for avoiding re-criticality, even when emergency stop has failed. In dry reprocessing system, studies on electrolytic reduction and electrolytic refining process for treating the debris with compositions different from those of normal fuel are necessary. (A.O.)

  14. A review of inherent safety characteristics of metal alloy sodium-cooled fast reactor fuel against postulated accidents

    Directory of Open Access Journals (Sweden)

    Tanju Sofu

    2015-04-01

    Full Text Available The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperature profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel–coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.

  15. An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate

    Directory of Open Access Journals (Sweden)

    Wuseong You

    2017-12-01

    Full Text Available In this paper, we designed and analyzed advanced sodium-cooled fast reactor cores using uranium-free metallic fuels for maximizing burning rate of transuranics (TRU nuclides from PWR spent fuels. It is well known that the removal of fertile nuclides such as 238U from fuels in liquid metal cooled fast reactor leads to the degradation of important safety parameters such as the Doppler coefficient, coolant void worth, and delayed neutron fraction. To resolve the degradation of the Doppler coefficient, we considered adding resonant nuclides to the uranium-free metallic fuels. The analysis results showed that the cores using uranium-free fuels loaded with tungsten instead of uranium have a significantly lower burnup reactivity swing and more negative Doppler coefficients than the core using uranium-free fuels without resonant nuclides. In addition, we considered the use of axially central B4C absorber region and moderator rods to further improve safety parameters such as sodium void worth, burnup reactivity swing, and the Doppler coefficient. The results of the analysis showed that the final design core can consume ~353 kg per cycle and satisfies self-controllability under unprotected accidents. The fuel cycle analysis showed that the PWR–SFR coupling fuel cycle option drastically reduces the amount of waste going to repository and the SFR burner can consume the amount of TRUs discharged from 3.72 PWRs generating the same electricity.

  16. Sodium-cooled Fast Reactor Cores using Uranium-Free Metallic Fuels for Maximizing TRU Support Ratio

    International Nuclear Information System (INIS)

    You, WuSeung; Hong, Ser Gi

    2014-01-01

    The depleted uranium plays important roles in the SFR burner cores because it substantially contributes to the inherent safety of the core through the negative Doppler coefficient and large delayed neutron. However, the use of depleted uranium as a diluent nuclide leads to a limited value of TRU support ratio due to the generation of TRUs through the breeding. In this paper, we designed sodium cooled fast reactor (SFR) cores having uranium-free fuels 3,4 for maximization of TRU consumption rate. However, the uranium-free fuelled burner cores can be penalized by unacceptably small values of the Doppler coefficient and small delayed neutron fraction. In this work, metallic fuels of TRU-(W or Ni)-Zr are considered to improve the performances of the uranium-free cores. The objective of this work is to consistently compare the neutronic performances of uranium-free sodium cooled fast reactor cores having TRU-Zr metallic fuels added with Ni or W and also to clarify what are the problematic features to be resolved. In this paper, a consistent comparative study of 400MWe sodium cooled burner cores having uranium-based fuels and uranium-free fuels was done to analyze the relative core neutronic features. Also, we proposed a uranium-free metallic fuel based on Nickel. From the results, it is found that tungsten-based uranium-free metallic fuel gives large negative Doppler coefficient due to high resonance of tungsten isotopes but this core has large sodium void worth and small effective delayed neutron fraction while the nickel-based uranium-free metallic fuelled core has less negative Doppler coefficient but smaller sodium void worth and larger effective delayed neutron fraction than the tungsten-based one. On the other hand, the core having TRU-Zr has very high burnup reactivity swing which may be problematic in compensating it using control rods and the least negative Doppler coefficient

  17. Economic Viability of Metallic Sodium-Cooled Fast Reactor Fuel in Korea

    Directory of Open Access Journals (Sweden)

    S. K. Kim

    2013-01-01

    Full Text Available This paper evaluates whether SFR metallic nuclear fuel can be economical. To make this determination, the cost of SFCF (SFR fuel cycle facilities was estimated, and the break-even point of the manufacturing cost of SFR metallic nuclear fuel for direct disposal option was then calculated. As a result of the cost estimation, the levelized unit cost (LUC for SFCF was calculated to be 5,311 $/kgHM, and the break-even point was calculated to be $5,267/kgHM. Therefore, the cost difference between LUC and the break-even point is not only small but is also within the relevant range of the uncertainty level of Class 3 in accordance with a generic cost estimate classification matrix of AACE (the Association for the Advancement of Cost Engineering. This means it is very difficult to judge the economical feasibility of SFR metallic nuclear fuel because as of today there are no commercial facilities in Korea or the world. The economic feasibility of SFR metallic nuclear fuel, however, will be enhanced if the mass production of SFCF becomes possible in the future.

  18. Assessment of the Dry Processed Oxide Fuel in Liquid Metal Fast Reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2005-09-01

    The neutronic feasibility of the dry process oxide fuel was assessed for the sodium-cooled and lead-cooled fast reactors (SFR and LFR, respectively), which were recommended as Generation-IV (Gen-IV) reactor systems by the Gen-IV international forum. The reactor analysis was performed for the equilibrium fuel cycle of two core configurations: Hybrid BN-600 benchmark core with an enlarged lattice pitch and a modified BN-600 core. The dry process technology assumed in this study is the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic (TRU) enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a fissile self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was ∼50% and most of the fission products were removed. If the design criteria used in this study is proved to be acceptable through a detailed physics design and thermal hydraulic analysis in the future, it is practically possible to construct an equilibrium fuel cycle of the SFR and LFR systems based on the oxide fuel by utilizing the dry process technology

  19. Performance comparison of metallic, actinide burning fuel in lead-bismuth and sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Weaver, K.D.; Herring, J.S.; Macdonald, P.E.

    2001-01-01

    Various methods have been proposed to ''incinerate'' or ''transmute'' the current inventory of transuranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years. (author)

  20. FFTF metal fuel pin fabrication

    International Nuclear Information System (INIS)

    Dittmer, J.O.; Benecke, M.W.; Feigenbutz, L.V.

    1989-01-01

    A major new initiative to develop, irradiate, and qualify a binary uranium/zirconium metal-fuel system in the Fast Flux Test Facility (FFTF) has been implemented by the Westinghouse Hanford Company for the US Department of Energy. Metal-fuel test assemblies have been designed and fabricated, and are now being irradiated in FFTF to provide the data needed to support the potential use of binary metal fuels in FFTF and other liquid-metal reactors. These development efforts support licensing activities for metal-fuel use in near-term advanced liquid-metal reactors

  1. Fuel and core design study of the sodium-cooled fast reactors. Studies on metallic fuel cores in the JFY2002

    International Nuclear Information System (INIS)

    Sugino, Kazuteru; Mizuno, Tomoyasu

    2003-06-01

    Based on the results obtained in the former feasibility study, the metallic fueled core of ordinary-type, that is, 2-region homogeneous core, has been established aiming at the improvement in the core performance, and subsequent comparison has been performed with the mixed oxide fueled core. Further, the attractive concept of the metallic fueled core of high outlet temperature has been constructed which has good nuclear features as a metallic fueled core and has identical outlet temperature to mixed oxide fuelled core. Following items have been found as a result of the investigation on the ordinary-type core. The metallic fueled core whose maximum fast neutron fluence (En>0.1MeV) is set identical (5x10 23 n/cm 2 ) to the mixed oxide fueled cores with core discharge burnup 150GWd/t has sufficient core performances as a metallic fueled core, e.g. higher breeding ratio and longer operation period compared with mixed oxide fueled cores, but the core discharge burnup is limited up to 100GWd/t. However effective discharge burnup including the contribution of the blanket region is comparative to mixed oxide cores under the same breeding ratio condition. In order to enlarge the core discharge burnup to 150GWd/t keeping the core performance identical to above mentioned core's, the irradiation deformation of structural material should be reduced to that of mixed oxide fueled cores. Further the maximum fast neutron fluence reaches to 7-8x10 23 n/cm 2 (En>0.1MeV). The investigations on the core of high outlet temperature have clarified following items. Even in the change of core regions by pin-diameter form 3-region to 2-region and in the limited maximum fuel pin diameter 8.5 mm, realization of the identical outlet/inlet temperatures to the mixed oxide cores (550/395degC) is feasible under the criteria of the maximum temperature 650degC at the inner surface of the cladding. The constructed core accommodates the targets of breeding ratio from about 1.0 to 1.2 only by adjusting

  2. Upper limits to americium concentration in large sized sodium-cooled fast reactors loaded with metallic fuel

    International Nuclear Information System (INIS)

    Zhang, Youpeng; Wallenius, Janne

    2014-01-01

    Highlights: • The americium transmutation capability of Integral Fast Reactor was investigated. • The impact from americium introduction was parameterized by applying SERPENT Monte Carlo calculations. • Higher americium content in metallic fuel leads to a power penalty, preserving consistent safety margins. - Abstract: Transient analysis of a large sized sodium-cooled reactor loaded with metallic fuel modified by different fractions of americium have been performed. Unprotected loss-of-offsite power, unprotected loss-of-flow and unprotected transient-over-power accidents were simulated with the SAS4A/SASSYS code based on the geometrical model of an IFR with power rating of 2500 MW th , using safety parameters obtained with the SERPENT Monte Carlo code. The Ti-modified austenitic D9 steel, having higher creep rupture strength, was considered as the cladding and structural material apart from the ferritic/martensitic HT9 steel. For the reference case of U–12Pu–1Am–10Zr fuel at EOEC, the margin to fuel melt during a design basis condition UTOP is about 50 K for a maximum linear rating of 30 kW/m. In order to maintain a margin of 50 K to fuel failure, the linear power rating has to be reduced by ∼3% and 6% for 2 wt.% and 3 wt.% Am introduction into the fuel respectively. Hence, an Am concentration of 2–3 wt.% in the fuel would lead to a power penalty of 3–6%, permitting a consumption rate of 3.0–5.1 kg Am/TW h th . This consumption rate is significantly higher than the one previously obtained for oxide fuelled SFRs

  3. Fabrication of cermet fuel for fast reactor

    International Nuclear Information System (INIS)

    Mishra, Sudhir; Kumar, Arun; Kutty, T.R.G.; Kamath, H.S.

    2011-01-01

    Mixed oxide (MOX) (U,Pu)O 2 , and metallic (U,Pu ,Zr) fuels are considered promising fuels for the fast reactor. The fuel cycle of MOX is well established. The advantages of the oxide fuel are its easy fabricability, good performance in the reactor and a well established reprocessing technology. However the problems lie in low thermal conductivity , low density of the fuel leading to low breeding ratio and consequently longer doubling time. The metallic fuel has the advantages of high thermal conductivity, higher metal density and higher coefficient of linear expansion. The higher coefficient of linear expansion is good from the safety consideration (negative reactivity factor). Because of higher metal density it offers highest breeding ratio and shortest doubling time. Metallic fuel disadvantages comprise large swelling at high burnup, fuel cladding interaction and lower margin between operating and melting temperature. The optimal solution may lie in cermet fuel (U, PuO 2 ), where PuO 2 is dispersed in U metal matrix and combines the favorable features of both the fuel types. The advantages of this fuel include high thermal conductivity, larger margin between melting and operating temperature, ability to retain fission product etc. The matrix being of high density metal the advantage of high breeding ratio is also maintained. In this report some results of fabrication of cermet pellet comprising of UO 2 /PuO 2 dispersed in U metal powder through classical powder metallurgy route and characterization are presented. (author)

  4. Investigation of Reactivity Feedback Mechanism of Axial and Radial Expansion Effect of Metal-Fueled Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Seong, Seung-Hwan; Choi, Chi-Woong; Jeong, Tae-Kyung; Ha, Gi-Seok

    2015-01-01

    The major inherent reactivity feedback models for a ceramic fuel used in a conventional light water reactor are Doppler feedback and moderator feedback. The metal fuel has these two reactivity feedback mechanisms previously mentioned. In addition, the metal fuel has two more reactivity feedback models related to the thermal expansion phenomena of the metal fuel. Since the metal fuel has a good capability to expand according to the temperature changes of the core, two more feedback mechanisms exist. These additional two feedback mechanism are important to the inherent safety of metal fuel and can make metal-fueled SFR safer than oxide-fueled SFR. These phenomena have already been applied to safety analysis on design extended condition. In this study, the effect of these characteristics on power control capability was examined through a simple load change operation. The axial expansion mechanism is induced from the change of the fuel temperature according to the change of the power level of PGSFR. When the power increases, the fuel temperatures in the metal fuel will increase and then the reactivity will decrease due to the axial elongation of the metal fuel. To evaluate the expansion effect, 2 cases were simulated with the same scenario by using MMS-LMR code developed at KAERI. The first simulation was to analyze the change of the reactor power according to the change of BOP power without the reactivity feedback model of the axial and radial expansion of the core during the power transient event. That is to say, the core had only two reactivity feedback mechanism of Doppler and coolant temperature

  5. Fast breeder fuel cycle

    International Nuclear Information System (INIS)

    1978-07-01

    This contribution is prepared for the answer to the questionnaire of working group 5, subgroup B. B.1. is the short review of the fast breeder fuel cycles based on the reference large commercial Japanese LMFBR. The LMFBRs are devided into two types. FBR-A is the reactor to be used before 2000, and its burnup and breeding ratio are relatively low. The reference fuel cycle requirement is calculated based on the FBR-A. FBR-B is the one to be used after 2000, and its burnup and breeding ratio are relatively high. B.2. is basic FBR fuel reprocessing scheme emphasizing the differences with LWR reprocessing. This scheme is based on the conceptual design and research and development work on the small scale LMFBR reprocessing facility of Japan. The facility adopts a conventional PUREX process except head end portions. The report also describes the effects of technical modifications of conventional reprocessing flow sheets, and the problems to be solved before the adoption of these alternatives

  6. The integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1990-01-01

    The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management

  7. Impacts of burnup-dependent swelling of metallic fuel on the performance of a compact breed-and-burn fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Heo, Woong; Kim, Chi Hyung; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2016-04-15

    The U-Zr or U-TRU-Zr cylindrical metallic fuel slug used in fast reactors is known to swell significantly and to grow during irradiation. In neutronics simulations of metallic-fueled fast reactors, it is assumed that the slug has swollen and contacted cladding, and the bonding sodium has been removed from the fuel region. In this research, a realistic burnup-dependent fuel-swelling simulation was performed using Monte Carlo code McCARD for a single-batch compact sodium-cooled breed-and-burn reactor by considering the fuel-swelling behavior reported from the irradiation test results in EBR-II. The impacts of the realistic burnup-dependent fuel swelling are identified in terms of the reactor neutronics performance, such as core lifetime, conversion ratio, axial power distribution, and local burnup distributions. It was found that axial fuel growth significantly deteriorated the neutron economy of a breed-and-burn reactor and consequently impaired its neutronics performance. The bonding sodium also impaired neutron economy, because it stayed longer in the blanket region until the fuel slug reached 2% burnup.

  8. Review of Phenomenological Models for the Initial Phase HCDA Analysis in a Metal-Fueled Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kwon, Young Min; Lee, Ki Rim; Ha, Kwi Seok; Chang, Won Pyo; Suk, Soo Dong

    2009-03-01

    The safety aspects of the KALIMER design results from the advanced safety performance characteristics of its ternary alloy metallic fuel. The superior thermal, mechanical, and neutronic performance of the metal-fueled core assures inherent safety response to unprotected and multiple fault accidents which are HCDA initiating events. HCDA has received great attentions because of its significant consequence, leading to substantial core disruption, although its probability of occurrence is very low. The SAS4A code provides an integrated quantitative framework for examining the phenomenological behaviors under HCDA conditions. Various phenomenological models such as prefailure characterization, transient pin response, margins to cladding failure, axial in-pin fuel relocation prior to cladding breach, and molten fuel relocation after cladding breach are required for the HCDA analysis. The important mechanisms which introduce negative reactivity during HCDA are fuel extrusion and in-pin fuel relocation, and structural feedback through thermal-mechanical neutronic effects. This report describes the safety performance characteristics of the metal fuel as observed in ex-pile and in-pile tests, and describes associated theoretical models employed into the SAS4A HCDA analysis code. Most of such tests and experiments, and development of theoretical models have been performed for the IFR program by ANL. This report provides a phenomenological basis for gaining an understanding of the metal fuel performance characteristics that obtained from expile experiments and in-pile tests. This report will provide insight and direction for planning HCDA experiments and developing theoretical models in Korea later

  9. Fast reactor fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  10. Development of metallic fuel fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Ho; Lee, Chong Yak; Lee, Myung Ho and others

    1999-03-01

    With the vacuum melting and casting of the U-10wt%Zr alloy which is metallic fuel for liquid metal fast breeder reactor, we studied the microstructure of the alloy and the parameters of the melting and casting for the fuel rods. Internal defects of the U-10wt%Zr fuel by gravity casting, were inspected by non-destructive test. U-10wt%Zr alloy has been prepared for the thermal stability test in order to estimate the decomposition of the lamellar structure with relation to swelling under irradiation condition. (author)

  11. Improvements in fabrication of metallic fuels

    International Nuclear Information System (INIS)

    Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

    1989-12-01

    Argonne National Laboratory is currently developing a new liquid- metal cooled breeder reactor known as the Integral Fast Reactor (IFR). IFR fuels represent the state-of-the-art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, to be discussed below, will support the fully remote fuel cycle facility that as an integral part of the IFR concept will be demonstrated at the EBR-II site. 3 refs

  12. AB INITIO STUDY OF ADVANCED METALLIC NUCLEAR FUELS FOR FAST BREEDER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Landa, A; Soderlind, P; Grabowski, B; Turchi, P A; Ruban, A V; Vitos, L

    2012-04-23

    Density-functional formalism is applied to study the ground state properties of {gamma}-U-Zr and {gamma}-U-Mo solid solutions. Calculated heats of formation are compared with CALPHAD assessments. We discuss how the heat of formation in both alloys correlates with the charge transfer between the alloy components. The decomposition curves for {gamma}-based U-Zr and U-Mo solid solutions are derived from Ising-type Monte Carlo simulations. We explore the idea of stabilization of the {delta}-UZr{sub 2} compound against the {alpha}-Zr (hcp) structure due to increase of Zr d-band occupancy by the addition of U to Zr. We discuss how the specific behavior of the electronic density of states in the vicinity of the Fermi level promotes the stabilization of the U{sub 2}Mo compound. The mechanism of possible Am redistribution in the U-Zr and U-Mo fuels is also discussed.

  13. Stationary Liquid Fuel Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  14. Metal fuel manufacturing and irradiation performance

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Walters, L.C.

    1992-01-01

    The advances in metal fuel by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, and improved passive safety. The goals and the safety philosophy of the Integral Fast Reactor Program are stressed

  15. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    International Nuclear Information System (INIS)

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance

  16. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    Science.gov (United States)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Aziz, Ferhat; Permana, Sidik; Sekimoto, Hiroshi

    2014-02-01

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  17. Improvements in the fabrication of metallic fuels

    International Nuclear Information System (INIS)

    Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

    1989-01-01

    Argonne National Laboratory (ANL) is currently developing a new liquid-metal-cooled breeder reactor known as the Integral Fast Reactor (IFR). The IFR represents the state of the art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, discussed in this paper, will support ANL-West's (ANL-W) fully remote fuel cycle facility, which is an integral part of the IFR concept

  18. Behavior of low-burnup metallic fuels for the integral fast reactor at elevated temperatures in ex-reactor tests

    International Nuclear Information System (INIS)

    Tsai, Hanchung; Liu, Yung Y.; Wang, Da-Yung; Kramer, J.M.

    1991-07-01

    A series of ex-reactor heating tests on low burnup U-26wt.%Pu-10wt.%Zr metallic fuel for the PRISM reactor was conducted to evaluate fuel/cladding metallurgical interaction and its effect on cladding integrity at elevated temperatures. The reaction between the fuel and cladding caused liquid-phase formation and dissolution of the inner surface of the cladding. The rate of cladding penetration was below the existing design correlation, which provides a conservative margin to cladding failure. In a test which enveloped a wide range of postulated reactor transient events, a substantial temporal cladding integrity margin was demonstrated for an intact, whole fuel pin. The cause of the eventual pin breach was reaction-induced cladding thinning combined with fission-gas pressure loading. The behavior of the breached pin was benign. 7 refs., 7 figs., 1 tab

  19. SIEX: a correlated code for the prediction of liquid metal fast breeder reactor (LMFBR) fuel thermal performance

    International Nuclear Information System (INIS)

    Dutt, D.S.; Baker, R.B.

    1975-06-01

    The SIEX computer program is a steady state heat transfer code developed to provide thermal performance calculations for a mixed-oxide fuel element in a fast neutron environment. Fuel restructuring, fuel-cladding heat conduction and fission gas release are modeled to provide assessment of the temperature. Modeling emphasis has been placed on correlations to measurable quantities from EBR-II irradiation tests and the inclusion of these correlations in a physically based computational scheme. SIEX is completely modular in construction allowing the user options for material properties and correlated models. Required code input is limited to geometric and environmental parameters, with a ''consistent'' set of material properties and correlated models provided by the code. 24 references. (U.S.)

  20. Metal fuel safety performance

    International Nuclear Information System (INIS)

    Miles, K.J. Jr.; Tentner, A.M.

    1988-01-01

    The current development of breeder reactor systems has lead to the renewed interest in metal fuels as the driver material. Modeling efforts were begun to provide a mechanistic description of the metal fuel during anticipated and hypothetical transients within the context of the SAS4A accident analysis code system. Through validation exercises using experimental results of metal fuel TREAT tests, confidence is being developed on the nature and accuracy of the modeling and implementation. Prefailure characterization, transient pin response, margins to failure, axial in-pin fuel relocation prior to cladding breach, and molten fuel relocation after cladding breach are considered. Transient time scales ranging from milliseconds to many hours can be studied with all the reactivity feedbacks evaluated

  1. A decade of advances in metallic fuel

    International Nuclear Information System (INIS)

    Seidel, B.R.; Batte, G.L.; Dodds, N.E.; Hofman, G.L.; Lahm, C.E.; Pahl, R.G.; Porter, D.L.; Tsai, H.; Walters, L.C.

    1990-01-01

    Significant advances in the understanding of behavior and performance of metallic fuels to high burnup have been achieved over the past four decades. Metallic fuels were the first fuels for liquid-metal-cooled fast reactors (LMR) but in the late 1960s worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved. Now metallic fuels are recognized as a preferred viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last decade and highlights the behavior and performance features which have demonstrated a much greater potential than previously expected. 28 refs., 2 figs., 1 tab

  2. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Thatcher, G.; Mitchell, A.J.

    1981-01-01

    Fuel sub-assemblies for liquid metal-cooled fast breeder reactors are described which each incorporate a fluid flow control valve for regulating the rate of flow through the sub-assembly. These small electro-magnetic valves seek to maintain the outlet coolant temperature of at least some of the breeder sub-assemblies substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (U.K.)

  3. Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves

  4. Chemistry for fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.

    2011-01-01

    The fuel cycle for the fast reactors poses several challenging chemistry issues. The use of fuels with high plutonium content, the variety of fuel matrices (oxides, carbides, metal alloys), the high burn-up to which the fuel is driven and the need to close the fuel cycle with minimum out-of-pile inventory are examples of special features of fast reactors. The need to reduce waste generation and the need to identify matrices for safe long term disposal of waste are additional issues that need a chemist's attention. As a chemist, the subject of actinide separations has been very stimulating to me, with a myriad of interesting possibilities and at the same time, demanding careful attention to the unique chemistry of the actinides including multiplicity of oxidation states. The presence of high concentrations of plutonium in the reprocessing streams introduces issues such as third phase formation, which provides an incentive for the development of candidates for solvent extraction as alternatives to tri-n-butyl phosphate, currently used for the Purex reprocessing scheme. With the advent of supercritical fluid extraction as a tool for actinide recovery from a variety of matrices, and the potential of room temperature ionic liquids to offer significant advantages in actinide processing, actinide separations is an element of fast reactor fuel cycle that is full of opportunities and challenges. The need to process metallic alloy fuels using molten salt electrorefining as the route, adds further to the challenges. The presentation will highlight some of the recent progress achieved in this area at IGCAR. (author)

  5. Pyroprocessing of IFR Metal Fuel

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle features the use of an innovative reprocessing method, known as open-quotes pyroprocessingclose quotes featuring fused-salt electrofining of the spent fuel. Electrofining of IFR spent fuel involves uranium recovery by electro-transport to a solid steel cathode. The thermodynamics of the system preclude plutonium recovery in the same way, so a liquid cadmium cathode located in the electrolyte salt phase is utilized. The deposition of Pu, Am, Np, and Cm takes place at the liquid cadmium cathode in the form of cadmium intermetallic compounds (e.g, PuCd 6 ), and uranium deposits as the pure metal when cadmium saturation is reached. A small amount of rare earth fission products deposit together with the heavy metals at both the solid and liquid cadmium cathodes, providing a significant degree of self-protection. A full scope demonstration of the IFR fuel cycle will begin in 1993, using fuel irradiated in EBR-II

  6. Safeguards operations in the integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-01-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product

  7. Aspects of the fast reactors fuel cycle

    International Nuclear Information System (INIS)

    Zouain, D.M.

    1982-06-01

    The fuel cycle for fast reactors, is analysed, regarding the technical aspects of the developing of the reprocessing stages and the fuel fabrication. The environmental impact of LMFBRs and the waste management of this cycle are studied. The economic aspects of the fuel cycle, are studied too. Some coments about the Brazilian fast reactors programs are done. (E.G.) [pt

  8. Advanced breeder cycle uses metallic fuel

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1991-01-01

    Scientists from Argonne National Laboratory have been developing a concept called the Integral fast Reactor (IFR). This fast breeder reactor could effectively increase Uranium resources a hundred fold making nuclear power essentially an inexhaustible energy source. The IFR is outlined. In the IFR, the inherent properties of liquid metal cooling are combined with a new metallic fuel which is allowed to swell and gives an improved burnup level and a radically different refining process to allow breakthroughs in passive safety, fuel cycle economics and waste management. (author)

  9. Preparations for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.

    1989-01-01

    Modifications to the Hot Fuel Examination Facility-South (HFEF/S) have been in progress since mid-1988 to ready the facility for demonstration of the unique Integral Fast Reactor (IFR) pyroprocess fuel cycle. This paper updates the last report on this subject to the American Nuclear Society and describes the progress made in the modifications to the facility and in fabrication of the new process equipment. The IFR is a breeder reactor, which is central to the capability of any reactor concept to contribute to mitigation of environmental impacts of fossil fuel combustion. As a fast breeder, fuel of course must be recycled in order to have any chance of an economical fuel cycle. The pyroprocess fuel cycle, relying on a metal alloy reactor fuel rather than oxide, has the potential to be economical even at small-scale deployment. Establishing this quantitatively is one important goal of the IFR fuel cycle demonstration

  10. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  11. Overview of the fast reactors fuels program

    International Nuclear Information System (INIS)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides

  12. Metallic fuel design development

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Kang, H. Y.; Lee, B. O. and others

    1999-04-01

    This report describes the R and D results of the ''Metallic Fuel Design Development'' project that performed as a part of 'Nuclear Research and Development Program' during the '97 - '98 project years. The objectives of this project are to perform the analysis of thermo-mechanical and irradiation behaviors, and preliminary conceptual design for the fuel system of the KALIMER liquid metal reactor. The following are the major results that obtained through the project. The preliminary design requirements and design criteria which are necessary in conceptual design stage, are set up. In the field of fuel pin design, the pin behavior analysis, failure probability prediction, and sensitivity analysis are performed under the operation conditions of steady-state and transient accidents. In the area of assembly duct analysis; 1) KAFACON-2D program is developed to calculate an array configuration of inner shape of assembly duct, 2) Stress-strain analysis are performed for the components of assembly such as, handling socket, mounting rail and wire wrap, 3) The BDI program is developed to analyze mechanical interaction between pin bundle and duct, 4) a vibration analysis is performed to understand flow-induced vibration of assembly duct, 5) The NUBOW-2D, which is bowing and deformation analysis code for assembly duct, is modified to be operated in KALIMER circumstance, and integrity evaluation of KALIMER core assembly is carried out using the modified NUBOW-2D and the CRAMP code in U.K., and 6) The KALIMER assembly duct is manufactured to be used in flow test. In the area of non-fuel assembly, such as control, reflector, shielding, GEM and USS, the states-of-the-arts and the major considerations in designing are evaluated, and the design concepts are derived. The preliminary design description and their design drawing of KALIMER fuel system are prepared based upon the above mentioned evaluation and analysis. The achievement of conceptual

  13. Metallic fuel design development

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang, H. Y.; Lee, B. O. and others

    1999-04-01

    This report describes the R and D results of the ''Metallic Fuel Design Development'' project that performed as a part of 'Nuclear Research and Development Program' during the '97 - '98 project years. The objectives of this project are to perform the analysis of thermo-mechanical and irradiation behaviors, and preliminary conceptual design for the fuel system of the KALIMER liquid metal reactor. The following are the major results that obtained through the project. The preliminary design requirements and design criteria which are necessary in conceptual design stage, are set up. In the field of fuel pin design, the pin behavior analysis, failure probability prediction, and sensitivity analysis are performed under the operation conditions of steady-state and transient accidents. In the area of assembly duct analysis; 1) KAFACON-2D program is developed to calculate an array configuration of inner shape of assembly duct, 2) Stress-strain analysis are performed for the components of assembly such as, handling socket, mounting rail and wire wrap, 3) The BDI program is developed to analyze mechanical interaction between pin bundle and duct, 4) a vibration analysis is performed to understand flow-induced vibration of assembly duct, 5) The NUBOW-2D, which is bowing and deformation analysis code for assembly duct, is modified to be operated in KALIMER circumstance, and integrity evaluation of KALIMER core assembly is carried out using the modified NUBOW-2D and the CRAMP code in U.K., and 6) The KALIMER assembly duct is manufactured to be used in flow test. In the area of non-fuel assembly, such as control, reflector, shielding, GEM and USS, the states-of-the-arts and the major considerations in designing are evaluated, and the design concepts are derived. The preliminary design description and their design drawing of KALIMER fuel system are prepared based upon the above mentioned evaluation and analysis. The achievement of conceptual design technology on metallic fuel

  14. Fast reactor fuel design and development

    International Nuclear Information System (INIS)

    Bishop, J.F.W.; Chamberlain, A.; Holmes, J.A.G.

    1977-01-01

    Fuel design parameters for oxide and carbide fast reactor fuels are reviewed in the context of minimising the total uranium demands for a combined thermal and fast reactor system. The major physical phenomena conditioning fast reactor fuel design, with a target of high burn-up, good breeding and reliable operation, are characterised. These include neutron induced void swelling, irradiation creep, pin failure modes, sub-assembly structural behaviour, behaviour of defect fuel, behaviour of alternative fuel forms. The salient considerations in the commercial scale fabrication and reprocessing of the fuels are reviewed, leading to the delineation of possible routes for the manufacture and reprocessing of Commercial Reactor fuel. From the desiderata and restraints arising from Surveys, Performance and Manufacture, the problems posed to the Designer are considered, and a narrow range of design alternatives is proposed. The paper concludes with a consideration of the development areas and the conceptual problems for fast reactors associated with those areas

  15. Waste management in IFR [Integral Fast Reactor] fuel cycle

    International Nuclear Information System (INIS)

    Johnson, T.R.; Battles, J.E.

    1991-01-01

    The fuel cycle of the Integral Fast Reactor (IFR) has important potential advantage for the management of high-level wastes. This sodium-cooled, fast reactor will use metal fuels that are reprocessed by pyrochemical methods to recover uranium, plutonium, and the minor actinides from spent core and blanket fuel. More than 99% of all transuranic (TRU) elements will be recovered and returned to the reactor, where they are efficiently burned. The pyrochemical processes being developed to treat the high-level process wastes are capable of producing waste forms with low TRU contents, which should be easier to dispose of. However, the IFR waste forms present new licensing issues because they will contain chloride salts and metal alloys rather than glass or ceramic. These fuel processing and waste treatment methods can also handle TRU-rich materials recovered from light-water reactors and offer the possibility of efficiently and productively consuming these fuel materials in future power reactors

  16. Quantitative fuel motion determination with the CABRI fast neutron hodoscope

    International Nuclear Information System (INIS)

    Baumung, K.; Augier, G.

    1991-01-01

    The fast neutron hodoscope installed at the CABRI reactor in Cadarache, France, is employed to provide quantitative fuel motion data during experiments in which single liquid-metal fast breeder reactor test pins are subjected to simulated accident conditions. Instrument design and performance are reviewed, the methods for the quantitative evaluation are presented, and error sources are discussed. The most important findings are the axial expansion as a function of time, phenomena related to pin failure (such as time, location, pin failure mode, and fuel mass ejected after failure), and linear fuel mass distributions with a 2-cm axial resolution. In this paper the hodoscope results of the CABRI-1 program are summarized

  17. Integrating the fuel cycle at IFR [Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1992-01-01

    During the past few years Argonne National Laboratory has been developing the Integral Fast Reactor (IFR), an advanced liquid metal reactor. Much of the IFR technology stems from Argonne National Laboratory's experience with the Experimental Breeder Reactors, EBR 1 and 2. The unique aspect of EBR 2 is its success with high-burnup metallic fuel. Irradiation tests of the new U-Pu-Zr fuel for the IFR have now reached a burnup level of 20%. The results to date have demonstrated excellent performance characteristics of the metallic fuel in both steady-state and off-normal operating conditions. EBR 2 is now fully loaded with the IFR fuel alloys and fuel performance data are being generated. In turn, metallic fuel becomes the key factor in achieving a high degree of passive safety in the IFR. These characteristics were demonstrated dramatically by two landmark tests conducted at EBR 2 in 1986: loss of flow without scram; and loss of heat sink without scram. They demonstrated that the combination of high heat conductivity of metallic fuel and thermal inertia of the large sodium pool can shut the reactor down during potentially severe accidents without depending on human intervention or the operation of active engineered components. The IFR metallic fuel is also the key factor in compact pyroprocessing. Pyroprocessing uses high temperatures, molten salt and metal solvents to process metal fuels. The result is suitable for fabrication into new fuel elements. Feasibility studies are to be conducted into the recycling of actinides from light water reactor spent fuel in the IFR using the pyroprocessing approach to extract the actinides (author)

  18. Metallic Fuels Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Burkes, Douglas E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cole, James I. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fielding, Randall S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Frank, Steven M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hartmann, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hyde, Timothy A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kennedy, J. Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maddison, Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mariani, Robert D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Middlemas, Scott C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Holleran, Thomas P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sencer, Bulent H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Squires, Leah N. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-07

    This is not a typical External Report--It is a Handbook. No Abstract is involved. This includes both Parts 1 and 2. The Metallic Fuels Handbook summarizes currently available information about phases and phase diagrams, heat capacity, thermal expansion, and thermal conductivity of elements and alloys in the U-Pu-Zr-Np-Am-La-Ce-Pr-Nd system. Although many sections are reviews and updates of material in previous versions of the Handbook [1, 2], this revision is the first to include alloys with four or more elements. In addition to presenting information about materials properties, the handbook attempts to provide information about how well each property is known and how much variation exists between measurements. Although it includes some results from models, its primary focus is experimental data.

  19. New Concept of Designing Composite Fuel for Fast Reactors with Closing Fuel Cycle

    International Nuclear Information System (INIS)

    Savchenko, A.; Vatulin, A.; Uferov, O.; Kulakov, G.; Sorokin, V.

    2013-01-01

    For fast reactors a novel type of promising composite U-PuO2 fuel is proposed which is based on dispersion fuel elements. Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. Novel fuel features higher characteristics in comparison to metallic or MOX fuel its fabrication technology is readily accomplished and is environmentally clean. A possibility is demonstrated of fabricating coated steel claddings to protect from interaction with fuel and fission products when use standard rod type MOX or metallic U-Pu-Zr fuel. Novel approach to reprocessing of composite fuel is demonstrated, which allows to separate uranium from burnt plutonium as well as the newly generated fissile plutonium from burnt one without chemical processes, which simplifies the closing of the nuclear fuel cycle. Novel composite fuel combines the advantages of metallic and ceramic types of fuel and has high uranium density that allows also to implicate it in BREST types reactor with conversion ratio more than 1. Peculiarities of closing nuclear cycle with composite fuel are demonstrated that allows more effective re-usage of generated Pu as well as, minimizing r/a wastes by incineration of MA in specially developed IMF design

  20. Pre-Licensing Evaluation of Legacy SFR Metallic Fuel Data

    Energy Technology Data Exchange (ETDEWEB)

    Yacout, A. M. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Billone, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-09-16

    The US sodium cooled fast reactor (SFR) metallic fuel performance data that are of interest to advanced fast reactors applications, can be attributed mostly to the Integral Fast Reactor (IFR) program between 1984 and 1994. Metallic fuel data collected prior to the IFR program were associated with types of fuel that are not of interest to future advanced reactors deployment (e.g., previous U-Fissium alloy fuel). The IFR fuels data were collected from irradiation of U-Zr based fuel alloy, with and without Pu additions, and clad in different types of steels, including HT9, D9, and 316 stainless-steel. Different types of data were generated during the program, and were based on the requirements associated with the DOE Advanced Liquid Metal Cooled Reactor (ALMR) program.

  1. BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle Allan Lawrence [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williamson, Richard L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Novascone, Stephen Rhead [Idaho National Lab. (INL), Idaho Falls, ID (United States); Medvedev, Pavel G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on the formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.

  2. Quality assurance of metallic fuel pins using Eddy current technique

    International Nuclear Information System (INIS)

    Sasi, B.; Thirunavukkarasu, S.; Rao, B.P.C.; Jayakumar, T.; Baldev Raj

    2009-01-01

    Metallic fuels (U-Pu-Zr) is promising for future fast reactors in view of their higher breeding ratio and burn-up as compared to oxide, carbide and other ceramic fuels. The metallic fuel pins are made of T91 tubes filled with fuel slugs with sodium as bonding material. Quality assurance of metallic fuel pins using non destructive evaluation (NDE) techniques is important. For this, eddy current (EC) technique is a natural choice in view of its sensitivity, speed, versatility and ease of use. NDE of metallic fuel pins comprises of detection of defects in T91 tubes, defects in metallic fuel slugs (2.84 mm diameter) and voids in sodium. For these inspection requirements, separate EC techniques would be employed and in this direction, finite element (FE) modelling has been performed and experimental simulation studies have been carried out. This paper discusses the results of these studies

  3. Chemistry R and D for back end fuel cycle for fast reactors in India

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.

    2011-01-01

    The development of fast reactors and the associated fuel cycle is one of the focal programmes of vital interest for India to meet its energy requirements in the 21st Century in a sustainable manner. The targets for Indian fast reactor fuel cycle include simplification of the fabrication route, irradiation of fuel to high burn-up of over 150 GWd/Te, reprocessing of fuel with minimum cooling period consistent with fuelling cycle of the reactor and with near quantitative recovery, and minimizing of waste volume for ultimate disposal. In the last year, the closure of the fuel cycle for Fast Breeder Test Reactor was established by the reprocessing of the mixed carbide fuel of FBTR and re-fabrication of the fuel. Simultaneously with the construction of the 500 MWe Prototype Fast Breeder Reactor, steps have also been taken for setting up of a fuel cycle facility to close its fuel cycle. For enhancing the growth of the fast reactors in India, and at the same time optimally utilizing its uranium resources, metal fuelled fast breeder reactors are proposed to be established in the next decade. Since the metallic fuels will be reprocessed through the pyrochemical route, R and D for establishing the molten salt electrorefining process for metal fuel has been taken up in a comprehensive manner. The presentation would highlight the chemistry R and D related to back end of fast reactor fuel cycle, being pursued in IGCAR. (author)

  4. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, S.

    1976-01-01

    Reference is made to liquid metal cooled fast breeder reactors of the 'pool' kind. In this type of reactor the irradiated fuel is lowered into a transfer rotor for removal to storage facilities, this rotor normally having provision for the temporary storage of 20 irradiated fuel assemblies, each within a stainless steel bucket. For insertion or withdrawal of a fuel assembly the rotor is rotated to bring the fuel assembly to a loading or discharging station. The irradiated fuel assembly is withdrawn from the rotor within its bucket and the total weight is approximately 1000 kg, which is lifted about 27 m. In the event of malfunction the combination falls back into the rotor with considerable force. In order to prevent damage to the rotor fracture pins are provided, and to prevent damage to the reactor vessel and other parts of the reactor structure deformable energy absorbing devices are provided. After a malfunction the fractured pins and the energy absorbing devices must be replaced by remote control means operated from outside the reactor vault - a complex operation. The object of the arrangement described is to provide improved energy absorbing means for fuel assemblies falling into a fuel transfer rotor. The fuel assemblies are supported in the rotor by elastic means during transfer to storage and a hydraulic dash pot is provided in at least one position below the rotor for absorbing the energy of a falling fuel assembly. It is preferable to provide dash pots immediately below a receiving station for irradiated fuel assemblies and immediately below a discharge station. Each bucket is carried in a container that is elastically supported in the transfer rotor on a helical coil compression spring, so that, in the event of a malfunction the container and bucket are returned to their normal operating position after the force of the falling load has been absorbed by the dash pot. The transfer rotor may also be provided with recoil springs to absorb the recoil energy

  5. Proposed fuel cycle for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Walters, L.C.

    1985-01-01

    One of the key features of ANL's Integral Fast Reactor (IFR) concept is a close-coupled fuel cycle. The proposed fuel cycle is similar to that demonstrated over the first five to six years of operation of EBR-II, when a fuel cycle facility adjacent to EBR-II was operated to reprocess and refabricate rapidly fuel discharged from the EBR-II. Locating the IFR and its fuel cycle facility on the same site makes the IFR a self-contained system. Because the reactor fuel and the uranium blanket are metals, pyrometallurgical processes (shortned to ''pyroprocesses'') have been chosen. The objectives of the IFR processes for the reactor fuel and blanket materials are to (1) recover fissionable materials in high yield; (2) remove fission products adequately from the reactor fuel, e.g., a decontamination factor of 10 to 100; and (3) upgrade the concentration of plutonium in uranium sufficiently to replenish the fissile-material content of the reactor fuel. After the fuel has been reconstituted, new fuel elements will be fabricated for recycle to the reactor

  6. Recent progress in the development of metallic fuel

    International Nuclear Information System (INIS)

    Seidel, B.R.; Batte, G.L.; Dodds, N.E.; Lahm, C.E.; Pahl, R.G.; Tsai, H.C.

    1990-01-01

    Tests to date demonstrate that metallic fuel for advanced liquid metal reactors performs well, is easily reprocessed and refabricated and provides inherent reactor safety within an economic design. The behavior and performance of metallic fuel is key to the demonstration of the Integral Fast Reactor (IFR) concept at Argonne National Laboratory. Since 1985, more than 40 assemblies of experimental fuel in addition to the standard metallic driver fuel for Experimental Breeder Reactor 2 (EBR-2)have been irradiated; several more continue to be designed and fabricated. Results have characterized the influence of a wide range of fabrication, design and material variables upon irradiation behavior throughout the fuel lifetime under normal and upset conditions including operation with breached cladding. Results of test, both in- and out-of-reactor, indicate that metallic fuel is readily and economically fabricated, capable of achieving high exposure and long reactor residence times, and possesses unique and promising safety features. 9 refs., 6 figs

  7. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Duncombe, E.; Thatcher, G.

    1979-01-01

    The invention described relates to a liquid metal cooled fast breeder nuclear reactor in which the fuel assembly has an inner zone comprised mainly of fissile material and a surrounding outer zone comprised mainly of breeder material. According to the invention the sub-assemblies in the outer zone include electro-magnetic braking devices (magnets, pole pieces and armature) for regulating the flow of coolant through the sub-assemblies. The magnetic fields of the electro-magnetic breaking devices are temperature sensitive so that as the power output of the breeder sub-assemblies increases the electro-magnetic resistance to coolant flow is reduced thereby maintaining the temperature of the coolant outlets from the sub-assemblies substantially constant. (UK)

  8. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  9. FAST FLUX TEST FACILITY DRIVER FUEL MEETING

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1966-06-01

    The Pacific Northwest Laboratory has convened this meeting to enlist the best talents of our laboratories and industry in soliciting factual, technical information pertinent to the Pacific Northwest's Laboratory's evaluation of the potential fuel systems for the Fast Flux Test Facility. The particular factors emphasized for these fuel systems are those associated with safety, ability to meet testing objectives, and economics. The proceedings includes twenty-three presentations, along with a transcript of the discussion following each, as well as a summary discussion.

  10. Status of liquid metal cooled fast reactor technology

    International Nuclear Information System (INIS)

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants

  11. Advances in Metallic Fuels for High Burnup and Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.; Fielding, R. S.; Mariani, R. D.; Carmack, W. J.

    2016-10-01

    Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing an annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.

  12. Metallic Reactor Fuel Fabrication for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jong-Hwan; Ko, Young-Mo; Woo, Yoon-Myung; Kim, Ki-Hwan; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The metal fuel for an SFR has such advantages such as simple fabrication procedures, good neutron economy, high thermal conductivity, excellent compatibility with a Na coolant, and inherent passive safety 1. U-Zr metal fuel for SFR is now being developed by KAERI as a national R and D program of Korea. The fabrication technology of metal fuel for SFR has been under development in Korea as a national nuclear R and D program since 2007. The fabrication process for SFR fuel is composed of (1) fuel slug casting, (2) loading and fabrication of the fuel rods, and (3) fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycled streams in this fabrication process. Fabrication on the rod type metallic fuel was carried out for the purpose of establishing a practical fabrication method. Rod-type fuel slugs were fabricated by injection casting. Metallic fuel slugs fabricated showed a general appearance was smooth.

  13. Advancing liquid metal reactor technology with nitride fuels

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.; Matthews, R.B.

    1991-08-01

    A review of the use of nitride fuels in liquid metal fast reactors is presented. Past studies indicate that both uranium nitride and uranium/plutonium nitride possess characteristics that may offer enhanced performance, particularly in the area of passive safety. To further quantify these effects, the analysis of a mixed-nitride fuel system utilizing the geometry and power level of the US Advanced Liquid Metal Reactor as a reference is described. 18 refs., 2 figs., 2 tabs

  14. Utility industry evaluation of the metal fuel facility and metal fuel performance for liquid metal reactors

    International Nuclear Information System (INIS)

    Burstein, S.; Gibbons, J.P.; High, M.D.; O'Boyle, D.R.; Pickens, T.A.; Pilmer, D.F.; Tomonto, J.R.; Weinberg, C.J.

    1990-02-01

    A team of utility industry representatives evaluated the liquid metal reactor metal fuel process and facility conceptual design being developed by Argonne National Laboratory (ANL) under Department of Energy sponsorship. The utility team concluded that a highly competent ANL team was making impressive progress in developing high performance advanced metal fuel and an economic processing and fabrication technology. The utility team concluded that the potential benefits of advanced metal fuel justified the development program, but that, at this early stage, there are considerable uncertainties in predicting the net overall economic benefit of metal fuel. Specific comments and recommendations are provided as a contribution towards enhancing the development program. 6 refs

  15. IAEA Activities in the Area of Fast Reactors and Related Fuels and Fuel Cycles

    International Nuclear Information System (INIS)

    Monti, S.; Basak, U.; Dyck, G.; Inozemtsev, V.; Toti, A.; Zeman, A.

    2013-01-01

    Summary: • The IAEA role to support fast reactors and associated fuel cycle development programmes; • Main IAEA activities on fast reactors and related fuel and fuel cycle technology; • Main IAEA deliverables on fast reactors and related fuel and fuel cycle technology

  16. Development of alternate extractant systems for fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.; Suresh, A.; Venkatesan, K.A.; Srinivasan, T.G.; Raj, Baldev

    2007-01-01

    Due to the limitations of TBP in processing of high burn-up, Pu-rich fast reactor fuels, there is a need to develop alternate extractants for fast reactor fuel processing. In this context, our Centre has been examining the suitability of alternate tri-alkyl phosphates. Third phase formation in the extraction of Th(IV) by TBP, tri-n-amyl phosphate (TAP) and tri-2-methyl-butyl phosphate (T2MBP) from nitric acid media has been investigated under various conditions to derive conclusions on their application for extraction of Pu at macro levels. The chemical and radiolytic degradation of tri-n-amyl-phosphate (TAP) diluted in normal paraffin hydrocarbon (NPH) in the presence of nitric acid has been investigated by the measurement of plutonium retention in organic phase. The potential application of room temperature ionic liquids (RTILs) for reprocessing of spent nuclear fuel has been explored. Extraction of uranium (VI) and palladium (II) from nitric acid medium by commercially available RTIL and tri-n-butyl phosphate solution in RTIL have been studied and the feasibility of electrodeposition of uranium as uranium oxide (UO 2 ) and palladium (II) as metallic palladium from the loaded organic phase have been demonstrated. This paper describes results of the above studies and discusses the suitability of the systems for fast reactor fuel reprocessing. (authors)

  17. Reprocessing of ''fast'' fuel in France

    International Nuclear Information System (INIS)

    Sauteron, J.; Bourgeois, M.; Le Bouhellec, J.; Miquel, P.

    1976-05-01

    The results of laboratory studies as well as pilot testing (AT-I La Hague, Marcoule, Fontenay-aux-Roses) in reprocessing of fast breeder reactor fuels are described. The paper covers all steps: head end, aqueous and fluoride volatility processes, and waste treatment. In conclusion, it is demonstrated why it is still too early to define a strategy of industrial reprocessing for this reactor type

  18. Studies of Lanthanide Transport in Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo; Taylor, Christopher

    2018-04-02

    Metallic nuclear fuels were tested in fast reactor programs and performed well. However, metallic fuels have shown the phenomenon of FCCI that are due to deleterious reactions between lanthanide fission products and cladding material. As the burnup is increased, lanthanide fission products that contact with the cladding could react with cladding constituents such as iron and chrome. These reactions produce higher-melting intermetallic compounds and low-melting alloys, and weaken the mechanical integrity. The lanthanide interaction with clad in metallic fuels is recognized as a long-term, high-burnup cause of the clad failures. Therefore, one of the key concerns of using metallic fuels is the redistribution of lanthanide fission products and migration to the fuel surface. It is believed that lanthanide migration is in part due to the thermal gradient between the center and the fuel-cladding interface, but also largely in part due to the low solubility of lanthanides within the uranium-based metal fuel. PIE of EBR-II fuels shows that lanthanides precipitate directly and do not dissolve to an appreciable extent in the fuel matrix. Based on the PIE data from EBR-II, a recent study recommended a so-called “liquid-like” transport mechanism for lanthanides and certain other species. The liquid-like transport model readily accounts for redistribution of Ln, noble metal fission products, and cladding components in the fuel matrix. According to the novel mechanism, fission products can transport as solutes in liquid metals, such as liquid cesium or liquid cesium–sodium, and on pore surfaces and fracture surfaces for metals near their melting temperatures. Transport in such solutions is expected to be much more rapid than solid-state diffusion. The mechanism could explain the Ln migration to the fuel slug peripheral surface and their deposition with a sludge-like form. Lanthanides have high solubility in liquid cesium but have low solubility in liquid sodium. As a

  19. Treatment of Corroded Metallic Uranium Fuel

    International Nuclear Information System (INIS)

    Stridsman, H.; Ekeroth, E.; Hallberg, B.; Hellsten, E.; Lindberg, M.; Nordlinder, S.

    2009-01-01

    This paper describes the extensive planning and treatment of corroded metallic uranium fuel performed in Studsvik in 2007. This included conversion of possible pyrophoric uranium hydride to uranium oxide and separation of intact parts of fuel rods from corrosion products. The first nuclear reactor in Sweden was the R1 reactor in Stockholm, with fuel of natural metallic uranium. After shut-down of the reactor, part of the fuel had been placed in waterproof canisters in an interim storage pool at Studsvik. In 1988, corrosion of the fuel had been discovered in one of the canisters due to water leakage. Exposure of metallic uranium to water causes pyrophoric uranium hydride to be formed, which poses a severe risk of fire or explosion if subjected to oxygen in air. The canister with corroded fuel had then been placed in an outer container to which inert gas with low oxygen concentration was supplied, in order to slowly oxidize hydride. A project to take care of the corroded fuel was set up in 2006, comprising several preparatory steps: research, equipment design, pre-treatment and safety-case demonstrations. Treatment comprised two stages, pre-treatment at the storage location, and final treatment in a hot-cell. The pre-treatment stage was performed in order to study the reaction inside the container with a controlled oxygen supply and regularly control of atmosphere inside the container. In addition, equipment was developed for controlled movement of the container. The results from the pre-treatment stage were used for the planning and acceptance of the transport to and handling in the hot-cell facility in Studsvik. The work performed in the hot-cell consisted of opening the container, sequentially cutting the container and canister and separation of intact parts of fuel rods from the corrosion products and cladding, top and bottoms of aluminium. No evidence of uranium hydride was found throughout the operation. The corrosion products was expected to be in form of

  20. Dimensional, microstructural and compositional stability of metal fuels

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, A.A.; Dayananda, M.A.

    1993-03-15

    The projects undertaken were to address two areas of concern for metal-fueled fast reactors: metallurgical compatibility of fuel and its fission products with the stainless steel cladding, and effects of porosity development in the fuel on fuel/cladding interactions and on sodium penetration in fuel. The following studies are reported on extensively in appendices: hot isostatic pressing of U-10Zr by coupled boundary diffusion/power law creep cavitation, liquid Na intrusion into porous U-10Zr fuel alloy by differential capillarity, interdiffusion between U-Zr fuel and selected Fe-Ni-Cr alloys, interdiffusion between U-Zr fuel vs selected cladding steels, and interdiffusion of Ce in Fe-base alloys with Ni or Cr.

  1. Dimensional, microstructural and compositional stability of metal fuels

    International Nuclear Information System (INIS)

    Solomon, A.A.; Dayananda, M.A.

    1993-01-01

    The projects undertaken were to address two areas of concern for metal-fueled fast reactors: metallurgical compatibility of fuel and its fission products with the stainless steel cladding, and effects of porosity development in the fuel on fuel/cladding interactions and on sodium penetration in fuel. The following studies are reported on extensively in appendices: hot isostatic pressing of U-10Zr by coupled boundary diffusion/power law creep cavitation, liquid Na intrusion into porous U-10Zr fuel alloy by differential capillarity, interdiffusion between U-Zr fuel and selected Fe-Ni-Cr alloys, interdiffusion between U-Zr fuel vs selected cladding steels, and interdiffusion of Ce in Fe-base alloys with Ni or Cr

  2. Fuels and materials testing capabilities in Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Baker, R.B.; Chastain, S.A.; Culley, G.E.; Ethridge, J.L.; Lovell, A.J.; Newland, D.J.; Pember, L.A.; Puigh, R.J.; Waltar, A.E.

    1989-01-01

    The Fast Flux Test Facility (FFTF) reactor, which started operating in 1982, is a 400 MWt sodium-cooled fast neutron reactor located in Hanford, Washington State, and operated by Westinghouse Hanford Co. under contract with U.S. Department of Energy. The reactor has a wide variety of functions for irradiation tests and special tests, and its major purpose is the irradiation of fuel and material for liquid metal reactor, nuclear reactor and space reactor projects. The review first describes major technical specifications and current conditions of the FFTF reactor. Then the plan for irradiation testing is outlined focusing on general features, fuel pin/assembly irradiation tests, and absorber irradiation tests. Assemblies for special tests include the material open test assembly (MOTA), fuel open test assembly (FOTA), closed loop in-reactor assembly (CLIRA), and other special fuel assemblies. An interim examination and maintenance cell (FFTF/IEM cell) and other hot cells are used for nondestructive/destructive tests and physical/mechanical properties test of material after irradiation. (N.K.)

  3. Behavior of metallic fuel in treat transient overpower tests

    International Nuclear Information System (INIS)

    Bauer, T.H.; Wright, A.E.; Robinson, W.R.; Klickman, A.E.

    1988-01-01

    Results and analyses are reported for TREAT in-pile transient overpower tests of margin to cladding failure and pre-failure axial expansion of metallic fuel. In all cases the power rise was exponential on an 8 s period until either incipient or actual cladding failure was achieved. Test fuel included EBR-II driver fuel and ternary alloy, the reference fuel of the Intergral Fast Reactor concept. Test pin burnup spanned the widest range available. The nature of the observed cladding failure and resultant fuel dispersals is described. Simple models are presented which describe observed cladding failures and pre-failure axial expansions yet are general enough to apply to all metal fuel types

  4. Modeling of constituent redistribution in U Pu Zr metallic fuel

    Science.gov (United States)

    Kim, Yeon Soo; Hayes, S. L.; Hofman, G. L.; Yacout, A. M.

    2006-12-01

    A computer model was developed to analyze constituent redistribution in U-Pu-Zr metallic nuclear fuels. Diffusion and thermochemical properties were parametrically determined to fit the postirradiation data from a fuel test performed in the Experimental Breeder Reactor II (EBR-II). The computer model was used to estimate redistribution profiles of fuels proposed for the conceptual designs of small modular fast reactors. The model results showed that the level of redistribution of the fuel constituents of the designs was similar to the measured data from EBR-II.

  5. Fast Reactor Spent Fuel Processing: Experience and Criticality Safety

    International Nuclear Information System (INIS)

    Chad Pope

    2007-01-01

    This paper discusses operational and criticality safety experience associated with the Idaho National Laboratory Fuel Conditioning Facility which uses a pyrometallurgical process to treat spent fast reactor metallic fuel. The process is conducted in an inert atmosphere hot cell. The process starts with chopping metallic fuel elements into a basket. The basket is lowered into molten salt (LiCl-KCl) along with a steel mandrel. Active metal fission products, transuranic metals and sodium metal in the spent fuel undergo chemical oxidation and form chlorides. Voltage is applied between the basket, which serves as an anode, and the mandrel, which serves as a cathode, causing metallic uranium in the spent fuel to undergo electro-chemical oxidation thereby forming uranium chloride. Simultaneously at the cathode, uranium chloride undergoes electro-chemical reduction and deposits uranium metal onto the mandrel. The uranium metal and accompanying entrained salt are placed in a distillation furnace where the uranium melts forming an ingot and the entrained salt boils and subsequently condenses in a separate crucible. The uranium ingots are placed in long term storage. During the ten year operating history, over one hundred criticality safety evaluations were prepared. All criticality safety related limits and controls for the entire process are contained in a single document which required over thirty revisions to accommodate the process changes. Operational implementation of the limits and controls includes use of a near real-time computerized tracking system. The tracking system uses an Oracle database coupled with numerous software applications. The computerized tracking system includes direct fuel handler interaction with every movement of material. Improvements to this system during the ten year history include introduction of web based operator interaction, tracking of moderator materials and the development of a plethora database queries to assist in day to day

  6. Overview of the fast reactors fuels program. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides.

  7. Low Loss Advanced Metallic Fuel Casting Evaluation

    International Nuclear Information System (INIS)

    Kim, Kihwan; Ko, Youngmo; Kim, Jonghwan; Song, Hoon; Lee Chanbock

    2014-01-01

    The fabrication process for SFR fuel is composed of fuel slug casting, loading and fabrication of the fuel rods, and the fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycles streams in the fabrication process. Recycle streams include fuel slug reworks, returned scraps, and fuel casting heels, which are a special concern in the counter gravity injection casting process because of the large masses involved. Large recycle and waste streams result in lowering the productivity and the economic efficiency of fuel production. To increase efficiency the fuel losses in the furnace chamber, crucible, and the mold, after casting a considerable amount of fuel alloy in the casting furnace, will be quantitatively evaluated. After evaluation the losses will be identified and minimized. It is expected that this study will contribute to the minimization of fuel losses and the wastes streams in the fabrication process of the fuel slugs. Also through this study the technical readiness level of the metallic fuel fabrication process will be further enhanced. In this study, U-Zr alloy system fuel slugs were fabricated by a gravity casting method. Metallic fuel slugs were successfully fabricated with 19 slugs/batch with diameter of 5mm and length of 300mm. Fuel losses was quantitatively evaluated in casting process for the fuel slugs. Fuel losses of the fuel slugs were so low, 0.1∼1.0%. Injection casting experiments have been performed to reduce the fuel loss and improve the casting method. U-Zr fuel slug having φ5.4-L250mm was soundly fabricated with 0.1% in fuel loss. The fuel losses could be minimized to 0.1%, which showed that casting technology of fuel slugs can be a feasible approach to reach the goal of the fuel losses of 0.1% or less in commercial scale

  8. Recent metal fuel safety tests in TREAT

    International Nuclear Information System (INIS)

    Wright, A.E.; Bauer, T.H.; Lo, R.K.; Robinson, W.R.; Palm, R.G.

    1986-01-01

    In-reactor safety tests have been performed on metal-alloy reactor fuel to study its response to transient-overpower conditions, in particular, the margin to cladding breach and the axial self-extrusion of fuel within intact cladding. Uranium-fissium EBR-II driver fuel elements of several burnups were tested, some to cladding breach and others to incipient breach. Transient fuel motions were monitored, and time and location of breach were measured. The test results and computations of fuel extrusion and cladding failure in metal-alloy fuel are described

  9. Casting of metallic fuel containing minor actinide additions

    International Nuclear Information System (INIS)

    Trybus, C.L.; Henslee, S.P.; Sanecki, J.E.

    1992-01-01

    A significant attribute of the Integral Fast Reactor (IFR) concept is the transmutation of long-lived minor actinide fission products. These isotopes require isolation for thousands of years, and if they could be removed from the waste, disposal problems would be reduced. The IFR utilizes pyroprocessing of metallic fuel to separate auranium, plutonium, and the minor actinides from nonfissionable constituents. These materials are reintroduced into the fuel and reirradiated. Spent IFR fuel is expected to contain low levels of americium, neptunium, and curium because the hard neutron spectrum should transmute these isotopes as they are produced. This opens the possibility of using an IFR to trnasmute minor actinide waste from conventional light water reactors (LWRs). A standard IFR fuel is based on the alloy U-20% Pu-10% Zr (in weight percent). A metallic fuel system eases the requirements for reprocessing methods and enables the minor actinide metals to be incorporated into the fuel with simple modifications to the basic fuel casting process. In this paper, the authors report the initial casting experience with minor actinide element addition to an IFR U-Pu-Zr metallic fuel

  10. Status of the Integral Fast Reactor fuel cycle demonstration and waste management practices

    International Nuclear Information System (INIS)

    Benedict, R.W.; Goff, K.M.; McFarlane, H.F.

    1994-01-01

    Over the past few years, Argonne National Laboratory has been preparing for the demonstration of the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety and operations, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle, which will be demonstrated at Argonne-West in Idaho, employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The required facility modifications and process equipment for the demonstration are nearing completion. Their status and the results from initial fuel fabrication work, including the waste management aspects, are presented. Additionally, estimated compositions of the various process waste streams have been made, and characterization and treatment methods are being developed. The status of advanced waste processing equipment being designed and fabricated is described

  11. Advanced fuels for fast breeder reactors

    International Nuclear Information System (INIS)

    Potter, P.E.; Spear, K.E.

    1979-01-01

    In this paper we have assessed critically six ternary systems of great significance to the preparation, fabrication and performance of advanced fuels for use in fast breeder nuclear reactors. The systems which have been considered are uranium-carbon-oxygen, plutonium-carbon-oxygen, uranium-carbon-nitrogen, plutonium-carbon-nitrogen, uranium-nitrogen-oxygen and plutonium nitrogen-oxygen. All the systems are characterized by partial or complete solid solutions and a major task of this assessment has been to develop simple models for these solutions which allow consistency between the known thermodynamic and phase equilibria data of the binary systems and the known condensed and gaseous phase equilibria of the ternary systems. Either ideal or regular solution models have been employed to describe the behaviour of the various solutions. (orig.) [de

  12. Irradiation experience with HT9-clad metallic fuel

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Tsai, H.; Billone, M.C.

    1991-01-01

    The safe and reliable performance of metallic fuel is currently under study and demonstration in the Integral Fast Reactor program. In-reactor tests of HT9-clad metallic fuel have now reached maturity and have all shown good performance characteristics to burnups exceeding 17.5 at. % in the lead assembly. Because this low-swelling tempered martensitic alloy is the cladding of choice for high fluence applications, the experimental observations and performance modelling efforts reported in this paper play an important role in demonstrating reliability

  13. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wegst, Ulrike G.K. [Dartmouth College, Hanover, NH (United States). Thayer School of Engineering; Allen, Todd [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States)

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  14. Thermal analysis of metallic fuel for future FBRs

    International Nuclear Information System (INIS)

    Verma, Vishnu; Ghosh, A.K.

    2009-08-01

    A conceptual design of metallic fuel for future Fast Breeder Reactors (FBRs) has been studied. Main objective of metallic fuel is to increase breeding ratio besides power production. The fuel consists of U-Pu binary alloy cladded in T91 alloy with Zr layer between the fuel slug and cladding material and helium gas in semicircular groove region. Temperature distribution of this fuel has been evaluated for different Linear Heat Rate (LHR) for two types of geometry having two and four longitudinal grooves. Analysis has been done in two steps. In first step location of the maximum centerline and clad temperature with corresponding LHR and coolant temperature have been evaluated based on analytical method for circular cylindrical fuel without groove. In second step detailed temperature distribution obtained with the help of Finite Element Method by knowing LHR and coolant temperature at those locations. First step is necessary for 2-D FEM analysis. Contact element has been considered between fuel and clad. Contact pressure due to differential thermal expansion between fuel and clad has been evaluated by finite element method. Input data required for gap conductance was obtained from various models available for gaseous and solid to solid conductance. Effect of contact pressure and thermal conductivity of gas on gap conduction has been studied. Based on detailed temperature distribution it was found that Limiting value of LHR is first reached by clad eutectic temperature between T91 and U-Pu than fuel centerline temperature based on solidus temperature of fuel. (author)

  15. Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.; Wachs, D.; Carmack, J.; Woolstenhulme, N.

    2017-01-01

    The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, and salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.

  16. The integral fast reactor fuels reprocessing laboratory at Argonne National Laboratory, Illinois

    International Nuclear Information System (INIS)

    Wolson, R.D.; Tomczuk, Z.; Fischer, D.F.; Slawecki, M.A.; Miller, W.E.

    1986-09-01

    The processing of Integral Fast Reactor (IFR) metal fuel utilizes pyrochemical fuel reprocessing steps. These steps include separation of the fission products from uranium and plutonium by electrorefining in a fused salt, subsequent concentration of uranium and plutonium for reuse, removal, concentration, and packaging of the waste material. Approximately two years ago a facility became operational at Argonne National Laboratory-Illinois to establish the chemical feasibility of proposed reprocessing and consolidation processes. Sensitivity of the pyroprocessing melts to air oxidation necessitated operation in atmosphere-controlled enclosures. The Integral Fast Reactor Fuels Reprocessing Laboratory is described

  17. Small liquid metal reactor for an initial phase of fast breeder reactor introduction

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Nascimento, J.A. do.

    1985-01-01

    Safety and burnup characteristics of a 1000 MWth liquid metal reactor have been examined for various fuel types. With metallic Pu/Th fuel containing a small amount of zirconium hydride, low sodium-void reactivity, a high Doppler coefficient, and small burnup reactivity swings can be achieved. A conservative design is considered for an initial phase of fast breeder reactor development and possible modifications are discussed. (Author) [pt

  18. Development of Melting Crucible Materials of Metallic Fuel Slug for SFR

    International Nuclear Information System (INIS)

    Kim, K. H.; Lee, C. T.; Oh, S. J.; Kim, S. K.; Lee, C. B.; Ko, Y. M.; Woo, W. M.

    2010-01-01

    The fabrication process of metallic fuel for SFR(sodium fast reactor) of Generation-IV candidate reactors is composed of the fabrication of fuel pin, fuel rod, and fuel assembly. The key technology of the fabrication process for SFR can be referred to the fabrication technology of fuel pin. As SFR fuel contains MA(minor actinide) elements proceeding the recycling of actinide elements, it is so important to extinguish MA during irradiation in SFR, included in nuclear fuel through collection of volatile MA elements during fabrication of fuel pin. Hence, it is an imminent circumstance to develop the fabrication process of fuel pin. This report is an state-of art report related to the characteristics of irradiation performance for U-Zr-Pu metallic fuel, and the apparatus and the technology of conventional injection casting process. In addition, to overcome the drawbacks of the conventional injection casting and the U-Zr-Pu fuel, new fabrication technologies such as the gravity casting process, the casting of fuel pin to metal-barrier mold, the fabrication of particulate metallic fuel utilizing centrifugal atomization is surveyed and summarized. The development of new U-10Mo-X metallic fuel as nuclear fuel having a single phase in the temperature range between 550 and 950 .deg. C, reducing the re-distribution of the fuel elements and improving the compatibility between fuel and cladding, is also surveyed and summarized

  19. Status and perspectives of developing the fuel elements for nuclear power plants with thermal and fast reactors

    International Nuclear Information System (INIS)

    Reshetnikov, F.G.

    1981-01-01

    The attained level of fabrication of fuel and fuel elements for thermal and fast reactors is considered. A brief estimation of the fuel element quality is given. New requirements to fuel elements under development and the ways of increasing the thermal reactor fuel element operating life are discussed. The methods of the mixed uranium-plutonium oxide fuel fabrication and perspective carbide and metal fuels are considered in conformity with the fast reactors. The quality of steels, used while fabricating fuel elements and hexahedral fuel assembly shrouds is estimated. It is noted that for the last years new success is achieved in increasing the quality of fuel rods: fuel pellet density is increased and their spread in density is descrised, the content of such unwanted impurities, as fluorine and moisture is essentially reduced. The methods of fuel element sealing are reliably developed. The welding process is automated. Technological process and finished product quality control ensures fabrication of high-quality fuel elements. Premature fuel element tightness failure becomes an occasional phenomenon and the number of such fuel elements is reduced to 0.01%. Two principally different methods for fabricating the mixed fuel - codeposition and mechanical mixing, giving a rather uniform uranium and plutonium distribution in the fuel rod are developed and adopted. The conclusion is made that by common efforts of scientists and designers in collaboration with production workers modern mechanized and automated industrial production of fuel elements for thermal and fast reactors, meeting increasing requirements of the country, nuclear power engineering is created [ru

  20. Concept of a subcritical transmutation system with fast neutron spectrum and liquid fuel

    International Nuclear Information System (INIS)

    Tittelbach, S.

    2002-11-01

    The annual amount of nearly 9500 t of spent fuel from worldwide industrial nuclear energy utilization has to be disposed as high level waste. The retention of nuclear waste from the biosphere has to be assured until the radiological risk decreases to tolerable levels. The long-term radiological risk of spent fuel is dominated by actinide elements, i.e. plutonium, americium and curium. It is intended to reduce this amount of high level waste by Partitioning and Transmutation, so that the radiotoxicity of the disposed waste falls short of the reference value of fresh fuel decaying naturally after about thousand years. For this time period the retention of high level waste can be assured by technical means. The scope of this work is the design of a subcritical fast transmutation system with liquid metal cooling and liquid metal fuel. The lead bismuth eutectic has been choosen as the liquid metal coolant and fuel carrier. To dissolve at least 3 at% of transuran elements, a minimum fuel temperature of 600 C is required. The calculations were carried out with a fuel composition, which results from two plutonium recycling steps in a thorium fuel cycle. Two homogeneous and two heterogeneous blankets have been designed and evaluated leading to one preferred heterogeneous blanket design, which has been investigated in more detail. This blanket design merges the positive properties of a solid fuel system (better control of fuel and reactivity because of smaller and closed fuel volumina) and a liquid fuel system (continous charge and discharge or extraction of fission products). The blanket design is based on the core design of fast breeder liquid metal reactors. It consists of hexagonal fuel elements housing up to six annular shaped fuel cylinders. The hexagonal shape of the fuel elements leads to three fuel zones positioned concentrically around the central spallation target. There is a strong heterogeneous distribution of power and heat flux in this blanket design. Besides

  1. Assessment of Startup Fuel Options for a Test or Demonstration Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walters, L. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO2 and UO2-PuO2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availability are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.

  2. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Durston, J.G.

    1976-01-01

    It is stated that in a liquid metal cooled fast breeder reactor wherein the core, intermediate heat exchangers and liquid metal pumps are immersed in a pool of coolant such as Na, the intermediate heat exchangers are suspended from the roof, and ducting is provided in the form of a core tank or shroud interconnected with 'pods' housing the intermediate exchangers for directing coolant from the core over the heat exchanger tubes and thence back to the main pool of liquid metal. Seals are provided between the intermediate heat exchanger shells and the walls of their 'pods' to prevent liquid metal flow by-passing the heat exchanger tube bundles. As the heat exchangers must be withdrawable for servicing, and because linear differential thermal expansion of the heat exchanger and its 'pod' must be accommodated the seals hitherto have been of the sliding kind, generally known as 'piston ring type seals'. These present several disadvantages; for example sealing is not absolute, and the metal to metal seal gives rise to wear and fretting by rubbing and vibration. This could lead to seizure or jamming by the deposition of impurities in the coolant. Another difficulty arises in the need to accommodate lateral thermal expansion of the ducting, including the core tank and 'pods'. Hitherto some expansion has been allowed for by the use of expansible bellow pairs in the interconnections, or alternatively by allowing local deformations of the core tank 'pods'. Such bellows must be very flexible and hence constitute a weak section of the ducting, and local deformations give rise to high stress levels that could lead to premature failure. The arrangement described seeks to overcome these difficulties by use of a gas pocket trapping means to effect a seal against vertical liquid flow between the heat exchanger shell and the wall of the heat exchanger housing. Full details of the arrangement are described. (U.K.)

  3. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  4. Fission gas retention in irradiated metallic fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Gruber, E.E.; Kramer, J.M.

    1987-01-01

    Theoretical calculations and experimental measurements of the quantity of retained fission gas in irradiated metallic fuel (U-5Fs) are presented. The calculations utilize the Booth method to model the steady-state release of gases from fuel grains and a simplified grain-boundary gas model to predict the gas release from intergranular regions. The quantity of gas retained in as-irradiated fuel was determined by collecting the gases released from short segments of EBR-II driver fuel that were melted in a gas-tight furnace. Comparison of the calculations to the measurements shows quantitative agreement with both the magnitude and the axial variation of the retained gas content

  5. Statistical estimation of fast-reactor fuel-element lifetime

    International Nuclear Information System (INIS)

    Proshkin, A.A.; Likhachev, Yu.I.; Tuzov, A.N.; Zabud'ko, L.M.

    1980-01-01

    On the basis of a statistical analysis, the main parameters having a significant influence on the theoretical determination of fuel-element lifetimes in the operation of power fast reactors in steady power conditions are isolated. These include the creep and swelling of the fuel and shell materials, prolonged-plasticity lag, shell-material corrosion, gap contact conductivity, and the strain diagrams of the shell and fuel materials obtained for irradiated materials at the corresponding strain rates. By means of deeper investigation of these properties of the materials, it is possible to increase significantly the reliability of fuel-element lifetime predictions in designing fast reactors and to optimize the structure of fuel elements more correctly. The results of such calculations must obviously be taken into account in the cost-benefit analysis of projected new reactors and in choosing the optimal fuel burnup. 9 refs

  6. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving near constant input inventory of Pu and near stable Pu isotopic composition after a few recycles of the same fuel of the prototype fast breeder ...

  7. Development of fuels and structural materials for fast breeder reactors

    Indian Academy of Sciences (India)

    Fast breeder reactors (FBRs) are destined to play a crucial role inthe Indian nuclear power programme in the foreseeable future. FBR technology involves a multi-disciplinary approach to solve the various challenges in the areas of fuel and materials development. Fuels for FBRs have significantly higher concentration of ...

  8. Development of fuels and structural materials for fast breeder reactors

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    technology for the energy security of India in the 21st century. Keywords. Fast breeder reactor .... The design of the nuclear fuel is an important aspect which has to be optimised for efficient, economic and safe ..... Recycling of plutonium present in the irradiated fuel with minimum delay is important to ensure rapid growth of ...

  9. Experience on Russian military origin plutonium conversion into fast reactor nuclear fuel

    International Nuclear Information System (INIS)

    Grachev, A.F.; Skiba, O.V.; Bychkov, A.V.; Mayorshin, A.A.; Kisly, V.A.; Bobrov, D.A.; Osipenko, A.G.; Babikov, L.G.; Mishinev, V.B.

    2001-01-01

    According to the Concept of Russian Minatom on military plutonium excess utilization, the State Scientific Center of Russian Federation ''Research Institute of Atomic Reactors'' (Dimitrovgrad) has begun study on possibility of technological processing of the metal military plutonium into MOX fuel. The Program and the stages of its realization are submitted in the paper. During 1998-2000 the first stage of the Program was fulfilled and 50 kg of military origin metallic plutonium was converted to MOX fuel for the BOR-60 and BN-600 reactor. The plutonium conversion into MOX fuel is carried out under the original technology developed by SSC RIAR. It includes pyro-electrochemical process for production of fuel on the domestic equipment with the subsequent fuel pins manufacturing for the fast reactors by the vibro-packing method. The produced MOX fuel is purified from alloy additives (Ga) and corresponds to the vibro-packed fuel standard for fast reactors. The fuel pins manufacturing for BOR-60 and BN-600 reactors are carried out by the vibro-packing method on a standard procedure, which is used in SSC RIAR more than 20 years. (author)

  10. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Lin, C. S. [Purdue Univ., West Lafayette, IN (United States); Hader, J. S. [Purdue Univ., West Lafayette, IN (United States); Park, T. K. [Purdue Univ., West Lafayette, IN (United States); Deng, P. [Purdue Univ., West Lafayette, IN (United States); Yang, G. [Purdue Univ., West Lafayette, IN (United States); Jung, Y. S. [Purdue Univ., West Lafayette, IN (United States); Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Stauff, N. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-30

    This report presents the performance characteristics of two “two-stage” fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the discharged fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements

  11. Waste removal in pyrochemical fuel processing for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.; Laidler, J.J.

    1994-01-01

    Electrorefining in a molten salt electrolyte is used in the Integral Fast Reactor fuel cycle to recover actinides from spent fuel. Processes that are being developed for removing the waste constituents from the electrorefiner and incorporating them into the waste forms are described in this paper. During processing, halogen, chalcogen, alkali, alkaline earth, and rare earth fission products build up in the molten salt as metal halides and anions, and fuel cladding hulls and noble metal fission products remain as metals of various particle sizes. Essentially all transuranic actinides are collected as metals on cathodes, and are converted to new metal fuel. After processing, fission products and other waste are removed to a metal and a mineral waste form. The metal waste form contains the cladding hulls, noble metal fission products, and (optionally) most rare earths in a copper or stainless steel matrix. The mineral waste form contains fission products that have been removed from the salt into a zeolite or zeolite-derived matrix

  12. Neutron intensity of fast reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Misao; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Neutron intensity of spent fuel of the JOYO Mk-II core with a burnup of 62,500 MWd/t and cooling time of 5.2 years was measured at the spent fuel storage pond. The measured data were compared with the calculated values based on the JOYO core management code system `MAGI`, and the average C/E approximately 1.2 was obtained. It was found that the axial neutron intensity didn`t simply follow the burnup distribution, and the neutron intensity was locally increased at the bottom end of the fuel region due to an accumulation of {sup 244}Cm. (author)

  13. Fast Reactor Fuel Cycle Cost Estimates for Advanced Fuel Cycle Studies

    International Nuclear Information System (INIS)

    Harrison, Thomas

    2013-01-01

    Presentation Outline: • Why Do I Need a Cost Basis?; • History of the Advanced Fuel Cycle Cost Basis; • Description of the Cost Basis; • Current Work; • Fast Reactor Fuel Cycle Applications; • Sample Fuel Cycle Cost Estimate Analysis; • Future Work

  14. Simulated first operating campaign for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Park, K.H.; Ackerman, J.P.

    1993-01-01

    This report discusses the Integral Fast Reactor (IFR) which is an innovative liquid-metal-cooled reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid-metal cooling to offer significant improvements in reactor safety, operation, fuel cycle-economics, environmental protection, and safeguards. Over the next few years, the IFR fuel cycle will be demonstrated at Argonne-West in Idaho. Spent fuel from the Experimental Breeder Reactor II (EBR-II) win be processed in its associated Fuel Cycle Facility (FCF) using a pyrochemical method that employs molten salts and liquid metals in an electrorefining operation. As part of the preparation for the fuel cycle demonstration, a computer code, PYRO, was developed at Argonne to model the electrorefining operation using thermodynamic and empirical data. This code has been used extensively to evaluate various operating strategies for the fuel cycle demonstration. The modeled results from the first operating campaign are presented. This campaign is capable of processing more than enough material to refuel completely the EBR-II core

  15. Evolution of the liquid metal reactor: The Integral Fast Reactor (IFR) concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) concept has been under development at Argonne National Laboratory since 1984. A key feature of the IFR concept is the metallic fuel. Metallic fuel was the original choice in early liquid metal reactor development. Solid technical accomplishments have been accumulating year after year in all aspects of the IFR development program. But as we make technical progress, the ultimate potential offered by the IFR concept as a next generation advanced reactor becomes clearer and clearer. The IFR concept can meet all three fundamental requirements needed in a next generation reactor. This document discusses these requirements: breeding, safety, and waste management. 5 refs., 4 figs

  16. Plans for the development of the IFR [Integral Fast Reactor] fuel cycle

    International Nuclear Information System (INIS)

    Johnson, T.R.

    1986-01-01

    The Integral Fast Reactor (IFR) is a concept for a self-contained facility in which several sodium-cooled fast reactors of moderate size are located at the same site along with complete fuel-recycle and waste-treatment facilities. After the initial core loading with enriched uranium or plutonium, only natural or depleted uranium is shipped to the plant, and only wastes in final disposal forms are shipped out. The reactors have driver and blanket fuels of uranium-plutonium-zirconium alloys in stainless steel cladding. The use of metal alloy fuels is central to the IFR concept, contributing to the inherent safety of the reactor, the ease of reprocessing, and the relatively low capital and operating costs. Discharged fuels are recovered in a pyrochemical process that consists of two basic steps: an electrolytic process to separate fission products from actinides, and halide slagging to separate plutonium from uranium

  17. Fast reactors fuel Cycle: State in Europe

    International Nuclear Information System (INIS)

    1991-01-01

    In this SFEN day we treat all aspects (economics-reactor cores, reprocessing, experience return) of the LMFBR fuel cycle in Europe and we discuss about the development of this type of reactor (EFR project) [fr

  18. 33 CFR 183.562 - Metallic fuel lines.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Metallic fuel lines. 183.562...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.562 Metallic fuel lines. (a) Each metallic fuel line that is mounted to the boat structure must be connected to the...

  19. Unconventional liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.

    1989-06-01

    This report describes the rationale for, design of and analytical studies on an unconventional sodium-cooled power reactor, called the Trench Reactor. It derives its name from the long, narrow sodium pool in which the reactor is placed. Unconventional features include: pool shape; reactor shape (also long and narrow); reflector control; low power density; hot-leg primary pumping; absence of a cold sodium pool; large core boxes rather than a large number of subassemblies; large diameter metal fuel; vessel suspension from cables; and vessel cooling by natural circulation of building atmosphere (nitrogen) at all times. These features all seem feasible. They result in a system that is capable of at least a ten year reload interval and shows good safety through direct physical response to loss-of-heat-sink, loss-of-flow and limited-reactivity nuclear transients. 43 figs., 43 tabs

  20. A status report on the integral fast reactor fuels and safety program

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Seidel, B.R.

    1990-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor (ALMR) concept being developed at Argonne National Laboratory. The IFR program is specifically responsible for the irradiation performance, advanced core design, safety analysis, and development of the fuel cycle for the US Department of Energy's ALMR program. The basic elements of the IFR concept are (a) metallic fuel, (b) liquid-sodium cooling, (c) modular, pool-type reactor configuration, (d) an integral fuel cycle based upon pyrometallurgical processing. The most significant safety aspects of the IFR program result from its unique fuel design, a ternary alloy of uranium, plutonium, and zirconium. This fuel is based on experience gained through > 25 yr operation of the Experimental Breeder Reactor II (EBR-II) with a uranium alloy metallic fuel. The ultimate criteria for fuel pin design is the overall integrity at the target burnup. The probability of core meltdown is remote; however, a theoretical possibility of core meltdown remains. The next major step in the IFR development program will be a full-scale pyroprocessing demonstration to be carried out in conjunction with EBR-II. The IFR fuel cycle closure based on pyroprocessing will also have a dramatic impact on waste management options and on actinide recycling

  1. Characteristics of fast reactor core designs and closed fuel cycle

    International Nuclear Information System (INIS)

    Poplavsky, V.M.; Eliseev, V.A.; Matveev, V.I.; Khomyakov, Y.S.; Tsyboulya, A.M.; Tsykunov, A.G.; Chebeskov, A.N.

    2007-01-01

    On the basis of the results of recent studies, preliminary basic requirements related to characteristics of fast reactor core and nuclear fuel cycle were elaborated. Decreasing reactivity margin due to approaching breeding ratio to 1, requirements to support non-proliferation of nuclear weapons, and requirements to decrease amount of radioactive waste are under consideration. Several designs of the BN-800 reactor core have been studied. In the case of MOX fuel it is possible to reach a breeding ratio about 1 due to the use of larger size of fuel elements with higher fuel density. Keeping low axial fertile blanket that would be reprocessed altogether with the core, it is possible to set up closed fuel cycle with the use of own produced plutonium only. Conceptual core designs of advanced commercial reactor BN-1800 with MOX and nitride fuel are also under consideration. It has been shown that it is expedient to use single enrichment fuel core design in this reactor in order to reach sufficient flattening and stability of power rating in the core. The main feature of fast reactor fuel cycle is a possibility to utilize plutonium and minor actinides which are the main contributors to the long-living radiotoxicity in irradiated nuclear fuel. The results of comparative analytical studies on the risk of plutonium proliferation in case of open and closed fuel cycle of nuclear power are also presented in the paper. (authors)

  2. Progress and status of the integral fast reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. The Integral Fast Reactor (IFR) fuel cycle, is based on the use of a metallic fuel alloy (U-Pu-Zr) that permits use of an innovative method for processing of spent fuel. This method, a combination of pyrometallurgical and electrochemical processes, has been termed pyroprocessing. It offers the advantages of a simple, compact processing system and limited volumes of stabilized high-level wastes. This translates to an economically viable system that is likely to receive favorable public response, particularly when combined with the other attributes of the Integral Fast Reactor. Substantial progress has been made in the development of the IFR pyroprocessing method. A comprehensive demonstration of the process will soon begin at the Argonne National Laboratory Idaho site, using spent fuel from the EBR-II reactor. An important advantage of the IFR is its ability to recycle fuel in the process of power generation, extending fuel resources by a considerable amount and assuring the continued viability of nuclear power stations by reducing dependence on external fuel supplies. Pyroprocessing is the means whereby the recycle process is accomplished. It can also be applied to the recovery of fuel constituents from spent fuel generated in the process of operation of conventional light water reactor power plants, offering the means to recover the valuable fuel resources remaining in that material

  3. Quality Assurance Program Plan for SFR Metallic Fuel Data Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Benoit, Timothy [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hlotke, John Daniel [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-07-05

    This document contains an evaluation of the applicability of the current Quality Assurance Standards from the American Society of Mechanical Engineers Standard NQA-1 (NQA-1) criteria and identifies and describes the quality assurance process(es) by which attributes of historical, analytical, and other data associated with sodium-cooled fast reactor [SFR] metallic fuel and/or related reactor fuel designs and constituency will be evaluated. This process is being instituted to facilitate validation of data to the extent that such data may be used to support future licensing efforts associated with advanced reactor designs. The initial data to be evaluated under this program were generated during the US Integral Fast Reactor program between 1984-1994, where the data includes, but is not limited to, research and development data and associated documents, test plans and associated protocols, operations and test data, technical reports, and information associated with past United States Nuclear Regulatory Commission reviews of SFR designs.

  4. Statistical treatment of the thermal behaviour of fast reactor fuel

    International Nuclear Information System (INIS)

    Russo, S.; Truffert, J.; Martella, T.; Marbach, G.

    1981-08-01

    In a sodium cooled fast reactor, fuel temperature is an important parameter acting on main characteristics of the project on fuel element and core behaviour. This parameter is important to define boundary conditions of fuel element utilisation. A method of statistical evaluation of temperature and of temperature increase higher than a given value is presented. This evaluation is obtained in the FIEVRE code by a combination of incertainties by means of a Monte Carlo optimized method. An application of FIEVRE code is presented in the case of Rapsodie-Fortissimo fuel at the beginning of refueling at nominal conditions without transient [fr

  5. Casting Development of Metallic Fuel for SFR

    International Nuclear Information System (INIS)

    Song, H.; Kim, J.H.; Ko, Y.M.; Woo, Y.M.; Kim, K.H.; Lee, C.B.

    2015-01-01

    U-Zr metal fuel for SFR is now being developed by KAERI as a national R and D programme of Korea. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, the generation of long-lived radioactive wastes and a loss of volatile species should be minimised during the recycled fuel fabrication step. In this study, fuel slug fabrication method has been introduced to develop an innovative fabrication process of metal fuel of SFR for preventing the evaporation of volatile elements such as Am. Metal fuel slugs were fabricated with an improved injection casting method in KAERI. Volatile species can be retained through the use of a cover gas with over pressure and covered crucibles. Experimental results show that the Mn was not volatilized and conserved in inert gas conditions compared to the vacuum condition. The volatility of Mn can be controlled by changing the casting process, and minimal Mn (and Am) loss is possible. An improved casting method under an inert atmosphere is more effective in the prevention of vaporisation than casting under a vacuum and reduced atmosphere. In addition, improved casting under a reduced atmosphere shows a considerable effect in the prevention of vaporisation. (authors)

  6. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  7. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    International Nuclear Information System (INIS)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V.

    2000-01-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX → MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  8. High-burn-up fuels for fast reactors. Past experience and novel applications

    International Nuclear Information System (INIS)

    Weaver, Kevan D.; Gilleland, John; Whitmer, Charles; Zimmerman, George

    2009-01-01

    Fast reactors in the U.S. routinely achieved fuel burn-ups of 10%, with some fuel able to reach peak burn-ups of 20%, notably in the Experimental Breeder Reactor II and the Fast Flux Test Facility. Maximum burn-up has historically been constrained by chemical and mechanical interactions between the fuel and its cladding, and to some extent by radiation damage and thermal effects (e.g., radiation-induced creep, thermal creep, and radiation embrittlement) that cause the cladding to weaken. Although fast reactors have used several kinds of fuel - including oxide, metal alloy, carbide, and nitride - the vast majority of experience with fast reactors has been using oxide (including mixed oxide) and metal-alloy fuels based on uranium. Our understanding of high-burn-up operation is also limited by the fact that breeder reactor programs have historically assumed that their fuel would eventually undergo reprocessing; the programs thus have not made high burn-up a top priority. Recently a set of novel designs have emerged for fast reactors that require little initial enrichment and no reprocessing. These reactors exploit a concept known as a traveling wave (sometimes referred to as a breed-and-burn wave, fission wave, or nuclear-burning wave). By breeding and using its own fuel in place as it operates, a traveling-wave reactor can obtain burn-ups that approach 50%, well beyond the current base of knowledge and experience. Our computational work on the physics of traveling-wave reactors shows that they require metal-alloy fuel to provide the margins of reactivity necessary to sustain a breed-and-burn wave. This paper reviews operating experience with high-burn-up fuels and the technical feasibility of moving to a qualitatively new burn-up regime. We discuss our calculations on traveling-wave reactors, including those concerning the possible use of thorium. The challenges associated with high burn-up and fluence in fuels and materials are also discussed. (author)

  9. Development of challengeable reprocessing and fuel fabrication technologies for advanced fast reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, S.; Aoshima, T.; Myochin, M. [Japan Nuclear Cycle Development Institute, Tokai Works (Japan)

    2001-07-01

    R and D in the next five years in Feasibility Study Phase-2 are focused on selected key technologies for the advanced fuel cycle. These are the reference technology of simplified aqueous extraction and fuel pellet short process based on the oxide fuel and the innovative technology of oxide-electrowinning and metal- electrorefining process and their direct particle/metal fuel fabrication methods in a hot cell. Automatic and remote handling system operation in both reprocessing and fuel manufacturing can handle MA and LLFP concurrently with Pu and U attaining the highest recovery and an accurate accountability of these materials. (author)

  10. Development of challengeable reprocessing and fuel fabrication technologies for advanced fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Nomura, S.; Aoshima, T.; Myochin, M.

    2001-01-01

    R and D in the next five years in Feasibility Study Phase-2 are focused on selected key technologies for the advanced fuel cycle. These are the reference technology of simplified aqueous extraction and fuel pellet short process based on the oxide fuel and the innovative technology of oxide-electrowinning and metal- electrorefining process and their direct particle/metal fuel fabrication methods in a hot cell. Automatic and remote handling system operation in both reprocessing and fuel manufacturing can handle MA and LLFP concurrently with Pu and U attaining the highest recovery and an accurate accountability of these materials. (author)

  11. Fast reactor fuel development in Germany: Irradiation experience

    Energy Technology Data Exchange (ETDEWEB)

    Kummerer, K.R. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.). Inst. fuer Material- und Festkoerperforschung 3 - Teilinstitut Brennelemente); Muehling, G. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.). Projekt Schneller Brueter)

    1990-04-01

    Within the German Fast Breeder Project an extensive effort has been devoted to the development of fast reactor fuel elements, mostly in close cooperation between the Nuclear Research Center Karlsruhe and partners from industry and from other European ''breeder groups''. The main objective was the design and qualification of the envisaged reference fuel element with mixed oxide fuel and austenitic stainless steel cladding and structure. In this context a manifold irradiation programme in different European test reactors covered the normal standard operation conditions as well as above normal incidents and hypothetical accidents. The whole network of experiments resulted in sufficient experience for the design and realization of the prototype fast reactor power station SNR 300 in Kalkar. (orig.).

  12. Methodology for substantiation of the fast reactor fuel element serviceability

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Maershin, A.A.

    1988-01-01

    Methodological aspects of fast reactor fuel element serviceability substantiation are presented. The choice of the experimental program and strategies of its realization to solve the problem set in short time, taking into account available experimental means, are substantiated. Factors determining fuel element serviceability depending on parameters and operational conditions are considered. The methodological approach recommending separate studing of the factors, which points to the possibility of data acquisition, required for the development of calculational models and substantiation of fuel element serviceability in pilot and experimental reactors, is described. It is shown that the special-purpose data are more useful for the substantiation of fuel element serviceability and analytical method development than unsubstantial and expensive complex tests of fuel elements and fuel assemblies, which should be conducted only at final stages for the improvement of the structure on the whole

  13. Fabrication of uranium alloy fuel slug for sodium-cooled fast reactor by injection casting

    International Nuclear Information System (INIS)

    Jong Hwan Kim; Hoon Song; Ki Hwan Kim; Chan Bock Lee

    2014-01-01

    Metal fuel slugs of U-Zr alloys for a sodium-cooled fast reactor (SFR) have been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents such as Am can cause problems in a conventional injection casting method. Therefore, in this study, several injection-casting methods were applied to evaluate the volatility of the metal-fuel elements and control the transport of volatile elements. Mn was selected as a volatile surrogate alloy since it possesses a total vapor pressure equivalent to that of minor actinide-bearing fuels for SFRs. U-10 wt% Zr and U-10 wt% Zr-5 wt% Mn metal fuels were prepared, and the casting processes were evaluated. The casting soundness of the fuel slugs was characterized by gamma-ray radiography and immersion density measurements. Inductively coupled plasma atomic emission spectroscopy was used to determine the chemical composition of fuel slugs. Fuel losses after casting were also evaluated according to the casting conditions. (author)

  14. Simulation of the injection casting of metallic fuels

    International Nuclear Information System (INIS)

    Nakagawa, Tomokazu; Ogata, Takanari; Tokiwai, Moriyasu.

    1989-01-01

    For the fabrication of metallic fuel pins, injection casting is a preferable process because the simplicity of the process is suitable for remote operation. In this process, the molten metal in the crucible is injected into evacuated molds (suspended above the crucible) by pressurizing the casting furnace. Argonne National Laboratory has already adopted this process in the Integral Fast Reactor program. To obtain fuel pins with good quality, the casting parameters, such as the molten metal temperature, the magnitude of the pressure applied, the pressurizing rate, the cooling time, etc., must be optimized. Otherwise, bad-quality castings (short castings, rough surfaces, shrinkage cavities, mold fracture) may result. Therefore, it is very important in designing the casting equipment and optimizing the operation conditions to be able to predict the fluid and thermal behavior of the castings. This paper describes methods to simulate the heat and mass transfer in the molds and molten metallic fuel during injection casting. The results obtained by simulation are compared with experimental ones. Also, appropriate casting conditions for the uranium-plutonium-zirconium alloy are discussed based on the simulated results

  15. Analysis of fuel sodium interaction in a fast breeder reactor

    International Nuclear Information System (INIS)

    Tezuka, M.; Suzuki, K.; Sasanuma, K.; Nagasima, K.; Kawaguchi, O.

    A code ''SUGAR'' has been developed to evaluate molten Fuel Sodium Interaction (FSI) in a fast breeder reactor. This code computes thermohydrodynamic behavior by heat transfer from fuel to sodium and dynamic deformation of reactor structures simultaneously. It was applied to evaluate FSI in local fuel melting accident in a fuel assembly and in core disassembly accident for the 300MWe fast breeder reactor under development in Japan. The analytical methods of the SUGAR code are mainly shown in the following: 1) the thermal and dynamic model of FSI is mainly based on Cho-Wright's model; 2) the axial and radial expansions of surroundings of FSI region are calculated with one-dimensional and compressive hydrodynamics equation; 3) the structure response is calculated with one-dimensional and dynamic stress equation. Our studies show that mass of fuel interacted with sodium, ratio of fuel mass to sodium mass, fuel particle size, heat transfer coefficient from fuel to sodium, and structure's force have great effect on pressure amplitude and deformation of reactor structures

  16. Fast Neutron Emission Tomography of Used Nuclear Fuel Assemblies

    Science.gov (United States)

    Hausladen, Paul; Iyengar, Anagha; Fabris, Lorenzo; Yang, Jinan; Hu, Jianwei; Blackston, Matthew

    2017-09-01

    Oak Ridge National Laboratory is developing a new capability to perform passive fast neutron emission tomography of spent nuclear fuel assemblies for the purpose of verifying their integrity for international safeguards applications. Most of the world's plutonium is contained in spent nuclear fuel, so it is desirable to detect the diversion of irradiated fuel rods from an assembly prior to its transfer to ``difficult to access'' storage, such as a dry cask or permanent repository, where re-verification is practically impossible. Nuclear fuel assemblies typically consist of an array of fuel rods that, depending on exposure in the reactor and consequent ingrowth of 244Cm, are spontaneous sources of as many as 109 neutrons s-1. Neutron emission tomography uses collimation to isolate neutron activity along ``lines of response'' through the assembly and, by combining many collimated views through the object, mathematically extracts the neutron emission from each fuel rod. This technique, by combining the use of fast neutrons -which can penetrate the entire fuel assembly -and computed tomography, is capable of detecting vacancies or substitutions of individual fuel rods. This paper will report on the physics design and component testing of the imaging system. This material is based upon work supported by the U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development within the National Nuclear Security Administration, under Contract Number DE-AC05-00OR22725.

  17. A Simplified Supercritical Fast Reactor with Thorium Fuel

    OpenAIRE

    Peng Zhang; Kan Wang; Ganglin Yu

    2014-01-01

    Super-Critical water-cooled Fast Reactor (SCFR) is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure ...

  18. The DSNP simulation language and its application to liquid-metal fast breeder reactor transient analyses

    International Nuclear Information System (INIS)

    Saphier, D.; Madell, J.T.

    1982-01-01

    A new, special purpose block-oriented simulation language, the Dynamic Simulator for Nuclear Power Plants (DSNP), was used to perform a dynamic analysis of several conceptual design studies of liquid metal fast breeder reactors. The DSNP being a high level language enables the user to transform a power plant flow chart directly into a simulation program using a small number of DSNP statements. In addition to the language statements, the DSNP system has its own precompiler and an extensive library containing models of power plant components, algorithms of physical processes, material property functions, and various auxiliary functions. The comparative analysis covered oxide-fueled versus metal-fueled core designs and loop- versus pool-type reactors. The question of interest was the rate of change of the temperatures in the components in the upper plenum and the primary loop, in particular the reactor outlet nozzle and the intermediate heat exchanger inlet nozzle during different types of transients. From the simulations performed it can be concluded that metal-fueled cores will have much faster temperature transients than oxide-fueled cores due mainly to the much higher thermal diffusivity of the metal fuel. The transients in the pool-type design (either with oxide fuel or metal fuel) will be much slower than in the loop-type design due to the large heat capacity of the sodium pool. The DSNP language was demonstrated to be well suited to perform many types of transient analysis in nuclear power plants

  19. Testing plutonium fuel assembly production for fast-neutron reactors

    International Nuclear Information System (INIS)

    Nougues, B.; Benhamou, A.; Bertothy, G.; Lepetit, H.

    1975-01-01

    The main characteristics of plutonium fuel elements for fast breeder reactors justify specific test procedures and special techniques. The specific tests relating to the Pu content consist of Pu enrichment and distribution tests, determination of the O/M ratio and external contamination tests. The specific tests performed on fuel configuration are: testing of sintered pellet diameter, testing of pin welding and checking of internal assmbly [fr

  20. Alternative fuels for the French fast breeder reactors programme

    International Nuclear Information System (INIS)

    Bailly, H.; Bernard, H.; Mansard, B.

    1989-01-01

    French fast breeder reactors use mixed oxide as reference fuel. A great deal of experience has been gained in the behaviour and manufacture of oxide fuel, which has proved to be the most suitable fuel for future commercial breeder reactors. However, France is maintaining long-term alternative fuels programme, in order to be in a position to satisfy eventually new future reactor design and operational requirements. Initially, the CEA in France developed a carbide-based, sodium-bonded fuel designed for a high specific power. The new objective of the alternative fuels programme is to define a fuel which could replace the oxide without requiring any significant changes to the operating conditions, fuel cycle processes or facilities. The current program concentrates on a nitride-based, helium-bonded fuel, bearing in mind the carbide solution. The paper describes the main characteristics required, the manufacturing process as developed, the inspection methods, and the results obtained. Present indications are that the industrial manufacture of mixed nitride is feasible and that production costs for nitride and oxide fuels would be not significantly different. (author) 8 refs., 2 figs

  1. Benchmark criticality experiments for fast fission configuration with high enriched nuclear fuel

    International Nuclear Information System (INIS)

    Sikorin, S.N.; Mandzik, S.G.; Polazau, S.A.; Hryharovich, T.K.; Damarad, Y.V.; Palahina, Y.A.

    2014-01-01

    Benchmark criticality experiments of fast heterogeneous configuration with high enriched uranium (HEU) nuclear fuel were performed using the 'Giacint' critical assembly of the Joint Institute for Power and Nuclear Research - Sosny (JIPNR-Sosny) of the National Academy of Sciences of Belarus. The critical assembly core comprised fuel assemblies without a casing for the 34.8 mm wrench. Fuel assemblies contain 19 fuel rods of two types. The first type is metal uranium fuel rods with 90% enrichment by U-235; the second one is dioxide uranium fuel rods with 36% enrichment by U-235. The total fuel rods length is 620 mm, and the active fuel length is 500 mm. The outer fuel rods diameter is 7 mm, the wall is 0.2 mm thick, and the fuel material diameter is 6.4 mm. The clad material is stainless steel. The side radial reflector: the inner layer of beryllium, and the outer layer of stainless steel. The top and bottom axial reflectors are of stainless steel. The analysis of the experimental results obtained from these benchmark experiments by developing detailed calculation models and performing simulations for the different experiments is presented. The sensitivity of the obtained results for the material specifications and the modeling details were examined. The analyses used the MCNP and MCU computer programs. This paper presents the experimental and analytical results. (authors)

  2. Liquid metal tribology in fast breeder reactors

    International Nuclear Information System (INIS)

    Wild, E.; Mack, K.J.; Gegenheimer, M.

    1984-11-01

    Liquid Metal Cooled Fast Breeder Reactors (LMFBR) require mechanisms operating in various sodium liquid and sodium vapor environments for extended periods of time up to temperatures of 900 K under different chemical properties of the fluid. The design of tribological systems in those reactors cannot be based on data and past experience of so-called conventional tribology. Although basic tribological phenomena and their scientific interpretation apply in this field, operating conditions specific to nuclear reactors and prevailing especially in the nuclear part of such facilities pose special problems. Therefore, in the framework of the R and D-program accompanying the construction phase of SNR 300 experiments were carried out to provide data and knowledge necessary for the lay-out of friction systems between mating surfaces of contacting components. Initially, screening tests isolated material pairs with good slipping properties and maximum wear resistance. Those materials were subjected to comprehensive parameter investigations. A multitude of laboratory scale tests have been performed under largely reactor specific conditions. Unusual superimpositions of parameters were analyzed and separated to find their individual influence on the friction process. The results of these experiments were made available to the reactor industry as well as to factories producing special tribo-materials. (orig.) [de

  3. Theoretical and experimental analysis of fast reactor fuel performance

    International Nuclear Information System (INIS)

    Kummerer, K.R.; Freund, D.; Steiner, H.

    1982-09-01

    In order to predict behavior, performance, and capability of prototypic fuel pins a standard operational scheme for the SNR-300 fast breeder reactor is established considering besides normal operation unscheduled power changes and shutdowns. The behavior during the whole lifetime is calculated using the updated SATURN codes and - for special conditions as power transients and skewed fuel rod power - the new TRANSIENT and TEXDIF codes. The results of these calculations are compared to experimental findings. It is demonstrated that the level of modeling and the knowledge of material properties under irradiation are sufficient for a quantitative description of the fuel pin performance under the above mentioned conditions. (orig.) [de

  4. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Pal, S.; Mishra, G.P.

    2012-01-01

    CERMET fuel with either PuO 2 or enriched UO 2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR’s). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R and D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO 2 dispersed in uranium metal matrix pellets for three different compositions i.e. U–20 wt%UO 2 , U–25 wt%UO 2 and U–30 wt%UO 2 . It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U–UO 2 compositions.

  5. Proliferation resistance of the fuel cycle for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.

    1993-01-01

    Argonne National Laboratory has developed an electrorefining pyrochemical process for recovery and recycle of metal fuel discharged from the Integral Fast Reactor (FR). This inherently low decontamination process has an overall decontamination factor of only about 100 for the plutonium metal product. As a result, all of the fuel cycle operations must be conducted in heavily shielded cells containing a high-purity argon atmosphere. The FR fuel cycle possesses high resistance to clandestine diversion or overt, state- supported removal of plutonium for nuclear weapons production because of two main factors: the highly radioactive product, which is also contaminated with heat- and neutron-producing isotopes of plutonium and other actinide elements, and the difficulty of removing material from the FR facility through the limited number of cell transfer locks without detection

  6. Reprocessing of spent fuel, Dounreay and fast breeder reactors

    International Nuclear Information System (INIS)

    Lingjaerde, R.

    1986-11-01

    In the light of the public interest in Norway in the breeder reactor fuel reprocessing plant projected in Dounreay, Scotland, the report gives a description of the research center in Dounreay and the planned joint European demonstration facility (EDRP). Certain aspects of the fast breeder reactor are also explained

  7. Design study on metal fuel FBR cores

    International Nuclear Information System (INIS)

    Yokoo, T.; Tanaka, Y.; Ogata, T.

    1991-01-01

    A design approach for metal fuel FBR core to maintain fuel integrity during transient events by limiting eutectic/liquid phase formation is proposed based on the current status of metallic fuel development. Its impact as the limitation on the core outlet temperature is assessed through its application to two of CRIEPI's core concepts, high linear power 1000 MWe homogeneous design and medium linear power 300 MWe radially heterogeneous design. SESAME/SALT code is used in this study to analyze steady state and transient fuel behavior. SE2-FA code is developed based on SUPERENERGY-2 and used to analyze core thermal-hydraulics with uncertainties. As the result, the core outlet temperatures of both designs are found to be limited to ≤500degC if it is required to prevent eutectic/liquid phase formation during operational transients in order to guarantee the fuel integrity. Additional assessment is made assuming an advanced limiting condition that allows small liquid phase formation based on the liquid phase penetration rate derived from existing experimental results. The result indicates possibility of raising core outlet temperature to ∼ 530degC. Also, it is found that core design technology improvements such as hot spot factors reduction can contribute to the core outlet temperature extension by 10 ∼ 20degC. (author)

  8. Development of metallic fuel materials

    International Nuclear Information System (INIS)

    Kang, Young Ho; Lee, Chong Tak; Yang, Yeoung Seok; Kim, Ki Hwan; Hwang, Sung Chan; Joo, Keun Sik; Ann, Hyun Suk; Chang, Sae Jung.

    1997-09-01

    Through the control of melting and casting parameters, the sound and homogenous U-10wt.%Zr alloy could be fabricated. The yield and segregation of Zr elements were 85% and ±0.1wt.%, and the density of the alloy was about 16.6 g/cm 3 . The major phase were α-U and δ-UZr 2 . The microstructure showed the laminar structure with fiber morphology which was arranged alternatively with uranium and Zr-rich phase. This alloy will be used for KALIMER fuel material through developing the fabrication technology and the characteristics analysis. And electrorefining study was performed to separate uranium from uranium-neodymium and uranium-zirconium alloy by their different free energy for chloride formation. The liquid cadmium phase becomes the anode of the electrorefining cell. Uranium is electrolytically transported through a molten salt electrolyte to a low carbon steel cathode. The electrolyte is composed of KCl-LiCl eutectic and some UCl 3 , which are installed in the salt to facilitate the electrotransport of uranium. In pyrochemical process the reaction condition of chlorination and the maintenance its purity in preparing UCl 4 by chlorination of UO 2 is strongly dependent on the reaction temperature and time. (author).52 refs., 40 tabs., 129 figs

  9. Current Status of the LIFE Fast Reactors Fuel Performance Codes

    International Nuclear Information System (INIS)

    Yacout, A.M.; Billone, M.C.

    2013-01-01

    The LIFE-4 (Rev. 1) code was calibrated and validated using data from (U,Pu)O2 mixed-oxide fuel pins and UO2 blanket rods which were irradiation tested under steady-state and transient conditions. – It integrates a broad material and fuel-pin irradiation database into a consistent framework for use and extrapolation of the database to reactor design applications. – The code is available and running on different computer platforms (UNIX & PC) – Detailed documentations of the code’s models, routines, calibration and validation data sets are available. LIFE-METAL code is based on LIFE4 with modifications to include key phenomena applicable to metallic fuel, and metallic fuel properties – Calibrated with large database from irradiations in EBR-II – Further effort for calibration and detailed documentation. Recent activities with the codes are related to reactor design studies and support of licensing efforts for 4S and KAERI SFR designs. Future activities are related to re-assessment of the codes calibration and validation and inclusion of models for advanced fuels (transmutation fuels)

  10. Actinide recycle potential in the integral fast reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.

    1991-01-01

    In the Integral Fast Reactor (IFR) development program, the entire reactor system -- reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. The use of metallic fuel in the IFR allows a radically improved fuel cycle technology. Based on the recent IFR process development, a preliminary assessment has been made to investigate the feasibility of further adapting pyrochemical processes to directly extract actinides from LWR spent fuel. The results of this assessment indicate very promising potential and two most promising flowsheet options have been identified for further research and development. This paper also summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs

  11. Temperature and Burnup Correlated FCCI in U-10Zr Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    William J. Carmack

    2012-05-01

    Metallic fuels are proposed for use in advanced sodium cooled fast reactors. The experience basis for metallic fuels is extensive and includes development and qualification of fuels for the Experimental Breeder Reactor I, the Experimental Breeder Reactor II, FERMI-I, and the Fast Flux Test Facility (FFTF) reactors. Metallic fuels provide a number of advantages over other fuel types in terms of fabricability, performance, recyclability, and safety. Key to the performance of all nuclear fuel systems is the resistance to “breach” and subsequent release of fission products and fuel constituents to the primary coolant system of the nuclear power plant. In metallic fuel, the experience is that significant fuel-cladding chemical (FCCI) interaction occurs and becomes prevalent at high power-high temperature operation and ultimately leads to fuel pin breach and failure. Empirical relationships for metallic fuel pin failure have been developed from a large body of in-pile and out of pile research, development, and experimentation. It has been found that significant in-pile acceleration of the FCCI rate is experienced over similar condition out-of-pile experiments. The study of FCCI in metallic fuels has led to the quantification of in-pile failure rates to establish an empirical time and temperature dependent failure limit for fuel elements. Up until now the understanding of FCCI layer formation has been limited to data generated in EBR-II experiments. This dissertation provides new FCCI data extracted from the MFF-series of metallic fuel irradiations performed in the FFTF. These fuel assemblies contain valuable information on the formation of FCCI in metallic fuels at a variety of temperature and burnup conditions and in fuel with axial fuel height three times longer than EBR-II experiments. The longer fuel column in the FFTF and the fuel pins examined have significantly different flux, power, temperature, and FCCI profiles than that found in similar tests conducted in

  12. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    International Nuclear Information System (INIS)

    Boltax, A.; Biancheria, A.

    1977-01-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  13. Irradiation performance of full-length metallic IFR fuels

    International Nuclear Information System (INIS)

    Tsai, H.; Neimark, L.A.

    1992-07-01

    An assembly irradiation of 169 full-length U-Pu-Zr metallic fuel pins was successfully completed in FFTF to a goal burnup of 10 at.%. All test fuel pins maintained their cladding integrity during the irradiation. Postirradiation examination showed minimal fuel/cladding mechanical interaction and excellent stability of the fuel column. Fission-gas release was normal and consistent with the existing data base from irradiation testing of shorter metallic fuel pins in EBR-II

  14. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  15. Fuel Development For Gas-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  16. A Simplified Supercritical Fast Reactor with Thorium Fuel

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-01-01

    Full Text Available Super-Critical water-cooled Fast Reactor (SCFR is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure and keeping negative coolant void reactivity during the whole core life. A core burnup simulation scheme based on Monte Carlo lattice homogenization is adopted in this study, and the reactor physics analysis has been performed with DU-MOX and Th-MOX fuel. The main issues discussed include the fuel conversion ratio and the coolant void reactivity. The analysis shows that thorium-based fuel can provide inherent safety for SCFR without use of blanket, which is favorable for the mechanical design of SCFR.

  17. Actinide recycle potential in the Integral Fast Reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.

    1990-01-01

    In the Integral Fast Reactor (IFR) development program, the entire reactor system -- reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. The use of metallic fuel in the IFR allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. In the electrorefining operation, uranium and plutonium are selectively transported from an anode to a cathode, leaving impurity elements, mainly fission products, either in the anode compartment or in a molten salt electrolyte. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management, because these actinides are automatically recycled back into the reactor for in-situ burning. Based on the recent IFR process development, a preliminary assessment has also been made to investigate the feasibility of further adapting the pyrochemical processes to directly extract actinides from LWR spent fuel. The results of this assessment indicate very promising potential and two most promising flowsheet options have been identified for further research and development. This paper also summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 5 refs., 4 figs., 4 tabs

  18. R and D on fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Subba Rao, R.V.; Vijaya Kumar, V.; Natarajan, R.

    2012-01-01

    Development of Fast Reactor Fuel Reprocessing technology, with low out of pile inventory, is carried out at the Indira Gandhi Centre for Atomic Research (IGCAR). Based on the successful R and D programme which addressed specific issues of fast reactor fuels, a pilot plant called CORAL was set up. This plant is operational since 2003 and several reprocessing campaigns with spent FBTR fuels of varying burnups have been carried out. Based on the valuable operating experience of CORAL, the design of demonstration fast reactor fuel reprocessing plant (DFRP) and the commercial reprocessing plant, FRP have been taken up. Concurrently R and D efforts are continuing for improving the process and equipment performance apart from reducing the waste volumes and the radiation exposures to the operating personnel. Some important R and D efforts are highlighted in the paper. Reducing the dissolution time is one of the vital area of investigation especially for the high plutonium bearing MOX fuels which are known to dissolve slowly. To address this as well as criticality issues, continuous dissolvers are being developed. Solvent extraction based process is employed for getting highly pure nuclear grade uranium and plutonium. In view of the lower cooling time the fission product activity in the spent fuel is higher, formulation of process flowsheet with reduced number of solvent extraction cycles to improve the decontamination of ruthenium and zirconium without the formation of second organic phase due to plutonium loading, is under investigation. Retention of plutonium in lean organic is another issue to be addressed as otherwise it would lead to further deterioration of the solvent on storage. Several reagents to effectively wash the lean solvent have been investigated and flowsheets have been formulated to recover the retained plutonium with minimum secondary wastes. Partitioning of uranium and plutonium is an important step and methods reported in the literature have inherent

  19. SIEX3: A correlated computer code for prediction of fast reactor mixed oxide fuel and blanket pin performance

    International Nuclear Information System (INIS)

    Baker, R.B.; Wilson, D.R.

    1986-04-01

    The SIEX3 computer program was developed to calculate the fuel and cladding performance of oxide fuel and oxide blanket pins irradiated in the fast neutron environment of a liquid metal cooled reactor. The code is uniquely designed to be accurate yet quick running and use a minimum of computer core storage. This was accomplished through the correlation of physically based models to very large data bases of irradiation test results. Data from over 200 fuel pins and over 800 transverse fuel microscopy samples were used in the calibrations

  20. Fast thermal cycling-enhanced electromigration in power metallization

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Salm, Cora; Krabbenborg, B.H.; Krabbenborg, B.H.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.

    Fast thermal nterconnects used in power ICs are susceptible to short circuit failure due to a combination of fast thermal cycling and electromigration stresses. In this paper, we present a study of electromigration-induced extrusion short-circuit failure in a standard two level metallization

  1. In-pile measurement of the thermal conductivity of irradiated metallic fuel

    International Nuclear Information System (INIS)

    Bauer, T.H.; Holland, J.W.

    1995-01-01

    Transient test data and posttest measurements from recent in-pile overpower transient experiments are used for an in situ determination of metallic fuel thermal conductivity. For test pins that undergo melting but remain intact, a technique is described that relates fuel thermal conductivity to peak pin power during the transient and a posttest measured melt radius. Conductivity estimates and their uncertainty are made for a database of four irradiated Integral Fast Reactor-type metal fuel pins of relatively low burnup (<3 at.%). In the assessment of results, averages and trends of measured fuel thermal conductivity are correlated to local burnup. Emphasis is placed on the changes of conductivity that take place with burnup-induced swelling and sodium logging. Measurements are used to validate simple empirically based analytical models that describe thermal conductivity of porous media and that are recommended for general thermal analyses of irradiated metallic fuel

  2. Dimensional, microstructural and compositional stability of metal fuels. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, A.A.; Dayananda, M.A.

    1993-03-15

    The projects undertaken were to address two areas of concern for metal-fueled fast reactors: metallurgical compatibility of fuel and its fission products with the stainless steel cladding, and effects of porosity development in the fuel on fuel/cladding interactions and on sodium penetration in fuel. The following studies are reported on extensively in appendices: hot isostatic pressing of U-10Zr by coupled boundary diffusion/power law creep cavitation, liquid Na intrusion into porous U-10Zr fuel alloy by differential capillarity, interdiffusion between U-Zr fuel and selected Fe-Ni-Cr alloys, interdiffusion between U-Zr fuel vs selected cladding steels, and interdiffusion of Ce in Fe-base alloys with Ni or Cr.

  3. TOR: reprocessing of fuel from fast-breeder reactors

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    There have been three stages in the development of the fast-breeder and three stages in fuel reprocessing development. An experimental stage where the cycle was closed with Rapsodie and the fast-breeder fuel processing workshop a La Hague. A demonstration stage -operation TOR- which made it possible to close the Phenix cycle. An industrial prototype stage on an industrial scale which will be achieved with the coming onstream of the Rapid Reprocessing Plant (PURR) (Usine de Retraitement Rapide). The research and construction were carried out in such a way that the move from one stage to another was achieved with the maximum amount of continuity with the benefit of all the experience achieved previously [fr

  4. Comparison of fuel assemblies in lead cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Sanchez, H.; Aguilar, L.; Espinosa P, G., E-mail: alejandria.peval@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2016-09-15

    This paper presents a comparison of the thermal-fluid processes in the core, fuel heat transfer, and thermal power between two fuel assemblies: square and hexagonal, in a lead-cooled fast reactor (Lfr). A multi-physics reduced order model for the analysis of Lfr single channel is developed in this work. The work focused on a coupling between process of neutron kinetic, fuel heat transfer process and thermal-fluid, in a single channel. The thermal power is obtained from neutron point kinetics model, considering a non-uniform power distribution. The analysis of the processes of thermal-fluid considers thermal expansion effects. The transient heat transfer in fuel is carried out in an annular geometry, and one-dimensional in radial direction for each axial node. The results presented in comparing these assemblies consider the temperature field in the fuel, in the thermal fluid and under steady state, and transient conditions. Transients consider flow of coolant and inlet temperature of coolant. The mathematical model of Lfr considers three main modules: the heat transfer in the annular fuel, the power generation with feedback effects on neutronic, and the thermal-fluid in the single channel. The modeling of nuclear reactors in general, the coupling is crucial by the feedback between the neutron processes with fuel heat transfer, and thermo-fluid, where is very common the numerical instabilities, after all it has to refine the model to achieve the design data. In this work is considered as a reference the ELSY reactor for the heat transfer analysis in the fuel and pure lead properties for analyzing the thermal-fluid. The results found shows that the hexagonal array has highest temperature in the fuel, respect to square array. (Author)

  5. Behavior of a bundle of fast fuel pins under irradiation

    International Nuclear Information System (INIS)

    Marbach, G.; Millet, P.; Robert, J.; Languille, A.

    1979-01-01

    In the French design of fuel elements for fast reactors, great deformation of pins can bring about interaction with the hexagonal tube through the spacer wires. The change in such bundles is described here when the diameter of the cladding increases and the outcome of this reaction (bending and ovalization of pins) is calculated with a simplified model. It is shown that the results achieved agree well with the experimental observations [fr

  6. A fuel for sub-critical fast reactor

    Science.gov (United States)

    Moiseenko, V. E.; Chernitskiy, S. V.; Ågren, O.; Noack, K.

    2012-06-01

    Along with the problem of the nuclear waste transmutation, the problem of minimization of waste production is of current interest. It is not possible to eliminate production of waste at a nuclear power plant, but, as is shown in this report, it is in principle possible to arrange a fuel composition with no net production of transuranic elements. The idea is to find the transuranic elements composition to which the depleted uranium is continuously supplied during frequent reprocessing, and amount of each other transuranic fuel component remains unchanged in time. For each transuranic component, the balance is achieved by equating burnup and production rates. The production is due to neutron capture by the neighboring lighter isotope and subsequent beta-decay. The burnup includes fission, neutron capture and decays. For the calculations a simplified burnup model which accounts for 9 isotopes of uranium, neptunium, plutonium and americium is used. The calculated fuel composition consists mainly of uranium with minority of plutonium isotopes. Such a fuel, after usage in a sub-critical fast reactor, should be reprocessed. The fission product content increases during burnup, representing a net production of waste, while the transuranic elements and 238U should be recycled into a new fuel. For such a fuel cycle, the net consumption is only for 238U, and the net waste production is just fission products.

  7. Remote maintenance in TOR fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Eymery, R.; Constant, M.; Malterre, G.

    1986-11-01

    The TOR facility which is undergoing commissioning tests has a capacity of 5 T. HM/year which is enough for reprocessing all the Phenix fuel, with an excess capacity which is to be used for other fast reactors fuels. It is the result of enlargement and renovation of the old Marcoule pilot facility. A good load factor is expected through the use of equipment with increased reliability and easy maintenance. TOR will also be used to test new equipment developed for the large breeder fuel reprocessing plant presently in the design stage. The latter objective is specifically important for the parts of the plant involving mechanical equipment which are located in a new building: TOR 1. High reliability and flexibility will be obtained in this building thanks to the attention given to the integrated remote handling system [fr

  8. Irradiated fuel reassembling experience of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Nishinoiri, Kenji; Nagamine, Tsuyoshi; Harada, Mamoru; Aratani, Kiyonori; Matsushima, Hideya

    1990-01-01

    The Fuel Monitoring Facility (FMF) is located adjacent to the experimental fast reactor 'JOYO', at the Oarai Engineering Center. At FMF, more than 140 assemblies has already been disassembled and examined, and a lot of results to evaluate the fuel performance has been obtained. In addition to these once-through examinations, it is getting more and more important to conduct the interim examinations and the reinsertion for continuous irradiation. It will give more flexibility for the irradiation experiments. Since FMF was originally designed to make the reinsertion possible, there is a path to get the assembly back to the reactor. The main items to be developed for the reinsertion of assemblies were as follows. 1. Irradiation vehicle 2. Disassembling and interim examination 3. Decontamination of fuel pin surface 4. Reassembling machine (author)

  9. A basic research on the transient behavior for a metallic fuel FBR

    International Nuclear Information System (INIS)

    Baba, Mamoru; Hirano, Go; Kawada, Ken-ichi; Niwa, Hajime

    1999-03-01

    through application to the metallic fueled core. (3) Conclusion: The behavior at CDA of a metallic fueled core of a fast reactor was analyzed using the CDA initiation phase analysis code and the knowledge of the important characteristics at the CDA initiation phase was obtained. (author)

  10. Determination of equilibrium fuel composition for fast reactor in closed fuel cycle

    Directory of Open Access Journals (Sweden)

    Ternovykha Mikhail

    2017-01-01

    Full Text Available Technique of evaluation of multiplying and reactivity characteristics of fast reactor operating in the mode of multiple refueling is presented. We describe the calculation model of the vertical section of the reactor. Calculation validations of the possibility of correct application of methods and models are given. Results on the isotopic composition, mass feed, and changes in the reactivity of the reactor in closed fuel cycle are obtained. Recommendations for choosing perspective fuel compositions for further research are proposed.

  11. Core design and fuel rod analyses of a super fast reactor with high power density

    International Nuclear Information System (INIS)

    Ju, Haitao; Cao, Liangzhi; Lu, Haoliang; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    A Super Fast Reactor is a pressure-vessel type, fast spectrum SuperCritical Water Reactor (SCWR) that is presently researched in a Japanese project. One of the most important advantages of the Super Fast Reactor is the higher power density compared to the thermal spectrum SCWR, which reduces the capital cost. A preliminary core has an average power density of 158.8W/cc. In this paper, the principle of improving the average power density is studied and the core design is improved. After the sensitivity analyses on the fuel rod configurations, the fuel assembly configurations and the core configurations, an improved core with an average power density of 294.8W/cc is designed by 3-D neutronic/thermal-hydraulic coupled calculations. This power density is competitive with that of typical Liquid Metal Fast Breeder Reactors (LMFBR). In order to ensure the fuel rod integrity of this core design, the fuel rod behaviors on the normal operating condition are analyzed using FEMAXI-6 code. The power histories of each fuel rod are taken from the neutronics calculation results in the core design. The cladding surface temperature histories are taken from the thermal-hydraulic calculation results in the core design. Four types of the limiting fuel rods, with the Maximum Cladding Surface Temperature (MCST), Maximum Power Peak(MPP), Maximum Discharge Burnup(MDB) and Different Coolant Flow Pattern (DCFP), are chosen to cover all the fuel rods in the core. The available design range of the fuel rod design parameters, such as initial gas plenum pressure, gas plenum position, gas plenum length, grain size and gap size, are found out in order to satisfy the following design criteria: (1) Maximum fuel centerline temperature should be less than 1900degC. (2) Maximum cladding stress in circumstance direction should be less than 100MPa. (3) Pressure difference on the cladding should be less than 1/3 of buckling collapse pressure. (4) Cumulative damage faction (CDF) of the cladding should be

  12. Validation of the metal fuel version of the SAS4A accident analysis code

    International Nuclear Information System (INIS)

    Tentner, A.M.

    1991-01-01

    This paper describes recent work directed towards the validation of the metal fuel version of the SAS4A accident analysis code. The SAS4A code system has been developed at Argonne National Laboratory for the simulation of hypothetical severe accidents in Liquid Metal-Cooled Reactors (LMR), designed to operate in a fast neutron spectrum. SAS4A was initially developed for the analysis of oxide-fueled liquid metal-cooled reactors and has played an important role in the simulation and assessment of the energetics potential for postulated severe accidents in these reactors. Due to the current interest in the metal-fueled liquid metal-cooled reactors, a metal fuel version of the SAS4A accident analysis code is being developed in the Integral Fast Reactor program at Argonne. During such postulated accident scenarios as the unprotected (i.e. without scram) loss-of-flow and transient overpower events, a large number of interrelated physical phenomena occur during a relatively short time. These phenomena include transient heat transfer and hydrodynamic events, coolant boiling, and fuel and cladding melting and relocation. Due to strong neutronic feedbacks these events can significantly influence the reactor power history in the accident progression. The paper presents the results of a recent SAS4A simulation of the M7 TREAT experiment. 6 refs., 5 figs

  13. Physics studies of weapons plutonium disposition in the Integral Fast Reactor closed fuel cycle

    International Nuclear Information System (INIS)

    Hill, R.N.; Wade, D.C.; Liaw, J.R.; Fujita, E.K.

    1995-01-01

    The core performance impact of weapons plutonium introduction into the Integral Fast Reactor (IFR) closed fuel cycle is investigated by comparing three disposition scenarios: a power production mode, a moderate destruction mode, and a maximum destruction mode, all at a constant heat rating of 840 MW(thermal). For each scenario, two fuel cycle models are evaluated: cores using weapons material as the sole source of transuranics in a once-through mode and recycle cores using weapons material only as required for a makeup feed. In addition, the impact of alternative feeds (recycled light water reactor or liquid-metal reactor transuranics) on burner core performance is assessed. Calculated results include mass flows, detailed isotopic distributions, neutronic performance characteristics, and reactivity feedback coefficients. In general, it is shown that weapons plutonium does not have an adverse effect on IFR core performance characteristics; also, favorable performance can be maintained for a wide variety of feed materials and fuel cycle strategies

  14. Interim dry cask storage of irradiated Fast Flux Test Facility fuel

    International Nuclear Information System (INIS)

    Scott, P.L.

    1994-09-01

    The Fast Flux Test Facility (FFTF), located at the US Department of Energy's (DOE'S) Hanford Site, is the largest, most modern, liquid metal-cooled test reactor in the world. This paper will give an overview of the FFTF Spent Fuel Off load project. Major discussion areas will address the status of the fuel off load project, including an overview of the fuel off load system and detailed discussion on the individual components that make up the dry cask storage portion of this system. These components consist of the Interim Storage Cask (ISC) and Core Component Container (CCC). This paper will also discuss the challenges that have been addressed in the evolution of this project

  15. Lanthanide fission product separation from the transuranics in the integral fast reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Ackerman, J.P.

    1993-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed by Argonne National Laboratory. This reactor uses liquid-metal cooling and metallic fuel. Its spent fuel will be reprocessed using a pyrochemical method employing molten salts and liquid metals in an electrofining operation. The lanthanide fission products are a concern during reprocessing because of heating and fuel performance issues, so they must be removed periodically from the system to lessen their impact. The actinides must first be removed form the system before the lanthanides are removed as a waste stream. This operation requires a relatively good lanthanide-actinide separation to minimize both the amount of transuranic material lost in the waste stream and the amount of lanthanides collected when the actinides are first removed. A computer code, PYRO, that models these operations using thermodynamic and empirical data was developed at Argonne and has been used to model the removal of the lanthanides from the electrorefiner after a normal operating campaign. Data from this model are presented. The results demonstrate that greater that 75% of the lanthanides can be separated from the actinides at the end of the first fuel reprocessing campaign using only the electrorefiner vessel

  16. Fast facility spent-fuel and waste assay instrument. [Fluorinel Dissolution and Fuel Storage (FAST) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Eccleston, G.W.; Johnson, S.S.; Menlove, H.O.; Van Lyssel, T.; Black, D.; Carlson, B.; Decker, L.; Echo, M.W.

    1983-01-01

    A delayed-neutron assay instrument was installed in the Fluorinel Dissolution and Fuel Storage Facility at Idaho National Engineering Laboratory. The dual-assay instrument is designed to measure both spent fuel and waste solids that are produced from fuel processing. A set of waste standards, fabricated by Los Alamos using uranium supplied by Exxon Nuclear Idaho Company, was used to calibrate the small-sample assay region of the instrument. Performance testing was completed before installation of the instrument to determine the effects of uranium enrichment, hydrogenous materials, and neutron poisons on assays. The unit was designed to measure high-enriched uranium samples in the presence of large neutron backgrounds. Measurements indicate that the system can assay low-enriched uranium samples with moderate backgrounds if calibrated with proper standards.

  17. Lead-Cooled Fast Reactor Systems and the Fuels and Materials Challenges

    Directory of Open Access Journals (Sweden)

    T. R. Allen

    2007-01-01

    Full Text Available Anticipated developments in the consumer energy market have led developers of nuclear energy concepts to consider how innovations in energy technology can be adapted to meet consumer needs. Properties of molten lead or lead-bismuth alloy coolants in lead-cooled fast reactor (LFR systems offer potential advantages for reactors with passive safety characteristics, modular deployment, and fuel cycle flexibility. In addition to realizing those engineering objectives, the feasibility of such systems will rest on development or selection of fuels and materials suitable for use with corrosive lead or lead-bismuth. Three proposed LFR systems, with varying levels of concept maturity, are described to illustrate their associated fuels and materials challenges. Nitride fuels are generally favored for LFR use over metal or oxide fuels due to their compatibility with molten lead and lead-bismuth, in addition to their high atomic density and thermal conductivity. Ferritic/martensitic stainless steels, perhaps with silicon and/or oxide-dispersion additions for enhanced coolant compatibility and improved high-temperature strength, might prove sufficient for low-to-moderate-temperature LFRs, but it appears that ceramics or refractory metal alloys will be necessary for higher-temperature LFR systems intended for production of hydrogen energy carriers.

  18. Advanced liquid metal fast breeder reactor designs

    International Nuclear Information System (INIS)

    Sayles, C.W.

    1978-01-01

    Fast Breeder reactor power plants in the 1000-1200 MW(e) range are being built overseas and are being designed in this country. While these reactors have many characteristics in common, a variety of different approaches have been adopted for some of the major features. Some of those alternatives are discussed

  19. Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Rooijen, W.F.G. van

    2006-01-01

    The Gas Cooled Fast Reactor (GCFR)is one of the Generation IV reactor concepts. This concept specifically targets sustainability of nuclear power generation. In nuclear reactors fertile material is converted to fissile fuel. If the neutrons inducing fission are highly energetic, the opportunity exists to convert more than one fertile nucleus per fission, thereby effectively breeding new nuclear fuel. Reactors operating on this principle are called ‘Fast Breeder Reactor’. Since natural uranium contains 99.3%of the fertile isotope 238 U, breeding increases the energy harvested from the nuclear fuel. If nuclear energy is to play an important role as a source of energy in the future, fast breeder reactors are essential for breeding nuclear fuel. Fast neutrons are also more efficient to destruct heavy (Minor Actinide, MA) isotopes, such as Np, Am and Cm isotopes, which dominate the long-term radioactivity of nuclear waste. So the waste life-time can be shortened if the MA nuclei are destroyed. An important prerequisite of sustainable nuclear energy is the closed fuel cycle, where only fission products are discharged to a final repository, and all Heavy Metal (HM) are recycled. The reactor should breed just enough fissile material to allow refueling of the same reactor, adding only fertile material to the recycled material. Other key design choices are highly efficient power conversion using a direct cycle gas turbine, and better safety through the use of helium, a chemically inert coolant which cannot have phase changes in the reactor core. Because the envisaged core temperatures and operating conditions are similar to thermal-spectrum High Temperature Reactor (HTR) concepts, the research for this thesis initially focused on a design based on existing HTR fuel technology: coated particle fuel, assembled into fuel assemblies. It was found that such a fuel concept could not meet the Generation IV criteria set for GCFR: self-breeding is difficult, the temperature

  20. Miscibility and oxidation rate of the simulated metallic spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    You, K. S.; Joo, J. S.; Shin, Y. J.; Oh, S. C. [KAERI, Taejon (Korea, Republic of)

    1999-10-01

    The simulated metallic spent fuel was fabricated by using Uranium, Neodymium and Palladium in order to study the miscibility of Neodymium and Palladium with Uranium. For analysis of long-term safty on the metallized spent fuel, the simulated metallic spent fuel was oxidized under pure oxygen environment at 183{approx}250 deg C. From the results, the oxidation rate correlation and activation energy were obtained.

  1. Heterogeneous Recycle of Transuranics Fuels in Fast Reactors

    International Nuclear Information System (INIS)

    Hoffman, Edward; Taiwo, Temitope; Hill, Robert

    2008-01-01

    A preliminary physics evaluation of the impacts of heterogeneous recycle using Pu+Np driver and minor actinide target fuel assemblies in fast reactor cores has been performed by comparing results to those obtained for a reference homogeneous recycle core using driver assemblies containing grouped transuranic (TRU) fuel. Parametric studies are performed on the reference heterogeneous recycle core to evaluate the impacts of variations in the pre- and post-separation cooling times, target material type (uranium and non-uranium based), target amount and location, and other parameters on the system performance. This study focused on startup, single-pass cores for the purpose of quantifying impacts and also included comparisons to the option of simply storing the LWR spent nuclear fuel over a 50-year period. An evaluation of homogeneous recycle cores with elevated minor actinide contents is presented to illustrate the impact of using progressively higher TRU content on the core and transmutation performance, as a means of starting with known fuel technology with the aim of ultimately employing grouped TRU fuel in such cores. Reactivity coefficients and safety parameters are presented to indicate that the cores evaluated appear workable from a safety perspective, though more detailed safety and systems evaluations are required. (authors)

  2. Recent irradiation tests of uranium-plutonium-zirconium metal fuel elements

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Villarreal, R.; Hofman, G.L.; Beck, W.N.

    1986-09-01

    Uranium-Plutonium-Zirconium metal fuel irradiation tests to support the ANL Integral Fast Reactor concept are discussed. Satisfactory performance has been demonstrated to 2.9 at.% peak burnup in three alloys having 0, 8, and 19 wt % plutonium. Fuel swelling measurements at low burnup in alloys to 26 wt % plutonium show that fuel deformation is primarily radial in direction. Increasing the plutonium content in the fuel diminishes the rate of fuel-cladding gap closure and axial fuel column growth. Chemical redistribution occurs by 2.1 at.% peak burnup and generally involves the inward migration of zirconium and outward migration of uranium. Fission gas release to the plenum ranges from 46% to 56% in the alloys irradiated to 2.9 at.% peak burnup. No evidence of deleterious fuel-cladding chemical or mechanical interaction was observed

  3. Gas-cooled Fast Reactor (GFR) fuel and In-Core Fuel Management

    International Nuclear Information System (INIS)

    Weaver, K.D.; Sterbentz, J.; Meyer, M.; Lowden, R.; Hoffman, E.; Wei, T.Y.C.

    2004-01-01

    The Gas-Cooled Fast Reactor (GCFR) has been chosen as one of six candidates for development as a Generation IV nuclear reactor based on: its ability to fully utilize fuel resources; minimize or reduce its own (and other systems) actinide inventory; produce high efficiency electricity; and the possibility to utilize high temperature process heat. Current design approaches include a high temperature (2 850 C) helium cooled reactor using a direct Brayton cycle, and a moderate temperature (550 C - 650 C) helium or supercritical carbon dioxide (S-CO 2 ) cooled reactor using direct or indirect Brayton cycles. These design choices have thermal efficiencies that approach 45% to 50%, and have turbomachinery sizes that are much more compact compared to steam plants. However, there are challenges associated with the GCFR, which are the focus of current research. This includes safety system design for decay heat removal, development of high temperature/high fluence fuels and materials, and development of fuel cycle strategies. The work presented here focuses on the fuel and preliminary in-core fuel management, where advanced ceramic-ceramic (cercer) dispersion fuels are the main focus, and average burnups to 266 M Wd/kg appear achievable for the reference Si C/(U,TRU)C block/plate fuel. Solid solution (pellet) fuel in composite ceramic clad (Si C/Si C) is also being considered, but remains as a backup due to cladding fabrication challenges, and high centerline temperatures in the fuel. (Author)

  4. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Seed, G.

    1980-01-01

    In a liquid metal cooled nuclear reactor in which the reactor core is submerged in a pool of liquid metal coolant in a primary vessel housed in a concrete vault the core is surrounded by an impermeable barrier bounding an inner or hot region of the pool and an outer or cool region of the pool. The object of the present invention is the provision of a construction in which the complexity of design and manufacture of the barrier for bounding the inner and outer pools of coolant is reduced. (UK)

  5. Heavy liquid metal cooled fast breeder reactor. Results in 1999

    International Nuclear Information System (INIS)

    Mihara, Takatsugu; Enuma, Yasuhiro; Tanaka, Yoshihiko; Umetsu, Youichirou; Ichimiya, Masakazu

    2000-07-01

    Based on the medium and long-term program of JNC, the feasibility study for fast breeder reactors (FBRs) including related nuclear fuel cycles has been started from the 1999 fiscal year. Various options of FBR plant systems have been studied and a concept of Heavy Liquid Metal cooled FBRs is one of these options. The purpose of this paper is to research and evaluate Heavy Liquid Metal cooled FBRs on the basis of literatures. First, we selected four types of plant concepts listed below. Concept 1: Large-scale pond type reactor with Pb cooled. Concept 2: Large-scale loop type reactor with Pb cooled. Concept 3: Medium-scale module tank type reactor with Pb cooled. Concept 4: Small-scale module tank type reactor with Pb-Bi cooled. Concept 1 and 2 are selected to seek for scale merit on economical aspect. In Concept 3 and 4, we tried to reduce the inventory of HLMC and to ease the load conditions on structures and seek for competitiveness with module effect such as mass production and learning effect. Through a preliminary design study, we identified some technical features of each concept and roughly evaluated economical competitiveness based on total weight of the NSSSs. From this study, we concluded. In general, the large-scale type concepts have little economical advantage because of its huge amount of material needed for its severe load conditions. (Concept 1 and 2). Even for the large-scale pond type reactor, the conclusion seems to be the same. Total amount of the thermal shielding material became huge. Aseismatic structure makes the amount of material increase under the Japanese seismic condition. (Concept 1) For the large-scale loop type reactor, we selected side entry and dual walled piping concept with slide-joint inner wall to cope with thermal expansion of piping system. However, there seemed to be difficulty with compatibility between slide-joint and oxide film corrosion prevention measures. (Concept 2) The medium and small modular type seemed to be

  6. Simplified procedures for fast reactor fuel cycle and sensitivity analysis

    International Nuclear Information System (INIS)

    Badruzzaman, A.

    1979-01-01

    The Continuous Slowing Down-Integral Transport Theory has been extended to perform criticality calculations in a Fast Reactor Core-blanket system achieving excellent prediction of the spectrum and the eigenvalue. The integral transport parameters did not need recalculation with source iteration and were found to be relatively constant with exposure. Fuel cycle parameters were accurately predicted when these were not varied, thus reducing a principal potential penalty of the Intergal Transport approach where considerable effort may be required to calculate transport parameters in more complicated geometries. The small variation of the spectrum in the central core region, and its weak dependence on exposure for both this region, the core blanket interface and blanket region led to the extension and development of inexpensive simplified procedures to complement exact methods. These procedures gave accurate predictions of the key fuel cycle parameters such as cost and their sensitivity to variation in spectrum-averaged and multigroup cross sections. They also predicted the implications of design variation on these parameters very well. The accuracy of these procedures and their use in analyzing a wide variety of sensitivities demonstrate the potential utility of survey calculations in Fast Reactor analysis and fuel management

  7. Assessing the economics of the liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Farmer, A.A.

    1984-01-01

    The main purpose of this paper is to examine the economics of fast reactors but, before doing so, it describes briefly some of their characteristics and states their main attraction, namely to utilize to the maximum the available low-cost uranium resources. This particularly makes fast reactors desirable for nations without large indigenous uranium reserves. Turning to economics, the components that go to make up the cost in a fast reactor, such as capital, fuel fabrication, reprocessing, etc. are considered first. The chapter then deals with the costs of generating electricity from stations taken in isolation (i.e. single station generating costs) and identifies those factors which can help to reduce them to a minimum. Finally, the expenditure of a whole system of thermal and fast reactors is considered over an extended period, where it will be shown that an optimum fast reactor design, based on system costs may differ from one based on single station generating costs. (author)

  8. The basic research on the CDA initiation phase for a metallic fuel FBR

    International Nuclear Information System (INIS)

    Hirano, Go; Hirakawa, Naohiro; Kawada, Ken-ichi; Niwa, Hazime

    1998-03-01

    A metallic fuel with novel design has received great deal of interest recently as an option of advanced fuel to be substituted MOX fuel, however, the behavior at the transient has not been studied in many aspects. Therefore, for the purpose to show the basic tendency of the behavior and released energy at CDA (core disruptive accident) for a metallic fuel FBR and to prepare the basic knowledge for consideration of the adoption of the advanced fuel, Tohoku University and Power Reactor and Nuclear Fuel Development Corporation have made a joint research entitled. (1) Target and Results of analysis: The accident initiator considered is a LOF accident with ATWS. The LOF analysis was performed for a metallic fuel 600 MWe homogeneous two region core at the beginning of cycle, both for an ordinary metallic fuel core and for a metallic fuel core with ZrH pins. It was necessary mainly to change the constants of input parameters to apply the code for the analysis of a metallic fueled reactor. These changes were made by assuming appropriate models. Basic LOF cases and all blackout case that assumed using electromagnetic pumps were analyzed. The results show that the basic LOF cases for a metallic fuel core and all the cases for a metallic fuel core with ZrH pins could be avoided to become prompt-critical, and mildly transfer to the transient phase. (2) Improvement of CDA initiation phase analysis code: At present, it is difficult for the code to adapt to the large material movement to in the core at the transient. Therefore, the nuclear calculation model in the code was improved by using the adiabatic space dependent kinetics. The results of a sample case, that is a metallic fueled core at the beginning of cycle, show this improvement is appropriate. (3) Conclusion: The behavior at CDA of a metallic fueled core of a fast reactor was analyzed using the CDA initiation phase analysis code and the knowledge of the important characteristics at the CDA initiation phase was obtained

  9. The benefits of an advanced fast reactor fuel cycle for plutonium management

    International Nuclear Information System (INIS)

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.; Hill, R.N.

    1996-01-01

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium and long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a 'focus area' for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed

  10. Fast flux fluid fuel reactor: A concept for the next generation of nuclear power production

    International Nuclear Information System (INIS)

    Palmiotti, G.; Feldman, E.E.

    1999-01-01

    high burnups. It is possible to continuously remove the fission products and to minimize maintenance requirements. Fluid fuel systems possess favorable in-core transient response via a very high immediate negative temperature coefficient because of the expansion of the liquid fuel. Control rods are not necessary because the loss of reactivity can be compensated for by adding fuel in the on-line circuit. The main challenges posed by fluid fuel systems are possible fluctuations of reactivity caused by density changes, loss of delayed neutrons in the fuel leaving the core for the on-line reprocessing circuit, and corrosion and erosion of the containers. The fast flux choice is dictated by the much better neutronic economy offered by a hard spectrum system. The system is flexible enough to be either a burner, a converter, or a breeder. The fast spectrum is the only one that will allow all the transuranics to be efficiently burned. Moreover, because of the very high operating temperatures (1,000 C or more), refractory metals have to be used for the container. These materials have quite large absorption cross sections in the thermal and epithermal range. Therefore, they can be used only in a hard spectrum system without compromising the neutronic efficiency. Two different types of fast flux fluid fuel reactors are being considered: liquid-metal fluid fuel reactors and molten salt reactors

  11. The reprocessing of fast reactor fuels - the TOR project

    International Nuclear Information System (INIS)

    Calame-Longjean, A.; Le Bouhellec, J.; Schwob, Y.

    1982-01-01

    A description is given of development work on the proposed new French facility for the reprocessing of fast reactor fuel. This is the TOR facility (Traitement des Oxydes Rapides). Block diagrams give details of the TOR project as a whole and of the main line and R and D line of the TOR 1 facility which is a new works devoted to the head of the process. Modifications to existing plant which will form the TOR 2 and TOR 3 facilities are also described. (U.K.)

  12. Inherent reactor power controller for a metal-fueled ALMR

    International Nuclear Information System (INIS)

    Wood, R.T.; Wilson, T.L. Jr.

    1990-01-01

    Inherent power control for metal-fueled ALMR designs involves using reactivity thermal feedback effects to control reactor power. This paper describes how, using classical control design techniques, a control system for normal load following maneuvers was deigned for a pool-type ALMR. This design provides active control of power removal in the balance of plant, direct control of selected primary and intermediate loop temperatures, and passive control of reactor power. The inherent stability of the strong, fast reactivity feedback effects bring heat production in the core into balance with the heat removal system temperatures, which are controlled to meet power demand. A simulation of the control system successfully responded to a 10% step change in power demand by changing power at an acceptable rate without causing large temperature fluctuations or exceeding thermal limits

  13. Fabrication of metallic channel-containing UO2 fuels

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Song, Kun Woo; Kim, Keon Sik; Jung, Youn Ho

    2004-01-01

    The uranium dioxide is widely used as a fuel material in the nuclear industry, owing to many advantages. But it has a disadvantage of having the lowest thermal conductivity of all kinds of nuclear fuels; metal, carbide, nitride. It is well known that the thermal conductivity of UO 2 fuel is enhanced by making, so called, the CERMET (ceramic-metal) composite which consists of both continuous body of highly thermal-conducting metal and UO 2 islands. The CERMET fuel fabrication technique needs metal phase of at least 30%, mostly more than 50%, of the volume of the pellet in order to keep the metal phase interconnected. This high volume fraction of metal requires such a high enrichment of U that the parasitic effect of metal should be compensated. Therefore, it is attractive to develop an innovative composite fuel that can form continuous metal phase with a small amount of metal. In this investigation, a feasibility study was made on how to make such an innovative fuel. Candidate metals (W, Mo, Cr) were selected, and fabrication process was conceptually designed from thermodynamic calculations. We have experimentally found that a metal phase envelops perfectly UO 2 grains, forming continuous channel throughout the pellet, and improving the thermal conductivity of pellet

  14. A state of the art on metallic fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Kang, Hee Young; Nam, Cheol; Kim, Jong Oh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Since worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved in the late 1960`s, the development of metallic fuels continued throughout the 1970`s at ANL`s experimental breeder reactor II (EBR-II) because EBR-II continued to be fueled with the metallic uranium-fissium alloy, U-5Fs. During this decade the performance limitations of metallic fuel were satisfactorily resolved resolved at EBR-II. The concept of the IFR developed at ANL since 1984. The technical feasibility had been demonstrated and the technology database had been established to support its practicality. One key features of the IFR is that the fuel is metallic, which brings pronounced benefits over oxide in improved inherent safety and lower processing costs. At the outset of the 1980`s, it appeared that metallic fuels are recognized as a professed viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last score and summarizes the state-of the art on metallic fuel technology development. (author). 29 refs., 1 tab.

  15. A state of the art on metallic fuel technology development

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang, Hee Young; Nam, Cheol; Kim, Jong Oh

    1997-01-01

    Since worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved in the late 1960's, the development of metallic fuels continued throughout the 1970's at ANL's experimental breeder reactor II (EBR-II) because EBR-II continued to be fueled with the metallic uranium-fissium alloy, U-5Fs. During this decade the performance limitations of metallic fuel were satisfactorily resolved resolved at EBR-II. The concept of the IFR developed at ANL since 1984. The technical feasibility had been demonstrated and the technology database had been established to support its practicality. One key features of the IFR is that the fuel is metallic, which brings pronounced benefits over oxide in improved inherent safety and lower processing costs. At the outset of the 1980's, it appeared that metallic fuels are recognized as a professed viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last score and summarizes the state-of the art on metallic fuel technology development. (author). 29 refs., 1 tab

  16. Fabrication experience of sodium bonded metallic test fuel with U-6%Zr in T91 clad tube for irradiation in FBTR

    International Nuclear Information System (INIS)

    Muralidaran, P.; Prabhu, T.V.; Manivannan, A.; Vinod, A.V.; Padmanabhan, R.; Ravisankar, G.; Ganesan, V.; Vasudeva Rao, P.R.

    2012-01-01

    Future fast reactors in India will be fuelled by metallic alloys to achieve the enhanced breeding necessary to ensure rapid growth of power generation. Since, experience in fabrication and irradiation of metallic alloy fuel does not exist in the country, it is necessary to generate fabrication and irradiation experience before launching commercial FBRs with metallic alloy fuel. As part of this development, sodium bonded metallic test fuel pin fabrication was taken up at IGCAR. This paper describes the fabrication experience of sodium bonded metallic test fuel pin using Nat. U-6%Zr and T91 clad tube towards test irradiation in FBTR at Chemistry Group

  17. Viscosity Meaurement Technique for Metal Fuels

    International Nuclear Information System (INIS)

    Ban, Heng

    2015-01-01

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  18. Viscosity Meaurement Technique for Metal Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Heng [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering; Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  19. A review of liquid metal anode solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    ALIYA TOLEUOVA

    2013-06-01

    Full Text Available This review discusses recent advances in a solid oxide fuel cell (SOFC variant that uses liquid metal electrodes (anodes with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  20. Experimental investigations of heat transfer during sodium boiling in fuel assembly model in justification of advanced fast reactor safety

    International Nuclear Information System (INIS)

    Khafizov, R.R.; Poplavskij, V.M.; Rachkov, V.I.; Sorokin, A.P.; Ashurko, Yu.M.; Volkov, A.V.; Ivanov, E.F.; Privezentsev, V.V.

    2015-01-01

    The experimental facility is built up and investigation of heat exchange during sodium boiling in simulated fast reactor core assembly in conditions of natural and forced circulation with sodium plenum and upper end shield model are conducted. It is shown that in the presence of sodium plenum there is possibility to provide long-term cooling of fuel assembly when heat flux density on the surface of fuel element simulator up to 140 and 170 kW/m 2 in conditions of natural and forced circulation, respectively. The obtained data is used for improving calculational model of sodium boiling process in fuel assembly and calculational code COREMELT verification. It is pointed out that heat transfer coefficients in the case of liquid metal boiling in fuel assemblies are slightly over the ones in the case of liquid metals boiling in pipes and pool boiling [ru

  1. Heaters to simulate fuel pins for heat transfer tests in single-phase liquid-metal-flow

    International Nuclear Information System (INIS)

    Casal, V.; Graf, E.; Hartmann, W.

    1976-09-01

    The development of heaters for thermal simulation of the fuel elements of liquid metal cooled fast breeder reactors (SNR) is reported. Beginning with the experimental demands various heating methods are discussed for thermodynamic investigations of the heat transfer in liquid metals. Then a preferred heater rod is derived to simulate the fuel pins of a SNR. Finally it is reported on the fabrication and the operation practice. (orig.) [de

  2. Proceedings of the third specialist meeting on sodium/fuel interaction in fast reactors

    International Nuclear Information System (INIS)

    1976-01-01

    This specialist meeting, sponsored by the OECD-NEA and organized by the Power Reactor and Nuclear Fuel Development Corporation, was attended by 56 delegates from 6 countries and the CEC (Commission of the European Communities). The purpose of the meeting was to bring together and discuss in depth the Fuel-Sodium Interaction, a phenomenon of major importance in the assessment of the Hypothetical Core Disruptive Accident in the Liquid Metal Fast Breeder Reactor. The meeting was essentially a follow-up of an earlier meeting held at Ispra in December 1973. In all, 29 papers were presented, covering the following topics: 1. Current perspective on sodium-fuel interaction in LMFBR safety; 2. Basic experimental and theoretical studies including other materials; 3. In-pile and out-of-pile experimental studies on sodium-fuel interaction; 4. Theoretical models for the interpretation of experiments and for application to reactor situations. The meeting is considered useful in narrowing down the chain of events necessary to get energetic interaction, large work potential, but many points are being clarified on the gap between the basic vapor explosions and the real fuel sodium interactions in the HCDA scenario of LMFBR. Finally another meeting of the same nature as this one has been recommended

  3. Pyrochemical reprocessing of molten salt fast reactor fuel: focus on the reductive extraction step

    Directory of Open Access Journals (Sweden)

    Rodrigues Davide

    2015-12-01

    Full Text Available The nuclear fuel reprocessing is a prerequisite for nuclear energy to be a clean and sustainable energy. In the case of the molten salt reactor containing a liquid fuel, pyrometallurgical way is an obvious way. The method for treatment of the liquid fuel is divided into two parts. In-situ injection of helium gas into the fuel leads to extract the gaseous fission products and a part of the noble metals. The second part of the reprocessing is performed by ‘batch’. It aims to recover the fissile material and to separate the minor actinides from fission products. The reprocessing involves several chemical steps based on redox and acido-basic properties of the various elements contained in the fuel salt. One challenge is to perform a selective extraction of actinides and lanthanides in spent liquid fuel. Extraction of actinides and lanthanides are successively performed by a reductive extraction in liquid bismuth pool containing metallic lithium as a reductive reagent. The objective of this paper is to give a description of the several steps of the reprocessing retained for the molten salt fast reactor (MSFR concept and to present the initial results obtained for the reductive extraction experiments realized in static conditions by contacting LiF-ThF4-UF4-NdF3 with a lab-made Bi-Li pool and for which extraction efficiencies of 0.7% for neodymium and 14.0% for uranium were measured. It was concluded that in static conditions, the extraction is governed by a kinetic limitation and not by the thermodynamic equilibrium.

  4. The fuel performance code Celaeno, conception and simulation of fuel elements for gas-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Helfer, Thomas; Brunon, E.; Castelier, E.; Ravenet, A.; Chauvin, N. [CEA, Saint Paul Lez Durance, 04 100 (France)

    2009-06-15

    Gas-cooled fast reactor are extensively studied at Atomic Energy Commission for the fourth generation reactors. An innovative plate-type fuel element, made of two plates enclosing a honeycomb structure containing cylindrical fuel pellets, has been proposed to meet the specifications of these reactors. To sustain high coolant temperature, refractory materials have to be used for plates and honeycomb structure. The reference material is a silicon carbide composite matrix ceramic SiCf/SiC, but studies on refractory metals are also underway. The most regarded fuel material is a mixed uranium-plutonium carbide UPuC. To analyse and evaluate the performance of such fuel elements and materials, reactor concept design studies and experimental irradiations are being performed, both requiring advanced modelling tools. Based on the PLEIADES software platform, which uses Cast3M finite-element code as its thermomechanical component, the fuel-performance code celaeno has been designed for studying the thermal, mechanical and physical evolutions of the fuel-element concepts of interest under the following constraints: - provide a unified approach for all case studies, including experimental irradiations and basic material characterisation; - account for all relevant phenomena, such as mechanical non linear behaviour, irradiation induced swelling, fission gas release, or material properties evolution under irradiation, under normal and off-normal conditions; - provide robust and efficient numerical algorithms; - allow fast developpement of new case studies; - guarantee the flexibility of the code for almost all aspects of the fuel element, from geometrical changes to material changes; - assess the quality of studies by enabling designers to focus on physics, which is by far the most important and difficult task. This paper provides an overview of celaeno abilities. We demonstrate how complex simulations can easily be set up, the most time consuming part being the meshing. On the

  5. Multiple recycling of fuel in prototype fast breeder reactor in a closed ...

    Indian Academy of Sciences (India)

    Keywords. Fast breeder reactors; closed fuel cycle; fuel production and depletion; Pu239 equivalence; multiple recycling; fuel reactivity effects ... With these modifications and also with PHWR Pu as external feed, the study on PFBR fuel recycling is repeated. It is observed that the core-1 initial Pu inventory increases by 3.5% ...

  6. Status of Liquid Metal Fast Reactor Development in the United States of America, March 1987

    International Nuclear Information System (INIS)

    Horton, K.E.

    1987-01-01

    In order to meet the objective to develop and demonstrate economically competitive reactor designs and associated fuel cycles early in the next century, the U.S. program has become more focused. Two innovative reactor designs supported by the metal-fueled Integral Fast Reactor program are being directed at fulfilling a series of advanced reactor goals. The supporting technology programs and facilities are being refocused to support the overall goals. International collaboration is being broadened to provide the two-way support across the spectrum of plant projects and the fuel cycle. This program is intended to maintain the technology base into the time period (mid-1990s) when a private sector demonstration could be initiated. (author)

  7. Experimental studies of U-Pu-Zr fast reactor fuel pins in the Experimental Breeder Reactor 2

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1990-01-01

    Argonne National Laboratory's Integral Fast Reactor (IFR) concept has been under demonstration in the Experimental Breeder Reactor II (EBR-II) since February 1985. Irradiation tests of U-Zr and U-Pu-Zr fuel pins to >15 at. pct burnup have demonstrated their viability as driver fuel prototypes in innovative design liquid metal reactors. A number of technically challenging irradiation effects have been observed and are now under study. Microstructural changes in the fuel are dominated early in exposure by grain boundary cavitation and fission gas bubble growth, producing large amounts of swelling. Irradiation creep and swelling of the austenitic (D9) and martensitic (HT-9) candidate cladding alloys have been measured and correlate well with property modeling efforts. Chemical interaction between the fuel and cladding alloys has been characterized to assess the magnitude of cladding wastage during steady-state irradiation. Significant interdiffusion of the uranium and zirconium occurs producing metallurgically distinct zones in the fuel

  8. Design of metallic bipolar plates for PEM fuel cells.

    Science.gov (United States)

    2012-01-01

    This project focused on the design and production of metallic bipolar plates for use in PEM fuel cells. Different metals were explored : and stainless steel was found out to be best suited to our purpose. Following the selection of metal, it was calc...

  9. Status of liquid metal cooled fast breeder reactors

    International Nuclear Information System (INIS)

    1985-01-01

    This document represents a compilation of the information on the status of fast breeder reactor development. It is intended to provide complete and authoritative information for academic, energy, industrial and planning organizations in the IAEA Member States. The Report also provides extended reference and bibliography lists. A summarized overview of the national programmes of LMFBR development is given in Chapter II. Chapter III on LMFBR experience provides a brief description and purpose of all fast reactors - experimental, demonstration and commercial size - that have been or are planned for construction and operation. Fast reactor physics is dealt with in Chapter IV. Besides the basic facts and definitions of neutronics and the compilation and measurement of nuclear data, a broad range of the calculation methods, codes, and the state of the art is described. In Chapter V, fuels and materials are described. The emphasis is on the design and development experience gained with mixed oxide fuel pins and subassemblies. Structural materials, blanket elements and absorber materials are also discussed. Chaper VI presents a broad overview of the technical and engineering aspects of LMFBR power plants. LMFBR core design is described in detail, followed by the components of the main heat transport system, the refuelling equipment, and auxiliary systems. Chapter VII on safety is a compilation of the current safety design concepts of LMFBRs and new trends in safety criteria and safety goals. The chapter concludes with risk analyses of LMFBR technology. In Chapter VIII, the systems approach has been emphasized in the consideration of the whole LMFBR fuel cycle. Special emphasis is placed on safeguards aspects and the environmental impact of the LMFBR fuel cycle. Chapter IX describes deployment considerations of LMFBRs. Special emphasis is placed on economic aspects of the LMFBR power plant and its related fuel cycle. Finally, Chapter X provides an overall summary and a

  10. Measurement control design and performance assessment in the Integral Fast Reactor fuel cycle

    International Nuclear Information System (INIS)

    Orechwa, Y.; Bucher, R.G.

    1994-01-01

    The Integral Fast Reactor (IFR)--consisting of a metal fueled and liquid metal cooled reactor together with an attendant fuel cycle facility (FCF)--is currently undergoing a phased demonstration of the closed fuel cycle at Argonne National Laboratory. The recycle technology is pyrometalurgical based with incomplete fission product separation and all transuranics following plutonium for recycle. The equipment operates in batch mode at 500 to 1,300 C. The materials are highly radioactive and pyrophoric, thus the FCF requires remote operation. Central to the material control and accounting system for the FCF are the balances for mass measurements. The remote operation of the balances limits direct adjustment. The radiation environment requires that removal and replacement of the balances be minimized. The uniqueness of the facility precludes historical data for design and performance assessment. To assure efficient operation of the facility, the design of the measurement control system has called for procedures which assess the performance of the balances in great detail and will support capabilities for the correction of systematic changes in the performance of the balances through software

  11. Treatment of wastes in the Integral Fast Reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.; Chow, L.S.H.; Carls, E.L.; Hannum, W.H.; Laidler, J.J.

    1997-01-01

    In both the reactor portion and the fuel-cycle portion of the Integral Fast Reactor (IFR), handling, treatment and disposal of wastes are simpler than in current fuel cycles. The vast majority (> 99.9%) of the very-long-lived radioactive TRU elements are not sent to the repository; rather, they are recycled. High-level waste volume from the IFR process (called ''the pyroprocess'') is lower than that from either the direct disposal of spent fuel or from conventional PUREX-type reprocessing. The quantity of low-level waste is very low. In the pyroprocess, the actinides are recovered and separated from the bulk of the fission products by an electrorefining step wherein the actinides are electrotransported from chopped fuel elements and deposited at cathodes. The volatile fission products xenon, krypton, and tritium are collected for long-term storage and decay. Zirconium and the ''noble metal'' fission products (those that are less easily oxidized than zirconium) remain in the anode compartment, to be removed with the fuel cladding fragments and made into a metal waste form. The remaining fission products collect in the salt as chlorides. A process has been developed to periodically remove the contaminated salt from the electrorefiner, separate most of the fission products, and return the purified salt in a form that is ready for continuing use. To clean up the electrorefiner salt, the fission products are removed by ion exchange onto a column of Zeolite A. After the purification step, the column material and the contained fission products are converted to a mineral waste form for disposal. The processes and equipment for waste isolation and conversion to suitable disposal forms are described in this paper. (author)

  12. Performance of HT9 clad metallic fuel at high temperature

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Hayes, S.L.

    1992-01-01

    Steady-state testing of HT9 clad metallic fuel at high temperatures was initiated in EBR-II in November of 1987. At that time U-10 wt. % Zr fuel clad with the low-swelling ferritic/martensitic alloy HT9 was being considered as driver fuel options for both EBR-II and FFTF. The objective of the X447 test described here was to determine the lifetime of HT9 cladding when operated with metallic fuel at beginning of life inside wall temperatures approaching ∼660 degree C. Though stress-temperature design limits for HT9 preclude its use for high burnup applications under these conditions due to excessive thermal creep, the X447 test was carried out to obtain data on high temperature breach phenomena involving metallic fuel since little data existed in that area

  13. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  14. The Behavior of Palladium as a Getter for Lanthanide Fission Products in U-Mo-Ti-Zr Fast Reactor Fuels

    Science.gov (United States)

    Howard, Cameron Tyler

    One of the hurdles to extending the life of metallic fast reactor fuel alloys is Fuel-Clad Chemical Interaction (FCCI), a phenomenon which occurs between fuel and cladding resulting in thinning of the cladding. The cause of FCCI is the reaction between cladding constituents (e.g. iron and nickel) and lanthanide fission products generated in the fuel (e.g. lanthanum and cerium). This interaction can produce localized melting of the cladding, reducing its thickness over the life of the fuel element. It has been suggested that FCCI can be hindered by doping the fuel with palladium, a candidate getter for lanthanide fission products. There is therefore interest in demonstrating the efficacy of this particular lanthanide getter for realistic fast reactor fuel analogues. Work is presented based on the U-M (M = 50Mo-43Ti-7Zr, wt. pct.) alloy system both with, and without, palladium additions. The research was conducted using depleted uranium alloys developed as metallurgical surrogates for real spent fuels. Burnup was simulated using cerium as a mock lanthanide fission product to assess the behavior of palladium with respect to fuel and cladding constituents. The behavior of palladium in terms of microstructural evolution was studied from both as-cast and annealed surrogate fuel specimens as well as diffusion couples between surrogate fuel alloys and type HT-9 stainless steel cladding. Results derived from characterization of these metallurgical surrogate experiments are presented and it is shown that palladium is a promising getter for lanthanide fission products in the given alloy system.

  15. Characteristics of Matrix Metals in Which Fast Diffusion of Foreign Metallic Elements Occurs

    Science.gov (United States)

    Mae, Yoshiharu

    2018-04-01

    A few foreign elements are known to diffuse faster than the self-diffusion of the matrix metal. However, the characteristics of the matrix metal, which contribute to such fast diffusion remain unknown. In this study, the diffusion coefficients of various elements were plotted on a TC-YM diagram. The matrix metals that show fast diffusion are located in the low thermal conductivity range of the TC-YM diagram, while diffuser elements that undergo fast diffusion are mainly gulf elements such as Fe, Ni, Co, Cr, and Cu. The gulf elements are those that show the largest combination of thermal conductivity and Young's modulus. The great difference in the electron mobility between the matrix metal and diffuser elements generates a repulsive force between them, and the repulsive force—acting between the soft and large atoms of the matrix metal and the hard and small atoms of the diffuser elements—deforms the atoms of the matrix metal to open passageways for fast diffusion of diffuser elements.

  16. Investigation on fuel-cladding chemical interaction in metal fuel for FBR

    International Nuclear Information System (INIS)

    Inagaki, Kenta; Nakamura, Kinya; Ogata, Takanari; Uwaba, Tomoyuki

    2013-01-01

    During steady-state irradiation of metallic fuel in fast reactors, rare-earth fission products can react with stainless steel cladding at the fuel-cladding interface. The authors conducted isothermal annealing tests with some diffusion couples to investigate the structure of the wastage layer formed at the interface. Candidate cladding alloys, ferritic-martensitic steel (PNC-FMS) and oxide-dispersion-strengthened (ODS) steel were assembled with rare-earth alloys, RE5 : La-Ce-Pr-Nd-Sm, which simulate the fission yield of rare-earth fission products. The diffusion couples were isothermally annealed in the temperature range of 500-650°C for up to 170 h. In both RE5/ODS-steel and RE5/PNC-FMS couples, the wastage layer of the two-phase region of the (Fe, Cr) 17 RE 2 matrix phase with the precipitation of the (Fe, RE, Cr) phase was formed. The structure was similar to that formed in RE5/Fe-12Cr and RE5/HT9 couples, which implies that the reaction between REs and steel is not significantly influenced by the minor alloying elements within the candidate cladding materials. It was also clarified that the increase in the wastage layer thickness was diffusion-controlled. The temperature dependence of the reaction rate constants were formulated, which can be the basis for the quantification of the wastage layer growth. (author)

  17. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objectives of the meeting were: • To identify the main issues and technical features that affect capital and energy production costs of fast reactors and related fuel cycle facilities; • To present fast reactor concepts and designs with enhanced economic characteristics, as well as innovative technical solutions (components, subsystems, etc.) that have the potential to reduce the capital costs of fast reactors and related fuel cycle facilities; • To present energy models and advanced tools for the cost assessment of innovative fast reactors and associated nuclear fuel cycles; • To discuss the results of studies and ongoing R&D activities that address cost reduction and the future economic competitiveness of fast reactors; • To identify research and technology development needs in the field, also in view of new IAEA initiatives to help and support Member States in improving the economic competitiveness of fast reactors and associated nuclear fuel cycles

  18. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objectives of the meeting were: - To identify the main issues and technical features that affect capital and energy production costs of fast reactors and related fuel cycle facilities; - To present fast reactor concepts and designs with enhanced economic characteristics, as well as innovative technical solutions (components, subsystems, etc.) that have the potential to reduce the capital costs of fast reactors and related fuel cycle facilities; - To present energy models and advanced tools for the cost assessment of innovative fast reactors and associated nuclear fuel cycles; - To discuss the results of studies and on-going R&D activities that address cost reduction and the future economic competitiveness of fast reactors; and - To identify research and technology development needs in the field, also in view of new IAEA initiatives to help and support Member States in improving the economic competitiveness of fast reactors and associated nuclear fuel cycles

  19. Fuel transfer manipulator for liquid metal nuclear reactors

    International Nuclear Information System (INIS)

    Sturges, R.H.

    1983-01-01

    A manipulator for transferring fuel assemblies between inclined fuel chutes of a liquid metal nuclear reactor installation. Hoisting means are mounted on a mount supported by beams pivotably attached by pins to the mount and to the floor in such a manner that pivoting of the beams causes movement and tilting of a hoist tube between positions of alignment with the inclined chutes. (author)

  20. U-PuO2, U-PuC, U-PuN cermet fuel for fast reactor

    Science.gov (United States)

    Mishra, Sudhir; Kaity, Santu; Banerjee, Joydipta; Nandi, Chiranjeet; Dey, G. K.; Khan, K. B.

    2018-02-01

    Cermet fuel combines beneficial properties of both ceramic and metal and attracts global interest for research as a candidate fuel for nuclear reactors. In the present study, U matrix PuC/PuN/PuO2 cermet for fast reactor have been fabricated on laboratory scale by the powder metallurgy route. Characterization of the fuel has been carried out using Dilatometer, Differential Thermal analysis (DTA), X-ray diffractometer and Optical microscope. X ray diffraction study of the fuel reveals presence of different phases. The PuN dispersed cermet was observed to have high solidus temperature as compared to PuC and PuO2 dispersed cermet. Swelling was observed in U matrix PuO2 cermet which also showed higher thermal expansion. Among the three cermets studied, U matrix PuC cermet showed maximum thermal conductivity.

  1. Fuel pin behavior under slow ramp-type transient-overpower conditions in the CABRI-FAST experiments

    International Nuclear Information System (INIS)

    Fukano, Yoshitaka; Onoda, Yuichi; Sato, Ikken; Charpenel, Jean

    2009-01-01

    In the CABRI-FAST experimental program, four in-pile tests were performed with slow power-ramp-type transient-overpower conditions (called hereafter as 'slow TOP') to study transient fuel pin behavior under inadvertent control rod withdrawal events in liquid metal cooled fast breeder reactors. Annular-pellet fuel pins were used in three tests, while a solid-pellet fuel pin was used in the other test. All of these pins were pre-irradiated in Phenix. The slow TOP test with a solid-pellet fuel pin was realized as a comparatory test against an existing test (E12) in the CABRI-2 program. In the CABRI-FAST test (BCF1), a power ramp rate of 3% Po/s was applied, while in the CABRI-2 test, 1% Po/s was adopted. Moreover, overpower condition was maintained for a few seconds beyond the observed pin failure in the BCF1 test. In spite of the different power ramp rates, evaluated fuel thermal conditions at the observed failure time are quite similar. The continued overpower condition in the BCF1 test resulted in gradual degradation of the pin structure providing information effective for evaluation of various accident scenarios. Three slow TOP tests with the annular fuel in the CABRI-FAST program resulted in no pin failure showing high failure threshold. Based on post-test examination data and a theoretical evaluation, it was concluded that intra-pin free spaces, such as central hole, macroscopic cracks and fuel-cladding gap effectively mitigated fuel cladding mechanical interaction. It was also clarified that cavity pressurization became effective only in case of very large amount of fuel melting. Furthermore, such cavity pressurization was effectively mitigated by a molten-fuel squirting into the upper blanket region pushing the blanket pellets upward. These CABRI FAST slow TOP tests, in combination with the existing CABRI and TREAT tests, provided an extended slow TOP test database with various fuel and transient conditions. (author)

  2. Test design description Volume 2, Part 1. IFR-1 metal fuel irradiation test (AK-181) element as-built data

    Energy Technology Data Exchange (ETDEWEB)

    Dodds, N. E.

    1986-06-01

    The IFR-1 Test, designated as the AK-181 Test Assembly, will be the first irradiation test of wire wrapped, sodium-bonded metallic fuel elements in the Fast Flux Test Facility (FFTF). The test is part of the Integral Fast Reactor (IFR) fuels program conducted by Argonne National Laboratory (ANL) in support of the Innovative Reactor Concepts Program sponsored by the US Department of Energy (DOE). One subassembly, containing 169 fuel elements, will be irradiated for 600 full power days to achieve 10 at.% burnup. Three metal fuel alloys (U-10Zr, U-8Pu-10Zr) will be irradiated in D9 cladding tubes. The metal fuel elements have a fuel-smeared density of 75% and each contains five slugs. The enriched zone contains three slugs and is 36-in. long. One 6.5-in. long depleted uranium axial blanket slug (DU-10Zr) was loaded at each end of the enriched zone. the fuel elements were fabricated at ANL-W and delivered to Westinghouse-Hanford for wirewrapping and assembly into the test article. This Test Design Description contains relevant data on compositions, densities, dimensions and weights for the cast fuel slugs and completed fuel elements. The elements conform to the requirements in MG-22, "Users` Guide for the Irradiation of Experiments in the FTR."

  3. Experiences in the fabrication of aluminium clad metallic uranium fuel

    International Nuclear Information System (INIS)

    Vijayaraghavan, R.

    1989-01-01

    With a view to achieve self-sufficiency and self-reliance in the fabrication of metallic natural uranium fuel, a full fledged fuel fabrication facility was set up in 1958. Based on the then technical information available and the development work carried out, a flow-sheet for the fabrication of metallic uranium fuel, starting from uranium ingots, was worked out and the first fuel element was successfully fabricated in June 1959. More than half the first charge for the initial criticality of CIRUS, a 40 MWt research reactor at Trombay, was fabricated and supplied. Since then, this facility has been regularly catering to the replacement fuel and component requirements for CIRUS. The fuel for Dhruva, a 100 MWt research reactor at Trombay, is in the form of a cluster consisting of 7 fuel pins as compared to the rigid single fuel element for CIRUS. The fabrication process chosen for making this fuel is more or less on the same lines as that has been followed for CIRUS fuel. However, because of the smaller diameter of uranium metal rod, higher length to diameter ratio, configurations of fins on aluminium sheaths, cluster assembly etc., extensive development work was required to be undertaken for optimising various production parameters. Several prototype fuel clusters of different designs were made and subjected to rigorous out-of-pile and in-pile testing. Based on the reliable satisfactory performance, type II-B SPT cluster design was finally frozen for production. Stringent quality control is of prime importance in ensuring good performance of the fuel in the reactor. Hence, appropriate quality control measures have been adopted at various stages of fuel fabrication to ensure conformance with the specifications. (author) 9 refs., 11 figs., 1 tab

  4. Conceptual design of KALIMER uranium metallic fueled core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Kim, Sang Ji; Kim, Young Gyun; Kim, Young Jin

    1999-03-15

    As a part of the core design development of KALIMER(150 MWe), the KALIMER core design which uses U-Zr binary fuel not in excess of 20% enrichment was performed. Starting from the former uranium metallic fueled core design, a more economic and safer equilibrium core design was first established based on extensive researches for the possible enrichment gains over various design options and in-core fuel management strategies. Further optimization to extend fuel discharge burnup has been achieved by employing strategic loading schemes for initial and transition cycles to reach the equilibrium cycle early. The core performance analysis based on a once-through equilibrium fuel cycle scenario shows that the core has an average breeding ratio of 0.67 and core average discharge burnup of 61.6 MWD/kg. The negative sodium void reactivity over the core shows a beneficial potential to assure inherent safety characteristics. When comparing with conventional plutonium metallic fueled cores of the same power level, the present KALIMER uranium metallic fueled core has an increased physical core size to meet the enrichment restriction, and, as a result, a lower power density to realize the minimum one-year cycle operation. The KALIMER uranium metallic fueled core characterized by its negative sodium void reactivity and low power density can be operated with maximizing its core safety characteristics as a first generation LMR. The present uranium metallic fueled core allows an easy replacement with different fuel compositions by its demands, with the accumulation of operation experience and design data verification. (author). 34 refs., 34 tabs., 12 figs.

  5. Evaluation of Metal-Fueled Surface Reactor Concepts

    International Nuclear Information System (INIS)

    Poston, David I.; Marcille, Thomas F.; Kapernick, Richard J.; Hiatt, Matthew T.; Amiri, Benjamin W.

    2007-01-01

    Surface fission power systems for use on the Moon and Mars may provide the first use of near-term reactor technology in space. Most near-term surface reactor concepts specify reactor temperatures <1000 K to allow the use of established material and power conversion technology and minimize the impact of the in-situ environment. Metal alloy fuels (e.g. U-10Zr and U-10Mo) have not traditionally been considered for space reactors because of high-temperature requirements, but they might be an attractive option for these lower temperature surface power missions. In addition to temperature limitations, metal fuels are also known to swell significantly at rather low fuel burnups (∼1 a/o), but near-term surface missions can mitigate this concern as well, because power and lifetime requirements generally keep fuel burnups <1 a/o. If temperature and swelling issues are not a concern, then a surface reactor concept may be able to benefit from the high uranium density and relative ease of manufacture of metal fuels. This paper investigates two reactor concepts that utilize metal fuels. It is found that these concepts compare very well to concepts that utilize other fuels (UN, UO2, UZrH) on a mass basis, while also providing the potential to simplify material safeguards issues

  6. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy

    2017-02-01

    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  7. Consequence analysis of core meltdown accidents in liquid metal fast reactor

    International Nuclear Information System (INIS)

    Suk, S.D.; Hahn, D.

    2001-01-01

    Core disruptive accidents have been investigated at Korea Atomic Energy Research Institute(KAERI) as part of work to demonstrate the inherent and ultimate safety of the conceptual design of the Korea Advanced Liquid Metal Reactor(KALIMER), a 150 Mw pool-type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. In this study, a simple method was developed using a modified Bethe-Tait method to simulate the kinetics and hydraulic behavior of a homogeneous spherical core over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion. Calculations of energy release during excursions in the sodium-voided core of the KALIMER were subsequently performed using the method for various reactivity insertion rates up to 100 $/s, which has been widely considered to be the upper limit of ramp rates due to fuel compaction. Benchmark calculations were made to compare with the results of more detailed analysis for core meltdown energetics of the oxide fuelled fast reactor. A set of parametric studies was also performed to investigate the sensitivity of the results on the various thermodynamics and reactor parameters. (author)

  8. Metal Matrix Microencapsulated Fuel Technology for LWR Applications

    International Nuclear Information System (INIS)

    Terrani, Kurt A.; Bell, Gary L.; Kiggans, Jim; Snead, Lance Lewis

    2012-01-01

    An overview of the metal matrix microencapsulated (M3) fuel concept for the specific LWR application has been provided. Basic fuel properties and characteristics that aim to improve operational reliability, enlarge performance envelope, and enhance safety margins under design-basis accident scenarios are summarized. Fabrication of M3 rodlets with various coated fuel particles over a temperature range of 800-1300 C is discussed. Results from preliminary irradiation testing of LWR M3 rodlets with surrogate coated fuel particles are also reported.

  9. Reprocessing fuel from the Southwest Experimental Fast Oxide Reactor at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gray, L.W.; Campbell, T.G.

    1985-11-01

    The irradiated fuel, reject fuel tubes, and fuel fabrication scrap from the Southwest Experimental Fast Oxide Reactor (SEFOR) were transferred to the Savannah River Plant (SRP) for uranium and plutonium recovery. The unirradiated material was declad and dissolved at SRP; dissolution was accomplished in concentrated nitric acid without the addition of fluoride. The irradiated fuel was declad at Atomics International and repacked in aluminum. The fuel and aluminum cans were dissolved at SRP using nitric acid catalyzed by mercuric nitrate. As this fuel was dissolved in nongeometrically favorable tanks, boron was used as a soluble neutron poison

  10. Method of locating a leaking fuel element in a fast breeder power reactor

    Science.gov (United States)

    Honekamp, John R.; Fryer, Richard M.

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  11. Mechatronics of fuel handling mechanism for fast experimental reactor 'Joyo'

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Akikazu (Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center)

    1984-01-01

    The outline of the fast experimental reactor ''Joyo'' is introduced, and the fuel handling mechanism peculiar to fast reactors is described. The objectives of the construction of Joyo are to obtain the techniques for the design, construction, manufacture, installation, operation and maintenance of sodium-cooled fast reactors independently, and to use it as an irradiation facility for the development of fuel and materials for fast breeder reactors. At present, the reactor is operated at 100 MW maximum thermal output for the second objective. Since liquid sodium is used as the coolant, the atmosphere of the fuel handling course changes such as liquid sodium at 250 deg C, argon gas at 200 deg C and water, in addition, the spent fuel taken out has the decay heat of 2.1 kW at maximum. The fuel handling works in the reactor and fuel transfer works, and the fuel handling mechanism of a fuel exchanger and that of a cask car for fuel handling are described. Relay sequence control system is used for the fuel handling mechanism of Joyo.

  12. Dependence of heavy metal burnup on nuclear data libraries for fast reactors

    CERN Document Server

    Ohki, S

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) is considering the highly burnt fuel as well as the recycling of minor actinide (MA) in the development of commercialized fast reactor cycle systems. Higher accuracy in burnup calculation is going to be required for higher mass plutonium isotopes ( sup 2 sup 4 sup 0 Pu, etc.) and MA nuclides. In the framework of research and development aiming at the validation and necessary improvements of fast reactor burnup calculation, we investigated the differences among the burnup calculation results with the major nuclear data libraries: JEF-2.2, ENDF/B-VI Release 5, JENDL-3.2, and JENDL-3.3. We focused on the heavy metal nuclides such as plutonium and MA in the central core region of a conventional sodium-cooled fast reactor. For main heavy metal nuclides ( sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U, sup 2 sup 3 sup 9 Pu, sup 2 sup 4 sup 0 Pu, and sup 2 sup 4 sup 1 Pu), number densities after 1-cycle burnup did not change over one or two percent. Library dependence was re...

  13. Electron probe microanalysis of a METAPHIX UPuZr metallic alloy fuel irradiated to 7.0 at.% burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Brémier, S., E-mail: stephan.bremier@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Inagaki, K. [Central Research Institute of Electric Power Industry, Nuclear Technology Research Laboratory, 2-11-1 Iwado-kita, Komae-shi, Tokyo 201-8511 (Japan); Capriotti, L.; Poeml, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Ogata, T.; Ohta, H. [Central Research Institute of Electric Power Industry, Nuclear Technology Research Laboratory, 2-11-1 Iwado-kita, Komae-shi, Tokyo 201-8511 (Japan); Rondinella, V.V. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany)

    2016-11-15

    The METAPHIX project is a collaboration between CRIEPI and JRC-ITU investigating safety and performance of a closed fuel cycle option based on fast reactor metal alloy fuels containing Minor Actinides (MA). The aim of the project is to investigate the behaviour of this type of fuel and demonstrate the transmutation of MA under irradiation. A UPuZr metallic fuel sample irradiated to a burn-up of 7 at.% was examined by electron probe microanalysis. The fuel sample was extensively characterised qualitatively and quantitatively using elemental X-ray imaging and point analysis techniques. The analyses reveal a significant redistribution of the fuel components along the fuel radius highlighting a nearly complete depletion of Zr in the central part of the fuel. Numerous rare earth and fission products secondary phases are present in various compositions. Fuel cladding chemical interaction was observed with creation of a number of intermediary layers affecting a cladding depth of 15–20 μm and migration of cladding elements to the fuel. - Highlights: • Electron Probe MicroAnalysis of a UPuZr metallic fuel alloy irradiated to 7.0 at.% burn-up. • Significant redistribution of the fuel components along the fuel radius, nearly complete depletion of Zr in the central part of the fuel. • Interactions between the fuel and the cladding with occurrence of a number of intermediary layers and migration of cladding elements to the fuel. • Safe irradiation behaviour of the base alloy fuel.

  14. Improved analysis on multiple recycling of fuel in prototype fast ...

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... An FBR closed fuel cycle involves recycling of the discharge fuel, after reprocessing and refabrication, to utilize the unburnt fuel remains and the freshly bred fissile material. Our previous study in this regard for the PFBR indicated a comfortable feasibility of multiple recycling with selfsufficiency. In the ...

  15. Design, Manufacturing and Irradiation Behaviour of Fast Reactor Fuel. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-04-01

    Fast reactors are vital for ensuring the sustainability of nuclear energy in the long term. They offer vastly more efficient use of uranium resources and the ability to burn actinides, which are otherwise the long-lived component of high level nuclear waste. These reactors require development, qualification, testing and deployment of improved and innovative nuclear fuel and structural materials having very high radiation resistance, corrosion/erosion and other key operational properties. Several IAEA Member States have made efforts to advance the design and manufacture of technologies of fast reactor fuels, as well as to investigate their irradiation behaviour. Due to the acute shortage of fast neutron testing and post-irradiation examination facilities and the insufficient understanding of high dose radiation effects, there is a need for international exchange of knowledge and experience, generation of currently missing basic data, identification of relevant mechanisms of materials degradation and development of appropriate models. Considering the important role of nuclear fuels in fast reactor operation, the IAEA Technical Working Group on Fuel Performance and Technology (TWGFPT) proposed a Technical Meeting (TM) on 'Design, Manufacturing and Irradiation Behaviour of Fast Reactors Fuels', which was hosted by the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russian Federation, from 30 May to 3 June 2011. The TM included a technical visit to the fuel production plant MSZ in Elektrostal. The purpose of the meeting was to provide a forum to share knowledge, practical experience and information on the improvement and innovation of fuels for fast reactors through scientific presentations and brainstorming discussions. The meeting brought together 34 specialists from national nuclear agencies, R and D and design institutes, fuel vendors and utilities from 10 countries. The presentations were structured into four sections: R and D Programmes on FR Fuel

  16. Safety and core design of large liquid-metal cooled fast breeder reactors

    Science.gov (United States)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  17. Experimental studies of U-Pu-Zr fast reactor fuel pins in EBR-II [Experimental Breeder Reactor

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1988-01-01

    The Integral Fast Reactor (IFR) is a generic reactor concept under development by Argonne National Laboratory. Much of the technology for the IFR is being demonstrated at the Experimental Breeder Reactor II (EBR-II) on the Department of Energy site near Idaho Falls, Idaho. The IFR concept relies on four technical features to achieve breakthroughs in nuclear power economics and safety: (1) a pool-type reactor configuration, (2) liquid sodium cooling, (3) metallic fuel, and (4) an integral fuel cycle with on-site reprocessing. The purpose of this paper will be to summarize our latest results of irradiation testing uranium-plutonium-zirconium (U-Pu-Zr) fuel in the EBR-II. 10 refs., 13 figs., 2 tabs

  18. Research on plant of metal fuel fabrication using casting process

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Mori, Yukihide

    2003-12-01

    This document presents the plant concept of metal fuel fabrication system (38tHM/y) using casting process in electrolytic recycle, which based on recent studies of its equipment design and quality control system. And we estimate the cost of its construction and operation, including costs of maintenance, consumed hardware and management of waste. The content of this work is as follows. (1) Designing of fuel fabrication equipment: We make material flow diagrams of the fuel fabrication plant and rough designs of the injection casting furnace, demolder and inspection equipment. (2) Designing of resolution system of liquid waste, which comes from analytical process facility. Increased analytical items, we rearrange analytical process facility, estimate its chemicals and amount of waste. (3) Arrangement of equipments: We made a arrangement diagram of the metal fuel fabrication equipments in cells. (4) Estimation of cost data: We estimated cost to construct the facility and to operate it. (author)

  19. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Jin Ha; Kim, Myung Hyun

    2016-01-01

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O 2 and (U,TRU)O 2 which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O 2 , (Th,Pu)O 2 and (Th,TRU)O 2 , is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  20. Fuel pellet relocation behavior in fast reactor uranium-plutonium mixed oxide fuel pin at beginning-of-life

    International Nuclear Information System (INIS)

    Inoue, Masaki; Ukai, Shigeharu; Asaga, Takeo

    1999-08-01

    The effects of fabrication parameters, irradiation conditions and fuel microstructural feature on fuel pellet relocation behavior in fast reactor fuel pins were investigated. This work focused only on beginning-of-life conditions, when fuel centerline temperature depends largely on the behavior. Fuel pellet relocation behavior in Joyo Mk-II driver could not be characterized because of the lack of data. And the behavior in FFTF driver and its larger diameter type fuel pins could not be characterized because of the extensive lot-by-lot scatters. The behavior both in Monju type and in Joyo power-to-melt type fuel pins were similar to each other, and depends largely on the as-fabricated gap width while the effects of linear heat rate and the extent of microstructural evolution were negligible. And fuel pellet centerline melting seems to affect slightly the behavior. The correlation, which describes the extent of relocation both in Monju type and in Joyo power-to-melt type fuel pins, were newly formulated and extrapolated for Joyo Mk-II driver, FFTF driver and its larger diameter type fuel pins. And the behavior in Joyo Mk-II driver seemed to be similar. On the contrary, the similarity with JNC fuel pins was observed case-by-case in FFTF driver and its larger diameter type fuel pins. (author)

  1. Apparatus for injection casting metallic nuclear energy fuel rods

    Science.gov (United States)

    Seidel, Bobby R.; Tracy, Donald B.; Griffiths, Vernon

    1991-01-01

    Molds for making metallic nuclear fuel rods are provided which present reduced risks to the environment by reducing radioactive waste. In one embodiment, the mold is consumable with the fuel rod, and in another embodiment, part of the mold can be re-used. Several molds can be arranged together in a cascaded manner, if desired, or several long cavities can be integrated in a monolithic multiple cavity re-usable mold.

  2. Closure plug for alkali-metal-bounded fuel rods

    International Nuclear Information System (INIS)

    Guettler, R.

    1974-01-01

    The fuel rod consists of a cladding tube containing an alkali metal which surrounds the fuel pellets. The alkali metal improves the heat transfer. The cladding tube is closed with an end cap at its front end which cap is welded to the cladding tube. Its outside diameter is smaller than the inside diameter of the cladding tube so that the gas can flow out over the alkali metal column during the filling process. The length of the cap is such that the alkali metal is not heated during the welding process. The weld proper is made on a welding collar following a forced fit of the end cap. The end cap may be hollow. (DG) [de

  3. Studies on PEM Fuel Cell Noble Metal Catalyst Dissolution

    DEFF Research Database (Denmark)

    Ma, Shuang; Skou, Eivind Morten

    Incredibly vast advance has been achieved in fuel cell technology regarding to catalyst efficiency, improvement of electrolyte conductivity and optimization of cell system. With breathtakingly accelerating progress, Proton Exchange Membrane Fuel Cells (PEMFC) is the most promising and most widely....... Membrane Electrode Assembly (MEA) is commonly considered as the heart of cell system [2]. Degradation of the noble metal catalysts in MEAs especially Three-Phase-Boundary (TPB) is a key factor directly influencing fuel cell durability. In this work, electrochemical degradation of Pt and Pt/Ru alloy were...

  4. Three dimensional conjugated heat transfer analysis in sodium fast reactor wire-wrapped fuel assembly

    International Nuclear Information System (INIS)

    Peniguel, C.; Rupp, I.; Juhel, JP.; Rolfo, S.; Guillaud, M.; Gervais, N.

    2009-01-01

    Fast reactors with liquid metal coolant have recently received a renewed interest owing to a more efficient usage of the primary uranium resources, and they are one of the proposal for the next Generation IV. In order to evaluate nuclear power plant design and safety, 3D analysis of the flow and heat transfer in a wire spacer fuel assembly are ongoing at EDF. The introduction of the wire wrapped spacers, helically wound along the pin axis, enhances the mixing of the coolant between sub-channels and prevents contact between the fuel pins. The mesh generation step constitutes a challenging task if a reasonable amount of cells in conjunction with a suitable spatial discretization is wanted. Several approaches have been investigated and will be presented. Quite complex global flow patterns are found using either k-ε or preferably Reynolds Stress turbulent models. Preliminary conjugated heat transfer calculations using a coupling between the finite element thermal code SYRTHES and the finite volume CFD code Code Saturne are also shown. (author)

  5. LMFBR source term experiments in the Fuel Aerosol Simulant Test (FAST) facility

    Energy Technology Data Exchange (ETDEWEB)

    Petrykowski, J.C.; Longest, A.W.

    1985-01-01

    The transport of uranium dioxide (UO/sub 2/) aerosol through liquid sodium was studied in a series of ten experiments in the Fuel Aerosol Simulant Test (FAST) facility at Oak Ridge National Laboratory (ORNL). The experiments were designed to provide a mechanistic basis for evaluating the radiological source term associated with a postulated, energetic core disruptive accident (CDA) in a liquid metal fast breeder reactor (LMFBR). Aerosol was generated by capacitor discharge vaporization of UO/sub 2/ pellets which were submerged in a sodium pool under an argon cover gas. Measurements of the pool and cover gas pressures were used to study the transport of aerosol contained by vapor bubbles within the pool. Samples of cover gas were filtered to determine the quantity of aerosol released from the pool. The depth at which the aerosol was generated was found to be the most critical parameter affecting release. The largest release was observed in the baseline experiment where the sample was vaporized above the sodium pool. In the nine ''undersodium'' experiments aerosol was generated beneath the surface of the pool at depths varying from 30 to 1060 mm. The mass of aerosol released from the pool was found to be a very small fraction of the original specimen. It appears that the bulk of aerosol was contained by bubbles which collapsed within the pool. 18 refs., 11 figs., 4 tabs.

  6. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  7. Fuel upgrading and reforming with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-31

    Systems and methods for separating hydrocarbons on an internal combustion powered vehicle via one or more metal organic frameworks are disclosed. Systems and methods can further include utilizing separated hydrocarbons and exhaust to generate hydrogen gas for use as fuel. In one aspect, a method for separating hydrocarbons can include contacting a first component containing a first metal organic framework with a flow of hydrocarbons and separating hydrocarbons by size. In certain embodiments, the hydrocarbons can include alkanes.

  8. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1991-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. 10 refs

  9. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions

  10. French experience and prospects in the reprocessing of fast breeder reactor fuels

    International Nuclear Information System (INIS)

    Megy, J.

    1983-06-01

    Experience acquired in France in the field of reprocessing spent fuels from fast breeder reactors is recalled. Emphasis is put on characteristics and quantities of spent fuels reprocessed in La Hague and Marcoule facilities. Then reprocessing developments with the realisation of the new pilot plant TOR at Marcoule, new equipments and study of industrial reprocessing units are reviewed [fr

  11. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions.

  12. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1991-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. (author)

  13. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1991-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. 10 refs.

  14. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1993-03-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions.

  15. Feasibility study for fast reactor and related fuel cycle. Preliminary studies in 1998

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Enuma, Yasuhiro; Kubota, Kenichi; Yoshida, Masashi; Uno, Osamu; Ishikawa, Hiroyasu; Kobayashi, Jun; Umetsu, Youichiro; Ichimiya, Masakazu

    1999-10-01

    Prior to the feasibility study for fast reactors (FRs) starting from the 1999 fiscal year, planned in the medium and long-term program of JNC, preliminarily studies were performed on 'FR systems except sodium cooled MOX fueled reactors'. Small scale or module type reactors, heavy metal (Pb or Pb-Bi) cooled reactors, gas cooled reactors, light water cooled reactors, and molten salt reactors were studied on the basis of literature. They were evaluated from the viewpoint of the technical possibility (the structure integrity, earthquake resistance, safety, productivity, operability, maintenance repair, difficulty of the development), the long-term targets (market competitiveness as an energy system, utilization of uranium resources, reduction of radioactive waste, security of the non-proliferation), and developmental risk. As the result, the following concepts should be studied for future commercialized FRs. Small scale and module type reactor: Middle-sized reactor with an excellent economical efficiency. Small power reactor with a multipurpose design concept. Gas cooled reactor: CO2 gas cooled reactor, He gas cooled reactor. Heavy metal cooled reactor: Russian type lead cooled reactor. Light water cooled reactor: Light water cooled high converter reactor and super critical pressure light water cooled reactor. Molten salt reactor: Trichloride molten salt reactor which matches the U-Pu cycle. (author)

  16. Current Status of Spent Fast Reactor Fuel Reprocessing and Waste Treatment in Various Countries: United States of America

    International Nuclear Information System (INIS)

    2011-01-01

    Due to the previous strategic US decision on treating SNF as waste and not pursuing the reprocessing option, development work for the FR fuel cycle was only performed in a few laboratories, although interest is now increasing again. ORNL together with ANL have been influential in promoting the wider use of centrifugal contactors (favoured due to the high fissile content and decay power of FR fuel materials), associated remote handling systems and hardware prototypes for most unit operations in the reprocessing conceptual designs in the context of their development of the Consolidated Fuel Reprocessing Program. There is limited experience with reprocessing tests on the Fast Flux Text Facility (FFTF) MOX fuel. ORNL has undertaken small tests on laboratory scale dissolution and solvent extraction of MOX fuel irradiated to 220 GW/t HM burnup at around 2 kg batch scale [180-186]. The initiative called the breeder reprocessing engineering test (BRET) was started in the 1980s with a focus on the developmental activity of the US DOE to demonstrate breeder fuel reprocessing technology while closing the fuel cycle for the FFTF. The process was supposed to be installed at the existing Fuels and Materials Examination Facility (FMEF) at the Hanford Site, Richland, Washington. The major objectives of BRET were to: - Develop and demonstrate reprocessing technology and systems for breeder fuel; - Close the fuel cycle for the FFTF; - Provide an integrated test of breeder reactor fuel cycle technology - reprocessing, safeguards and waste management. The quest for pyrochemical alternatives to aqueous reprocessing has been under way in the USA since the late 1950s. Approaches examined at various levels of development and for a variety of fuels include alloy melting, FP volatilization and adsorption, fluoride and chloride volatility methods, redox solvent extractions between liquid salt and metal phases, precipitation and fractional crystallization, and electrowinning and electro

  17. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    In recent years, engineering oriented work, rather than basic research and development (R&D), has led to significant progress in improving the economics of innovative fast reactors and associated fuel cycle facilities, while maintaining and even enhancing the safety features of these systems. Optimization of plant size and layout, more compact designs, reduction of the amount of plant materials and the building volumes, higher operating temperatures to attain higher generating efficiencies, improvement of load factor, extended core lifetimes, high fuel burnup, etc. are good examples of achievements to date that have improved the economics of fast neutron systems. The IAEA, through its Technical Working Group on Fast Reactors (TWG-FR) and Technical Working Group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), devotes many of its initiatives to encouraging technical cooperation and promoting common research and technology development projects among Member States with fast reactor and advanced fuel cycle development programmes, with the general aim of catalysing and accelerating technology advances in these fields. In particular the theme of fast reactor deployment, scenarios and economics has been largely debated during the recent IAEA International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios, held in Paris in March 2013. Several papers presented at this conference discussed the economics of fast reactors from different national and regional perspectives, including business cases, investment scenarios, funding mechanisms and design options that offer significant capital and energy production cost reductions. This Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics addresses Member States’ expressed need for information exchange in the field, with the aim of identifying the main open issues and launching possible initiatives to help and

  18. Economic prospects of the Integral Fast Reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.

    1991-01-01

    The IFR fuel cycle based on pyroprocessing involves only few operational steps and the batch-oriented process equipment systems are compact. This results in major cost reductions in all of three areas of reprocessing, fabrication, and waste treatment. This document discusses the economic aspects of this fuel cycle

  19. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    Abstract. In a thermal neutron reactor, multiple recycle of U–Pu fuel is not possible due to degradation of fissile content of Pu in just one recycle. In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving ...

  20. Options Study Documenting the Fast Reactor Fuels Innovative Design Activity

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack; Kemal Pasamehmetoglu

    2010-07-01

    This document provides presentation and general analysis of innovative design concepts submitted to the FCRD Advanced Fuels Campaign by nine national laboratory teams as part of the Innovative Transmutation Fuels Concepts Call for Proposals issued on October 15, 2009 (Appendix A). Twenty one whitepapers were received and evaluated by an independent technical review committee.

  1. Some aspects of the chemistry of fast reactor fuel, structural material and decontamination

    International Nuclear Information System (INIS)

    Ganesan, V.

    2012-01-01

    The chemistry of materials pertaining to fast reactors is both fascinating and challenging considering the nature of materials involved such as the fuel, coolant, control and shielding materials in addition to the interactions between the structural materials and the fuel/coolant depending on the nature and conditions involved. The different chemical forms of fuel materials, the need to operate up to high burnups with consequent interactions of the fuel with clad materials, the need to close the fuel cycle by recovery of the fuel materials from spent fuels for refabrication and the necessity to manage the waste, throw a host of challenges which make their study scientifically interesting and technologically important. The use of liquid sodium as coolant in fast reactor heat transport systems combined with its inherent chemical reactivity opens up an interesting branch of chemistry involving liquid sodium especially in contact with structural materials during normal operation of the reactor and with fuels in the event of fuel pin failure. The phenomenon of sodium wetting and the associated corrosion of structural materials in contact with it combined with the need to carryout decontamination of such materials make it interesting to examine and evaluate their suitability for reuse without compromising on their structural integrity. Boron being the material of choice for control and shielding applications in fast reactors with varying isotopic enrichment and the technological challenge to produce large quantities of boron carbide makes it unique. Some of these aspects are addressed in this paper. (author)

  2. Fission gas retention and axial expansion of irradiated metallic fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Emerson, J.E.; Savoie, F.E.; Johanson, E.W.

    1986-05-01

    Out-of-reactor experiments utilizing direct electrical heating and infrared heating techniques were performed on irradiated metallic fuel. The results indicate accelerated expansion can occur during thermal transients and that the accelerated expansion is driven by retained fission gases. The results also demonstrate gas retention and, hence, expansion behavior is a function of axial position within the pin

  3. Integral Fast Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  4. Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path

  5. Constituent Redistribution in U-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, Jack D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Matthews, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-30

    Previous work done by Galloway, et. al. on EBR-II ternary (U-Pu-Zr) fuel constituent redistribution yielded accurate simulation data for the limited data sets of Zr redistribution. The data sets included EPMA scans of two different irradiated rods. First, T179, which was irradiated to 1.9 at% burnup, was analyzed. Second, DP16, which was irradiated to 11 at% burnup, was analyzed. One set of parameters that most accurately represented the zirconium profiles for both experiments was determined. Since the binary fuel (U-Zr) has previously been used as the driver fuel for sodium fast reactors (SFR) as well as being the likely driver fuel if a new SFR is constructed, this same process has been initiated on the binary fuel form. From limited binary EPMA scans as well as other fuel characterization techniques, it has been observed that zirconium redistribution also occurs in the binary fuel, albeit at a reduced rate compared to observation in the ternary fuel, as noted by Kim et. al. While the rate of redistribution has been observed to be slower, numerous metallographs of U-Zr fuel show distinct zone formations.

  6. Alternative fuels for the French fast breeder reactors programme

    International Nuclear Information System (INIS)

    Bailly, H.; Bernard, H.; Mansard, B.

    1988-01-01

    At the present time, due to the very competitive cost per kWh produced in France by the PWRs, it appears clear that, despite the improved use of uranium by FBRs, they will only be developed if the cost of the fuel cycle is sufficiently lower than that of the PWRs to compensate for the additional investment. The current economic programme has fixed the following fuel related objectives: - burn-up as high possible, the value of 150 000 MWd/t being considered as a minimum, and not a final target to be achieved, - extension of the duration of reactor operation cycles, leading to high in-pile times for fuel. Reaching the latter objective depends on obtaining high internal breeding gain performances, so that the total reactivity drop related to fuel impoverishment can be minimized. In this respect, a large diameter oxide fuel and/or an axial heterogeneous core concept can be envisaged. Dense fuels could form another solution. The feasibility of the fabrication of carbide and nitride fuels has been demonstrated in several countries and there is currently convergence towards a single type of process based on a carbothermic reaction. The optimization of fabrication procedures for these fuels must be continued to satisfy economic requirements and to obtain a fabrication cost of the same order or magnitude as that of oxide, although higher. If this target is achieved, fabrication will not be the major criterion for the selection of the FBR fuel, which will then be a function of the cost of reprocessing, performances under irradiation and reactor operating requirements

  7. Metal-Free Motifs for Solar Fuel Applications

    Science.gov (United States)

    Ilic, Stefan; Zoric, Marija R.; Kadel, Usha Pandey; Huang, Yunjing; Glusac, Ksenija D.

    2017-05-01

    Metal-free motifs, such as graphitic carbon nitride, conjugated polymers, and doped nanostructures, are emerging as a new class of Earth-abundant materials for solar fuel devices. Although these metal-free structures show great potential, detailed mechanistic understanding of their performance remains limited. Here, we review important experimental and theoretical findings relevant to the role of metal-free motifs as either photoelectrodes or electrocatalysts. First, the light-harvesting characteristics of metal-free photoelectrodes (band energetics, exciton binding energies, charge carrier mobilities and lifetimes) are discussed and contrasted with those in traditional inorganic semiconductors (such as Si). Second, the mechanistic insights into the electrocatalytic oxygen reduction and evolution reactions, hydrogen evolution reaction, and carbon dioxide reduction reaction by metal-free motifs are summarized, including experimental surface-sensitive spectroscopy findings, studies on small molecular models, and computational modeling of these chemical transformations.

  8. Trends and Developments for Fast Neutron Reactors and Related Fuel Cycles

    International Nuclear Information System (INIS)

    Carré, Frank

    2013-01-01

    • FR13 – A unique and dedicated framework to share updates on national programs of Fast Reactor developments, projects of new builds and plans for the future: - Near term projects of sodium and lead-alloy Fast Reactors; - Gen-IV visions of sodium-cooled and alternative types of Fast Neutron Reactors (GFR, LFR…). • FR13 – A special emphasis put on Fast Reactor Safety, Sustainability of nuclear fuel cycle and Young Generation perspective. • FR13 – A catalyst for further collaborations and alliances: - To share visions of goals and advisable options for future Fast Reactors and Nuclear Fuel Cycle; - To share cost of R&D and large demonstrations (safety, security, recycling); - To progress towards harmonized international standards; - To integrate national projects into a consistent international roadmap

  9. Tradeoff of sodium void worth and burnup reactivity swing: Impacts on balance safety position in metallic-fueled cores

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Turski, R.B.; Pizzica, P.A.

    1994-01-01

    A study has been conducted to investigate the effect of a lower sodium void worth on the consequences of severe accidents in metallic-fueled sodium-cooled reactors. Four 900 MWth designs were used for the study, where all of the reactor cores were designed based on the metallic fuel of the Integral Fast Reactor (IFR) concept. The four core designs each have different sodium void worth, in the range of -3$ to 5$. The purpose of the investigation was to determine the differences in severe accident response for the four core designs, in order to estimate the improvement in overall safety that could be achieved from a reduction in the sodium void worth for reactor cores which use a metallic fuel form

  10. Decontamination of FAST (CPP-666) fuel storage area stainless steel fuel storage racks

    International Nuclear Information System (INIS)

    Kessinger, G.F.

    1993-10-01

    The purpose of this report was to identify and evaluate alternatives for the decontamination of the RSM stainless steel that will be removed from the Idaho Chemical Processing plant (ICPP) fuel storage area (FSA) located in the FAST (CPP-666) building, and to recommend decontamination alternatives for treating this material. Upon the completion of a literature search, the review of the pertinent literature, and based on the review of a variety of chemical, mechanical, and compound (both chemical and mechanical) decontamination techniques, the preliminary results of analyses of FSA critically barrier contaminants, and the data collected during the FSA Reracking project, it was concluded that decontamination and beneficial recycle of the FSA stainless steel produced is technically feasible and likely to be cost effective as compared to burying the material at the RWMC. It is recommended that an organic acid, or commercial product containing an organic acid, be used to decontaminate the FSA stainless steel; however, it is also recommended that other surface decontamination methods be tested in the event that this method proves unsuitable. Among the techniques that should be investigated are mechanical techniques (CO 2 pellet blasting and ultra-high pressure water blasting) and chemical techniques that are compatible with present ICPP waste streams

  11. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  12. Simultaneous fast pyrolysis and catalytic upgrading of lignin to obtain a marine diesel fuel

    DEFF Research Database (Denmark)

    Zhou, Guofeng

    The topic of this Ph.D. project is to convert lignin, a by-product from a 2nd generation bio-ethanol plant, into a marine diesel fuel by fast pyrolysis followed with catalytic upgrading of the pyrolysis vapor. Lignin, a major component of lignocellulosic biomass, is underutilized in the 2nd...... generation bio-ethanol plants. Shipping industry on the other hand is looking for clean alternative fuels in order to meet stricter fuel quality and emission standards. To convert lignin into a renewable marine diesel fuel will both accelerate the development of modern bio-refinery and transfer the marine...

  13. FFTF [Fast Flux Test Facility]/IEM [Interim Examination and Maintenance] Cell Fuel Pin Weighing System

    International Nuclear Information System (INIS)

    Gibbons, P.W.

    1987-09-01

    A Fuel Pin Weighing Machine has been developed for use in the Fast Flux Test Facility (FFTF) Interim Examination and Maintenance (IEM) Cell to assist in identifying an individual breached fuel pin from its fuel assembly pin bundle. A weighing machine, originally purchased for use in the Fuels and Materials Examination Facility (FMEF) at Hanford, was used as the basis for the IEM Cell system. Design modifications to the original equipment were centered around: 1) adapting the FMEF machine for use in the IEM Cell and 2) correcting operational deficiencies discovered during functional testing in the IEM Cell Mockup

  14. Gas-cooled fast reactor fuel-cost assessment. Final report, October 1978-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.L.

    1979-01-01

    This program, contracted to provide a Gas Cooled Fast Reactor (GCFR) fuel assembly fabrication cost assessment, comprised the following basic activities: establish agreement on the ground rules for cost assessment, prepare a fuel factory flow sheet, and prepare a cost assessment for fuel assembly fabrication. Two factory sizes, 250 and 25 MTHM/year, were considered for fuel assembly fabrication cost assessment. The work on this program involved utilizing GE LMFBR cost assessment and fuel factory studies experience to provide a cost assessment of GCFR fuel assembly fabrication. The recent impact of highly sensitive safety and safeguards environment policies on fuel factory containment, safety, quality assurance and safeguards costs are significantly higher than might have been expected just a few years ago. Fuel assembly fabrication costs are significant because they represent an estimated 30 to 60% of the total fuel cycle costs. In light of the relative high cost of fabrication, changes in the core and assembly design may be necessary in order to enhance the overall fuel cycle economics. Fabrication costs are based on similar operations and experience used in other fuel cycle studies. Because of extrapolation of present technology (e.g., remote fuel fabrication versus present contact fabrication) and regulatory requirements, conservative cost estimates were made.

  15. IAMBUS, a computer code for the design and performance prediction of fast breeder fuel rods

    International Nuclear Information System (INIS)

    Toebbe, H.

    1990-05-01

    IAMBUS is a computer code for the thermal and mechanical design, in-pile performance prediction and post-irradiation analysis of fast breeder fuel rods. The code deals with steady, non-steady and transient operating conditions and enables to predict in-pile behavior of fuel rods in power reactors as well as in experimental rigs. Great effort went into the development of a realistic account of non-steady fuel rod operating conditions. The main emphasis is placed on characterizing the mechanical interaction taking place between the cladding tube and the fuel as a result of contact pressure and friction forces, with due consideration of axial and radial crack configuration within the fuel as well as the gradual transition at the elastic/plastic interface in respect to fuel behavior. IAMBUS can be readily adapted to various fuel and cladding materials. The specific models and material correlations of the reference version deal with the actual in-pile behavior and physical properties of the KNK II and SNR 300 related fuel rod design, confirmed by comparison of the fuel performance model with post-irradiation data. The comparison comprises steady, non-steady and transient irradiation experiments within the German/Belgian fuel rod irradiation program. The code is further validated by comparison of model predictions with post-irradiation data of standard fuel and breeder rods of Phenix and PFR as well as selected LWR fuel rods in non-steady operating conditions

  16. Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    Science.gov (United States)

    Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander

    2017-09-01

    The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.

  17. Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    Directory of Open Access Journals (Sweden)

    Tikhomirov Georgy

    2017-01-01

    Full Text Available The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.

  18. Performance of metal and oxide fuels during accidents in a large liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Cahalan, J.; Wigeland, R.; Friedel, G.; Kussmaul, G.; Royl, P.; Moreau, J.; Perks, M.

    1990-01-01

    In a cooperative effort among European and US analysts, an assessment of the comparative safety performance of metal and oxide fuels during accidents in a large (3500 MWt), pool-type, liquid-metal-cooled reactor (LMR) was performed. The study focused on three accident initiators with failure to scram: the unprotected loss-of-flow (ULOF), the unprotected transient overpower (UTOP), and the unprotected loss-of-heat-sink (ULOHS). Emphasis was placed on identification of design features that provide passive, self-limiting responses to upset conditions, and quantification of relative safety margins. The analyses show that in ULOF and ULOHS sequences, metal-fueled LMRs with pool-type primary systems provide larger temperature margins to coolant boiling than oxide-fueled reactors of the same design. 3 refs., 4 figs

  19. Change of Composition in Metallic Fuel Slug of U-Zr Alloy from High-Temperature Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Young Sang; Lee, Jeong Mook; Kim, Jong Yun; Kim, Jong Hwan; Song, Hoon [KAERI, Daejeon (Korea, Republic of)

    2016-09-15

    The U–Zr alloy is a candidate for fuel to be used as metallic fuel in sodium-cooled fast reactors (SFRs). Its chemical composition before and after annealing at the operational temperature of SFRs (610 .deg. C) was investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The original alloy surface contained uranium oxides with the U(IV) and U(VI) oxidation states, Zr{sub 2}O{sub 3}, and a low amount of uranium metal. After annealing at 610 .deg. C, the alloy was composed of uranium metal, uranium carbide, uranium oxide with the U(V) valence state, zirconium metal, and amorphous carbon. Meanwhile, X-ray diffraction data indicate that the bulk composition of the alloy remained unchanged.

  20. Change of Composition in Metallic Fuel Slug of U-Zr Alloy from High-Temperature Annealing

    International Nuclear Information System (INIS)

    Youn, Young Sang; Lee, Jeong Mook; Kim, Jong Yun; Kim, Jong Hwan; Song, Hoon

    2016-01-01

    The U–Zr alloy is a candidate for fuel to be used as metallic fuel in sodium-cooled fast reactors (SFRs). Its chemical composition before and after annealing at the operational temperature of SFRs (610 .deg. C) was investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The original alloy surface contained uranium oxides with the U(IV) and U(VI) oxidation states, Zr 2 O 3 , and a low amount of uranium metal. After annealing at 610 .deg. C, the alloy was composed of uranium metal, uranium carbide, uranium oxide with the U(V) valence state, zirconium metal, and amorphous carbon. Meanwhile, X-ray diffraction data indicate that the bulk composition of the alloy remained unchanged

  1. Development of fuels and structural materials for fast breeder reactors

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The latter occurs especially during transient over-power (TOP) incidents. The wrapper tubes of the ... generator a critical component in determining the efficient running of the plant and demands high integrity of steam ... diffusivity of the fuel, which was measured at BARC as well as at IGCAR, by a technique employing the ...

  2. Development and Characterization of Fast Burning Solid Fuels/Propellants for Hybrid Rocket Motors with High Volumetric Efficiency

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposed work is to develop several fast burning solid fuels/fuel-rich solid propellants for hybrid rocket motor applications. In the...

  3. Fast and scalable synthesis of uniform zirconium-, hafnium-based metal-organic framework nanocrystals.

    Science.gov (United States)

    He, Ting; Xu, Xiaobin; Ni, Bing; Wang, Haiqing; Long, Yong; Hu, Wenping; Wang, Xun

    2017-12-14

    Metal-organic frameworks based on zirconium or hafnium possess tantalizing commercial prospects due to their high stability but require a long reaction time to form crystals. The fast synthesis of uniform Zr-, Hf-MOF nanocrystals at scale is of key importance in the potential commercial application of MOFs. In this work, we have developed a versatile strategy through controlling the hydrolysis and nucleation of metal salts in the presence of acetic acid and water; up to 24 grams of UiO-66-NH 2 nanocrystals with a uniform octahedron could be synthesized within 15 minutes using a one step method. The current synthetic strategy could be extended to other Zr-, Hf-MOF nanocrystals [UiO-66-Fast, UiO-66-(OH) 2 -Fast, UiO-66-2,6-NDC-Fast, UiO-67-Fast, BUT-12-Fast, PCN-222-Ni-Fast, PCN-222-Co-Fast, Hf-UiO-66-Fast, Hf-UiO-66-NH 2 -Fast, Hf-UiO-66-(OH) 2 -Fast, Hf-UiO-66-2,6-NDC-Fast and Hf-BUT-12-Fast]. Significantly, when noble metal nanoparticles (NPs) are introduced into MOF precursors, NPs encapsulated in MOFs with excellent dispersion have also been obtained and show outstanding performance in catalysis. This facile procedure is expected to pave the way to expand the commercial applications of MOFs.

  4. Assessment of the dry process fuel sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2004-04-01

    The feasibility of using dry-processed oxide fuel in a Sodium-cooled Fast Reactor (SFR) was analyzed for the equilibrium fuel cycle of two reference cores: Hybrid BN-600 benchmark core with a enlarged lattice pitch and modified BN-600 core. The dry process technology assumed in this study based on the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was ∼50% and most of the fission products were removed

  5. Flow induced vibrations in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    1989-01-01

    Flow induced vibrations are well known phenomena in industry. Engineers have to estimate their destructive effects on structures. In the nuclear industry, flow induced vibrations are assessed early in the design process, and the results are incorporated in the design procedures. In many cases, model testing is used to supplement the design process to ensure that detrimental behaviour due to flow induced vibrations will not occur in the component in question. While these procedures attempt to minimize the probability of adverse performance of the various components, there is a problem in the extrapolation of analytical design techniques and/or model testing to actual plant operation. Therefore, sodium tests or vibrational measurements of components in the reactor system are used to provide additional assurance. This report is a general survey of experimental and calculational methods in this area of structural mechanics. The report is addressed to specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors. 92 refs, 90 figs, 8 tabs

  6. Alloys for a liquid metal fast breeder reactor

    Science.gov (United States)

    Rowcliffe, Arthur F.; Bleiberg, Melvin L.; Diamond, Sidney; Bajaj, Ram

    1979-01-01

    An essentially gamma-prime precipitation-hardened iron-chromium-nickel alloy has been designed with emphasis on minimum nickel and chromium contents to reduce the swelling tendencies of these alloys when used in liquid metal fast breeder reactors. The precipitation-hardening components have been designed for phase stability and such residual elements as silicon and boron, also have been selected to minimize swelling. Using the properties of these alloys in one design would result in an increased breeding ratio over 20% cold worked stainless steel, a reference material, of 1.239 to 1.310 and a reduced doubling time from 15.8 to 11.4 years. The gross stoichiometry of the alloying composition comprises from about 0.04% to about 0.06% carbon, from about 0.05% to about 1.0% silicon, up to about 0.1% zirconium, up to about 0.5% vanadium, from about 24% to about 31% nickel, from 8% to about 11% chromium, from about 1.7% to about 3.5% titanium, from about 1.0% to about 1.8% aluminum, from about 0.9% to about 3.7% molybdenum, from about 0.04% to about 0.8% boron, and the balance iron with incidental impurities.

  7. Development of metal cask for nuclear spent fuel

    International Nuclear Information System (INIS)

    Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    It is one of the realistic solutions against increasing demand on interim storage of spent fuel assemblies arising from nuclear power plants in Japan to apply dual purpose (transport and storage) metal casks. Since 1980's Mitsubishi Heavy Industries, Ltd. (MHI) has been contributing to develop metal cask technologies for utilities, etc. in Japan, and have established transport and storage cask design ''MSF series'' which realizes higher payload and reliability for long term storage. MSF series transport and storage casks use various new design concepts and materials to improve thermal performance of the cask, structural integrity of the basket, durability of the neutron shielding material and so on. This paper summarizes an outline of the cask design that can accommodate BWR spent fuel assemblies as well as the new technologies applied to the design and fabrication. (author)

  8. Pyrochemical reprocessing of molten salt fast reactor fuel: focus on the reductive extraction step

    OpenAIRE

    Rodrigues, Davide; Durán-Klie, Gabriela; Delpech, Sylvie

    2015-01-01

    The nuclear fuel reprocessing is a prerequisite for nuclear energy to be a clean and sustainable energy. In the case of the molten salt reactor containing a liquid fuel, pyrometallurgical way is an obvious way. The method for treatment of the liquid fuel is divided into two parts. In-situ injection of helium gas into the fuel leads to extract the gaseous fission products and a part of the noble metals. The second part of the reprocessing is performed by ‘batch’. It aims to recover the fissile...

  9. Impact of core design on the fuel cycle of fast neutron reactors

    International Nuclear Information System (INIS)

    Cabrillat, J.C.; Clauzon, P.; Dufour, P.

    1981-11-01

    The value of the annual flow of fissile mixed oxide passing through the plants of the fabrication-reprocessing cycle has a preponderant effect on the cost of the fuel cycle of fast reactors. This annual flow can be reduced either by increasing the performance of the fuel elements or by using new core concepts. It is this latter possibility that is examined in this paper using a steel atom displacement criterion as criterion for the end of life of fuel assemblies. The facts provided should make it possible to guide the choice of core concept of the reactors built after Super Phenix in order to improve on the cost of the fuel cycle of fast reactors [fr

  10. Platinum redispersion on metal oxides in low temperature fuel cells

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Cerri, Isotta; Nagami, Tetsuo

    2013-01-01

    We have analyzed the aptitude of several metal oxide supports (TiO2, SnO2, NbO2, ZrO2, SiO2, Ta2O5 and Nb2O5) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in ...

  11. Demonstration of pyrometallurgical processing for metal fuel and HLW

    International Nuclear Information System (INIS)

    Tadafumi, Koyama; Kensuke, Kinoshita; Takatoshi, Hizikata; Tadashi, Inoue; Ougier, M.; Rikard, Malmbeck; Glatz, J.P.; Lothar, Koch

    2001-01-01

    CRIEPI and JRC-ITU have started a joint study on pyrometallurgical processing to demonstrate the capability of this type of process for separating actinide elements from spent fuel and HLW. The equipment dedicated for this experiments has been developed and installed in JRC-ITU. The stainless steel box equipped with tele-manipulators is operated under pure Ar atmosphere, and prepared for later installation in a hot cell. Experiments on pyro-processing of un-irradiated U-Pu-Zr metal alloy fuel by molten salt electrorefining has been carried out. Recovery of U and Pu from this type alloy fuel was first demonstrated with using solid iron cathode and liquid Cd cathode, respectively. (author)

  12. Function of all-metal separators for waste fuels. Phase 1; Funktion av allmetallseparatorer foer avfallsbraenslen. Etapp 1

    Energy Technology Data Exchange (ETDEWEB)

    Jacoby, Juergen; Wrangensten, Lars

    2004-08-01

    Various waste incineration facilities, which use different types of waste fuels, have difficulties with a high content of non-magnetic metal, especially aluminum in their fuels. Aluminum may melt on the grate and can lead to corrosion or fouling in the furnace. Additionally, a high content of aluminum in the flyash may cause difficulties in terms of storage or further use of the ash as e.g. construction material. The industrial demand for efficient separators for non-magnetic metals from a fuel stream is rather large. There is however some uncertainty in the performance and efficiency of metal separators. Two types of separators can be found, the first type is called eddy current separator, the other type is based upon a metal detector with a sorting unit in the form of a chute or similar afterwards. An eddy current separator consists of a fast rotating drum containing several permanent magnets with alternating polarity. Due to the rotation, the change in the magnetic field induces eddy currents in conducting materials. The eddy currents cause a force in non-magnetic metal, the Lorentz force, which repels the material away from the rotating drum while all other material follows the systems flow direction. Systems equipped with a metal detector activate a mechanical sorting device, separate chute or air nozzles, when a metal particle is detected. In contrast to eddy current separators all types of metals can be detected and sorted out by systems based on metal detector. Several technical solutions for metal separation supplied by various manufacturers are described in the report. The companies have been asked to supply product information on the working principle, technical data, efficiency and limits for different types of metals. Two reference power plants have been visited and their experiences with all-metal separators are described. Haendeloeverket in Norrkoeping uses eddy current separators for separation of non-magnetic metals from household waste

  13. Towards High Power Density Metal Supported Solid Oxide Fuel Cell for Mobile Applications

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Persson, Åsa H.; Muhl, Thuy Thanh

    2018-01-01

    For use of metal supported solid oxide fuel cell (MS-SOFC) in mobile applications it is important to reduce the thermal mass to enable fast startup, increase stack power density in terms of weight and volume and reduce costs. In the present study, we report on the effect of reducing the Technical...... loss, two different routes for increasing the porosity of the support layer and thus performance were explored. The first route is the introduction of gas channels by puncturing of the green tape casted support layer. The second route is modification of the co-sintering profile. In summary, the cell...... thickness and thus weight and volume was reduced and the cell power density at 0.7 V at 700°C was increased by 46% to 1.01 Wcm−2 at a fuel utilization of 48%. All modifications were performed on a stack technological relevant cell size of 12 cm × 12 cm....

  14. Advanced fuel for fast breeder reactors: Fabrication and properties and their optimization

    International Nuclear Information System (INIS)

    1988-06-01

    The present design for FBR fuel rods includes usually MOX fuel pellets cladded into stainless steel tubes, together with UO 2 axial blanket and stainless steel hexagonal wrappers. Mixed carbide, nitride and metallic fuels have been tested as alternative fuels in test reactors. Among others, the objectives to develop these alternative fuels are to gain a high breeding ratio, short doubling time and high linear ratings. Fuel rod and assembly designers are now concentrating on finding the combination of optimized fuel, cladding and wrapper materials which could result in improvement of fuel operational reliability under high burnups and load-follow mode of operation. The purpose of the meeting was to review the experience of advanced FBR fuel fabrication technology, its properties before, under and after irradiation, peculiarities of the back-end of the nuclear fuel cycle, and to outline future trends. As a result of the panel discussion, the recommendations on future Agency activities in the area of advanced FBR fuels were developed. A separate abstract was prepared for each of the 10 presentations of this meeting. Refs, figs and tabs

  15. Very fast mass balance and other fuel cycle response calculations for studying back end of fuel cycle scenari

    International Nuclear Information System (INIS)

    Dekens, O.; Marguet, S.; Risch, P.

    1997-01-01

    In order to optimize nuclear fuel utilization, as far as irradiation and storage are concerned, the Research and Development Division of Electricite de France (EDF) developed as fast and accurate software that simulates a fuel assembly life from the inside-reactor stay to the final repository: STRAPONTIN. The discrepancies between reference calculations and STRAPONTIN are generally smaller than 5 %. Moreover, the low calculation time enables to couple STRAPONTIN to any large code in order to widen its scope without impairing its CPU time. (authors)

  16. Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-04-20

    The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treated separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s

  17. Impact of reducing sodium void worth on the severe accident response of metallic-fueled sodium-cooled reactors

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Turski, R.B.; Pizzica, P.A.

    1994-01-01

    Analyses have performed on the severe accident response of four 90 MWth reactor cores, all designed using the metallic fuel of the Integrated Fast Reactor (IFR) concept. The four core designs have different sodium void worth, in the range of -3$ to 5$. The purpose of the investigation is to determine the improvement in safety, as measured by the severe accident consequences, that can be achieved from a reduction in the sodium void worth for reactor cores designed using the IFR concept

  18. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program's understanding of the cost drivers that will determine nuclear power's cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-irradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  19. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  20. Radiological transportation risk assessment of the shipment of sodium-bonded fuel from the Fast Flux Test Facility to the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.R.

    1995-01-31

    This document was written in support of Environmental Assessment: Shutdown of the Fast Flux Test Facility (FFTF), Hanford Site, Richland, Washington. It analyzes the potential radiological risks associated with the transportation of sodium-bonded metal alloy and mixed carbide fuel from the FFTF on the Hanford Site in Washington State to the Idaho Engineering Laboratory in Idaho in the T-3 Cask. RADTRAN 4 is used for the analysis which addresses potential risk from normal transportation and hypothetical accident scenarios.

  1. Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts

    Science.gov (United States)

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

  2. Applying fast calorimetry on a spent nuclear fuel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liljenfeldt, Henrik [Swedish Nuclear Fuel and Waste Management (Sweden); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Uppsala Univ. (Sweden)

    2015-04-15

    Recently at Los Alamos National Laboratory, sophisticated prediction algorithms have been considered for the use of calorimetry for treaty verification. These algorithms aim to predict the equilibrium temperature based on early data and therefore be able to shorten the measurement time while maintaining good accuracy. The algorithms have been implemented in MATLAB and applied on existing equilibrium measurements from a spent nuclear fuel calorimeter located at the Swedish nuclear fuel interim storage facility. The results show significant improvements in measurement time in the order of 15 to 50 compared to equilibrium measurements, but cannot predict the heat accurately in less time than the currently used temperature increase method can. This Is both due to uncertainties in the calibration of the method as well as identified design features of the calorimeter that limits the usefulness of equilibrium type measurements. The conclusions of these findings are discussed, and suggestions of both improvements of the current calorimeter as well as what to keep in mind in a new design are given.

  3. Sex differences in fuel use and metabolism during development in fasting juvenile northern elephant seals.

    Science.gov (United States)

    Kelso, Elizabeth J; Champagne, Cory D; Tift, Michael S; Houser, Dorian S; Crocker, Daniel E

    2012-08-01

    Many polygynous, capital breeders exhibit sexual dimorphism with respect to body size and composition. Sexual dimorphism is often facilitated by sex differences in foraging behavior, growth rates and patterns of nutrient deposition during development. In species that undergo extended fasts during development, metabolic strategies for fuel use have the potential to influence future reproductive success by directly impacting somatic growth and acquisition of traits required for successful breeding. We investigated sexual dimorphism associated with metabolic strategies for fasting in developing northern elephant seals. Thirty-one juvenile seals of both sexes were sampled over extended fasts during annual autumn haul-outs. Field metabolic rate (FMR) and the contribution of protein catabolism to energy expenditure were estimated from changes in mass and body composition over 23±5 days of fasting (mean ± s.d.). Protein catabolism was assessed directly in a subset of animals based on urea flux at the beginning and end of the fast. Regulatory hormones and blood metabolites measured included growth hormone, cortisol, thyroxine, triiodothyronine, insulin, glucagon, testosterone, estradiol, glucose, urea and β-hydroxybutyrate. Males exhibited higher rates of energy expenditure during the fast but spared body protein stores more effectively than females. Rates of protein catabolism and energy expenditure were significantly impacted by hormone levels, which varied between the sexes. These data suggest that sex differences in fuel metabolism and energy expenditure during fasting arise early in juvenile development and may play an important role in the development of adult traits associated with reproductive success.

  4. The integral fast reactor concept

    International Nuclear Information System (INIS)

    Chang, Yoon I.; Marchaterre, J.F.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) an integral fuel cycle, based on pyrometallurgical processing and injection-cast fuel fabrication, with the fuel cycle facility collocated with the reactor, if so desired. This paper gives a review of the IFR concept

  5. Evolution of fast reactor core spectra in changing a heavy liquid metal coolant by molten PB-208

    Energy Technology Data Exchange (ETDEWEB)

    Blokhin, D. A.; Mitenkova, E. F. [Nuclear Safety Inst., Russian Academy of Sciences, B. Tulskaya 52, Moscow, 115119 (Russian Federation); Khorasanov, G. L.; Zemskov, E. A.; Blokhin, A. I. [State Scientific Center, Russian Federation, Inst. of Physics and Power Engineering, Bondarenko Square 1, Obninsk, 249033 (Russian Federation)

    2012-07-01

    In the paper neutron spectra of fast reactor cooled with lead-bismuth or lead-208 are given. It is shown that in changing the coolant from lead-bismuth to lead-208 the core neutron spectra of the fast reactor FR RBEC-M are hardening in whole by several percents when a little share of low energy neutrons (5 eV - 50 keV) is slightly increasing. The shift of spectra to higher energies permits to enhance the fuel fission while the increased share of low energy neutrons provides more effective conversion of uranium-238 into plutonium due to peculiarity of {sup 238}U neutron capture cross section. Good neutron and physical features of molten {sup 208}Pb permit to assume it as perspective coolant for fast reactors and accelerator driven systems. The one-group cross sections of neutron radiation capture, {sigma}(n,g), by {sup 208}Pb, {sup 238}U, {sup 99}Tc, mix of lead and bismuth, {sup nat}Pb-Bi, averaged over neutron spectra of the fast reactor RBEC-M are given. It is shown that one-group cross sections of neutron capture by material of the liquid metal coolant consisted from lead enriched with the stable lead isotope, {sup 208}Pb, are by 4-7 times smaller {sigma}(n,g) for the coolant {sup nat}Pb-Bi. The economy of neutrons in the core cooled with {sup 208}Pb can be used for reducing reactor's initial fuel load, increasing fuel breeding and transmutation of long lived fission products, for example {sup 99}Tc. Good neutron and physical features of lead enriched with {sup 208}Pb permit to consider it as a perspective low neutron absorbing coolant for fast reactors and accelerator driven systems. (authors)

  6. High performance, high durability non-precious metal fuel cell catalysts

    Science.gov (United States)

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  7. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all

  8. Thermodynamic analysis of advanced fuels for fast breeder reactors

    International Nuclear Information System (INIS)

    Srivastava, D.; Garg, S.P.; Goswami, G.L.

    1990-01-01

    Six phase fields of interest in the M-C-N system (M= mixed U/Pu) with oxygen as impurity are i) U 1-x3 Pu x3 (=M)+ U 1-x1 Pu x1 C 1-y-z N y O z (= MCN O), ii)C+ U 1 x2 Pu x2 Csub(1.5) (=MCsub(1.5)), iii) MCsub(1.5) + MCNO, iv) C+MCNO, v) UN (1.5) + MCNO and vi) C + UNsub(1.5) + MCNO. In the present work a detailed thermodynamic analysis has been carried out for all the six phase fields existing in the system with x 1 , 1-y-z and y are varying from 0.0 to 1.0 and z as impurity from 0.0 to 0.15 at temperature between 1500K to 2000K. In the first part, composition of the phases in the different phase fields have been calculated as a function of overall composition of the fuel and temperature. In the second part, thermodynamic properties such as partial pressures of N 2 (g), O 2 (g), CO(g), Pu(g), U(g), PuO(g), UO(g), UC 2 (g) and PuC 2 (g) species and carbon potential of the fuel have been calculated as a function of compositions x 1 , y and z at different temperatures. Results obtained are discus sed in detail and compared with the reported measured data. Hitherto, thermodynamic properties for all the phase fields of M-C-N-O system have not been reported. (a uthor). 54 tabs., 13 figs., 24 refs

  9. The application of electrorefining for recovery and purification of fuel discharged from the Integral Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burris, L.; Steunenberg, R.K.; Miller, W.E.

    1986-01-01

    An electrorefining process employing a molten salt electrolyte and a molten cadmium anode is proposed for the separation of uranium and plutonium from fission products and cladding material in discharged IFR driver fuel. The use of a liquid cadmium anode, which is the unique feature of the process, permits selective dissolution of the fuel from the cladding and prevents electrolytic corrosion of the steel container and contamination of the product by noble metal fission products.

  10. The application of electrorefining for recovery and purification of fuel discharged from the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Steunenberg, R.K.; Miller, W.E.

    1986-01-01

    An electrorefining process employing a molten salt electrolyte and a molten cadmium anode is proposed for the separation of uranium and plutonium from fission products and cladding material in discharged IFR driver fuel. The use of a liquid cadmium anode, which is the unique feature of the process, permits selective dissolution of the fuel from the cladding and prevents electrolytic corrosion of the steel container and contamination of the product by noble metal fission products

  11. Contribution to the study of the fission-gas release in metallic nuclear fuels

    International Nuclear Information System (INIS)

    Kryger, B.

    1969-10-01

    In order to study the effect of an external pressure on the limitation of swelling due to fission-gas precipitation, some irradiations have been carried out at burn-ups of about 35.000 MWd/ton, and at average sample temperatures of 575 Celsius degrees, of non-alloyed uranium and uranium 8 per cent molybdenum gained in a thick stainless steel can. A cylindrical central hole allows a fuel swelling from 20 to 33 per cent according to the experiment. After irradiation, the uranium samples showed two types of can rupture: one is due to the fuel swelling, and the other, to the pressure of the fission gases, released through a network of microcracks. The cans of the uranium-molybdenum samples are all undamaged and it is shown that the gas release occurs by interconnection of the bubbles for swelling values higher than those obtained in the case of uranium. For each type of fuel, a swelling-fission gas release relationship is established. The results suggest that good performances with a metallic fuel intended for use in fast reactor conditions can be obtained. (author) [fr

  12. The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 1: Basic Models

    Science.gov (United States)

    Mosunova, N. A.

    2018-05-01

    The article describes the basic models included in the EUCLID/V1 integrated code intended for safety analysis of liquid metal (sodium, lead, and lead-bismuth) cooled fast reactors using fuel rods with a gas gap and pellet dioxide, mixed oxide or nitride uranium-plutonium fuel under normal operation, under anticipated operational occurrences and accident conditions by carrying out interconnected thermal-hydraulic, neutronics, and thermal-mechanical calculations. Information about the Russian and foreign analogs of the EUCLID/V1 integrated code is given. Modeled objects, equation systems in differential form solved in each module of the EUCLID/V1 integrated code (the thermal-hydraulic, neutronics, fuel rod analysis module, and the burnup and decay heat calculation modules), the main calculated quantities, and also the limitations on application of the code are presented. The article also gives data on the scope of functions performed by the integrated code's thermal-hydraulic module, using which it is possible to describe both one- and twophase processes occurring in the coolant. It is shown that, owing to the availability of the fuel rod analysis module in the integrated code, it becomes possible to estimate the performance of fuel rods in different regimes of the reactor operation. It is also shown that the models implemented in the code for calculating neutron-physical processes make it possible to take into account the neutron field distribution over the fuel assembly cross section as well as other features important for the safety assessment of fast reactors.

  13. A contribution to the analysis of the thermal behaviour of Fast Breeder fuel rods with UO2-PuO2 fuel

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Elbel, H.

    1977-01-01

    The fuel of Fast Breeder Reactors which consists of Uranium and Plutonium dioxide is mainly characterized by the amount and distribution of void volume and Plutonium and the amount of oxygen. Irradiation experiments carried out with this fuel have shown that initial structure of the fuel pellet is subjected to large changes during operation. These are consequences of the radial and axial temperature gradients within the fuel rods. (Author) 54 refs

  14. Fully-Coupled Metallic Fuel Performance Simulations using BISON

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, Jack D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-27

    This document is a set of slides intended to accompany a talk at a meeting. The first topic taken up is zirconium redistribution. The rod edge Zr increase is evidently due to the Soret term and temperature gradient. Then metallic fission gas release modeling is considered. Based on a GRSIS/FEAST model, the approach of generating fission gas in the fuel matrix is described. A sensitivity study on parameters is presented, including sodium bond & diffusion coefficient sensitivity along with dt sensitivity. Finally, results of some coupled simulations are shown, with ideas about future work.

  15. Technical committee meeting on material-coolant interactions and material movement and relocation in liquid metal fast reactors

    International Nuclear Information System (INIS)

    1994-01-01

    The Technical Committee Meeting on Material-Coolant Interactions and Material Movement and Relocation in Liquid Metal Fast Reactors was sponsored by the International Working Group on Fast Reactors (IWGFR), International Atomic Energy Agency (IAEA) and hosted by PNC, on behalf of the Japanese government. A broad range of technical subjects was discussed in the TCM, covering entire aspects of material motion and interactions relevant to the safety of LMFRs. Recent achievement and current status in research and development in this area were presented including European out-of-pile test of molten material movement and relocation; molten material-sodium interaction; molten fuel-coolant interaction; core disruptive accidents; sodium boiling; post accident material relocation, heat removal and relevant experiments already performed or planned

  16. Design of small gas cooled fast reactor with two region of natural Uranium fuel fraction

    Science.gov (United States)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Monado, Fiber; Sekimoto, Hiroshi; Nakayama, Sinsuke

    2012-06-01

    A design study of small Gas Cooled Fast Reactor with two region fuel has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region fuel i.e. 60% fuel fraction of Natural Uranium as inner core and 65% fuel fraction of Natural Uranium as outer core. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 filled by fresh Natural Uranium. This concept is basically applied to all regions in both cores area, i.e. shifted the core of ith region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium on each region-1. The burn-up calculation is performed using collision probability method PIJ (cell burn-up calculation) in SRAC code which then given eight energy group macroscopic cross section data to be used in two dimensional R-Z geometry multi groups diffusion calculation in CITATION code. This reactor can results power thermal 600 MWth with average power density i.e. 80 watt/cc. After reactor start-up the operation, furthermore reactor only needs Natural Uranium supply for continue operation along 100 years. This calculation result then compared with one region fuel design i.e. 60% and 65% fuel fraction. This core design with two region fuel fraction can be an option for fuel optimization.

  17. Epsilon metal waste form for immobilization of noble metals from used nuclear fuel

    Science.gov (United States)

    Crum, Jarrod V.; Strachan, Denis; Rohatgi, Aashish; Zumhoff, Mac

    2013-10-01

    Epsilon metal (ɛ-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 1500-2000 °C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  18. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    International Nuclear Information System (INIS)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong

    2012-01-01

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced

  19. Multiphysics simulation of fast transients with the FINIX fuel behaviour module

    Directory of Open Access Journals (Sweden)

    Ikonen Timo

    2016-01-01

    Full Text Available FINIX is a recently developed fuel behaviour module that is designed to provide “simple but sufficient” descriptions of the most essential fuel behaviour phenomena in multiphysics simulations. In such simulations, it is possible to obtain significant improvement in the feedback to neutronics or thermal hydraulics modelling even with a relatively simple fuel performance model. In this work, FINIX is used as an internal fuel behaviour module both in reactor physics and in reactor dynamics codes to simulate coupled behaviour in fast transient scenarios. With the Monte Carlo reactor physics code Serpent we model a prompt transient in a VVER-1000 pin cell, and with the reactor dynamics code HEXTRAN, a control rod ejection accident in a VVER-440 reactor.

  20. Quality assurance program for surveillance of fast reactor mixed oxide fuel analytical chemistry

    International Nuclear Information System (INIS)

    Rein, J.E.; Zeigler, R.K.; Waterbury, G.R.; McClung, W.E.; Praetorius, P.R.; Delvin, W.L.

    1976-01-01

    An effective quality assurance program for the chemical analysis of nuclear fuel is essential to assure that the fuel will meet the strict chemical specifications required for optimum reactor performance. Such a program has been in operation since 1972 for the fuels manufactured for the Fast Flux Test Facility. This program, through the use of common quality control and calibration standards, has consistently provided high levels of agreement among laboratories in all areas of analysis. The paper presented gives a summary of the chemical specifications for the fuel and source material, an outline of the requirements for laboratory qualifications and the preparation of calibration and quality control materials, general administration details of the plan, and examples where the program has been useful in solving laboratory problems

  1. Circumferential nonuniformity of cladding radiation swelling of fast reactor peripheral fuel elements

    International Nuclear Information System (INIS)

    Reutov, V.F.; Farkhutdinov, K.G.

    1977-01-01

    The results are presented of the investigation into the perimeter radiation swelling of Kh18N10T stainless steel cladding in different cross sections of a peripheral fuel element of the BR-5 reactor. The fluence on the cladding is 1.8-2.9 x 10 22 fast neutr/cm 2 , the operating temperatures in different parts of the fuel element being 430 deg to 585 deg C. There has been observed circumferential non-uniformity of the distribution, concentration, and of the total volume of radiation cavities, which is due to temperature non-uniformity along the cladding perimeter. It is shown that such non-uniformity of radiation swelling of the cladding material may result in bending of the peripheral fuel element with regard to the fuel assembly sheath walls

  2. Fuel supply of nuclear power industry with the introduction of fast reactors

    Science.gov (United States)

    Muraviev, E. V.

    2014-12-01

    The results of studies conducted for the validation of the updated development strategy for nuclear power industry in Russia in the 21st century are presented. Scenarios with different options for the reprocessing of spent fuel of thermal reactors and large-scale growth of nuclear power industry based on fast reactors of inherent safety with a breeding ratio of ˜1 in a closed nuclear fuel cycle are considered. The possibility of enhanced fuel breeding in fast reactors is also taken into account in the analysis. The potential to establish a large-scale nuclear power industry that covers 100% of the increase in electric power requirements in Russia is demonstrated. This power industry may be built by the end of the century through the introduction of fast reactors (replacing thermal ones) with a gross uranium consumption of up to ˜1 million t and the termination of uranium mining even if the reprocessing of spent fuel of thermal reactors is stopped or suffers a long-term delay.

  3. The theoretical possibility of reducing the doubling time in a fast-reactor by using heterogeneous configurations of various types of fuel

    International Nuclear Information System (INIS)

    Orlov, V.V.; Slesarev, I.S.; Zaritskij, S.M.; Subbotin, S.A.; Alekseev, P.N.; Zverkov, Yu.A.

    1980-01-01

    The authors have derived approximate expressions relating the doubling time of a fast reactor using various types of fuel simultaneously to the doubling time of traditional (homogeneous) reactors in which these types of fuel are used separately. These relationships afford a means of determining the conditions in which the use of various types of fuel can result in an improved doubling time. It was established that the use of heterogeneous compositions formed from assemblies of homogeneous systems gives a notable gain in doubling time over that of any of the original homogeneous systems if the doubling times were similar to each other. This gain is fairly large even in the case of BN reactors with high fuel volume fractions. The size of the gain depends on the degree of ''differentiation'' in the neutron and thermal properties of the components of the heterogeneous reactor. An optimum proportion has been found for the assemblies taken from the original homogeneous systems, governed primarily by the ratio of fuel densities. Estimates were made of the advantages of metallic oxide compositions over the traditional compositions used in large, fast reactors of the BN type. These estimates indicate that the former can be considered as alternative homogeneous compositions with carbide or nitride fuel as far as breeding characteristics are concerned. (author)

  4. Analysis of metal fuel transient overpower experiments with the SAS4A accident analysis code

    International Nuclear Information System (INIS)

    Tentner, A.M.; Kalimullah; Miles, K.J.

    1990-01-01

    The results of the SAS4A analysis of the M7 TREAT Metal fuel experiment are presented. New models incorporated in the metal fuel version of SAS4A are described. The computational results are compared with the experimental observations and this comparison is used in the interpretation of physical phenomena. This analysis was performed using the integrated metal fuel SAS4A version and covers a wide range of events, providing an increased degree of confidence in the SAS4A metal fuel accident analysis capabilities

  5. Casting technology for manufacturing metal rods from simulated metallic spent fuels

    Science.gov (United States)

    Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    2000-09-01

    A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.

  6. Accelerator driven light water fast reactor (revisiting to the accelerator LWR fuel regenerator)

    International Nuclear Information System (INIS)

    Takahashi, H.; Zhang, J.

    1999-01-01

    A tight-latticed, high-enriched Pu fuel reactor cooled by water or by super-critical steam has a high neutron economy, similar to that of Na-or Pb-cooled fast reactor. Operating in a subcritical condition by providing spallation neutrons, this Pu-fueled reactor can run safely, despite the positive coolant void coefficients. It can be used to transmute the proliferation-prone Pu into proliferation-resistive U-233 fuel using thorium as the fertile material. Rather than employing the large linear accelerator proposed for the LWR fuel regenerator studied in the INFCE program, a small circular accelerator, such as a cyclotron or a Fixed Field Alternating Gradient Synchrotron (FFAG), can run a large power reactor in a slightly subcritical reactor using control rods, on-line fuel reshuffling, and slightly graded proton-beam injection. Some thoughts on improving the reliability of the proton accelerator, on transmutation of the long-lived fission products of Tc-99, and I-129, and the future direction of the development of the fast reactor are discussed. (author)

  7. SunFast: A sun workstation based, fuel analysis scoping tool for pressurized water reactors

    International Nuclear Information System (INIS)

    Bohnhoff, W.J.

    1991-05-01

    The objective of this research was to develop a fuel cycle scoping program for light water reactors and implement the program on a workstation class computer. Nuclear fuel management problems are quite formidable due to the many fuel arrangement options available. Therefore, an engineer must perform multigroup diffusion calculations for a variety of different strategies in order to determine an optimum core reload. Standard fine mesh finite difference codes result in a considerable computational cost. A better approach is to build upon the proven reliability of currently available mainframe computer programs, and improve the engineering efficiency by taking advantage of the most useful characteristic of workstations: enhanced man/machine interaction. This dissertation contains a description of the methods and a user's guide for the interactive fuel cycle scoping program, SunFast. SunFast provides computational speed and accuracy of solution along with a synergetic coupling between the user and the machine. It should prove to be a valuable tool when extensive sets of similar calculations must be done at a low cost as is the case for assessing fuel management strategies. 40 refs

  8. Summary of estimated doses and risks resulting from routine radionuclide releases from fast breeder reactor fuel cycle facilities

    International Nuclear Information System (INIS)

    Miller, C.W.; Meyer, H.R.

    1985-01-01

    A project is underway at Oak Ridge National Laboratory to assess the human health and environment effects associated with operation of Liquid Metal Fast Breeder Reactor fuel cycle. In this first phase of the work, emphasis was focused on routine radionuclide releases from reactor and reprocessing facilities. For this study, sites for fifty 1-GW(e) capacity reactors and three reprocessing plants were selected to develop scenarios representative of US power requirements. For both the reactor and reprocessing facility siting schemes selected, relatively small impacts were calculated for locality-specific populations residing within 100 km. Also, the results of these analyses are being used in the identification of research priorities. 13 refs., 2 figs., 3 tabs

  9. Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  10. Status of IVO-FR2-Vg7 experiment for irradiation of fast reactor fuel rods

    International Nuclear Information System (INIS)

    Elbel, H.; Kummerer, K.; Bojarsky, K.; Lopez Jimenez, J.; Otero de la Gandara, J.L.

    1979-01-01

    Report on the Seminar celebrated in Madrid between KfK (Karlsruhe) and JEN (Madrid) concerning a Joint Irradiation Program of Fast Reactor Fuel Rods. The design of fuel rods in general is defined, and, in particular of those with a density 94% DT and diameter 7.6 mm up to a burn-up of 7% FIMA, to be irradiated in the FR2 Reactor (Karlsruhe). Together with the design of NaK and single-wall capsules used in this irradiation, other possibilities of irradiation in the reactor will also be described. (auth.)

  11. Fast breeder reactor fuel reprocessing R and D: technological development for a commercial plant

    International Nuclear Information System (INIS)

    Colas, J.; Saudray, D.; Coste, J.A.; Roux, J.P.; Jouan, A.

    1987-01-01

    The technological developments undertaken by the CEA are applied to a plant project of a 50 t/y capacity, having to reprocess in particular the SUPERPHENIX 1 reactor fuel. French experience on fast breeder reactor fuel reprocessing is presented, then the 50 t/y capacity plant project and the research and development installations. The R and D programs are described, concerning: head-end operations, solvent extractions, Pu02 conversion and storage, out-of-specification Pu02 redissolution, fission products solution vitrification, conditioning of stainless steel hulls by melting, development of remote operation equipments, study of corrosion and analytical problems

  12. A fast-running fuel management program for a CANDU reactor

    International Nuclear Information System (INIS)

    Choi, Hangbok

    2000-01-01

    A fast-running fuel management program for a CANDU reactor has been developed. The basic principle of this program is to select refueling channels such that the reference reactor conditions are maintained by applying several constraints and criteria when selecting refueling channels. The constraints used in this program are the channel and bundle power and the fuel burnup. The final selection of the refueling channel is determined based on the priority of candidate channels, which enhances the reactor power distribution close to the time-average model. The refueling simulation was performed for a natural uranium CANDU reactor and the results were satisfactory

  13. Current status of feasibility studies on commercialized fuel cycle system for Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Ojima, Hisao; Nagaoki, Yoshihiro

    2000-01-01

    A 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' is underway at the Japan Nuclear Cycle Development Institute (JNC). The study will select the promising concepts with their R and D tasks in order to commercialize the fast breeder reactor (FBR) cycle system. The feasibility studies (F/S) have to present surveyed and screened various relevant technologies, and defined the design requirement of the commercialized fuel cycle system for FBR. The promising technical options are being evaluated and conceptual designs are being examined. At the end of JFY2000, several candidate concepts of the commercialized FBR cycle system will be proposed. (author)

  14. Evaluation of molten fuel containment concepts for gas-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Kang, C.S.; Torri, A.

    1979-10-01

    Four in-vessel molten fuel containment concepts for the GCFR were compared, namely, (1) a ceramic crucible, (2) a borax bath, (3) a heavy metal bath, and (4) a steel bath. The ceramic crucible is the simplest but depends on substantial upward heat removal. The borax bath and the heavy metal bath concepts offer better performance but would require design changes and an increased experimental effort. The steel bath concept is a good compromise and has potential for further improvement by combining it with the essential features of other concepts, i.e., the crucible or the heavy metal bath. It is concluded that several concepts could potentially exploit the normally provided cooled liner barrier in the PCRV cavity for post-accident fuel containment

  15. Safety Aspects of Thorium Fuel in Sodium-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Fiorina, C.; Franceschini, F.; Memmott, M.

    2013-01-01

    Conclusions: ● Thorium fuel significantly reduces void positive reactivity insertion − ~2$ reduction for the ARR burner design (oxide fuel); − ~6$ reduction for the ARR breakeven design (nitride Th vs. U metal). ● ~ 1m$/K more negative Doppler for the Th breakeven design. ● Effects on transients need to be assessed (underway). ● Larger blankets, higher fuel manufacturing/reprocessing and larger reactivity swing in Th-breakeven. ● Comparable long-term capability to withstand double-fault accidents. → Thorium can be appealing for TRU burning and/or decreasing void reactivity keeping a simple design (e.g. axially homogeneous). ● Very high sources requiring remote fuel manufacturing for all cases (U and Th). ● Long term options with substantial developments/additional costs when full actinide recycle is pursued in U and for all cases in Th

  16. The evaluation of the use of metal alloy fuels in pressurized water reactors

    International Nuclear Information System (INIS)

    Lancaster, D.

    1992-01-01

    The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ''advanced reactors,'' it became clear that reactor design optimization has been under emphasized. Current ''advanced reactors'' are severely constrained. The AP-600 required the use of a fuel design from the 1970's. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing

  17. The evaluation of the use of metal alloy fuels in pressurized water reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, D.

    1992-10-26

    The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ``advanced reactors,`` it became clear that reactor design optimization has been under emphasized. Current ``advanced reactors`` are severely constrained. The AP-600 required the use of a fuel design from the 1970`s. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing.

  18. An integral metallic-fueled and lead-cooled reactor concept for the 4th generation reactor

    International Nuclear Information System (INIS)

    Santos, A. dos; Nascimento, J.A. do

    2002-01-01

    An Integral Lead Reactor (ILR) concept is proposed for the 4th generation reactor to be used in the future. The ILR is loaded with metallic fuel and cooled by lead. It was evaluated in the 300-1500 MWe power range with the Japanese Fast Set 2 cross sections library. This set was tested against several fast benchmarks and the criticality uncertainty was found to be 0.51 % Δk. The reactor is started with U-Zr and changes to the U-TRU-Zr-RE fuel in a stepwise way. In the equilibrium cycle, the burnup reactivity is less than β eff for a core of the order of 300 MWe, pin diameter of 10.4 mm and a pin-pitch to diameter ratio of 1.308. The lead void reactivity is negative for reactor power less than 750 MWe. There is a need to improve the nuclear data for the major actinides. (author)

  19. Study and evaluation of innovative fuel handling systems for sodium-cooled fast reactors: fuel handling route optimization

    International Nuclear Information System (INIS)

    Dechelette, Franck; Morin, Franck; Laffont, Guy; Rodriguez, Gilles; Sanseigne, Emmanuel; Christin, Sebastien; Mognot, Xavier; Morcillo, Aurelien

    2014-01-01

    The research for technological improvement and innovation in sodium-cooled fast reactor is a matter of concern in fuel handling systems in a view to perform a better load factor of the reactor thanks to a quicker fuelling/defueling process. An optimized fuel handling route will also limit its investment cost. In that field, CEA has engaged some innovation study either of complete FHR or on the optimization of some specific components. This paper presents the study of three SFR fuel handling route fully described and compared to a reference FHR option. In those three FHR, two use a gas corridor to transfer spent and fresh fuel assembly and the third uses two casks with a sodium pot to evacuate and load an assembly in parallel. All of them are designed for the ASTRID reactor (1500 MWth) but can be extrapolated to power reactors and are compatible with the mutualization of one FHS coupled with two reactors. These three concepts are then inter-compared and evaluated with the reference FHR according to four criteria: performances, risk assessment, investment cost, and qualification time. This analysis reveals that the 'mixed way' FHR presents interesting solutions mainly in terms of design simplicity and time reduction. Therefore its study will be pursued for ASTRID as an alternative option. (authors)

  20. Rare metal fission products in nuclear spent fuel as catalysts for hydrogen production by water electrolysis

    International Nuclear Information System (INIS)

    Ozawa, Masaki

    2004-01-01

    Separation and utilization of rare metal fission products (RMFP) in nuclear spent fuel were studied to apply them as a catalyst for hydrogen generation by water electrolysis. The RMFP, namely Pd, Ru, Rh and Tc, etc, are abundant, more than ca. 30kg per metric ton of a typical fast reactor spent fuel. The RMFP can be selectively separated from high level liquid waste (HLLW) by catalytic electrolytic extraction (CEE) method. Specific metallic cations such as Pd 2+ , which originate in the solutions, may act as promoters (i.e., Pd adatom ) or mediators, thereby accelerating electrochemical deposition of RuNO 3+ , Rh 3+ and ReO 4 - (simulator TcO 4 - ). In utilizing CEE method, electrodeposited electrodes were prepared, and successively dedicated to the water (alkaline or artificial sea water) electrolysis tests. Among the RMFP deposited electrodes, maximum potential shifting for hydrogen evolution to noble side was observed for the quaternary, Pd-Ru-Rh-Re (3.5:4:1:1), deposit Pt electrode, with suggesting the highest cathodic currents for hydrogen evolution both in alkaline solution and artificial sea water. The electro analytic activity of quaternary, Pd-Ru-Rh-Re (3.5:4:1:1), deposit Pt electrode exceeded that of Pt electrode by ca. twice both in alkaline solution and artificial sea water. The paper conclusively proposes RMFP generated by nuclear fission to utilize as an alternative material for hydrogen production with a novel vision to bridge nuclear and hydrogen energy systems. (author)

  1. Environmental protection problems from the standpoint of regeneration of fast neutron reactor fuel

    International Nuclear Information System (INIS)

    Gedeonov, L.I.; Lazarev, L.N.; Suprunenko, A.N.

    The discussion of the problem of environmental protection is based on two principles: a strict observance of legislatively established standards for permissible concentrations of radionuclides in objects of the environment and for dose loads for the population; all possible steps to reduce the contamination to a level justified in practice. Environmental protection steps are considered from the points of view of a systematic analysis. A survey of the environmental protection system near sources of radioactive discharges is given. The basic interactions and feedbacks are indicated. Characteristics differentiating the discharges of the fuel cycle of fast neutron breeder reactors from discharges of the slow neutron cycle are discussed. It is shown that it is necessary to study the overall regional and global interactions of discharges of the atomic power industry. The characteristics of situations at nuclear fuel cycle facilities of fast neutron reactors are discussed. The necessity of additional technical steps to prevent accidents and eliminate their effects if they take place is emphasized

  2. Platinum redispersion on metal oxides in low temperature fuel cells.

    Science.gov (United States)

    Tripković, Vladimir; Cerri, Isotta; Nagami, Tetsuo; Bligaard, Thomas; Rossmeisl, Jan

    2013-03-07

    We have analyzed the aptitude of several metal oxide supports (TiO(2), SnO(2), NbO(2), ZrO(2), SiO(2), Ta(2)O(5) and Nb(2)O(5)) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum dissolution at high potentials and the interference of redispersion with normal working potential of the PEMFC cathode. We have calculated the PtO(x) (x = 0, 1, 2) adsorption energies on different metal oxides' surface terminations as well as inside the metal oxides' bulk, and we have concluded that NbO(2) might be a good support for platinum redispersion at PEMFC cathodes.

  3. Status of sodium cooled fast reactors with closed fuel cycle in India

    International Nuclear Information System (INIS)

    Raj, B.

    2007-01-01

    Fast reactors form the second stage of India's 3-stage nuclear power programme. The seed for India's fast reactor programme was sown through the construction of the Fast Breeder Test Reactor (FBTR) at IGCAR, Kalpakkam, that was commissioned in 1985. FBTR has operated with an unique, indigenously developed plutonium rich mixed carbide fuel, which has reached a burn up as high as 155 GWd/t without any fuel failure in the core. The sodium systems in the reactor have performed excellently. The availability of the reactor has been as high as 92% in the recent campaigns. The fuel discharged from FBTR up to 100 GWd/t has been reprocessed successfully. The experience gained in the construction, commissioning and operation of FBTR has provided the necessary confidence to launch a Prototype FBR of 500 MWe capacity (PFBR). This reactor will be fuelled by uranium, plutonium mixed oxide. The reactor construction started in 2003 and the reactor is scheduled to be commissioned by 2010. The design of the reactor has incorporated the worldwide operating experience from the FBRs and has addressed various safety issues reported in literature, besides introducing a number of innovative features which have reduced the unit energy cost and contributed to its enhanced safety. Simultaneous with the construction of the reactor, the fuel cycle of the reactor has been addressed in a comprehensive manner and construction of a fuel cycle facility has been initiated. Subsequent to the PFBR, 4 more reactors with identical design are proposed to be constructed. Various elements of reactor design are being carefully analysed with the aim of introducing innovative features towards further reduction in unit energy cost and enhancing safety in these reactors

  4. A prospect of fast reactor and related fuel cycle in Japan

    International Nuclear Information System (INIS)

    Nagata, Takashi

    2009-01-01

    JAEA has launched a new project 'Fast Reactor Cycle Technology Development'(FaCT) in cooperation with electric utilities. In this FaCT project, a combination of 'the Japanese sodium cooled loop type fast reactor with oxide fuel, the advanced aqueous reprocessing, and the simplified palletizing fuel fabrication systems' is adopted, where many innovative technologies with technical challenging issues are actively used in order to provide significant improvements in economic competitiveness, and enhancement of safety and reliability, sustainability, and nonproliferation. Fast reactor cycle technology will provide harmonic solutions for global issues of energy resources and environments, and is expected to contribute to sustainable development of the future society. Therefore, it was selected as one of key technologies of national importance in the third term (JPY2006-2010) 'Science and Technology Basic Plan' in March 2006 in Japan. The 'Nuclear Energy National Plan' in August 2006 states start up of a demonstration FR by around 2025 and deployment of a commercial FR before 2050, and start operating fuel cycle facilities when these reactors achieve consistency. Accordingly, we will decide about the adoption of innovative technologies by judging their applicability by 2010, and present the conceptual designs of commercial and demonstration FR cycle facilities by 2015 with the R and D plans to realize. In developing the FR cycle, 5 Party council, which consists of MEXt, MITI, electricity utilities, manufacturers, and JAEA, was established in July 2006 for moving forward on the commercialization smoothly. In this framework, users' requirements for the future R and D, a scenario of transition from light water reactor cycle to sodium cooled FR cycle, international collaboration, development schedule, demonstration steps, and so on are discussed. In this presentation, a prospect concerning the system design features of JSFR and a summary of the above R and D progresses for

  5. Status of PFR fuel performance and its relevance to future fast reactor designs

    International Nuclear Information System (INIS)

    Brown, C.

    1992-01-01

    The Prototype Fast Reactor (PFR) at Dounreay was designed to provide commercial-style fast reactor components and has, over the last 15 years, provided valuable information on fuel assembly design relevant to future large-scale reactor stations. In recent years attention has focused increasingly on the maximization of fuel burn-up and the PFR irradiation programme has proved highly successful in following this trend. Burn-up levels of around 15% ha (twice the original target set for PFR fuel elements) are now routinely achieved and a number of pins have been taken beyond 20% ha without failure. Only in PFR will irradiation testing of Nimonic PE16, one of the two candidate cladding alloys referenced in the European Fast Reactor (EFR) consistent design, to doses approaching those set as EFR targets be achieved. A second important contribution which PFR is currently making to the EFR project is the parallel irradiation of pins of differing diameters, ranging from 5.84 mm to 8.5 mm OD. Economic arguments favour refuelling at annual intervals and this becomes possible at lower achieved burn-up in lower mass rated, larger diameter pins; hence future fast reactor designs are concentrating on pins with OD greater than 8 mm. The value of PFR's contribution to future fast reactor designs, and to the EFR project in particular, will be greatly enhanced if operation beyond 1994 is made possible. Enhanced statistics for pins at burn-ups greater than 15% ha would be gained, 8.5 mm OD pins would be able to reach 20% burn-up and materials test data would be available at high doses on materials relevant to high burn-up designs of the future. (Author)

  6. Fuel, structural material and coolant for an advanced fast micro-reactor

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Guimaraes, Lamartine N.F.; Ono, Shizuca

    2011-01-01

    The use of nuclear reactors in space, seabed or other Earth hostile environment in the future is a vision that some Brazilian nuclear researchers share. Currently, the USA, a leader in space exploration, has as long-term objectives the establishment of a permanent Moon base and to launch a manned mission to Mars. A nuclear micro-reactor is the power source chosen to provide energy for life support, electricity for systems, in these missions. A strategy to develop an advanced micro-reactor technologies may consider the current fast reactor technologies as back-up and the development of advanced fuel, structural and coolant materials. The next generation reactors (GEN-IV) for terrestrial applications will operate with high output temperature to allow advanced conversion cycle, such as Brayton, and hydrogen production, among others. The development of an advanced fast micro-reactor may create a synergy between the GEN-IV and space reactor technologies. Considering a set of basic requirements and materials properties this paper discusses the choice of advanced fuel, structural and coolant materials for a fast micro-reactor. The chosen candidate materials are: nitride, oxide as back-up, for fuel, lead, tin and gallium for coolant, ferritic MA-ODS and Mo alloys for core structures. The next step will be the neutronic and burnup evaluation of core concepts with this set of materials. (author)

  7. Features of the Numerical Solution of Thermal Destruction Fuel Pins Problems in the Fast Reactor

    Science.gov (United States)

    Usov, E. V.; Butov, A. A.; Klimonov, I. A.; Chuhno, V. I.; Nikolaenko, A. V.; Zhdanov, V. S.; Pribaturin, N. A.; Strizhov, V. F.

    2017-11-01

    In this paper the description of the basic equations which can be used for calculation of melting of fuel and cladding of the fast reactor, moving of the melt on a fuel pin surface and its solidification is presented. The special attention is given speed of calculation algorithms and fidelity of the phenomena which are observed at a stage of severe accidents in fast reactors. For check of working capacity of initial models, numerical calculations of Stefan-type problems on front movement of melting/solidification in cylindrical geometry are presented. Comparison with the solutions received by known analytical methods is executed. For validation of the numerical realization of calculation algorithms the analysis is carried out and experiments in which melting of the model fuel pins of fast reactors was studied are chosen. On the basis of the chosen experiments calculation schemes taking into account initial and boundary conditions are prepared and modeling is performed. Modeling results are shown in the present paper. Estimation of calculation error of the basic physical parameters is done by results of the modeling and conclusions are drawn on a correctness of algorithms operation.

  8. Sodium-cooled fast reactor core designs for transmutation of MHR spent fuel

    International Nuclear Information System (INIS)

    Hong, S. G.; Kim, Y. H.; Venneri, F.

    2010-01-01

    In this paper, the core design analyses of sodium cooled fast reactors (SFR) are performed for the effective transmutation of the DB (Deep Burn)-MHR (Modular Helium Reactor). In this concept, the spent fuels of DB-MHR are transmuted in SFRs with a closed fuel cycle after TRUs from LWR are first incinerated in a DB-MHR. We introduced two different type SFR core designs for this purpose, and evaluated their core performance parameters including the safety-related parameters. In particular, the cores are designed to have lower transmutation rate relatively to our previous work so as to make the fuel characteristics more feasible. The first type cores which consist of two enrichment regions are typical homogeneous annular cores and they rate 900 MWt power. On the other hand, the second type cores which consist of a central non-fuel region and a single enrichment fuel region rate relatively higher power of 1500 MWt. For these cores, the moderator rods (YH 1.8 ) are used to achieve less positive sodium void worth and the more negative Doppler coefficient because the loading of DB-MHR spent fuel leads to the degradation of these safety parameters. The analysis results show that these cores have low sodium void worth and negative reactivity coefficients except for the one related with the coolant expansion but the coolant expansion reactivity coefficient is within the typical range of the typical SFR cores. (authors)

  9. Progress in Understanding of Fuel-Cladding Chemical interaction in Metal Fuel

    International Nuclear Information System (INIS)

    Inagaki, Okenta; Nakamura, Kinya; Ogata, Takanari

    2013-01-01

    Conclusion: Representative phases formed in FCCI were identified: • The reaction between lanthanide elements and cladding; • The reaction between U-PU-Zr and cladding (Fe). Characteristics of the wastage layer were clarified: • Time and temperature dependency of the growth ratio of the wastage layer formed by lanthanide elements; • Threshold temperature of the liquid phase formation in the reaction between U-Pu-Zr and Fe. These results are used: - as a basis for the FCCI modeling; - as a reference data in post-irradiation examination of irradiated metallic fuels

  10. Fuel pin and subassembly heterogeneity effect on neutronics properties of a fast power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, T.; Yoshida, T. [Nippon Atomic Industry Group Co., Ltd., Tokyo (Japan)

    1980-09-15

    Heterogeneous structure of a fuel pin subassembly may exert influence on the neutronic properties of a fast power reactor such as criticality factor, sodium void reactivity, and Doppler coefficient. Study was performed to examine this effect quantitatively for a typical 1000 MW(e) power reactor. The heterogeneity effect was evaluated in two steps. One is for the heterogeneity of fuel pin cell loaded inside wrapper tubes. Another is for the gross heterogeneity of a subassembly, namely the lumped fuel-pins in the central part and the peripheral wrapper tube region. It is shown that the combined heterogeneity effect on k/sub eff/ is as large as 0.6%{Delta}/k. This large heterogeneity is mainly caused by the {sup 238}U resonance self-shielding effect.

  11. Online integrated visual inspection and sorting system for fast reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, D., E-mail: sorwadip@yahoo.co.i [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre (BARC), Tarapur Complex: 401502, Maharashtra (India); Majeesh, K.; Baghra, C.; Soreng, T.; Panakkal, J.P.; Kamath, H.S. [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre (BARC), Tarapur Complex: 401502, Maharashtra (India)

    2010-06-15

    Mixed oxide (MOX) fuel for prototype fast breeder reactor (PFBR) is designed to have initial burn up of 100,000 MWD/T. The major differences from thermal reactor fuel are relatively smaller dimension with central hole and higher plutonium concentration (21% and 28% of PuO{sub 2}) MOX pellets which are loaded into 2.5 m long clad tubes with depleted UO{sub 2} blanket pellets at either end of the MOX stack. The relatively smaller dimension of fuel pellets for PFBR results in large volume at fabrication and inspection. To ensure fast and accurate inspection and sorting of as sintered pellets with less radiation exposure to personnel an integrated on line pellet inspection system for remote visual inspection and sorting of pellets based on diameter has been developed. Details of the integrated pellet inspection system developed at Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur along with the results of the performance trials has been described in this paper.

  12. Development status of metallic, dispersion and non-oxide advanced and alternative fuels for power and research reactors

    International Nuclear Information System (INIS)

    2003-09-01

    The current thermal power reactors use less than 1% of the energy contained in uranium. Long term perspectives aiming at a better economical extraction of the potential supplied by uranium motivated the development of new reactor types and, of course, new fuel concepts. Most of them dated from the sixties including liquid metal cooled fast (FR) and high temperature gas cooled (HTGR) reactors. Unfortunately, these impulses slowed down during the last twenty years; nuclear energy had to face political and consensus problems, in particular in the United States of America and in Europe, resulting from the consequences of the TMI and Chernobyl accidents. Good economical results obtained by the thermal power reactors also contributed to this process. During the last twenty years mainly France, India, Japan and the Russian Federation have maintained a relatively high level of technological development with appropriate financial items, in particular, in fuel research for the above mentioned reactor types. China and South Africa are now progressing in development of FR/HTGR and HTGR technologies, respectively. The purpose of this report is not only to summarise knowledge accumulated in the fuel research since the beginning of the sixties. This subject has been well covered in literature up to the end of the eighties. This report rather concentrates on the 'advanced fuels 'for the current different types of reactors including metallic, carbide and nitride fuels for fast reactors, so-called 'cold' fuels and fuels to burn excessive ex-weapons plutonium in thermal power reactors, alternative fuels for small size and research reactors. Emphasis has been put on the aspects of fabrication and irradiation behaviour of these fuels; available basic data concerning essential properties that help to understand the phenomena have been mentioned as well. This report brings complementary information to the earlier published monographs and concerns developments carried out after the early

  13. Low-power lead-cooled fast reactor loaded with MOX-fuel

    Science.gov (United States)

    Sitdikov, E. R.; Terekhova, A. M.

    2017-01-01

    Fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants (BRUTs) was considered. Hard neutron spectrum achieved in the fast reactor with compact core and lead coolant. Possibility of prompt neutron runaway of the reactor is excluded due to the low reactivity margin which is less than the effective fraction of delayed neutrons. The possibility of using MOX fuel in the BRUTs reactor was examined. The effect of Keff growth connected with replacement of natural lead coolant to 208Pb coolant was evaluated. The calculations and reactor core model were performed using the Serpent Monte Carlo code.

  14. Response of Salix alba L. to heavy metals and diesel fuel ...

    African Journals Online (AJOL)

    Response of Salix alba L. to heavy metals and diesel fuel contamination. ... Ni and Pb led to reduced accumulation of Pb. Presence of 5 g/kg of diesel fuel in soil significantly increased toxic influence of applied heavy metals by further reducing ... Key words: Cd, Ni, Pb, phytoremediation, phytoextraction, willow, Salix alba.

  15. High burnup irradiation performance of annular fuel pins irradiated in fast reactor PFR

    International Nuclear Information System (INIS)

    Naganuma, M.; Koyama, S.; Asaga, T.; Noirot, J.; Lespiaux, D.; Rouault, J.; Crittenden, G.; Brown, C.

    2000-01-01

    The UK Prototype Fast Reactor (PFR) has irradiated MOX annular pelleted fuel pins clad with PE16 up to burn-up of over 20% heavy atom (ha) without failure, these high burn-up fuel pins can provide the valuable data for the study of high burn-up capability. Thus, post irradiation examinations (PIE) have been performed on PFR high burn-up fuel pins, and the irradiation performance is evaluated focusing especially on the mechanical and thermal performance at high burn-up. The fuel pins from LVD and ANT assemblies were irradiated up to 23.2 and 18.9%ha (at peak burn-up). The results of LVD test pins have been evaluated, which demonstrate that these fuel pins have excellent mechanical and thermal performances at high burn-up because of the high swelling resistance of PE16, the maintenance of initial annular geometry up to high burn-up and the behavior of Fuel to Clad Joint (JOG) formation. In this paper, the newly obtained results of ANT test pins with different O/M ratio (ANT: 1.985, LVD: 1.965) are added, and compared with the LVD pins. The ANT results indicate that FCCI becomes larger and the fuel swelling behavior is different at high burn-up. However, the effects are evaluated not to be severe for the capability of high burn-up (-20%ha). Therefore, we conclude that MOX annular pelleted fuel pins clad with low swelling material have high burn-up capability in O/M ratios ranging from 1.965 to 1.985. (author)

  16. Metallic Fuel Casting Development and Parameter Optimization Simulations

    International Nuclear Information System (INIS)

    Fielding, Randall S.; Kennedy, J.R.; Crapps, J.; Unal, C.

    2013-01-01

    Conclusions: • Gravity casting is a feasible process for casting of metallic fuels: – May not be as robust as CGIC, more parameter dependent to find right “sweet spot” for high quality castings; – Fluid flow is very important and is affected by mold design, vent size, super heat, etc.; – Pressure differential assist was found to be detrimental. • Simulation found that vent location was important to allow adequate filling of mold; • Surface tension plays an important role in determining casting quality; • Casting and simulations high light the need for better characterized fluid physical and thermal properties; • Results from simulations will be incorporated in GACS design such as vent location and physical property characterization

  17. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  18. Design characteristics of metallic fuel rod on its in-LMR performance

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang Hee Young; Nam, Cheol; Kim, Jong Oh

    1997-01-01

    Fuel design is a key feature to assure LMR safety goals. To date, a large effort had been devoted to develop metallic fuels at ANL's experimental breeder reactor (EBR-II). The major design and performance parameters investigated include; thermal conductivity and temperature profile; smear density; axial plenum; FCMI and cladding deformation including creep, and fission gas release. In order to evaluate the sensitivity of each parameter, in-LMR performances of metallic fuels are not only reviewed by the experiment results in literatures, but also key design characteristics according to the variation of metallic fuel rod design parameters are analyzed by using the MACSIS code which simulates in-reactor behaviors of metal fuel rod. In this study, key design characteristics and the criteria which must be considered to design fuel rod in LMR, are proposed and discussed. (author). 14 refs., 4 figs

  19. Nuclear and thermal-hydraulic characteristics for an LMR core fueled with 20% enriched uranium metallic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-In; Kim, Young-Gyun; Kim, Sang-Ji; Kim, Young-Jin

    1999-05-01

    As a part of the core design development of KALIMER (150 MWe), the KALIMER core was initially designed with 20% enriched uranium metallic fuel. In this core design, the primary emphasis was given to realize the metallic fueled core design to meet the specific design requirements; 20% and below uranium enrichment and a minimum fuel cycle length of one year. The core was defined by a radially homogeneous core configuration incorporated with several passive design features to give inherent passive means of negative reactivity insertion. The core nuclear performance based on a once-through equilibrium fuel cycle scenario shows that the core has an average breeding ratio of 0.67 and maximum discharge burnup of 47.3 MWD/kg. When comparing with conventional plutonium metallic fueled cores of the same power level, the present uranium metallic fueled core has a lower power density due to its increased physical core size. The negative sodium void reactivity over the core shows a beneficial potential to assure inherent safety characteristics. The transition from the uranium startup to equilibrium cycle is feasible without any design change. Core nuclear performance characteristics in the present core design are attributed to the specific design requirements of enrichment restriction and fuel cycle length.

  20. The analysis of fast reactor as non-conventional nuclear fuel cycle system

    International Nuclear Information System (INIS)

    Marsodi; Lasijo, R.S.; Zuhair; Subki, R.I.M

    1996-01-01

    At the recent time, the establishment of nuclear technology has readily equipped with conventional nuclear fuel cycle, i.e. by reprocessing of spen fuel followed by partitioning. In this respect the fast reactor constitutes a device that can treat nuclear fuel cycle appropriately because the reactor could recycle the nuclear and produce energy. The composition of fuel used in the reactor is the composition of discharged fuel of 33 MWD/T-LWR after 150 days of cooling. This reactor could also be introduced with transuranic isotopes and therefore will become a burning/transmutation reactor (B/T reactor). In this research, the treatment on the use of plutonium was especially evaluated using 26-group diffusion method either at the beginning of cycle (BOC) as well as at the end of cycle (EOC). The analysis was performed assuming the use of sodium (Na), lead (Pb), and helium (He) gas. It was found that, especially for plutonium, the effectiveness of treatment could be achieved by using He gas coolant

  1. Very fast isotopic and mass balance calculations used for strategic planing of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Marguet, S.D.

    1993-01-01

    Owing to the prevalence in France of nuclear generated electricity, the french utility, EDF focuses much research on fuel cycle strategy. In this context, analysis of scenarios combining problems related to planning and economics, but also reactor physics, necessitate a relatively thorough understanding of fuel response to irradiation. The main purpose of the fuel strategy program codes is to predict mass balance modifications with time for the main actinides involved in the cycle, including the minor actinides associated with the current back end fuel cycle key issues. Considering the large number of calculations performed by a strategy code in an iterative process covering a range of about a hundred years, it was important to develop basic computation modules for both the ''reactor'' and ''fabrication'' items. These had to be high speed routines, but on an accuracy level compatible with the strategy code efficiency. At the end of 1992, the EDF Research and Development Division (EDF/DER) developed a very simple, extremely fast method of calculating transuranian isotope masses. This approach, which resulted in the STRAPONTIN software, considerably increased the scope of the EDF/DER fuel strategy code TIRELIRE without undue impairment of machine time requirements for a scenario. (author). 2 figs., 2 tabs., 3 refs

  2. A strategy analysis of the fast breeder reactor introduction and nuclear fuel cycle systems deployment

    International Nuclear Information System (INIS)

    Wajima, Tsunetaka; Kawashima, Katsuyuki; Yamashita, Takashi

    1996-01-01

    A study is made on a strategy analysis of the long term nuclear fuel cycle systems deployment in accordance with the nuclear power growth projection and fast breeder reactor (FBR) introduction. In the analysis, the reprocessed plutonium (Pu) is charged into the reactor in such a way that the reprocessed Pu is not stored outside the reactor, i.e., there is no excess Pu outside the reactor. The analysis characterized the fuel cycle systems, and showed the usefulness of the present method to determine future directions for the FBR introduction and nuclear fuel cycle systems deployment. Concerning an intermediate-term strategy, the time of introduction and required capacities of a second commercial LWR reprocessing plant, Pu-thermal, and the first FBR reprocessing plant deployment are evaluated. A long term strategy analysis shows that the two or three large plants are run in parallel for each fuel cycle facility and that FBR related facilities deal with a markedly large amount of Pu. It is concluded that the early stage introduction of FBRs of significant capacities seems necessary to materialize a consistent total FBR/fuel cycle system where Pu balance becomes feasible through its flexible operation of, for instance, adjusting breeding ratio, in order to keep the transparency of the Pu utilization. (author)

  3. Technological Developments in Safe and Efficient Fabrication of Fast Reactor Fuel Elements

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Kumar, Aniruddha; Kulshrestha, Amit; Afzal, Mohd; Kumar, Arun; Prasad, G.J.

    2015-01-01

    The Fuel for 500 MWe Prototype Fast Breeder Reactor ( PFBR ) coming up at Kalpakkam, India consists of Mixed Oxide ( MOX ) fuel containing PuO 2 and UO 2 .The fabrication MOX fuel elements for this reactor core is a challenging task as it involves issues related to radiological safety due to Plutonium handling, radiation exposure concerns and issues like efficient production and quality assurance. This paper deals with the technological developments carried out and their incorporation in the fabrication line to achieve higher throughput with low man-rem consumption. Vibratory bowl and linear feeders are being utilized for arranging the stack of small size i.e 5.5 mm diameter pellets and loading the stack inside the clad tube. Inactive bottom end plug welding has been successfully implemented using laser welding technique. The top end plug welding is carried out inside specially designed chamber in a glove box using TIG welding technique. The top end plug welding by laser welding technique has been demonstrated successfully and is going to be implemented shortly. Ultrasonic and laser decontamination techniques have been used to reduce transferable contamination on welded fuel pins. Issues related to radiological and criticality safety , safe handling of fuel elements and measures taken for exposure control are also discussed in this paper. (author)

  4. SunFast: An interactive workstation code for PWR fuel management

    International Nuclear Information System (INIS)

    Bohnhoff, W.J.; Parish, T.A.

    1992-01-01

    Fuel management decisions for pressurized water reactors (PWRs) are quite formidable because of the large number of possible fuel reloading patterns and burnable poison distributions. Therefore, a nuclear engineer must repeatedly perform diffusion calculations for a variety of different operating strategies to determine an optimum core reload. Methods applied to fulfill final design specifications and licensing restrictions are prohibitively expensive and time consuming and are inappropriate for evaluations during the early stages of the reload design process. Fuel cycle scoping calculations are performed to eliminate many of the early alternative strategies. For efficient modeling, core prediction codes used for such analyses should take advantage of the interactive capabilities that work-stations offer. SunFast (Sun fuel analysis scoping tool) facilitates nuclear fuel analysis by taking advantage of recent developments in modern workstations, especially the use of the graphical user interface (GUI). The scoping problem is ideal for implementation in an interactive environment because it inherently requires a considerable amount of man/machine interaction. The challenge is to incorporate features into the scoping program that make the most effective use of the hardware and software capabilities of the modern workstation computer

  5. Validation and application of a physics database for fast reactor fuel cycle analysis

    International Nuclear Information System (INIS)

    McKnight, R.D.; Stillman, J.A.; Toppel, B.J.; Khalil, H.S.

    1994-01-01

    An effort has been made to automate the execution of fast reactor fuel cycle analysis, using EBR-II as a demonstration vehicle, and to validate the analysis results for application to the IFR closed fuel cycle demonstration at EBR-II and its fuel cycle facility. This effort has included: (1) the application of the standard ANL depletion codes to perform core-follow analyses for an extensive series of EBR-II runs, (2) incorporation of the EBR-II data into a physics database, (3) development and verification of software to update, maintain and verify the database files, (4) development and validation of fuel cycle models and methodology, (5) development and verification of software which utilizes this physics database to automate the application of the ANL depletion codes, methods and models to perform the core-follow analysis, and (6) validation studies of the ANL depletion codes and of their application in support of anticipated near-term operations in EBR-II and the Fuel Cycle Facility. Results of the validation tests indicate the physics database and associated analysis codes and procedures are adequate to predict required quantities in support of early phases of FCF operations

  6. Liquid metal cooled fast breeder nuclear reactor constructions

    International Nuclear Information System (INIS)

    Chesworth, G.; Hind, J.R.; Hodgson, D.; Seed, G.

    1981-01-01

    In a nuclear reactor of the pool kind the primary vessel and fuel assembly are carried from the roof of the containment vault by tie straps. The primary vessel incorporates an annular yoke of 'k' cross-section the tie straps being attached to the upwardly directed vertical leg and the downwardly directed inclined leg. The upper and lower strakes of the primary vessel are extensions of the remaining legs. Load supporting welds therefore are of intermittent nature thereby limiting the effects of weld crack propagation

  7. Development of 4S and related technologies (2). Long life metallic fuel

    International Nuclear Information System (INIS)

    Yacout, A.M.; Tsuboi, Y.; Ueda, N.

    2009-01-01

    This paper provides an overview of the long life metallic fuel to be used in the 4S reactor. The 4S fuel design is presented and implications of its characteristics on fuel performance are discussed. Main design characteristics include the long fuel life time of 30 years and the wider and longer fuel pins compared to EBR-II and FFTF fuel pins. The LIFE-METAL fuel performance code was used to evaluate the performance of the 4S fuel design. The code has been validated using post irradiation examination data of metallic fuel irradiated in EBR-II. The performance evaluation shows the benign nature of the design. The design enables the fuel to perform adequately during reactor operations without violating any of a conservative set of steady state design criteria. A survey evaluation of the fuel performance is also presented. This performance bounding evaluation took into account possible fuel swelling behavior and cladding temperature range that represents worst case scenarios. The evaluation showed that the fuel maintains its integrity even under those worst case conditions. (author)

  8. Liquid Metal Fast Breeder Reactor plant maintenance and equipment design

    International Nuclear Information System (INIS)

    Swannack, D.L.

    1982-01-01

    This paper provides a summary of maintenance equipment considerations and actual plant handling experiences from operation of a sodium-cooled reactor, the Fast Flux Test Facility (FFTF). Equipment areas relating to design, repair techniques, in-cell handling, logistics and facility services are discussed. Plant design must make provisions for handling and replacement of components within containment or allow for transport to an ex-containment area for repair. The modular cask assemblies and transporter systems developed for FFTF can service major plant components as well as smaller units. The plant and equipment designs for the Clinch River Breeder Reactor (CRBR) plant have been patterned after successful FFTF equipment

  9. Theoretical and experimental investigation of the nonlinear structural dynamics of Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Liebe, R.

    1978-04-01

    This study describes theoretical and experimental investigations of the dynamic deformation behavior of single and clustered fuel elements under local fault conditions in a Fast Breeder Reactor core. In particular an energetic molten-fuel-coolant-interaction (FCI) is assumed in one subassembly with corresponding pressure pulses, which may rupture the wrapper and load the adjacent fuel elements impulsively. Associated coherent structural deformation may exceed tolerable and damage the control rods. To attack the outlined coupled fluid-structure-interaction problem it is assumed, that the loading at the structures is known in space and time, and that there is no feedback from the deformation response. Then current FCI-knowledge and experience from underwater core model explosion tests is utilized to estimate upper limits of relevant pulse characteristics. As a first step the static carrying capacity of the rigid-plastic hexagonal wrapper tube is calculated using the methods of limit analysis. Then for a general dynamic simulation of the complete elastoplastic subassembly response the concept of a discrete nonlinear hinge is introduced. A corresponding physical lumped parameter hinge model is presented, and general equations of motion are derived using D'Alembert's principle. Application to the static and dynamic analysis of a single complete fuel element includes the semiempirical modelling of the fuel-pin bundle by a homogeneous compressible medium. Most important conclusions are concerning the capability of the theoretical models, the failure modes and threshold load levels of single as well as clustered SNR-300 fuel elements and the safety relevant finding, that only limited deformations are found in the first row around the incident element. This shows in agreement with explosion test results that the structured and closely spaced fuel elements constitute an effective, inherent barrier against extreme dynamic loadings. (orig.) [de

  10. An ultrasonic fuel identification system for liquid metal cooled reactors resilient against multiple transducer failures

    International Nuclear Information System (INIS)

    Van-Dyck, Dries; Dierckx, Marc

    2013-06-01

    We describe a fuel assembly identification system developed for the MYRRHA reactor - a new multi-purpose flexible irradiation facility to replace the aging BR2. MYRRHA is a fast spectrum research reactor cooled with lead-bismuth eutectic (LBE) and conceived as an accelerator driven system capable of operating in sub-critical and critical modes. As liquid metal is opaque to visual light, the conventional optical fuel assembly identification system, as used by water cooled reactors, has to be replaced by a system not hindered by the opacity of the coolant. As already suggested in the late sixties, we use ultrasound for this purpose and present an encoding especially designed to enhance the robustness of the ultrasonic read-out. The encoding is based on notches of varying depth on the inflow nozzle of a fuel assembly. The depth of each notch is used to encode two bits and is measured by a dedicated transducer aligned over the notch. To increase the reliability of the fuel identification process, the identification number is protected by an error correcting code based on Hamming codes. We describe the ultrasonic system used to read out the vector of depths which is subsequently converted to a vector of bits. We explain the encoding of the twelve bit fuel identification numbers to a 22-bit error correcting code and discuss how Hamming decoding can be used to correct single bit errors, detect two bit errors or fill in the missing bits of a failing transducer. We also present a method based on solving a linear system over Boolean variables to (partially) reconstruct the fuel identification number in case multiple transducers fail. We show that the probability on full reconstruction is 100% for up to two transducer failures, 98% for three, 79% for four and 20% for five failing transducers. Finally, we present validation results in water and lead-bismuth eutectic for the differential measurement method used to measure the depth of the notches which form the basis for the

  11. Thermo-hydraulic simulations of the experimental fast reactor core

    International Nuclear Information System (INIS)

    Silveira Luz, M. da; Braz Filho, F.A.; Borges, E.M.

    1985-01-01

    A study of the core and performance of metallic fuel of the experimental fast reactor, from the thermal-hydraulic point of view, was carried out employing the COBRA IV-I code. The good safety characteristics of this reactor and the feasibility of using metallic fuel in experimental fast reactor were demonstrated. (Author) [pt

  12. Liquid Metal Fast Breeder Reactor program. Volume IV. Environmental statement

    International Nuclear Information System (INIS)

    1974-12-01

    A broad overview is presented of the many implications of LMFBR program implementation, up to and encompassing a fully developed LMFBR power plant economy, including the secondary impacts, the unavoidable adverse environmental impacts, cumulative environmental impacts, and cost-benefit analyses, and alternative energy strategies. Under the heading of secondary impacts, the national implications of the availability of electricity from LMFBRs, and the specific economic impacts of the LMFBR program are examined. The currently feasible alternatives and potential future alternatives for mitigating adverse environmental impacts of the LMFBR fuel cycle are described. The problems of safeguarding special nuclear material from potential diversion to unauthorized purposes are analyzed. The cumulative environmental effects of LMFBR operation to the Year 2020, the decommissioning of LMFBRs and fuel cycle facilities upon the completion of their useful life, the irreversible and irretrievable commitments of resources that will accompany implementation of an LMFBR economy, and an analysis of the costs and benefits of implementing the LMFBR Program are included. (U.S.)

  13. Gas cooled fast reactor materials: compatibility and reaction kinetics of fuel/matrices couples

    International Nuclear Information System (INIS)

    Lechelle, J.; Aufore, L.; Basini, V.; Belin, R.; Vaudez, S.

    2004-01-01

    Fourth Generation Gas cooled Fast Reactor concept implies a fast neutron spectrum and aims to lead to an iso-generation of minor actinides. Criteria have been defined for these fuels such as: high core filling factor, efficient fuel cooling, low operation temperature, i.e. 400-850 deg C, good fission product retention, burn-ups in the range of 5-8 atom%, Pu content in the range of 15-25%. Materials matching this demand are considered: mixed uranium - plutonium nitrides and carbides as fuels, whereas TiN, TiC, ZrN, ZrC, SiC are investigated as inert matrices. Thermo-chemical compatibility studies have been carried out, mostly for (U,Pu)N/SiC and (U,Pu)N/TiN couples. They have been associated to matching diffusional studies. For the first studies, accidental reactor conditions have been chosen (1600 deg C) so as to select a couple. Results are presented in terms of nature and quantity of resulting phases identified by XRD and SEM for thermodynamical equilibrium experiments. (authors)

  14. A CFD M&S PROCESS FOR FAST REACTOR FUEL ASSEMBLIES

    Energy Technology Data Exchange (ETDEWEB)

    Kurt D. Hamman; Ray A. Berry

    2008-09-01

    A CFD modeling and simulation process for large-scale problems using an arbitrary fast reactor fuel assembly design was evaluated. Three dimensional flow distributions of sodium for several fast reactor fuel assembly pin spacing configurations were simulated on high performance computers using commercial CFD software. This research focused on 19-pin fuel assembly “benchmark” geometry, similar in design to the Advanced Burner Test Reactor, where each pin is separated by helical wire-wrap spacers. Several two-equation turbulence models including the k-e and SST (Menter) k-? were evaluated. Considerable effort was taken to resolve the momentum boundary layer, so as to eliminate the need for wall functions and reduce computational uncertainty. High performance computers were required to generate the hybrid meshes needed to predict secondary flows created by the wire-wrap spacers; computational meshes ranging from 65 to 85 million elements were common. A general validation methodology was followed, including mesh refinement and comparison of numerical results with empirical correlations. Predictions for velocity, temperature, and pressure distribution are shown. The uncertainty of numerical models, importance of high fidelity experimental data, and the challenges associated with simulating and validating large production-type problems are presented.

  15. Development of bio-fuel from palm frond via fast pyrolysis

    Science.gov (United States)

    Solikhah, M. D.; Raksodewanto, A. A.; Kismanto, A.; Karuana, F.; Heryana, Y.; Riza; Pratiwi, F. T.

    2017-05-01

    In order to fulfill the fuel demand in the future, Indonesia has to find a sustainable alternative for its energy. Energy source in the form of biomass is a promising alternative since its availability is abundance in this tropical country. Biomass can be converted into liquid fuel via fast pyrolysis by contacting the solid biomass into hot medium in the absence of oxygen. Hot sand is the common heat carrier for fast pyrolysis purposes but it is very abrasive and required high pyrolysis temperature (450-600 °C). This paper will discuss on the equipment design and experiment of fast pyrolysis of palm frond using high boiling point thermal oil as heat carrier. Experiments show that by using thermal oil as heat carrier, bio-oil can be produced at lower pyrolysis temperature of 350 °C, compared to the one using hot sand as heating carrier. The yield of bio-oil production is 36.4 % of biomass feeding. The water content of bio-oil is 52.77 % mass while heating value is 10.25 MJ/kg.

  16. Report on FY16 Low-dose Metal Fuel Irradiation and PIE

    Energy Technology Data Exchange (ETDEWEB)

    Edmondson, Philip D.

    2016-09-01

    This report gives an overview of the efforts into the low-dose metal fuel irradiation and PIE as part of the Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC) milestone M3FT-16OR020303031. The current status of the FCT and FCRP irradiation campaigns are given including a description of the materials that have been irradiated, analysis of the passive temperature monitors, and the initial PIE efforts of the fuel samples.

  17. Fast reactor core design studies to cope with TRU fuel composition changes in the LWR-to-FBR transition period

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Maruyama, Shuhei; Ohki, Shigeo; Mizuno, Tomoyasu

    2009-01-01

    As part of the Fast Reactor Cycle Technology Development Project (FaCT Project), sodium-cooled fast reactor core design efforts have been made to cope with the TRU fuel composition changes expected during LWR-to-FBR transition period, in which a various kind of TRU fuel compositions are available depending on the characteristics of the LWR spent fuels and a way of recycling them. A 750 MWe mixed-oxide fuel core is firstly defined as a FaCT medium-size reference core and its neutronics characteristics are determined. The core is a high internal conversion type and has an average burnup of 150 GWD/T. The reference TRU fuel composition is assumed to come from the FBR equilibrium state. Compared to the LWR-to-FBR transition period, the TRU fuels in the FBR equilibrium period are multi-recycled through fast reactors and have a different composition. An available TRU fuel composition is determined by fast reactor spent fuel multi-recycling scenarios. Then the FaCT core corresponding to the TRU fuel with different compositions is set according to the TRU fuel composition changes in LWR-to-FBR transition period, and the key core neutronics characteristics are assessed. It is shown that among the core neutronics characteristics, the burnup reactivity and the safety parameters such as sodium void reactivity and Doppler coefficient are significantly influenced by the TRU fuel composition changes. As a result, a general characteristic in the FaCT core design to cope with TRU fuel composition changes is grasped and the design envelopes are identified in terms of the burnup reactivity and the safety parameters. (author)

  18. Dynamic behavior of large oxide-fueled fast reactors during over-power transients due to boiling of sodium

    International Nuclear Information System (INIS)

    Pires, L.F.G.

    1983-01-01

    The dynamic behavior of large oxide-fueled fast reactors during over-power transients or under-flow situations which result in boiling of sodium used as coolant. The fuel heat transfer was analysed to determine the fuel temperature profile and the Doppler feedback reactivity. The sodium pressure, temperature, mass flow rate and sodium voiding reactivity were obtained by solving the basic coolant hydrodynamics equations. (Author) [pt

  19. Neutronic analysis concerning the utilization of mixed U N-Pu N nitride fuel for fast reactors

    International Nuclear Information System (INIS)

    Renke, C.A.C.; Batista, J.L.; Waintraub, M.; Santos Bastos, W. dos; Brito Aghina, L.O. de.

    1991-08-01

    Neutronic behavior of mixed UN-PuN nitride fuel in substitution of the mixed oxide U O 2 - Pu O 2 for fast reactors is discussed with focus on Super Phenix I. Characteristics parameters of both cores are calculated and compared and the results presented show a great advantage for the nitride fuel, pointing out a larger performance of fuel elements in the core and an effective reduction of reactivity loss during the cycle. (author)

  20. Development of metal uranium fuel and testing of construction materials (I-VI); Part I

    International Nuclear Information System (INIS)

    Mihajlovic, A.

    1965-11-01

    This project includes the following tasks: Study of crystallisation of metal melt and beta-alpha transforms in uranium and uranium alloys; Study of the thermal treatment influence on phase transformations and texture in uranium alloys; Radiation damage of metal uranium; Project related to irradiation of metal uranium in the reactor; Development of fuel element for nuclear reactors

  1. Advances by the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs

  2. The International conference on fast reactors and related fuel cycles: next generation nuclear systems for sustainable development. Book of abstracts

    International Nuclear Information System (INIS)

    2017-01-01

    The materials of the International Conference on Fast Reactors and Related Fuel Cycles (June 26-29, 2017, Yekaterinburg) are presented. The forum was organized by the IAEA with the assistance of Rosatom State Corporation. The theme of the conference: “The New Generation of Nuclear Systems for Sustainable Development”. About 700 specialists from more than 30 countries took part in the conference. The state and prospects for the development of the direction of fast reactors in countries dealing with this topic were discussed. A wide range of scientific issues covered the concepts of prospective reactors, reactor cores, fuel and fuel cycles, operation and decommissioning, safety, licensing, structural materials, industrial implementation [ru

  3. Influence of metallic based fuel additives on performance and exhaust emissions of diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Tarsus Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin, E-mail: mguru@gazi.edu.t [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey)

    2011-01-15

    In this experimental study, influence of the metallic-based additives on fuel consumption and exhaust emissions of diesel engine were investigated. The metallic-based additives were produced by synthesizing of resin acid (abietic acid) with MnO{sub 2} or MgO. These additives were doped into diesel fuel at the rate of 8 {mu}mol/l and 16 {mu}mol/l for preparing test fuels. Both additives improved the properties of diesel fuel such as viscosity, flash point, cloud point and pour point. The fuels with and without additives were tested in a direct injection diesel engine at full load condition. Maximum reduction of specific fuel consumption was recorded as 4.16%. CO emission and smoke opacity decreased by 16.35% and by 29.82%, respectively. NO{sub x} emission was measured higher and CO{sub 2} emission was not changed considerably with the metallic-based additives.

  4. A Mechanistic Reliability Assessment of RVACS and Metal Fuel Inherent Reactivity Feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David; Brunett, Acacia J.; Passerini, Stefano; Grelle, Austin

    2017-09-24

    GE Hitachi Nuclear Energy (GEH) and Argonne National Laboratory (Argonne) participated in a two year collaboration to modernize and update the probabilistic risk assessment (PRA) for the PRISM sodium fast reactor. At a high level, the primary outcome of the project was the development of a next-generation PRA that is intended to enable risk-informed prioritization of safety- and reliability-focused research and development. A central Argonne task during this project was a reliability assessment of passive safety systems, which included the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedbacks of the metal fuel core. Both systems were examined utilizing a methodology derived from the Reliability Method for Passive Safety Functions (RMPS), with an emphasis on developing success criteria based on mechanistic system modeling while also maintaining consistency with the Fuel Damage Categories (FDCs) of the mechanistic source term assessment. This paper provides an overview of the reliability analyses of both systems, including highlights of the FMEAs, the construction of best-estimate models, uncertain parameter screening and propagation, and the quantification of system failure probability. In particular, special focus is given to the methodologies to perform the analysis of uncertainty propagation and the determination of the likelihood of violating FDC limits. Additionally, important lessons learned are also reviewed, such as optimal sampling methodologies for the discovery of low likelihood failure events and strategies for the combined treatment of aleatory and epistemic uncertainties.

  5. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    International Nuclear Information System (INIS)

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E.; Lovera, P.; Fleche, J. L.; Lacroix, M.; Carra, O.; Dechelette, F.; Prele, G.; Rodriguez, G.

    2012-01-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO 2 interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  6. Evaluation of neutron streaming in fast breeder reactor fuel assembly by double heterogeneous modelling

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Takeda, Toshikazu

    1988-01-01

    Neutron streaming in a fast breeder reactor fuel assembly caused by the double heterogeneity structure is estimated by double heterogeneous modelling. The conventional pin cell model, a two-region subassembly model and the exact pin cluster model are used to take into account the streaming effect caused by the pin cell structure and the surrounding wrapper tube structure. The heterogeneity of wrapper tube and its surrounding sodium is explicitly considered. The streaming effect is evaluated based on Benoist's diffusion coefficient. The total streaming effect caused by the double heterogeneity structure of a fuel subassembly is found to be -0.2 % dk/kk' for k eff , which is almost twice that obtained from the conventional pin cell model of -0.1 % dk/kk'. (author)

  7. Fuel cycle facility control system for the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Benedict, R.W.; Tate, D.A.

    1993-01-01

    As part of the Integral Fast Reactor (IFR) Fuel Demonstration, a new distributed control system designed, implemented and installed. The Fuel processes are a combination of chemical and machining processes operated remotely. To meet this special requirement, the new control system provides complete sequential logic control motion and positioning control and continuous PID loop control. Also, a centralized computer system provides near-real time nuclear material tracking, product quality control data archiving and a centralized reporting function. The control system was configured to use programmable logic controllers, small logic controllers, personal computers with touch screens, engineering work stations and interconnecting networks. By following a structured software development method the operator interface was standardized. The system has been installed and is presently being tested for operations

  8. Instrumentation for core and coolant monitoring in liquid-metal fast breeder reactors (LMFBR)

    International Nuclear Information System (INIS)

    Hess, B.; Ruppert, E.

    1975-01-01

    The review on core and coolant instrumentation for liquid metal fast breeders aims to give a short survey of measurement methods and the variety of appropriate instrumentation developed and tested for reactor application throughout the world. The introductory part gives a general outline of instrumentation development, partly as the refinement of well-known thermal reactor instrumentation and partly as the special instrumentation demanded for LMFBR safety requirements, some aspects of which are also discussed briefly. The in-core LMFBR instrumentation is surveyed, classifying the measurement or monitoring of coolant properties such as temperature, pressure, flow and acoustic emission and the measurement of core-kinetic quantities such as neutron flux and reactivity. Without considering the fundamentals of the measurements, the state of instrument development is reviewed and, where known, future aspects are indicated. An additional review on fuel failure detection methods and the related instrumentation distinguishes between global or whole-core detection methods and those used for localization of failures. Special attention is paid to the aspect of reactor safety and its reliability as one of the major objectives of these detection methods. A summary of the protective systems and instrumentation already used or foreseen for LMFBR plants forms a transition to a very brief discussion of handling and interpretation of the multitude of data derived from the rather comprehensive LMFBR instrumentation. This state of the art review claims neither to be complete at the time published nor to be a detailed guide to special problems of instrumentation development, the solutions to which are normally part of industrial knowhow. (author)

  9. Neutronic modeling for a Gas-cooled Fast Reactor assuming coated fuel particles

    International Nuclear Information System (INIS)

    Golfier, H.; Buiron, C.; Poinot, B.; Pothet, J. F.; Salavy, E.; Studer

    2004-01-01

    The modeling of gas cooled fast reactor (GCFR) with the SAPHYR system and in particular APOLLO2 code assuming coated fuel particles, was investigated. It aims to estimate the APOLLO2 code accuracy, solving the neutron transport equation in range of fast neutron reactors. A two level PIJ/SN APOLLO2 scheme is proposed in which the first level is devoted to the self-shielding and the leakage calculation on a cell configuration. The efficiency of a new treatment of adsorption and scattering rates in the self-shielding module of the multigroup transport code APOLLO2 has been evaluated. The results show that two-level scheme provides promising results with 172-group cross section libraries, which confirm the APOLLO2 scheme as a tool for reactor designs. (authors)

  10. Fast Reactor Systems and Innovative Fuels for Minor Actinides Homogeneous Recycling

    International Nuclear Information System (INIS)

    Calabrese, R.

    2013-01-01

    The capability of nuclear energy source to limit GHG emissions at a competitive cost is still a potential driver for its development in the near- and medium-term. The sustainability of nuclear energy is concerned by various issues such as the shortage of natural uranium resources, the management of steadily increasing inventories of spent nuclear fuel as well as competitiveness. Nuclear technology should be, for its societal acceptability, affordable, safe and featured by low proliferation risks. In this regard innovative fast reactors could improve the management of spent nuclear fuel inventories a reducing the burden on the geological repository. The development of MA-bearing oxide fuels is ongoing both on the definition of under-irradiation behaviour as well as the investigations of new fabrication routes and significant efforts in R&D are necessary. This paper confirms the expected performance of investigated FRs and the synergistic use of NFCSS and DESAE proved to be capable in modelling with reasonable accuracy an innovative fuel cycle strategy. The reduction of GHG emissions by means of a steep expansion of nuclear energy needs to be carefully investigated where a multi-criteria approach is of crucial importance

  11. Advanced control system for the Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    Lau, L.D.; Randall, P.F.; Benedict, R.W.; Levinskas, D.

    1993-01-01

    A computerized control system has been developed for the remotely-operated fuel pin processor used in the Integral Fast Reactor Program, Fuel Cycle Facility (FCF). The pin processor remotely shears cast EBR- reactor fuel pins to length, inspects them for diameter, straightness, length, and weight, and then inserts acceptable pins into new sodium-loaded stainless-steel fuel element jackets. Two main components comprise the control system: (1) a programmable logic controller (PLC), together with various input/output modules and associated relay ladder-logic associated computer software. The PLC system controls the remote operation of the machine as directed by the OCS, and also monitors the machine operation to make operational data available to the OCS. The OCS allows operator control of the machine, provides nearly real-time viewing of the operational data, allows on-line changes of machine operational parameters, and records the collected data for each acceptable pin on a central data archiving computer. The two main components of the control system provide the operator with various levels of control ranging from manual operation to completely automatic operation by means of a graphic touch screen interface

  12. Fast flux test facility interim examination and maintenance cell fuel duct cutters: Remote operations design considerations

    International Nuclear Information System (INIS)

    Gibbons, P.W.

    1988-11-01

    Two remotely operated milltype slitting cutters, specifically designed for remote, hot-cell use have been in service in the Fast Flux Test Facility (FFTF) Interim Examination and Maintenance (IEM) Cell for 3 and 4 yr, respectively without the benefit of hands-on maintenance. These cutters are used to sever the outer duct of Driver Fuel Assemblies (DFA) being dismantled for further examination elsewhere. During this period, twelve DFAs requiring duct cutting were dismantled in the IEM Cell. A discussion of the remote design features of those cutters is presented that highlights features that were successful and addresses areas that needed improvement. 3 refs., 7 figs

  13. Fast reactor fuel reprocessing plant D1206: disassembly cave window 4 replacement

    International Nuclear Information System (INIS)

    Sutherland, H.G.; Beckitt, S.; Potts, A.B.

    1996-01-01

    At UKAEA's fast reactor reprocessing plant at Dounreay, the containment glass on the zinc bromide cave viewing window tank failed after 13 years active use. External shielding was fitted and the window tank subsequently drained to make it safe. Fuel cropping operations carried out behind the window were resited to enable cave work to continue whilst a project team made arrangements and plans to replace the damaged window. Because of the complexity of the task and high (alpha, beta, gamma and neutron) radiation levels in excess of 500 Sv/hr a rehearsal facility was built to develop the remote handling techniques to be employed in the task. (UK)

  14. Development of remote disassembly technology for liquid-metal reactor (LMR) fuel

    International Nuclear Information System (INIS)

    Bradley, E.C.; Evans, J.H.; Metz, C.F. III; Weil, B.S.

    1990-01-01

    A major objective of the Consolidated Fuel Reprocessing Program (CFRP) is to develop equipment and demonstrate technology to reprocess fast breeder reactor fuel. Experimental work on fuel disassembly cutting methods began in the 1970s. High-power laser cutting was selected as the preferred cutting method for fuel disassembly. Remotely operated development equipment was designed, fabricated, installed, and tested at Oak Ridge National Laboratory (ORNL). Development testing included remote automatic operation, remote maintenance testing, and laser cutting process development. This paper summarizes the development work performed at ORNL on remote fuel disassembly. 2 refs., 1 fig

  15. Compilation of data and descriptions for United States and foreign liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Appleby, E.R.

    1975-08-01

    This document is a compilation of design and engineering information pertaining to liquid metal cooled fast breeder reactors which have operated, are operating, or are currently under construction, in the United States and abroad. All data has been taken from publicly available documents, journals, and books

  16. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1990-11-01

    The conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design has been performed. As a first step, an intensive literature survey was completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins were designed and analyzed using the SIEX computer code. The analysis predicted that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors. 13 refs., 10 figs., 2 tabs.

  17. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1990-11-01

    The conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design has been performed. As a first step, an intensive literature survey was completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins were designed and analyzed using the SIEX computer code. The analysis predicted that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors. 13 refs., 10 figs., 2 tabs

  18. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1991-01-01

    In this paper, the conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design is performed. As a first step, an intensive literature survey is completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins is designed and analyzed using the SIEX computer code. The analysis predicts that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors

  19. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  20. Spent fuel metal storage cask performance testing and future spent fuel concrete module performance testing

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Creer, J.M.

    1988-10-01

    REA-2023 Gesellshaft fur Nuklear Service (GNS) CASTOR-V/21, Transnuclear TN-24P, and Westinghouse MC-10 metal storage casks, have been performance tested under the guidance of the Pacific Northwest Laboratory to determine their thermal and shielding performance. The REA-2023 cask was tested under Department of Energy (DOE) sponsorship at General Electric's facilities in Morris, Illinois, using BWR spent fuel from the Cooper Reactor. The other three casks were tested under a cooperative agreement between Virginia Power Company and DOE at the Idaho National Engineering Laboratory (INEL) by EGandG Idaho, Inc., using intact spent PWR fuel from the Surry reactors. The Electric Power Research Institute (EPRI) made contributions to both programs. A summary of the various cask designs and the results of the performance tests is presented. The cask designs include: solid and liquid neutron shields; lead, steel, and nodular cast iron gamma shields; stainless steel, aluminum, and copper baskets; and borated materials for criticality control. 4 refs., 8 figs., 6 tabs

  1. Computer simulation of fuel behavior during loss-of-flow accidents in a gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Wehner, T.R.

    1980-01-01

    The sequence of events in a loss-of-flow accident without reactor shutdown in a gas-cooled fast breeder reactor is strongly influenced by the manner in which the fuel deforms. In order to predict the mode of initial gross fuel deformation, welling, melting or cracking, a thermomechanical computer simulation program was developed. Methods and techniques used make the simulation an economical, efficient, and flexible engineering tool. An innovative application of the enthalpy model within a finite difference scheme is used to caculate temperatures in the fuel rod. The method of successive elastic solutions is used to calculate the thermoelastic-creep response. Calculated stresses are compared with a brittle-fracture stress criterion. An independent computer code is used to calculate fission-gas-induced fuel swelling. Results obtained with the computer simulation indicate that swelling is not a mode of initial fuel deformation. Faster transients result in fuel melting, while slower transients result in fuel cracking. For investigated faster coolant flow coastdowns with time constants of 1 second and 10 seconds, compressive stresses in the outer radial portion of the fuel limit fuel swelling and inhibit fuel cracking. For a slower coolant flow coastdown with a 300 second time constant, tensile stresses in the outer radial portion of the fuel induce early fuel cracking before any melting or significant fuel swelling has occurred. Suggestions for further research are discussed. A derived noniterative solution for mechanics calculations may offer an order of magnitude decrease in computational effort

  2. Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cell

    DEFF Research Database (Denmark)

    Reolon, R. P.; Sanna, S.; Xu, Yu

    2018-01-01

    A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte and nanostruct......A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte...

  3. Impingement heat flux by dispersed molten metal fuel on a horizontal stainless steel structure

    International Nuclear Information System (INIS)

    Gabor, J.D.; Purviance, R.T.; Aeschlimann, R.W.; Spencer, B.W.

    1989-01-01

    Although the Integral Fast Reactor (IFR) possesses inherent safety features, an assessment of the consequences of melting of the metal fuel is necessary for risk analysis. As part of this effort an experimental study was conducted to determine the depths of sodium at 600 C required for pour streams of various molten uranium alloys (U, U-5 wt % Zr, U-10 wt % Zr, and U-10 wt % Fe) to break up and solidify. The quenched particulate material, which was in the shape of filaments and sheets, formed coolable beds because of the high void-age (∼0.9) and large particle size (∼10 mm). In a test with a 0.15-m sodium depth, the fragments from a pure uranium pour stream did not completely solidify but formed an agglomerated mass which did not fuse to the base plate. However, the agglomerated fragments of U-10 wt % Fe eutectic fused to the stainless steel base plate. An analysis of the temperature response of a 25-mm thick base plate was made by volume averaging the properties of the sodium and metal phases and assuming two semi-infinite solids coming into contact. Good agreement was obtained with the data during the initial 5 to 10 s of the contact period. 16 refs., 5 figs., 2 tabs

  4. ON feasibility of using nitride and metallic fuel in the MBIR reactor core

    OpenAIRE

    V.A. Eliseev; L.V. Korobeynikova; P.A. Maslov; I.V. Malysheva; V.I. Matveev; I.V. Demeneva

    2016-01-01

    MBIR is a multipurpose fast sodium cooled research reactor with a thermal power of 150MW designed for a broad range of applications in the field of experimental research, including endurance tests and optimization of operating modes for advanced types of fuel, fuel elements, absorber elements and fuel assemblies, radiation tests of advanced structural materials, production of isotopes for a variety of applications and so on [1,2]. Therefore, one of the major requirements to this reactor is a ...

  5. Development of eutectic free cladding materials for metallic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tokiwai, Moriyasu; Yuda, Ryoichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan); Ohuchi, Atsushi [Nippon Nuclear Fuel Development Co. Ltd., Oarai, Ibaraki (Japan); Amaya, Masaki [Global Nuclear Fuel-Japan Co., Ltd, Oarai, Ibaraki (Japan)

    2002-11-01

    Historically, it is well known that U base metallic fuel has a lower eutectic temperature with stainless steel cladding. In the phase diagram for the U-Fe binary system, the eutectic temperature is 998K. The eutectic reaction is a limiting factor for raising reactor operation temperature. For the purpose of development of eutectic-free cladding materials, three kinds of diffusion-couple tests with 10 mass%Zr alloy were conducted at a temperature of 1027K for 2250 hrs. We selected the following materials: (a) nitrogen charged zirconium foils, (b) vanadium foils of commercial grade, and (c) nitrogen charged ferritic stainless steel (HT-9). The results showed that typical Zr with layer was observed in all of these materials. Zr with layer appeared to act as a barrier against inter-diffusion of U, Fe. The barrier provided immunity to the eutectic reaction. Discussion was made on C-14 problems in relation to another desirable thermodynamic characteristics of Zr such as carbon-14 immobilization. EPMA analysis indicated relatively high nitrogen concentration at the barrier. The barrier is probably composed of ZrN. (author)

  6. Doped Graphene as Non-Metallic Catalyst for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Adriana MARINOIU

    2017-08-01

    Full Text Available Aiming a commercial development of proton exchange membrane fuel cells (PEMFC, a low cost, sustainable and high performance electrocatalyst for oxygen reduction reaction (ORR with capability to replace/reduce rare metals, are high desirable. In this paper, we present a class of doped graphene, namely iodinated graphene with highly ORR electrochemical performances, synthesized by using the electrophilic substitution method. The prepared samples were characterized by different techniques, including Scanning Electron Microscopy SEM, X-ray photoelectron spectroscopy XPS, Raman spectroscopy, surface area measurement by BET method, that revealed the structure and morphology. The most highly iodinated graphene was tested in a single cell by measuring the cyclic voltammetry. The electrochemical performances were evaluated and compared with a typical PEMFC configuration, when a single cathodic peak at 0.2 V with a current density of – 3.67 mA cm-2 for the Pt/C electrode was obtained. The best electrochemical performances in terms of electrochemical active area, was obtained for a new concept of cathode composed from Pt/C – iodine doped graphene, when a well-defined peak centred at 0.23 V with a current density of approx. – 9.1 mA cm-2 was obtained, indicating a high catalytic activity for ORR.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.16216

  7. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  8. Hydraulic experiments on the failed fuel location module of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Rajesh, K.; Kumar, S.; Padmakumar, G.; Prakash, V.; Vijayashree, R.; Rajan Babu, V.; Govinda Rajan, S.; Vaidyanathan, G.; Prabhaker, R.

    2003-01-01

    The design of Prototype Fast Breeder Reactor (PFBR) is based on sound design concepts with emphasis on intrinsic safety. The uncertainties involved in the design of various components, which are difficult to assess theoretically, are experimentally verified before design is validated. In PFBR core, the coolant (liquid sodium) enters the bottom of the fuel subassembly, passes over the fuel pins picking up the fission heat and issues in to a hot pool. If there is any breach in the fuel pins, the fission products come in direct contact with the coolant. This is undesirable and it is necessary to locate the subassembly with the failed fuel pin and to isolate it. A component called Failed Fuel Location Module (FFLM) is employed for locating the failed SA by monitoring the coolant samples coming out of each Subassembly. The coolant sample from each Subassembly is drawn by FFLM using an EM pump through sampling tube and selector valve and is monitored for the presence of delayed neutrons which is an indication of failure of the Subassembly. The pressure drop across the selector valve determines the rating of the EM Pump. The dilution of the coolant sample across the selector valve determines the effectiveness of monitoring for contamination. It is not possible to predict pressure drop across the selector valve and dilution of the coolant sample theoretically. These two parameters are determined using a hydraulic experiment on the FFLM. The experiment was carried out in conditions that simulate the reactor conditions following appropriate similarity laws. The paper discusses the details of the model, techniques of experiments and the results from the studies

  9. Stationary liquid fuel fast reactor SLFFR — Part II: Safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jing, T.; Jung, Y.S.; Yang, W.S., E-mail: yang494@purdue.edu

    2016-12-15

    Highlights: • A multi-channel safety analysis code named MUSA is developed for SLFFR transient analyses. • MUSA is verified against the SYS4A/SASSYS-1 code by simulating the ULOF accident for the advanced burner test reactor. • It is shown that SLFFR has a passive shutdown capability for double-fault, beyond-design-basis accidents UTOP, ULOHS and ULOF. - Abstract: Safety characteristics have been evaluated for the stationary liquid fuel fast reactor (SLFFR) proposed for effective burning of hazardous TRU elements of used nuclear fuel. In order to model the geometrical configuration and reactivity feedback mechanisms unique to SLFFR, a multi-channel safety analysis code named MUSA was developed. MUSA solves the time-dependent coupled neutronics and thermal-fluidic problems. The thermal-fluidic behavior of the core is described by representing the core with one-dimensional parallel channels. The primary heat transport system is modeled by connecting compressible volumes by liquid segments. A point kinetics model with six delayed neutron groups is used to represent the fission power transients. The reactivity feedback is estimated by combining the temperature and density variations of liquid fuel, structural material and sodium coolant with the corresponding axial distributions of reactivity worth in each individual thermal-fluidic channel. Preliminary verification tests with a conventional solid fuel reactor agreed well with the reference solutions obtained with the SAS4A/SASSYS-1 code. Transient analyses of SLFFR were performed for unprotected transient over-power (UTOP), unprotected loss of heat sink (ULOHS) and unprotected loss of flow (ULOF) accidents. The results showed that the thermal expansion of liquid fuel provides sufficiently large negative feedback reactivity for passive shutdown of UTOP and ULOHS. The ULOF transient is also terminated passively with the negative reactivity introduced by the gas expansion modules installed at the core periphery

  10. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts

    OpenAIRE

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO3 and MnO2, were used as cathode catalysts, meanwhile CoO was us...

  11. UKAEA fast reactor project research and development programme on fuel element cladding and sub-assembly wrapper materials

    International Nuclear Information System (INIS)

    Harries, D.R.

    1977-01-01

    Research and development work on fuel element component (cladding, subassembly wrappers, etc.) materials for the U.K. sodium cooled fast reactor programme has been conducted at the United Kingdom Atomic Energy Authority (UKAEA) establishments at Dounreay, Harwell, Risley, and Springfields during the past fifteen years or so. This work has formed an integral part of, and has been co-ordinated by, the UKAEA Fast Reactor Project and has involved close liaison with the Nuclear Power Company (NPC) and the Central Electricity Generating Board (CEGB). The research and development were initially related to the Prototype Fast Reactor (PFR) but the scope has now been extended to cover the first Civil Fast Reactor (CFR1), which has recently been re-designated the Civil Demonstration Fast Reactor (CDFR). The paper outlines the present status of the development of sodium cooled fast reactors in the U.K. and proceeds to summarize the principal PFR and CDFR core and fuel element parameters which have determined the planning and direction of the fuel element materials programme. The current position on the fuel element cladding and wrapper research and development programme is reviewed, and the facilities and future irradiation programme to be carried out in PFR are described

  12. Corrosion resistance of metallic materials for use in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Pinard Legry, G.; Pelras, M.; Turluer, G.

    1988-01-01

    The main of this review is to reassess the corrosion resistance properties required from metallic materials to be used in the various developments of the Purex process applied for nuclear fuel reprocessing

  13. Pumped lithium loop test to evaluate advanced refractory metal alloys and simulated nuclear fuel elements

    Science.gov (United States)

    Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.

    1974-01-01

    The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.

  14. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Bastidas, D. M.

    2006-12-01

    Full Text Available Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. Coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation

    El uso de interconectores metálicos en pilas de combustible de óxido sólido (SOFC en sustitución de materiales cerámicos ha sido posible gracias a la investigación y desarrollo de nuevos materiales metálicos. Inicialmente, el uso de interconectores metálicos fue limitado, debido a la elevada temperatura de trabajo, ocasionando de forma rápida la degradación del material, lo que impedía que fuesen una alternativa. A medida que la temperatura de trabajo de las SOFC descendió, el uso de interconectores metálicos demostró ser una buena alternativa, dado que son más fáciles de fabricar y más baratos que los interconectores cerámicos. Sin embargo, los interconectores metálicos continúan degradándose a pesar de descender la temperatura a la que operan las SOFC y, asimismo, los productos de corrosión favorecen las pérdidas eléctricas de la pila de combustible. Recubrimientos de níquel, cromo, aluminio, zinc, manganeso, itrio y lantano entre el interconector y los electrodos reduce dichas pérdidas eléctricas.

  15. Thermo-Mechanical Analysis of Coated Particle Fuel Experiencing a Fast Control Rod Ejection Transient

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, J.; Brian Boer; Abderrafi M. Ougouag

    2010-10-01

    A rapid increase of the temperature and the mechanical stress is expected in TRISO coated particle fuel that experiences a fast Total Control Rod Ejection (CRE) transient event. During this event the reactor power in the pebble bed core increases significantly for a short time interval. The power is deposited instantly and locally in the fuel kernel. This could result in a rapid increase of the pressure in the buffer layer of the coated fuel particle and, consequently, in an increase of the coating stresses. These stresses determine the mechanical failure probability of the coatings, which serve as the containment of radioactive fission products in the Pebble Bed Reactor (PBR). A new calculation procedure has been implemented at the Idaho National Laboratory (INL), which analyzes the transient fuel performance behavior of TRISO fuel particles in PBRs. This early capability can easily be extended to prismatic designs, given the availability of neutronic and thermal-fluid solvers. The full-core coupled neutronic and thermal-fluid analysis has been modeled with CYNOD-THERMIX. The temperature fields for the fuel kernel and the particle coatings, as well as the gas pressures in the buffer layer, are calculated with the THETRIS module explicitly during the transient calculation. Results from this module are part of the feedback loop within the neutronic-thermal fluid iterations performed for each time step. The temperature and internal pressure values for each pebble type in each region of the core are then input to the PArticle STress Analysis (PASTA) code, which determines the particle coating stresses and the fraction of failed particles. This paper presents an investigation of a Total Control Rod Ejection (TCRE) incident in the 400 MWth Pebble Bed Modular reactor design using the above described calculation procedure. The transient corresponds to a reactivity insertion of $3 (~2000 pcm) reaching 35 times the nominal power in 0.5 seconds. For each position in the core

  16. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can

  17. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE and AFTER IRRADIATION

    International Nuclear Information System (INIS)

    SCHWINKENDORF, K.N.

    2006-01-01

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k eff = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  18. Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D.

    2010-11-01

    This study develops techno-economic models for assessment of the conversion of biomass to valuable fuel products via fast pyrolysis and bio-oil upgrading. The upgrading process produces a mixture of naphtha-range (gasoline blend stock) and diesel-range (diesel blend stock) products. This study analyzes the economics of two scenarios: onsite hydrogen production by reforming bio-oil, and hydrogen purchase from an outside source. The study results for an nth plant indicate that petroleum fractions in the naphtha distillation range and in the diesel distillation range are produced from corn stover at a product value of $3.09/gal ($0.82/liter) with onsite hydrogen production or $2.11/gal ($0.56/liter) with hydrogen purchase. These values correspond to a $0.83/gal ($0.21/liter) cost to produce the bio-oil. Based on these nth plant numbers, product value for a pioneer hydrogen-producing plant is about $6.55/gal ($1.73/liter) and for a pioneer hydrogen-purchasing plant is about $3.41/gal ($0.92/liter). Sensitivity analysis identifies fuel yield as a key variable for the hydrogen-production scenario. Biomass cost is important for both scenarios. Changing feedstock cost from $50-$100 per short ton changes the price of fuel in the hydrogen production scenario from $2.57-$3.62/gal ($0.68-$0.96/liter).

  19. Thermochemical treatment of radioactive waste by using powder metal fuels

    International Nuclear Information System (INIS)

    Dmitriev, S.A.; Ojovan, M.I.; Karlina, O.K.

    2001-01-01

    Full text: A thermochemical approach was suggested for treating and conditioning specific streams of radioactive wastes for example spent ion exchange resins, mixed, organic or chlorine-containing radioactive waste as well as in order to decontaminate heavily contaminated surfaces. Conventional treatment methods of such waste encounters serious problems concerning complete destruction of organic molecules and possible emissions of radionuclides, heavy metals and chemically hazardous species or in case of contaminated materials - complete removal of contamination from surface. The thermochemical treatment of radioactive waste uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. Thermochemical treatment technologies use the energy of chemical reactions in the mixture of waste with PMF to sustain both decomposition and synthesis processes as well as processes of isomorphic substitutions of hazardous elements into stable mineral forms. The composition of the PMF is designed in such a way as to minimise the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the mineral or glass like final products. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. Thermochemical treatment technologies are very efficient, easy to apply, they have low capital investment and can be used both at large and small facilities. An advantage of thermochemical technologies is their autonomy. Thus these technologies can be successfully applied in order to treat small amount of waste without usage of complex and expensive equipment. They can be used also in emergency situations. Currently the thermochemical treatment technologies were developed and demonstrated to be feasible as follows: 1. Decontamination of surfaces; 2. Processing of organic waste; 3. Vitrification of dusty

  20. SXR Continuum Radiation Transmitted Through Metallic Filters: An Analytical Approach To Fast Electron Temperature Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Aparicio, L.; Tritz, K.; Kramer, T.; Stutman, D.; Finkentha, M.; Hill, K.; Bitter, M.

    2010-08-26

    A new set of analytic formulae describes the transmission of soft X-ray (SXR) continuum radiation through a metallic foil for its application to fast electron temperature measurements in fusion plasmas. This novel approach shows good agreement with numerical calculations over a wide range of plasma temperatures in contrast with the solutions obtained when using a transmission approximated by a single-Heaviside function [S. von Goeler, Rev. Sci. Instrum., 20, 599, (1999)]. The new analytic formulae can improve the interpretation of the experimental results and thus contribute in obtaining fast teperature measurements in between intermittent Thomson Scattering data.

  1. International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13). Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The conference, which was held from 4 to 7 of March 2013 in Paris, provided a forum to exchange information on national and international programmes, and more generally new developments and experience, in the field of fast reactors and related fuel cycle technologies. A first goal was to identify and discuss strategic and technical options that have been proposed by individual countries or companies. Another goal was to promote the development of fast reactors and related fuel cycle technologies in a safe, proliferation resistant and economic way. A third goal was to identify gaps and key issues that need to be addressed in relation to the industrial deployment of fast reactors with a closed fuel cycle. A fourth goal was to engage young scientists and engineers in this field, in particular with sustainability, innovation, simulation, safety, economics and public acceptance

  2. Study of fuel evolution in fast reactors of the 4. generation. Impact of the nuclear data on their performance

    International Nuclear Information System (INIS)

    Khamakhem, W.

    2010-02-01

    The objective of this PhD topic is to contribute to the understanding of the variations of the core neutronic characteristics of the 4. generation reactors (Sodium Cooled Fast Reactors (SFR) and Gas Cooled Fast Reactors (GFR)) during fuel depletion. The neutron characteristics of interest are of course the burn up reactivity swing and the breeding gain but also the Doppler effect and the coolant void effect. Fuel depletion leads to a degradation of the core safety parameters. The study of these variations and their associated uncertainties contributes to justify 4. generation reactor core designs as envisaged in their last developments. These last developments concerned Sodium Cooled Fast Reactors (SFR) and Gas Cooled Fast Reactors (GFR) which were reshaped in order to meet Generation IV goals on economics, safety and reliability, sustainability and proliferation resistance. They exhibit very innovative characteristics compared to the European Fast Reactor (EFR) whose design was very much in line with those of Phenix and Super Phenix. Recent CEA studies had led to large 3600 MWth SFR cores using oxide fuel and to large 2400 MWth GFR cores using carbide fuel. Since the designs have to balance between positive breeding gain and safety characteristics such as rather low void reactivity effects (SFR) or rather small core pressure drop (GFR), scoping studies for breakthrough SFR cores were performed using dense fuels either carbide (already taken as a reference for the GFR core) or metal. These preliminary breakthrough SFR images are characterized by high power density and highly positive breeding gain (Breeding Gain = 0.17). As a first step towards the development of GFR plants, a low power experimental GFR called ALLEGRO is being envisaged and has been studied for its peculiar characteristics. To study the main neutronic characteristics of these cores, one can use analyses based on the sensitivity methods of the deterministic computer code ERANOS (neutronic code

  3. Development of advanced spent fuel management process / criticality safety analysis for integrated mockup and metallized spent fuel storage

    International Nuclear Information System (INIS)

    Ro, Seong Gy; Shin, Hee Sung; Shin, Young Joon; Bae, Kang Mok

    1999-02-01

    Benchmark calculation for SCALE4.3 CSAS6 module and burnup credit criticality analysis performed by CSAS6 module are described in this report. Calculation biases by the SCALE4.3 CSAS6 module for PWR spent fuel, metallized spent fuel and aqueous nuclear materials have been determined on the basis of the benchmark to be 0.011, 0.023 and 0.010, respectively. The maximum allowable multiplication factor for an integrated mockup and metallized spent fuel storage is conservatively determined to be 0.927. With the aid of this code system, K eff values as a function of metallization ratio for the integrated mockup have been calculated. The maximum values of K eff for normal and hypothetical accident conditions are 0.346 and 0.598, respectively, much less than the maximum allowable multiplication factor of 0.927. Besides, burnup credit criticality analysis has been performed for infinite arrays of square and hexagonal canisters containing metallized spent fuel rods with different canister wall thickness, canister surface-to-surface distance and water content. It is revealed that the effective multiplication factor for canister arrays as mentioned above is well below the subcritical limit regardless of external conditions when its wall thickness is over 9 mm. (Author). 37 refs., 27 tabs., 64 figs

  4. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    fuel, Anticipated evolution of fuel in dry storage, Anticipated evolution of fuel in deep geological disposal); Boiling-water reactor fuel (Similarities, and differences with PWR fuel, Axial and radial zoning, Rod and channel box sizes, Poisoning and reactivity control, Cladding specific characteristics, Trends in fuel evolution); 3 - Liquid-metal-cooled fast reactor fuel: Fast-neutron irradiation damage in structural materials (Fast-neutron-induced damage in metals, What materials should be used?); Fuels and targets for fast-reactor transmutation (Fast reactors: reactors affording the ability to carry out effective actinide transmutation, Recycling: homogeneous, or heterogeneous?); 4 - gas-cooled reactor fuel: Particle fuel (From the initial concept to the advanced TRISO particle concept, Kernel fabrication processes, Particle coating by chemical vapor deposition, Fuel element fabrication: particle compaction, Characterization of fuel particles, and elements, From HTR fuel to VHTR and GFR fuels: the GAIA facility at CEA/Cadarache); Irradiation behavior of particle fuels (Particle fuel: a variety of failure modes for a high-strength object, The amoeba effect, Fission product behavior, and diffusion in particle fuels); Mechanical modeling of particle fuel; Very-high-temperature reactor (VHTR) fuel; Gas-cooled fast reactor (GFR) fuel (The specifications for GFR fuel, GFR fissile material, First containment baffler materials, GFR fuel element concepts); 5 - Research reactor fuels (A considerable feedback from experience, Conversion of French reactors to low-enriched (≤20% U-235)U 3 Si 2 fuel, Conversion of all reactors: R and D requirements for high-performance reactors, An 'advanced' research reactor fuel: UMo, The startup fuel for the Jules Horowitz Reactor (JHR) will still be U 3 Si 2 -Al; 6 - An instrument for future fuel research: the Jules Horowitz Reactor (JHR): Fuel irradiation experiments in JHR, JHR: a flexible instrument; 7 - Glossary-Index

  5. Results of thermal test of metallic molybdenum disk target and fast-acting valve testing

    Energy Technology Data Exchange (ETDEWEB)

    Virgo, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Jonah, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    This report describes the irradiation conditions for thermal testing of helium-cooled metallic disk targets that was conducted on March 9, 2016, at the Argonne National Laboratory electron linac. The four disks in this irradiation were pressed and sintered by Oak Ridge National Laboratory from molybdenum metal powder. Two of those disks were instrumented with thermocouples. Also reported are results of testing a fast-acting-valve system, which was designed to protect the accelerator in case of a target-window failure.

  6. Operational experiences in radiation protection in fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Meenakshisundaram, V.; Rajagopal, V.; Santhanam, R.; Baskar, S.; Madhusoodanan, U.; Chandrasekaran, S.; Balasundar, S.; Suresh, K.; Ajoy, K.C.; Dhanasekaran, A.; Akila, R.; Indira, R.

    2008-01-01

    The Compact Reprocessing facility for Advanced fuels in Lead cells (CORAL), situated at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam is a pilot plant to reprocess the mixed carbide fuel, for the first time in the world. Reprocessing of fuel with varying burn-ups up to 155 G Wd/t, irradiated at Fast Breeder Test Reactor (FBTR), has been successfully carried out at CORAL. Providing radiological surveillance in a fuel reprocessing facility itself is a challenging task, considering the dynamic status of the sources and the proximity of the operator with the radioactive material and it is more so in a fast reactor fuel reprocessing facility due to handling of higher burn-up fuels associated with radiation fields and elevated levels of fissile material content from the point of view of criticality hazard. A very detailed radiation protection program is in place at CORAL. This includes, among others, monitoring the release of 85 Kr and other fission products and actinides, if any, through stack on a continuous basis to comply with the regulatory limits and management of disposal of different types of radioactive wastes. Providing radiological surveillance during the operations such as fuel transport, chopping and dissolution and extraction cycle was without any major difficulty, as these were carried out in well-shielded and high integrity lead cells. Enforcement of exposure control assumes more importance during the analysis of process samples and re-conversion operations due to the presence of fission product impurities and also since the operations were done in glove boxes and fume hoods. Although the radiation fields encountered in process area were marginally higher, due to the enforcement of strict administrative controls, the annual exposure to the radiation workers was well within the regulatory limit. As the facility is being used as test bed for validation of prototype equipment, periodic inspection and maintenance of components such as centrifuge

  7. Heavy metal inventory and fuel sustainability of recycling TRU in FBR design

    Science.gov (United States)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-01

    Nuclear fuel materials from spent fuel of light water reactors have a potential to be used for destructive devices with very huge energy release or in the same time, it can be utilized as a peaceful energy or civil applications, for generating electricity, desalination of water, medical application and others applications. Several research activities showed some recycled spent fuel can be used as additional fuel loading for increasing fuel breeding capability as well as improving intrinsic aspect of nuclear non-proliferation. The present investigation intends to evaluate the composition of heavy metals inventories and fuel breeding capability in the FBR design based on the loaded fuel of light water reactor (LWR) spent fuel (SF) of 33 GWd/t with 5 years cooling time by adopting depletion code of ORIGEN. Whole core analysis of FBR design is performed by adopting and coupling codes such as SLAROM code, JOINT and CITATION codes. Nuclear data library, JFS-3-J-3.2R which is based on the JENDL 3.2 has been used for nuclear data analysis. JSFR design is the basis design reference which basically adopted 800 days cycle length for 4 batches system. Higher inventories of plutonium of MOX fuel and TRU fuel types at equilibrium composition than initial composition have been shown. Minor actinide (MA) inventory compositions obtain a different inventory trends at equilibrium composition for both fuel types. Higher Inventory of MA is obtained by MOX fuel and less MA inventory for TRU fuel at equilibrium composition than initial composition. Some different MA inventories can be estimated from the different inventory trend of americium (Am). Higher americium inventory for MOX fuel and less americium inventory for TRU fuel at equilibrium condition. Breeding ratio of TRU fuel is relatively higher compared with MOX fuel type. It can be estimated from relatively higher production of Pu-238 (through converted MA) in TRU fuel, and Pu-238 converts through neutron capture to produce Pu-239

  8. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ

    2009-12-22

    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  9. Magnetron sputtered gadolinia-doped ceria diffusion barriers for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Sønderby, Steffen; Klemensø, Trine; Christensen, Bjarke H.

    2014-01-01

    Gadolinia-doped ceria (GDC) thin films are deposited by reactive magnetron sputtering in an industrial-scale setup and implemented as barrier layers between the cathode and electrolyte in metal-based solid oxide fuel cells consisting of a metal support, an electrolyte of ZrO2 co-doped with Sc2O3 ...

  10. Break-down of Losses in High Performing Metal-Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Kromp, Alexander; Nielsen, Jimmi; Blennow Tullmar, Peter

    2012-01-01

    Metal supported SOFC designs offer competitive advantages such as reduced material costs and improved mechanical robustness. On the other hand, disadvantages might arise due to possible corrosion of the porous metal parts during processing and operation at high fuel utilization. In this paper we...

  11. Electrometallurgical treatment of metallic spent nuclear fuel stored at the Hanford Site

    International Nuclear Information System (INIS)

    Laidler, J.J.; Gay, E.C.

    1996-01-01

    The major component of the DOE spent nuclear fuel inventory is the metallic fuel stored at the Hanford site in the southeastern part of the state of Washington. Most of this fuel was discharged from the N-Reactor; a small part of the inventory is fuel from the early Hanford production reactors. The U.S. Department of Energy (DOE) plans to remove these fuels from the spent fuel storage pools in which they are presently stored, dry them, and place them in interim storage at a location at the Hanford site that is far removed from the Columbia River. It is not yet certain that these fuels will be acceptable for disposal in a mined geologic repository without further treatment, due to their potential pyrophoric character. A practical method for treatment of the Hanford metallic spent fuel, based on an electrorefining process, has been developed and has been demonstrated with unirradiated N-Reactor fuel and with simulated single-pass reactor (SPR) spent fuel. The process can be operated with any desired throughput rates; being a batch process, it is simply a matter of setting the size of the electrorefiner modules and the number of such modules. A single module, prototypic of a production-scale module, has been fabricated and testing is in progress at a throughput rate of 150 kg (heavy metal) per day. The envisioned production version would incorporate additional anode baskets and cathode tubes and provide a throughput rate of 333 kgHM/day. A system with four of these modules would permit treatment of Hanford metallic fuels at a rate of at least 250 metric tons per year

  12. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts.

    Science.gov (United States)

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO₃ and MnO₂, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm⁻² has been achieved at 65°C, which increases by a factor of 1.7-3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC.

  13. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts

    Science.gov (United States)

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-08-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO3 and MnO2, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW.cm-2 has been achieved at 65°C, which increases by a factor of 1.7-3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC.

  14. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts

    Science.gov (United States)

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO3 and MnO2, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm−2 has been achieved at 65°C, which increases by a factor of 1.7–3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC. PMID:22880160

  15. Study on uranium metallization yield of spent Pressurized Water Reactor fuels and oxidation behavior of fission products in uranium metals

    International Nuclear Information System (INIS)

    Choi, Ke Chon; Lee, Chang Heon; Kim, Won Ho

    2003-01-01

    Metallization yield of uranium oxide to uranium metal from lithium reduction process of spent Pressurized Water Reactor (PWR) fuels was measured using thermogravimetric analyzer. A reduced metal produced in the process was divided into a solid and a powder part, and each metallization yield was measured. Metallization yield of the solid part was 90.7∼95.9 wt%, and the powder being 77.8∼71.5 wt% individually. Oxidation behaviour of the quarternary alloy was investigated to take data on the thermal oxidation stability necessary for the study on dry storage of the reduced metal. At 600∼700 .deg. C, weight increments of allow of No, Ru, Rh and Pd was 0.40∼0.55 wt%. Phase change on the surface of the allow was started at 750 .deg. C. In particular, Mo was rapidly oxidized and then the alloy lost 0.76∼25.22 wt% in weight

  16. Corrosion of metal bipolar plates for PEM fuel cells: A review

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Renato A. [Engenharia de Materiais, Universidade Federal do ABC (UFABC), 09210-170 Santo Andre, SP (Brazil); Oliveira, Mara Cristina L.; Ett, Gerhard; Ett, Volkmar [Electrocell Ind. Com. Equip. Elet. LTDA, Centro de Inovacao, Empreendedorismo e Tecnologia (CIETEC), 05508-000 Sao Paulo, SP (Brazil)

    2010-04-15

    PEM fuel cells are of prime interest in transportation applications due to their relatively high efficiency and low pollutant emissions. Bipolar plates are the key components of these devices as they account for significant fractions of their weight and cost. Metallic materials have advantages over graphite-based ones because of their higher mechanical strength and better electrical conductivity. However, corrosion resistance is a major concern that remains to be solved as metals may develop oxide layers that increase electrical resistivity, thus lowering the fuel cell efficiency. This paper aims to present the main results found in recent literature about the corrosion performance of metallic bipolar plates. (author)

  17. Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel

    Science.gov (United States)

    Park, Jong-Hee [Clarendon Hills, IL

    2011-11-29

    A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

  18. Sensitivity Analysis of FEAST-Metal Fuel Performance Code: Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Edelmann, Paul Guy [Los Alamos National Laboratory; Williams, Brian J. [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Yacout, Abdellatif [Argonne National Laboratories

    2012-06-27

    This memo documents the completion of the LANL milestone, M3FT-12LA0202041, describing methodologies and initial results using FEAST-Metal. The FEAST-Metal code calculations for this work are being conducted at LANL in support of on-going activities related to sensitivity analysis of fuel performance codes. The objective is to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. This report summarizes our preliminary results for the sensitivity analysis using 6 calibration datasets for metallic fuel developed at ANL for EBR-II experiments. Sensitivity ranking methodology was deployed to narrow down the selected parameters for the current study. There are approximately 84 calibration parameters in the FEAST-Metal code, of which 32 were ultimately used in Phase II of this study. Preliminary results of this sensitivity analysis led to the following ranking of FEAST models for future calibration and improvements: fuel conductivity, fission gas transport/release, fuel creep, and precipitation kinetics. More validation data is needed to validate calibrated parameter distributions for future uncertainty quantification studies with FEAST-Metal. Results of this study also served to point out some code deficiencies and possible errors, and these are being investigated in order to determine root causes and to improve upon the existing code models.

  19. Modified Fabrication Method of Metal Fuel Slug for Preventing Evaporation of Volatile Elements

    International Nuclear Information System (INIS)

    Kim, Ki-Hwan; Kim, Jong Hwan; Song, Hoon; Kim, Hyung-Tae; Lee, Jung-Won; Lee, Chan-Bock

    2014-01-01

    In order to develop innovative fabrication method of metal fuel slugs for preventing the evaporation of volatile elements such as Am, modified casting under inert atmosphere has been applied for metal fuel slugs for SFR. Alternative fabrication method of fuel slugs has been introduced to develop an improved fabrication process of metal fuel for preventing the evaporation of volatile elements. In this study, U-10wt.%Zr-Mn fuel slugs for SFR have been fabricated by modified casting method and characterized to evaluate the feasibility of the alternative fabrication method. Alternative casting such as modified casting has been applied to develop fabrication method of fuel slugs for preventing the evaporation of volatile elements such as Am. U-10wt.%Zr-Mn containing a volatile surrogate Mn fuel slug was soundly fabricated under inert atmosphere with dimensions of L250mm. Mass fraction of fuel loss was so low, upto 0.2%. Mn element was most recovered with prevention in evaporation of Mn. It was seen that the losses of volatile Am can be effectively controlled to below detectable levels using modest pressure

  20. Fast reactors fuel cycle core physics results from the CAPRA-CADRA programme

    International Nuclear Information System (INIS)

    Vasile, A.; Rimpault, G.; Tommasi, J.; Saint Jean, C. de; Delpech, M.; Hesketh, K.; Beaumont, H.M.; Sunderland, R.E.; Newton, T.; Smith, P.; Raedt, Ch. de; Vambenepe, G.; Lefevre, J.C.; Maschek, W.; Haas, D

    2001-01-01

    This paper presents an overview of fast reactor core physics results obtained in the context of the CAPRA-CADRA European collaborative programme, whose aim is to investigate a broad range of possible options for plutonium and radioactive waste management. Different types of fast reactors have been studied to evaluate their potential capabilities with respect to the long term management of plutonium, minor actinides (MAs) and long- lived fission products (LLFPs). Among the several options aiming at reducing waste and consequently radio toxicity are: homogeneous recycling of Minor Actinides, heterogeneous recycling of Minor Actinides either without or with moderation, dedicated critical cores (fuelled mainly with Minor Actinides) and Accelerator Driven System (ADS) variants. In order to achieve a detailed understanding of the potential of the various options, advanced core physics methods have been implemented and tested and applied, for example, to improving control rod modeling and to studying safety aspects. There has also been code development and experimental work carried out to improve the understanding of fuel performance behaviors. (author)

  1. Benchmark physics experiment of metallic-fueled LMFBR at FCA. 2

    International Nuclear Information System (INIS)

    Iijima, Susumu; Oigawa, Hiroyuki; Ohno, Akio; Sakurai, Takeshi; Nemoto, Tatsuo; Osugi, Toshitaka; Satoh, Kunio; Hayasaka, Katsuhisa; Bando, Masaru.

    1993-10-01

    An availability of data and method for a design of metallic-fueled LMFBR is examined by using the experiment results of FCA assembly XVI-1. Experiment included criticality and reactivity coefficients such as Doppler, sodium void, fuel shifting and fuel expansion. Reaction rate ratios, sample worth and control rod worth were also measured. Analysis was made by using three-dimensional diffusion calculations and JENDL-2 cross sections. Predictions of assembly XVI-1 reactor physics parameters agree reasonably well with the measured values, but for some reactivity coefficients such as Doppler, large zone sodium void and fuel shifting further improvement of calculation method was need. (author)

  2. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    TOFFER, H.

    2006-07-18

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel

  3. A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face

    Science.gov (United States)

    Yan, Haitao; Zhao, Xiaoyan; Zhang, Chao; Li, Qiu-Ze; Cao, Jingxiao; Han, Dao-Fu; Hao, Hui; Wang, Ming

    2016-01-01

    We demonstrated an integrated hydrogen sensor with Pd metallic grating fabricated on a fiber end-face. The grating consists of three thin metal layers in stacks, Au, WO3 and Pd. The WO3 is used as a waveguide layer between the Pd and Au layer. The Pd layer is etched by using a focused ion beam (FIB) method, forming a Pd metallic grating with period of 450 nm. The sensor is experimentally exposed to hydrogen gas environment. Changing the concentration from 0% to 4% which is the low explosive limit (LEL), the resonant wavelength measured from the reflection experienced 28.10 nm spectral changes in the visible range. The results demonstrated that the sensor is sensitive for hydrogen detection and it has fast response and low temperature effect.

  4. Stripping scattering of fast atoms on surfaces of metal-oxide crystals and ultrathin films

    International Nuclear Information System (INIS)

    Blauth, David

    2010-01-01

    In the framework of the present dissertation the interactions of fast atoms with surfaces of bulk oxides, metals and thin films on metals were studied. The experiments were performed in the regime of grazing incidence of atoms with energies of some keV. The advantage of this scattering geometry is the high surface sensibility and thus the possibility to determine the crystallographic and electronic characteristics of the topmost surface layer. In addition to these experiments, the energy loss and the electron emission induced by scattered projectiles was investigated. The energy for electron emission and exciton excitation on Alumina/NiAl(110) and SiO 2 /Mo(112) are determined. By detection of the number of projectile induced emitted electrons as function of azimuthal angle for the rotation of the target surface, the geometrical structure of atoms forming the topmost layer of different adsorbate films on metal surfaces where determined via ion beam triangulation. (orig.)

  5. Fast optical measurements and imaging of flow mixing: Fast optical measurements and imaging of temperature in combined fossil fuel and biomass/waste systems

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Soennik; Fateev, A.; Lindorff Nielsen, K.; Evseev, V.

    2012-02-15

    Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics. Fast time-and spectral-resolved measurements in 1.5-5.1 mu spectral range give information about flame characteristics like gas and particle temperatures, eddies and turbulent gas mixing. Time-resolved gas composition in that spectral range (H{sub 2}O, CH{sub 4}, CO{sub 2}, CO) which is one of the key parameters in combustion enhancement can be also obtained. The infrared camera was also used together with special endoscope optics for fast thermal imaging of a coal-straw flame in an industrial boiler. Obtained time-resolved infrared images provided useful information for the diagnostics of the flame and fuel distribustion. The applicability of the system for gas leak detection is also demonstrated. The infrared spectrometer system with minor developments was applied for fast time-resolved exhaust gas temperature measurements performed simultaneously at the three optical ports of the exhaust duct of a marine Diesel engine and visualisation of gas flow behaviour in cylinder. (Author)

  6. Storage for the Fast Flux Test Facility unirradiated fuel in the Plutonium Finishing Plant Complex, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-01-01

    This Environmental Assessment evaluates the proposed action to relocate and store unirradiated Fast Flux Test Facility fuel in the Plutonium Finishing Plant Complex on the Hanford Site, Richland, Washington. The US Department of Energy has decided to cease fuel fabrication activities in the 308 Building in the 300 Area. This decision was based on a safety concern over the ability of the fuel fabrication portion of the 308 Building to withstand a seismic event. The proposed action to relocate and store the fuel is based on the savings that could be realized by consolidating security costs associated with storage of the fuel. While the 308 Building belowgrade fuel storage areas are not at jeopardy by a seismic event, the US Department of Energy is proposing to cease storage operations along with the related fabrication operations. The US Department of Energy proposes to remove the unirradiated fuel pins and fuel assemblies from the 308 Building and store them in Room 192A, within the 234-5Z Building, a part of the Plutonium Finishing Plant Complex, located in the 200 West Area. Minor modifications to Room 192A would be required to accommodate placement of the fuel. The US Department of Energy estimates that removing all of the fuel from the 308 Building would save $6.5 million annually in security expenditures for the Fast Flux Test Facility. Environmental impacts of construction, relocation, and operation of the proposed action and alternatives were evaluated. This evaluation concluded that the proposed action would have no significant impacts on the human environment

  7. HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Sell, D. A.; Baily, C. E.; Malewitz, T. J.; Medvedev, P. G.; Porter, D. L.; Hilton, B. A.

    2016-09-01

    A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium after the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.

  8. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Palomares, R.I.; Dayman, K.J.; Landsberger, S.; Biegalski, S.R.; Soderquist, C.Z.; Casella, A.J.; Brady Raap, M.C.; Schwantes, J.M.

    2015-01-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO 2 fuel dissolved in nitric acid and UO 2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. - Highlights: • The noble metal phase was chemically extracted from spent nuclear fuel and analyzed non-destructively. • Noble metal phase nuclides and long-lived iodine were identified and quantified using neutron activation analysis. • Activation to shorter-lived radionuclides allowed rapid analysis of long-lived fission products in spent fuel using gamma spectrometry

  9. Numerical simulation of fuel assembly thermohydraulics of fast reactors with the partial blockage of cross section under the coolant

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Sorokin, A.P.

    2000-01-01

    The problems of numerical modeling of thermohydraulics in assembly of fuel elements of fast reactors with the partial blockage of cross-section under the coolant are considered. The information about existing codes constructed on use of subchannel technique and model of porous body are presented. The results of calculation obtained by these codes are presented. (author)

  10. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    Science.gov (United States)

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  11. SPARC fast reactor design : Design of two passively safe metal-fuelled sodium-cooled pool-type small modular fast reactors with Autonomous Reactivity Control

    OpenAIRE

    Lindström, Tobias

    2015-01-01

    In this master thesis a small modular sodium-cooled metal-fuelled pool-type fast reactor design, called SPARC - Safe and Passive with Autonomous Reactivity control, has been designed. The long term reactivity changes in the SPARC are managed by implementation of the the Autonomous Reactivity Control (ARC) system, which is the novelty of the design. The overall design is mainly based on the Integral Fast Reactor project (IFR), which experimentally demonstrated the passive safety characteristic...

  12. Annual report of the working group 'fuel pin and fuel element mechanics' of the Institut fuer Reaktortechnik (IRT) of the Technische Hochschule Darmstadt for the Fast Breeder Project

    International Nuclear Information System (INIS)

    Fabian, H.; Humbach, W.; Lassmann, K.; Mueller, J.J.; Preusser, T.; Schmelz, K.

    1978-09-01

    This report comprises six single lectures given at an information meeting organized by the Institut fuer Reaktortechnik der Technischen Hochschule Darmstadt (IRT) in Darmstadt on April 24, 1978. The lectures are an account of work performed at IRT on the mechanics of fuel pins and fuel elements and supported by the Fast Breeder Project (PSB) of KfK. These activities can be broken down into studies of the integral fuel pin (URANUS computer code) and into multidimensional studies of the fuel pin using the finite-element method (FINEL and ZIDRIG computer codes). Moreover, a report is presented of the status of the test facility for simulation of out-of-pile cladding tube loads and of the IRT project on the simulation and analysis of radiation damage. (orig./GL) [de

  13. Fuels and materials research under the high neutron fluence using a fast reactor Joyo and post-irradiation examination facilities

    International Nuclear Information System (INIS)

    Soga, Tomonori; Ito, Chikara; Aoyama, Takafumi; Suzuki, Soju

    2009-01-01

    The experimental fast reactor Joyo at Oarai Research and Development Center (ORDC) of Japan Atomic Energy Agency (JAEA) is Japan's sodium-cooled fast reactor (FR). In 2003, this reactor's upgrade to the 140MWt MK-III core was completed to increase the irradiation testing capability. The MK-III core provides the fast neutron flux of 4.0x10 15 n/cm 2 s as an irradiation test bed for improving the fuels and material of FR in Japan. Three post-irradiation examination (PIE) facilities named FMF, MMF and AGF related to Joyo are in ORDC. Irradiated subassemblies and core components are carried into the FMF (Fuel Monitoring Facility) and conducted nondestructive examinations. Each subassembly is disassembled to conduct some destructive examinations and to prepare the fuel and material samples for further detailed examinations. Fuel samples are sent to the AGF (Alpha-Gamma Facility), and material samples are sent to the MMF (Materials Monitoring Facility). These overall and elaborate data provided by PIE contribute to investigate the irradiation effect and behavior of fuels and materials. This facility complex is indispensable to promote the R and D of FR in Japan. And, the function and technology of irradiation test and PIE enable to contribute to the R and D of innovative fission or fusion reactor material which will be required to use under the high neutron exposure. (author)

  14. Characterization of Irradiated Metal Waste from the Pyrometallurgical Treatment of Used EBR-II Fuel

    Energy Technology Data Exchange (ETDEWEB)

    B.R. Westphal; K.C. Marsden; W.M. McCartin; S.M. Frank; D.D. Keiser, Jr.; T.S. Yoo; D. Vaden; D.G. Cummings; K.J. Bateman; J. J. Giglio; T. P. O' Holleran; P. A. Hahn; M. N. Patterson

    2013-03-01

    As part of the pyrometallurgical treatment of used Experimental Breeder Reactor-II fuel, a metal waste stream is generated consisting primarily of cladding hulls laden with fission products noble to the electrorefining process. Consolidation by melting at high temperature [1873 K (1600 degrees C)] has been developed to sequester the noble metal fission products (Zr, Mo, Tc, Ru, Rh, Te, and Pd) which remain in the iron-based cladding hulls. Zirconium from the uranium fuel alloy (U-10Zr) is also deposited on the hulls and forms Fe-Zr intermetallics which incorporate the noble metals as well as residual actinides during processing. Hence, Zr has been chosen as the primary indicator for consistency of the metal waste. Recently, the first production-scale metal waste ingot was generated and sampled to monitor Zr content for Fe-Zr intermetallic phase formation and validation of processing conditions. Chemical assay of the metal waste ingot revealed a homogeneous distribution of the noble metal fission products as well as the primary fuel constituents U and Zr. Microstructural characterization of the ingot confirmed the immobilization of the noble metals in the Fe-Zr intermetallic phase.

  15. Experimental specifications for eutectic reaction between metallic fuel and HT-9

    International Nuclear Information System (INIS)

    Hwang, Woan; Nam, Cheol; Lee, Byoung Oon; Ryu, Woo Seog

    1998-10-01

    The chemical interaction between metallic fuel and cladding is important in designing the fuel pin of the KALIMER. When metal fuel and cladding are contacted, the elements in fuel and cladding are inter-diffuse each other, forming the reaction layers at interface. The reaction layers may cause two important factors in aspects of fuel pin integrity. Firstly, it degrades cladding strength by reducing effective cladding thickness. Secondly, these layers accelerate eutectic reaction at transient conditions. To evaluate these phenomena, the diffusion couple experiment is planned by using metal fuels with various zirconium contents and HT-9 steel. The U-Zr fuel alloys will be used for the experiment with the different zirconium contents, these are 8, 10 and 12 weight %. This experiment aims to evaluate the effects of zirconium content on the chemical reaction. Furthermore, the reaction rate and threshold temperature of the eutectic melting will be determined as a function of the zirconium content. This document describes the detail experimental specifications for the eutectic reaction such as test setup, test requirements and test procedure. (author). 10 refs

  16. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold...

  17. A noble metal-free proton-exchange membrane fuel cell based on bio-inspired molecular catalysts.

    Science.gov (United States)

    Tran, P D; Morozan, A; Archambault, S; Heidkamp, J; Chenevier, P; Dau, H; Fontecave, M; Martinent, A; Jousselme, B; Artero, V

    2015-03-01

    Hydrogen is a promising energy vector for storing renewable energies: obtained from water-splitting, in electrolysers or photoelectrochemical cells, it can be turned back to electricity on demand in fuel cells (FCs). Proton exchange membrane (PEM) devices with low internal resistance, high compactness and stability are an attractive technology optimized over decades, affording fast start-up times and low operating temperatures. However, they rely on the powerful catalytic properties of noble metals such as platinum, while lower cost, more abundant materials would be needed for economic viability. Replacing these noble metals at both electrodes has long proven to be a difficult task, so far incompatible with PEM technologies. Here we take advantage of newly developed bio-inspired molecular H 2 oxidation catalysts and noble metal-free O 2 -reducing materials, to fabricate a noble metal-free PEMFC, with an 0.74 V open circuit voltage and a 23 μW cm -2 output power under technologically relevant conditions. X-ray absorption spectroscopy measurements confirm that the catalysts are stable and retain their structure during turnover.

  18. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    Science.gov (United States)

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  19. Simple Attenauation Models of Metallic Cables Suitable for G.fast Frequencies

    Directory of Open Access Journals (Sweden)

    Pavel Lafata

    2015-01-01

    Full Text Available Recently, a new xDSL successor called G.fast, which can occupy frequencies up to 106 or 212~MHz, has been introduced in ITU-T G.9700 series of recommendations. Moreover, a new model of transmission characteristics suitable for various types of metallic cables has been designed and described as well. The model is based on 9 parameters specified for each type of metallic cable and can provide accurate estimations. However, its complexity together with the number of required parameters makes its practical application questionable, since the most important metallic cable characteristic, the attenuation, can be estimated using much simpler models. Therefore, two innovative attenuation models suitable for frequencies up to 250 MHz were designed and they will be introduced in this paper. The main motivation was to achieve an accurate approximation of attenuation character for various types of metallic cables, while maintaining low mathematical complexity and a number of necessary parameters. Both models were compared with attenuation characteristics measured for variety types of real metallic cables and also with other standard attenuation models. The results are included in this article as well.

  20. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai; Jiao, Shuhong; Polzin, Bryant J.; Zhang, Ji-Guang; Xu, Wu

    2017-03-01

    Lithium (Li) metal battery is an attractive energy storage system owing to the ultrahigh specific capacity and the lowest redox potential of Li metal anode. However, safety concern associated with dendrite growth and limited cycle life especially at a high charge current density are two critical challenges hindering the practical applications of rechargeable Li metal batteries. Here, we report for the first time that an optimal amount (0.05 M) of LiPF6 as additive in the LiTFSI-LiBOB dual-salt/carbonate-based electrolyte can significantly enhance the charging capability and the long-term cycle life of Li metal batteries with a moderately high cathode loading of 1.75 mAh cm-2. Unprecedented stable-cycling (97.1% capacity retention after 500 cycles) along with very limited increase in electrode over-potential has been achieved at a high current density of 1.75 mA cm-2. This unparalleled fast charging and stable cycling performance is contributed from both the stabilized Al cathode current collector, and, more importantly, the robust and conductive SEI layer formed on Li metal anode in the presence of the LiPF6 additive.

  1. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    International Nuclear Information System (INIS)

    Zhang Yanan; Brown, Robert C; Hu Guiping

    2013-01-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO 2 eq and 0.015 kg CO 2 eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions. (letter)

  2. A Neutronic Feasibility Study on the Recycling of an Oxide Fuel in Sodium-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2006-06-15

    Neutronic feasibility was implemented for the recycling of a mixed oxide fuel in sodium-cooled fast reactors (SFR) through a thermal/mechanical dry process, which is recognized as one of the most proliferation- resistant recycling processes. In order to assess the applicability of a simple dry process which is not capable of completely removing all the fission products from a spent fuel, sensitivity calculations were performed for the reactor physics parameters with a dependency on the fission product removal rate of the recycled spent fuel. The equilibrium core calculations were performed by the REBUS-3 code for a BN-600 core without blanket fuels and a modified core with an increased fuel volume fraction. The reactor performance parameters such as the transuranic content, breeding ratio, peak linear power, burnup reactivity swing and reactivity coefficients were calculated for an equilibrium core under a fixed fuel management scheme. The results showed that a recycling of the oxide fuel in the SFR is feasible if the fission products are removed by more than 70% through the dry process as far as the material balance is concerned. However the physics analysis also showed that some of the physics design parameters are slightly deteriorated. The results of this study indicate that the recycling characteristics can be improved if the dry process can remove more fission products, and the reactor configuration is further optimized or the spent fuel composition is adjusted.

  3. Chemical composition and fuel wood characteristics of fast growing tree species in India

    Science.gov (United States)

    Chauhan, S. K.; Soni, R.

    2012-04-01

    India is one of the growing economy in the world and energy is a critical input to sustain the growth of development. Country aims at security and efficiency of energy. Though fossil fuel will continue to play a dominant role in energy scenario but country is committed to global environmental well being thus stressing on environment friendly technologies. Concerns of energy security in this changing climatic situation have led to increasing support for the development of new renewable source of energy. Government though is determined to facilitate bio-energy and many projects have been established but initial after-affects more specifically on the domestic fuelwood are evident. Even the biomass power generating units are facing biomass crisis and accordingly the prices are going up. The CDM projects are supporting the viability of these units resultantly the Indian basket has a large number of biomass projects (144 out of total 506 with 28 per cent CERs). The use for fuelwood as a primary source of energy for domestic purpose by the poor people (approx. 80 per cent) and establishment of bio-energy plants may lead to deforestation to a great extent and only solution to this dilemma is to shift the wood harvest from the natural forests to energy plantations. However, there is conspicuous lack of knowledge with regards to the fuelwood characteristics of fast growing tree species for their selection for energy plantations. The calorific value of the species is important criteria for selection for fuel but it is affected by the proportions of biochemical constituents present in them. The aim of the present work was to study the biomass production, calorific value and chemical composition of different short rotation tree species. The study was done from the perspective of using the fast growing tree species for energy production at short rotation and the study concluded that short rotation tree species like Gmelina arborea, Eucalyptus tereticornis, Pongamia pinnata

  4. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: a pool-type primary system, and advanced ternary alloy metallic fuel, and an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  5. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  6. Thermal-hydraulic numerical simulation of fuel sub-assembly for Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Saxena, Aakanksha

    2014-01-01

    The thesis focuses on the numerical simulation of sodium flow in wire wrapped sub-assembly of Sodium-cooled Fast Reactor (SFR). First calculations were carried out by a time averaging approach called RANS (Reynolds- Averaged Navier-Stokes equations) using industrial code STAR-CCM+. This study gives a clear understanding of heat transfer between the fuel pin and sodium. The main variables of the macroscopic flow are in agreement with correlations used hitherto. However, to obtain a detailed description of temperature fluctuations around the spacer wire, more accurate approaches like LES (Large Eddy Simulation) and DNS (Direct Numerical Simulation) are clearly needed. For LES approach, the code TRIO U was used and for the DNS approach, a research code was used. These approaches require a considerable long calculation time which leads to the need of representative but simplified geometry. The DNS approach enables us to study the thermal hydraulics of sodium that has very low Prandtl number inducing a very different behavior of thermal field in comparison to the hydraulic field. The LES approach is used to study the local region of sub-assembly. This study shows that spacer wire generates the local hot spots (∼20 C) on the wake side of spacer wire with respect to the sodium flow at the region of contact with the fuel pin. Temperature fluctuations around the spacer wire are low (∼1 C-2 C). Under nominal operation, the spectral analysis shows the absence of any dominant peak for temperature oscillations at low frequency (2-10 Hz). The obtained spectra of temperature oscillations can be used as an input for further mechanical studies to determine its impact on the solid structures. (author) [fr

  7. Fuel burn analysis of a sodium fast reactor with KANEXT and Serpent

    International Nuclear Information System (INIS)

    Lopez S, R. C.; Francois L, J. L.

    2015-09-01

    The fast reactors cooled by sodium are one of the options considered in the Generation IV. Since most of the reactors of Fourth Generation are still in development stage, is necessary to have efficient and reliable computational tools, this in order to obtain accurate results in reasonable computational times. In this paper is introduced and describes the deterministic code KANEXT (KArlsruhe Neutronic EXtended Tool) and is compared against a Monte Carlo code of more diffusion: Serpent. KANEXT, being a modular code requires the interaction of different modules to perform a job, this interaction of modules is described in this article. The parameters to be compared are the results of the neutron multiplication effective factor and the evolution of isotopes during the burning. The mentioned comparison is carried out for a fast reactor cooled by sodium of relatively small size compared to commercial size reactors. In this paper the particularities of the reactor are described, important for the analysis such as geometry, enrichments, reflector, etc. The considerations in the implementation in both codes are also described, as are simplifications, length of the burning steps, possible solutions of the Bateman equations for the burning fuel in Serpent and the solution options for transport (P3) and diffusion (P1) in KANEXT. The results show good correspondence between Serpent and KANEXT, which give confidence to continue using KANEXT as the main tool. Respect to computation time, time saving is evident with the use of deterministic codes instead of Monte Carlo codes, in this particular case, the time savings using KANEXT is about 98.5% of the time used by Serpent. (Author)

  8. Process and equipment qualification of the ceramic and metal waste forms for spent fuel treatment

    International Nuclear Information System (INIS)

    Marsden, Ken; Knight, Collin; Bateman, Kenneth; Westphal, Brian; Lind, Paul

    2005-01-01

    The electrometallurgical process for treating sodium-bonded spent metallic fuel at the Materials and Fuels Complex of the Idaho National Laboratory separates actinides and partitions fission products into two waste forms. The first is the metal waste form, which is primarily composed of stainless steel from the fuel cladding. This stainless steel is alloyed with 15w% zirconium to produce a very corrosion-resistant metal which binds noble metal fission products and residual actinides. The second is the ceramic waste form which stabilizes fission product-loaded chloride salts in a sodalite and glass composite. These two waste forms will be packaged together for disposal at the Yucca Mountain repository. Two production-scale metal waste furnaces have been constructed. The first is in a large argon-atmosphere glovebox and has been used for equipment qualification, process development, and process qualification - the demonstration of process reliability for production of the DOE-qualified metal waste form. The second furnace will be transferred into a hot cell for production of metal waste. Prototype production-scale ceramic waste equipment has been constructed or procured; some equipment has been qualified with fission product-loaded salt in the hot cell. Qualification of the remaining equipment with surrogate materials is underway. (author)

  9. Distinguishing Pu Metal from Pu Oxide and Determining alpha-ratio using Fast Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapline, G. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nakae, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheets, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-07

    We describe a new method for determining the ratio of the rate of (α, n) source neutrons to the rate of spontaneous fission neutrons, the so called α-ratio. This method is made possible by fast neutron counting with liquid scintillator detectors, which can determine the shape of the fast neutron spectrum. The method utilizes the spectral difference between fission spectrum neutrons from Pu metal and the spectrum of (α, n) neutrons from PuO2. Our method is a generalization of the Cifarelli-Hage method for determining keff for fissile assemblies, and also simultaneously determines keff along with the α-ratio.

  10. Method and device for removing nuclear fuel pellets from a metal fuel can

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1978-01-01

    There are to be removed the pellets from a nuclear fuel rod without being destroyed by the process. For this purpose at one end of the fuel rod an opening is produced, through which a fluid is pressed at high pressure. Thereby the can is expanded and subsequently cut open by means of a cutting device. The pellets then may slip out. (TK) [de

  11. Steady-state fission gas behavior in uranium-plutonium-zirconium metal fuel elements

    International Nuclear Information System (INIS)

    Steele, W.G.; Wazzan, A.R.; Okrent, D.

    1989-01-01

    An analysis of fission gas release and induced swelling in steady state irradiated U-Pu-Zr metal fuels is developed and computer coded. The code is used to simulate, with fair success, some gas release and induced swelling data obtained under the IFR program. It is determined that fuel microstructural changes resulting from zirconium migration, anisotropic swelling, and thermal variations are major factors affecting swelling and gas release behavior. (orig.)

  12. Hydrogen production from bio-fuels using precious metal catalysts

    Directory of Open Access Journals (Sweden)

    Pasel Joachim

    2017-01-01

    Full Text Available Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3 and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.

  13. Hydrogen production from bio-fuels using precious metal catalysts

    Science.gov (United States)

    Pasel, Joachim; Wohlrab, Sebastian; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef

    2017-11-01

    Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3) and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.

  14. Primary Damage Characteristics in Metals Under Irradiation in the Cores of Thermal and Fast Reactors

    International Nuclear Information System (INIS)

    Pechenkin, V.A.

    2012-01-01

    For an analysis and forecasting of radiation-induced phenomena in structural materials of WWERs, PWRs and BN reactors the fast neutron fluence is usually used (for structural materials of the reactor cores and internals the fluence of neutrons with energy > 0.1 MeV, for WWER and PWRs vessel steels the fluence of neutrons with energy > 0.5 MeV in Russia and East Europe, and with energy > 1.0 MeV in USA and France). Displacements per atom (dpa) seem to be a more appropriate correlation parameter, because it allows comparing the results of materials irradiation in different neutron energy spectra or with different types of particles (neutrons, ions, fast electrons). Energy spectra of primary knocked atoms (PKA) and 'effective' dpa, which are introduced to take into account the point defect recombination during the relaxation stage of a displacement cascade, can be still better representation of the effect of irradiation on material properties. In this work the results of calculating dose rates (dpa/s, NRT-model), PKA energy spectra and PKA mean energies in metals under irradiation in the cores of Russian reactors WWER-440, WWER-1000 (both power thermal reactors) and BN-600 (power fast reactor) and BR-10 (test fast reactor) are presented. In all the reactors Fe and Zr are considered, with addition of Ti and W in BN-600. 'Effective' dose rates in these metals are calculated. Limitations and uncertainties in the standard dpa formulation (the NRT-dpa) are discussed. IPPE activities in the fields related to the TM subject are considered

  15. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants

    Science.gov (United States)

    Shark, Steven C.

    The purpose of this study is to investigate the use of reactive energetic fuel additives that have the potential to increase the combustion performance of hybrid rocket propellants in terms of solid fuel regression rate and combustion efficiency. Additives that can augment the combustion flame zone in a hybrid rocket motor by means of increased energy feedback to the fuel grain surface are of great interest. Metal hydrides have large volumetric hydrogen densities, which gives these materials high performance potential as fuel additives in terms of specifc impulse. The excess hydrogen and corresponding base metal may also cause an increase in the hybrid rocket solid fuel regression rate. Pyrophoric additives also have potential to increase the solid fuel regression rate by reacting more readily near the burning fuel surface providing rapid energy feedback. An experimental performance evaluation of metal hydride fuel additives for hybrid rocket motor propulsion systems is examined in this study. Hypergolic ignition droplet tests and an accelerated aging study revealed the protection capabilities of Dicyclopentadiene (DCPD) as a fuel binder, and the ability for unaided ignition. Static hybrid rocket motor experiments were conducted using DCPD as the fuel. Sodium borohydride (NabH4) and aluminum hydride (AlH3) were examined as fuel additives. Ninety percent rocket grade hydrogen peroxide (RGHP) was used as the oxidizer. In this study, the sensitivity of solid fuel regression rate and characteristic velocity (C*) efficiency to total fuel grain port mass flux and particle loading is examined. These results were compared to HTPB combustion performance as a baseline. Chamber pressure histories revealed steady motor operation in most tests, with reduced ignition delays when using NabH4 as a fuel additive. The addition of NabH4 and AlH3 produced up to a 47% and 85% increase in regression rate over neat DCPD, respectively. For all test conditions examined C* efficiency ranges

  16. Effect of lattice deformation on temperature fields and heat transfer in the fuel elements of characteristic zones for a model of fast reactor fuel assembly

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Matyukhin, N.M.; Sviridenko, E.Ya.

    1980-01-01

    Given are the experimental results for temperature fields in the model assembly in nonribbed simulators of the BN-600-type reactor fuel elements in the course of deformation of the lattice caused by shifting of the central and peripheral (lateral, angular) fuel elements by the value of the gap between the fuel elements (the limiting case when the fuel elements touch each other along the whole length). An assembly consisting of 37 electroheated pipes arranged in a triangular lattice with a relative step of S/d=1.185 is used as a model. The experiments were carried out on the sodium stand at constant energy release along the length of the fuel element simulators and at the Pe number changing in the 14-700 range. The data obtained show considerable increase of nonuniformities of the fuel element temperatures for characteristic zones of the fuel cassette assembly models of the fast reactor at deviations of the lattice geometric sizes from the nominal ones. For the central nonribbed element the temperature nonuniformity increases approximately 7.5 times and for the lateral element approximately 6 times when the elements touch each other along the whole length. The shift the central nonribbed element by the value of the gap between the fu.el elements leads to the decrease of heat transfer in comparison with heat transfer at the nominal geometry approximately 3-7 times in the 10-450 range for the Pe numbers. It is shown that the coolant temperature distribution along the assembly radius has a complex character (with a peak between the centre and the perifery) caused by redistribution of coolant consumptions due to fuel element lattice deformation

  17. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-03-27

    This current report is a summary of information obtained in the "Information Capture" task of the U.S. DOE-funded "Under Sodium Viewing (USV) Project." The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  18. FAST

    Science.gov (United States)

    Nathavitharana, R R; Daru, P; Barrera, A E; Mostofa Kamal, S M; Islam, S; Ul-Alam, M; Sultana, R; Rahman, M; Hossain, Md S; Lederer, P; Hurwitz, S; Chakraborty, K; Kak, N; Tierney, D B; Nardell, E

    2017-09-01

    National Institute of Diseases of the Chest and Hospital, Dhaka; Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Dhaka; and Chittagong Chest Disease Hospital, Chittagong, Bangladesh. To present operational data and discuss the challenges of implementing FAST (Find cases Actively, Separate safely and Treat effectively) as a tuberculosis (TB) transmission control strategy. FAST was implemented sequentially at three hospitals. Using Xpert® MTB/RIF, 733/6028 (12.2%, 95%CI 11.4-13.0) patients were diagnosed with unsuspected TB. Patients with a history of TB who were admitted with other lung diseases had more than twice the odds of being diagnosed with unsuspected TB as those with no history of TB (OR 2.6, 95%CI 2.2-3.0, P stakeholder engagement and laboratory capacity are important for sustainability and scalability.

  19. Metal waste forms from treatment of EBR-II spent fuel

    International Nuclear Information System (INIS)

    Abraham, D. P.

    1998-01-01

    Demonstration of Argonne National Laboratory's electrometallurgical treatment of spent nuclear fuel is currently being conducted on irradiated, metallic driver fuel and blanket fuel elements from the Experimental Breeder Reactor-II (EBR-II) in Idaho. The residual metallic material from the electrometallurgical treatment process is consolidated into an ingot, the metal waste form (MWF), by employing an induction furnace in a hot cell. Scanning electron microscopy (SEM) and chemical analyses have been performed on irradiated cladding hulls from the driver fuel, and on samples from the alloy ingots. This paper presents the microstructures of the radioactive ingots and compares them with observations on simulated waste forms prepared using non-irradiated material. These simulated waste forms have the baseline composition of stainless steel - 15 wt % zirconium (SS-15Zr). Additions of noble metal elements, which serve as surrogates for fission products, and actinides are made to that baseline composition. The partitioning of noble metal and actinide elements into alloy phases and the role of zirconium for incorporating these elements is discussed in this paper

  20. Understanding metal-organic frameworks for solar fuel production

    NARCIS (Netherlands)

    Garcia Santaclara, J.

    2017-01-01

    The fascinating chemical and physical properties of MOFs have recently stimulated exploration of their application for photocatalysis. Despite the intense research effort, the efficiencies of most photocatalytic MOFs for solar fuel generation are still very modest. In this introduction we analyse