WorldWideScience

Sample records for metal forming simulations

  1. Simulation of the ductile damage under the metal forming

    Bogatov, A. A.

    2003-01-01

    Potentiality of metal forming is limited by ductile damage. The damage degree is estimated by the scalar value ω, that is equal to 0(ω=0) before plastic strain and is equal to 1(ω=1) at the macro cracks moment. There are two criteria that describe micro damage. The value ω=ω * corresponds to the generation of micro voids that couldn't be recovered by recrystallization but do not reduce the metal strength. The value ω=ω ** corresponds to the generation of micro voids that reduce the metal strength and material long life. The models of metal damage accumulation under pure and alternate strain also the model of metal damage recovery under the recrystallization are developed. The specimen testing at high loading parameters gives the basic equations of the ductile damage mechanics. All of that gives the method to study ductile damage under the metal forming. The methodology damage nucleation and growing is shown on various examples: the void and crack development in the areas ductile damage and unlimited ductility; mathematical simulation of the metal damage under the sheet and wire drawing and others. The problems of physical simulating at the ductile damage under metal forming are shown too in this paper. The method and equipment of metal damage physical simulation are proposed. (Original)

  2. Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes.

    Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J; Wang, Liliang; Lin, Jianguo

    2016-12-13

    The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions.

  3. Advanced Wear Simulation for Bulk Metal Forming Processes

    Behrens Bernd-Arno

    2016-01-01

    Full Text Available In the recent decades the finite element method has become an essential tool for the cost-efficient virtual process design in the metal forming sector in order to counter the constantly increasing quality standards, particularly from the automotive industry as well as intensified international competition in the forging industry. An optimized process design taking precise tool wear prediction into account is a way to increase the cost-efficiency of the bulk metal forming processes. The main objective of the work presented in this paper is a modelling algorithm, which allows predicting die wear with respect to a geometry update during the forming simulation. Changes in the contact area caused by geometry update lead to the different die wear distribution. It primarily concerns the die areas, which undergo high thermal and mechanical loads.

  4. Micromechanical simulation of frictional behaviour in metal forming

    Zhang, S.; Hodgson, P.D.; Cardew-Hall, M.J.; Kalyanasundaram, S.

    2000-01-01

    Friction is a critical factor for Sheet Metal Forming (SMF). The Coulomb friction model is usually used in most Finite Element (FE) simulation for SMF. However, friction is a function of the local contact deformation conditions, such as local pressure, roughness and relative velocity. This paper will present a micromechanical model that accounts for the local frictional behaviour through finite element simulations performed at the micromechanical level. Frictional behaviour between contact surfaces can be based on three cases: boundary, hydrodynamic and mixed lubrication. In our microscopic friction model based on FEM, the case of boundary lubrication contact between sheet and tool has been considered. In the view of microscopic geometry, roughness depends upon amplitude and wavelength of surface asperities of sheet and tool. The mean pressure applied on the surface differs from the pressure over the actual contact area. The effect of roughness (microscopic geometric condition) and relative speed of contact surfaces on friction coefficient was examined in the FE model for the microscopic friction behaviour. The analysis was performed using an explicit finite element formulation. In this study, it was found that the roughness of deformable sheet decreases during sliding and the coefficient of friction increases with increasing roughness of contact surfaces. The coefficient of friction increases with the increase of relative velocity and adhesive friction coefficient between contact surfaces. (author)

  5. Efficient implicit FEM simulation of sheet metal forming

    van den Boogaard, Antonius H.; Meinders, Vincent T.; Huetink, Han

    2003-01-01

    For the simulation of industrial sheet forming processes, the time discretisation is one of the important factors that determine the accuracy and efficiency of the algorithm. For relatively small models, the implicit time integration method is preferred, because of its inherent equilibrium check.

  6. Solving optimisation problems in metal forming using Finite Element simulation and metamodelling techniques

    Bonte, M.H.A.; van den Boogaard, Antonius H.; Huetink, Han

    2005-01-01

    During the last decades, Finite Element (FEM) simulations of metal forming processes have become important tools for designing feasible production processes. In more recent years, several authors recognised the potential of coupling FEM simulations to mathematical optimisation algorithms to design

  7. Advanced solid elements for sheet metal forming simulation

    Mataix, Vicente; Rossi, Riccardo; Oñate, Eugenio; Flores, Fernando G.

    2016-08-01

    The solid-shells are an attractive kind of element for the simulation of forming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any additional hypothesis. The present work consists in the improvement of a triangular prism solid-shell originally developed by Flores[2, 3]. The solid-shell can be used in the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation a modified right Cauchy-Green deformation tensor (C) is obtained; in the present work a modified deformation gradient (F) is obtained, which allows to generalise the methodology and allows to employ the Pull-Back and Push-Forwards operations. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressible materials or materials with isochoric plastic flow.

  8. Decoupled Simulation Method For Incremental Sheet Metal Forming

    Sebastiani, G.; Brosius, A.; Tekkaya, A. E.; Homberg, W.; Kleiner, M.

    2007-01-01

    Within the scope of this article a decoupling algorithm to reduce computing time in Finite Element Analyses of incremental forming processes will be investigated. Based on the given position of the small forming zone, the presented algorithm aims at separating a Finite Element Model in an elastic and an elasto-plastic deformation zone. Including the elastic response of the structure by means of model simplifications, the costly iteration in the elasto-plastic zone can be restricted to the small forming zone and to few supporting elements in order to reduce computation time. Since the forming zone moves along the specimen, an update of both, forming zone with elastic boundary and supporting structure, is needed after several increments.The presented paper discusses the algorithmic implementation of the approach and introduces several strategies to implement the denoted elastic boundary condition at the boundary of the plastic forming zone

  9. Development of parallel benchmark code by sheet metal forming simulator 'ITAS'

    Watanabe, Hiroshi; Suzuki, Shintaro; Minami, Kazuo

    1999-03-01

    This report describes the development of parallel benchmark code by sheet metal forming simulator 'ITAS'. ITAS is a nonlinear elasto-plastic analysis program by the finite element method for the purpose of the simulation of sheet metal forming. ITAS adopts the dynamic analysis method that computes displacement of sheet metal at every time unit and utilizes the implicit method with the direct linear equation solver. Therefore the simulator is very robust. However, it requires a lot of computational time and memory capacity. In the development of the parallel benchmark code, we designed the code by MPI programming to reduce the computational time. In numerical experiments on the five kinds of parallel super computers at CCSE JAERI, i.e., SP2, SR2201, SX-4, T94 and VPP300, good performances are observed. The result will be shown to the public through WWW so that the benchmark results may become a guideline of research and development of the parallel program. (author)

  10. Friction modelling in sheet metal forming simulations: application and validation on an U-Bend product

    Sigvant, Mats; Hol, Johan; Chezan, Toni; van den Boogaard, Ton; Hora, P.

    2015-01-01

    The accuracy of sheet metal forming simulations strongly depends on, amongst others, friction modelling. The industrial standard is to use the Coulomb friction model with a constant coefficient of friction. However, it is known that the true friction conditions are dependent on the tribology system,

  11. Finite element simulation and Experimental verification of Incremental Sheet metal Forming

    Kaushik Yanamundra, Krishna; Karthikeyan, R., Dr.; Naranje, Vishal, Dr

    2018-04-01

    Incremental sheet metal forming is now a proven manufacturing technique that can be employed to obtain application specific, customized, symmetric or asymmetric shapes that are required by automobile or biomedical industries for specific purposes like car body parts, dental implants or knee implants. Finite element simulation of metal forming process is being performed successfully using explicit dynamics analysis of commercial FE software. The simulation is mainly useful in optimization of the process as well design of the final product. This paper focuses on simulating the incremental sheet metal forming process in ABAQUS, and validating the results using experimental methods. The shapes generated for testing are of trapezoid, dome and elliptical shapes whose G codes are written and fed into the CNC milling machine with an attached forming tool with a hemispherical bottom. The same pre-generated coordinates are used to simulate a similar machining conditions in ABAQUS and the tool forces, stresses and strains in the workpiece while machining are obtained as the output data. The forces experimentally were recorded using a dynamometer. The experimental and simulated results were then compared and thus conclusions were drawn.

  12. A guide for validation of FE-Simulations in bulk metal forming

    Tekkaya, A. Erman

    2005-01-01

    Numerical analysis of metal forming processes is an everyday practice in industry. Forming loads, material flow, forming defects such as underfills, laps and even cracks, stresses in dies and punches, as well as product properties like new hardness distribution, dimensional accuracies and residual stresses are predicted by numerical analysis and used for technology generation. Most of the numerical analysis is done by the finite element method made available for engineers and technicians by numerous by powerful commercial software packages. These software packages act as black-boxes and usually hide the complicated numerical procedures and even their crucial parameters from the applier. Therefore, the question arises during the industrial applications: how accurate is the simulation and how can the results can be assessed? The aim of this paper is to provide a guideline to assess the results of metal forming simulations. Although some ideas are valid for any metal forming process, bulk forming is the process concern. The paper will address firstly the possible sources of error in a finite element analysis of bulk forming processes. Then, some useful elementary knowledge will be summarized. Various levels of validation such as result and ability validation and assessment will be discussed. Finally, interpretation of results will be treated. In this content also some suggestions will be given. (author)

  13. Development of JSTAMP-Works/NV and HYSTAMP for Multipurpose Multistage Sheet Metal Forming Simulation

    Umezu, Yasuyoshi; Watanabe, Yuko; Ma, Ninshu

    2005-01-01

    Since 1996, Japan Research Institute Limited (JRI) has been providing a sheet metal forming simulation system called JSTAMP-Works packaged the FEM solvers of LS-DYNA and JOH/NIKE, which might be the first multistage system at that time and has been enjoying good reputation among users in Japan. To match the recent needs, 'faster, more accurate and easier', of process designers and CAE engineers, a new metal forming simulation system JSTAMP-Works/NV is developed. The JSTAMP-Works/NV packaged the automatic healing function of CAD and had much more new capabilities such as prediction of 3D trimming lines for flanging or hemming, remote control of solver execution for multi-stage forming processes and shape evaluation between FEM and CAD.On the other way, a multi-stage multi-purpose inverse FEM solver HYSTAMP is developed and will be soon put into market, which is approved to be very fast, quite accurate and robust.Lastly, authors will give some application examples of user defined ductile damage subroutine in LS-DYNA for the estimation of material failure and springback in metal forming simulation

  14. Development of JSTAMP-Works/NV and HYSTAMP for Multipurpose Multistage Sheet Metal Forming Simulation

    Umezu, Yasuyoshi; Watanabe, Yuko; Ma, Ninshu

    2005-08-01

    Since 1996, Japan Research Institute Limited (JRI) has been providing a sheet metal forming simulation system called JSTAMP-Works packaged the FEM solvers of LS-DYNA and JOH/NIKE, which might be the first multistage system at that time and has been enjoying good reputation among users in Japan. To match the recent needs, "faster, more accurate and easier", of process designers and CAE engineers, a new metal forming simulation system JSTAMP-Works/NV is developed. The JSTAMP-Works/NV packaged the automatic healing function of CAD and had much more new capabilities such as prediction of 3D trimming lines for flanging or hemming, remote control of solver execution for multi-stage forming processes and shape evaluation between FEM and CAD. On the other way, a multi-stage multi-purpose inverse FEM solver HYSTAMP is developed and will be soon put into market, which is approved to be very fast, quite accurate and robust. Lastly, authors will give some application examples of user defined ductile damage subroutine in LS-DYNA for the estimation of material failure and springback in metal forming simulation.

  15. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming Analysis, Simulation and Engineering Applications

    Hu, Ping; Liu, Li-zhong; Zhu, Yi-guo

    2013-01-01

    Over the last 15 years, the application of innovative steel concepts in the automotive industry has increased steadily. Numerical simulation technology of hot forming of high-strength steel allows engineers to modify the formability of hot forming steel metals and to optimize die design schemes. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming focuses on hot and cold forming theories, numerical methods, relative simulation and experiment techniques for high-strength steel forming and die design in the automobile industry. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming introduces the general theories of cold forming, then expands upon advanced hot forming theories and simulation methods, including: • the forming process, • constitutive equations, • hot boundary constraint treatment, and • hot forming equipment and experiments. Various calculation methods of cold and hot forming, based on the authors’ experience in commercial CAE software f...

  16. Advanced numerical simulation based on a non-local micromorphic model for metal forming processes

    Diamantopoulou Evangelia

    2016-01-01

    Full Text Available An advanced numerical methodology is developed for metal forming simulation based on thermodynamically-consistent nonlocal constitutive equations accounting for various fully coupled mechanical phenomena under finite strain in the framework of micromorphic continua. The numerical implementation into ABAQUS/Explicit is made for 2D quadrangular elements thanks to the VUEL users’ subroutine. Simple examples with presence of a damaged area are made in order to show the ability of the proposed methodology to describe the independence of the solution from the space discretization.

  17. Process simulation and experimental validation of Hot Metal Gas Forming with new press hardening steels

    Paul, A.; Reuther, F.; Neumann, S.; Albert, A.; Landgrebe, D.

    2017-09-01

    One field in the work of the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz is industry applied research in Hot Metal Gas Forming, combined with press hardening in one process step. In this paper the results of investigations on new press hardening steels from SSAB AB (Docol®1800 Bor and Docol®2000 Bor) are presented. Hot tensile tests recorded by the project partner (University of West Bohemia, Faculty of Mechanical Engineering) were used to create a material model for thermo-mechanical forming simulations. For this purpose the provided raw data were converted into flow curve approximations of the real stress-real strain-curves for both materials and afterwards integrated in a LS-DYNA simulation model of Hot Metal Gas Forming with all relevant boundary conditions and sub-stages. Preliminary experimental tests were carried out using a tool at room temperature to permit evaluation of the forming behaviour of Docol 1800 Bor and Docol 2000 Bor tubes as well as validation of the simulation model. Using this demonstrator geometry (outer diameter 57 mm, tube length 300 mm, wall thickness 1.5 mm), the intention was to perform a series of tests with different furnace temperatures (from 870 °C to 1035 °C), maximum internal pressures (up to 67 MPa) and pressure build-up rates (up to 40 MPa/s) to evaluate the formability of Docol 1800 Bor and Docol 2000 Bor. Selected demonstrator parts produced in that way were subsequently analysed by wall thickness and hardness measurements. The tests were carried out using the completely modernized Dunkes/AP&T HS3-1500 hydroforming press at the Fraunhofer IWU. In summary, creating a consistent simulation model with all relevant sub-stages was successfully established in LS-DYNA. The computation results show a high correlation with the experimental data regarding the thinning behaviour. The Hot Metal Gas Forming of the demonstrator geometry was successfully established as well. Different hardness values

  18. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  19. Springback Simulation and Tool Surface Compensation Algorithm for Sheet Metal Forming

    Shen Guozhe; Hu Ping; Zhang Xiangkui; Chen Xiaobin; Li Xiaoda

    2005-01-01

    Springback is an unquenchable forming defect in the sheet metal forming process. How to calculate springback accurately is a big challenge for a lot of FEA software. Springback compensation makes the stamped final part accordant with the designed part shape by modifying tool surface, which depends on the accurate springback amount. How ever, the meshing data based on numerical simulation is expressed by nodes and elements, such data can not be supplied directly to tool surface CAD data. In this paper, a tool surface compensation algorithm based on numerical simulation technique of springback process is proposed in which the independently developed dynamic explicit springback algorithm (DESA) is used to simulate springback amount. When doing the tool surface compensation, the springback amount of the projected point can be obtained by interpolation of the springback amount of the projected element nodes. So the modified values of tool surface can be calculated reversely. After repeating the springback and compensation calculations for 1∼3 times, the reasonable tool surface mesh is gained. Finally, the FEM data on the compensated tool surface is fitted into the surface by CAD modeling software. The examination of a real industrial part shows the validity of the present method

  20. Increasing the Robustness of the Sheet Metal Forming Simulation by the Prediction of the Forming Limit Band

    Banabic, D.; Vos, M.; Paraianu, L.; Jurco, P.

    2007-05-01

    The experimental research on the formability of metal sheets has shown that there is a significant dispersion of the limit strains in an area delimited by two curves: a lower curve (LFLC) and an upper one (UFLC). The region between the two curves defines the so-called Forming Limit Band (FLB). So far, this forming band has only been determined experimentally. In this paper the authors suggested a method to predict the Forming Limit Band. The proposed method is illustrated on the AA6111-T43 aluminium alloy.

  1. Increasing the Robustness of the Sheet Metal Forming Simulation by the Prediction of the Forming Limit Band

    Banabic, D.; Paraianu, L.; Vos, M.; Jurco, P.

    2007-01-01

    The experimental research on the formability of metal sheets has shown that there is a significant dispersion of the limit strains in an area delimited by two curves: a lower curve (LFLC) and an upper one (UFLC). The region between the two curves defines the so-called Forming Limit Band (FLB). So far, this forming band has only been determined experimentally. In this paper the authors suggested a method to predict the Forming Limit Band. The proposed method is illustrated on the AA6111-T43 aluminium alloy

  2. Micro metal forming

    2013-01-01

    Micro Metal Forming, i. e. forming of parts and features with dimensions below 1 mm, is a young area of research in the wide field of metal forming technologies, expanding the limits for applying metal forming towards micro technology. The essential challenges arise from the reduced geometrical size and the increased lot size. In order to enable potential users to apply micro metal forming in production, information about the following topics are given: tribological behavior: friction between tool and work piece as well as tool wear mechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processes tool making methods numerical modeling of processes and process chains quality assurance and metrology All topics are discussed with respect to the questions relevant to micro...

  3. Analysis of material flow in metal forming processes by using computer simulation and experiment with model material

    Kim, Heon Young; Kim, Dong Won

    1993-01-01

    The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behaviour in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method. (Author)

  4. A sheet metal forming simulation of automotive outer panels considering the behavior of air in die cavity

    Choi, Kwang Yong; Kim, Yun Chang; Choi, Hee Kwan; Kang, Chul Ho; Kim, Heon Young

    2013-12-01

    During a sheet metal forming process of automotive outer panels, the air trapped between a blank sheet and a die tool can become highly compressed, ultimately influencing the blank deformation and the press force. To prevent this problem, vent holes are drilled into die tools and needs several tens to hundreds according to the model size. The design and the drilling of vent holes are based on expert's experience and try-out result and thus the process can be one of reasons increasing development cycle. Therefore the study on the size, the number, and the position of vent holes is demanded for reducing development cycle, but there is no simulation technology for analyzing forming defects, making numerical sheet metal forming process simulations that incorporate the fluid dynamics of air. This study presents a sheet metal forming simulation of automotive outer panels (a roof and a body side outer) that simultaneously simulates the behavior of air in a die cavity. Through CAE results, the effect of air behavior and vent holes to blank deformation was analyzed. For this study, the commercial software PAM-STAMP{trade mark, serif} and PAM-SAFE{trade mark, serif} was used.

  5. Effect of thermal and mechanical parameter’s damage numerical simulation cycling effects on defects in hot metal forming processes

    El Amri, Abdelouahid; el yakhloufi Haddou, Mounir; Khamlichi, Abdellatif

    2017-10-01

    Damage mechanisms in hot metal forming processes are accelerated by mechanical stresses arising during Thermal and mechanical properties variations, because it consists of the materials with different thermal and mechanical loadings and swelling coefficients. In this work, 3D finite element models (FEM) are developed to simulate the effect of Temperature and the stresses on the model development, using a general purpose FE software ABAQUS. Explicit dynamic analysis with coupled Temperature displacement procedure is used for a model. The purpose of this research was to study the thermomechanical damage mechanics in hot forming processes. The important process variables and the main characteristics of various hot forming processes will also be discussed.

  6. Finite Element Simulation of Sheet Metal Forming Process Using Local Interpolation for Tool Surfaces

    Hama, Takayuki; Takuda, Hirohiko; Takamura, Masato; Makinouchi, Akitake; Teodosiu, Cristian

    2005-01-01

    Treatment of contact between a sheet and tools is one of the most difficult problems to deal with in finite-element simulations of sheet forming processes. In order to obtain more accurate tool models without increasing the number of elements, this paper describes a new formulation for contact problems using interpolation proposed by Nagata for tool surfaces. A contact search algorithm between sheet nodes and the interpolated tool surfaces was developed and was introduced into the static-explicit elastoplastic finite-element method code STAMP3D. Simulations of a square cup deep drawing process with a very coarsely discretized punch model were carried out. The simulated results showed that the proposed algorithm gave the proper drawn shape, demonstrating the validity of the proposed algorithm

  7. An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion

    Alves, J.L.; Oliveira, M.C.; Menezes, L.F.

    2004-01-01

    Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results

  8. NUMISHEET 2016: 10th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes

    2016-01-01

    The NUMISHEET conference series have been established as a world-class forum through which new intellectual ideas and technologies in the area of sheet metal forming simulation are exchanged. Previous NUMISHEET conferences have given enormous contributions to industry and academia in what regards the development of new methods and ideas for the numerical simulation of sheet metal forming processes. Previous NUMISHEET conferences were held in: Zurich (Switzerland, 1991), Isehara (Japan, 1993), Dearborn (USA, 1996), Besancon (France, 1999), Jeju Island (South Korea, 2002), Detroit (USA, 2005), Interlaken (Switzerland, 2008), Seoul (South Korea, 2011) and Melbourne (Australia, 2014). The NUMISHEET 2016 conference will be held in Bristol, UK. It features technical, keynote and plenary sessions and mini-symposiums in diverse sheet metal forming areas including the recently introduced incremental sheet forming and electromagnetic forming, as well as new prominent numerical methods such as IsoGeometric Analysis and meshless methods for sheet analysis. NUMISHEET 2016 will have eight academic plenary lectures delivered by worldwide recognised experts in the areas of sheet metal forming, material modelling and numerical methods in general. Also, NUMISHEET 2016 will have three industrial plenary lectures which will be addressed by three different companies with strong businesses in sheet metal forming processes: AutoForm, Crown Technology and Jaguar Land Rover. One of the most distinguishing features of NUMISHEET conference series is the industrial benchmark sessions, during which numerical simulations of industrial sheet formed parts are compared with experimental results from the industry. The benchmark sessions provide an extraordinary opportunity for networking, for the exchange of technologies related to sheet metal forming and for the numerical validation of sheet metal forming codes/software. Three benchmark studies have been organised in NUMISHEET 2016: BM1) &apos

  9. Metal forming and lubrication

    Bay, Niels

    2000-01-01

    Lubrication is essential in most metal forming processes. The lubricant film has two basic functions, [1]: i. to separate the work piece and tool surfaces and ii. to cool the workpiece and the tool. Separation of the two surfaces implies lower friction facilitating deformation and lowering the tool...

  10. Surface Defects in Sheet Metal Forming: a Simulative Laboratory Device and Comparison with FE Analysis

    Thuillier, Sandrine; Le Port, Alban; Manach, Pierre-Yves

    2011-08-01

    Surface defects are small concave imperfections that can develop during forming on outer convex panels of automotive parts like doors. They occur during springback steps, after drawing in the vicinity of bending over a curved line and flanging/hemming in the vicinity of the upper corner of a door. They can alter significantly the final quality of the automobile and it is of primary importance to deal with them as early as possible in the design of the forming tools. The aim of this work is to reproduce at the laboratory scale such a defect, in the case of the flanging along a curved edge, made of two orthogonal straight part of length 50 mm and joint by a curved line. A dedicated device has been designed and steel samples were tested. Each sample was measured initially (after laser cutting) and after flanging, with a 3D measuring machine. 2D profiles were extracted and the curvature was calculated. Surface defects were defined between points where the curvature sign changed. Isovalues of surface defect depth could then be plotted, thus displaying also the spatial geometry on the part surface. An experimental database has been created on the influence of process parameters like the flanging height and the flanging radius. Numerical simulations have been performed with the finite element code Abaqus to predict the occurrence of such surface defects and to analyze stress and strain distribution within the defect area.

  11. A numerical simulation of thermodynamic processes for cryogenic metal forming of aluminum sheets and comparison with experimental results

    Reichl, Ch.; Schneider, R.; Hohenauer, W.; Grabner, F.; Grant, R.J.

    2017-01-01

    Highlights: • Thermodynamic processes for cryogenic sheet metal forming tools were examined. • Static and transient temperature field simulations are evaluated on a Nakajima tool. • Differently arranged cooling loops lead to homogeneous temperature distribution. • Scaling of the geometry leads to significantly increased heat transfer times. • The temperature management of complex forming tools can be developed numerically. - Abstract: Forming at cryogenic temperatures provides a significant improvement in formability of aluminum sheets. This offers the potential for light, complex and highly integrated one-piece components to be produced out of aluminum alloys at sub-zero temperatures. This would allow weight reduction, environmental conservation and cost reduction of a car body to give one example in the automotive industry. For temperature supported processes special forming tools and cooling strategies are required to be able to reach and maintain process stability. Time dependent numerical simulations of the thermodynamic processes of cryogenic sheet metal forming covering all aspects of heat transfer through conduction, convection and radiation play a vital role in the design and development of future tools and are presented for several geometries. Cooling (and heating) strategies (including selection of the number of cooling loops and their relative positioning) in a Nakajima testing tool were evaluated using computational fluid dynamics. These simulations were performed with static and transient solvers to demonstrate the extraction of tool surface temperature distributions on different forming tool geometries. Comparisons of predicted temperature characteristics of an aluminum sheet and experimentally determined temperature distributions were made. The temperature distribution of the surface of an aluminum sheet could be predicted with high accuracy. Further, the influence of the tool size on the parameters temperature transfer times and

  12. Determination of friction in sheet metal forming by means of simulative tribo-tests

    Ceron, Ermanno; Bay, Niels

    2013-01-01

    operations a coefficient of friction μ is often determined by calibration of the simulation results with experimental observations of material flow and/or measured load. In case of modeling of new stamping operations μ is typically selected based on former experience. These procedures are, however......, not appropriate when introducing new tribo-systems (lubricant, workpiece material, tool material or tool coating). In order to determine friction under the very varied conditions in sheet stamping simulative testing may be applied, e.g., Plane-Strip-Testing (PST), Draw-Bead-Testing (DBT) and Bending......-Under- Tension testing (BUT) but these tests should be analyzed and carefully tuned with the production process in question to ensure useful results. The present paper illustrates how the BUT test combined with classical analytical modeling may lead to very large errors in estimation of the coefficient...

  13. Effectiveness of Rotation-free Triangular and Quadrilateral Shell Elements in Sheet-metal Forming Simulations

    Brunet, M.; Sabourin, F.

    2005-01-01

    This paper is concerned with the effectiveness of triangular 3-node shell element without rotational d.o.f. and the extension to a new 4-node quadrilateral shell element called S4 with only 3 translational degrees of freedom per node and one-point integration. The curvatures are computed resorting to the surrounding elements. Extension from rotation-free triangular element to a quadrilateral element requires internal curvatures in order to avoid singular bending stiffness. Two numerical examples with regular and irregular meshes are performed to show the convergence and accuracy. Deep-drawing of a box, spring-back analysis of a U-shape strip sheet and the crash simulation of a beam-box complete the demonstration of the bending capabilities of the proposed rotation-free triangular and quadrilateral elements

  14. Advances in metal forming expert system for metal forming

    Hingole, Rahulkumar Shivajirao

    2015-01-01

    This comprehensive book offers a clear account of the theory and applications of advanced metal forming. It provides a detailed discussion of specific forming processes, such as deep drawing, rolling, bending extrusion and stamping. The author highlights recent developments of metal forming technologies and explains sound, new and powerful expert system techniques for solving advanced engineering problems in metal forming. In addition, the basics of expert systems, their importance and applications to metal forming processes, computer-aided analysis of metalworking processes, formability analysis, mathematical modeling and case studies of individual processes are presented.

  15. EVOLUTION OF THE MASS-METALLICITY RELATIONS IN PASSIVE AND STAR-FORMING GALAXIES FROM SPH-COSMOLOGICAL SIMULATIONS

    Romeo Velonà, A. D.; Gavignaud, I.; Meza, A.; Sommer-Larsen, J.; Napolitano, N. R.; Antonuccio-Delogu, V.; Cielo, S.

    2013-01-01

    We present results from SPH-cosmological simulations, including self-consistent modeling of supernova feedback and chemical evolution, of galaxies belonging to two clusters and 12 groups. We reproduce the mass-metallicity (ZM) relation of galaxies classified in two samples according to their star-forming (SF) activity, as parameterized by their specific star formation rate (sSFR), across a redshift range up to z = 2. The overall ZM relation for the composite population evolves according to a redshift-dependent quadratic functional form that is consistent with other empirical estimates, provided that the highest mass bin of the brightest central galaxies is excluded. Its slope shows irrelevant evolution in the passive sample, being steeper in groups than in clusters. However, the subsample of high-mass passive galaxies only is characterized by a steep increase of the slope with redshift, from which it can be inferred that the bulk of the slope evolution of the ZM relation is driven by the more massive passive objects. The scatter of the passive sample is dominated by low-mass galaxies at all redshifts and keeps constant over cosmic times. The mean metallicity is highest in cluster cores and lowest in normal groups, following the same environmental sequence as that previously found in the red sequence building. The ZM relation for the SF sample reveals an increasing scatter with redshift, indicating that it is still being built at early epochs. The SF galaxies make up a tight sequence in the SFR-M * plane at high redshift, whose scatter increases with time alongside the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the SF galaxies, while on the contrary more active galaxies

  16. Multiscale friction modeling for sheet metal forming

    Hol, J.; Cid Alfaro, M.V.; de Rooij, Matthias B.; Meinders, Vincent T.; Felder, Eric; Montmitonnet, Pierre

    2010-01-01

    The most often used friction model for sheet metal forming simulations is the relative simple Coulomb friction model. This paper presents a more advanced friction model for large scale forming simulations based on the surface change on the micro-scale. The surface texture of a material changes when

  17. Advanced friction modeling for sheet metal forming

    Hol, J.; Cid Alfaro, M.V.; de Rooij, Matthias B.; Meinders, Vincent T.

    2012-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  18. Advanced friction modeling in sheet metal forming

    Hol, J.; Cid Alfaro, M.V.; Meinders, Vincent T.; Huetink, Han

    2011-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  19. Green Lubricants for Metal Forming

    Bay, Niels

    2010-01-01

    The increasing focus on legislation towards diminishing the impact on working environment as well as external environment has driven efforts to develop new, environmentally benign lubricants for metal forming. The present paper gives an overview of these efforts to substitute environmentally...

  20. Explicit and implicit springback simulation in sheet metal forming using fully coupled ductile damage and distortional hardening model

    Yetna n'jock, M.; Houssem, B.; Labergere, C.; Saanouni, K.; Zhenming, Y.

    2018-05-01

    The springback is an important phenomenon which accompanies the forming of metallic sheets especially for high strength materials. A quantitative prediction of springback becomes very important for newly developed material with high mechanical characteristics. In this work, a numerical methodology is developed to quantify this undesirable phenomenon. This methodoly is based on the use of both explicit and implicit finite element solvers of Abaqus®. The most important ingredient of this methodology consists on the use of highly predictive mechanical model. A thermodynamically-consistent, non-associative and fully anisotropic elastoplastic constitutive model strongly coupled with isotropic ductile damage and accounting for distortional hardening is then used. An algorithm for local integration of the complete set of the constitutive equations is developed. This algorithm considers the rotated frame formulation (RFF) to ensure the incremental objectivity of the model in the framework of finite strains. This algorithm is implemented in both explicit (Abaqus/Explicit®) and implicit (Abaqus/Standard®) solvers of Abaqus® through the users routine VUMAT and UMAT respectively. The implicit solver of Abaqus® has been used to study spingback as it is generally a quasi-static unloading. In order to compare the methods `efficiency, the explicit method (Dynamic Relaxation Method) proposed by Rayleigh has been also used for springback prediction. The results obtained within U draw/bending benchmark are studied, discussed and compared with experimental results as reference. Finally, the purpose of this work is to evaluate the reliability of different methods predict efficiently springback in sheet metal forming.

  1. MIIT: International in-situ testing of simulated HLW forms--preliminary analyses of SRL 165/TDS waste glass and metal systems

    Wicks, G.G.; Lodding, A.R.; Macedo, P.B.; Molecke, M.A.

    1989-01-01

    The first in-situ tests involving burial of simulated high-level waste (HLW) forms conducted in the United States were started on July 22, 1986. This effort, called the Materials Interface Interactions Tests (MIIT), comprises the largest, most cooperative field testing venture in the international waste management community. Included in the study are over 900 waste form samples comprising 15 different systems supplied by seven countries. Also included are almost 300 potential canister or overpack metal samples of 11 different metals along with more than 500 geologic and backfill specimens. There are a total of 1926 relevant interactions that characterize this effort which is being conducted in the bedded salt site at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico

  2. Evolution of the mass-metallicity relations in passive and star-forming galaxies from SPH-cosmological simulations

    Velonà, A. D Romeo; Sommer-Larsen, J.; Napolitano, N. R.

    2013-01-01

    at high redshift, whose scatter increases with time alongside the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star...... formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the SF galaxies, while on the contrary more active galaxies in terms of simple SFR are also metal-richer. Finally, the [O/Fe] abundance ratio is presented too: we report a strong increasing evolution...

  3. Finite strain anisotropic elasto-plastic model for the simulation of the forming and testing of metal/short fiber reinforced polymer clinch joints at room temperature

    Dean, A.; Rolfes, R.; Behrens, A.; Bouguecha, A.; Hübner, S.; Bonk, C.; Grbic, N.

    2017-10-01

    There is a strong trend in the automotive industry to reduce car body-, chassis- and power-train mass in order to lower carbon emissions. More wide spread use of lightweight short fiber reinforced polymer (SFRP) is a promising approach to attain this goal. This poses the challenge of how to integrate new SFRP components by joining them to traditional sheet metal structures. Recently (1), the clinching technique has been successfully applied as a suitable joining method for dissimilar material such as SFRP and Aluminum. The material pairing PA6GF30 and EN AW 5754 is chosen for this purpose due to their common application in industry. The current contribution presents a verification and validation of a finite strain anisotropic material model for SFRP developed in (2) for the FE simulation of the hybrid clinching process. The finite fiber rotation during forming and separation, and thus the change of the preferential material direction, is represented in this model. Plastic deformations in SFRP are considered in this model via an invariant based non-associated plasticity formulation following the multiplicative decomposition approach of the deformation gradient where the stress-free intermediate configuration is introduced. The model allows for six independent characterization curves. The aforementioned material model allows for a detailed simulation of the forming process as well as a simulative prediction of the shear test strength of the produced joint at room temperature.

  4. Trends and Visions in Metal Forming Tribology

    Bay, Niels

    2011-01-01

    operations, which otherwise would require the use of environmentally hazardous lubricant systems. A methodology for prediction of limits of lubrication of new tribo-system for sheet forming production based on numerical modelling and off-line testing in dedicated simulative tribo-tests is proposed....... of structured work piece and tool surfaces to facilitate micro-hydro-dynamic lubrication. Increased knowledge on skin-pass rolling to establish structured sheet surfaces and new automatic polishing equipment to manufacture tailored tool surfaces are important means to improve tribo-conditions in severe forming......Research and development in metal forming tribology is characterized by intensified focus on new tribo-systems such as new lubricants, tool materials and tool coatings in order to substitute environmentally hazardous lubricant systems. Other means to solve these problems include the development...

  5. Damage Prediction in Sheet Metal Forming

    Saanouni, Khemais; Badreddine, Houssem

    2007-01-01

    Ductile (or plastic) damage often occurs during sheet metal forming processes due to the large plastic flow localization. Accordingly, it is crucial for numerical tools, used in the simulation of that processes, to use fully coupled constitutive equations accounting for both hardening and damage. This can be used in both cases, namely to overcome the damage initiation during some sheet metal forming processes as deep drawing, ... or to enhance the damage initiation and growth as in sheet metal cutting. In this paper, a fully coupled constitutive equations accounting for combined isotropic and kinematic hardening as well as the ductile damage is implemented into the general purpose Finite Element code for metal forming simulation. First, the fully coupled anisotropic constitutive equations in the framework of Continuum Damage Mechanics are presented. Attention is paid to the strong coupling between the main mechanical fields as elasto-viscoplasticity, mixed hardening, ductile isotropic damage and contact with friction. The anisotropy of the plastic flow is taken into account using various kinds of quadratic or non quadratic yield criteria in the framework of non associative finite plasticity theory with two types of normality rules. The associated numerical aspects concerning both the local integration of the coupled constitutive equations as well as the (global) equilibrium integration schemes are presented. The local integration is outlined thanks to the Newton iterative scheme applied to a reduced system of 2 equations. For the global resolution of the initial and boundary value problem, the classical dynamic explicit (DE) scheme with an adaptive time step control is used. The numerical implementation of the damage is made in such a manner that calculations can be executed with or without damage effect, i.e. fully coupled or uncoupled calculations. For the 2D processes an advanced adaptive meshing procedure is used in order to enhance the numerical solution and

  6. A new lubricant carrier for metal forming

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben

    2009-01-01

    A lubricant carrier for metal forming processes is developed. Surfaces with pores of micrometer size for entrapping lubricant are generated by electrochemical deposition of an alloy, consisting of two immiscible metals, of which one metal subsequently is etched away leaving 5 mu m layers with a s...... extrusion at high reduction and excessive stroke comparing with conventionally lubrication using phosphate coating and soap....

  7. Electrochemical corrosion testing of metal waste forms

    Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

    1999-01-01

    Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys

  8. AI applications in sheet metal forming

    Hussein, Hussein

    2017-01-01

    This book comprises chapters on research work done around the globe in the area of artificial intelligence (AI) applications in sheet metal forming. The first chapter offers an introduction to various AI techniques and sheet metal forming, while subsequent chapters describe traditional procedures/methods used in various sheet metal forming processes, and focus on the automation of those processes by means of AI techniques, such as KBS, ANN, GA, CBR, etc. Feature recognition and the manufacturability assessment of sheet metal parts, process planning, strip-layout design, selecting the type and size of die components, die modeling, and predicting die life are some of the most important aspects of sheet metal work. Traditionally, these activities are highly experience-based, tedious and time consuming. In response, researchers in several countries have applied various AI techniques to automate these activities, which are covered in this book. This book will be useful for engineers working in sheet metal industri...

  9. Contour forming of metals by laser peening

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  10. Overview of friction modelling in metal forming processes

    Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    In metal forming processes, friction between tool and workpiece is an important parameter influencing the material flow, surface quality and tool life. Theoretical models of friction in metal forming are based on analysis of the real contact area in tool-workpiece interfaces. Several research...... groups have studied and modelled the asperity flattening of workpiece material against tool surface in dry contact or in contact interfaces with only thin layers of lubrication with the aim to improve understanding of friction in metal forming. This paper aims at giving a review of the most important...... future work in order to advance further in modelling of real contact area in relation to implementation of frictional conditions existing finite element codes for simulation of metal forming processes. © 2017 The Authors. Published by Elsevier Ltd....

  11. Multi Scale Models for Flexure Deformation in Sheet Metal Forming

    Di Pasquale Edmondo

    2016-01-01

    Full Text Available This paper presents the application of multi scale techniques to the simulation of sheet metal forming using the one-step method. When a blank flows over the die radius, it undergoes a complex cycle of bending and unbending. First, we describe an original model for the prediction of residual plastic deformation and stresses in the blank section. This model, working on a scale about one hundred times smaller than the element size, has been implemented in SIMEX, one-step sheet metal forming simulation code. The utilisation of this multi-scale modeling technique improves greatly the accuracy of the solution. Finally, we discuss the implications of this analysis on the prediction of springback in metal forming.

  12. Mesoporous metal catalysts formed by ultrasound

    Schaeferhans, Jana; Pazos Perez, Nicolas; Andreeva, Daria [Physikalische Chemie II, Universitaet Bayreuth (Germany)

    2010-07-01

    We study the ultrasound-driven formation of mesoporous metal sponges. The collapse of acoustic cavitations leads to very high temperatures and pressures on very short scales. Therefore, structures may be formed and quenched far from equilibrium. Mechanism of metal modification by ultrasound is complex and involves a variety of aspects. We propose that modification of metal particles and formation of mesoporous inner structures can be achieved due to thermal etching of metals by ultrasound stimulated high speed jets of liquid. Simultaneously, oxidation of metal surfaces by free radicals produced in water during cavitation stabilizes developed metal structures. Duration and intensity of the ultrasonication treatment is able to control the structure and morphology of metal sponges. We expect that this approach to the formation of nanoscale composite sponges is universal and opens perspective for a whole new class of catalytic materials that can be prepared in a one-step process. The developed method makes it possible to control the sponge morphology and can be used for formation of modern types of catalysts. For example, the sonication technique allows to combine the fabrication of mesoporous support and distribution of metal (Cu, Pd, Au, Pt etc.) nanoparticles in its pores into a single step.

  13. Simulations of Recrystallization in Metals

    Godiksen, Rasmus Brauner

    2007-01-01

    structures in the deformed metal due to local effects: Inhomogeneous boundary morphologies and dislocation-structure-dependent migration rates are observed. The effects that the dislocation structures have must be taken into account in order to create realistic recrystallization models, and through......The growth of new near-perfect grains during recrystallization of deformed metals is governed by the migration of the grain boundaries surrounding the new grains. The grain boundaries migrate through the deformed metal driven by the excess energy of the dislocation structures created during...... deformation. Recently, it has been found that recrystallization is far more inhomogeneous than previously thought. The purpose of this PhD-project is to study recrystallization by computer simulations with special focus on inhomogeneous growth. Two types of simulations have been employed: geometric...

  14. Optimization and control of metal forming processes

    Havinga, Gosse Tjipke

    2016-01-01

    Inevitable variations in process and material properties limit the accuracy of metal forming processes. Robust optimization methods or control systems can be used to improve the production accuracy. Robust optimization methods are used to design production processes with low sensitivity to the

  15. Failure by fracture in bulk metal forming

    Silva, C.M.A.; Alves, Luis M.; Nielsen, Chris Valentin

    2015-01-01

    This paper revisits formability in bulk metal forming in the light of fundamental concepts of plasticity,ductile damage and crack opening modes. It proposes a new test to appraise the accuracy, reliability and validity of fracture loci associated with crack opening by tension and out-of-plane shear...

  16. Constitutive Modeling for Sheet Metal Forming

    Barlat, Frederic

    2005-01-01

    This paper reviews aspects of the plastic behaviour common in sheet metals. Macroscopic and microscopic phenomena occurring during plastic deformation are described succinctly. Constitutive models of plasticity suitable for applications to forming, are discussed in a very broad manner. Approaches to plastic anisotropy are described in a somewhat more detailed manner

  17. Metal Compression Forming of aluminum alloys and metal matrix composites

    Viswanathan, S.; Ren, W.; Porter, W.D.; Brinkman, C.R.; Sabau, A.S.; Purgert, R.M.

    2000-02-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process.

  18. Structural disorder in metallic glass-forming liquids.

    Pan, Shao-Peng; Feng, Shi-Dong; Wang, Li-Min; Qiao, Jun-Wei; Niu, Xiao-Feng; Dong, Bang-Shao; Wang, Wei-Min; Qin, Jing-Yu

    2016-06-09

    We investigated structural disorder by a new structural parameter, quasi-nearest atom (QNA), in atomistic configurations of eight metallic glass-forming systems generated through molecular dynamics simulations at various temperatures. Structural analysis reveals that the scaled distribution of the number of QNA appears to be an universal property of metallic liquids and the spatial distribution of the number of QNA displays to be clearly heterogeneous. Furthermore, the new parameter can be directly correlated with potential energy and structural relaxation at the atomic level. Some straightforward relationships between QNA and other properties (per-atom potential energy and α-relaxation time) are introduced to reflect structure-property relationship in metallic liquids. We believe that the new structural parameter can well reflect structure disorder in metallic liquids and play an important role in understanding various properties in metallic liquids.

  19. Internal shear cracking in bulk metal forming

    Christiansen, Peter; Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    This paper presents an uncoupled ductile damage criterion for modelling the opening and propagation of internal shear cracks in bulk metal forming. The criterion is built upon the original work on the motion of a hole subjected to shear with superimposed tensile stress triaxiality and its overall...... performance is evaluated by means of side-pressing formability tests in Aluminium AA2007-T6 subjected to different levels of pre-strain. Results show that the new proposed criterionis able to combine simplicity with efficiency for predicting the onset of fracture and the crack propagation path for the entire...... cracking to internal cracks formed undert hree-dimensional states of stress that are typical of bulk metal forming....

  20. Forming of bulk metallic glass microcomponents

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...... die sets characteristic of cold forming operations for crystalline metals and lightweight die sets adapted to the special characteristics of BMGs. In addition to demonstrating that microcomponents of several geometries can be readily fabricated from BMGs, rheological properties are combined...

  1. Sheet-bulk metal formingforming of functional components from sheet metals

    Merklein Marion

    2015-01-01

    Full Text Available The paper gives an overview on the application of sheet-bulk metal forming operations in both scientific and industrial environment. Beginning with the need for an innovative forming technology, the definition of this new process class is introduced. The rising challenges of the application of bulk metal forming operations on sheet metals are presented and the demand on a holistic investigation of this topic is motivated. With the help of examples from established production processes, the latest state of technology and the lack on fundamental knowledge is shown. Furthermore, perspectives regarding new research topics within sheet-bulk metal forming are presented. These focus on processing strategies to improve the quality of functional components by the application of process-adapted semi-finished products as well as the local adaption of the tribological system.

  2. Simulation of the metallic powders compaction process

    Prado, J.M.; Riera, M.D.

    1998-01-01

    The simulation by means of finite elements of the forming processes of mechanical components is a very useful tool for their design and validation. In this work, the simulation of the compaction of a metal powder is presented. The finite element software ABAQUS is used together with the modified CAM-clay plasticity model in order to represent the elastoplastic behaviour of the material. Density distributions are obtained and therefore the motion of the compaction punches which improve this distribution can be found. Stress distribution in the different parts of the mould can also be determined. (Author) 9 refs

  3. Lubricant Test Methods for Sheet Metal Forming

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2008-01-01

    appearing in different sheet forming operations such as stretch forming, deep drawing, ironing and punching. The laboratory tests have been especially designed to model the conditions in industrial production. Application of the tests for evaluating new lubricants before introducing them in production has......Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...... oils in order to avoid galling. The present paper describes a systematic research in the development of new, environmentally harmless lubricants focusing on the lubricant testing aspects. A system of laboratory tests has been developed to study the lubricant performance under the very varied conditions...

  4. Numerical Simulation of Explosive Forming Using Detonating Fuse

    H Iyama

    2017-09-01

    Full Text Available The explosive forming is a characteristic method. An underwater shock wave is generated by underwater explosion of an explosive. A metal plate is affected high strain rate by the shock loading and is formed along a metal die. Although this method has the advantage of mirroring the shape of the die, a free forming was used in this paper. An expensive metal die is not necessary for this free forming. It is possible that a metal plate is formed with simple supporting parts. However, the forming shape is depend on the shock pressure distribution act on the metal plate. This pressure distribution is able to change by the shape of explosive, a mass of explosive and a shape of pressure vessel. On the other hand, we need the pressure vessel for food processing by the underwater shock wave. Therefore, we propose making the pressure vessel by this explosive forming. One design suggestion of pressure vessel made of stainless steel was considered. However, we cannot decide suitable conditions, the mass of the explosive and the distance between the explosive and the metal plate to make the pressure vessel. In order to decide these conditions, we have tried the numerical simulation on this explosive forming. The basic simulation method was ALE (Arbitrary Laglangian Eulerian method including with Mie-Grümeisen EOS (equation of state, JWL EOS, Johnson-Cook constitutive equation for a material model. In this paper, the underwater pressure contours to clear the propagations of the underwater shock wave, forming processes and deformation velocity of the metal plate is shown and it will be discussed about those results.

  5. Tribo-systems for Sheet Metal Forming

    Bay, Niels

    2009-01-01

    The present paper gives an overview of more than 10 years work by the author’s research group through participation in national as well as international framework programmes on developing and testing environmentally friendly lubricants and tool materials and coatings inhibiting galling. Partners ......’s research group has especially been involved in the development of a system of tribo-tests for sheet metal forming and in testing and modelling of friction and limits of lubrication of new, environmentally friendly lubricants and tool materials....

  6. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    Poineau, Frederic; Tamalis, Dimitri

    2016-01-01

    The isotope 99 Tc is an important fission product generated from nuclear power production. Because of its long half-life (t 1/2 = 2.13 ∙ 105 years) and beta-radiotoxicity (β - = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium waste forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99 Tc ( 99 Tc → 99 Ru + β - ). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the nature of Tc in metallic spent fuel. Computational modeling

  7. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    Poineau, Frederic [Univ. of Nevada, Las Vegas, NV (United States); Tamalis, Dimitri [Florida Memorial Univ., Miami Gardens, FL (United States)

    2016-08-01

    The isotope 99Tc is an important fission product generated from nuclear power production. Because of its long half-life (t1/2 = 2.13 ∙ 105 years) and beta-radiotoxicity (β⁻ = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium waste forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99Tc (99Tc → 99Ru + β⁻). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the

  8. A Historical Review of High Speed Metal Forming

    Zittel, G.

    2010-01-01

    This paper will present a Historical Review of High Speed Metal Forming beginning with the first thought of forming metal by using an electromagnetic impulse to today, whereby High Speed Metal Forming is an accepted production process. Although this paper will briefly cover the basic physics of the process, it will not dwell on it. It will rather show how the industrial acceptance of High Speed Metal Forming is tightly connected to the knowledge acquired from many applications studies. These ...

  9. Forming and bending of metal foams

    Nebosky, Paul; Tyszka, Daniel; Niebur, Glen; Schmid, Steven

    2004-01-01

    This study examines the formability of a porous tantalum foam, known as trabecular metal (TM). Used as a bone ingrowth surface on orthopedic implants, TM is desirable due to its combination of high strength, low relative density, and excellent osteoconductive properties. This research aims to develop bend and stretch forming as a cost-effective alternative to net machining and EDM for manufacturing thin parts made of TM. Experimentally, bending about a single axis using a wiping die was studied by observing cracking and measuring springback. It was found that die radius and clearance strongly affect the springback properties of TM, while punch speed, embossings, die radius and clearance all influence cracking. Depending on the various combinations of die radius and clearance, springback factor ranged from .70-.91. To examine the affect of the foam microstructure, bending also was examined numerically using a horizontal hexagonal mesh. As the hexagonal cells were elongated along the sheet length, elastic springback decreased. This can be explained by the earlier onset of plastic hinging occurring at the vertices of the cells. While the numerical results matched the experimental results for the case of zero clearance, differences at higher clearances arose due to an imprecise characterization of the post-yield properties of tantalum. By changing the material properties of the struts, the models can be modified for use with other open-cell metallic foams

  10. Atomistic simulation of nanoformed metallic glass

    Wu, Cheng-Da, E-mail: nanowu@cycu.edu.tw

    2015-07-15

    Highlights: • STZ forms at substrate surface underneath punch. • Atoms underneath punch have higher speeds at larger mold displacement. • Stick-slip phenomenon becomes more obvious with increasing imprint speed. • Great pattern transfer is obtained with unloading at low temperatures. - Abstract: The effects of forming speed and temperature on the forming mechanism and mechanics of Cu{sub 50}Zr{sub 25}Ti{sub 25} metallic glass are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. These effects are investigated in terms of atomic trajectories, flow field, slip vectors, internal energy, radial distribution function, and elastic recovery of nanoimprint lithography (NIL) patterns. The simulation results show that a shear transformation zone (STZ) forms at the substrate surface underneath the mold during the forming process. The STZ area increases with mold displacement (D). The movement speed of substrate atoms underneath the mold increases with increasing D value. The movement directions of substrate atoms underneath the mold are more agreeable for a larger D value. The stick-slip phenomenon becomes more obvious with increasing D value and imprint speed. The substrate energy increases with increasing imprint speed and temperature. Great NIL pattern transfer is obtained with unloading at low temperatures (e.g., room temperature)

  11. Formability models for warm sheet metal forming analysis

    Jiang, Sen

    Several closed form models for the prediction of strain space sheet metal formability as a function of temperature and strain rate are proposed. The proposed models require only failure strain information from the uniaxial tension test at an elevated temperature setting and failure strain information from the traditionally defined strain space forming limit diagram at room temperature, thereby featuring the advantage of offering a full forming limit description without having to carry out expensive experimental studies for multiple modes of deformation under the elevated temperature. The Power law, Voce, and Johnson-Cook hardening models are considered along with the yield criterions of Hill's 48 and Logan-Hosford yield criteria. Acceptable correlations between the theory and experiment are reported for all the models under a plane strain condition. Among all the proposed models, the model featuring Johnson-Cook hardening model and Logan-Hosford yield behavior (LHJC model) was shown to best correlate with experiment. The sensitivity of the model with respect to various forming parameters is discussed. This work is significant to those aiming to incorporate closed-form formability models directly into numerical simulation programs for the purpose of design and analysis of products manufactured through the warm sheet metal forming process. An improvement based upon Swift's diffuse necking theory, is suggested in order to enhance the reliability of the model for biaxial stretch conditions. Theory relating to this improvement is provided in Appendix B.

  12. Application of Six Sigma Robust Optimization in Sheet Metal Forming

    Li, Y.Q.; Cui, Z.S.; Ruan, X.Y.; Zhang, D.J.

    2005-01-01

    Numerical simulation technology and optimization method have been applied in sheet metal forming process to improve design quality and shorten design cycle. While the existence of fluctuation in design variables or operation condition has great influence on the quality. In addition to that, iterative solution in numerical simulation and optimization usually take huge computational time or endure expensive experiment cost In order to eliminate effect of perturbations in design and improve design efficiency, a CAE-based six sigma robust design method is developed in this paper. In the six sigma procedure for sheet metal forming, statistical technology and dual response surface approximate model as well as algorithm of 'Design for Six Sigma (DFSS)' are integrated together to perform reliability optimization and robust improvement. A deep drawing process of a rectangular cup is taken as an example to illustrate the method. The optimization solutions show that the proposed optimization procedure not only improves significantly the reliability and robustness of the forming quality, but also increases optimization efficiency with approximate model

  13. Recent developments in metal forming; Desenvolvimento na conformacao mecanica dos acos

    Schaeffer, Lirio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil)

    1990-12-31

    This work presents and discuss several processes concerning metal forming, specially steel forming. In the area of rolling, aspects related with liquid rolling and process simulation was analyzed. In the forging extrusion process, advances in cold and warm metal forming are reviewed. With regard to drawing of steel, a method for the evaluation of the lubrication efficiency through measurements of forces is presented. Finally, general considerations in forming of sintered products are also considered. 12 figs., 7 tabs., 10 refs.

  14. Production of metal waste forms from spent fuel treatment

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-01-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities

  15. Simulation of nonlinear benchmarks and sheet metal forming processes using linear and quadratic solid–shell elements combined with advanced anisotropic behavior models

    Wang Peng

    2016-01-01

    Full Text Available A family of prismatic and hexahedral solid‒shell (SHB elements with their linear and quadratic versions is presented in this paper to model thin 3D structures. Based on reduced integration and special treatments to eliminate locking effects and to control spurious zero-energy modes, the SHB solid‒shell elements are capable of modeling most thin 3D structural problems with only a single element layer, while describing accurately the various through-thickness phenomena. In this paper, the SHB elements are combined with fully 3D behavior models, including orthotropic elastic behavior for composite materials and anisotropic plastic behavior for metallic materials, which allows describing the strain/stress state in the thickness direction, in contrast to traditional shell elements. All SHB elements are implemented into ABAQUS using both standard/quasi-static and explicit/dynamic solvers. Several benchmark tests have been conducted, in order to first assess the performance of the SHB elements in quasi-static and dynamic analyses. Then, deep drawing of a hemispherical cup is performed to demonstrate the capabilities of the SHB elements in handling various types of nonlinearities (large displacements and rotations, anisotropic plasticity, and contact. Compared to classical ABAQUS solid and shell elements, the results given by the SHB elements show good agreement with the reference solutions.

  16. Iterative solvers in forming process simulations

    van den Boogaard, Antonius H.; Rietman, Bert; Huetink, Han

    1998-01-01

    The use of iterative solvers in implicit forming process simulations is studied. The time and memory requirements are compared with direct solvers and assessed in relation with the rest of the Newton-Raphson iteration process. It is shown that conjugate gradient{like solvers with a proper

  17. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    Salvadori, M.C.; Teixeira, F.S.; Sgubin, L.G.; Cattani, M.; Brown, I.G.

    2014-01-01

    Highlights: • Metal nanoparticles can be produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. • The nanoparticles nucleate near the maximum of the implantation depth profile, that can be estimated by computer simulation using the TRIDYN. • Nanocomposites, obtained by this way, can be produced in different insulator materials. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. • The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted, reaching the percolation threshold. • Excellent agreement was found between the experimental results and the predictions of the theory. - Abstract: There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in

  18. Forming processes and mechanics of sheet metal forming

    Burchitz, I.A.

    2004-01-01

    The report is dealing with the numerical analysis of forming processes. Forming processes is the large group of manufacturing processes used to obtain various product shapes by means of plastic deformations. The report is organized as follows. An overview of the deformation processes and the

  19. Simulation of nanotubular forms of matter

    Ivanovskii, Alexander L

    1999-01-01

    Data on the electronic and chemical structure of a new quasi-one-dimensional form of matter, viz., nanotubulenes, are generalised and systematised. Methods and approaches used in modern quantum chemistry for the simulation of the composition, structure, and properties of isolated tubulenes based on layered phases (graphite, boron nitride, boron carbide and boron carbonitride), nanotubular composites and nanotube crystals are described. The role of quantum theory in the development of the concepts of fundamental properties of substances in the nanotubular form and methods of their targeted modification is discussed. Prognostic potentials of theoretical models in solving material science problems are considered. The bibliography includes 197 references.

  20. Comparison of validation methods for forming simulations

    Schug, Alexander; Kapphan, Gabriel; Bardl, Georg; Hinterhölzl, Roland; Drechsler, Klaus

    2018-05-01

    The forming simulation of fibre reinforced thermoplastics could reduce the development time and improve the forming results. But to take advantage of the full potential of the simulations it has to be ensured that the predictions for material behaviour are correct. For that reason, a thorough validation of the material model has to be conducted after characterising the material. Relevant aspects for the validation of the simulation are for example the outer contour, the occurrence of defects and the fibre paths. To measure these features various methods are available. Most relevant and also most difficult to measure are the emerging fibre orientations. For that reason, the focus of this study was on measuring this feature. The aim was to give an overview of the properties of different measuring systems and select the most promising systems for a comparison survey. Selected were an optical, an eddy current and a computer-assisted tomography system with the focus on measuring the fibre orientations. Different formed 3D parts made of unidirectional glass fibre and carbon fibre reinforced thermoplastics were measured. Advantages and disadvantages of the tested systems were revealed. Optical measurement systems are easy to use, but are limited to the surface plies. With an eddy current system also lower plies can be measured, but it is only suitable for carbon fibres. Using a computer-assisted tomography system all plies can be measured, but the system is limited to small parts and challenging to evaluate.

  1. Simulation of Defects in Metal Forming

    Arentoft, Mogens; Bay, Niels; Wanheim, Tarras

    1994-01-01

    The present paper describes a systematic investigation of possible flow imperfections in forging of an H-shaped profile. The influence of geometry and volume of the slug and of friction in the tool/workpiece interface on flow are investigated by numerical as well as physical modelling. A comparis...... between two different FE- codes, DEFORM ans Forge2 and physical modelling applying parafin wax shows good agreement between the different methods of analysis. Based on the results a formability diagram has been established for forging of H-shaped profiles.......The present paper describes a systematic investigation of possible flow imperfections in forging of an H-shaped profile. The influence of geometry and volume of the slug and of friction in the tool/workpiece interface on flow are investigated by numerical as well as physical modelling. A comparison...

  2. Simulation of Glass Fiber Forming Processes

    Von der Ohe, Renate

    Two glass fiber forming processes have been simulated using FEM, which are the drawing of continuous glass fibers for reinforcement purposes and the spinning of discontinuous glass fibers - stone wool for insulation. The aim of this work was to set up a numerical model for each process, and to use...... this model in finding relationships between the production conditions and the resulting fiber properties. For both processes, a free surface with large deformation and radiative and convective heat transfer must be taken into account. The continuous fiber drawing has been simulated successfully......, and parametric studies have been made. Several properties that characterize the process have been calculated, and the relationship between the fictive temperature and the cooling rate of the fibers has been found. The model for the discontinuous fiber spinning was brought to the limits of the commercial code...

  3. Advancing Material Models for Automotive Forming Simulations

    Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E.

    2005-01-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior

  4. Consolidation modelling for thermoplastic composites forming simulation

    Xiong, H.; Rusanov, A.; Hamila, N.; Boisse, P.

    2016-10-01

    Pre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, Thermoforming thermoplastic prepregs is a fast manufacturing process, the automotive industry has shown increasing interest in this manufacturing processes, in which the reconsolidation is an essential stage. The model of intimate contact is investigated as the consolidation model, compression experiments have been launched to identify the material parameters, several numerical tests show the influents of the temperature and pressure applied during processing. Finally, a new solid-shell prismatic element has been presented for the simulation of consolidation step in the thermoplastic composites forming process.

  5. TRIBOLOGICAL TESTING IN SHEET METAL FORMING

    Vega Tarantino, Salvador

    alternative lubricants in order to substitute the old and harmful chlorinated paraffin oils. The present project is a small part included in that bigger project called Enlub, in which the newly developed lubricants have been tested by tribological simulative methods. The bending under tension test (BUT...

  6. Effect of material scatter on the plastic behavior and stretchability in sheet metal forming

    Wiebenga, J.H.; Atzema, E.H.; Atzema, E.H.; An, Y.G.; Vegter, H.; van den Boogaard, Antonius H.

    2014-01-01

    Robust design of forming processes is gaining attention throughout the industry. To analyze the robustness of a sheet metal forming process using Finite Element (FE) simulations, an accurate input in terms of parameter scatter is required. This paper presents a pragmatic, accurate and economic

  7. Numerical Simulation of Explosive Forming Using Detonating Fuse

    H Iyama; Y Higa; M Nishi; S Itoh

    2017-01-01

    The explosive forming is a characteristic method. An underwater shock wave is generated by underwater explosion of an explosive. A metal plate is affected high strain rate by the shock loading and is formed along a metal die. Although this method has the advantage of mirroring the shape of the die, a free forming was used in this paper. An expensive metal die is not necessary for this free forming. It is possible that a metal plate is formed with simple supporting parts. However, the forming ...

  8. Fine Coining of Bulk Metal Formed Parts in Digital Environment

    Pepelnjak, T.; Kuzman, K.; Krusic, V.

    2007-01-01

    At present the production of bulk metal formed parts in the automotive industry must increasingly fulfil demands for narrow tolerance fields. The final goal of the million parts production series is oriented towards zero defect production. This is possible by achieving production tolerances which are even tighter than the prescribed ones. Different approaches are used to meet this demanding objective affected by many process parameters. Fine coining as a final forming operation is one of the processes which enables the production of good manufacturing tolerances and high process stability. The paper presents the analyses of the production of the inner race and a digital evaluation of manufacturing tolerances caused by different material parameters of the workpiece. Digital optimisation of the fine coining with FEM simulations was performed in two phases. Firstly, fine coining of the inner racer in a digital environment was comparatively analysed with the experimental work in order to verify the accuracy and reliability of digitally calculated data. Secondly, based on the geometrical data of a digitally fine coined part, tool redesign was proposed in order to tighten production tolerances and increase the process stability of the near-net-shaped cold formed part

  9. Advanced Gradient Based Optimization Techniques Applied on Sheet Metal Forming

    Endelt, Benny; Nielsen, Karl Brian

    2005-01-01

    The computational-costs for finite element simulations of general sheet metal forming processes are considerable, especially measured in time. In combination with optimization, the performance of the optimization algorithm is crucial for the overall performance of the system, i.e. the optimization algorithm should gain as much information about the system in each iteration as possible. Least-square formulation of the object function is widely applied for solution of inverse problems, due to the superior performance of this formulation.In this work focus will be on small problems which are defined as problems with less than 1000 design parameters; as the majority of real life optimization and inverse problems, represented in literature, can be characterized as small problems, typically with less than 20 design parameters.We will show that the least square formulation is well suited for two classes of inverse problems; identification of constitutive parameters and process optimization.The scalability and robustness of the approach are illustrated through a number of process optimizations and inverse material characterization problems; tube hydro forming, two step hydro forming, flexible aluminum tubes, inverse identification of material parameters

  10. Towards Industrial Application of Damage Models for Sheet Metal Forming

    Doig, M.; Roll, K.

    2011-05-01

    Due to global warming and financial situation the demand to reduce the CO2-emission and the production costs leads to the permanent development of new materials. In the automotive industry the occupant safety is an additional condition. Bringing these arguments together the preferable approach for lightweight design of car components, especially for body-in-white, is the use of modern steels. Such steel grades, also called advanced high strength steels (AHSS), exhibit a high strength as well as a high formability. Not only their material behavior but also the damage behavior of AHSS is different compared to the performances of standard steels. Conventional methods for the damage prediction in the industry like the forming limit curve (FLC) are not reliable for AHSS. Physically based damage models are often used in crash and bulk forming simulations. The still open question is the industrial application of these models for sheet metal forming. This paper evaluates the Gurson-Tvergaard-Needleman (GTN) model and the model of Lemaitre within commercial codes with a goal of industrial application.

  11. Leaching characteristics of the metal waste form from the electrometallurgical treatment process: Product consistency testing

    Johnson, S. G.; Keiser, D. D.; Frank, S. M.; DiSanto, T.; Noy, M.

    1999-01-01

    Argonne National Laboratory is developing an electrometallurgical treatment for spent fuel from the experimental breeder reactor II. A product of this treatment process is a metal waste form that incorporates the stainless steel cladding hulls, zirconium from the fuel and the fission products that are noble to the process, i.e., Tc, Ru, Nb, Pd, Rh, Ag. The nominal composition of this waste form is stainless steel/15 wt% zirconium/1--4 wt% noble metal fission products/1--2 wt % U. Leaching results are presented from several tests and sample types: (1) 2 week monolithic immersion tests on actual metal waste forms produced from irradiated cladding hulls, (2) long term (>2 years) pulsed flow tests on samples containing technetium and uranium and (3) crushed sample immersion tests on cold simulated metal waste form samples. The test results will be compared and their relevance for waste form product consistency testing discussed

  12. Explosive force of primacord grid forms large sheet metal parts

    1966-01-01

    Primacord which is woven through fish netting in a grid pattern is used for explosive forming of large sheet metal parts. The explosive force generated by the primacord detonation is uniformly distributed over the entire surface of the sheet metal workpiece.

  13. Primary hafnium metal sponge and other forms, approved standard 1973

    Anon.

    1975-01-01

    A specification is presented covering virgin hafnium metal commonly designated as sponge because of its porous, sponge-like texture; it may also be in other forms such as chunklets. The specification does not cover crystal bar

  14. Environmentally Benign Tribo-systems for Metal Forming

    Bay, Niels; Azushima, A.; Groche, P.

    2010-01-01

    The growing awareness of environmental issues and the requirements to establish solutions diminishing the impact on working environment as well as external environment has initiated ever increasing efforts to develop new, environmentally benign tribological systems for metal forming. The present ...

  15. Studies on micro plasto hydrodymic lubrication in metal forming

    Bay, Niels; Bech, Jakob Ilsted; Andreasen, Jan Lasson

    2002-01-01

    The influence of work piece surface topography on friction and lubrication and final surface quality in metal forming operations is well known and has been pointed out by many researchers, see Schey (1983) and Bay and Wanheim (1990). This is especially the case when liquid lubrication is applied...... characterization models the potential entrapment of a lubricant in closed reservoirs is used as a parameter to predetermine the formability of a sheet metal, Steinhoff et al. (1996), Geiger et al. (1997) and Schmoeckel et al. (1997). In experimental studies on friction in metal forming applying the strip drawing...

  16. Automobile sheet metal part production with incremental sheet forming

    İsmail DURGUN

    2016-02-01

    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  17. A Path-Independent Forming Limit Criterion for Stamping Simulations

    Zhu Xinhai; Chappuis, Laurent; Xia, Z. Cedric

    2005-01-01

    Forming Limit Diagram (FLD) has been proved to be a powerful tool for assessing necking failures in sheet metal forming analysis for majority of stamping operations over the last three decades. However, experimental evidence and theoretical analysis suggest that its applications are limited to linear or almost linear strain paths during its deformation history. Abrupt changes or even gradual deviations from linear strain-paths will shift forming limit curves from their original values, a situation that occurs in vast majority of sequential stamping operations such as where the drawing process is followed by flanging and re-strike processes. Various forming limit models have been put forward recently to provide remedies for the problem, noticeably stress-based and strain gradient-based forming limit criteria. This study presents an alternative path-independent forming limit criterion. Instead of traditional Forming Limit Diagrams (FLD) which are constructed in terms of major - minor principal strains throughout deformation history, the new criterion defines a critical effective strain ε-bar* as the limit strain for necking, and it is shown that ε-bar* can be expressed as a function of current strain rate state and material work hardening properties, without the need of explicitly considering strain-path effects. It is given by ε-bar* = f(β, k, n) where β = (dε 2 /dε 1 ) at current deformation state, and k and n are material strain hardening parameters if a power law is assumed. The analysis is built upon previous work by Storen and Rice [1975] and Zhu et al [2002] with the incorporation of anisotropic yield models such as Hill'48 for quadratic orthotropic yield and Hill'79 for non-quadratic orthotropic yield. Effects of anisotropic parameters such as R-values and exponent n-values on necking are investigated in detail for a variety of strain paths. Results predicted according to current analysis are compared against experimental data gathered from literature

  18. Operation of a capacitor bank for plasma metal forming

    pulse@svel.plasma.ernet.in (Pulse Expt.)

    Here we will be presenting a different technique for metal forming. ... Supply. Power. Input. Figure 1. Schematic diagram of the process. the work piece and a rigid conductor forms the electrode (in a ... in series with a 1000 MΩresistor chain. 4.

  19. Distinct atomic structures of the Ni-Nb metallic glasses formed by ion beam mixing

    Tai, K. P.; Wang, L. T.; Liu, B. X.

    2007-01-01

    Four Ni-Nb metallic glasses are obtained by ion beam mixing and their compositions are measured to be Ni 77 Nb 23 , Ni 55 Nb 45 , Ni 31 Nb 69 , and Ni 15 Nb 85 , respectively, suggesting that a composition range of 23-85 at. % of Nb is favored for metallic glass formation in the Ni-Nb system. Interestingly, diffraction analyses show that the structure of the Nb-based Ni 31 Nb 69 metallic glass is distinctly different from the structure of the Nb-based Ni 15 Nb 85 metallic glass, as the respective amorphous halos are located at 2θ≅38 and 39 deg. To explore an atomic scale description of the Ni-Nb metallic glasses, an n-body Ni-Nb potential is first constructed with an aid of the ab initio calculations and then applied to perform the molecular dynamics simulation. Simulation results determine not only the intrinsic glass forming range of the Ni-Nb system to be within 20-85 at. % of Nb, but also the exact atomic positions in the Ni-Nb metallic glasses. Through a statistical analysis of the determined atomic positions, a new dominant local packing unit is found in the Ni 15 Nb 85 metallic glass, i.e., an icositetrahedron with a coordination number to be around 14, while in Ni 31 Nb 69 metallic glasses, the dominant local packing unit is an icosahedron with a coordination number to be around 12, which has been reported for the other metallic glasses. In fact, with increasing the irradiation dose, the Ni 31 Nb 69 metallic glasses are formed through an intermediate state of face-centered-cubic-solid solution, whereas the Ni 15 Nb 85 metallic glass is through an intermediate state of body-centered-cubic-solid solution, suggesting that the structures of the constituent metals play an important role in governing the structural characteristics of the resultant metallic glasses

  20. Tool-life prediction under multi-cycle loading during metal forming: a feasibility study

    Hu Yiran

    2015-01-01

    Full Text Available In the present research, the friction and wear behaviour of a hard coating were studied by using ball-on-disc tests to simulate the wear process of the coated tools for sheet metal forming process. The evolution of the friction coefficient followed a typical dual-plateau pattern, i.e. at the initial stage of sliding, the friction coefficient was relatively low, followed by a sharp increase due to the breakdown of the coatings after a certain number of cyclic dynamic loadings. This phenomenon was caused by the interactive response between the friction and wear from a coating tribo-system, which is often neglected by metal forming researchers, and constant friction coefficient values are normally used in the finite element (FE simulations to represent the complex tribological nature at the contact interfaces. Meanwhile, most of the current FE simulations consider single-cycle loading processes, whereas many metal-forming operations are conducted in a form of multi-cycle loading. Therefore, a novel friction/wear interactive friction model was developed to, simultaneously, characterise the evolutions of friction coefficient and the remaining thickness of the coating layer, to enable the wear life of coated tooling to be predicted. The friction model was then implemented into the FE simulation of a sheet metal forming process for feasibility study.

  1. Literature survey on metal waste form for metallic waste from electrorefiners for the electrometallurgical treatment of spent metallic fuels

    Nishimura, Tomohiro

    2003-01-01

    This report summarizes the recent results of the metal waste form development activities at the Argonne National Laboratory in the USA for high-level radioactive metallic waste (stainless-steel (SS) cladding hulls, zirconium (Zr), noble-metal fission products (NMFPs), etc.) from electrorefiners for the electrometallurgical treatment of spent metallic fuels. Their main results are as follows: (1) SS- 15 wt.% Zr- ∼4 wt.% NMFPs alloy was selected as the metal waste form, (2) metallurgical data, properties, long-term corrosion data, etc. of the alloy have been collected, (3) 10-kg ingots have been produced in hot tests and a 60-kg production machine is under development. The following research should be made to show the feasibility of the metal waste form in Japan: (1) degradation assessment of the metal waste form in Japanese geological repository environments, and (2) clarification of the maximum allowable contents of NMFPs. (author)

  2. A New Approach for Handling of Micro Parts in Bulk Metal Forming

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Arentoft, M.

    2012-01-01

    of production [1]. This can fulfill the demands for mass production and miniaturization in industries and academic communities. According to the recent studies, topics related to materials, process and simulation have been investigated intensively and well documented. Machines, forming tools and handling...... systems are critical elements to complete micro forming technology for transferring knowledge to industries and toward miniature manufacturing systems (micro factory) [2]. Since most metal forming processes are multi stage, making a new handling system with high reliability on accuracy and speed...... have been optimized or handling systems based on new concepts for gripping and releasing micro parts have been proposed. Making a handling system for micro parts made by sheet metals or foils is easier than those in bulk metal forming because parts are attached to the sheet during the forming process...

  3. Probing the limits of metal plasticity with molecular dynamics simulations

    Zepeda-Ruiz, Luis A.; Stukowski, Alexander; Oppelstrup, Tomas; Bulatov, Vasily V.

    2017-10-01

    Ordinarily, the strength and plasticity properties of a metal are defined by dislocations--line defects in the crystal lattice whose motion results in material slippage along lattice planes. Dislocation dynamics models are usually used as mesoscale proxies for true atomistic dynamics, which are computationally expensive to perform routinely. However, atomistic simulations accurately capture every possible mechanism of material response, resolving every ``jiggle and wiggle'' of atomic motion, whereas dislocation dynamics models do not. Here we present fully dynamic atomistic simulations of bulk single-crystal plasticity in the body-centred-cubic metal tantalum. Our goal is to quantify the conditions under which the limits of dislocation-mediated plasticity are reached and to understand what happens to the metal beyond any such limit. In our simulations, the metal is compressed at ultrahigh strain rates along its [001] crystal axis under conditions of constant pressure, temperature and strain rate. To address the complexity of crystal plasticity processes on the length scales (85-340 nm) and timescales (1 ns-1μs) that we examine, we use recently developed methods of in situ computational microscopy to recast the enormous amount of transient trajectory data generated in our simulations into a form that can be analysed by a human. Our simulations predict that, on reaching certain limiting conditions of strain, dislocations alone can no longer relieve mechanical loads; instead, another mechanism, known as deformation twinning (the sudden re-orientation of the crystal lattice), takes over as the dominant mode of dynamic response. Below this limit, the metal assumes a strain-path-independent steady state of plastic flow in which the flow stress and the dislocation density remain constant as long as the conditions of straining thereafter remain unchanged. In this distinct state, tantalum flows like a viscous fluid while retaining its crystal lattice and remaining a strong

  4. Review of friction modeling in metal forming processes

    Nielsen, C.V.; Bay, N.

    2018-01-01

    Abstract In metal forming processes, friction between tool and workpiece is an important parameter influencing the material flow, surface quality and tool life. Theoretical models of friction in metal forming are based on analysis of the real contact area in tool-workpiece interfaces. Several...... research groups have studied and modeled the asperity flattening of workpiece material against tool surface in dry contact or in contact interfaces with only thin layers of lubrication with the aim to improve understanding of friction in metal forming. This paper aims at giving a review of the most...... conditions, normal pressure, sliding length and speed, temperature changes, friction on the flattened plateaus and deformation of the underlying material. The review illustrates the development in the understanding of asperity flattening and the methods of analysis....

  5. Improvements in FE-analysis of real-life sheet metal forming

    Huetink, Han; van den Boogaard, Antonius H.; Geijselaers, Hubertus J.M.; Meinders, Vincent T.

    2000-01-01

    An overview will be presented of recent developments concerning the application and development of computer codes for numerical simulation of sheet metal forming processes. In this paper attention is paid to some strategies which are followed to improve the accuracy and to reduce the computation

  6. Scale effects in metal-forming friction and lubrication

    Nielsen, Peter Søe; Paldan, Nikolas Aulin; Calaon, Matteo

    2011-01-01

    Downscaling of metal-forming operations from macro-to microscale implies significant changes caused by size effects. Among these, the friction increases as reported by researchers using indirect test methods such as the ring-compression test and double-cup-extrusion test. In this study, a new test...... equipment is developed for studies of the size effect in metal-forming friction in the range from macro-to microscale. Investigations confirm a significant friction increase when downscaling. Visual inspection of the workpieces shows this to be explained by the amount of open and closed lubricant pockets....

  7. Experimental evaluation of coating delamination in vinyl coated metal forming

    Son, Young Ki; Lee, Chan Joo; Kim, Byung Min; Lee, Jung Min; Byoen, Sang Doek; Lee, Soen Bong

    2012-01-01

    In this paper, a new evaluation and prediction method for coating delamination during sheet metal forming is presented. On the basis of the forming limit diagram (FLD), the current study evaluates the delamination of PET coating by using a cross cut specimen, dome test, and rectangular cup drawing test. Dome test specimens were subjected to biaxial, plane strain, and uniaxial deformation modes. Rectangular cup drawing test specimens were subjected to the deep drawing deformation mode, and compression deformation mode. A vinyl coated metal (VCM) sheet consists of three layers of polymer on the sheet metals: a protective film, a PET layer and a PVC layer. The areas with coating delamination were identified, and the results of the evaluation were plotted according to major and minor strain values, depicting coating delamination. The constructed delamination limit diagram (DLD) can be used to determine the forming limit of VCM during the complex press forming process. ARGUS (GOM) was employed to identify the strain value and deformation mode of the delaminated surface after the press forming. After identifying the areas of delamination, the DLD of the PET coating can be constructed in a format similar to that of the FLD. The forming limit of the VCM sheet can be evaluated using the superimposition of the delamination limit strain of the coating onto the FLD of VCM sheet. The experimental results showed that the proposed test method will support the sheet metal forming process design for VCM sheets. The assessment method presented in this study can be used to determine the delamination limit strain under plastic deformation of other polymer coated metals. The experimental results suggested that the proposed testing method is effective in evaluating delamination for specific applications

  8. Experimental evaluation of coating delamination in vinyl coated metal forming

    Son, Young Ki; Lee, Chan Joo; Kim, Byung Min [Pusan National Univ., Busan (Korea, Republic of); Lee, Jung Min [Korea Institute of Industrial Technology, Busan (Korea, Republic of); Byoen, Sang Doek [HA Digital Engineering Gr., Seongsan Gu (Korea, Republic of); Lee, Soen Bong [Keimyung Univ., Daegu (Korea, Republic of)

    2012-10-15

    In this paper, a new evaluation and prediction method for coating delamination during sheet metal forming is presented. On the basis of the forming limit diagram (FLD), the current study evaluates the delamination of PET coating by using a cross cut specimen, dome test, and rectangular cup drawing test. Dome test specimens were subjected to biaxial, plane strain, and uniaxial deformation modes. Rectangular cup drawing test specimens were subjected to the deep drawing deformation mode, and compression deformation mode. A vinyl coated metal (VCM) sheet consists of three layers of polymer on the sheet metals: a protective film, a PET layer and a PVC layer. The areas with coating delamination were identified, and the results of the evaluation were plotted according to major and minor strain values, depicting coating delamination. The constructed delamination limit diagram (DLD) can be used to determine the forming limit of VCM during the complex press forming process. ARGUS (GOM) was employed to identify the strain value and deformation mode of the delaminated surface after the press forming. After identifying the areas of delamination, the DLD of the PET coating can be constructed in a format similar to that of the FLD. The forming limit of the VCM sheet can be evaluated using the superimposition of the delamination limit strain of the coating onto the FLD of VCM sheet. The experimental results showed that the proposed test method will support the sheet metal forming process design for VCM sheets. The assessment method presented in this study can be used to determine the delamination limit strain under plastic deformation of other polymer coated metals. The experimental results suggested that the proposed testing method is effective in evaluating delamination for specific applications.

  9. The Origin of the Relation between Metallicity and Size in Star-forming Galaxies

    Sánchez Almeida, J.; Dalla Vecchia, C.

    2018-06-01

    For the same stellar mass, physically smaller star-forming galaxies are also metal richer. What causes the relation remains unclear. The central star-forming galaxies in the EAGLE cosmological numerical simulation reproduce the observed trend. We use them to explore the origin of the relation assuming that the physical mechanism responsible for the anticorrelation between size and gas-phase metallicity is the same in the simulated and the observed galaxies. We consider the three most likely causes: (1) metal-poor gas inflows feeding the star formation (SF) process, (2) metal-rich gas outflows particularly efficient in shallow gravitational potentials, and (3) enhanced efficiency of the SF process in compact galaxies. Outflows (cause 2) and enhanced SF efficiency (cause 3) can be discarded. Metal-poor gas inflows (cause 1) produce the correlation in the simulated galaxies. Galaxies grow in size with time, so those that receive gas later are both metal poorer and larger, giving rise to the observed anticorrelation. As expected within this explanation, larger galaxies have younger stellar populations. We explore the variation with redshift of the relation, which is maintained up to, at least, redshift 8.

  10. Testing of environmentally friendly lubricants for sheet metal forming

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2005-01-01

    the authors have especially been involved in the development of a system of test methods for sheet metal forming and in testing of friction and limits of lubrication of new, environmentally friendly lubricants. An overview of the developed tests is presented together with selected results....

  11. Integration of adaptive process control with computational simulation for spin-forming

    Raboin, P. J. LLNL

    1998-01-01

    Improvements in spin-forming capabilities through upgrades to a metrology and machine control system and advances in numerical simulation techniques were studied in a two year project funded by Laboratory Directed Research and Development (LDRD) at Lawrence Livermore National Laboratory. Numerical analyses were benchmarked with spin-forming experiments and computational speeds increased sufficiently to now permit actual part forming simulations. Extensive modeling activities examined the simulation speeds and capabilities of several metal forming computer codes for modeling flat plate and cylindrical spin-forming geometries. Shape memory research created the first numerical model to describe this highly unusual deformation behavior in Uranium alloys. A spin-forming metrology assessment led to sensor and data acquisition improvements that will facilitate future process accuracy enhancements, such as a metrology frame. Finally, software improvements (SmartCAM) to the manufacturing process numerically integrate the part models to the spin-forming process and to computational simulations

  12. Quantum-based Atomistic Simulation of Transition Metals

    Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V; Soderlind, P; Streitz, F H; Tang, M; Yang, L H

    2005-01-01

    First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in d-electron transition metals within density-functional quantum mechanics. In mid-period bcc metals, where multi-ion angular forces are important to structural properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions of pressure and temperature. Recent algorithm improvements have also led to a more general matrix representation of MGPT beyond canonical bands allowing increased accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed, and the current development of temperature-dependent potentials

  13. Precision analysis in billet preparation for micro bulk metal forming

    Mahshid, Rasoul; Hansen, Hans N.

    2015-01-01

    The purpose of this research is to fabricate billets for an automated transfer press for micro forming. High performance transfer presses are wellknown in conventional metal forming and distinguished from their automation and mass production. The press used in this research is a vertical mechanical...... press. When using a vertical mechanical press, the material is fed as billets into the forming zone. Therefore, a large number of highly uniform billets are required to run mass production in such a setup. Shearing technique was used for manufacturing the billets. The efficiency of the shearing tool...

  14. Metal release from simulated fixed orthodontic appliances.

    Hwang, C J; Shin, J S; Cha, J Y

    2001-10-01

    Most orthodontic appliances and archwires are stainless steel or nickel-titanium (NiTi) alloys that can release metal ions, with saliva as the medium. To measure metal released from the fixed orthodontic appliances currently in use, we fabricated simulated fixed orthodontic appliances that corresponded to half of the maxillary arch and soaked them in 50 mL of artificial saliva (pH 6.75 +/- 0.15, 37 degrees C) for 3 months. We used brackets, tubes, and bands made by Tomy (Tokyo, Japan). Four groups were established according to the appliance manufacturer and the type of metal in the .016 x .022-in archwires. Groups A and B were stainless steel archwires from Ormco (Glendora, Calif) and Dentaurum (Ispringen, Germany), respectively, and groups C and D were both NiTi archwires with Ormco's copper NiTi and Tomy's Bioforce sentalloy, respectively. Stainless steel archwires were heat treated in an electric furnace at 500 degrees C for 1 minute and quenched in water. We measured the amount of metal released from each group by immersion time. Our conclusions were as follows: (1) there was no increase in the amount of chromium released after 4 weeks in group A, 2 weeks in group B, 3 weeks in group C, and 8 weeks in group D; (2) there was no increase in the amount of nickel released after 2 weeks in group A, 3 days in group B, 7 days in group C, and 3 weeks in group D; and (3) there was no increase in the amount of iron released after 2 weeks in group A, 3 days in group B, and 1 day in groups C and D. In our 3-month-long investigation, we saw a decrease in metal released as immersion time increased.

  15. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  16. Metal waste forms from treatment of EBR-II spent fuel

    Abraham, D. P.

    1998-01-01

    Demonstration of Argonne National Laboratory's electrometallurgical treatment of spent nuclear fuel is currently being conducted on irradiated, metallic driver fuel and blanket fuel elements from the Experimental Breeder Reactor-II (EBR-II) in Idaho. The residual metallic material from the electrometallurgical treatment process is consolidated into an ingot, the metal waste form (MWF), by employing an induction furnace in a hot cell. Scanning electron microscopy (SEM) and chemical analyses have been performed on irradiated cladding hulls from the driver fuel, and on samples from the alloy ingots. This paper presents the microstructures of the radioactive ingots and compares them with observations on simulated waste forms prepared using non-irradiated material. These simulated waste forms have the baseline composition of stainless steel - 15 wt % zirconium (SS-15Zr). Additions of noble metal elements, which serve as surrogates for fission products, and actinides are made to that baseline composition. The partitioning of noble metal and actinide elements into alloy phases and the role of zirconium for incorporating these elements is discussed in this paper

  17. RAPID FREEFORM SHEET METAL FORMING: TECHNOLOGY DEVELOPMENT AND SYSTEM VERIFICATION

    Kiridena, Vijitha [Ford Scientific Research Lab., Dearborn, MI (United States); Verma, Ravi [Boeing Research and Technology (BR& T), Seattle, WA (United States); Gutowski, Timothy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Roth, John [Pennsylvania State Univ., University Park, PA (United States)

    2018-03-31

    The objective of this project is to develop a transformational RApid Freeform sheet metal Forming Technology (RAFFT) in an industrial environment, which has the potential to increase manufacturing energy efficiency up to ten times, at a fraction of the cost of conventional technologies. The RAFFT technology is a flexible and energy-efficient process that eliminates the need for having geometry-specific forming dies. The innovation lies in the idea of using the energy resource at the local deformation area which provides greater formability, process control, and process flexibility relative to traditional methods. Double-Sided Incremental Forming (DSIF), the core technology in RAFFT, is a new concept for sheet metal forming. A blank sheet is clamped around its periphery and gradually deformed into a complex 3D freeform part by two strategically aligned stylus-type tools that follow a pre-described toolpath. The two tools, one on each side of the blank, can form a part with sharp features for both concave and convex shapes. Since deformation happens locally, the forming force at any instant is significantly decreased when compared to traditional methods. The key advantages of DSIF are its high process flexibility, high energy-efficiency, low capital investment, and the elimination of the need for massive amounts of die casting and machining. Additionally, the enhanced formability and process flexibility of DSIF can open up design spaces and result in greater weight savings.

  18. Numerical Simulation of Incremental Sheet Forming by Simplified Approach

    Delamézière, A.; Yu, Y.; Robert, C.; Ayed, L. Ben; Nouari, M.; Batoz, J. L.

    2011-01-01

    The Incremental Sheet Forming (ISF) is a process, which can transform a flat metal sheet in a 3D complex part using a hemispherical tool. The final geometry of the product is obtained by the relative movement between this tool and the blank. The main advantage of that process is that the cost of the tool is very low compared to deep drawing with rigid tools. The main disadvantage is the very low velocity of the tool and thus the large amount of time to form the part. Classical contact algorithms give good agreement with experimental results, but are time consuming. A Simplified Approach for the contact management between the tool and the blank in ISF is presented here. The general principle of this approach is to imposed displacement of the nodes in contact with the tool at a given position. On a benchmark part, the CPU time of the present Simplified Approach is significantly reduced compared with a classical simulation performed with Abaqus implicit.

  19. Testing of Lubricant Performance in Sheet Metal Forming

    Bay, Niels; Olsson, David Dam; Friis, Kasper Leth

    2008-01-01

    Increasing focus on environmental issues in industrial production has urged a number of sheet metal forming companies to look for new tribo-systems in order to substitute hazardous lubricants such as chlorinated paraffin oils. The problems are especially pronounced, when forming tribologically...... of the lubricant film causing pick-up of work piece material on the tool surface and scoring of subsequent work piece surfaces. The present paper gives an overview of more than 10 years work by the authors’ research group through participation in national as well as international framework programmes on developing...

  20. Forming Limits in Sheet Metal Forming for Non-Proportional Loading Conditions - Experimental and Theoretical Approach

    Ofenheimer, Aldo; Buchmayr, Bruno; Kolleck, Ralf; Merklein, Marion

    2005-01-01

    The influence of strain paths (loading history) on material formability is well known in sheet forming processes. Sophisticated experimental methods are used to determine the entire shape of strain paths of forming limits for aluminum AA6016-T4 alloy. Forming limits for sheet metal in as-received condition as well as for different pre-deformation are presented. A theoretical approach based on Arrieux's intrinsic Forming Limit Stress Curve (FLSC) concept is employed to numerically predict the influence of loading history on forming severity. The detailed experimental strain paths are used in the theoretical study instead of any linear or bilinear simplified loading histories to demonstrate the predictive quality of forming limits in the state of stress

  1. 48 CFR 53.301-1427 - Standard Form 1427, Inventory Schedule A-Construction Sheet (Metals in Mill Product Form).

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Standard Form 1427, Inventory Schedule A-Construction Sheet (Metals in Mill Product Form). 53.301-1427 Section 53.301-1427... Illustrations of Forms 53.301-1427 Standard Form 1427, Inventory Schedule A—Construction Sheet (Metals in Mill...

  2. Feasibility Study on Flexibly Reconfigurable Roll Forming Process for Sheet Metal and Its Implementation

    Jun-Seok Yoon

    2014-06-01

    Full Text Available A multicurved sheet metal surface for a skin structure has usually been manufactured using a conventional die forming process involving the use of both a die and a press machine in accordance with the product shape. However, such processes are economically inefficient because additional production costs are incurred for the development and management of forming tools. To overcome this drawback, many alternative processes have been developed; however, these still suffer from problems due to defects such as dimples and wrinkles occurring in the sheet. In this study, a new sheet metal forming process called the flexibly reconfigurable roll forming (FRRF process is proposed as an alternative to existing processes. Unlike existing processes, FRRF can reduce additional production costs resulting from material loss and significantly reduce forming errors. Furthermore, it involves the use of a smaller apparatus. The methodology and applicable procedure of the FRRF process are described. Numerical forming simulations of representative multicurved sheet surfaces are conducted using FEM. In addition, a simple apparatus is developed for verifying the feasibility of this process, and a doubly curved metal is formed to verify the applicability of the reconfigurable roller, a critical component in this forming process.

  3. Hybrid plasmonic waveguides formed by metal coating of dielectric ridges

    Zenin, Volodymyr; Choudhury, Sajid; Saha, Soham

    2017-01-01

    Bound hybrid plasmon-polariton modes supported by waveguides, which are formed by gold coating of ridges etched into a silica substrate, are analyzed using numerical simulations and investigated experimentally using near-field microscopy at telecom wavelengths (1425-1625 nm). Drastic modification...

  4. Springback prediction in sheet metal forming process based on the hybrid SA

    Guo Yuqin; Jiang Hong; Wang Xiaochun; Li Fuzhu

    2005-01-01

    In terms of the intensive similarity between the sheet metal forming-springback process and that of the annealing of metals, it is suggested that the simulation of the sheet metal forming process is performed with the Nonlinear FEM and the springback prediction is implemented by solving the large-scale combinational optimum problem established on the base of the energy descending and balancing in deformed part. The BFGS-SA hybrid SA approach is proposed to solve this problem and improve the computing efficiency of the traditional SA and its capability of obtaining the global optimum solution. At the same time, the correlative annealing strategies for the SA algorithm are determined in here. By comparing the calculation results of sample part with those of experiment measurement at the specified sections, the rationality of the schedule of springback prediction used and the validity of the BFGS-SA algorithm proposed are verified

  5. Using contraband simulators for portal metal detector testing

    Murray, D.W.

    1992-08-01

    Because contraband materials or items are either too dangerous or too expensive, contraband simulators have been widely used to test contraband detection equipment. Very realistic bomb simulators have been used to test x-ray scanners, and common radioactive sources have been used successfully to test the operation of special nuclear material (SNM) radiation detectors. The simulators used to test early metal detectors were also reasonably successful; however, these simulators were rapidly outdated by the introduction of modern active field metal detectors. This paper describes some of the earlier attempts to develop metal detector test simulators. A successful highly enriched uranium (HEU) simulator for metal detector testing is described that has duplicated all the characteristics modern equipment is capable of detecting. The paper also describes the development needed to produce handgun simulators that could be used effectively for metal detector performance testing.

  6. Using contraband simulators for portal metal detector testing

    Murray, D.W.

    1992-01-01

    Because contraband materials or items are either too dangerous or too expensive, contraband simulators have been widely used to test contraband detection equipment. Very realistic bomb simulators have been used to test x-ray scanners, and common radioactive sources have been used successfully to test the operation of special nuclear material (SNM) radiation detectors. The simulators used to test early metal detectors were also reasonably successful; however, these simulators were rapidly outdated by the introduction of modern active field metal detectors. This paper describes some of the earlier attempts to develop metal detector test simulators. A successful highly enriched uranium (HEU) simulator for metal detector testing is described that has duplicated all the characteristics modern equipment is capable of detecting. The paper also describes the development needed to produce handgun simulators that could be used effectively for metal detector performance testing.

  7. A System of Test Methods for Sheet Metal Forming Tribology

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2007-01-01

    Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...... oils in order to avoid galling. The present paper describes a systematic research in the development of new, environmentally harmless lubricants focusing on the lubricant testing aspects. A system of laboratory tests has been developed to study the lubricant performance under the very varied conditions...... appearing in different sheet forming operations such as stamping, deep drawing, ironing and punching. The laboratory tests have been especially designed to model the conditions in industrial production....

  8. Radial-rotation profile forming: A new processing technology of incremental sheet metal forming

    Laue, Robert; Härtel, Sebastian; Awiszus, Birgit

    2018-05-01

    Incremental forming processes (i.e., spinning) of sheet metal blanks into cylindrical cups are suitable for lower lot sizes. The produced cups were frequently used as preforms to produce workpieces in further forming steps with additional functions like profiled hollow parts [1]. The incremental forming process radial-rotation profile forming has been developed to enable the production of profiled hollow parts with low sheet thinning and good geometrical accuracy. The two principal forming steps are the production of the preform by rotational swing-folding [2] and the subsequent radial profiling of the hollow part in one clamping position. The rotational swing-folding process is based on a combination of conventional spinning and swing-folding. Therefore, a round blank rotates on a profiled mandrel and due to the swinging of a cylindrical forming tool, the blank is formed to a cup with low sheet thinning. In addition, thickening results at the edge of the blank and wrinkling occurs. However, the wrinkles are formed into the indentation of the profiled mandrel and can be reshaped as an advantage in the second process step, the radial profiling. Due to the rotation and continuous radial feed of a profiled forming tool to the profiled mandrel, the axial profile is formed in the second process step. Because of the minor relative movement in axial direction between tool and blank, low sheet thinning occurs. This is an advantage of the principle of the process.

  9. Solubility of hydrogen isotopes in stressed hydride-forming metals

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  10. Comparison of Two Commercial FE-Codes for Sheet Metal Forming

    Revuelta, A.; Larkiola, J.; Kanervo, K.; Korhonen, A. S.; Myllykoski, P.

    2007-01-01

    There is urgent need to develop new advanced fast and cost-effective mass-production methods for small sheet metal components. Traditionally progressive dies have been designed by using various CAD techniques. Recent results in mass production of small sheet metal parts using progressive dies and a transfer press showed that the tool design time may be cut in up to a half by using 3D finite element simulation of forming. In numerical simulation of sheet metal forming better constitutive models are required to obtain more accurate results, reduce the time for tool design and cut the production costs further. Accurate models are needed to describe the initial yielding, subsequent work hardening and to predict the formability. In this work two commercially available finite element simulation codes, PAM-STAMP and LS-DYNA, were compared in forming of small austenitic stainless steel sheet part for electronic industry. Several constitutive models were used in both codes and the results were compared. Comparisons were made between the same models in each of the codes and also between different models in the same code. Material models ranged from very simple to advanced ones, which took into account anisotropy and both isotropic and kinematic hardening behavior. In order to make a valid comparison we employed similar finite element meshes. The effects of the material models parameters were studied and the results were compared with experiments. The effects of the computational time were also studied

  11. 4. Seminar on efficient metal forming and machining: papers

    1982-01-01

    The 4th seminar on efficient metal forming and machining was held at the CSIR conference centre in Pretoria on 16 November 1982. This conference basically discussed the forming, fabrication and machining of metals which included the different methods used as well as new developments on tools manufacturing and their applications. The topics that were discussed cover subjects such as the creep feed grinding, thermal properties of coating materials and their effect on the efficiency of coated cutting tools, economic rough and finish milling, the design and application of high speed steel cutting tools, aluminium extrusion, the manufacturing and finishing of extrusion dies, broaching techniques, cold forming in the fastener industry, finishing methods for spiral, bevel and hypoid gears, laser cutting, press tool design, and productivity in the forging industry. Another topic that were discussed, is the current status of diamond and cubic boron nitride composites, their synthesis and roll in the production of a new range of ultra hard ceramic-type materials

  12. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  13. Multi-objective optimization under uncertainty for sheet metal forming

    Lafon Pascal

    2016-01-01

    Full Text Available Aleatory uncertainties in material properties, blank thickness and friction condition are inherent and irreducible variabilities in sheet metal forming. Optimal design configurations, which are obtained by conventional design optimization methods, are not always able to meet the desired targets due to the effect of uncertainties. This paper proposes a multi-objective robust design optimization that aims to tackle this problem. Results obtained on a U shape draw bending benchmark show that spring-back effect can be controlled by optimizing process parameters.

  14. A General Arbitrary Lagrangian Eulerian Formulation for the Numerical Simulation of 3D Forming Processes

    Boman, R.; Papeleux, L.; Ponthot, J. P.

    2007-01-01

    In this paper, the Arbitrary Lagrangian Eulerian formalism is used to compute the steady state of a 2D metal cutting operation and a 3D U-shaped cold roll forming process. Compared to the Lagrangian case, this method allows the use of a refined mesh near the tools, leading to an accurate representation of the chip formation (metal cutting) and the bending of the sheet (roll forming) with a limited computational time. The main problem of this kind of simulation is the rezoning of the nodes on the free surfaces of the sheet. A modified iterative isoparametric smoother is used to manage this geometrically complex and CPU expensive task

  15. Numerical simulations of the metallicity distribution in dwarf spheroidal galaxies

    Ripamonti, E.; Tolstoy, E.; Helmi, A.; Battaglia, G.; Abel, T.

    2006-01-01

    Abstract: Recent observations show that the number of stars with very low metallicities in the dwarf spheroidal satellites of the Milky Way is low, despite the low average metallicities of stars in these systems. We undertake numerical simulations of star formation and metal enrichment of dwarf

  16. Variations in Canonical Star-Forming Laws at Low Metallicity

    Monkiewicz, Jacqueline; Bowman, Judd D.; Scowen, Paul

    2018-01-01

    Empirically-determined star formation relations link observed galaxy luminosities to extrapolated star formation rates at almost every observable wavelength range. These laws are a cornerstone of extragalactic astronomy, and will be critically important for interpreting upcoming observations of early high-redshift protogalaxies with JWST and WFIRST. There are indications at a variety of wavelengths that these canonical relations may become unreliable at the lowest metallicities observed. This potentially complicates interpretation of the earliest protogalaxies, which are expected to be pristine and largely unenriched by stellar nucleosynthesis. Using a sample of 15 local dwarf galaxies with 12+[O/H] dwarf galaxies 1 Zw 18 and SBS 0335-052E suggest that the far-IR/radio relation probably deviates at low metallicities, but the low luminosity end of the relation is not well sampled. The upgraded Jansky Very Large Array has the sensitivity to fill in this gap. I have obtained 45 hours of L- and C-band continuum data of my dwarf galaxy sample. I present radio continuum imaging of an initial sub-sample of Local Group dwarfs, some of which have never before been detected in radio continuum. The H-alpha/UV relationship is likewise known to become unreliable for dwarf galaxies, though this has been attributed to dwarf galaxy "bursty-ness" rather than metallicity effects. I have conducted a parallel survey of emission line imaging to study the underlying astrophysics of the H-alpha/UV relation. Using Balmer decrement imaging, I map out the pixel-to-pixel dust distribution and geometry within the nearest galaxies in my sample. I compare this to GALEX UV imaging. I discuss implications for UV escape fraction, and present initial results of the canonical star-forming relations at low galaxy luminosity and metallicity. THIS IS A POSTER AND WILL BE LOCATED IN THE AAS BOOTH.

  17. A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming

    Meier, Horst; Laurischkat, Roman; Zhu Junhong

    2011-01-01

    One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi body system model and its included compensation method.

  18. Metallic nanomaterials formed by exerting large plastic strains

    Richert, M; Richert, J.; Zasadzinski, J.; Hawrylkiewicz, S.

    2002-01-01

    The investigations included pure Al and Cu single crystals, AlMg5 alloy and AlCuZr alloy have been presented. The materials were deformed by the cyclic extrusion compression method (CEC) within the range of true strains φ = 0.4-59.8 (1 to 67 deformation cycles by the CEC method). In all examined materials a strong tendency to form banded was observed. Within the range of very large plastic strains there was observed intensive rebuilding of the banded microstructure into subgrains, at first of rhombic shape, and next into equiaxial subgrains. A characteristic feature of the newly formed subgrains, not encountered in the range of conventional deformations, was the occurrence of large misorientation angles between the newly formed subgrains. The proportion of large misorientation angles in the microstructure varied, and it increased with increasing deformation. Reduction of the recovery process in AlMg5 and AlCuZr alloys preserved the growth of the newly formed nanograins, favoring the retaining of the nanomeric dimensions. This results show that there is the effective possibility of production of metallic nanomaterials by exerting of very large nonconventional plastic strains. (author)

  19. Off-line testing of multifunctional surfaces for metal forming applications

    Godi, A.; Grønbæk, J.; De Chiffre, L.

    2015-01-01

    In this paper, Bending-Under-Tension, an off-line test method simulating deep-drawing, is chosen for investigating the effectiveness of multifunctional (MUFU) surfaces in metal forming operations. Four different MUFU surfaces, characterized by a plateau bearing area and grooves for lubricant...... retention, are manufactured, together with two polished references. During the tests, surface texture is the only variable. The results show how MUFU surfaces perform better than the polished references, which produce severe galling, while MUFU surfaces with low bearing area display no clear evidence...... of galling. Metal-to-metal contact occurs anyway, but the strip material is pulverized and deposited onto the tool instead of cold-welding to it. The pockets create a discontinuity on the texture hindering pick-up propagation....

  20. FEM simulation of multi step forming of thick sheet

    Wisselink, H.H.; Huetink, Han

    2004-01-01

    A case study has been performed on the forming of an industrial product. This product, a bracket, is made of 5mm thick sheet in multiple steps. The process exists of a bending step followed by a drawing and a flanging step. FEM simulations have been used to investigate this forming process. First,

  1. A shell approach for fibrous reinforcement forming simulations

    Liang, B.; Colmars, J.; Boisse, P.

    2018-05-01

    Because of the slippage between fibers, the basic assumptions of classical plate and shell theories are not verified by fiber reinforcement during a forming. However, simulations of reinforcement forming use shell finite elements when wrinkles development is important. A shell formulation is proposed for the forming simulations of continuous fiber reinforcements. The large tensile stiffness leads to the quasi inextensibility in the fiber directions. The fiber bending stiffness determines the curvature of the reinforcement. The calculation of tensile and bending virtual works are based on the precise geometry of the single fiber. Simulations and experiments are compared for different reinforcements. It is shown that the proposed fibrous shell approach not only correctly simulates the deflections but also the rotations of the through thickness material normals.

  2. Coating-substrate-simulations applied to HFQ® forming tools

    Leopold Jürgen

    2015-01-01

    Full Text Available In this paper a comparative analysis of coating-substrate simulations applied to HFQTM forming tools is presented. When using the solution heat treatment cold die forming and quenching process, known as HFQTM, for forming of hardened aluminium alloy of automotive panel parts, coating-substrate-systems have to satisfy unique requirements. Numerical experiments, based on the Advanced Adaptive FE method, will finally present.

  3. Sequential optimization and reliability assessment method for metal forming processes

    Sahai, Atul; Schramm, Uwe; Buranathiti, Thaweepat; Chen Wei; Cao Jian; Xia, Cedric Z.

    2004-01-01

    Uncertainty is inevitable in any design process. The uncertainty could be due to the variations in geometry of the part, material properties or due to the lack of knowledge about the phenomena being modeled itself. Deterministic design optimization does not take uncertainty into account and worst case scenario assumptions lead to vastly over conservative design. Probabilistic design, such as reliability-based design and robust design, offers tools for making robust and reliable decisions under the presence of uncertainty in the design process. Probabilistic design optimization often involves double-loop procedure for optimization and iterative probabilistic assessment. This results in high computational demand. The high computational demand can be reduced by replacing computationally intensive simulation models with less costly surrogate models and by employing Sequential Optimization and reliability assessment (SORA) method. The SORA method uses a single-loop strategy with a series of cycles of deterministic optimization and reliability assessment. The deterministic optimization and reliability assessment is decoupled in each cycle. This leads to quick improvement of design from one cycle to other and increase in computational efficiency. This paper demonstrates the effectiveness of Sequential Optimization and Reliability Assessment (SORA) method when applied to designing a sheet metal flanging process. Surrogate models are used as less costly approximations to the computationally expensive Finite Element simulations

  4. Porous silicon based anode material formed using metal reduction

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  5. Compressive deformation of in situ formed bulk metallic glass composites

    Clausen, B. [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lee, S.Y. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Ustuendag, E. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Kim, C.P. [Liquidmetal Technologies, Lake Forest, CA 92630 (United States); Brown, D.W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, M.A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2006-02-15

    A bulk metallic glass matrix composite with dendc second phase precipitates was investigated using neutron diffraction and self-consistent modeling (SCM) to ascertain its deformation mechanisms. The compressive behavior of both the composite and the second phase (in its monolithic form) were investigated. The diffraction data were compared to the predictions of a new SCM resulting in good agreement. For the first time, this model considered both amorphous and crystalline phases and allowed the calculation of single crystal elastic constants from polycrystalline diffraction data. It was shown that the ductile second phase yielded first upon loading, and this was followed by multiple shear band formation in the matrix, a process which enhanced the ductility of the composite.

  6. Compressive deformation of in situ formed bulk metallic glass composites

    Clausen, B.; Lee, S.Y.; Ustuendag, E.; Kim, C.P.; Brown, D.W.; Bourke, M.A.M.

    2006-01-01

    A bulk metallic glass matrix composite with dendritic second phase precipitates was investigated using neutron diffraction and self-consistent modeling (SCM) to ascertain its deformation mechanisms. The compressive behavior of both the composite and the second phase (in its monolithic form) were investigated. The diffraction data were compared to the predictions of a new SCM resulting in good agreement. For the first time, this model considered both amorphous and crystalline phases and allowed the calculation of single crystal elastic constants from polycrystalline diffraction data. It was shown that the ductile second phase yielded first upon loading, and this was followed by multiple shear band formation in the matrix, a process which enhanced the ductility of the composite

  7. Numerical simulation of X90 UOE pipe forming process

    Zou, Tianxia; Ren, Qiang; Peng, Yinghong; Li, Dayong; Tang, Ding; Han, Jianzeng; Li, Xinwen; Wang, Xiaoxiu

    2013-12-01

    The UOE process is an important technique to manufacture large-diameter welding pipes which are increasingly applied in oil pipelines and offshore platforms. The forming process of UOE mainly consists of five successive operations: crimping, U-forming, O-forming, welding and mechanical expansion, through which a blank is formed into a pipe in a UOE pipe mill. The blank with an appropriate edge bevel is bent into a cylindrical shape by crimping (C-forming), U-forming and O-forming successively. After the O-forming, there is an open-seam between two ends of the plate. Then, the blank is welded by automatic four-electrode submerged arc welding technique. Subsequently, the welded pipe is expanded with a mechanical expander to get a high precision circular shape. The multiple operations in the UOE mill make it difficult to control the quality of the formed pipe. Therefore, process design mainly relies on experience in practical production. In this study, the UOE forming of an API X90 pipe is studied by using finite element simulation. The mechanical properties tests are performed on the API X90 pipeline steel blank. A two-dimensional finite element model under the hypothesis of plane strain condition is developed to simulate the UOE process according to data coming from the workshop. A kinematic hardening model is used in the simulation to take the Bauschinger effect into account. The deformation characteristics of the blank during the forming processes are analyzed. The simulation results show a significant coherence in the geometric configurations comparing with the practical manufacturing.

  8. Simulated BRDF based on measured surface topography of metal

    Yang, Haiyue; Haist, Tobias; Gronle, Marc; Osten, Wolfgang

    2017-06-01

    The radiative reflective properties of a calibration standard rough surface were simulated by ray tracing and the Finite-difference time-domain (FDTD) method. The simulation results have been used to compute the reflectance distribution functions (BRDF) of metal surfaces and have been compared with experimental measurements. The experimental and simulated results are in good agreement.

  9. A new constitutive model for prediction of springback in sheet metal forming

    Appiah, E.; Jain, M.

    2004-01-01

    With advances in computer capabilities, cost of sheet metal forming has being reducing mainly due to the reduction of trial and error approaches. At the moment, a complete process can be simulated on computer and appropriate forming conditions optimized before actual industrial forming process is carried out. While formability predictions have improved, the problem of springback exhibited by most metal, including aluminum alloy AA6111-T4, after forming persist and often leads to significant part fit-up problems during assembly. There are a number of factors that affect springback and perhaps the most significant one is constitutive equation. In this paper springback predicted by six advanced kinematic models are evaluated. In addition an improved constitutive kinematic model is presented. It is shown that by adding stress correction term (SCT) to Armstrong-Frederick model a relatively simple and yet accurate stress prediction could be obtained. The SCT was developed with the assumption that the yield surface remains convex, yield center depends on translation, size and shape variations of the yield surface. The model is implemented in a commercial finite element code (ABAQUS/Standard) via its user material interface (UMAT). Numerical simulations of U-bending were performed using automotive aluminum sheet material (AA6111-T4). It was noted that springback has inverse relationship with residual stress

  10. Simulation of root forms using cellular automata model

    Winarno, Nanang; Prima, Eka Cahya; Afifah, Ratih Mega Ayu

    2016-01-01

    This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled “A New Kind of Science” discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram’s investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation used four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations

  11. Simulation of root forms using cellular automata model

    Winarno, Nanang, E-mail: nanang-winarno@upi.edu; Prima, Eka Cahya [International Program on Science Education, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi no 229, Bandung40154 (Indonesia); Afifah, Ratih Mega Ayu [Department of Physics Education, Post Graduate School, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi no 229, Bandung40154 (Indonesia)

    2016-02-08

    This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled “A New Kind of Science” discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram’s investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation used four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations.

  12. Characterising the acoustoplastic effect in an ultrasonically assisted metal forming process

    Aziz, S A; Lucas, M

    2012-01-01

    An investigation through experiments and finite element analysis (FEA) has been carried out to study the effects of applying ultrasonic oscillations to the lower platen in forming tests for two different metals. Previous research has shown that by applying ultrasonic vibrations to the lower platen in compression tests on pure aluminium specimens, the resulting stress-strain relationship can be characterised by a temporary effective softening of the material properties during intervals of ultrasonic excitation. The current research demonstrates this effect in two different metal specimens and additionally shows that finite element simulations can be used to model the behaviour in terms of both volume and surface effects. In this study, the ultrasonic excitation was introduced both prior to and post yield and the process simulations were developed in the FEA software Abaqus. The data recorded from experiments and predicted by the FEA illustrate how ultrasonically assisted metal forming can result in a lowering of the static flow stress, consistent with the effective material softening proposed previously in studies of the acoustoplastic effect.

  13. Effect of continuum damage mechanics on spring back prediction in metal forming processes

    Nayebi, Ali; Shahabi, Mehdi

    2017-01-01

    The influence of considering the variations in material properties was investigated through continuum damage mechanics according to the Lemaitre isotropic unified damage law to predict the bending force and spring back in V-bending sheet metal forming processes, with emphasis on Finite element (FE) simulation considerations. The material constants of the damage model were calibrated through a uniaxial tensile test with an appropriate and convenient repeating strategy. Holloman’s isotropic and Ziegler’s linear kinematic hardening laws were employed to describe the behavior of a hardening material. To specify the ideal FE conditions for simulating spring back, the effect of the various numerical considerations during FE simulation was investigated and compared with the experimental outcome. Results indicate that considering continuum damage mechanics decreased the predicted bending force and improved the accuracy of spring back prediction.

  14. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Shoji Hayashi

    Full Text Available Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

  15. A multi-level code for metallurgical effects in metal-forming processes

    Taylor, P.A.; Silling, S.A. [Sandia National Labs., Albuquerque, NM (United States). Computational Physics and Mechanics Dept.; Hughes, D.A.; Bammann, D.J.; Chiesa, M.L. [Sandia National Labs., Livermore, CA (United States)

    1997-08-01

    The authors present the final report on a Laboratory-Directed Research and Development (LDRD) project, A Multi-level Code for Metallurgical Effects in metal-Forming Processes, performed during the fiscal years 1995 and 1996. The project focused on the development of new modeling capabilities for simulating forging and extrusion processes that typically display phenomenology occurring on two different length scales. In support of model fitting and code validation, ring compression and extrusion experiments were performed on 304L stainless steel, a material of interest in DOE nuclear weapons applications.

  16. Numerical simulation of gas metal arc welding parametrical study

    Szanto, M.; Gilad, I.; Shai, I.; Quinn, T.P.

    2002-01-01

    The Gas Metal Arc Welding (GMAW) is a widely used welding process in the industry. The process variables are usually determined through extensive experiments. Numerical simulation, reduce the cost and extends the understanding of the process. In the present work, a versatile model for numerical simulation of GMAW is presented. The model provides the basis for fundamental understanding of the process. The model solves the magneto-hydrodynamic equations for the flow and temperature fields of the molten electrode and the plasma simultaneously, to form a fully coupled model. A commercial CFD code was extended to include the effects of radiation, Lorentz forces, Joule heating and thermoelectric effects. The geometry of the numerical model assembled to fit an experimental apparatus. To demonstrate the method, an aluminum electrode was modeled in a pure argon arc. Material properties and welding parameters are the input variables in the numerical model. In a typical process, the temperature distribution of the plasma is over 15000 K, resulting high non-linearity of the material properties. Moreover, there is high uncertainty in the available property data, at that range of temperatures. Therefore, correction factors were derived for the material properties to adjust between the numerical and the experimental results. Using the compensated properties, parametric study was performed. The effects of the welding parameters on the process, such the working voltage, electrode feed rate and shielding gas flow, were derived. The principal result of the present work is the ability to predict, by numerical simulation, the mode, size and frequency of the metal transferred from the electrode, which is the main material and energy source for the welding pool in GMAW

  17. Simulating cosmic metal enrichment by the first galaxies

    Pallottini, A.; Ferrara, A.; Gallerani, S.; Salvadori, S.; D'Odorico, V.

    We study cosmic metal enrichment via adaptive mesh refinement hydrodynamical simulations in a (10 Mpc h-1)3 volume following the Population III (PopIII)-PopII transition and for different PopIII initial mass function (IMFs). We have analysed the joint evolution of metal enrichment on galactic and

  18. Warm forming simulation of Al-Mg sheet

    Kurukuri, S.; van den Boogaard, Antonius H.; Miroux, A.; Holmedal, B.

    2009-01-01

    The accuracy of warm forming simulations depends to a large extend on the description of the yield surface with temperature and strain-rate dependent hardening and on the modeling of friction. In this paper, the anisotropic behavior of the sheet is described by using the Vegter yield locus, which is

  19. Modeling corrosion and constituent release from a metal waste form

    Bauer, T. H.; Fink, J. K.; Abraham, D. P.; Johnson, I.; Johnson, S. G.; Wigeland, R. A.

    2000-01-01

    Several ANL ongoing experimental programs have measured metal waste form (MWF) corrosion and constituent release. Analysis of this data has initiated development of a consistent and quantitative phenomenology of uniform aqueous MWF corrosion. The effort so far has produced a preliminary fission product and actinide release model based on measured corrosion rates and calibrated by immersion test data for a 90 C J-13 and concentrated J-13 solution environment over 1-2 year exposure times. Ongoing immersion tests of irradiated and unirradiated MWF samples using more aggressive test conditions and improved tracking of actinides will serve to further validate, modify, and expand the application base of the preliminary model-including effects of other corrosion mechanisms. Sample examination using both mechanical and spectrographic techniques will better define both the nature and durability of the protective barrier layer. It is particularly important to assess whether the observations made with J-13 solution at 900 C persist under more aggressive conditions. For example, all the multiplicative factors in Table 1 implicitly assume the presence of protective barriers. Under sufficiently aggressive test conditions, such protective barriers may very well be altered or even eliminated

  20. Modeling of optimization strategies in the incremental CNC sheet metal forming process

    Bambach, M.; Hirt, G.; Ames, J.

    2004-01-01

    Incremental CNC sheet forming (ISF) is a relatively new sheet metal forming process for small batch production and prototyping. In ISF, a blank is shaped by the CNC movements of a simple tool in combination with a simplified die. The standard forming strategies in ISF entail two major drawbacks: (i) the inherent forming kinematics set limits on the maximum wall angle that can be formed with ISF. (ii) since elastic parts of the imposed deformation can currently not be accounted for in CNC code generation, the standard strategies can lead to undesired deviations between the target and the sample geometry.Several enhancements have recently been put forward to overcome the above limitations, among them a multistage forming strategy to manufacture steep flanges, and a correction algorithm to improve the geometric accuracy. Both strategies have been successful in improving the forming of simple parts. However, the high experimental effort to empirically optimize the tool paths motivates the use of process modeling techniques.This paper deals with finite element modeling of the ISF process. In particular, the outcome of different multistage strategies is modeled and compared to collated experimental results regarding aspects such as sheet thickness and the onset of wrinkling. Moreover, the feasibility of modeling the geometry of a part is investigated as this is of major importance with respect to optimizing the geometric accuracy. Experimental validation is achieved by optical deformation measurement that gives the local displacements and strains of the sheet during forming as benchmark quantities for the simulation

  1. Computer Simulation of Material Flow in Warm-forming Bimetallic Components

    Kong, T. F.; Chan, L. C.; Lee, T. C.

    2007-05-01

    Bimetallic components take advantage of two different metals or alloys so that their applicable performance, weight and cost can be optimized. However, since each material has its own flow properties and mechanical behaviour, heterogeneous material flows will occur during the bimetal forming process. Those controls of process parameters are relatively more complicated than forming single metals. Most previous studies in bimetal forming have focused mainly on cold forming, and less relevant information about the warm forming has been provided. Indeed, changes of temperature and heat transfer between two materials are the significant factors which can highly influence the success of the process. Therefore, this paper presents a study of the material flow in warm-forming bimetallic components using finite-element (FE) simulation in order to determine the suitable process parameters for attaining the complete die filling. A watch-case-like component made of stainless steel (AISI-316L) and aluminium alloy (AL-6063) was used as the example. The warm-forming processes were simulated with the punch speeds V of 40, 80, and 120 mm/s and the initial temperatures of the stainless steel TiSS of 625, 675, 725, 775, 825, 875, 925, 975, and 1025 °C. The results showed that the AL-6063 flowed faster than the AISI-316L and so the incomplete die filling was only found in the AISI-316L region. A higher TiSS was recommended to avoid incomplete die filling. The reduction of V is also suggested because this can save the forming energy and prevent the damage of tooling. Eventually, with the experimental verification, the results from the simulation were in agreement with those of the experiments. On the basis of the results of this study, engineers can gain a better understanding of the material flow in warm-forming bimetallic components, and be able to determine more efficiently the punch speed and initial material temperature for the process.

  2. Atomistic simulations of Mg-Cu metallic glasses: Mechanical properties

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2004-01-01

    The atomistic mechanisms of plastic deformation in amorphous metals are far from being understood. We have derived potential parameters for molecular dynamics simulations of Mg-Cu amorphous alloys using the Effective Medium Theory. We have simulated the formation of alloys by cooling from the melt...

  3. The corrosion properties of Zr-Cr-NM alloy metallic waste form for longterm disposal

    Han, Seung Youb; Jang, Seon Ah; Eun, Hee Chul; Choi, Jung Hoon; Lee, Ki Rak; Park, Hwan Seo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    KAERI is conducting research on spent cladding hulls and additive metals to generate a solidifcation host matrix for the noble metal fssion product waste in anode sludge from the electro-refning process to minimize the volume of waste that needs to be disposed of. In this study, alloy compositions Zr-17Cr, Zr-22Cr, and Zr-27Cr were prepared with or without eight noble metals representing fuel waste using induction melting. The microstructures of the resulting alloys were characterized and electrochemical corrosion tests were conducted to evaluate their corrosion characteristics. All the compositions had better corrosion characteristics than other Zr-based alloys that were evaluated for comparison. Analysis of the leach solution after the corrosion test of the Zr-22Cr-8NM specimen indicated that the noble metals were not leached during corrosion under 500 mV imposed voltage, which simulates a highly oxidizing disposal environment. The results of this study confrm that Zr-Cr based compositions will likely serve as chemically stable waste forms.

  4. Numerical simulation on chain-die forming of an AHSS top-hat section

    Majji, Raju; Xiang, Yang; Ding, Scott; Yang, Chunhui

    2018-05-01

    The applications of Advanced High-Strength Steels (AHSS) in the automotive industry are rapidly increasing due to a demand for a lightweight material that significantly reduces fuel consumption without compromising passenger safety. Automotive industries and material suppliers are expected by consumers to deliver reliable and affordable products, thus stimulating these manufacturers to research solutions to meet these customer requirements. The primary advantage of AHSS is its extremely high strength to weight ratio, an ideal material for the automotive industry. However, its low ductility is a major disadvantage, in particular, when using traditional cold forming processes such as roll forming and deep drawing process to form profiles. Consequently, AHSS parts frequently fail to form. Thereby, in order to improve quality and reliability on manufacturing AHSS products, a recently-developed incremental cold sheet metal forming technology called Chain-die Forming (CDF) is recognised as a potential solution to the forming process of AHSS. The typical CDF process is a combination of bending and roll forming processes which is equivalent to a roll with a large deforming radius, and incrementally forms the desired shape with split die and segments. This study focuses on manufacturing an AHSS top-hat section with minimum passes without geometrical or surface defects by using finite element modelling and simulations. The developed numerical simulation is employed to investigate the influences on the main control parameter of the CDF process while forming AHSS products and further develop new die-punch sets of compensation design via a numerical optimal process. In addition, the study focuses on the tool design to compensate spring-back and reduce friction between tooling and sheet-metal. This reduces the number of passes, thereby improving productivity and reducing energy consumption and material waste. This numerical study reveals that CDF forms AHSS products of complex

  5. An axisymmetric PFEM formulation for bottle forming simulation

    Ryzhakov, Pavel B.

    2017-01-01

    A numerical model for bottle forming simulation is proposed. It is based upon the Particle Finite Element Method (PFEM) and is developed for the simulation of bottles characterized by rotational symmetry. The PFEM strategy is adapted to suit the problem of interest. Axisymmetric version of the formulation is developed and a modified contact algorithm is applied. This results in a method characterized by excellent computational efficiency and volume conservation characteristics. The model is validated. An example modelling the final blow process is solved. Bottle wall thickness is estimated and the mass conservation of the method is analysed.

  6. Modeling The Interaction Effects Between Tools And The Work Piece For Metal Forming Processes

    Franzke, Martin; Puchhala, Sreedhar; Dackweiler, Harald

    2007-01-01

    In metal forming processes especially in cold forming, elastic deformation of the tools has a big impact on the final shape of the work-piece. Computation of such processes considering the plastic effects of the work-piece and elastic deformations of the tools at a time in a single FE model complicates to manage the convergence criteria. This situation is even aggravated if the contact situations (between working and support rolls) have to be considered in the simulation, which requires a very fine discretization of the contact zones of both the tool and work piece. This paper presents recently developed concept which meets the above mentioned demands very effectively. Within this concept, the computation of the elastic effects of the tools is separated from the process simulation (which considers elastic-plastic effects of the work-piece). Both simulations are coupled via automatic data interchange, which is bi-directional, because both simulations influence each other. The advantages of this concept include a quite easy to handle contact situations in process simulation, smaller stiffness matrix compared to single model approach and good convergence of the computation. This concept is highly generalized and successfully applied to simulate rolling, drawing, extrusion and forging processes. The above mentioned concept is being implemented into the FE package PEP and LARSTRAN/SHAPE. Rolling experiments are conducted in duo and quarto configuration. Optical three-dimensional digitalizing system was used to measure the deformations within the machine and work-piece profile. These results are used for the validation of FE simulations. This work is being sponsored by the German Research Foundation (DFG) through the project ''Interaction effects between processes and structures-SPP1180''

  7. Computer simulations of the mechanical properties of metals

    Schiøtz, Jakob; Vegge, Tejs

    1999-01-01

    Atomic-scale computer simulations can be used to gain a better understanding of the mechanical properties of materials. In this paper we demonstrate how this can be done in the case of nanocrystalline copper, and give a brief overview of how simulations may be extended to larger length scales....... Nanocrystline metals are metals with grain sizes in the nanometre range, they have a number of technologically interesting properties such as much increased hardness and yield strength. Our simulations show that the deformation mechanisms are different in these materials than in coarse-grained materials...

  8. Friction and lubrication modelling in sheet metal forming: Influence of lubrication amount, tool roughness and sheet coating on product quality

    Hol, J.; Wiebenga, J. H.; Carleer, B.

    2017-09-01

    In the stamping of automotive parts, friction and lubrication play a key role in achieving high quality products. In the development process of new automotive parts, it is therefore crucial to accurately account for these effects in sheet metal forming simulations. This paper presents a selection of results considering friction and lubrication modelling in sheet metal forming simulations of a front fender product. For varying lubrication conditions, the front fender can either show wrinkling or fractures. The front fender is modelled using different lubrication amounts, tool roughness’s and sheet coatings to show the strong influence of friction on both part quality and the overall production stability. For this purpose, the TriboForm software is used in combination with the AutoForm software. The results demonstrate that the TriboForm software enables the simulation of friction behaviour for varying lubrication conditions, i.e. resulting in a generally applicable approach for friction characterization under industrial sheet metal forming process conditions.

  9. Multi-scale contact modeling of coated steels for sheet metal forming applications

    Shisode, Meghshyam; Hazrati Marangalou, Javad; Mishra, Tanmaya; De Rooij, Matthijn; Van Den Boogaard, Ton; Bay, Niels; Nielsen, Chris V.

    2018-01-01

    Friction in sheet metal forming is a local phenomenon which depends on continuously evolving contact conditions during the forming process. This is mainly influenced by local contact pressure, surface textures of the sheet metal as well as the forming tool surface profile and material behavior. The

  10. Working with simulated forms of interaction in health care education

    Nordentoft, Helle Merete; Olesen, Lektor Birgitte Ravn

    This paper argues that role-play as a simulated form of interaction - live and performed on video - is a creative method which has the potential to generate and support authentic dialogues in practice. In the paper we draw on experiences from 6 interdisciplinary workshops at a Danish hospital...... in which role-play of practice situations - both live and performed on video - formed the launching-pad for participants’ oral and written reflections. Our findings show that role-play has the potential to 1) develop professionals’ sensitivity to the significance of unexpected, embodied and emotional...

  11. Early stage crystallization kinetics in metallic glass-forming alloys

    Louzguine-Luzgin, Dmitri V.

    2014-01-01

    Highlights: • Heterogeneous nucleation may precede the homogeneous one in an alloy. • High kinetic constants and the nucleation rate at the initial stage. • Metallic glasses have heterogeneous nucleation sites which saturate later. -- Abstract: The crystallization kinetics and structural changes of a few metallic glassy alloys were monitored using X-ray diffraction, transmission electron microscopy, differential scanning and isothermal calorimetry methods. Microstructural observations were used to estimate the nucleation and growth rates. A clear comparison of the differences in the crystallization kinetics in the metallic glassy samples is observed at the early and later crystallization stages

  12. Analysis of residual stress state in sheet metal parts processed by single point incremental forming

    Maaß, F.; Gies, S.; Dobecki, M.; Brömmelhoff, K.; Tekkaya, A. E.; Reimers, W.

    2018-05-01

    The mechanical properties of formed metal components are highly affected by the prevailing residual stress state. A selective induction of residual compressive stresses in the component, can improve the product properties such as the fatigue strength. By means of single point incremental forming (SPIF), the residual stress state can be influenced by adjusting the process parameters during the manufacturing process. To achieve a fundamental understanding of the residual stress formation caused by the SPIF process, a valid numerical process model is essential. Within the scope of this paper the significance of kinematic hardening effects on the determined residual stress state is presented based on numerical simulations. The effect of the unclamping step after the manufacturing process is also analyzed. An average deviation of the residual stress amplitudes in the clamped and unclamped condition of 18 % reveals, that the unclamping step needs to be considered to reach a high numerical prediction quality.

  13. Impact Of Elastic Modulus Degradation On Springback In Sheet Metal Forming

    Halilovic, Miroslav; Stok, Boris; Vrh, Marko

    2007-01-01

    Strain recovery after removal of forming loads, commonly defined as springback, is of great concern in sheet metal forming, in particular with regard to proper prediction of the final shape of the part. To control the problem a lot of work has been done, either by minimizing the springback on the material side or by increasing the estimation precision in corresponding process simulations. Unfortunately, by currently available software springback still cannot be adequately predicted, because most analyses of springback are using linear, isotropic and constant Young's modulus and Poisson's ratio. But, as it was measured and reported, none of it is true. The aim of this work is to propose an upgraded mechanical model which takes evolution of damage and related orthotropic stiffness degradation into account. Damage is considered by inclusion of ellipsoidal cavities, and their influence on the stiffness degradation is taken in accordance with the Mori-Tanaka theory, adopting the GTN model for plastic flow. In order to improve the numerical springback prediction, two major things are important: first, the correct evaluation of the stress-strain state at the end of the forming process, and second, correctness of the elastic properties used in the elastic relaxation analysis. Since in modelling of the forming process we adopt a damage constitutive model with orthotropic stiffness degradation considered, a corresponding damage parameters identification upon specific experimental tests data must be performed first, independently of the metal forming modelling. An improved identification of material parameters, which simultaneously considers tensile test results with different type of specimens and using neural network, is proposed. With regard to the case in which damage in material is neglected it is shown in the article how the springback of a formed part differs, when we take orthotropic damage evolution into consideration

  14. Defining a metal-based waste form for IFR pyroprocessing wastes

    McDeavitt, S.M.; Park, J.Y.; Ackerman, J.P.

    1994-01-01

    Pyrochemical electrorefining to recover actinides from metal nuclear fuel is a key element of the Integral Fast Reactor (IFR) fuel cycle. The process separates the radioactive fission products from the long-lived actinides in a molten LiCl-KCl salt, and it generates a lower waste volume with significantly less long-term toxicity as compared to spent nuclear fuel. The process waste forms include a mineral-based waste form that will contain fission products removed from an electrolyte salt and a metal-based waste form that will contain metallic fission products and the fuel cladding and process materials. Two concepts for the metal-based waste form are being investigated: (1) encapsulating the metal constituents in a Cu-Al alloy and (2) alloying the metal constituents into a uniform stainless steel-based waste form. Results are given from our recent studies of these two concepts

  15. Simulation of changes in temperature and pressure fields during high speed projectiles forming by explosion

    Marković Miloš D.

    2016-01-01

    Full Text Available The Research in this paper considered the temperatures fields as the consequently influenced effects appeared by plastic deformation, in the explosively forming process aimed to design Explosively Formed Projectiles (henceforth EFP. As the special payloads of the missiles, used projectiles are packaged as the metal liners, joined with explosive charges, to design explosive propulsion effect. Their final form and velocity during shaping depend on distributed temperatures in explosively driven plastic deformation process. Developed simulation model consider forming process without metal cover of explosive charge, in aim to discover liner’s dynamical correlations of effective plastic strains and temperatures in the unconstrained detonation environment made by payload construction. The temperature fields of the liner’s copper material are considered in time, as the consequence of strain/stress displacements driven by explosion environmental thermodynamically fields of pressures and temperatures. Achieved final velocities and mass loses as the expected EFP performances are estimated regarding their dynamical shaping and thermal gradients behavior vs. effective plastic strains. Performances and parameters are presented vs. process time, numerically simulated by the Autodyne software package. [Projekat Ministarstva nauke Republike Srbije, br. III-47029

  16. Preparation and Heat-Treatment of DWPF Simulants With and Without Co-Precipitated Noble Metals

    Koopman, David C.:Eibling, Russel E

    2005-01-01

    The Savannah River National Laboratory is in the process of investigating factors suspected of impacting catalytic hydrogen generation in the Chemical Process Cell of the Defense Waste Processing Facility, DWPF. Noble metal catalyzed hydrogen generation in simulation work constrains the allowable acid addition operating window in DWPF. This constraint potentially impacts washing strategies during sludge batch preparation. It can also influence decisions related to the addition of secondary waste streams to a sludge batch. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Parallel preparations of two sludge simulants targeting the composition of Sludge Batch 3 were performed in order to evaluate the impact of the form of noble metals. Identical steps were used except that one simulant had dissolved palladium, rhodium, and ruthenium present during the precipitation of the insoluble solids. Noble metals were trimmed into the other stimulant prior to process tests. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The simulants were used as feeds for Sludge Receipt and Adjustment Tank, SRAT, process simulations. The following conclusions were drawn from the simulant preparation work: (1) The first preparation of a waste slurry simulant with co-precipitated noble metals was successful, based on the data obtained. It appears that 99+% of the noble metals were retained in the simulant. (2) Better control of carbonate, hydroxide, and post-wash trim chemical additions is needed before the new method of simulant preparation will be as reproducible as the old method. (3) The two new

  17. The glass-forming ability of model metal-metalloid alloys

    Zhang, Kai; Liu, Yanhui; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Shattuck, Mark D. [Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); O’Hern, Corey S. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2015-03-14

    Bulk metallic glasses (BMGs) are amorphous alloys with desirable mechanical properties and processing capabilities. To date, the design of new BMGs has largely employed empirical rules and trial-and-error experimental approaches. Ab initio computational methods are currently prohibitively slow to be practically used in searching the vast space of possible atomic combinations for bulk glass formers. Here, we perform molecular dynamics simulations of a coarse-grained, anisotropic potential, which mimics interatomic covalent bonding, to measure the critical cooling rates for metal-metalloid alloys as a function of the atomic size ratio σ{sub S}/σ{sub L} and number fraction x{sub S} of the metalloid species. We show that the regime in the space of σ{sub S}/σ{sub L} and x{sub S} where well-mixed, optimal glass formers occur for patchy and LJ particle mixtures, coincides with that for experimentally observed metal-metalloid glass formers. Thus, our simple computational model provides the capability to perform combinatorial searches to identify novel glass-forming alloys.

  18. Process of forming a sol-gel/metal hydride composite

    Congdon, James W [Aiken, SC

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  19. THE PRESSURE OF THE STAR-FORMING INTERSTELLAR MEDIUM IN COSMOLOGICAL SIMULATIONS

    Munshi, Ferah; Quinn, Thomas R.; Governato, Fabio; Christensen, Charlotte; Wadsley, James; Loebman, Sarah; Shen, Sijing

    2014-01-01

    We examine the pressure of the star-forming interstellar medium (ISM) of Milky-Way-sized disk galaxies using fully cosmological SPH+N-body, high-resolution simulations. These simulations include explicit treatment of metal-line cooling in addition to dust and self-shielding, H 2 -based star formation. The four simulated halos have masses ranging from a few times 10 10 to nearly 10 12 solar masses. Using a kinematic decomposition of these galaxies into present-day bulge and disk components, we find that the typical pressure of the star-forming ISM in the present-day bulge is higher than that in the present-day disk by an order of magnitude. We also find that the pressure of the star-forming ISM at high redshift is, on average, higher than ISM pressures at low redshift. This explains why the bulge forms at higher pressures: the disk assembles at lower redshift when the ISM exhibits lower pressure and the bulge forms at high redshift when the ISM has higher pressure. If ISM pressure and IMF variation are tied together, these results could indicate a time-dependent IMF in Milky-Way-like systems as well as a different IMF in the bulge and the disk

  20. Interatomic potentials and the simulation of lattice defects in metals

    Heugten, W.F.W.M. van.

    1979-01-01

    The computer simulation technique is applied to investigate the properties of point defects and line defects in metals. For that purpose crystallites are constructed in which these defects are simulated. In the case of line defects (dislocations) the initial positions of the atoms, surrounding the dislocations, are determined using the elastic theory of anisotropic media. Hereafter the atoms in such crystallites are allowed to relax to there minimum potential energy positions under the influence of the interatomic forces. These forces are derived from interatomic interaction potentials. These potentials are together with the boundary conditions of the simulated crystallite the main input data in these computer simulation models. The metals considered include molybdenum, tungsten and tantalum. (Auth.)

  1. A study of transformation water - soluble forms of hevy metals at waste incenerator for detoxicationof ash.

    Bilets'ka V. А.

    2011-11-01

    Full Text Available The complex research processes of transformation of soluble forms of heavy metals in sediment interaction with ash. Proved that the adsorption processes of immobilization lead to a significant decrease of soluble forms of heavy metals in the waste.

  2. Fundamental Science-Based Simulation of Nuclear Waste Forms

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2010-10-04

    This report presents a hierarchical multiscale modeling scheme based on two-way information exchange. To account for all essential phenomena in waste forms over geological time scales, the models have to span length scales from nanometer to kilometer and time scales from picoseconds to millenia. A single model cannot cover this wide range and a multi-scale approach that integrates a number of different at-scale models is called for. The approach outlined here involves integration of quantum mechanical calculations, classical molecular dynamics simulations, kinetic Monte Carlo and phase field methods at the mesoscale, and continuum models. The ultimate aim is to provide science-based input in the form of constitutive equations to integrated codes. The atomistic component of this scheme is demonstrated in the promising waste form xenotime. Density functional theory calculations have yielded valuable information about defect formation energies. This data can be used to develop interatomic potentials for molecular dynamics simulations of radiation damage. Potentials developed in the present work show a good match for the equilibrium lattice constants, elastic constants and thermal expansion of xenotime. In novel waste forms, such as xenotime, a considerable amount of data needed to validate the models is not available. Integration of multiscale modeling with experimental work is essential to generate missing data needed to validate the modeling scheme and the individual models. Density functional theory can also be used to fill knowledge gaps. Key challenges lie in the areas of uncertainty quantification, verification and validation, which must be performed at each level of the multiscale model and across scales. The approach used to exchange information between different levels must also be rigorously validated. The outlook for multiscale modeling of wasteforms is quite promising.

  3. Evaluation of coefficient of friction in bulk metal forming

    Solhjoo, Soheil

    2014-01-01

    In this study an upper bound analysis for cylindrical "Barrel Compression Test" (BCT) is developed. BCT method is a very simple method which can be utilized in order to evaluate quantitatively the coefficient of friction by means of just one cylindrical specimen in an upsetting test. The method is checked by a series of finite element method (FEM) simulations and by means of the results of FEM simulations the method is modified.

  4. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  5. NEMD simulations for ductile metal sliding

    Hammerberg, James E [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Ravelo, Ramon J [Los Alamos National Laboratory; Holian, Brad L [Los Alamos National Laboratory

    2011-01-31

    We have studied the sliding behavior for a 19 M Al(110)/Al(110) defective crystal at 15 GPa as a function of relative sliding velocity. The general features are qualitatively similar to smaller scale (1.4 M) atom simulations for Al(111)/Al(110) nondefective single crystal sliding. The critical velocity, v{sub c}, is approximately the same for the defective crystal as the size scaled v{sub c}. The lower velocity tangential force is depressed relative to the perfect crystal. The critical temperature, T*, is depressed relative to the perfect crystal. These conclusions are consistent with a lower value for f{sub c} for the defective crystal. The detailed features of structural transformation and the high velocity regime remain to be mapped.

  6. Rapid Prototyping by Single Point Incremental Forming of Sheet Metal

    Skjødt, Martin

    2008-01-01

    . The process is incremental forming since plastic deformation takes place in a small local zone underneath the forming tool, i.e. the sheet is formed as a summation of the movement of the local plastic zone. The process is slow and therefore only suited for prototypes or small batch production. On the other...... in the plastic zone. Using these it is demonstrated that the growth rate of accumulated damage in SPIF is small compared to conventional sheet forming processes. This combined with an explanation why necking is suppressed is a new theory stating that SPIF is limited by fracture and not necking. The theory...... SPIF. A multi stage strategy is presented which allows forming of a cup with vertical sides in about half of the depth. It is demonstrated that this results in strain paths which are far from straight, but strains are still limited by a straight fracture line in the principal strain space. The multi...

  7. Ab initio simulation of dislocation cores in metals

    Ventelon, L.

    2008-01-01

    In the framework of the multi scale simulation of metals and alloys plasticity, the aim of this study is to develop a methodology of ab initio dislocations study and to apply it to the [111] screw dislocation in the bc iron. (A.L.B.)

  8. Simulation of heavy metal contamination of fresh water bodies: toxic ...

    Michael Horsfall

    www.bioline.org.br/ja. Simulation of heavy metal contamination of fresh water bodies: toxic effects in the ... 96 hours (though sampling was done at the 48th hour). Biochemical markers of ... silver, while enhancing the bioavailability of mercury in Ceriodaphnia ..... Biochemical and molecular disorders of bilirubin metabolism.

  9. Novel process chain for hot metal gas forming of ferritic stainless steel 1.4509

    Mosel, André; Lambarri, Jon; Degenkolb, Lars; Reuther, Franz; Hinojo, José Luis; Rößiger, Jörg; Eurich, Egbert; Albert, André; Landgrebe, Dirk; Wenzel, Holger

    2018-05-01

    Exhaust gas components of automobiles are often produced in ferritic stainless steel 1.4509 due to the low thermal expansion coefficient and the low material price. Until now, components of the stainless steel with complex geometries have been produced in series by means of multi-stage hydroforming at room temperature with intermediate annealing operations. The application of a single-stage hot-forming process, also referred to as hot metal gas forming (HMGF), offers great potential to significantly reduce the production costs of such components. The article describes a novel process chain for the HMGF process. Therefore the tube is heated in two steps. After pre-heating of the semi-finished product outside the press, the tube is heated up to forming start temperature by means of a tool-integrated conductive heating before forming. For the tube of a demonstrator geometry, a simulation model for the conduction heating was set up. In addition to the tool development for this process, experimental results are also described for the production of the demonstrator geometry.

  10. Research on Liquid Forming Process of Nickel Superalloys Thin Sheet Metals

    Hyrcza-Michalska M.

    2017-12-01

    Full Text Available The paper presents the study of drawability of thin sheet metals made of a nickel superalloy Inconel type. The manufacturing process of axisymmetric cup – cone and a closed section profile in the form of a circular tube were designed and analyzed. In both cases, working fluid-oil was used in place of the rigid tools. The process of forming liquid is currently the only alternative method for obtaining complex shapes, coatings, and especially if we do it with high-strength materials. In the case of nickel superalloys the search for efficient methods to manufacture of the shaped shell is one of the most considerable problems in aircraft industry [1-5]. However, the automotive industries have the same problem with so-called advanced high-strength steels (AHSS. Due to this, both industrial problems have been examined and the emphasis have been put on the process of liquid forming (hydroforming. The study includes physical tests and the corresponding numerical simulations performed, using the software Eta/Dynaform 5.9. Numerical analysis of the qualitative and quantitative forecasting enables the formability of materials with complex and unusual characteristics of the mechanical properties and forming technology. It has been found that only the computer aided design based on physical and numerical modeling, makes efficient plastic processing possible using a method of hydroforming. Drawability evaluation based on the determination of the mechanical properties of complex characteristics is an indispensable element of this design in the best practice of industrial manufacturing products made of thin sheet metals.

  11. Oxidation kinetics of reaction products formed in uranium metal corrosion

    Totemeier, T. C.

    1998-01-01

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O 2 and Ar-20%O 2 were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates

  12. Oxidation kinetics of reaction products formed in uranium metal corrosion.

    Totemeier, T. C.

    1998-04-22

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O{sub 2} and Ar-20%O{sub 2} were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates.

  13. Quantitative analysis of hydrogen gas formed by aqueous corrosion of metallic uranium

    Fonnesbeck, J.

    2000-01-01

    Three unirradiated EBR-II blanket fuel samples containing depleted uranium metal were corrosion tested in simulated J-13 well water at 90 C. The corrosion rate of the blanket uranium metal was then determined relative to H 2 formation. Corrosion of one of the samples was interrupted prior to complete oxidation of the uranium metal and the solid corrosion product was analyzed for UO 2 and UH 3

  14. Quantitative analysis of hydrogen gas formed by aqueous corrosion of metallic uranium

    Fonnesbeck, J.

    2000-03-20

    Three unirradiated EBR-II blanket fuel samples containing depleted uranium metal were corrosion tested in simulated J-13 well water at 90 C. The corrosion rate of the blanket uranium metal was then determined relative to H{sub 2} formation. Corrosion of one of the samples was interrupted prior to complete oxidation of the uranium metal and the solid corrosion product was analyzed for UO{sub 2} and UH{sub 3}.

  15. Comparisons of friction models in bulk metal forming

    Tan, Xincai

    2002-01-01

    A friction model is one of the key input boundary conditions in finite element simulations. It is said that the friction model plays an important role in controlling the accuracy of necessary output results predicted. Among the various friction models, which one is of higher accuracy is still...... unknown and controversial. In this paper, finite element analyses applying five different friction models to experiments of upsetting of AA 6082 lubricated with four lubricants are presented. Frictional parameter values are determined by fitness of data of friction area ratio from finite element analysis...... to experimental results. It is found that calibration curves of the friction area ratio for all of the five chosen friction models used in the finite element simulation do fit the experimental results. Usually, calbration curves of the friction area ratio are more sensitive to friction at the tool...

  16. Characteristics of metal waste forms containing technetium and uranium

    Fortner, J.A.; Kropf, A.J.; Ebert, W.L. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2013-07-01

    2 prototype alloys: RAW-1(Tc) and RAW-2(UTc) suitable for a wide range of waste stream compositions are being evaluated to support development of a waste form degradation model that can be used to calculate radionuclide source terms for a range of waste form compositions and disposal environments. Tests and analyses to support formulation of waste forms and development of the degradation model include detailed characterizations of the constituent phases using SEM/EDS and TEM, electrochemical tests to quantify the oxidation behavior and kinetics of the individual and coupled phases under a wide range of environmental conditions, and corrosion tests to measure the gross release kinetics of radionuclides under aggressive test conditions.

  17. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  18. Thermal simulation of the magnesium thermal of metallic uranium reduction

    Borges, W.A.; Saliba-Silva, A.M.

    2008-01-01

    Metallic uranium production is vital to fabricate fuel elements for nuclear research reactors and to produce radioisotopes and radiopharmaceuticals. Metallic uranium is got via magnesiothermal reduction of UF 4 . This reaction is carried out inside a closed graphite crucible inserted in a metallic reactor adequately sealed without any outside contact. The assembled set is gradually heated up inside a pit furnace up to reach the reaction ignition temperature (between 600-650 deg C). The optimization of the reactive system depends on the mathematical modeling using simulation by finite elements and computational calculation with specialized programs. In this way, the reactants' thermal behavior is forecast until they reach the ignition temperature. The optimization of the uranium production reaction is based on minimization of thermal losses using better the exo thermal reaction heat. As lower the thermal losses, as higher would be the heat amount to raise the temperature of reaction products. This promotes the adequate melting of uranium and slag, so allowing better metal/slag separation with higher metallic yield. This work shows how the mathematical simulation is made and supplies some preliminary results. (author)

  19. Simulation of the injection casting of metallic fuels

    Nakagawa, Tomokazu; Ogata, Takanari; Tokiwai, Moriyasu.

    1989-01-01

    For the fabrication of metallic fuel pins, injection casting is a preferable process because the simplicity of the process is suitable for remote operation. In this process, the molten metal in the crucible is injected into evacuated molds (suspended above the crucible) by pressurizing the casting furnace. Argonne National Laboratory has already adopted this process in the Integral Fast Reactor program. To obtain fuel pins with good quality, the casting parameters, such as the molten metal temperature, the magnitude of the pressure applied, the pressurizing rate, the cooling time, etc., must be optimized. Otherwise, bad-quality castings (short castings, rough surfaces, shrinkage cavities, mold fracture) may result. Therefore, it is very important in designing the casting equipment and optimizing the operation conditions to be able to predict the fluid and thermal behavior of the castings. This paper describes methods to simulate the heat and mass transfer in the molds and molten metallic fuel during injection casting. The results obtained by simulation are compared with experimental ones. Also, appropriate casting conditions for the uranium-plutonium-zirconium alloy are discussed based on the simulated results

  20. Metastability and thermophysical properties of metallic bulk glass forming alloys

    Wunderlich, R.K.; Fecht, H.J.

    1998-01-01

    The absence of crystallization over a wide time/temperature window can be used to produce bulk metallic glass by relatively slow cooling of the melt. For a number of alloys, including several multicomponent Zr-based alloys, the relevant thermodynamic and thermomechanical properties of the metastable glassy and undercooled liquid states have been measured below and above the glass transition temperature. These measurements include specific heat, viscosity, volume, and elastic properties as a function of temperature. As a result, it becomes obvious that the maximum undercooling for these alloys is given by an isentropic condition before an enthalpic or isochoric instability is reached. Alternatively, these glasses can also be produced by mechanical alloying, thus replacing the thermal disorder by static disorder and resulting in the same thermodynamic glass state. During heating through the undercooled liquid, a nanoscale phase separation occurs for most glasses as a precursor of crystallization

  1. Computer simulation of the Blumlein pulse forming network

    Edwards, C.B.

    1981-03-01

    A computer simulation of the Blumlein pulse-forming network is described. The model is able to treat the case of time varying loads, non-zero conductor resistance, and switch closure effects as exhibited by real systems employing non-ohmic loads such as field-emission vacuum diodes in which the impedance is strongly time and voltage dependent. The application of the code to various experimental arrangements is discussed, with particular reference to the prediction of the behaviour of the output circuit of 'ELF', the electron beam generator in operation at the Rutherford Laboratory. The output from the code is compared directly with experimentally obtained voltage waveforms applied to the 'ELF' diode. (author)

  2. Thermomechanical simulations and experimental validation for high speed incremental forming

    Ambrogio, Giuseppina; Gagliardi, Francesco; Filice, Luigino; Romero, Natalia

    2016-10-01

    Incremental sheet forming (ISF) consists in deforming only a small region of the workspace through a punch driven by a NC machine. The drawback of this process is its slowness. In this study, a high speed variant has been investigated from both numerical and experimental points of view. The aim has been the design of a FEM model able to perform the material behavior during the high speed process by defining a thermomechanical model. An experimental campaign has been performed by a CNC lathe with high speed to test process feasibility. The first results have shown how the material presents the same performance than in conventional speed ISF and, in some cases, better material behavior due to the temperature increment. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process confirming substantially experimental evidence.

  3. Deposited Micro Porous Layer as Lubricant Carrier in Metal Forming

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben

    2008-01-01

    as lubricant reservoirs. Conventional friction tests for cold forming; ring compression and double cup extrusion tests are carried out with Molykote DX paste and mineral oil as lubricant. Both lubricants act as intended for the ring compressions test whereas only the low viscosity oil perform successfully...... in the cup extrusion test. For all specimens without the porous coating, high friction conditions are identified....

  4. Contour forming of various metals--deformation and recrystallization characteristics

    Muller, J.F.

    1978-01-01

    The effects of different forming and annealing sequences on resultant grain size were investigated for several materials. Deep drawing as well as forging techniques were employed during the course of this study. One evaluation was additionally performed to determine the contribution of size effects

  5. Simulating Gamma-Ray Emission in Star-forming Galaxies

    Pfrommer, Christoph [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker, E-mail: cpfrommer@aip.de [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way–like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  6. Simulation of bulk phases formed by polyphilic liquid crystal dendrimers

    J.M. Ilnytskyi

    2010-01-01

    Full Text Available A coarse-grained simulation model for a third generation liquid crystalline dendrimer (LCDr is presented. It allows, for the first time, for a successful molecular simulation study of a relation between the shape of a polyphilic macromolecular mesogen and the symmetry of a macroscopic phase. The model dendrimer consists of a soft central sphere and 32 grafted chains each terminated by a mesogen group. The mesogenic pair interactions are modelled by the recently proposed soft core spherocylinder model of Lintuvuori and Wilson [J. Chem. Phys, 128, 044906, (2008]. Coarse-grained (CG molecular dynamics (MD simulations are performed on a melt of 100 molecules in the anisotropic-isobaric ensemble. The model LCDr shows conformational bistability, with both rod-like and disc-like conformations stable at lower temperatures. Each conformation can be induced by an external aligning field of appropriate symmetry that acts on the mesogens (uniaxial for rod-like and planar for disc-like, leading to formation of a monodomain smectic A (SmA or a columnar (Col phase, respectively. Both phases are stable for approximately the same temperature range and both exhibit a sharp transition to an isotropic cubic-like phase upon heating. We observe a very strong coupling between the conformation of the LCDr and the symmetry of a bulk phase, as suggested previously by theory. The study reveals rich potential in terms of the application of this form of CG modelling to the study of molecular self-assembly of liquid crystalline macromolecules.

  7. Simulating Gamma-Ray Emission in Star-forming Galaxies

    Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way-like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  8. Tool Monitoring and Electronic Event Logging for Sheet Metal Forming Processes

    Gerd Heiserich

    2010-06-01

    Full Text Available This contribution describes some innovative solutions regarding sensor systems for tool monitoring in the sheet metal industry. Autonomous and tamper-proof sensors, which are integrated in the forming tools, can detect and count the strokes carried out by a sheet metal forming press. Furthermore, an electronic event logger for documentary purposes and quality control was developed. Based on this technical solution, new business models such as leasing of sheet metal forming tools can be established for cooperation among enterprises. These models allow usage-based billing for the contractors, taking the effectively produced number of parts into account.

  9. Study of plasticity in metals by numerical simulations

    Clouet, E.

    2013-01-01

    We present a study of the plastic behaviour in metals based on the modelling of dislocation properties. Different simulation tools have been used and developed to study plasticity in structural materials, in particular metals used in the nuclear industry. In iron or zirconium alloys, plasticity is controlled at low temperature by the glide of screw dislocations. Atomistic simulations can be used to model dislocation core properties and thus to obtain a better knowledge of the mechanisms controlling dislocation glide. Such atomistic simulations need nevertheless some special care because of the long range elastic field induced by the dislocations. We have therefore developed a modelling approach relying both on atomistic simulations, using either empirical interatomic potentials or ab initio calculations, and on elasticity theory. Such an approach has been used to obtain dislocation intrinsic core properties. These simulations allowed us to describe, in iron, the variations of these core properties with the dislocation character. In zirconium, we could identity the origin of the high lattice friction and obtain a better understanding of the competition between the different glide systems. At high temperature, dislocations do not only glide but can also cross-slip or climb. This leads to a motion of the dislocations out of their glide plane which needs to be considered when modelling the plastic flow. We performed a study of dislocation climb at different scales, leading to the implementation of a dislocation climb model in dislocation dynamics simulations. (author) [fr

  10. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...

  11. Ring and Volcano Structures Formed by a Metal Dipyrromethene Complex

    Son, Seung Bae; Hahn, Jae Ryang [Chonbuk National Univ., Jeonju (Korea, Republic of); Miao, Qing; Shin, Jiyoung; Dolphin, David [Univ. of British Columbia, Columbia (Canada)

    2014-06-15

    Dichloromethane liquid droplets containing a cobalt dipyrromethene trimer deposited on a graphite surface were found to form coffee ring, toroid ring, or volcano dot structures due to the redistribution of the solute during solvent evaporation. The shapes and size distributions of the ring structures depended on the drying temperature. The shape differences were attributed to the fact that the solvent evaporation rate controlled the self-assembly process that yielded the coffee stain and pinhole structures.

  12. Modeling of the inhomogeneity of grain refinement during combined metal forming process by finite element and cellular automata methods

    Majta, Janusz; Madej, Łukasz; Svyetlichnyy, Dmytro S.; Perzyński, Konrad; Kwiecień, Marcin, E-mail: mkwiecie@agh.edu.pl; Muszka, Krzysztof

    2016-08-01

    The potential of discrete cellular automata technique to predict the grain refinement in wires produced using combined metal forming process is presented and discussed within the paper. The developed combined metal forming process can be treated as one of the Severe Plastic Deformation (SPD) techniques that consists of three different modes of deformation: asymmetric drawing with bending, namely accumulated angular drawing (AAD), wire drawing (WD) and wire flattening (WF). To accurately replicate complex stress state both at macro and micro scales during subsequent deformations two stage modeling approach was used. First, the Finite Element Method (FEM), implemented in commercial ABAQUS software, was applied to simulate entire combined forming process at the macro scale level. Then, based on FEM results, the Cellular Automata (CA) method was applied for simulation of grain refinement at the microstructure level. Data transferred between FEM and CA methods included set of files with strain tensor components obtained from selected integration points in the macro scale model. As a result of CA simulation, detailed information on microstructure evolution during severe plastic deformation conditions was obtained, namely: changes of shape and sizes of modeled representative volume with imposed microstructure, changes of the number of grains, subgrains and dislocation cells, development of grain boundaries angle distribution as well as changes in the pole figures. To evaluate CA model predictive capabilities, results of computer simulation were compared with scanning electron microscopy and electron back scattered diffraction images (SEM/EBSD) studies of samples after AAD+WD+WF process.

  13. Failure mechanisms in single-point incremental forming of metals

    Silva, Maria B.; Nielsen, Peter Søe; Bay, Niels

    2011-01-01

    The last years saw the development of two different views on how failure develops in single-point incremental forming (SPIF). Today, researchers are split between those claiming that fracture is always preceded by necking and those considering that fracture occurs with suppression of necking. Each...... on formability limits and development of fracture. The unified view conciliates the aforementioned different explanations on the role of necking in fracture and is consistent with the experimental observations that have been reported in the past years. The work is performed on aluminium AA1050-H111 sheets...

  14. Optical properties of metallic nanoparticles basic principles and simulation

    Trügler, Andreas

    2016-01-01

    This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research and at the same time outlines our present understanding of the optical properties of metallic nanoparticles, ranging from the tunability of plasmonic resonances to the ultrafast dynamics of light-matter interaction. Beginning with a gentle introduction that highlights the basics of plasmonic interactions and plasmon imaging, the author then presents a suitable theoretical framework for the description of metallic nanostructu...

  15. Molecular Dynamics Simulations of displacement cascades in metallic systems

    Doan, N.V.; Tietze, H.

    1995-01-01

    We use Molecular Dynamics Computer Simulations to investigate defect production induced by energetic displacement cascades up to 10 keV in pure metals (Cu, Ni) and in ordered intermetallic alloys NiAl, Ni 3 Al. Various model potentials were employed to describe the many-body nature of the interactions: the RGL (Rosato-Guillope-Legrand) model was used in pure Cu and Ni simulations; the modified version of the Vitek, Ackland and Cserti potentials (due to Gao, Bacon and Ackland) in Ni 3 Al and the EAM potentials of Foiles and Daw modified by Rubini and Ballone in NiAl, Ni 3 Al were used in alloy simulations. Atomic mixing and disordering were studied into details owing to imaging techniques and determined at different phases of the cascades. Some mixing mechanisms were identified. Our results were compared with existing data and those obtained by similar Molecular Dynamics Simulations available in the literature. (orig.)

  16. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  17. Process and equipment qualification of the ceramic and metal waste forms for spent fuel treatment

    Marsden, Ken; Knight, Collin; Bateman, Kenneth; Westphal, Brian; Lind, Paul

    2005-01-01

    The electrometallurgical process for treating sodium-bonded spent metallic fuel at the Materials and Fuels Complex of the Idaho National Laboratory separates actinides and partitions fission products into two waste forms. The first is the metal waste form, which is primarily composed of stainless steel from the fuel cladding. This stainless steel is alloyed with 15w% zirconium to produce a very corrosion-resistant metal which binds noble metal fission products and residual actinides. The second is the ceramic waste form which stabilizes fission product-loaded chloride salts in a sodalite and glass composite. These two waste forms will be packaged together for disposal at the Yucca Mountain repository. Two production-scale metal waste furnaces have been constructed. The first is in a large argon-atmosphere glovebox and has been used for equipment qualification, process development, and process qualification - the demonstration of process reliability for production of the DOE-qualified metal waste form. The second furnace will be transferred into a hot cell for production of metal waste. Prototype production-scale ceramic waste equipment has been constructed or procured; some equipment has been qualified with fission product-loaded salt in the hot cell. Qualification of the remaining equipment with surrogate materials is underway. (author)

  18. Molecular Models for DSMC Simulations of Metal Vapor Deposition

    Venkattraman, A; Alexeenko, Alina A

    2010-01-01

    The direct simulation Monte Carlo (DSMC) method is applied here to model the electron‐beam (e‐beam) physical vapor deposition of copper thin films. A suitable molecular model for copper‐copper interactions have been determined based on comparisons with experiments for a 2D slit source. The model for atomic copper vapor is then used in axi‐symmetric DSMC simulations for analysis of a typical e‐beam metal deposition system with a cup crucible. The dimensional and non‐dimensional mass fluxes obt...

  19. The Effect of Grinding and Polishing Procedure of Tool Steels in Sheet Metal Forming

    Lindvall, F.; Bergström, J.; Krakhmalev, P.

    2010-01-01

    The surface finish of tools in sheet metal forming has a large influence on the performance of the forming tool. Galling, concern of wear in sheet metal forming, is a severe form of adhesive wear where sheet material is transferred on to the tool surface. By polishing the tools to a fine surface ...... 40 and Vanadis 6 and up to ten different grinding and polishing treatments were tested against AISI 316 stainless steel. The tests showed that an optimum surface preparation might be found at the transition between abrasive and adhesive wear....

  20. Modeling the degradation of a metallic waste form intended for geologic disposal

    Bauer, T.H.; Morris, E.E.

    2007-01-01

    Nuclear reactors operating with metallic fuels have led to development of robust metallic waste forms intended to immobilize hazardous constituents in oxidizing environments. Release data from a wide range of tests where small waste form samples have been immersed in a variety of oxidizing solutions have been analyzed and fit to a mechanistically-derived 'logarithmic growth' form for waste form degradation. A bounding model is described which plausibly extrapolates these fits to long-term degradation in a geologic repository. The resulting empirically-fit degradation model includes dependence on solution pH, temperature, and chloride concentration as well as plausible estimates of statistical uncertainty. (authors)

  1. Simulating the production of free defects in irradiated metals

    Heinisch, H.L.

    1995-01-01

    Under cascade-producing irradiation by high energy neutrons or charged particles, only a small fraction of the initially displaced atoms contribute to the population of free defects that are available to migrate throughout the metal and cause microstructural changes. Although, in principle, computer simulations of free defect production could best be done using molecular dynamics, in practice, the wide ranges of time and distance scales involved can be done only by a combination of atomistic models that employ various levels of approximation. An atomic-scale, multi-model approach has been developed that combines molecular dynamics, binary collision models and stochastic annealing simulation. The annealing simulation is utilized in calibrating binary collision simulations to the results of molecular dynamics calculations, as well as to model the subsequent migration of the defects on more macroscopic time and size scales. The annealing simulation and the method of calibrating the multi-model approach are discussed, and the results of simulations of cascades in copper are presented. The temperature dependence of free defect production following simulated annealing of isolated cascades in copper shows a differential in the fractions of free vacancies and interstitial defects escaping from the cascade above stage V. This differential, a consequence of the direct formation of interstitial clusters in cascades and the relative thermal stability of vacancy and interstitial clusters during subsequent annealing, is the basis for the production bias mechanism of void swelling. (orig.)

  2. Casting technology for manufacturing metal rods from simulated metallic spent fuels

    Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    2000-09-01

    A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.

  3. Metallic Fuel Casting Development and Parameter Optimization Simulations

    Fielding, Randall S.; Kennedy, J.R.; Crapps, J.; Unal, C.

    2013-01-01

    Conclusions: • Gravity casting is a feasible process for casting of metallic fuels: – May not be as robust as CGIC, more parameter dependent to find right “sweet spot” for high quality castings; – Fluid flow is very important and is affected by mold design, vent size, super heat, etc.; – Pressure differential assist was found to be detrimental. • Simulation found that vent location was important to allow adequate filling of mold; • Surface tension plays an important role in determining casting quality; • Casting and simulations high light the need for better characterized fluid physical and thermal properties; • Results from simulations will be incorporated in GACS design such as vent location and physical property characterization

  4. From non-disposable to disposable, treatment of pyrophoric or gas forming waste forms for disposal - Thermal treatment of pyrophoric or gas-forming metals

    Oesterberg, Carl; Lindberg, Maria

    2014-01-01

    In order to dispose of waste in either a deep geological disposal or in a shallower repository there are several demands that the waste and its package must fulfil, one is that it is not to react with oxygen or the waste package or backfill in the repository, i.e. concrete or grout. The waste forms that do not fulfil this particular criterion must be treated in some way to render the waste non-reactive. One of these waste are metallic uranium. Metallic uranium is not only an issue originating from the nuclear industry, as old types of fuel, it is also present in, for example, transport flasks and as samples used in schools, which all has to be disposed of sooner or later. Another waste that arise is magnesium doped with thorium, originating from the aviation, aerospace and missile industry. These alloys are now being replaced with others without thorium so they are in need of handling and possibly treatment before disposal. Magnesium metal is also pyrophoric, in particular in molten or powder form. In order to evaluate thermally treating these metals in a very controlled environment, such as a pyrolysis vessel, experimental work has been performed. The aim of the thermal treatment is to oxidise the metals and obtain an oxide with low leachability. Inactive trials were performed, first using small amount of magnesium tape followed by using Cerium instead of uranium, to check the ability of controlling the process. After the process had been deemed safe the next step was to test the process first with metallic uranium and thereafter with magnesium thorium alloy. The first results show that the oxidation process can be totally controlled and safe. The results show that the metals are oxidised and no longer reactive and can in principle be disposed of. The test will continue and further results will be reported. (authors)

  5. Baseline metal enrichment from Population III star formation in cosmological volume simulations

    Jaacks, Jason; Thompson, Robert; Finkelstein, Steven L.; Bromm, Volker

    2018-04-01

    We utilize the hydrodynamic and N-body code GIZMO coupled with our newly developed sub-grid Population III (Pop III) Legacy model, designed specifically for cosmological volume simulations, to study the baseline metal enrichment from Pop III star formation at z > 7. In this idealized numerical experiment, we only consider Pop III star formation. We find that our model Pop III star formation rate density (SFRD), which peaks at ˜ 10- 3 M⊙ yr- 1 Mpc- 1 near z ˜ 10, agrees well with previous numerical studies and is consistent with the observed estimates for Pop II SFRDs. The mean Pop III metallicity rises smoothly from z = 25 to 7, but does not reach the critical metallicity value, Zcrit = 10-4 Z⊙, required for the Pop III to Pop II transition in star formation mode until z ≃ 7. This suggests that, while individual haloes can suppress in situ Pop III star formation, the external enrichment is insufficient to globally terminate Pop III star formation. The maximum enrichment from Pop III star formation in star-forming dark matter haloes is Z ˜ 10-2 Z⊙, whereas the minimum found in externally enriched haloes is Z ≳ 10-7 Z⊙. Finally, mock observations of our simulated IGM enriched with Pop III metals produce equivalent widths similar to observations of an extremely metal-poor damped Lyman alpha system at z = 7.04, which is thought to be enriched by Pop III star formation only.

  6. The effect of tooling deformation on process control in multistage metal forming

    Havinga, Gosse Tjipke; van den Boogaard, Antonius H.; Chinesta, F; Cueto, E; Abisset-Chavanne, E.

    2016-01-01

    Forming of high-strength steels leads to high loads within the production process. In multistage metal forming, the loads in different process stages are transferred to the other stages through elastic deformation of the stamping press. This leads to interactions between process steps, affecting the

  7. Physical properties of Pd and Al transition metals and Pd-Al binary metal alloy investigated by using molecular dynamics simulation

    Coruh, A.; Uludogan, M.; Tomak, M.; Cagin, T.

    2002-01-01

    In this study, physical properties, such as Pair Distribution Function g(r), Structure Factor S(k)''1'',''4, Diffusion Coefficient D''2''.''4, Intermediate Scattering function S(k,t)''3'',''4 and Dynamical Structure Factor S(k,w)''3'',''4 of some transition metals and metal alloys are investigated by using molecular dynamics simulation method. The simulation is specified for Pd, Al transition metals and Pd-Al binary metal alloys in the liquid form for different concentrations and at various temperatures by using Quantum Sutton-Chen (Q-SC) inter atomic potential. Intermediate scattering function and dynamical structure factor are calculated for various values of wave vector k. Results are in good agreement with published data''1'',''3'',''4

  8. Numerical Simulations of Particle Deposition in Metal Foam Heat Exchangers

    Sauret, Emilie; Saha, Suvash C.; Gu, Yuantong

    2013-01-01

    Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.

  9. Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming

    Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.

  10. Plastic forming simulation analysis of marine engine crankshaft single-throw

    LIU Peipei

    2016-08-01

    Full Text Available The research object is for marine engine crankshaft single-throw.A 3D model of the crankshaft single-throw blank and die in forging process is established by SolidWorks software,then the 3D model is imported into metal plastic forming CAE software DEFROM-3D to carry on the plastic forming simulation,to verify the relationship between the internal flow stress and the external deformation conditions in the process of metal plastic deformation under different strain rate and temperature,and to carry on the scientific analysis based on the obtained data.The result shows that the preset temperature is higher,the stress-strain curve is relatively lower when the strain rate is constant.Sample internal flow stress will be greater and the resistance to fatigue strength will be poorer at a higher strain rate when the temperature of the blank is constant.The result also provides a theoretical basis for further optimization design.

  11. Simulations of rapid pressure-induced solidification in molten metals

    Patel, Mehul V.; Streitz, Frederick H.

    2004-01-01

    The process of interest in this study is the solidification of a molten metal subjected to rapid pressurization. Most details about solidification occurring when the liquid-solid coexistence line is suddenly transversed along the pressure axis remain unknown. We present preliminary results from an ongoing study of this process for both simple models of metals (Cu) and more sophisticated material models (MGPT potentials for Ta). Atomistic (molecular dynamics) simulations are used to extract details such as the time and length scales that govern these processes. Starting with relatively simple potential models, we demonstrate how molecular dynamics can be used to study solidification. Local and global order parameters that aid in characterizing the phase have been identified, and the dependence of the solidification time on the phase space distance between the final (P,T) state and the coexistence line has been characterized

  12. Quantum dynamical simulations of local field enhancement in metal nanoparticles.

    Negre, Christian F A; Perassi, Eduardo M; Coronado, Eduardo A; Sánchez, Cristián G

    2013-03-27

    Field enhancements (Γ) around small Ag nanoparticles (NPs) are calculated using a quantum dynamical simulation formalism and the results are compared with electrodynamic simulations using the discrete dipole approximation (DDA) in order to address the important issue of the intrinsic atomistic structure of NPs. Quite remarkably, in both quantum and classical approaches the highest values of Γ are located in the same regions around single NPs. However, by introducing a complete atomistic description of the metallic NPs in optical simulations, a different pattern of the Γ distribution is obtained. Knowing the correct pattern of the Γ distribution around NPs is crucial for understanding the spectroscopic features of molecules inside hot spots. The enhancement produced by surface plasmon coupling is studied by using both approaches in NP dimers for different inter-particle distances. The results show that the trend of the variation of Γ versus inter-particle distance is different for classical and quantum simulations. This difference is explained in terms of a charge transfer mechanism that cannot be obtained with classical electrodynamics. Finally, time dependent distribution of the enhancement factor is simulated by introducing a time dependent field perturbation into the Hamiltonian, allowing an assessment of the localized surface plasmon resonance quantum dynamics.

  13. Characterization of a Fe-based alloy system for an AFCI metallic waste form - 16134

    Williamson, Mark J.; Sindelar, Robert L.

    2009-01-01

    The AFCI waste management program aims to provide a minimum volume stable waste form for high level radioactive waste from the various process streams. The AFCI Integrated Waste Management Strategy document has identified a Fe-Zr metallic waste form (MWF) as the baseline alloy for disposal of Tc metal, undissolved solids, and TRUEX fission product wastes. Several candidate alloys have been fabricated using vacuum induction melting to investigate the limits of waste loading as a function of Fe and Zr content. Additional melts have been produced to investigate source material composition. These alloys have been characterized using SEM/EDS and XRD. Phase assemblage and specie partitioning of Re metal (surrogate for Tc) and noble metal FP elements into the phases is reported. (authors)

  14. First Principles Simulation of a Ceramic/ Metal Interface with Misfit

    Benedek, R.; Alavi, A.; Seidman, D. N.; Yang, L. H.; Muller, D. A.; Woodward, C.

    2000-01-01

    The relaxed atomic structure of a model ceramic/metal interface, {222}MgO/Cu , is simulated, including lattice constant mismatch, using first principles local-density functional theory plane wave pseudopotential methods. The 399-atom computational unit cell contains 36 O and 49 Cu atoms per layer in accordance with the 7/6 ratio of MgO to Cu lattice constants. The atomic layers on both sides of the interface warp to optimize the local bonding. The interface adhesive energy is calculated. The interface electronic structure is found to vary appreciably with the local environment. (c) 2000 The American Physical Society

  15. Simulation of Cu-Mg metallic glass: Thermodynamics and structure

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2004-01-01

    We have obtained effective medium theory interatomic potential parameters suitable for studying Cu-Mg metallic glasses. We present thermodynamic and structural results from simulations of such glasses over a range of compositions. We have produced low-temperature configurations by cooling from...... the melt at as slow a rate as practical, using constant temperature and pressure molecular dynamics. During the cooling process we have carried out thermodynamic analyses based on the temperature dependence of the enthalpy and its derivative, the specific heat, from which the glass transition temperature...

  16. Distribution of metals between particulate and gaseous forms in a volcanic plume

    Hinkley, T.K.

    1991-01-01

    In order to gain information on the distribution of metals between particles and gaseous forms in the plume of Kilauea volcano, a filter designed to collect metals associated with particles was followed in series by two other collectors intended to trap metals present in gaseous (atomic, molecular, or complexed) form: first an acid-bubbler bath and then a cold trap. Of the six metals measured, all of the In, Tl and Bi, and almost all of the Cd, Pb and Cu were found on the filter. None of any of the metals was detected in the acid-bubbler bath. Masses equivalent to 0.3% of the amount of Cd on the filter, 0.4% of the amount of Pb, and 9.3% of the Cu, were measured in the cold trap. The results indicate that all or nearly all of the six metals were partitioned to the particulate portion of the physical mixture of gases and particles that constitutes a volcanic plume, but that there may be systematic differences between chalcophile metals in the ways they are partitioned between particulate and gaseous phases in a cooled plume, and possibly differences in the acidity or other chemical properties of the molecular phases. ?? 1991 Springer-Verlag.

  17. Novel Bioactive Titanate Layers Formed on Ti Metal and Its Alloys by Chemical Treatments

    Tadashi Kokubo

    2009-12-01

    Full Text Available Sodium titanate formed on Ti metal by NaOH and heat treatments induces apatite formation on its surface in a body environment and bonds to living bone. These treatments have been applied to porous Ti metal in artificial hip joints, and have been used clinically in Japan since 2007. Calcium titanate formed on Ti-15Zr-4Nb-4Ta alloy by NaOH, CaCl2, heat, and water treatments induces apatite formation on its surface in a body environment. Titanium oxide formed on porous Ti metal by NaOH, HCl, and heat treatments exhibits osteoinductivity as well as osteoconductivity. This is now under clinical tests for application to a spinal fusion device.

  18. Improvements in or relating to the production of metal-containing material in particulate form

    Woodhead, J.L.; Scott, K.T.B.; Ball, P.W.

    1977-01-01

    The process described refers mainly to production of the material in the form of very small spheres. It comprises forming a metal compound-containing gel precipitate by mixing a solution or sol of the metal compound with a soluble organic polymer and contacting the mixture with a precipitating reagent to precipitate the metal as an insoluble compound bound with the polymer. The precipitate is then subjected in the liquid phase to a breaking down and dispersing process to produce an intermediate product suitable for spray drying, and the intermediate product is spray dried to form the particulate product. The breaking down and dispersing process may be performed by means of a colloid mill or vibratory stirrer. Examples of application of the process are described. (U.K.)

  19. Die design optimization on sheet metal forming with considering the phenomenon of springback to improve product quality

    Darmawan Agung Setyo

    2018-01-01

    Full Text Available The process of sheet metal forming is one of the very important processes in manufacture of products mainly in the automotive field. In sheet metal forming, it is added a certain size at the die to tolerate a result of the elasticity restoration of material. Therefore, when the product is removed from the die then the process elastic recovery will end within the allowable tolerance size. Extra size of the die is one method to compensate for springback. The aim of this research is to optimize the die by entering a springback value in die design to improve product quality that is associated with accuracy the final size of the product. Simulation processes using AutoForm software are conducted to determine the optimal parameters to be used in the forming process. Variations the Blank Holder Force of 77 N, 97 N, and 117 N are applied to the plate material. The Blank Holder Force application higher than 97 N cannot be conducted because the Forming Limit Diagram indicates the risk of tearing. Then the Blank Holder Force of 37 N, 57 N and 77 N are selected and applied in cup drawing process. Even though a few of wrinkling are appear, however there is no significant deviation of dimension between the product and the design of cup.

  20. Detection of defects in formed sheet metal using medial axis transformation

    Murmu, Naresh C.; Velgan, Roman

    2003-05-01

    In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.

  1. Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder

    Jonsen, P.; Haeggblad, H.-A.

    2007-01-01

    In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments

  2. Simulated Tip Rub Testing of Low-Density Metal Foam

    Bowman, Cheryl L.; Jones, Michael G.

    2009-01-01

    Preliminary acoustic studies have indicated that low-density, open-cell, metal foams may be suitable acoustic liner material for noise suppression in high by-pass engines. Metal foam response under simulated tip rub conditions was studied to assess whether its durability would be sufficient for the foam to serve both as a rub strip above the rotor as well as an acoustic treatment. Samples represented four metal alloys, nominal cell dimensions ranging from 60 to 120 cells per inch (cpi), and relative densities ranging from 3.4 to 10 percent. The resulting rubbed surfaces were relatively smooth and the open cell structure of the foam was not adversely affected. Sample relative density appeared to have significant influence on the forces induced by the rub event. Acoustic responses of various surface preparations were measured using a normal incidence tube. The results of this study indicate that the foam s open-cell structure was retained after rubbing and that the acoustic absorption spectra variation was minimal.

  3. A simulator study of adverse wear with metal and cement debris contamination in metal-on-metal hip bearings.

    Halim, T; Clarke, I C; Burgett-Moreno, M D; Donaldson, T K; Savisaar, C; Bowsher, J G

    2014-03-01

    Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt-chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA). Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test. In a clean test phase (0 Mc to 0.8 Mc), lubricants retained their yellow colour. Addition of metal particles at 0.8 Mc turned lubricants black within the first hour of the test and remained so for the duration, while PMMA particles did not change the colour of the lubricant. Rates of wear with PMMA, CoCr and Ti6Al4V debris averaged 0.3 mm(3)/Mc, 4.1 mm(3)/Mc and 6.4 mm(3)/Mc, respectively. Metal particles turned simulator lubricants black with rates of wear of MOM bearings an order of magnitude higher than with control PMMA particles. This appeared to model the findings of black, periarticular joint tissues and high CoCr wear in failed MOM replacements. The amount of wear debris produced during a 500 000-cycle interval of gait was 30 to 50 times greater than the weight of triggering particle allotment, indicating that MOM bearings were extremely sensitive to third-body wear. Cite this article: Bone Joint Res 2015;4:29-37. ©2015 The British Editorial Society of Bone & Joint Surgery.

  4. Metal waste forms from the electrometallurgical treatment of spent nuclear fuel

    Abraham, D.P.; McDeavitt, S.M.; Park, J.

    1996-01-01

    Stainless steel-zirconium alloys are being developed for the disposal of radioactive metal isotopes isolated using an electrometallurgical treatment technique to treat spent nuclear fuel. The nominal waste forms are stainless steel-15 wt% zirconium alloy and zirconium-8 wt% stainless steel alloy. These alloys are generated in yttria crucibles by melting the starting materials at 1,600 C under an argon atmosphere. This paper discusses the microstructures, corrosion and mechanical test results, and thermophysical properties of the metal waste form alloys

  5. Numerical simulation of heat transfer in metal foams

    Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.

    2018-02-01

    This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.

  6. Novel Experimental Simulations of the Atmospheric Injection of Meteoric Metals

    Gómez Martín, J. C.; Bones, D. L.; Carrillo-Sánchez, J. D.; James, A. D.; Plane, J. M. C. [School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Trigo-Rodríguez, J. M. [Meteorites, Minor Bodies and Planetary Science Group, Institute of Space Sciences (CSIC-IEEC). Campus UAB, C/Can Magrans s/n, E-08193 Cerdanyola del Vallés (Barcelona) (Spain); Fegley, B. Jr., E-mail: J.M.C.Plane@leeds.ac.uk [Washington University, St. Louis, MO (United States)

    2017-02-20

    A newly developed laboratory, Meteoric Ablation Simulator (MASI), is used to test model predictions of the atmospheric ablation of interplanetary dust particles (IDPs) with experimental Na, Fe, and Ca vaporization profiles. MASI is the first laboratory setup capable of performing time-resolved atmospheric ablation simulations, by means of precision resistive heating and atomic laser-induced fluorescence detection. Experiments using meteoritic IDP analogues show that at least three mineral phases (Na-rich plagioclase, metal sulfide, and Mg-rich silicate) are required to explain the observed appearance temperatures of the vaporized elements. Low melting temperatures of Na-rich plagioclase and metal sulfide, compared to silicate grains, preclude equilibration of all the elemental constituents in a single melt. The phase-change process of distinct mineral components determines the way in which Na and Fe evaporate. Ca evaporation is dependent on particle size and on the initial composition of the molten silicate. Measured vaporized fractions of Na, Fe, and Ca as a function of particle size and speed confirm differential ablation (i.e., the most volatile elements such as Na ablate first, followed by the main constituents Fe, Mg, and Si, and finally the most refractory elements such as Ca). The Chemical Ablation Model (CABMOD) provides a reasonable approximation to this effect based on chemical fractionation of a molten silicate in thermodynamic equilibrium, even though the compositional and geometric description of IDPs is simplistic. Improvements in the model are required in order to better reproduce the specific shape of the elemental ablation profiles.

  7. A new simulation model for electrochemical metal deposition

    Schmickler, W.; Poetting, K.; Mariscal, M.

    2006-01-01

    A new atomistic simulation model for electrochemical systems is presented. It combines microcanonical molecular dynamics for the electrode with stochastic dynamics for the solution, and allows the simulation of electrochemical deposition and dissolution for specific electrode potentials. As first applications the deposition of silver and platinum on Au(1 1 1) have been studied; both flat surfaces and surfaces with islands have been considered. The two systems behave quite differently: Ag on Au(1 1 1) grows layer by layer, while Pt forms a surface alloy on Au(1 1 1), which is followed by three-dimensional growth

  8. Feature Size Effect on Formability of Multilayer Metal Composite Sheets under Microscale Laser Flexible Forming

    Huixia Liu

    2017-07-01

    Full Text Available Multilayer metal composite sheets possess superior properties to monolithic metal sheets, and formability is different from monolithic metal sheets. In this research, the feature size effect on formability of multilayer metal composite sheets under microscale laser flexible forming was studied by experiment. Two-layer copper/nickel composite sheets were selected as experimental materials. Five types of micro molds with different diameters were utilized. The formability of materials was evaluated by forming depth, thickness thinning, surface quality, and micro-hardness distribution. The research results showed that the formability of two-layer copper/nickel composite sheets was strongly influenced by feature size. With feature size increasing, the effect of layer stacking sequence on forming depth, thickness thinning ratio, and surface roughness became increasingly larger. However, the normalized forming depth, thickness thinning ratio, surface roughness, and micro-hardness of the formed components under the same layer stacking sequence first increased and then decreased with increasing feature size. The deformation behavior of copper/nickel composite sheets was determined by the external layer. The deformation extent was larger when the copper layer was set as the external layer.

  9. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Plohr, JeeYeon N., E-mail: jplohr@lanl.gov; Plohr, Bradley J. [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM 87545 (United States)

    2016-02-15

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands). This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127–139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31–41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211–220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  10. Numerical simulation of systems of shear bands in ductile metal with inclusions

    JeeYeon N. Plohr

    2016-02-01

    Full Text Available We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands. This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127–139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31–41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211–220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  11. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Plohr, Jeeyeon

    2017-06-01

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation. This method employs the Generalized Method of Cells to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  12. Incremental electrohydraulic forming - A new approach for the manufacture of structured multifunctional sheet metal blanks

    Djakow, Eugen; Springer, Robert; Homberg, Werner; Piper, Mark; Tran, Julian; Zibart, Alexander; Kenig, Eugeny

    2017-10-01

    Electrohydraulic Forming (EHF) processes permit the production of complex, sharp-edged geometries even when high-strength materials are used. Unfortunately, the forming zone is often limited as compared to other sheet metal forming processes. The use of a special industrial-robot-based tool setup and an incremental process strategy could provide a promising solution for this problem. This paper describes such an innovative approach using an electrohydraulic incremental forming machine, which can be employed to manufacture the large multifunctional and complex part geometries in steel, aluminium, magnesium and reinforced plastic that are employed in lightweight constructions or heating elements.

  13. Dry metal forming of high alloy steel using laser generated aluminum bronze tools

    Freiße Hannes

    2015-01-01

    Full Text Available Regarding the optimization of forming technology in economic and environmental aspects, avoiding lubricants is an approach to realize the vision of a new green technology. The resulting direct contact between the tool and the sheet in non-lubricated deep drawing causes higher stress and depends mainly on the material combination. The tribological system in dry sliding has to be assessed by means on the one hand of the resulting friction coefficient and on the other hand of the wear of the tool and sheet material. The potential to generate tailored tribological systems for dry metal forming could be shown within the investigations by using different material combinations and by applying different laser cladding process parameters. Furthermore, the feasibility of additive manufacturing of a deep drawing tool was demonstrated. The tool was successfully applied to form circular cups in a dry metal forming process.

  14. Experimental research and numerical optimisation of multi-point sheet metal forming implementation using a solid elastic cushion system

    Tolipov, A. A.; Elghawail, A.; Shushing, S.; Pham, D.; Essa, K.

    2017-09-01

    There is a growing demand for flexible manufacturing techniques that meet the rapid changes in customer needs. A finite element analysis numerical optimisation technique was used to optimise the multi-point sheet forming process. Multi-point forming (MPF) is a flexible sheet metal forming technique where the same tool can be readily changed to produce different parts. The process suffers from some geometrical defects such as wrinkling and dimpling, which have been found to be the cause of the major surface quality problems. This study investigated the influence of parameters such as the elastic cushion hardness, blank holder force, coefficient of friction, cushion thickness and radius of curvature, on the quality of parts formed in a flexible multi-point stamping die. For those reasons, in this investigation, a multipoint forming stamping process using a blank holder was carried out in order to study the effects of the wrinkling, dimpling, thickness variation and forming force. The aim was to determine the optimum values of these parameters. Finite element modelling (FEM) was employed to simulate the multi-point forming of hemispherical shapes. Using the response surface method, the effects of process parameters on wrinkling, maximum deviation from the target shape and thickness variation were investigated. The results show that elastic cushion with proper thickness and polyurethane with the hardness of Shore A90. It has also been found that the application of lubrication cans improve the shape accuracy of the formed workpiece. These final results were compared with the numerical simulation results of the multi-point forming for hemispherical shapes using a blank-holder and it was found that using cushion hardness realistic to reduce wrinkling and maximum deviation.

  15. Linking structure to fragility in bulk metallic glass-forming liquids

    Wei, Shuai; Stolpe, Moritz; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf; Evenson, Zach; Bednarcik, Jozef; Kruzic, Jamie J.

    2015-01-01

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T g . The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure

  16. Linking structure to fragility in bulk metallic glass-forming liquids

    Wei, Shuai, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Stolpe, Moritz, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Evenson, Zach [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln (Germany); Bednarcik, Jozef [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Kruzic, Jamie J. [Material Science, School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-05-04

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T{sub g}. The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure.

  17. Comparative parametric numerical simulations of materials used as liners in the explosively formed projectiles (EFPs)

    Hussain, G.; Sanaullah, K.

    2009-01-01

    A conventional shaped charge comprises a conical metal liner projecting a hyper velocity jet of metal that is able to penetrate to great depths into steel armour. However, misalignment problems exist in tandem with jet break up and spewing particles that greatly diminish its penetration power. An EFP, on the other hand, has a liner in the shape of a geometrical recess. The force of the blast molds the liner into a number of configurations, depending on the geometry and the explosive detonation characteristics. This paper presents comparative parametric numerical simulations of materials used as liners in the explosively formed projectiles EFPs. Numerical simulations are carried out using AUTODYN 2D hydrocode to study effects of liner's materials on the shape, velocity, traveled distance, time, pressure, internal energy, temperature, yield stress, divergence or stability, density, compression, and length to diameter (L/D) ratio of EFPs. These parameters are estimated at the instants of maximum as well as at stable velocities. The parametric study reveals that aluminum has maximum velocity in shortest time among the liner materials. From this reason, it was concluded effective standoff was greater for aluminum than more denser metals. Maximum velocity and traveled distance of Tantalum EFP is found to be minimum which may be due to low thermal softening exponent and larger hardening exponent. The simulated yield stress and pressure developed in the Fe EFP reaches at maximum. The L/D ratio for Copper is found to be maximum which supports maximum penetration. From the stability point of view, 1006 MS is found to be the most reliable liner material due to minimum divergence. Generally all liner materials have similar effects of all parameters like pressure, internal energy, temperature, yield stress, divergence or stability, density, compression at the instants of maximum as well as at stable velocities except L/D ratio of EFPs. At the instant of maximum velocity, L

  18. The fundamental structural factor in determining the glass-forming ability and mechanical behavior in the Cu-Zr metallic glasses

    Sha, Z.D.; Feng, Y.P.; Li, Y.

    2011-01-01

    Research highlights: → A weak but significant hump in trend of the coordinate number and density was observed, respectively. → Our findings indicate our simulation is more accurate to describe the atomic structure of Cu-Zr MGs. The composition-structure-properties correlation was established. → And the effective structural unit for this correlation is the Cu-centered full icosahedra. - Abstract: Using the large-scale atomic/molecular massively parallel simulator, the quantitative composition-structure-properties (including glass-forming ability (GFA) and mechanical behavior) correlations in the Cu-Zr metallic glasses were established. The atomic-level origin of these correlations was tracked down. It was found that the Cu-centered full icosahedron is the microscopic factor that fundamentally influences both GFA and mechanical behavior. Our findings have implications for understanding the nature, forming ability and properties of metallic glasses, and for searching novel metallic glasses with unique functional properties.

  19. Numerical simulation of metallic wire arc additive manufacturing (WAAM)

    Graf, M.; Pradjadhiana, K. P.; Hälsig, A.; Manurung, Y. H. P.; Awiszus, B.

    2018-05-01

    Additive-manufacturing technologies have been gaining tremendously in popularity for some years in the production of single-part series with complex, close-to-final-contour geometries and the processing of special or hybrid materials. In principle, the processes can be subdivided into wire-based and powder-based processes in accordance with the Association of German Engineers (VDI) Guideline 3405. A further subdivision is made with respect to the smelting technology. In all of the processes, the base material is applied in layers at the points where it is needed in accordance with the final contour. The process that was investigated was wire-based, multi-pass welding by means of gas-metal arc welding. This was accomplished in the present study by determining the material parameters (thermo-mechanical and thermo-physical characteristics) of the welding filler G3Si1 (material number: 1.5125) that were necessary for the numerical simulation and implementing them in a commercial FE program (MSC Marc Mentat). The focus of this paper was on simulation and validation with respect to geometry and microstructural development in the welding passes. The resulting minimal deviation between reality and simulation was a result of the measurement inertia of the thermocouples. In general, however, the FE model can be used to make a very good predetermination of the cooling behaviour, which affects the microstructural development and thus the mechanical properties of the joining zone, as well as the geometric design of the component (distortion, etc.).

  20. Direct testing of scale effects in metal forming friction and lubrication

    Nielsen, Peter Søe; Calaon, Matteo; Paldan, Nikolas Aulin

    2010-01-01

    Downscaling of metal forming operations from macro to micro scale implies significant changes caused by size effects, among these the friction increase, which has been reported by researchers using indirect test methods such as ring-compression test and double-cup-extrusion test. In the present w...

  1. Testing and modelling of industrial tribo-systems for sheet metal forming

    Friis, Kasper Leth; Nielsen, Peter Søe; Bay, Niels

    2008-01-01

    Galling is a well-known problem in sheet metal forming of tribological difficult materials such as stainless steel. In this work new, environmentally friendly lubricants and wear resistant tool materials are tested in a laboratory environment using a strip reduction test as well as in a real...

  2. Numerical modelling of microscopic lubricant flow in sheet metal forming. Application to plane strip drawing

    Carretta, Y.; Boman, R.; Bech, Jakob Ilsted

    2017-01-01

    This paper presents a numerical investigation of microscopic lubricant flows from the cavities to the plateaus of the surface roughness of metal sheets during forming processes. This phenomenon, called micro-plasto-hydrodynamic (MPH) lubrication, was observed experimentally in various situations...

  3. Static friction in rubber-metal contacts with application to rubber pad forming processes

    Deladi, E.L.

    2006-01-01

    A static friction model suitable for rubber-metal contact is presented in this dissertation. In introduction, the motivation and the aims of the research are introduced together with the background regarding the related industrial application, which is the rubber pad forming process.

  4. EXPERIMENTAL TESTING OF DRAW-BEAD RESTRAINING FORCE IN SHEET METAL FORMING

    J.H. Yang; J. Chen; D.N. He; X. Y. Ruan

    2003-01-01

    Due to complexities of draw-bead restraining force calculated according to theory anddepending on sheet metal forming properties experiment testing system, a simplifiedmethod to calculate draw-bead restraining force is put forward by experimental methodin cup-shaped drawing process. The experimental results were compared with numer-ical results and proved agreement. It shows the method is effective.

  5. Estimating product-to-product variations in metal forming using force measurements

    Havinga, Gosse Tjipke; Van Den Boogaard, Ton

    2017-01-01

    The limits of production accuracy of metal forming processes can be stretched by the development of control systems for compensation of product-to-product variations. Such systems require the use of measurements from each semi-finished product. These measurements must be used to estimate the final

  6. Development of millimeter-wave accelerating structures using precision metal forming technology

    None

    2003-06-03

    High gradients in radio-frequency (RF) driven accelerators require short wavelengths that have the concomitant requirements of small feature size and high tolerances, 1-2 {micro}m for millimeter wavelengths. Precision metal-forming stampling has the promise of meeting those tolerances with high production rates. This STI will evaluate that promise.

  7. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-01-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms

  8. Development of casting technology for manufacturing metal rods with simulated metallic spent fuels

    Lee, D. B.; Lee, Y. S.; Woo, Y. M.; Jang, S. J.; Kim, J. D; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    1999-01-01

    The advanced casting equipment based on the directional solidification method was developed for manufacturing the uranium metal rod having 13.5 mm diameter and 1,200 mm length. In order to prevent surface-shrunk holes revealed easily in course of casting the small diameter and long rods, the vacuum casting furnace has the four pre-heaters equipped with temperature controller. On the other hand, the computer simulation to estimate the defective location and to analyze the solidus behavior of molten uranium in the mold were also performed by using MAGMA Code. As a result of the experimental and theoretical study, the sound rod has successfully been manufactured

  9. Compaction simulation of nano-crystalline metals with molecular dynamics analysis

    Khoei A.R.

    2016-01-01

    Full Text Available The molecular-dynamics analysis is presented for 3D compaction simulation of nano-crystalline metals under uniaxial compaction process. The nano-crystalline metals consist of nickel and aluminum nano-particles, which are mixed with specified proportions. The EAM pair-potential is employed to model the formation of nano-particles at different temperatures, number of nano-particles, and mixing ratio of Ni and Al nano-particles to form the component into the shape of a die. The die-walls are modeled using the Lennard-Jones inter-atomic potential between the atoms of nano-particles and die-walls. The forming process is model in uniaxial compression, which is simulated until the full-dense condition is attained at constant temperature. Numerical simulations are performed by presenting the densification of nano-particles at different deformations and distribution of dislocations. Finally, the evolutions of relative density with the pressure as well as the stress-strain curves are depicted during the compaction process.

  10. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer, E-mail: chandraveer.singh@utoronto.ca; Thorpe, Steven John [Department of Materials Science and Engineering, University of Toronto, Room 140, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  11. Atomistic approach to predict the glass-forming ability in Zr–Cu–Al ternary metallic glasses

    Yu, C.Y. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, X.J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zheng, G.P. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Niu, X.R. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, C.T., E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-04-05

    Highlights: • An atomistic approach has been developed to predict the glass forming ability (GFA) in Zr–Cu–Al ternary alloy system. • Both of the thermodynamic and structure-dependent kinetic effects to glass formation have been taken into account. • The first-principles calculation and molecular dynamics simulation have been performed. • The approach predicts the best glass former in the model Zr–Cu–Al alloy system. • The predicted GFA is consistent with various experimental results. - Abstract: Prediction of composition-dependent glass-forming ability (GFA) remains to be a key scientific challenge in the metallic-glass community, especially in multi-component alloy systems. In the present study, we apply an atomistic approach to predict the trend of GFA effectively in the Zr–Cu–Al ternary alloy system from alloy compositions alone. This approach is derived from the first-principles calculations based on the density-functional theory and molecular dynamic (MD) simulations. By considering of both the thermodynamic and atomic-structure induced kinetic effects, the predicted GFA trend from this approach shows an excellent agreement with experimental data available in this alloy system, manifesting its capability of seeking metallic glasses with superior GFA in ternary alloy systems.

  12. Detecting Structural Features in Metallic Glass via Synchrotron Radiation Experiments Combined with Simulations

    Gu-Qing Guo

    2015-11-01

    Full Text Available Revealing the essential structural features of metallic glasses (MGs will enhance the understanding of glass-forming mechanisms. In this work, a feasible scheme is provided where we performed the state-of-the-art synchrotron-radiation based experiments combined with simulations to investigate the microstructures of ZrCu amorphous compositions. It is revealed that in order to stabilize the amorphous state and optimize the topological and chemical distribution, besides the icosahedral or icosahedral-like clusters, other types of clusters also participate in the formation of the microstructure in MGs. This cluster-level co-existing feature may be popular in this class of glassy materials.

  13. Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process

    Xuewei Yan

    2018-02-01

    Full Text Available Liquid metal cooling (LMC process as a powerful directional solidification (DS technique is prospectively used to manufacture single crystal (SC turbine blades. An understanding of the temperature distribution and microstructure evolution in LMC process is required in order to improve the properties of the blades. For this reason, a multi-scale model coupling with the temperature field, grain growth and solute diffusion was established. The temperature distribution and mushy zone evolution of the hollow blade was simulated and discussed. According to the simulation results, the mushy zone might be convex and ahead of the ceramic beads at a lower withdrawal rate, while it will be concave and laggard at a higher withdrawal rate, and a uniform and horizontal mushy zone will be formed at a medium withdrawal rate. Grain growth of the blade at different withdrawal rates was also investigated. Single crystal structures were all selected out at three different withdrawal rates. Moreover, mis-orientation of the grains at 8 mm/min reached ~30°, while it was ~5° and ~15° at 10 mm/min and 12 mm/min, respectively. The model for predicting dendritic morphology was verified by corresponding experiment. Large scale for 2D dendritic distribution in the whole sections was investigated by experiment and simulation, and they presented a well agreement with each other. Keywords: Hollow blade, Single crystal, Multi-scale simulation, Liquid metal cooling

  14. Standard Guide for Simulation of Helium Effects in Irradiated Metals

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This guide provides advice for conducting experiments to investigate the effects of helium on the properties of metals where the technique for introducing the helium differs in some way from the actual mechanism of introduction of helium in service. Simulation techniques considered for introducing helium shall include charged particle implantation, exposure to α-emitting radioisotopes, and tritium decay techniques. Procedures for the analysis of helium content and helium distribution within the specimen are also recommended. 1.2 Two other methods for introducing helium into irradiated materials are not covered in this guide. They are the enhancement of helium production in nickel-bearing alloys by spectral tailoring in mixed-spectrum fission reactors, and isotopic tailoring in both fast and mixed-spectrum fission reactors. These techniques are described in Refs (1-5). Dual ion beam techniques (6) for simultaneously implanting helium and generating displacement damage are also not included here. This lat...

  15. Simulation of Cu-Mg metallic glass: Thermodynamics and structure

    Bailey, Nicholas P.; Schioetz, Jakob; Jacobsen, Karsten W.

    2004-01-01

    We have obtained effective medium theory interatomic potential parameters suitable for studying Cu-Mg metallic glasses. We present thermodynamic and structural results from simulations of such glasses over a range of compositions. We have produced low-temperature configurations by cooling from the melt at as slow a rate as practical, using constant temperature and pressure molecular dynamics. During the cooling process we have carried out thermodynamic analyses based on the temperature dependence of the enthalpy and its derivative, the specific heat, from which the glass transition temperature may be determined. We have also carried out structural analyses using the radial distribution function (RDF) and common neighbor analysis (CNA). Our analysis suggests that the splitting of the second peak, commonly associated with metallic glasses, in fact, has little to do with the glass transition itself, but is simply a consequence of the narrowing of peaks associated with structural features present in the liquid state. In fact, the splitting temperature for the Cu-Cu RDF is well above T g . The CNA also highlights a strong similarity between the structure of the intermetallic alloys and the amorphous alloys of similar composition. We have also investigated the diffusivity in the supercooled regime. Its temperature dependence indicates fragile-liquid behavior, typical of binary metallic glasses. On the other hand, the relatively low specific-heat jump of around 1.5k B /atom indicates apparent strong-liquid behavior, but this can be explained by the width of the transition due to the high cooling rates

  16. Computer simulation of plastic deformation in irradiated metals

    Colak, U.

    1989-01-01

    A computer-based model is developed for the localized plastic deformation in irradiated metals by dislocation channeling, and it is applied to irradiated single crystals of niobium. In the model, the concentrated plastic deformation in the dislocation channels is postulated to occur by virtue of the motion of dislocations in a series of pile-tips on closely spaced parallel slip planes. The dynamics of this dislocation motion is governed by an experimentally determined dependence of dislocation velocity on shear stress. This leads to a set of coupled differential equations for the positions of the individual dislocations in the pile-up as a function of time. Shear displacement in the channel region is calculated from the total distance traveled by the dislocations. The macroscopic shape change in single crystal metal sheet samples is determined by the axial displacement produced by the shear displacements in the dislocation channels. Computer simulations are performed for the plastic deformation up to 20% engineering strain at a constant strain rate. Results of the computer calculations are compared with experimental observations of the shear stress-engineering strain curve obtained in tensile tests described in the literature. Agreement between the calculated and experimental stress-strain curves is obtained for shear displacement of 1.20-1.25 μm and 1000 active slip planes per channel, which is reasonable in the view of experimental observations

  17. Atomistic simulation of fatigue in face centred cubic metals

    Fan, Zhengxuan

    2016-01-01

    Fatigue is one of the major damage mechanisms of metals. It is characterized by strong environmental effects and wide lifetime dispersions which must be better understood. Different face centred cubic metals, al, Cu, Ni, and Ag are analyzed. The mechanical behaviour of surface steps naturally created by the glide of dislocations subjected to cyclic loading is examined using molecular dynamics simulations in vacuum and in air for Cu and Ni. an atomistic reconstruction phenomenon is observed at these surface steps which can induce strong irreversibility. Three different mechanisms of reconstruction are defined. Surface slip irreversibility under cyclic loading is analyzed. all surface steps are intrinsically irreversible under usual fatigue laboratory loading amplitude without the arrival of opposite sign dislocations on direct neighbor plane.With opposite sign dislocations on non direct neighbour planes, irreversibility cumulates cycle by cycle and a micro-notch is produced whose depth gradually increases.Oxygen environment affects the surface (first stage of oxidation) but does not lead to higher irreversibility as it has no major influence on the different mechanisms linked to surface relief evolution.a rough estimation of surface irreversibility is carried out for pure edge dislocations in persistent slip bands in so-called wavy materials. It gives an irreversibility fraction between 0.5 and 0.75 in copper in vacuum and in air, in agreement with recent atomic force microscopy measurements.Crack propagation mechanisms are simulated in inert environment. Cracks can propagate owing to the irreversibility of generated dislocations because of their mutual interactions up to the formation of dislocation junctions. (author) [fr

  18. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne's waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne's metal waste form in light of the Yucca Mountain activities

  19. Addition of electric arc furnace dust in hot metal changing the form of addition

    Marques Sobrinho, Vicente de Paulo Ferreira; Oliveira, Jose Roberto de; Vieira, Estefano Aparecido; Telles, Victor Bridi; Grillo, Felipe Fardin; Tenorio, Jorge Alberto Soares; Espinosa, Denise Crocce Romano

    2014-01-01

    This research aims to study the incorporation of the mass of electric arc furnace dust (EAFD), by addition in hot metal (1.78% Si) at a temperature of 1,400 degrees Celsius. The EAFD is from a steel plant producing long steel. The addition of the EAFD was as received, in the form of briquettes without agitation of the hot metal and in the form of briquettes with agitation of the hot metal. Previously, the EAFD was characterized using the following techniques: chemical analysis, size analysis, X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) microanalysis. The achievement of fusion experiments in laboratory scale, took place in a vertical tubular furnace with temperature control. The fusion experiments to assess the incorporation of EAFD mass used graphite crucibles. After cooling, the hot metal and the slag, remaining in the crucible, were weighed to do a mass balance. A flow of inert gas (argon) was maintained inside the furnace during the experiments. Results show that the experiment with addition of EAFD as received presents the best result of incorporating the mass of the final hot metal (1.73%) combined with the lowest percentage of volatilized mass of EAFD (46.52%). The experiment addition of EAFD in the form of briquette with agitation of hot metal presents the lowest percentage of slag mass (4.58%). The zinc content of volatilized EAFD (64.30%) is higher than the zinc content of the imported ore concentrate (52%) and zinc content of the national ore concentrate (12% to 39%). The presence of lead and cadmium in the slag characterizing it as a hazardous solid waste. (author)

  20. Simulated electron affinity tuning in metal-insulator-metal (MIM) diodes

    Mistry, Kissan; Yavuz, Mustafa; Musselman, Kevin P.

    2017-05-01

    Metal-insulator-metal diodes for rectification applications must exhibit high asymmetry, nonlinearity, and responsivity. Traditional methods of improving these figures of merit have consisted of increasing insulator thickness, adding multiple insulator layers, and utilizing a variety of metal contact combinations. However, these methods have come with the price of increasing the diode resistance and ultimately limiting the operating frequency to well below the terahertz regime. In this work, an Airy Function Transfer Matrix simulation method was used to observe the effect of tuning the electron affinity of the insulator as a technique to decrease the diode resistance. It was shown that a small increase in electron affinity can result in a resistance decrease in upwards of five orders of magnitude, corresponding to an increase in operating frequency on the same order. Electron affinity tuning has a minimal effect on the diode figures of merit, where asymmetry improves or remains unaffected and slight decreases in nonlinearity and responsivity are likely to be greatly outweighed by the improved operating frequency of the diode.

  1. Preparation and characterization of Zr-based bulk metallic glasses in form of plate

    Pilarczyk, Wirginia

    2014-01-01

    Highlights: • Zr-based BMGs in form of plate was successful produced by die pressure casting method. • Many techniques have been used to characterize the structure of Zr 55 Cu 30 Ni 5 Al 10 alloy. • The calculated GFA parameters show that the alloy exhibits satisfactory GFA. • The studies reveal that tested as-cast Zr-based alloy is in amorphous state. - Abstract: Zr-based bulk metallic glasses present an interesting combination of physical, chemical and mechanical properties. During the last decade, intensive progress has been made and a number of applications have been suggested for these materials. In order to successfully apply these materials, it is necessary to accurately characterize their structure, thermal stability and other properties accurately. The aim of the presented work is the manufacturing, examination of the structure of selected Zr-based bulk metallic alloys and confirmation of an amorphous structure using X-ray analysis, microscopic observation and thermal analysis. In this work, the Zr-based bulk metallic glasses in form of plate was successful produced by die pressure casting method. Designed scientific station for casting zirconium based amorphous alloys in the form of plates and rods with selected dimensions is in our university a comprehensive method for achieving amorphous materials which enables us to maintain repeatability of as-cast samples with the amorphous structure and the assumed dimensions range. The diffraction pattern and exothermic reaction as well as the fracture surface morphology reveal that studied as-cast Zr-based alloy is in amorphous state. The calculated GFA parameters show that the alloy exhibits satisfactory glass-forming ability in form of studied plate. These obtained values can suggest that studied alloys are suitable materials for further planned practical application at welding process. The success of Zr-based bulk metallic glasses production in form of plate with obtained sizes is important for future

  2. Elaboration of the technology of forming a conical product of sheet metal

    W. Matysiak

    2010-01-01

    Full Text Available The work presents a general knowledge about spinning draw pieces of sheets, one of multi-operational processes of spinning a sheet metal conical product without machining. The objective of the work was to elaborate both the technology of forming conical products of sheet metal and execution of technological tests as well as to determine the technological parameters for the process of spinning a conical insert. As a result of the investigations, the products with improved mechanical properties, stricter execution tolerance and low roughness have been obtained. The series of 200 prototype conical inserts for the shipbuilding industry have been made.

  3. Initial Evaluation of Processing Methods for an Epsilon Metal Waste Form

    Crum, Jarrod V.; Strachan, Denis M.; Zumhoff, Mac R.

    2012-01-01

    During irradiation of nuclear fuel in a reactor, the five metals, Mo, Pd, Rh, Ru, and Tc, migrate to the fuel grain boundaries and form small metal particles of an alloy known as epsilon metal ((var e psilon)-metal). When the fuel is dissolved in a reprocessing plant, these metal particles remain behind with a residue - the undissolved solids (UDS). Some of these same metals that comprise this alloy that have not formed the alloy are dissolved into the aqueous stream. These metals limit the waste loading for a borosilicate glass that is being developed for the reprocessing wastes. Epsilon metal is being developed as a waste form for the noble metals from a number of waste streams in the aqueous reprocessing of used nuclear fuel (UNF) - (1) the (var e psilon)-metal from the UDS, (2) soluble Tc (ion-exchanged), and (3) soluble noble metals (TRUEX raffinate). Separate immobilization of these metals has benefits other than allowing an increase in the glass waste loading. These materials are quite resistant to dissolution (corrosion) as evidenced by the fact that they survive the chemically aggressive conditions in the fuel dissolver. Remnants of (var e psilon)-metal particles have survived in the geologically natural reactors found in Gabon, Africa, indicating that they have sufficient durability to survive for ∼ 2.5 billion years in a reducing geologic environment. Additionally, the (var e psilon)-metal can be made without additives and incorporate sufficient foreign material (oxides) that are also present in the UDS. Although (var e psilon)-metal is found in fuel and Gabon as small particles (∼10 (micro)m in diameter) and has survived intact, an ideal waste form is one in which the surface area is minimized. Therefore, the main effort in developing (var e psilon)-metal as a waste form is to develop a process to consolidate the particles into a monolith. Individually, these metals have high melting points (2617 C for Mo to 1552 C for Pd) and the alloy is expected

  4. Molecular dynamics simulations of glycerol glass-forming liquid

    Blieck, J.; Affouard, F.; Bordat, P.; Lerbret, A.; Descamps, M.

    2005-01-01

    Structural and dynamical properties of liquid glycerol have been investigated by Molecular Dynamics simulations. An improved model based on a slight reparametrisation of the all-atoms AMBER force field used in [R. Chelli, P. Procacci, G. Cardini, R.G.D. Valle, S. Califano, Phys. Chem. Chem. Phys. 1 (1999) 871] is presented. The structure remains satisfactory, qualitatively similar to that obtained from the original model. This new model is also found to reproduce significantly better the diffusion coefficient and the correlations times as they can be deduced from neutron spin echo (NSE) experiments. Structural heterogeneities revealed as a pre-peak of the static structure factor S(Q) close to Q ∼ 0.6 A -1 are observed. Our results are also found compatible with predictions of the Mode Coupling Theory

  5. Variation simulation for compliant sheet metal assemblies with applications

    Long, Yufeng

    Sheet metals are widely used in discrete products, such as automobiles, aircraft, furniture and electronics appliances, due to their good manufacturability and low cost. A typical automotive body assembly consists of more than 300 parts welded together in more than 200 assembly fixture stations. Such an assembly system is usually quite complex, and takes a long time to develop. As the automotive customer demands products of increasing quality in a shorter time, engineers in automotive industry turn to computer-aided engineering (CAE) tools for help. Computers are an invaluable resource for engineers, not only to simplify and automate the design process, but also to share design specifications with manufacturing groups so that production systems can be tooled up quickly and efficiently. Therefore, it is beneficial to develop computerized simulation and evaluation tools for development of automotive body assembly systems. It is a well-known fact that assembly architectures (joints, fixtures, and assembly lines) have a profound impact on dimensional quality of compliant sheet metal assemblies. To evaluate sheet metal assembly architectures, a special dimensional analysis tool need be developed for predicting dimensional variation of the assembly. Then, the corresponding systematic tools can be established to help engineers select the assembly architectures. In this dissertation, a unified variation model is developed to predict variation in compliant sheet metal assemblies by considering fixture-induced rigid-body motion, deformation and springback. Based on the unified variation model, variation propagation models in multiple assembly stations with various configurations are established. To evaluate the dimensional capability of assembly architectures, quantitative indices are proposed based on the sensitivity matrix, which are independent of the variation level of the process. Examples are given to demonstrate their applications in selecting robust assembly

  6. Acute form of multiple sclerosis in a child simulation encephalitis

    Niagolova, S.; Karapasheva, V.; Nikolova, M.

    2007-01-01

    Multiple sclerosis (MS) is considered the most common demyelinating process involving the CNS. Although usually considered an adult disease multiple sclerosis can begin to manifest during childhood. The clinical presentation of the disease in early childhood can range from paraesthesias to dramatic presentations, suggesting diffuse encephalopathy with cerebral oedema, meningismus and impaired consciousness. Multiple sclerosis is usually characterized by a typical relapsing-remitting clinical course. But there are acute, clinically fulminant forms with atypical. neurologic symptoms and death in months. MRI has become increasingly relevant in the diagnosis of multiple sclerosis in the past years. Yet, the specificity is limited. Atypical forms of MS and other diseases of CNS may show similar patterns on MRI. We report a case of 7 years old boy with clinically fulminant Marburg type of multiple sclerosis that ended with death in two months. The patient was a diagnostic problem despite the certain degree of clinical and radiological suspicion. The postmortem diagnosis is based on pathomorphologic changes (gross pathologic and microscopic features) in CNS.The present case is of clinical, radiological and pathomorphologic interest because of its early onset in childhood, unusual clinical course and acute progression. Awareness of the MRI features of multiple sclerosis and MS-variants (subtypes) may help in such atypical presentations in childhood. (authors)

  7. FORMING CIRCUMBINARY PLANETS: N-BODY SIMULATIONS OF KEPLER-34

    Lines, S.; Leinhardt, Z. M.; Paardekooper, S.; Baruteau, C.; Thebault, P.

    2014-01-01

    Observations of circumbinary planets orbiting very close to the central stars have shown that planet formation may occur in a very hostile environment, where the gravitational pull from the binary should be very strong on the primordial protoplanetary disk. Elevated impact velocities and orbit crossings from eccentricity oscillations are the primary contributors to high energy, potentially destructive collisions that inhibit the growth of aspiring planets. In this work, we conduct high-resolution, inter-particle gravity enabled N-body simulations to investigate the feasibility of planetesimal growth in the Kepler-34 system. We improve upon previous work by including planetesimal disk self-gravity and an extensive collision model to accurately handle inter-planetesimal interactions. We find that super-catastrophic erosion events are the dominant mechanism up to and including the orbital radius of Kepler-34(AB)b, making in situ growth unlikely. It is more plausible that Kepler-34(AB)b migrated from a region beyond 1.5 AU. Based on the conclusions that we have made for Kepler-34, it seems likely that all of the currently known circumbinary planets have also migrated significantly from their formation location with the possible exception of Kepler-47(AB)c

  8. FORMING CIRCUMBINARY PLANETS: N-BODY SIMULATIONS OF KEPLER-34

    Lines, S.; Leinhardt, Z. M. [School of Physics, University of Bristol, H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Paardekooper, S.; Baruteau, C. [DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Thebault, P., E-mail: stefan.lines@bristol.ac.uk [LESIA-Observatoire de Paris, UPMC Univ. Paris 06, Univ. Paris-Diderot, F-92195 Meudon Cedex (France)

    2014-02-10

    Observations of circumbinary planets orbiting very close to the central stars have shown that planet formation may occur in a very hostile environment, where the gravitational pull from the binary should be very strong on the primordial protoplanetary disk. Elevated impact velocities and orbit crossings from eccentricity oscillations are the primary contributors to high energy, potentially destructive collisions that inhibit the growth of aspiring planets. In this work, we conduct high-resolution, inter-particle gravity enabled N-body simulations to investigate the feasibility of planetesimal growth in the Kepler-34 system. We improve upon previous work by including planetesimal disk self-gravity and an extensive collision model to accurately handle inter-planetesimal interactions. We find that super-catastrophic erosion events are the dominant mechanism up to and including the orbital radius of Kepler-34(AB)b, making in situ growth unlikely. It is more plausible that Kepler-34(AB)b migrated from a region beyond 1.5 AU. Based on the conclusions that we have made for Kepler-34, it seems likely that all of the currently known circumbinary planets have also migrated significantly from their formation location with the possible exception of Kepler-47(AB)c.

  9. Forming Circumbinary Planets: N-body Simulations of Kepler-34

    Lines, S.; Leinhardt, Z. M.; Paardekooper, S.; Baruteau, C.; Thebault, P.

    2014-02-01

    Observations of circumbinary planets orbiting very close to the central stars have shown that planet formation may occur in a very hostile environment, where the gravitational pull from the binary should be very strong on the primordial protoplanetary disk. Elevated impact velocities and orbit crossings from eccentricity oscillations are the primary contributors to high energy, potentially destructive collisions that inhibit the growth of aspiring planets. In this work, we conduct high-resolution, inter-particle gravity enabled N-body simulations to investigate the feasibility of planetesimal growth in the Kepler-34 system. We improve upon previous work by including planetesimal disk self-gravity and an extensive collision model to accurately handle inter-planetesimal interactions. We find that super-catastrophic erosion events are the dominant mechanism up to and including the orbital radius of Kepler-34(AB)b, making in situ growth unlikely. It is more plausible that Kepler-34(AB)b migrated from a region beyond 1.5 AU. Based on the conclusions that we have made for Kepler-34, it seems likely that all of the currently known circumbinary planets have also migrated significantly from their formation location with the possible exception of Kepler-47(AB)c.

  10. Towards Forming a Primordial Protostar in a Cosmological AMR Simulation

    Turk, Matthew J.; Abel, Tom; O'Shea, Brian W.

    2008-03-01

    Modeling the formation of the first stars in the universe is a well-posed problem and ideally suited for computational investigation.We have conducted high-resolution numerical studies of the formation of primordial stars. Beginning with primordial initial conditions appropriate for a ΛCDM model, we used the Eulerian adaptive mesh refinement code (Enzo) to achieve unprecedented numerical resolution, resolving cosmological scales as well as sub-stellar scales simultaneously. Building on the work of Abel, Bryan and Norman (2002), we followed the evolution of the first collapsing cloud until molecular hydrogen is optically thick to cooling radiation. In addition, the calculations account for the process of collision-induced emission (CIE) and add approximations to the optical depth in both molecular hydrogen roto-vibrational cooling and CIE. Also considered are the effects of chemical heating/cooling from the formation/destruction of molecular hydrogen. We present the results of these simulations, showing the formation of a 10 Jupiter-mass protostellar core bounded by a strongly aspherical accretion shock. Accretion rates are found to be as high as one solar mass per year.

  11. Phycoremediation of heavy metals by the three-color forms of Kappaphycus alvarezii

    Suresh Kumar, K [Marine Algae and Marine Environment Discipline, Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavangar 364 002, Gujarat (India); Ganesan, K [Marine Algae and Marine Environment Discipline, Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavangar 364 002, Gujarat (India); Subba Rao, P V [Marine Algae and Marine Environment Discipline, Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavangar 364 002, Gujarat (India)

    2007-05-08

    In the present investigation, three living color forms (brown, green and pale yellow) of Kappaphycus alvarezii were examined for their biosorption ability in the laboratory. The brown color form proved to be an excellent metal biosorbent, i.e. it could adsorb good amount of cadmium 3.064 mg/100 g f.wt. and cobalt 3.365 mg/100 g f.wt. It also removed 2.799 mg/100 g f.wt. of chromium. The green color form absorbed 2.684, 3.43 and 2.692 mg/100 g f.wt. of cadmium, cobalt and chromium, respectively. In contrast, the pale yellow form removed almost equal proportion of cadmium 0.961 mg/100 g f.wt. and chromium 0.942 mg/100 g f.wt. It also removed 1.403 mg/100 g f.wt. cobalt. Thus, the living color forms of this seaweed could form an effective biosorbent material for removal of heavy metals.

  12. Phycoremediation of heavy metals by the three-color forms of Kappaphycus alvarezii

    Suresh Kumar, K.; Ganesan, K.; Subba Rao, P.V.

    2007-01-01

    In the present investigation, three living color forms (brown, green and pale yellow) of Kappaphycus alvarezii were examined for their biosorption ability in the laboratory. The brown color form proved to be an excellent metal biosorbent, i.e. it could adsorb good amount of cadmium 3.064 mg/100 g f.wt. and cobalt 3.365 mg/100 g f.wt. It also removed 2.799 mg/100 g f.wt. of chromium. The green color form absorbed 2.684, 3.43 and 2.692 mg/100 g f.wt. of cadmium, cobalt and chromium, respectively. In contrast, the pale yellow form removed almost equal proportion of cadmium 0.961 mg/100 g f.wt. and chromium 0.942 mg/100 g f.wt. It also removed 1.403 mg/100 g f.wt. cobalt. Thus, the living color forms of this seaweed could form an effective biosorbent material for removal of heavy metals

  13. Variation of rock-forming metals in sub-annual increments of modern Greenland snow

    Hinkley, T.K.

    1992-01-01

    Modern snowpack from central south Greenland was sampled in sub-seasonal increments and analysed for a suite of major, minor and trace rock-forming metals (K, Rb, Cs, Ca, Sr, Ba). There is a sharp seasonal concentration maximum for all six metals that comes in summer, later than mid-June. Metal concentrations in all other parts of the year's snowpack are up to 10 or more times smaller. The concentration maximum is preceded by low values in autumn-winter, very low values in early-mid-spring, and moderate-to-high values in late spring early summer; this pattern is seen consistently in three separate time stratigraphic intervals representing the same seasonal periods, spanning the time interval 1981-1984. The absolute concentration values of the snow strata representing the low-concentration portion of the year, autumn-winter-spring, may vary substantially from year to year, by a factor of two, or more. The finding that all rock-forming metals are at a sharp concentration maximum in late summer contrasts with the interpretations of several other studies in high-latitude northern regions. Those studies have reported a broad maximum of continental dust-associated metals in late winter and spring. However samples of the other studies have mostly come from regions farther to the north, and the analyses have emphasized industrial pollutant metals rather than the matched rock-forming suite of the present study. The metals measured were chosen to give information about the origin and identity of the rock and soil dusts, and sea salts, present as impurities in the snow. Metal ratios indicate that the dusts in the snowpacks are of continental origin and from ferromagnesian rocks. Source rock types for dusts in central south Greenland snow contrast with the felsic rock dusts of the Sierra Nevada, CA, annual snowpacks, and with the very felsic rock dusts in large south central Alaskan mountain glaciers. Samples in which masses of sea salt are much larger than those of rock dusts

  14. Corrosion mechanisms for metal alloy waste forms: experiment and theory Level 4 Milestone M4FT-14LA0804024 Fuel Cycle Research & Development

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taylor, Christopher D. [The Ohio State Univ., Columbus, OH (United States). Fontana Corrosion Center; Kim, Eunja [Univ. of Nevada, Las Vegas, NV (United States); Goff, George Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kolman, David Gary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-31

    This document meets Level 4 Milestone: Corrosion mechanisms for metal alloy waste forms - experiment and theory. A multiphysics model is introduces that will provide the framework for the quantitative prediction of corrosion rates of metallic waste forms incorporating the fission product Tc. The model requires a knowledge of the properties of not only the metallic waste form, but also the passive oxide films that will be generated on the waste form, and the chemistry of the metal/oxide and oxide/environment interfaces. in collaboration with experimental work, the focus of this work is on obtaining these properties from fundamental atomistic models. herein we describe the overall multiphysics model, which is based on MacDonald's point-defect model for passivity. We then present the results of detailed electronic-structure calculations for the determination of the compatibility and properties of Tc when incorporated into intermetallic oxide phases. This work is relevant to the formation of multi-component oxides on metal surfaces that will incorporate Tc, and provide a kinetic barrier to corrosion (i.e. the release of Tc to the environment). Atomistic models that build upon the electronic structure calculations are then described using the modified embedded atom method to simulate metallic dissolution, and Buckingham potentials to perform classical molecular dynamics and statics simulations of the technetium (and, later, iron-technetium) oxide phases. Electrochemical methods were then applied to provide some benchmark information of the corrosion and electrochemical properties of Technetium metal. The results indicate that published information on Tc passivity is not complete and that further investigation is warranted.

  15. Numerical Forming Simulations and Optimisation in Advanced Materials

    Huetink, J.; Boogaard, A. H. van den; Geijselears, H. J. M.; Meinders, T.

    2007-01-01

    With the introduction of new materials as high strength steels, metastable steels and fibre reinforced composites, the need for advanced physically valid constitutive models arises. In finite deformation problems constitutive relations are commonly formulated in terms the Cauchy stress as a function of the elastic Finger tensor and an objective rate of the Cauchy stress as a function of the rate of deformation tensor. For isotropic materials models this is rather straightforward, but for anisotropic material models, including elastic anisotropy as well as plastic anisotropy, this may lead to confusing formulations. It will be shown that it is more convenient to define the constitutive relations in terms of invariant tensors referred to the deformed metric. Experimental results are presented that show new combinations of strain rate and strain path sensitivity. An adaptive through- thickness integration scheme for plate elements is developed, which improves the accuracy of spring back prediction at minimal costs. A procedure is described to automatically compensate the CAD tool shape numerically to obtain the desired product shape. Forming processes need to be optimized for cost saving and product improvement. Until recently, a trial-and-error process in the factory primarily did this optimization. An optimisation strategy is proposed that assists an engineer to model an optimization problem that suits his needs, including an efficient algorithm for solving the problem

  16. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    Teixeira, P.; Santos, Abel; Cesar Sa, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-01-01

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths

  17. Computer controlled experimental device for investigations of tribological influences in sheet metal forming

    Milan Djordjevic

    2012-05-01

    Full Text Available Sheet metal forming, especially deep drawing process, is influenced by many factors. Blank holding force and drawbead displacement are two of them that can be controlled during the forming process. For this purpose, electro-hydraulic computerized sheet-metal strip sliding device has been constructed. Basic characteristic of this device is realization of variable contact pressure and drawbead height as functions of time or stripe displacement. There are both, pressure and drawbead, ten linear and nonlinear functions. Additional features consist of the ability to measure drawing force, contact pressure, drawbead displacement etc. Presented in the paper are the device overview and the first results of steel sheet stripe sliding over rounded  drawbead.

  18. COMPUTER CONTROLLED EXPERIMENTAL DEVICE FOR INVESTIGATIONS OF TRIBOLOGICAL INFLUENCES IN SHEET METAL FORMING

    Tomislav Vujinović

    2012-05-01

    Full Text Available Sheet metal forming, especially deep drawing process is influenced by many factors. Blank holding force and drawbead displacement are two of them that can be controlled during the forming process.For this purpose, an electro-hydraulic computerized sheet-metal strip sliding device has been constructed. The basic characteristic of this device is realization of variable contact pressure and drawbead height as functions of time or stripe displacement. There are both, pressure and drawbead, ten linear and nonlinear functions. Additional features consist of the ability to measure drawing force, contact pressure, drawbead displacement etc.The device overview and first results of steel sheet stripe sliding over rounded drawbead are presented in the paper.

  19. Comparison of Conventional Deep Drawing, Hydromechanical Deep-Drawing and High Pressure Sheet Metal Forming by Numerical Experiments

    Oender, I. Erkan; Tekkaya, A. Erman

    2005-01-01

    Increasing use of new technologies in automotive and aircraft applications requires intensive research and developments on sheet metal forming processes. This study focuses on the assessment of sheet hydroforming, hydro-mechanical deep drawing and conventional deep-drawing processes by performing a systematic analysis by numerical simulations. Circular, elliptic, rectangular and square cross-section cups have been selected for the geometry spectrum. Within the range of each cross section, depth, drawing ratio and fillet radii have been altered systematically. St14 stainless steel has been used as the material throughout the study. The deformation behavior has been described by an elasto-plastic material model and all numerical simulations have been carried out by using a dynamic-explicit commercial finite element code. During the analyses each workpiece is produced by the three competing processes. The analyses results such as sheet thickness distribution, necking, forming of radii etc., are used for assessing the success of each forming process alternative. The analyses revealed that depending on the workpiece geometry and dimensional properties certain processes are preferable for obtaining satisfactory products. The process windows for each process have been established based on the analyzed parameters of the three different product geometries. This data is expected to be useful for selecting the appropriate production process for a given workpiece geometry

  20. Irradiation effect on leaching behavior and form of heavy metals in fly ash of municipal solid waste incinerator

    Nam, Sangchul; Namkoong, Wan

    2012-01-01

    Highlights: ► No research has been done to examine effect of electron beam irradiation on leaching behavior of heavy metals in fly ash. ► Electron beam irradiation on fly ash had significant effect on heavy metal leaching. ► Leaching potential of heavy metals in fly ash differed among metal species tested (Pb, Zn, Cu). ► Metal forms in the ash were analyzed to explain the difference. ► The difference could be explained by metal form change. - Abstract: Fly ash from a municipal solid waste incinerator (MSWI) is commonly classified as hazardous waste. High-energy electron beam irradiation systems have gained popularity recently as a clean and promising technology to remove environmental pollutants. Irradiation effects on leaching behavior and form of heavy metals in MSWI fly ash have not been investigated in any significant detail. An electron beam accelerator was used in this research. Electron beam irradiation on fly ash significantly increased the leaching potential of heavy metals from fly ash. The amount of absorbed dose and the metal species affected leaching behavior. When electron beam irradiation intensity increased gradually up to 210 kGy, concentration of Pb and Zn in the leachate increased linearly as absorbed dose increased, while that of Cu underwent no significant change. Concentration of Pb and Zn in the leachate increased up to 15.5% (10.7 mg/kg), and 35.6% (9.6 mg/kg) respectively. However, only 4.8% (0.3 mg/kg) increase was observed in the case of Cu. The results imply that irradiation has significant effect on the leaching behavior of heavy metals in fly ash, and the effect is quite different among the metal species tested in this study. A commonly used sequential extraction analysis which can classify a metal species into five forms was conducted to examine any change in metal form in the irradiated fly ash. Notable change in metal form in fly ash was observed when fly ash was irradiated. Change in Pb form was much greater than that of

  1. Numerical simulation of turbulent forced convection in liquid metals

    Vodret, S; Di Maio, D Vitale; Caruso, G

    2014-01-01

    In the frame of the future generation of nuclear reactors, liquid metals are foreseen to be used as a primary coolant. Liquid metals are characterized by a very low Prandtl number due to their very high heat diffusivity. As such, they do not meet the so-called Reynolds analogy which assumes a complete similarity between the momentum and the thermal boundary layers via the use of the turbulent Prandtl number. Particularly, in the case of industrial fluid-dynamic calculations where a resolved computation near walls could be extremely time consuming and could need very large computational resources, the use of the classical wall function approach could lead to an inaccurate description of the temperature profile close to the wall. The first aim of the present study is to investigate the ability of a well- established commercial code (ANSYS FLUENT v.14) to deal with this issue, validating a suitable expression for the turbulent Prandtl number. Moreover, a thermal wall-function developed at Universite Catholique de Louvain has been implemented in FLUENT and validated, overcoming the limits of the solver to define it directly. Both the resolved and unresolved approaches have been carried out for a channel flow case and assessed against available direct numerical and large eddy simulations. A comparison between the numerically evaluated Nusselt number and the main correlations available in the literature has been also carried out. Finally, an application of the proposed methodology to a typical sub-channel case has been performed, comparing the results with literature correlations for tube banks

  2. 3-D Modelling of Electromagnetic, Thermal, Mechanical and Metallurgical Couplings in Metal Forming Processes

    Chenot, Jean-Loup; Bay, Francois

    2007-01-01

    The different stages of metal forming processes often involve - beyond the mechanical deformations processes - other physical coupled problems, such as heat transfer, electromagnetism or metallurgy. The purpose of this paper is to focus on problems involving electromagnetic couplings. After a brief recall on electromagnetic modeling, we shall then focus on induction heating processes and present some results regarding heat transfer, as well as mechanical couplings. A case showing coupling for metallurgic microstructure evolution will conclude this paper

  3. Exposing metal and silicate charges to electrical discharges: Did chondrules form by nebular lightning?

    Güttler, C.; Poppe, T.; Wasson, J. T.; Blum, J.

    2007-01-01

    In order to investigate the hypothesis that dust aggregates were transformed to meteoritic chondrules by nebular lightning, we exposed silicatic and metallic dust samples to electric discharges with energies of 120 to 500 J in air at pressures between 10 and 10^5 Pa. The target charges consisted of powders of micrometer-sized particles and had dimensions of mm. The dust samples generally fragmented leaving the major fraction thermally unprocessed. A minor part formed sintered aggregates of 50...

  4. Zirconium sponge and other forms of virgin metal for nuclear applications - approved standard 1973

    Anon.

    1975-01-01

    This specification covers virgin zirconium metal commonly designated as sponge because of its porous, sponge-like texture, but it may also take other forms such as chunklets. One grade is described which is designated as reactor grade R-1, suitable for use in nuclear applications. The most important characteristic of the reactor grade is its low nuclear cross section as achieved by removal of hafnium and careful quality control in manufacturing procedures to prevent contamination with other high cross section materials

  5. EXPERIMENTAL TESTING OF DRAW—BEAD RESTRAINING FORCE IN SHEET METAL FORMING

    J.H.Yang; J.Chen; 等

    2003-01-01

    Due to complexities of draw-bead restraining force calculated according to theory and depending on sheet metal forming properties experiment testing system,a simplified method to calculate draw-bead restraining force is put forward by experimental method in cup-shaped drawing process.The experimental results were compared with numer-ical results and proved agreement.It shows the method is effective.

  6. Bulk glass formation and crystallization in zirconium based bulk metallic glass forming alloys

    Savalia, R.T.; Neogy, S.; Dey, G.K.; Banerjee, S.

    2002-01-01

    The microstructures of Zr based metallic glasses produced in bulk form have been described in the as-cast condition and after crystallization. Various microscopic techniques have been used to characterize the microstructures. The microstructure in the as-cast condition was found to contain isolated crystals and crystalline aggregates embedded in the amorphous matrix. Quenched-in nuclei of crystalline phases were found to be present in fully amorphous regions. These glasses after crystallization gave rise to nanocrystalline solids. (author)

  7. A unified dislocation density-dependent physical-based constitutive model for cold metal forming

    Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.

    2017-10-01

    Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.

  8. Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies

    Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko

    2018-04-01

    Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.

  9. Forming of protective nanostructure coatings on metals and glasses and their properties investigation

    Deshkovskaya, A.; Lynkov, L.; Nagibarov, A.; Glybin, V.; Richter, E.; Pham, M.

    2013-01-01

    Transparent heat-resistant coatings of 10-30 nm thickness described by (ZrO 2 ) x •(Y 2 O 3 ) y composition are formed on the surface of metals and glasses by thermolysis technique. Produced coatings possess high adhesive strength, high corrosive and abrasive resistance. Nanocrystalline formations are revealed on samples surface, with quantity of these formations depending on basic solution concentration, formed layers number and thermal treatment mode. Ion-beam modification of obtained coatings under mixing mode enables said properties enhancing owing to zirconium oxiboride formation at substrate-coating interface as a result of ion-beam synthesis. (authors)

  10. Numerical simulation for hot forming of head plates and pipe bending

    Ohta, Takahiro; Itoh, Shingo; Yamasaki, Masato; Miura, Akira.

    1995-01-01

    A great deal of time could be saved if physical experiments were replaced by numerical simulations in the development of new forming processes. In this paper, explicit dynamic finite element methods for the hot forming of head plates and pipe bending are investigated. In the case of hemispherical hot forming, the predicted formed shapes and the punch force by thermo elastic plastic analysis are very similar to those found by experiment. Moreover, it is shown that wrinkles occuring in the hot forming process can be predicted. And we can also simulate pipe bending processes by numerical analysis. (author)

  11. Atomic Scale Investigation of Structural Properties and Glass Forming Ability of Ti100- x Al x Metallic Glasses

    Tahiri, M.; Hasnaoui, A.; Sbiaai, K.

    2018-06-01

    In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated and 13-coordinated ) and by playing a main role in the structure stability of the Ti-Al MGs.

  12. Atomic Scale Investigation of Structural Properties and Glass Forming Ability of Ti100-x Al x Metallic Glasses

    Tahiri, M.; Hasnaoui, A.; Sbiaai, K.

    2018-03-01

    In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated and 13-coordinated ) and by playing a main role in the structure stability of the Ti-Al MGs.

  13. Simulation and Verification of Form Filling with Self-Compacting Concrete

    Thrane, Lars Nyholm

    2005-01-01

    This paper presents a form filling experiment and the corresponding 3D simulation. One side of the form is made of a transparent acrylic plate and to improve the visual observations of the flow behaviour, the first and second half of the form is cast with normal grey and red-pigmented SCC, respec...

  14. Mechanical and physical simulation of complex 3-D bulk forming processes with Forge3

    Chenot, J-L.; Chastel, Y.

    2000-01-01

    To-day there is a growing need to predict numerically not only the mechanical parameters, but also the final microstructure of the work-piece. On the other hand, the use of simulation codes to analyze complex laboratory experiments can be viewed as a powerful way to improve the analysis of physical data. We outline basic methods for developing a finite element model of unsteady metal forming processes. At first the thermal and mechanical equations are recalled with several integral formulations. The most important issues are discussed, including time integration, evolving contact with rigid or deformable tools, meshing, remeshing, and parallel computing. Physical coupling is presented with the two possible approaches: introduction of internal parameters describing the evolution of microstructure and coupling with constitutive equations; multi-scale computation illustrated by the texture prediction. Finally it is shown that the inverse approach can be successfully applied to improve parameters identification from data acquisition of laboratory tests, or possibly from industrial experiments. This methodology can be utilized for: constitutive modeling, friction behavior, or even for internal parameters laws describing physical evolution. (author)

  15. Multi-scale friction modeling for sheet metal forming: the boundary lubrication regime

    Hol, J.D.; Meinders, Vincent T.; de Rooij, Matthias B.; van den Boogaard, Antonius H.

    2015-01-01

    A physical based friction model is presented to describe friction in full-scale forming simulations. The advanced friction model accounts for the change in surface topography and the evolution of friction in the boundary lubrication regime. The implementation of the friction model in FE software

  16. New Forming Limits For Light Alloys By Means Of Electromagnetic Forming And Numerical Simulation Of The Process

    Jimbert, P.; Fernandez, J. I.; Eguia, I.; Gutierrez, M.; Ulacia, I.; Hurtado, I.

    2007-01-01

    It is well known that one of the main advantages of the high speed forming (HSF) processes is the improvement in the forming limits of the used materials.Using the Electromagnetic Forming (EMF) technology two materials have been tested with different mechanical and physical properties: the AA5754 aluminium and the AZ31B magnesium alloys.The EMF process principle can be described as follows: A significant amount of electrical energy is stored in a bank of capacitors which are suddenly discharged releasing all the stored energy. This electric discharge runs through a coil which generates an intense transient magnetic field. At the same time transient Eddy currents are induced in the electrically conductive part placed some millimetres far from the coil. Another intense magnetic field is generated due to those Eddy currents but on the opposite direction as the one generated by the coil. A big magnetic repulsion force is created between the part and the coil. This magnetic repulsion between both fields is used to launch the blank with no physical contact and obtain the desired deformation on it.The Forming Limit Diagrams (FLD) obtained in the EMF experiments were them compared to the ones obtained with the 'Nakazima' method at conventional deformation speed for both alloys. In parallel to these physical experiments, some simulations were carried out. But trying to simulate this process by FEM is a though work. There are several physics and many factors to take into account in a few microseconds deformation process. And all these factors are tightly related with each other, that is why to this date there is no commercial software able to simulate the EMF process accurately.From LABEIN-Tecnalia we are working with to different softwares to simulate the whole process: Maxwell 3D for the electromagnetic part and PAM-STAMP2G for the mechanical part of the problem

  17. Paradigm Change: Alternate Approaches to Constitutive and Necking Models for Sheet Metal Forming

    Stoughton, Thomas B.; Yoon, Jeong Whan

    2011-01-01

    This paper reviews recent work proposing paradigm changes for the currently popular approach to constitutive and failure modeling, focusing on the use of non-associated flow rules to enable greater flexibility to capture the anisotropic yield and flow behavior of metals using less complex functions than those needed under associated flow to achieve that same level of fidelity to experiment, and on the use of stress-based metrics to more reliably predict necking limits under complex conditions of non-linear forming. The paper discusses motivating factors and benefits in favor of both associated and non-associated flow models for metal forming, including experimental, theoretical, and practical aspects. This review is followed by a discussion of the topic of the forming limits, the limitations of strain analysis, the evidence in favor of stress analysis, the effects of curvature, bending/unbending cycles, triaxial stress conditions, and the motivation for the development of a new type of forming limit diagram based on the effective plastic strain or equivalent plastic work in combination with a directional parameter that accounts for the current stress condition.

  18. Biofilm-Forming Staphylococcus epidermidis Expressing Vancomycin Resistance Early after Adhesion to a Metal Surface

    Toshiyuki Sakimura

    2015-01-01

    Full Text Available We investigated biofilm formation and time of vancomycin (VCM resistance expression after adhesion to a metal surface in Staphylococcus epidermidis. Biofilm-forming Staphylococcus epidermidis with a VCM MIC of 1 μg/mL was used. The bacteria were made to adhere to a stainless steel washer and treated with VCM at different times and concentrations. VCM was administered 0, 2, 4, and 8 hours after adhesion. The amount of biofilm formed was evaluated based on the biofilm coverage rates (BCRs before and after VCM administration, bacterial viability in biofilm was visually observed using the fluorescence staining method, and the viable bacterial count in biofilm was measured. The VCM concentration required to decrease BCR significantly compared with that of VCM-untreated bacteria was 4 μg/mL, even in the 0 hr group. In the 4 and 8 hr groups, VCM could not inhibit biofilm growth even at 1,024 μg/mL. In the 8 hr group, viable bacteria remained in biofilm at a count of 104 CFU even at a high VCM concentration (1,024 μg/mL. It was suggested that biofilm-forming Staphylococcus epidermidis expresses resistance to VCM early after adhesion to a metal surface. Resistance increased over time after adhesion as the biofilm formed, and strong resistance was expressed 4–8 hours after adhesion.

  19. Adaptive scallop height tool path generation for robot-based incremental sheet metal forming

    Seim, Patrick; Möllensiep, Dennis; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    Incremental sheet metal forming is an emerging process for the production of individualized products or prototypes in low batch sizes and with short times to market. In these processes, the desired shape is produced by the incremental inward motion of the workpiece-independent forming tool in depth direction and its movement along the contour in lateral direction. Based on this shape production, the tool path generation is a key factor on e.g. the resulting geometric accuracy, the resulting surface quality, and the working time. This paper presents an innovative tool path generation based on a commercial milling CAM package considering the surface quality and working time. This approach offers the ability to define a specific scallop height as an indicator of the surface quality for specific faces of a component. Moreover, it decreases the required working time for the production of the entire component compared to the use of a commercial software package without this adaptive approach. Different forming experiments have been performed to verify the newly developed tool path generation. Mainly, this approach serves to solve the existing conflict of combining the working time and the surface quality within the process of incremental sheet metal forming.

  20. Preparation and characterization of Zr-based bulk metallic glasses in form of plate

    Pilarczyk, Wirginia, E-mail: wirginia.pilarczyk@polsl.pl

    2014-12-05

    Highlights: • Zr-based BMGs in form of plate was successful produced by die pressure casting method. • Many techniques have been used to characterize the structure of Zr{sub 55}Cu{sub 30}Ni{sub 5}Al{sub 10} alloy. • The calculated GFA parameters show that the alloy exhibits satisfactory GFA. • The studies reveal that tested as-cast Zr-based alloy is in amorphous state. - Abstract: Zr-based bulk metallic glasses present an interesting combination of physical, chemical and mechanical properties. During the last decade, intensive progress has been made and a number of applications have been suggested for these materials. In order to successfully apply these materials, it is necessary to accurately characterize their structure, thermal stability and other properties accurately. The aim of the presented work is the manufacturing, examination of the structure of selected Zr-based bulk metallic alloys and confirmation of an amorphous structure using X-ray analysis, microscopic observation and thermal analysis. In this work, the Zr-based bulk metallic glasses in form of plate was successful produced by die pressure casting method. Designed scientific station for casting zirconium based amorphous alloys in the form of plates and rods with selected dimensions is in our university a comprehensive method for achieving amorphous materials which enables us to maintain repeatability of as-cast samples with the amorphous structure and the assumed dimensions range. The diffraction pattern and exothermic reaction as well as the fracture surface morphology reveal that studied as-cast Zr-based alloy is in amorphous state. The calculated GFA parameters show that the alloy exhibits satisfactory glass-forming ability in form of studied plate. These obtained values can suggest that studied alloys are suitable materials for further planned practical application at welding process. The success of Zr-based bulk metallic glasses production in form of plate with obtained sizes is

  1. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

  2. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-01-01

    corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ∼5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ∼2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60 C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ∼80 C and ∼95 C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

  3. A slow atomic diffusion process in high-entropy glass-forming metallic melts

    Chen, Changjiu; Wong, Kaikin; Krishnan, Rithin P.; Embs, Jan P.; Chathoth, Suresh M.

    2018-04-01

    Quasi-elastic neutron scattering has been used to study atomic relaxation processes in high-entropy glass-forming metallic melts with different glass-forming ability (GFA). The momentum transfer dependence of mean relaxation time shows a highly collective atomic transport process in the alloy melts with the highest and lowest GFA. However, a jump diffusion process is the long-range atomic transport process in the intermediate GFA alloy melt. Nevertheless, atomic mobility close to the melting temperature of these alloy melts is quite similar, and the temperature dependence of the diffusion coefficient exhibits a non-Arrhenius behavior. The atomic mobility in these high-entropy melts is much slower than that of the best glass-forming melts at their respective melting temperatures.

  4. SINTERING, A PROCESS OF METAL FORMING AS AN ECONOMIC ALTERNATIVE WITH A LOW ENVIRONMENTAL IMPACT

    Ángel Silvio Machado Rodríguez

    2017-07-01

    Full Text Available Sintering is a process of metal forming using metal powders, and it has a wide range of applications including for example, the manufacturing of parts for automotive components, home appliances, cutting tools, power tools, for the manufacturing of dental devices, among others. The process is characterized by the production of large-scale low cost parts and has a low environmental impact compared to other existing technologies, it requires less energy for processing and enables high utilization of raw materials. Also, it has the characteristic of obtaining, in most cases, the parts with final tolerances necessary for direct use by the customer, which ultimately reduces considerably the cost of production. The process is characterized by minimizing the loss of raw materials; facilitating precise control of the desired chemical composition; eliminating or reducing machining operations; providing a good surface finish; being an easy production process of automation; obtaining high purity; and ensuring exactly resistance characteristics required for each project.

  5. Characterization of the whiskerlike products formed by hydriding magnesium metal powders

    Herley, P. J.; Jones, W.; Vigeholm, Bjørn

    1985-01-01

    The structure of filamentary crystals produced during the hydriding of magnesium powder has been studies in detail. The needles of small dimensions (typically 0.5 μm in diameter) have been identified by electron analytical techniques to be oriented microcrystals of metallic magnesium. Their forma......The structure of filamentary crystals produced during the hydriding of magnesium powder has been studies in detail. The needles of small dimensions (typically 0.5 μm in diameter) have been identified by electron analytical techniques to be oriented microcrystals of metallic magnesium....... Their formation has been ascribed to the melting of localized aluminum impurities within the bulk magnesium to form a liquid eutectic. In the presence of sublimed magnesium vapor and hydrogen (as a carrier gas) a vapor-liquid-solid mechanism operates to produce a rapid unidirectional extension followed...

  6. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.

    Zhao, Bingge; Yang, Bin; Abyzov, Alexander S; Schmelzer, Jürn W P; Rodríguez-Viejo, Javier; Zhai, Qijie; Schick, Christoph; Gao, Yulai

    2017-12-13

    In this paper, the amorphous Ce 68 Al 10 Cu 20 Co 2 (atom %) alloy was in situ prepared by nanocalorimetry. The high cooling and heating rates accessible with this technique facilitate the suppression of crystallization on cooling and the identification of homogeneous nucleation. Different from the generally accepted notion that metallic glasses form just by avoiding crystallization, the role of nucleation and growth in the crystallization behavior of amorphous alloys is specified, allowing an access to the ideal metallic glass free of nuclei. Local atomic configurations are fundamentally significant to unravel the glass forming ability (GFA) and phase transitions in metallic glasses. For this reason, isothermal annealing near T g from 0.001 s to 25,000 s following quenching becomes the strategy to tune local atomic configurations and facilitate an amorphous alloy, a mixed glassy-nanocrystalline state, and a crystalline sample successively. On the basis of the evolution of crystallization enthalpy and overall latent heat on reheating, we quantify the underlying mechanism for the isothermal nucleation and crystallization of amorphous alloys. With Johnson-Mehl-Avrami method, it is demonstrated that the coexistence of homogeneous and heterogeneous nucleation contributes to the isothermal crystallization of glass. Heterogeneous rather than homogeneous nucleation dominates the isothermal crystallization of the undercooled liquid. For the mixed glassy-nanocrystalline structure, an extraordinary kinetic stability of the residual glass is validated, which is ascribed to the denser packed interface between amorphous phase and ordered nanocrystals. Tailoring the amorphous structure by nanocalorimetry permits new insights into unraveling GFA and the mechanism that correlates local atomic configurations and phase transitions in metallic glasses.

  7. High-Throughput Molecular Simulations of Metal Organic Frameworks for CO2 Separation: Opportunities and Challenges

    Ilknur Erucar

    2018-02-01

    Full Text Available Metal organic frameworks (MOFs have emerged as great alternatives to traditional nanoporous materials for CO2 separation applications. MOFs are porous materials that are formed by self-assembly of transition metals and organic ligands. The most important advantage of MOFs over well-known porous materials is the possibility to generate multiple materials with varying structural properties and chemical functionalities by changing the combination of metal centers and organic linkers during the synthesis. This leads to a large diversity of materials with various pore sizes and shapes that can be efficiently used for CO2 separations. Since the number of synthesized MOFs has already reached to several thousand, experimental investigation of each MOF at the lab-scale is not practical. High-throughput computational screening of MOFs is a great opportunity to identify the best materials for CO2 separation and to gain molecular-level insights into the structure–performance relationships. This type of knowledge can be used to design new materials with the desired structural features that can lead to extraordinarily high CO2 selectivities. In this mini-review, we focused on developments in high-throughput molecular simulations of MOFs for CO2 separations. After reviewing the current studies on this topic, we discussed the opportunities and challenges in the field and addressed the potential future developments.

  8. Simulation of Nanowires on Metal Vicinal Surfaces: Effect of Growth Parameters and Energetic Barriers

    Hamouda, Ajmi B. H.; Blel, Sonia; Einstein, T. L.

    2012-02-01

    Growing one-dimensional metal structures is an important task in the investigation of the electronic and magnetic properties of new devices. We used kinetic Monte-Carlo (kMC) method to simulate the formation of nanowires of several metallic and non-metallic adatoms on Cu and Pt vicinal surfaces. We found that mono-atomic chains form on step-edges due to energetic barriers (the so-called Ehrlich-shwoebel and exchange barriers) on step-edge. Creation of perfect wires is found to depend on growth parameters and binding energies. We measure the filling ratio of nanowires for different chemical species in a wide range of temperature and flux. Perfect wires were obtained at lower deposition rate for all tested adatoms, however we notice different temperature ranges. Our results were compared with experimental ones [Gambardella et al., Surf. Sci.449, 93-103 (2000), PRB 61, 2254-2262, (2000)]. We review the role of impurities in nanostructuring of surfaces [Hamouda et al., Phys. Rev. B 83, 035423, (2011)] and discuss the effect of their energetic barriers on the obtained quality of nanowires. Our work provides experimentalists with optimum growth parameters for the creation of a uniform distribution of wires on surfaces.

  9. Analysis of fluid lubrication mechanisms in metal forming at mesoscopic scale

    Dubar, L.; Hubert, C.; Christiansen, Peter

    2012-01-01

    The lubricant entrapment and escape phenomena in metal forming are studied experimentally as well as numerically. Experiments are carried out in strip reduction of aluminium sheet applying a transparent die to study the fluid flow between mesoscopic cavities. The numerical analysis involves two...... computation steps. The first one is a fully coupled fluid-structure Finite Element computation, where pockets in the surface are plastically deformed leading to the pressurization of the entrapped fluid. The second step computes the fluid exchange between cavities through the plateaus of asperity contacts...

  10. Off-Line Testing of Tribo-Systems for Sheet Metal Forming Production

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    Off-line testing of new tribo-systems for sheet metal forming production is an important issue, when new, environmentally benign lubricants are to be introduced. To obtain useful results it is, however, vital to ensure similar conditions as in the production process regarding the main tribo...... leading to very high tool/workpiece interface pressure and temperature in the second re-draw. Under such conditions only the best lubricant systems work satisfactory, and the paper shows how the performance of different tribo-systems in production may be predicted by off-line testing combined...

  11. Forming limit diagrams for anisotropic metal sheets with different yield criteria

    Kuroda, M.; Tvergaard, Viggo

    2000-01-01

    For thin metal sheets subject to stretching under various in-plane tensile stress histories, localized necking is analyzed by using the M-K-model approach, and forming limit diagrams are drawn based on the critical strains for localization. The analyses account for plastic anisotropy......, and predictions are shown based on four different anisotropic plasticity models, which have all been fitted to agree with the same set of experimental data. Situations where the tensile axis is along one of the orthotropic axes of the anisotropy are studied, as well as situations where the tensile axis...

  12. Tooling solutions for sheet metal forming and punching of lean duplex stainless steel

    Wadman, Boel; Madsen, Erik; Bay, Niels

    2012-01-01

    .4509 and lean duplex EN1.4162 in a production designed for austenitic stainless steels, such as EN1.4301 and 1.4401. The result is a guideline that summarizes how stainless material properties may affect tool degradation, and suggests tool solutions for reduced production disturbances and tool maintenance cost.......For producers of advanced stainless components the choice of stainless material influences not only the product properties, but also the tooling solution for sheet metal stamping. This work describes how forming and punching tools will be affected when introducing the stainless alloys ferritic EN1...

  13. Synthesis and devitrification of high glass-forming ability bulk metallic glasses.

    Huang, Hong.

    2007-01-01

    In this thesis, literature on the production, microstructures and properties of bulk metallic glasses (BMG) has been reviewed with particular reference to glass forming ability (GFA) and alloys of the Fe-Zr-B and Zr-based BMG systems. The experimental procedures used in the research are presented and the results for the amorphous Fe80Zr12B8 ribbon and the Zr57Ti5Al10Cu20Ni8, Zr57Nb5Al10Cu20Ni8, Zr53Nb2Al8Cu30Ni7 BMGs are given and discussed. Wedge-shaped ingots of the Zr-based BMGs were produ...

  14. Discontinuities of Plastic Deformation in Metallic Glasses with Different Glass Forming Ability

    Hurakova, Maria; Csach, Kornel; Miskuf, Jozef; Jurikova, Alena; Demcak, Stefan; Ocelik, Vaclav; Hosson, Jeff Th. M. De

    The metallic ribbons Fe40Ni40B20, Cu47Ti35Zr11Ni6Si1 and Zr65Cu17.5Ni10Al7.5 with different microhardness and glass forming ability were studied at different loading rates from 0.05 to 100 mN/s. We describe in details the differences in elemental discontinuities on the loading curves for the studied alloys. It was found that the discontinuities began at a certain local deformation independently on the macroscopic mechanical properties of a ribbon. More developed discontinuities at higher deformations are created for the materials with lower microhardness and so lower strength.

  15. Laser rapid forming technology of high-performance dense metal components with complex structure

    Huang, Weidong; Chen, Jing; Li, Yanming; Lin, Xin

    2005-01-01

    Laser rapid forming (LRF) is a new and advanced manufacturing technology that has been developed on the basis of combining high power laser cladding technology with rapid prototyping (RP) to realize net shape forming of high performance dense metal components without dies. Recently we have developed a set of LRF equipment. LRF experiments were carried out on the equipment to investigate the influences of processing parameters on forming characterizations systematically with the cladding powder materials as titanium alloys, superalloys, stainless steel, and copper alloys. The microstructure of laser formed components is made up of columnar grains or columnar dendrites which grow epitaxially from the substrate since the solid components were prepared layer by layer additionally. The result of mechanical testing proved that the mechanical properties of laser formed samples are similar to or even over that of forging and much better than that of casting. It is shown in this paper that LRF technology is providing a new solution for some difficult processing problems in the high tech field of aviation, spaceflight and automobile industries.

  16. [Effects of Fulvic Acid on Absorption and Form Distribution of Heavy Metals on Sediments].

    Li, Yu-qing; He, Jiang; Lü, Chang-wei; Fan, Ming-de; Wang, Wei; Zhang, Rui-qing; Xie, Zhi- lei; Wang, Jing-hua; Yu, Bo; En, He; Ding, Tao

    2016-03-15

    Based on the extracted fulvic acid (FA) from Lake Wuliangsuhai sediments by sequential alkali extraction, this work studied the effects of FA on the adsorption and fraction distribution of heavy metals (HM) on sediments using original sediments and sediments treated with 30% H₂O₂ as adsorbents. The results showed both organic matter and FA had effects on the HM adsorption onto sediments; The treatments of FA-free conditions and the sediments treated by H₂O₂ showed relatively strong influence on Cu²⁺ adsorption, which decreased the Cu²⁺ adsorption by 17.85%. With the increasing FA addition, the adsorption percentage of HM on both types of sediments showed gradually decreasing trends, with the order of Cu²⁺ > Cd²⁺ > Zn²⁺ > Pb²⁺; when the FA content was more than 5% , FA became the governing factor on the decreasing adsorption percentage of HM. With increasing FA addition, forms distribution of HM showed significant changes in both types of sediments; i. e. FA additions showed significant negative and positive correlations with percentages of metals bound to carbonates and organic matter, respectively, since the FA addition increased the H⁺ concentration of the system, in which H⁺ could activate the metals bound to carbonate from the sediments. As an organophilic weak element, the fraction percentage of Cd bound to organic matter was the lowest with the minimal changes.

  17. Warm forming simulation of titanium tailor-welded blanks with experimental verification

    Lai, C. P.; Chan, L. C.; Chow, C. L.

    2007-01-01

    The simulation of the forming process of Ti-TWBs at elevated temperatures using finite element analysis to determine the optimum forming conditions of Ti-TWBs is presented in this paper. For verification of the simulation results, titanium alloy (Ti-6Al-4V) was selected for the first instance to prepare the specimen of Ti-TWBs. The thickness combinations of 0.7mm/1.0mm and in widths of 20mm, 90mm and 110mm were used. A specific tooling system with temperature control device was developed to the forming of Ti-TWBs at 550 deg. C. A cylindrical punch of 50mm diameter was designed and manufactured. Different forming parameters (i.e. traveling distance of the punch and the stroke as well as the time of each forming process) and material characteristics under various temperatures were measured. In addition, the true stress and strain values by tensile test as well as the major and minor strain distributions of forming Ti-TWBs at elevated temperatures by Swift Forming test were carried out and applied as input into the finite element program. The simulation results indentify failure locations and Limit Dome Height (LDH) of Ti-TWBs at elevated temperatures and were compared with the measured ones. Finally, the optimum forming conditions of Ti-TWBs were determined based on the experimentally verified simulation results

  18. Investigation of fatigue strength of tool steels in sheet-bulk metal forming

    Pilz, F.; Gröbel, D.; Merklein, M.

    2018-05-01

    To encounter trends regarding an efficient production of complex functional components in forming technology, the process class of sheet-bulk metal forming (SBMF) can be applied. SBMF is characterized by the application of bulk forming operations on sheet metal, often in combination with sheet forming operations [1]. The combination of these conventional process classes leads to locally varying load conditions. The resulting load conditions cause high tool loads, which lead to a reduced tool life, and an uncontrolled material flow. Several studies have shown that locally modified tool surfaces, so-called tailored surfaces, have the potential to control the material flow and thus to increase the die filling of functional elements [2]. A combination of these modified tool surfaces and high tool loads in SBMF is furthermore critical for the tool life and leads to fatigue. Tool fatigue is hardly predictable and due to a lack of data [3], a challenge in tool design. Thus, it is necessary to provide such data for tool steels used in SBMF. The aim of this study is the investigation of the influence of tailored surfaces on the fatigue strength of the powder metallurgical tool steel ASP2023 (1.3344, AISI M3:2), which is typically used in cold forging applications, with a hardness 60 HRC ± 1 HRC. To conduct this investigation, the rotating bending test is chosen. As tailored surfaces, a DLC-coating and a surface manufactured by a high-feed-milling process are chosen. As reference a polished surface which is typical for cold forging tools is used. Before the rotating bending test, the surface integrity is characterized by measuring topography and residual stresses. After testing, the determined values of the surface integrity are correlated with the reached fracture load cycle to derive functional relations. Based on the gained results the investigated tailored surfaces are evaluated regarding their feasibility to modify tool surfaces within SBMF.

  19. The Leoncino Dwarf: The Lowest Metallicity Star-Forming Galaxy in the Nearby Universe

    McQuinn, Kristen

    2017-08-01

    Extremely metal-poor (XMP) galaxies are dwarf irregular galaxies with very low metallicities, traced by their gas-phase oxygen abundance. Galaxy evolution scenarios suggest three pathways to form an XMP: (1) secular evolution at low galaxy masses, (2) slow evolution in voids, or (3) dilution of measured abundances from infall of pristine gas. These scenarios have proven challenging to test because, despite concerted efforts, XMP galaxies in the nearby universe have proven hard to find. A notable exception is the recently discovered dwarf galaxy Leoncino. Leoncino has the lowest gas-phase oxygen abundance ever measured in a galaxy in the local Universe. From optical spectroscopy, the oxygen abundance is 12+log(O/H)=7.02+/-0.03, more than 40% lower than the iconic low-metallicity galaxy I Zw 18 and less than 2% Z_sun. Despite a precision oxygen abundance measurement, the evolutionary context of Leoncino remains uncertain without a secure distance. We propose HST WFC3 high-resolution optical imaging of Leoncino to accurately measure the distance to the galaxy using the tip of the red giant branch (TRGB) method. The distance will determine whether Leoncino is located in a typical field environment or in a void, and whether the galaxy is consistent with the luminosity-metallicity relation at low galaxy masses. The detailed study of Leoncino will provide benchmark results for future XMP discoveries in the nearby Universe, and an exceptionally timely comparison for studies of chemically primitive, high-redshift galaxies that will be observable in the JWST era.

  20. METAL DEFICIENCY IN CLUSTER STAR-FORMING GALAXIES AT Z = 2

    Valentino, F.; Daddi, E.; Strazzullo, V.; Gobat, R.; Bournaud, F.; Juneau, S.; Zanella, A. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Onodera, M.; Carollo, M. [Institute for Astronomy, ETH Zürich Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Renzini, A. [INAF-Osservatorio Astronomico di Padova Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Arimoto, N., E-mail: francesco.valentino@cea.fr [Subaru Telescope, National Astronomical Observatory of Japan 650 North A’ohoku Place, Hilo, HI 96720 (United States)

    2015-03-10

    We investigate the environmental effect on the metal enrichment of star-forming galaxies (SFGs) in the farthest spectroscopically confirmed and X-ray-detected cluster, CL J1449+0856 at z = 1.99. We combined Hubble Space Telescope/WFC3 G141 slitless spectroscopic data, our thirteen-band photometry, and a recent Subaru/Multi-object InfraRed Camera and Spectrograph (MOIRCS) near-infrared spectroscopic follow-up to constrain the physical properties of SFGs in CL J1449+0856 and in a mass-matched field sample. After a conservative removal of active galactic nuclei, stacking individual MOIRCS spectra of 6 (31) sources in the cluster (field) in the mass range 10 ≤ log(M/M{sub ⊙}) ≤ 11, we find a ∼4σ lower [N ii]/Hα ratio in the cluster than in the field. Stacking a subsample of 16 field galaxies with Hβ and [O iii] in the observed range, we measure an [O iii]/Hβ ratio fully compatible with the cluster value. Converting these ratios into metallicities, we find that the cluster SFGs are up to 0.25 dex poorer in metals than their field counterparts, depending on the adopted calibration. The low metallicity in cluster sources is confirmed using alternative indicators. Furthermore, we observe a significantly higher Hα luminosity and equivalent width in the average cluster spectrum than in the field. This is likely due to the enhanced specific star formation rate; even if lower dust reddening and/or an uncertain environmental dependence on the continuum-to-nebular emission differential reddening may play a role. Our findings might be explained by the accretion of pristine gas around galaxies at z = 2 and from cluster-scale reservoirs, possibly connected with a phase of rapid halo mass assembly at z > 2 and of a high galaxy merging rate.

  1. Carbide-forming groups IVB-VIB metals: a new territory in the periodic table for CVD growth of graphene.

    Zou, Zhiyu; Fu, Lei; Song, Xiuju; Zhang, Yanfeng; Liu, Zhongfan

    2014-07-09

    Early transition metals, especially groups IVB-VIB metals, can form stable carbides, which are known to exhibit excellent "noble-metal-like" catalytic activities. We demonstrate herein the applications of groups IVB-VIB metals in graphene growth using atmospheric pressure chemical vapor deposition technique. Similar to the extensively studied Cu, Ni, and noble metals, these transition-metal foils facilitate the catalytic growth of single- to few-layer graphene. The most attractive advantage over the existing catalysts is their perfect control of layer thickness and uniformity with highly flexible experimental conditions by in situ converting the dissolved carbons into stable carbides to fully suppress the upward segregation/precipitation effect. The growth performance of graphene on these transition metals can be well explained by the periodic physicochemical properties of elements. Our work has disclosed a new territory of catalysts in the periodic table for graphene growth and is expected to trigger more interest in graphene research.

  2. J0811+4730: the most metal-poor star-forming dwarf galaxy known

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.; Liss, S. E.

    2018-01-01

    We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z = 0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude Mg = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. Large Binocular Telescope/Multi-Object Double spectrograph (LBT/MODS) spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 ± 0.02, the lowest ever observed for an SFG. J0811+4730 strongly deviates from the main sequence defined by SFGs in the emission line diagnostic diagrams and the metallicity-luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811+4730, which is ∼10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M⋆ = 106.24-106.29 M⊙, and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.

  3. Dissolution of various metal oxides in different forms in dilute organic complexants

    Srinivasan, M.P.; Chandramohan, P.; Velmurugan, S.; Narasimhan, S.V.; Ranganathan, S.

    2002-01-01

    The dissolution of iron containing metal oxides is of importance in various power plant industries from the point of crud and scale removal for efficient operation and better performance of plant. The removal of these oxides has to be accomplished with minimum corrosion to the structural material, with minimum cost and removal duration and also with minimum waste generation for easy disposal. Activity build-up due to pick up of 60 Co and fission products occurs on PHT system surfaces of nuclear power plants. The dissolution kinetics of these oxides are influenced by pH, redox potential, chelating strength, concentration and temperature of the solution, constitution of oxides, and the physical form of existence of oxides. In this paper the influence of the existence of different forms of iron oxides on the ability of the dissolution characteristics of the different formulations have been brought out. How the change in dissolution characteristics can be ingenuously used to characterize both qualitatively and quantitatively the mixtures of oxides have been brought out. How the magnetite dissolution behaviour varies for base metal unaided condition in different formulation in static condition, in regenerative mode is also brought out. The OCP values and iron release behaviour for magnetite coated CS surface and magnetite pellet were also described. (authors)

  4. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-01-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  5. Dissolution of various metal oxides in different forms in dilute organic complexants

    Srinivasan, M.P.; Chandramohan, P.; Velmurugan, S.; Narasimhan, S.V. [Water and Steam Chemistry Lab., BARC Facilities, Tamilnadu (India); Ranganathan, S. [Madras Univ. (India). Research Scholar

    2002-07-01

    The dissolution of iron containing metal oxides is of importance in various power plant industries from the point of crud and scale removal for efficient operation and better performance of plant. The removal of these oxides has to be accomplished with minimum corrosion to the structural material, with minimum cost and removal duration and also with minimum waste generation for easy disposal. Activity build-up due to pick up of {sup 60}Co and fission products occurs on PHT system surfaces of nuclear power plants. The dissolution kinetics of these oxides are influenced by pH, redox potential, chelating strength, concentration and temperature of the solution, constitution of oxides, and the physical form of existence of oxides. In this paper the influence of the existence of different forms of iron oxides on the ability of the dissolution characteristics of the different formulations have been brought out. How the change in dissolution characteristics can be ingenuously used to characterize both qualitatively and quantitatively the mixtures of oxides have been brought out. How the magnetite dissolution behaviour varies for base metal unaided condition in different formulation in static condition, in regenerative mode is also brought out. The OCP values and iron release behaviour for magnetite coated CS surface and magnetite pellet were also described. (authors)

  6. Some recent developments in sheet metal forming for production of lightweight automotive parts

    Tisza, M.; Lukács, Zs; Kovács, P.; Budai, D.

    2017-09-01

    Low cost manufacturing in the automotive industry is one of the main targets due to the ever increasing global competition among car manufacturers all over the World. Sheet metal forming is one of the most important key technologies in the automotive industry; therefore the elaboration of new, innovative low cost manufacturing processes is one of the main objectives in sheet metal forming as well. In 2015 with the initiative of the Imperial College London a research consortium was established under the umbrella Low Cost Materials Processing Technologies for Mass Production of Lightweight Vehicles. The primary aim of this project is to provide affordable low cost weight reduction in mass production of vehicles considering the entire life-cycle. In this project, 19 European Institutions (Universities and Research Institutions) from 9 European countries are participating with the above targets. The University of Miskolc is one of the members of this research Consortium. In this paper, some preliminary results with the contributions of the University of Miskolc will be introduced.

  7. Development of active CFRP/metal laminates and their demonstrations in complicated forms

    Asanuma, H.; Nakata, T.; Tanaka, T.; Imori, M.; Haga, O.

    2006-03-01

    This paper describes development of high performance CFRP/metal active laminates and demonstrations of them in complicated forms. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature. The aluminum type active laminate was made into complicated forms, that is, a hatch, a stack, a coil and a lift types, and their actuation performances were successfully demonstrated.

  8. Statistical analysis of dimer formation in supersaturated metal vapor based on molecular dynamics simulation

    Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.

    2018-04-01

    We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.

  9. Nonequilibrium Molecular Simulations of New Ionic Lubricants at Metallic Surfaces: Prediction of the Friction.

    Mendonça, Ana C F; Pádua, Agílio A H; Malfreyt, Patrice

    2013-03-12

    We report nonequilibrium molecular dynamics of ionic liquids interacting with metallic surfaces. A specific set of interaction parameters for ionic liquids composed of alkylammonium cations and alkylsulfonate anions with an iron surface, which has been previously developed (J. Chem. Theory Comput.2012, 8, 3348) is used here. We develop a procedure for a quantitative prediction of the friction coefficient at different loads and shear rates. The simulated friction coefficient agrees very well with the available experimental ones. The dependence of friction on the load, shear velocity, surface topology, and length of alkyl side chains in the ionic liquid is also investigated. The changes in the frictional forces are explained in terms of the specific arrangements and orientations of groups forming the ionic liquid at the vicinity of the surface.

  10. Process Development And Simulation For Cold Fabrication Of Doubly Curved Metal Plate By Using Line Array Roll Set

    Shim, D. S.; Jung, C. G.; Seong, D. Y.; Yang, D. Y.; Han, J. M.; Han, M. S.

    2007-01-01

    For effective manufacturing of a doubly curved sheet metal, a novel sheet metal forming process is proposed. The suggested process uses a Line Array Roll Set (LARS) composed of a pair of upper and lower roll assemblies in a symmetric manner. The process offers flexibility as compared with the conventional manufacturing processes, because it does not require any complex-shaped die and loss of material by blank-holding is minimized. LARS allows flexibility of the incremental forming process and adopts the principle of bending deformation, resulting in a slight deformation in thickness. Rolls composed of line array roll sets are divided into a driving roll row and two idle roll rows. The arrayed rolls in the central lines of the upper and lower roll assemblies are motor-driven so that they deform and transfer the sheet metal using friction between the rolls and the sheet metal. The remaining rolls are idle rolls, generating bending deformation with driving rolls. Furthermore, all the rolls are movable in any direction so that they are adaptable to any size or shape of the desired three-dimensional configuration. In the process, the sheet is deformed incrementally as deformation proceeds simultaneously in rolling and transverse directions step by step. Consequently, it can be applied to the fabrication of doubly curved ship hull plates by undergoing several passes. In this work, FEM simulations are carried out for verification of the proposed incremental forming system using the chosen design parameters. Based on the results of the simulation, the relationship between the roll set configuration and the curvature of a sheet metal is determined. The process information such as the forming loads and torques acting on every roll is analyzed as important data for the design and development of the manufacturing system

  11. Content and the forms of heavy metals in bottom sediments in the zone of industrial pollution sources ,

    Voytyuk Y.Y.

    2014-12-01

    Full Text Available Regularities in the distribution of heavy metals in sediments in the zone of influence of the steel industry in Mariupol are installed. The study results of the forms of occurrence of Zn, Pb, Cu, Cr, Ni are represented. Ecological and geochemical assessment of sediment contamination by heavy metals is performed. The main sources of pollution of bottom sediments are air borne emissions from industrial plants, hydrogenous pollution in industrial sewage entering the water, sewage sludge, ash dumps, slag, ore, sludge, oil spills and salt solutions. Pollution hydrogenous sediments may be significant, contaminated sediments are a source of long-term contamination of water, even after cessation of discharges into rivers untreated wastewater. The environmental condition of bottom sediments in gross content of heavy metals is little information because they do not reflect the transformation and further migration to adjacent environment. The study forms of giving objective information for ecological and geochemical evaluation. The study forms of heavy metals in the sediments carried by successive extracts. Concentrations of heavy metals in the extracts determined by atomic absorption spectrometer analysis CAS-115. It was established that a number of elements typical of exceeding their content in bottom sediments of the background values, due likely to their technogenic origin. Man-made pollution of bottom sediments. Mariupol has disrupted the natural form of the ratio of heavy metals. In the studied sediments form ion exchange increased content of heavy metals, which contributes to their migration in the aquatic environment.

  12. A Simulation Model on the Competition for Light of Meadow-forming and Canopy-forming Aquatic Macrophytes at High and Low Nutrient Availability

    Best, Elly

    2004-01-01

    A simulation model has been developed that focuses on the ability of two competing submersed macrophytes, meadow-forming and canopy-forming, to maintain their biomass under different environmental conditions...

  13. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid

    Puosi, F.; Jakse, N.; Pasturel, A.

    2018-04-01

    As it approaches the glass transition, particle motion in liquids becomes highly heterogeneous and regions with virtually no mobility coexist with liquid-like domains. This complex dynamic is believed to be responsible for different phenomena including non-exponential relaxation and the breakdown of the Stokes-Einstein relation. Understanding the relationships between dynamical heterogeneities and local structure in metallic liquids and glasses is a major scientific challenge. Here we use classical molecular dynamics simulations to study the atomic dynamics and microscopic structure of Cu50Zr50 alloy in the supercooling regime. Dynamical heterogeneities are identified via an isoconfigurational analysis. We demonstrate the transition from isolated to clustering low mobility with decreasing temperature. These slow clusters, whose sizes grow upon cooling, are also associated with concentration fluctuations, characterized by a Zr-enriched phase, with a composition CuZr2 . In addition, a structural analysis of slow clusters based on Voronoi tessellation evidences an increase with respect of the bulk system of the fraction of Cu atoms having a local icosahedral order. These results are in agreement with the consolidated scenario of the relevant role played by icosahedral order in the dynamic slowing-down in supercooled metal alloys.

  14. Parallel Object Oriented MD Simulation Program for Long Time Simulations of Metallic Glasses and Undercooled Liquids

    Böddeker, B.; Teichler, H.

    The MD simulation program TABB is motivated by the need of long time simulations for the investigation of slow processes near the glass transition of glass forming alloys. TABB is written in C++ with a high degree of flexibility: TABB allows the use of any short ranged pair potentials or EAM potentials, by generating and using a spline representation of all functions and their derivatives. TABB supports several numerical integration algorithms like the Runge-Kotta or the modified Gear-predictor-corrector algorithm of order five. The boundary conditions can be chosen to resemble the geometry of bulk materials or films. The simulation box length or the pressure can be fixed for each dimension separately. TABB may be used in isokinetic, isoenergeric or canonic (with random forces) mode. TABB contains a simple instruction interpreter to easily control the parameters and options during the simulation. The same source code can be compiled either for workstations or for parallel computers. The main optimization goal of TABB is to allow long time simulations of medium or small sized systems. To make this possible, much attention is spent on the optimized communication between the nodes. TABB uses a domain decomposition procedure. To use many nodes with a small system, the domain size has to be small compared to the range of particle interactions. In the limit of many nodes for only few atoms, the bottle neck of communication is the latency time. TABB minimizes the number of pairs of domains containing atoms that interact between these domains. This procedure minimizes the need of communication calls between pairs of nodes. TABB decides automatically, to how many, and to which directions the decomposition shall be applied. E.g., in the case of one dimensional domain decomposition, the simulation box is only split into "slabs" along a selected direction. The three dimensional domain decomposition is best with respect to the number of interacting domains only for simulations

  15. Analysis of bending process using forming simulation; Seikei simulation ni yoru press niji seikei kaiseki

    Hamaguchi, T; Ogawa, T; Tamai, H [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    FEM simulation system is becoming an effective tool in the production engineering, especially in the evaluation of press formability. We have been applying it to the evaluation of defect phenomena, such as breakage and wrinkling, which occur in the drawing process to produce auto body parts. We tried a new application which treat dimensional precision and the other defect in the flanging or bending process after trimming. In this paper, we introduced the result of development and an example applied in the analysis. 1 refs., 8 figs.

  16. Three-Dimensional Numerical Simulation of Plate Forming by Line Heating

    Clausen, Henrik Bisgaard

    1999-01-01

    addressed the problem of simulating the process, and although very few have been successful in gaining accurate results valuable information about the mechanics have been derived. However, the increasing power of computers now allows for numerical simulations of the forming process using a three......Line Heating is the process of forming (steel) plates into shape by means of localised heating often along a line. Though any focussed heat source will do, the inexpensive and widely available oxyacettylene gas torch is commonly applied in ship production.Over the years, many researchers have......-dimensional thermo-mechanical model. Although very few have been successful in gaining accurate results valuable information about the mechanics has been derived. However, the increasing power of computers now allows for numerical simulations of the forming process using a three-dimensional thermo-mechanical model....

  17. Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Evenson, Z.; Hansen, T. C.; Meyer, A.

    2017-08-01

    We investigate the substitution of early transition metals (Zr, Hf, and Nb) in Ni-based binary glass-forming metallic melts and the impact on structural and dynamical properties by using a combination of neutron scattering, electrostatic levitation (ESL), and isotopic substitution. The self-diffusion coefficients measured by quasielastic neutron scattering (QENS) identify a sluggish diffusion as well as an increased activation energy by almost a factor of 2 for Hf35Ni65 compared to Zr36Ni64 . This finding can be explained by the locally higher packing density of Hf atoms in Hf35Ni65 compared to Zr atoms in Zr36Ni64 , which has been derived from interatomic distances by analyzing the measured partial structure factors. Furthermore, QENS measurements of liquid Hf35Ni65 prepared with 60Ni , which has a vanishing incoherent scattering cross section, have demonstrated that self-diffusion of Hf is slowed down compared to the concentration weighted self-diffusion of Hf and Ni. This implies a dynamical decoupling between larger Hf and smaller Ni atoms, which can be related to a saturation effect of unequal atomic nearest-neighbor pairs, that was observed recently for Ni-rich compositions in Zr-Ni metallic melts. In order to establish a structure-dynamics relation, measured partial structure factors have been used as an input for mode-coupling theory (MCT) of the glass transition to calculate self-diffusion coefficients for the different atomic components. Remarkably, MCT can reproduce the increased activation energy for Hf35Ni65 as well as the dynamical decoupling between Hf and Ni atoms.

  18. Acquisition of material properties in production for sheet metal forming processes

    Heingärtner, Jörg; Hora, Pavel; Neumann, Anja; Hortig, Dirk; Rencki, Yasar

    2013-01-01

    In past work a measurement system for the in-line acquisition of material properties was developed at IVP. This system is based on the non-destructive eddy-current principle. Using this system, a 100% control of material properties of the processed material is possible. The system can be used for ferromagnetic materials like standard steels as well as paramagnetic materials like Aluminum and stainless steel. Used as an in-line measurement system, it can be configured as a stand-alone system to control material properties and sort out inapplicable material or as part of a control system of the forming process. In both cases, the acquired data can be used as input data for numerical simulations, e.g. stochastic simulations based on real world data

  19. Semi-solid metal forming of beryllium-reinforced aluminum alloys

    Haws, W.; Lane, L.; Marder, J.; Nicholas, N.

    1995-01-01

    A Powder Metallurgy (PM) based, Semi-Solid Metal (SSM) forming process has been developed to produce low cost near-net shapes of beryllium-reinforced aluminum alloys. Beryllium acts as a reinforcing additive to the aluminum, in which there is nearly no mutual solid solubility. The modulus of elasticity of the alloy dramatically increases, while the density and thermal expansion coefficient decrease with increasing beryllium content. The material is suitable for complex thermal management and vibration resistance applications, as well as for airborne components which are density and stiffness sensitive. The forming process involves heating a blank of the material to a temperature at which the aluminum is semi-solid and the beryllium is solid. The semi-solid blank is then injected without turbulence into a permanent mold. High quality, near net shape components can be produced which are functionally superior to those produced by other permanent mold processes. Dimensional accuracy is equivalent to or better than that obtained in high pressure die casting. Cost effectiveness is the primary advantage of this technique compared to other forming processes. The advantages and limitations of the process are described. Physical and mechanical property data are presented, as well as directions for future investigation

  20. Methods of acicular ferrite forming in the weld bead metal (Brief analysis

    Володимир Олександрович Лебедєв

    2016-11-01

    Full Text Available A brief analysis of the methods of acicular ferrite formation as the most preferable structural component in the weld metal has been presented. The term «acicular ferrite» is meant as a structure that forms during pearlite and martensite transformation and austenite decomposition. Acicular ferrite is a packet structure consisting of battens of bainitic ferrite, there being no cementite particles inside these battens at all. The chemical elements most effectively influencing on the formation of acicular ferrite have been considered and their combined effect as well. It has been shown in particular, that the most effective chemical element in terms of impact toughness and cost relation is manganese. Besides, the results of multipass surfacing with impulse and constant feed of low-alloy steel wire electrode have been considered. According to these results acicular ferrite forms in both cases. However, at impulse feed of the electrode wire high mechanical properties of surfacing layer were got in the first passes, the form of the acicular ferrite crystallite has been improved and volume shares of polygonal and lamellar ferrite have been reduced. An assumption has been made, according to which acicular ferrite in the surfacing layer may be obtained through superposition of mechanical low-frequency oscillation on the welding torch or on the welding pool instead of periodic thermal effect due to electrode wire periodic feed

  1. A simple criterion to predict the glass forming ability of metallic alloys

    Falcao de Oliveira, Marcelo

    2012-01-01

    A new and simple criterion with which to quantitatively predict the glass forming ability (GFA) of metallic alloys is proposed. It was found that the critical cooling rate for glass formation (R C ) correlates well with a proper combination of two factors, the minimum topological instability (λ min ) and the Δh parameter, which depends on the average work function difference (Δφ) and the average electron density difference (Δn ws 1/3 ) among the constituent elements of the alloy. A correlation coefficient (R 2 ) of 0.76 was found between R c and the new criterion for 68 alloys in 30 different metallic systems. The new criterion and the Uhlmann's approach were used to estimate the critical amorphous thickness (Z C ) of alloys in the Cu-Zr system. The new criterion underestimated R C in the Cu-Zr system, producing predicted Z C values larger than those observed experimentally. However, when considering a scale factor, a remarkable similarity was observed between the predicted and the experimental behavior of the GFA in the binary Cu-Zr. When using the same scale factor and performing the calculation for the ternary Zr-Cu-Al, good agreement was found between the predicted and the actual best GFA region, as well as between the expected and the observed critical amorphous thickness.

  2. Analysis of metal forming processes by using physical modeling and new plastic similarity condition

    Gronostajski, Z.; Hawryluk, M.

    2007-01-01

    In recent years many advances have been made in numerical methods, for linear and non-linear problems. However the success of them depends very much on the correctness of the problem formulation and the availability of the input data. Validity of the theoretical results can be verified by an experiment using the real or soft materials. An essential reduction of time and costs of the experiment can be obtained by using soft materials, which behaves in a way analogous to that of real metal during deformation. The advantages of using of the soft materials are closely connected with flow stress 500 to 1000 times lower than real materials. The accuracy of physical modeling depend on the similarity conditions between physical model and real process. The most important similarity conditions are materials similarity in the range of plastic and elastic deformation, geometrical, frictional and thermal similarities. New original plastic similarity condition for physical modeling of metal forming processes is proposed in the paper. It bases on the mathematical description of similarity of the flow stress curves of soft materials and real ones

  3. Glass forming ability and mechanical properties of Zr50Cu42Al8 bulk metallic glass

    Xia, L; Chan, K C; Wang, G; Liu, L

    2008-01-01

    In this work, we report that Zr 50 Cu 42 Al 8 bulk metallic glass (BMG) exhibits excellent glass forming ability and mechanical properties. Zr 50 Cu 42 Al 8 glassy rods with a diameter of 3 mm were prepared using conventional copper mould suction casting. The glassy rod exhibits a modulus of about 115 GPa and a fracture strength of about 2 GPa, and, as compared with other large-scale BMGs, it has excellent room-temperature plasticity of up to 20% under compression. The fracture mechanism of the rod was investigated by microstructural investigations, and it was found that the large plasticity of the as-cast rod is closely related to the in situ formation of nano-crystalline particles embedded in the amorphous matrix.

  4. Testing and Prediction of Limits of Lubrication in Sheet Metal Forming

    Ceron, Ermanno; Bay, Niels

    2012-01-01

    Increasing focus on environmental issues in industrial production has urged a number of sheet metal forming companies to look for new tribo-systems, here meaning the combination of tool_material/workpiece_material/lubricant, in order to substitute hazardous lubricants such as chlorinated paraffin...... laboratory and production tests as well as numerical analyses in order to evaluate and compare performance of the new tribo-systems. A part is selected from industrial production and analyzed by this methodology in order to substitute the existing tribo-system with a new one....... oils. Testing of new tribo-systems under production conditions is, however, very costly. For preliminary testing it is more feasible to introduce laboratory tests. In this paper a new methodology for testing new tribo-systems is presented. The methodology describes a series of investigations combining...

  5. XPS characterization of the anodic oxide film formed on uranium metal in sodium hydroxide solution

    Fu Xiaoguo; Wang Xiaolin; Guo Huanjun; Wang Qingfu; Zhao Zhengping; Zhong Yongqiang

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) is used to examine the anodic oxide film formed on uranium metal in 0.8 mol/L NaOH solution. The U4f 7/2 fitting spectra suggests that the anodic oxide film is composed of uranium trioxide and a small amount of UO 2+x . Under UHV condition, the U4f peak shifts to the lower binding energy, while a gradual increase in the intensity of U5f peak and the broad of U4f peak are also observed. All of these changes are due to reduction of uranium trioxide in the anodic oxide film. XPS quantitative analysis confirms the occurrence of reduction reaction

  6. Critical and subcritical parameters of the system simulating plutonium metal dissolution

    Vasilev, Yury Yu.; Ryazanov, Boris G.; Sviridov, Victor I.; Mozhayeva, Lubov I.

    2003-01-01

    Dissolution of plutonium metal was simulated using the Monte Carlo computer code to calculate criticality safety limits for the process. Calculations were made for the constant masses of plutonium charged to the dissolving vessel considering distribution of plutonium in metal and solution phases. Critical parameters and limits were calculated as a function of dissolving vessel volume and plutonium metal mass. 240 Pu content was assumed to be from 0% to 10% (mass). Critical parameters were evaluated for the system with a water reflector. Results of this paper may be used in the designing process equipment for plutonium metal dissolution. (author)

  7. Experimental and FE simulation validation of sheet thickness optimization in superplastic forming of Al alloy

    Kumaresan, G.; Jothilingam, A. [Anna University, Chennai (India)

    2016-07-15

    Superplasticity is the ability of a polycrystalline materials to exhibit very large elongations without necking prior to failure. In this paper, the superplastic forming potential of fine grained 7075 aluminium alloy was studied. The process parameters like pressure, forming time and initial sheet thickness were selected, using the design of experiments technique. The same condition of formation process was attempted in the finite element simulation using ABAQUS software. The deviation of the thickness distribution between the simulation and experiment was made and the variation lies within 8%.

  8. Oxidation kinetics of simulated metallic spent fuel in air at 200∼300 .deg. C

    Joo, J. S.; Yoo, K. S.; Jo, I. J.; Kook, D. H.; Lee, E. P.; Lee, J. C.; Bang, K. S.; Kim, H. D.

    2003-01-01

    In order to evaluate the long term storage safety study of the metallic spent fuel, U-5Zr, U-5Ti, U-5Ni, U-5Nb, and U-5Hf simulated metallic uranium alloys, known as corrosion resistant alloys, were fabricated and oxidized in oxygen gas at 200 .deg. C ∼ 300 .deg. C. All simulated metallic uranium alloys were more corrosion resistant than pure uranium metal, and corrosion resistance increases Nb, Ni, Ti, Zr, Hf in that order. The oxidation rates of uranium alloys determined and activation energy was calculated for each alloy. The matrix microstructure of the test specimens were analyzed using OM, SEM, and EPMA. It was concluded that Nb was the best acceptable alloying elements for reducing corrosion of uranium metal, and Ni, Ti were also considered to suitable as candidate

  9. Automated local line rolling forming and simplified deformation simulation method for complex curvature plate of ships

    Y. Zhao

    2017-06-01

    Full Text Available Local line rolling forming is a common forming approach for the complex curvature plate of ships. However, the processing mode based on artificial experience is still applied at present, because it is difficult to integrally determine relational data for the forming shape, processing path, and process parameters used to drive automation equipment. Numerical simulation is currently the major approach for generating such complex relational data. Therefore, a highly precise and effective numerical computation method becomes crucial in the development of the automated local line rolling forming system for producing complex curvature plates used in ships. In this study, a three-dimensional elastoplastic finite element method was first employed to perform numerical computations for local line rolling forming, and the corresponding deformation and strain distribution features were acquired. In addition, according to the characteristics of strain distributions, a simplified deformation simulation method, based on the deformation obtained by applying strain was presented. Compared to the results of the three-dimensional elastoplastic finite element method, this simplified deformation simulation method was verified to provide high computational accuracy, and this could result in a substantial reduction in calculation time. Thus, the application of the simplified deformation simulation method was further explored in the case of multiple rolling loading paths. Moreover, it was also utilized to calculate the local line rolling forming for the typical complex curvature plate of ships. Research findings indicated that the simplified deformation simulation method was an effective tool for rapidly obtaining relationships between the forming shape, processing path, and process parameters.

  10. Interfacial Microstructure Formed by Reactive Metal Penetration of Al into Mullite

    Du, T.B.; Ewsuk, K.G.; Fahrenholtz, W.G.; Loehman, R.E.; Lu, P.

    1999-01-01

    Microstructure in the reaction interface between molten Al and dense mullite have been studied by transmission electron microscopy to provide insight into mechanisms for forming ceramic-metal composites by reactive metal penetration. The reactions, which have the overall stoichiometry, 3Al number sign iz01 + (8+ x)A1 + 13 AlzO + xA1 + 6Si, were carried out at temperatures of 900, 1100, and 1200oC for 5 minutes and 60 minutes, and 1400oC for 15 minutes. Observed phases generally were those given in the above reaction, although their proportions and interracial rnicrostructures differed strongly with reaction temperature. After reaction at 900oC, a thin Al layer separated unreacted mullite from the cx-AlzO and Al reaction products. No Si phase was found near the reaction front. After 5 minutes at 1100''C, the nxtction front contained Si, ct-A120, and an aluminum oxide phase with a high concentration of Si. After 60 minutes at 11O(YC many of the cx-A120g particles were needle-shaped with a preferred orientation. After reaction at 1200oC, the reaction front contained a high density of Si particles that formed a continuous layer over many of the mullite grains. The sample reacted at 140VC for 15 minutes had a dense ct-A120J reaction layer less than 2m thick. Some isolated Si particles were present between the a-AlzO layer and the unreacted mullite. Using previously measured reaction kinetics data, the observed temperature dependence of the interracial microstructure have been modeled as three sequential steps, each one of which is rate-limiting in a different temperature range

  11. Numerical simulation on the explosive boiling phenomena on the surface of molten metal

    Chen Deqi; Peng Cheng; Wang Qinghua; Pan Liangming

    2014-01-01

    In this paper, numerical simulation was carried out to investigate the explosive boiling phenomenon on high temperature surface also the influence of vapor growth rate during explosive boiling, vapor condensation in sub-cooled water and the subsequent effect on flowing and heat transfer. The simulation result indicates that the steam on the molten metal surface grows with very high speed, and it pushes away the sub-cooled water around and causes severe flowing. The steam clusters which block the sub-cooled water to rewet the molten metal surface are appearing at the same time. During the growth, lifting off as well as condensation of the steam clusters, the sub-cooled water around is strongly disturbed, and obvious vortexes appear. Conversely, the vortex will influence the steam cluster detachment and cub-cooled water rewetting the metal surface. This simulation visually displays the complex explosive boiling phenomena on the molten metal surface with high temperature. (authors)

  12. Forming Process Simulation for Fabrication Optimization in Areva Creusot Forge and Industeel

    Bobin , Isabelle; Poitrault , Isabelle; Bernacki , Marc; Guyot , Evelyne; Mascaro , Aurore; Martin , Benjamin

    2015-01-01

    International audience; The grain size of the austenitic stainless steel is an important issue for parts such as primary pipes in nuclear power plants and more globally for metal forming. Having tools which can predict at least the final grain size distribution for these materials is strongly required. It is in this frame that ACF worked for several years with other industrial and academic partners such as INDUSTEEL CRMC, Aubert & Duval, Ascometal, CEA Valduc and CEMEF Mines ParisTech on the ...

  13. Simulation of an Aspheric Glass Lens Forming Behavior in Progressive GMP Process

    Chang, Sung Ho; Lee, Young Min; Kang, Jeong Jin; Hong, Seok Kwan; Shin, Gwang Ho; Heo, Young Moo; Jung, Tae Sung

    2007-01-01

    Recently, GMP(Glass Molding Press) process is mainly used to produce aspheric glass lenses. Because glass lens is heated at high temperature above Tg (Transformation Temperature) for forming the glass, the quality of aspheric glass lens is deteriorated by residual stresses which are generated in a aspheric glass lens after forming. In this study, as a fundamental study to develop the mold for progressive GMP process, we conducted a aspheric glass lens forming simulation. Prior to a aspheric glass lens forming simulation, compression and thermal conductivity tests were carried out to obtain mechanical and thermal properties of K-PBK40 which is newly developed material for precision molding, and flow characteristics of K-PBK40 were obtained at high temperature. Then, using the flow characteristics obtained, compression simulation was carried out and compared with the experimental result for the purpose of verifying the obtained flow characteristics. Finally, a glass lens press simulation in progressive GMP process was carried out and we could forecast the shape of deformed glass lenses and residual stresses contribution in the structure of deformed glass lenses after forming

  14. Application of stochastic dynamic simulation to waste form qualification for the HWVP vitrification process

    Kuhn, W.L.; Westsik, J.H. Jr.

    1989-01-01

    Processing steps during the conversion of high-level nuclear waste into borosilicate glass in the Hanford Waste Vitrification Plant are being simulated on a computer by addressing transient mass balances. The results are being used to address the US Department of Energy's Waste Form Qualification requirements. The simulated addresses discontinuous (batch) operations and perturbations in the transient behavior of the process caused by errors in measurements and control actions. A collection of tests, based on process measurements, is continually checked and used to halt the simulated process when specified conditions are met. An associated set of control actions is then implemented in the simulation. The results for an example simulation are shown. 8 refs

  15. Considering the edge-crack sensitivity of a hot-rolled steel in forming simulation

    Gläsner, T.; Schneider, M.; Troitzsch, M.; Westhäuser, S.

    2016-11-01

    The formability of sheet metal materials is locally reduced by shear cutting operations, and as a result the risk of a crack during further processing is increased at the edge. Materials particularly susceptible to this are described as sensitive to edge-cracking. A procedure for quantitatively determining edge-crack sensitivity and for applying corresponding characteristic values has not been previously established. Below, two test methods and an approach for using the results in an extended forming limit diagram are presented. The producibility of a collar drawn test component as well as a chassis component is reevaluated using this extended forming limit diagram.

  16. Potential for energy conservaton in the metal forming industries. Progress report, July 1, 1978-August 15, 1979

    Avitzur, B.; Beidleman, C.R.; Smackey, B.M.

    1979-08-01

    Reduced energy consumption and improved product attributes are realizable benefits that are achievable through the adoption of optimal metal forming techniques. With the meteoric rise in energy costs, certain segments of the metal forming industries have accelerated their efforts in switching from energy intensive manufacturing techniques, e.g., casting, to metal forming, and, furthermore, from hot forming and machined components to cold forming, notably the automotive industry. The first year results of a two year study that will identify and document potential energy and cost savings associated with the adoption of low energy consumption techniques are presented. When compared with techniques requiring energy for hot forming, heat treatments, and excess or scrap material, the utilizaton of alternative metal forming processes offer considerable promise for energy savings. Descriptions of savings achieved by a combination of analytical methods and imaginative new processes are provided in the form of specific industrial case studies. The elimination of defects through the use of an analytical criteria for the prevention of the central burst is presented. Such available criteria for central burst serve as a justification for the desirability to develop criteria for the prevention of fishskin and other defects. Other savings which may be possible through the development of new technologies are included in an Appendix entitled: Recent Developments in Wire Making. One specific new process, Continuous Hydrostatic Extrusion, has been developed at Western Electric and is described in detail.

  17. Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glasses

    Paduraru, Anca; Andersen, Ulrik Grønbjerg; Thyssen, Anders

    2010-01-01

    The formation of shear bands during plastic deformation of Cu0.50Zr0.50 and Mg0.85Cu0.15 metallic glasses is studied using atomic-scale computer simulations. The atomic interactions are described using realistic many-body potentials within the effective medium theory, and are compared with similar...... simulations using a Lennard-Jones description of the material. The metallic glasses are deformed both in simple shear and in a simulated nanoindentation experiment. Plastic shear localizes into shear bands with a width of approximately 5 nm in CuZr and 8 nm in MgCu. In simple shear, the shear band formation...... is very clear, whereas only incipient shear bands are seen in nanoindentation. The shear band formation during nanoindentation is sensitive to the indentation velocity, indenter radius and the cooling rate during the formation of the metallic glass. For comparison, a similar nanoindentation simulation...

  18. Estimating product-to-product variations in metal forming using force measurements

    Havinga, Jos; van den Boogaard, Ton

    2017-10-01

    The limits of production accuracy of metal forming processes can be stretched by the development of control systems for compensation of product-to-product variations. Such systems require the use of measurements from each semi-finished product. These measurements must be used to estimate the final quality of each product. We propose to predict part of the product-to-product variations in multi-stage forming processes based on force measurements from previous process stages. The reasoning is that final product properties as well as process forces are expected to be correlated since they are both affected by material and process variation. In this study, an approach to construct a moving window process model based on historical data from the process is presented. These regression models can be built and updated in real-time during production. The approach is tested with data from a demonstrator process with cutting, deep drawing and bending stages. It is shown that part of the product-to-product variations in the process can be predicted with the developed process model.

  19. Quadruple metal-metal bonds with strong donor ligands. Ultraviolet photoelectron spectroscopy of M{sub 2}(form){sub 4} (M = Cr, Mo, W; form = N,N{prime}-diphenylformamidinate)

    Lichtenberger, D.L.; Lynn, M.A.; Chisholm, M.H.

    1999-12-29

    The He I photoelectron spectra of M{sub 2}(form){sub 4}(M = Cr, Mo, W; form - N,N{prime}-diphenylformamidinate) and Mo{sub 2}(cyform){sub 4} (cyform = N,N{prime}-dicyclohexylformamidinate) are presented. For comparison, the Ne I, He I, and He II photoelectron spectra of Mo{sub 2}(p-CH{sub 3}-form){sub 4} have also been obtained. The valence ionization features of these molecules are interpreted based on (1) the changes that occur with the metal and ligand substitutions, (2) the changes in photoelectron cross sections with excitation source, and (3) the changes from previously studied dimetal complexes. These photoelectron spectra are useful for revealing the effects that better electron donor ligands have on the valence electronic structure of M{sub 2}(L-L){sub 4} systems. Comparison with the He I spectra of the isoelectronic M{sub 2}(O{sub 2}CCH{sub 3}){sub 4} compounds is particularly revealing. Unlike with the more electron-withdrawing acetate ligand, several formamidinate-based ionizations derived from the nitrogen p{sub {pi}} orbitals occur among the metal-metal {sigma}, {pi}, and {delta} ionization bands. Although these formamidinate-based levels are close in energy to the occupied metal-metal bonds, they have little direct mixing interaction with them. The shift of the metal-metal bond ionizations to lower ionization energies for the formamidinate systems is primarily a consequence of the lower electronegativity of the ligand and the better {pi} donation into empty metal levels. The metal-metal {delta} orbital experiences some additional net bonding interaction with ligand orbitals of the same symmetry. Also, an additional bonding interaction from ligand-to-metal electron donation to the {delta}* orbital is identified. These spectra suggest a greater degree of metal-ligand covalency than in the related M{sub 2}(O{sub 2}CCH{sub 3}){sub 4} systems. Fenske-Hall molecular orbital and density functional (ADF) calculations agree with the assignment and

  20. Formation, Characteristics and Electrocatalytic Properties of Nanoporous Metals Formed by Dealloying of Ternary-Noble Alloys

    Vega Zuniga, Adrian A.

    Nanoporous metals formed by electrochemical dealloying of silver from Ag-Au-Pt alloys, with 77 at.% silver and platinum contents of 1, 2 and 3 at.%, have been studied. The presence of platinum, which is immobile relative to gold, refine the ligament size and stabilized the nanostructure against coarsening, even under experimental conditions that would be expected to promote coarsening (e.g., exposure to high temperature, longer dealloying times). By adding only 1 at.% Pt to the alloy precursor, the ligament/pore size was reduced by 50% with respect to that in nanoporous gold (NPG), which was formed on a Ag-Au alloy with the same silver content as ternary alloys. A further decrease in the ligament size was observed by increasing the platinum content of the precursor; however, most of the improvement occurred with 1 at.% Pt. The adsorbate-induced surface segregation of platinum was also investigated for these nanoporous metals. By exposing freshly-dealloyed nanostructures to moderate temperatures in the presence of air, platinum segregated to the ligament surface; in contrast, in an inert atmosphere (Ar-H 2), platinum mostly reverted to the bulk of the ligaments. This thermally activated process was thermodynamically driven by the interaction between platinum and oxygen; however, at the desorption temperature of oxygen, platinum de-segregated from the surface. Moreover, the co-segregation of platinum and oxygen hindered the thermal coarsening of the ligaments. Finally, the electrocatalytic abilities of these nanostructures were studied towards methanol and ethanol electro-oxidation, in alkaline and acidic media, showing significantly improved response in comparison to that observed in NPG. The synergistic effect between gold and platinum atoms and the smaller feature size of the nanostructures were directly associated with this behaviour. In alkaline electrolyte, the nanostructure formed on the alloy with 1 at.% Pt showed higher catalytic response than the other two

  1. Molecular dynamics simulation of nanotribology properties of CuZr metallic glasses

    Wu, Cheng-Da [Chung Yuan Christian University, Department of Mechanical Engineering, Taoyuan City (China)

    2016-04-15

    The effects of scratch depth, scratch speed, and alloy composition on the mechanical deformation and nanotribology properties of CuZr metallic glasses are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. These effects are investigated in terms of atomic trajectories, slip vectors, friction force, normal force, and friction coefficient. The simulation results show that a few shear transformation zones independently develop at the contact area between the probe tip and the film. Pileup occurs in the nanoscratch process but not during nanoindentation at a depth of 2.4 nm. There are two areas on the surface where the atoms have high slip vector values during nanoscratching. These areas form due to the removal of atoms that piled up around the probe tip and those behind the probe tip, respectively. Both the friction force and the normal force increase with increasing scratch depth and scratch speed. Friction coefficients decrease with increasing scratch depth, scratch speed, and Zr content in films. (orig.)

  2. In vitro analysis of nanotoxicity of metallic nanoparticles in simulated intracorporeal bio-environment

    Meng Huan; Chen Zhen; Zhang Chengcheng; Zhao Yuliang; Xing Gengmei; Yuan Hui; Chen Chunying; Zhao Feng; Ye Chang; Jia Guang; Wang Xiang

    2005-01-01

    The wildly uses of copper in the various aspects of the life and industry have proved that microsized copper is a substance of very low toxicity. However, the recent experimental results indicate that the acute toxicity of nanosized particles in mice is dramatically different from the microsized particles of copper. The biological toxicity of copper showed increasing feature with the decrease of the particle size. To further study these observations, chemical oxidation-reduction titration analysis was carried out to study the kinetics of nano copper particles in simulated gastric juice. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (Thermo Elemental X7) was used to detect the content of copper in the organs of mice exposed to a wide range of doses. These in vitro studies of chemical reactivity suggest that the nano-sized copper is extremely reactive in simulated intracorporeal environment. The nano copper particles can be converted into ionic form much easier than micro particles of the identical quantity under the same conditions in vitro. The hydrogen ion consumed by nano-sized copper in stomach is dramatically quicker than by micro copper particles. At the presentation, we will discuss the analyzed results for the different distribution of nanoparticles, the different mortality in nano copper treated animal groups between male and female mice, and show evidences demonstrating that the huge surface area as well the ultrahigh chemical reactivity would be the main causes dominating the biological activity/toxicity of metallic nanoparticles in vivo.

  3. Performance simulation of serpentine type metallic and non-metallic solar collector

    Al-Sageer, A. A. M.; Alowa, M. I.; Saad, M.

    2006-01-01

    This paper presents a theoretical investigation of metallic and non-metalic solar water collector models for evaluating its performane parameters. The determined parameters include heat removal factor , overall heat loss coefficients, heat gain, daily and hourly efficiencies. The present study reports that, under forced circulation lest, the non-metallic collector has an inferior performance parameters when compared to that of the metallic one. It was also revealed that the overall heat loss coefficients of both collectors show weak dependence on the flow rate variations. It was also noticed that the heat removal factor forboth models is more sensitive to the flow rate variations. Also noticed that the heat removal factor for both models is more sensitive to the flow rate variations. Also, a comparision of performance parameters of the theoretical and experimental studies showed good agreements for most hours of the day, except the results obtained at the early morning and late after noon hours.(Author)

  4. Modelling and simulating the forming of new dry automated lay-up reinforcements for primary structures

    Bouquerel, Laure; Moulin, Nicolas; Drapier, Sylvain; Boisse, Philippe; Beraud, Jean-Marc

    2017-10-01

    While weight has been so far the main driver for the development of prepreg based-composites solutions for aeronautics, a new weight-cost trade-off tends to drive choices for next-generation aircrafts. As a response, Hexcel has designed a new dry reinforcement type for aircraft primary structures, which combines the benefits of automation, out-of-autoclave process cost-effectiveness, and mechanical performances competitive to prepreg solutions: HiTape® is a unidirectional (UD) dry carbon reinforcement with thermoplastic veil on each side designed for aircraft primary structures [1-3]. One privileged process route for HiTape® in high volume automated processes consists in forming initially flat dry reinforcement stacks, before resin infusion [4] or injection. Simulation of the forming step aims at predicting the geometry and mechanical properties of the formed stack (so-called preform) for process optimisation. Extensive work has been carried out on prepreg and dry woven fabrics forming behaviour and simulation, but the interest for dry non-woven reinforcements has emerged more recently. Some work has been achieved on non crimp fabrics but studies on the forming behaviour of UDs are seldom and deal with UD prepregs only. Tension and bending in the fibre direction, along with inter-ply friction have been identified as the main mechanisms controlling the HiTape® response during forming. Bending has been characterised using a modified Peirce's flexometer [5] and inter-ply friction study is under development. Anisotropic hyperelastic constitutive models have been selected to represent the assumed decoupled deformation mechanisms. Model parameters are then identified from associated experimental results. For forming simulation, a continuous approach at the macroscopic scale has been selected first, and simulation is carried out in the Zset framework [6] using proper shell finite elements.

  5. Substructuring in the implicit simulation of single point incremental sheet forming

    Hadoush, A.; van den Boogaard, Antonius H.

    2009-01-01

    This paper presents a direct substructuring method to reduce the computing time of implicit simulations of single point incremental forming (SPIF). Substructuring is used to divide the finite element (FE) mesh into several non-overlapping parts. Based on the hypothesis that plastic deformation is

  6. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    Ivanovskii, Alexander L

    2009-01-01

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  7. Use of Numerical Simulation at Optimisation of Technological Processes of Cold Bulk Forming

    Stanislav RUSZ

    2012-06-01

    Full Text Available The paper deals with numerical and physical modelling aimed at optimisation of production technology and designing of manufacturing tools with use of finite-element method. For the topic of cold bulk forming a manufacture of pressed insert, used in industry as a component for damping system for passenger cars, was simulated. It is a rotationally symmetric component, which is subjected to high axial load, and strength and fatigue characteristics of which depend substantially on service life and reliability of the whole damping system. This component was subjected to analysis of distribution of flow stress and deformation intensity at combined extrusion from the viewpoint of their load with use of simulating software Simufact.Forming 10.0. The simulation process ran smoothly, without sudden changes of the shape leading to formation of possible internal defects.

  8. The mass-metallicity relations for gas and stars in star-forming galaxies: strong outflow versus variable IMF

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Comparat, Johan; Gonzalez-Perez, Violeta; Ventura, Paolo

    2018-02-01

    We investigate the mass-metallicity relations for the gaseous (MZRgas) and stellar components (MZRstar) of local star-forming galaxies based on a representative sample from Sloan Digital Sky Survey Data Release 12. The mass-weighted average stellar metallicities are systematically lower than the gas metallicities. This difference in metallicity increases towards galaxies with lower masses and reaches 0.4-0.8 dex at 109 M⊙ (depending on the gas metallicity calibration). As a result, the MZRstar is much steeper than the MZRgas. The much lower metallicities in stars compared to the gas in low-mass galaxies imply dramatic metallicity evolution with suppressed metal enrichment at early times. The aim of this paper is to explain the observed large difference in gas and stellar metallicity and to infer the origin of the mass-metallicity relations. To this end we develop a galactic chemical evolution model accounting for star formation, gas inflow and outflow. By combining the observed mass-metallicity relation for both gas and stellar components to constrain the models, we find that only two scenarios are able to reproduce the observations. Either strong metal outflow or a steep initial mass function (IMF) slope at early epochs of galaxy evolution is needed. Based on these two scenarios, for the first time we successfully reproduce the observed MZRgas and MZRstar simultaneously, together with other independent observational constraints in the local Universe. Our model also naturally reproduces the flattening of the MZRgas at the high-mass end leaving the MZRstar intact, as seen in observational data.

  9. Improved failure prediction in forming simulations through pre-strain mapping

    Upadhya, Siddharth; Staupendahl, Daniel; Heuse, Martin; Tekkaya, A. Erman

    2018-05-01

    The sensitivity of sheared edges of advanced high strength steel (AHSS) sheets to cracking during subsequent forming operations and the difficulty to predict this failure with any degree of accuracy using conventionally used FLC based failure criteria is a major problem plaguing the manufacturing industry. A possible method that allows for an accurate prediction of edge cracks is the simulation of the shearing operation and carryover of this model into a subsequent forming simulation. But even with an efficient combination of a solid element shearing operation and a shell element forming simulation, the need for a fine mesh, and the resulting high computation time makes this approach not viable from an industry point of view. The crack sensitivity of sheared edges is due to work hardening in the shear-affected zone (SAZ). A method to predict plastic strains induced by the shearing process is to measure the hardness after shearing and calculate the ultimate tensile strength as well as the flow stress. In combination with the flow curve, the relevant strain data can be obtained. To eliminate the time-intensive shearing simulation necessary to obtain the strain data in the SAZ, a new pre-strain mapping approach is proposed. The pre-strains to be mapped are, hereby, determined from hardness values obtained in the proximity of the sheared edge. To investigate the performance of this approach the ISO/TS 16630 hole expansion test was simulated with shell elements for different materials, whereby the pre-strains were mapped onto the edge of the hole. The hole expansion ratios obtained from such pre-strain mapped simulations are in close agreement with the experimental results. Furthermore, the simulations can be carried out with no increase in computation time, making this an interesting and viable solution for predicting edge failure due to shearing.

  10. Issues in the validation of CFD modelling of semi-solid metal forming

    Ward, P.J.; Atkinson, H.V.; Kirkwood, D.H.; Liu, T.Y.; Chin, S.B.

    2000-01-01

    Modelling of die filling during semi-solid metal processing (thixoforming) places particular demands on the CFD package being used. Not only are the velocities of the metal slurry in the die very high, the viscosity is too. Furthermore, the viscosity changes with shear rate (i.e. with changes in cross sectional area of the region the slurry travels through) and with time, as the injected material is thixotropic. The CFD software therefore requires good free surface tracking, accurate implicit solutions of the flow equations (as the CPU times for explicit solutions at high viscosities are impractical) and a model that adequately describes the slurry thixotropy. Finally, reliable, experimentally determined viscosity data are required. This paper describes the experiments on tin-lead and aluminium alloy slurries using compressive tests and rotating cylinder viscometry, followed by modelling using FLOW-3D. This package is known for its ability to track free surfaces accurately. Compressive tests allow rapid changes in shear rate to be imparted to the slurry, without wall slip, while the simple geometry of the viscometer makes it possible to compare analytical and numerical solutions. It is shown that the implicit viscous solver in its original form can reproduce the general trends found in the compressive and viscometry tests. However, sharp changes in shear rate lead to overestimation of pressure gradients in the slurry, making it difficult to separate these effects from those due to thixotropic breakdown. In order to achieve this separation, it is necessary to implement a more accurate implicit solver, which is currently under development. (author)

  11. Custom-made, root-analogue direct laser metal forming implant: a case report.

    Mangano, Francesco Guido; Cirotti, Bruno; Sammons, Rachel Lilian; Mangano, Carlo

    2012-11-01

    In the last few years, the application of digital technology in dentistry has become widespread with the introduction of cone beam computed tomography (CBCT) scan technology, and considerable progress has been made in the development of computer-aided design/ computer-aided manufacturing (CAD/CAM) techniques, including direct laser metal forming (DLMF). DLMF is a technology which allows solids with complex geometry to be produced by annealing metal powder microparticles in a focused laser beam, according to a computer-generated three-dimensional (3D) model. For dental implants, the fabrication process involves the laser-induced fusion of titanium microparticles, in order to build, layer by layer, the desired object. At present, the combined use of CBCT 3D data and CAD/CAM technology makes it possible to manufacture custom-made, root-analogue implants (RAI) with sufficient precision. This report demonstrates the successful clinical use of a custom-made, root-analogue DLMF implant. CBCT images of a non-restorable right maxillary first premolar were acquired and transformed into a 3D model. From this model, a custom-made, root-analogue DLMF implant was fabricated. Immediately after tooth extraction, the RAI with a pre-operatively designed abutment was placed in the extraction socket and restored with a single crown. At the 1-year follow-up examination, the RAI showed a good functional and aesthetic integration. The introduction of DLMF technology signals the start of a new revolutionary era for implant dentistry as its immense potential for producing highly complex macro- and microstructures is receiving vast interest in different medical fields.

  12. Simulating the long-term chemistry of an upland UK catchment: Heavy metals

    Tipping, E. [Centre for Ecology and Hydrology (Lancaster), Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)]. E-mail: et@ceh.ac.uk; Lawlor, A.J. [Centre for Ecology and Hydrology (Lancaster), Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Lofts, S. [Centre for Ecology and Hydrology (Lancaster), Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Shotbolt, L. [Environment Department, University of York, Heslington, York YO10 5DD (United Kingdom)

    2006-05-15

    CHUM-AM was used to investigate the behaviours of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in three moorland sub-catchments in Cumbria UK. The principal processes controlling cationic metals are competitive partitioning to soil organic matter, chemical interactions in solution, and chemical weathering. Metal deposition histories were generated by combining measured data for the last 30 years with local lake sediment records. For Ni, Cu, Zn and Cd, default parameters for the interactions with organic matter provided reasonable agreement between simulated and observed present-day soil metal pools and average streamwater concentrations. However, for Pb, the soil binding affinity in the model had to be increased to match the observations. Simulations suggest that weakly-sorbing metals (Ni, Zn, Cd) will respond on timescales of decades to centuries to changes in metal inputs or acidification status. More strongly-sorbing metals (Cu, Pb) will respond over centuries to millennia. - Catchment turnover times for the strongly-retained metals Cu and Pb are of the order of centuries, whereas those for the more mobile Ni, Zn and Cd are appreciably shorter.

  13. Noble metal (NM) behavior during simulated HLLW vitrification in induction melter with cold crucible

    Demin, A.V.; Matyunin, Y.I.; Fedorova, M.I.

    1995-01-01

    The investigation of noble metal (Ru, Rh, Pd) properties in, glass melts are connected with their specific behaviors during HLLW vitrification. Ruthenium, rhodium and palladium volatilities and heterogeneous platinoid phases forming on melts are investigated in reasonable details conformably to Joule's heating ceramic melters. The vitrification conditions in melters with induction heating of melts are differ from the vitrification ones in ceramic melters on some numbers of parameters (the availability of significant temperature gradients and convection flows in melts, short time of molten mass updating in melter and probability of definite interaction between high-frequency field and melt inhomogeneities). The results of simulated HLLW solidification modelling of the vitrification process in induction melter with cold crucible to produce phosphate and boron-silicate materials are presented. The properties of received glasses and behavior of platinoids are shown to have analogies and distinctions in comparison with compounds, synthesized in ceramic melter. The structures of dispersed particles of NM heterogeneous phases forming in glass melts prepared in induction melter with cold crucible are identified. The results of investigations show, that the marked distinctions between two processes can influence (in definite degree) as on property of synthesized materials, as on behavior of platinoid during vitrifications

  14. Ductile Damage and Fatigue Behavior of Semi-Finished Tailored Blanks for Sheet-Bulk Metal Forming Processes

    Besserer, Hans-Bernward; Hildenbrand, Philipp; Gerstein, Gregory; Rodman, Dmytro; Nürnberger, Florian; Merklein, Marion; Maier, Hans Jürgen

    2016-03-01

    To produce parts from sheet metal with thickened functional elements, bulk forming operations can be employed. For this new process class, the term sheet-bulk metal forming has been established recently. Since sheet-bulk metal forming processes such as orbital forming generates triaxial stress and strain states, ductile damage is induced in the form of voids in the microstructure. Typical parts will experience cyclic loads during service, and thus, the influence of ductile damage on the fatigue life of parts manufactured by orbital forming is of interest. Both the formation and growth of voids were characterized following this forming process and then compared to the as-received condition of the ferritic deep drawing steel DC04 chosen for this study. Subsequent to the forming operation, the specimens were fatigued and the evolution of ductile damage and the rearrangement of the dislocation networks occurring during cyclic loading were determined. It was shown, that despite an increased ductile damage due to the forming process, the induced strain hardening has a positive effect on the fatigue life of the material. However, by analyzing the fatigued specimens a development of the ductile damage by an increasing number of voids and a change in the void shape were detected.

  15. Mass and metallicity scaling relations of high-redshift star-forming galaxies selected by GRBs

    Arabsalmani, M.; Møller, P.; Perley, D.~A.

    2018-01-01

    -metallicity relation of the general population. It is hard to decide whether this relatively small offset is due to systematic effects or the intrinsic nature of GRB hosts. We also investigate the possibility of using absorption-line metallicity measurements of GRB hosts to study the mass-metallicity relation at high...

  16. Accelerating solidification process simulation for large-sized system of liquid metal atoms using GPU with CUDA

    Jie, Liang [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China); Li, KenLi, E-mail: lkl@hnu.edu.cn [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China); National Supercomputing Center in Changsha, 410082 (China); Shi, Lin [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China); Liu, RangSu [School of Physics and Micro Electronic, Hunan University, Changshang, 410082 (China); Mei, Jing [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China)

    2014-01-15

    Molecular dynamics simulation is a powerful tool to simulate and analyze complex physical processes and phenomena at atomic characteristic for predicting the natural time-evolution of a system of atoms. Precise simulation of physical processes has strong requirements both in the simulation size and computing timescale. Therefore, finding available computing resources is crucial to accelerate computation. However, a tremendous computational resource (GPGPU) are recently being utilized for general purpose computing due to its high performance of floating-point arithmetic operation, wide memory bandwidth and enhanced programmability. As for the most time-consuming component in MD simulation calculation during the case of studying liquid metal solidification processes, this paper presents a fine-grained spatial decomposition method to accelerate the computation of update of neighbor lists and interaction force calculation by take advantage of modern graphics processors units (GPU), enlarging the scale of the simulation system to a simulation system involving 10 000 000 atoms. In addition, a number of evaluations and tests, ranging from executions on different precision enabled-CUDA versions, over various types of GPU (NVIDIA 480GTX, 580GTX and M2050) to CPU clusters with different number of CPU cores are discussed. The experimental results demonstrate that GPU-based calculations are typically 9∼11 times faster than the corresponding sequential execution and approximately 1.5∼2 times faster than 16 CPU cores clusters implementations. On the basis of the simulated results, the comparisons between the theoretical results and the experimental ones are executed, and the good agreement between the two and more complete and larger cluster structures in the actual macroscopic materials are observed. Moreover, different nucleation and evolution mechanism of nano-clusters and nano-crystals formed in the processes of metal solidification is observed with large

  17. Crystal Structures of Apo and Metal-Bound Forms of the UreE Protein from Helicobacter pylori: Role of Multiple Metal Binding Sites

    Shi, Rong; Munger, Christine; Asinas, Abdalin; Benoit, Stephane L.; Miller, Erica; Matte, Allan; Maier, Robert J.; Cygler, Miroslaw (McGill); (Georgia); (Biotech Res.)

    2010-10-22

    The crystal structure of the urease maturation protein UreE from Helicobacter pylori has been determined in its apo form at 2.1 {angstrom} resolution, bound to Cu{sup 2+} at 2.7 {angstrom} resolution, and bound to Ni{sup 2+} at 3.1 {angstrom} resolution. Apo UreE forms dimers, while the metal-bound enzymes are arranged as tetramers that consist of a dimer of dimers associated around the metal ion through coordination by His102 residues from each subunit of the tetramer. Comparison of independent subunits from different crystal forms indicates changes in the relative arrangement of the N- and C-terminal domains in response to metal binding. The improved ability of engineered versions of UreE containing hexahistidine sequences at either the N-terminal or C-terminal end to provide Ni{sup 2+} for the final metal sink (urease) is eliminated in the H102A version. Therefore, the ability of the improved Ni{sup 2+}-binding versions to deliver more nickel is likely an effect of an increased local concentration of metal ions that can rapidly replenish transferred ions bound to His102.

  18. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Herath, H.M.T.U. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Premachandra, T.N. [Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Ranasinghe, C.S.K. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.P.V.J. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Edirisinghe, Mohan; Mahalingam, S. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Bandara, I.M.C.C.D. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia); Singh, Sanjleena [Central Analytical Research Facility, Institute of Future Environments, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia)

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO{sub 2} thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO{sub 2} thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  19. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G.; Herath, H.M.T.U.; Premachandra, T.N.; Ranasinghe, C.S.K.; Rajapakse, R.P.V.J.; Rajapakse, R.M.G.; Edirisinghe, Mohan; Mahalingam, S.; Bandara, I.M.C.C.D.; Singh, Sanjleena

    2016-01-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO_2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO_2 thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  20. Determination of Actual Friction Factors in Metal Forming under Heavy Loaded Regimes Combining Experimental and Numerical Analysis

    Camacho, Ana María; Veganzones, Mariano; Claver, Juan; Martín, Francisco; Sevilla, Lorenzo; Sebastián, Miguel Ángel

    2016-01-01

    Tribological conditions can change drastically during heavy loaded regimes as experienced in metal forming; this is especially critical when lubrication can only be applied at the early stage of the process because the homogeneous lubricant layer can break along the die-workpiece interface. In these cases, adopting a constant friction factor for the lubricant-surface pair may not be a valid assumption. This paper presents a procedure based on the use of dual friction factor maps to determine friction factors employed in heavy loaded regimes. A finite element (FE) simulation is used to obtain the friction factor map for the alloy UNS A96082. Experiments were conducted using four lubricants (aluminum anti-size, MoS2 grease, silicone oil, and copper paste) to determine the actual friction curves. The experimental procedure is based on the application of lubricant only at the beginning of the first stage of ring compression, and not at intermediate stages as is usual in typical ring compression tests (RCTs). The results show that for small reductions (rh 20%), it is recommended to obtain an average value of the friction factor for every lubricant-surface pair in the range of deformation considered. PMID:28773868

  1. Determination of Actual Friction Factors in Metal Forming under Heavy Loaded Regimes Combining Experimental and Numerical Analysis

    Ana María Camacho

    2016-09-01

    Full Text Available Tribological conditions can change drastically during heavy loaded regimes as experienced in metal forming; this is especially critical when lubrication can only be applied at the early stage of the process because the homogeneous lubricant layer can break along the die-workpiece interface. In these cases, adopting a constant friction factor for the lubricant-surface pair may not be a valid assumption. This paper presents a procedure based on the use of dual friction factor maps to determine friction factors employed in heavy loaded regimes. A finite element (FE simulation is used to obtain the friction factor map for the alloy UNS A96082. Experiments were conducted using four lubricants (aluminum anti-size, MoS2 grease, silicone oil, and copper paste to determine the actual friction curves. The experimental procedure is based on the application of lubricant only at the beginning of the first stage of ring compression, and not at intermediate stages as is usual in typical ring compression tests (RCTs. The results show that for small reductions (rh < 20%, the conventional RCT can be applied because the tribological conditions remain similar. For large reductions (rh > 20%, it is recommended to obtain an average value of the friction factor for every lubricant-surface pair in the range of deformation considered.

  2. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys.

    Kokubo, Tadashi; Yamaguchi, Seiji

    2016-10-15

    Until the discovery of the bone-bonding activity of Bioglass by Hench et al. in the early 1970s, it had not been demonstrated that a synthetic material could bond to living bone without eliciting a foreign body reaction. Since then, various kinds of materials based on calcium phosphate, such as sintered hydroxyapatite and β-tricalcium phosphate have also been shown to bond to living bone. Until the discovery of the bone-bonding activity of Ti metal formed with a sodium titanate surface layer by the present authors in 1996, it had not been shown that a metallic material could bond to living bone. Since then, various kinds of surface-modified Ti metal and its alloys have been found to bond to living bone. Until the discovery of the osteoinduction of porous hydroxyapatite by Yamasaki in 1990, it was unknown whether a synthetic material could induce bone formation even in muscle tissue. Since then, various kinds of porous calcium phosphate ceramics have been shown to induce osteoinduction. Until the discovery of osteoinduction induced by a porous Ti metal formed with a titanium oxide surface layer by Fujibayashi et al. in 2004, it had been unclear whether porous metals would be able to induce osteoinduction. These novel bioactive materials have been developed by systematic research into the apatite formation that occurs on surface-modified Ti metal and its related materials in an acellular simulated body fluid (SBF) having ion concentrations almost equal to those of human blood plasma. Some of the novel bioactive materials based on Ti metal are already in clinical use or clinical trials, such as artificial hip joints and spinal fusion devices. In the present paper, we review how these novel bioactive materials based on Ti metal have been developed based on an evaluation of apatite formation in SBF. Without the SBF evaluation, these novel bioactive materials would most likely never have been developed. On the basis of systematic study of apatite formation on a material

  3. Simulation of press-forming for automobile part using ultra high tension steel

    Tanabe I.

    2012-08-01

    Full Text Available In recent years, ultra high tension steel has gradually been used in the automobile industry. The development of press-forming technology is now essential by reason of its high productivity and high product quality. In this study, tensile tests were performed with a view to understanding the material properties. Press-forming tests were then carried out with regard to the behaviors of spring back and deep-drawability, and manufacturing a real product. The ultra high tension steel used in the experiments had a thickness of 1 mm and a tensile strength of 1000 MPa. Finally, simulations of spring back, deep-drawability and manufacturing a real product in ultra high tension steel were conducted and evaluated in order to calculate the optimum-press-forming conditions and the optimum shape of the die. FEM with non-linear and dynamic analysis using Euler-Lagrange’s element was used for the simulations. It is concluded from the results that (1 the simulations conformed to the results of the experiments (2 the simulations proved very effective for calculating the optimum press conditions and die shape.

  4. Computer simulations of small semiconductor and metal clusters

    Andreoni, W.

    1991-01-01

    A brief survey is presented of recent simulations of small clusters, made with both ab-initio and classical approaches, with particular emphasis on the application of the Car-Parrinello method. The discussion mainly focusses on the structural properties of a variety of materials and on the effects of temperature. (orig.)

  5. New tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    Ceron, Ermanno

    that the performance of the workpiece materials have to improve in order to satisfy higher strength and lower weight requirements. This however leads to challenges in the forming operation, especially when high surface expansion and elevated strain are involved. The challenge is to achieve long production run...... Tribotester was developed. A production process was selected at Grundfos, which is currently running with chlorinated paraffin oil. The process includes a deep drawing and two subsequent re-drawings in a progressive tool. The process was numerically analyzed to investigate the tribological conditions....... A suitable laboratory test (BUT test) was selected to simulate the production process. The BUT test was numerically analyzed to verify that the tribological conditions are close to the production process ones. A few interesting new tribo-systems were selected to be investigated in the BUT test. Some of them...

  6. Material characterization and finite element simulations of aluminum alloy sheets during non-isothermal forming process

    Zhang, Nan

    The utilization of more non-ferrous materials is one of the key factors to succeed out of the constantly increasing demand for lightweight vehicles in automotive sector. Aluminum-magnesium alloys have been identified as the most promising substitutions to the conventional steel without significant compromise in structural stiffness and strength. However, the conventional forming methods to deform the aluminum alloy sheets are either costly or insufficient in formability which limit the wide applications of aluminum alloy sheets. A recently proposed non-isothermal hot stamping approach, which is also referred as Hot Blank - Cold Die (HB-CD) stamping, aims at fitting the commercial grade aluminum alloy sheets, such as AA5XXX and AA7XXX, into high-volume and cost-effective production for automotive sector. In essence, HB-CD is a mutation of the conventional hot stamping approach for boron steel (22MnB5) which deforms the hot blank within the cold tool set. By elevating the operation temperature, the formability of aluminum alloy sheets can be significantly improved. Meanwhile, heating the blank only and deforming within the cold tool sets allow to reduce the energy and time consumed. This research work aims at conducting a comprehensive investigation of HB-CD with particular focuses on material characterization, constitutive modeling and coupled thermo-mechanical finite element simulations with validation. The material properties of AA5182-O, a popular commercial grade of aluminum alloy sheet in automotive sector, are obtained through isothermal tensile testing at temperatures from 25° to 300°, covering a quasi-static strain-rate range (0.001--0.1s-1). As the state-of-the-art non-contact strain measurement technique, digital image correlation (DIC) system is utilized to evaluate the stress-strain curves as well as to reveal the details of material deformation with full-field and multi-axis strain measurement. Material anisotropy is characterized by extracting the

  7. [Using sequential indicator simulation method to define risk areas of soil heavy metals in farmland.

    Yang, Hao; Song, Ying Qiang; Hu, Yue Ming; Chen, Fei Xiang; Zhang, Rui

    2018-05-01

    The heavy metals in soil have serious impacts on safety, ecological environment and human health due to their toxicity and accumulation. It is necessary to efficiently identify the risk area of heavy metals in farmland soil, which is of important significance for environment protection, pollution warning and farmland risk control. We collected 204 samples and analyzed the contents of seven kinds of heavy metals (Cu, Zn, Pb, Cd, Cr, As, Hg) in Zengcheng District of Guangzhou, China. In order to overcame the problems of the data, including the limitation of abnormal values and skewness distribution and the smooth effect with the traditional kriging methods, we used sequential indicator simulation method (SISIM) to define the spatial distribution of heavy metals, and combined Hakanson index method to identify potential ecological risk area of heavy metals in farmland. The results showed that: (1) Based on the similar accuracy of spatial prediction of soil heavy metals, the SISIM had a better expression of detail rebuild than ordinary kriging in small scale area. Compared to indicator kriging, the SISIM had less error rate (4.9%-17.1%) in uncertainty evaluation of heavy-metal risk identification. The SISIM had less smooth effect and was more applicable to simulate the spatial uncertainty assessment of soil heavy metals and risk identification. (2) There was no pollution in Zengcheng's farmland. Moderate potential ecological risk was found in the southern part of study area due to enterprise production, human activities, and river sediments. This study combined the sequential indicator simulation with Hakanson risk index method, and effectively overcame the outlier information loss and smooth effect of traditional kriging method. It provided a new way to identify the soil heavy metal risk area of farmland in uneven sampling.

  8. An Initial Assessment Of Potential Production Technologies For Epsilon-Metal Waste Forms

    Rohatgi, Aashish; Strachan, Denis M.

    2011-01-01

    This report examines and ranks a total of seven materials processing techniques that may be potentially utilized to consolidate the undissolved solids from nuclear fuel reprocessing into a low-surface area form. Commercial vendors of processing equipment were contacted and literature researched to gather information for this report. Typical equipment and their operation, corresponding to each of the seven techniques, are described in the report based upon the discussions and information provided by the vendors. Although the report does not purport to describe all the capabilities and issues of various consolidation techniques, it is anticipated that this report will serve as a guide by highlighting the key advantages and disadvantages of these techniques. The processing techniques described in this report were broadly classified into those that employed melting and solidification, and those in which the consolidation takes place in the solid-state. Four additional techniques were examined that were deemed impractical, but were included for completeness. The techniques were ranked based on criteria such as flexibility in accepting wide-variety of feed-stock (chemistry, form, and quantity), ease of long-term maintenance, hot cell space requirements, generation of additional waste streams, cost, and any special considerations. Based on the assumption of ∼2.5 L of waste to be consolidated per day, sintering based techniques, namely, microwave sintering, spark plasma sintering and hot isostatic pressing, were ranked as the top-3 choices, respectively. Melting and solidification based techniques were ranked lower on account of generation of volatile phases and difficulties associated with reactivity and containment of the molten metal.

  9. Characterization of the precipitates formed during the denitration of simulated HRLW

    Music, S.; Ristic, M.; Popovic, S.

    1989-01-01

    The denitration of several chemical compositions of simulated highly radioactive liquid waste (HRLW) was performed using formic acid as reducing agent. Precipitates formed during the denitration of simulated HRLW were analyzed using x-ray diffraction and 57 Fe Moessbauer spectroscopy. Goethite and amorphous fractions were the principal phases in these precipitates. It was found that the chemical composition of HRLW and the experimental conditions of denitration had more influence on the crystal formation and the particle size than on the phase composition of the precipitates. (author) 27 refs.; 6 figs.; 6 tabs

  10. Ideal flow theory for the double - shearing model as a basis for metal forming design

    Alexandrov, S.; Trung, N. T.

    2018-02-01

    In the case of Tresca’ solids (i.e. solids obeying the Tresca yield criterion and its associated flow rule) ideal flows have been defined elsewhere as solenoidal smooth deformations in which an eigenvector field associated everywhere with the greatest principal stress (and strain rate) is fixed in the material. Under such conditions all material elements undergo paths of minimum plastic work, a condition which is often advantageous for metal forming processes. Therefore, the ideal flow theory is used as the basis of a procedure for the preliminary design of such processes. The present paper extends the theory of stationary planar ideal flow to pressure dependent materials obeying the double shearing model and the double slip and rotation model. It is shown that the original problem of plasticity reduces to a purely geometric problem. The corresponding system of equations is hyperbolic. The characteristic relations are integrated in elementary functions. In regions where one family of characteristics is straight, mapping between the principal lines and Cartesian coordinates is determined by linear ordinary differential equations. An illustrative example is provided.

  11. A new parameter to evaluate the glass-forming ability of bulk metallic glasses

    Suo, Z.Y.; Qiu, K.Q.; Li, Q.F.; You, J.H.; Ren, Y.L.; Hu, Z.Q.

    2010-01-01

    Research highlights: → Develop a new criterion, i.e., Q=((T g +T x )/T l ).(ΔE/ΔH). → The reliability and benefits of the new criterion have been demonstrated in a wide range of BMG alloys. → It corresponds well with the critical diameter of BMGs investigated up to now. - Abstract: Based on the consideration of the liquid phase stability, the resistance to crystallization and the glass transition enthalpy, a new criterion Q, defined as ((T g + T x )/T l ).(ΔE/ΔH), where the T g , T x , T l , ΔE and ΔH are the glass transition temperature, the onset crystallization temperature, the liquidus temperature, the crystalline enthalpy and the fusion enthalpy, respectively, has been proposed for evaluating the glass-forming ability of bulk metallic glasses. The new criterion Q exhibits better correlation with the maximum cross section thickness (D m ) for glass formation compared with γ (=T x /(T l + T g )), T rg (=T g /T l ) and ΔT x (=T x - T g ) respectively. The available data from literatures and experiments have confirmed the effectiveness of the newly developed criterion.

  12. An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming.

    Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia

    2016-07-13

    This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination.

  13. An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming

    Xiao Wang

    2016-07-01

    Full Text Available This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination.

  14. AC Calorimetry and Thermophysical Properties of Bulk Glass-Forming Metallic Liquids

    Johnson, William L.

    2000-01-01

    Thermo-physical properties of two bulk metallic glass forming alloys, Ti34Zr11Cu47Ni8 (VIT 101) and Zr57Nb5Ni12.6Al10CU15.4 (VIT 106), were investigated in the stable and undercooled melt. Our investigation focused on measurements of the specific heat in the stable and undercooled liquid using the method of AC modulation calorimetry. The VIT 106 exhibited a maximum undercooling of 140 K in free radiative cooling. Specific heat measurements could be performed in stable melt down to an undercooling of 80 K. Analysis of the specific heat data indicate an anomaly near the equilibrium liquidus temperature. This anomaly is also observed in y the temperature dependencies of the external relaxation time, the specific volume, and the surface tension; it is tentatively attributed to a phase separation in the liquid state. The VIT 101 specimen exhibited a small undercooling of about 50 K. Specific heat measurements were performed in the stable and undercooled melt. These various results will be combined with ground based work such as the measurement of T-T-T curves in the electrostatic levitator and low temperature viscosity and specific heat measurements for modeling the nucleation kinetics of these alloys.

  15. The DSNP simulation language and its application to liquid-metal fast breeder reactor transient analyses

    Saphier, D.; Madell, J.T.

    1982-01-01

    A new, special purpose block-oriented simulation language, the Dynamic Simulator for Nuclear Power Plants (DSNP), was used to perform a dynamic analysis of several conceptual design studies of liquid metal fast breeder reactors. The DSNP being a high level language enables the user to transform a power plant flow chart directly into a simulation program using a small number of DSNP statements. In addition to the language statements, the DSNP system has its own precompiler and an extensive library containing models of power plant components, algorithms of physical processes, material property functions, and various auxiliary functions. The comparative analysis covered oxide-fueled versus metal-fueled core designs and loop- versus pool-type reactors. The question of interest was the rate of change of the temperatures in the components in the upper plenum and the primary loop, in particular the reactor outlet nozzle and the intermediate heat exchanger inlet nozzle during different types of transients. From the simulations performed it can be concluded that metal-fueled cores will have much faster temperature transients than oxide-fueled cores due mainly to the much higher thermal diffusivity of the metal fuel. The transients in the pool-type design (either with oxide fuel or metal fuel) will be much slower than in the loop-type design due to the large heat capacity of the sodium pool. The DSNP language was demonstrated to be well suited to perform many types of transient analysis in nuclear power plants

  16. Noble metal catalyzed hydrogen generation from formic acid in nitrite-containing simulated nuclear waste media

    King, R.B.; Bhattacharyya, N.K.; Wiemers, K.D.

    1994-08-01

    Simulants for the Hanford Waste Vitrification Plant (HWVP) feed containing the major non-radioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO 3 2- , NO 3 -, and NO 2 - were used as media to evaluate the stability of formic acid towards hydrogen evolution by the reaction HCO 2 H → H 2 + CO 2 catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Small scale experiments using 40-50 mL of feed simulant in closed glass reactors (250-550 mL total volume) at 80-100 degree C were used to study the effect of nitrite and nitrate ion on the catalytic activities of the noble metals for formic acid decomposition. Reactions were monitored using gas chromatography to analyze the CO 2 , H 2 , NO, and N 2 O in the gas phase as a function of time. Rhodium, which was introduced as soluble RhCl 3 ·3H 2 O, was found to be the most active catalyst for hydrogen generation from formic acid above ∼80 degree C in the presence of nitrite ion in accord with earlier observations. The inherent homogeneous nature of the nitrite-promoted Rh-catalyzed formic acid decomposition is suggested by the approximate pseudo first-order dependence of the hydrogen production rate on Rh concentration. Titration of the typical feed simulants containing carbonate and nitrite with formic acid in the presence of rhodium at the reaction temperature (∼90 degree C) indicates that the nitrite-promoted Rh-catalyzed decomposition of formic acid occurs only after formic acid has reacted with all of the carbonate and nitrite present to form CO 2 and NO/N 2 O, respectively. The catalytic activities of Ru and Pd towards hydrogen generation from formic acid are quite different than those of Rh in that they are inhibited rather than promoted by the presence of nitrite ion

  17. Simulation of Metal Particulates in High Energetic Materials

    2015-05-28

    temperatures and pressures disintegrate the carbon- fiber casing, thus not producing any fragments. These carbon-fiber casing warheads are a solution...Polymer-Bonded Explosive (PBX) and Livermore’s High-Energy Explosive (LX) are examples of ex- plosives that use “ plastic ” as a binder material. Other...simulation data to empirical data does not provide any benefit to this research due to the complexity of plastically bonded explosives like PBX9501. The

  18. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals

    Schiøtz, Jakob; Vegge, Tejs; Di Tolla, Francesco

    1999-01-01

    that the main deformation mode is sliding in the grain boundaries through a large number of uncorrelated events, where a few atoms (or a few tens of atoms) slide with respect to each other. Little dislocation activity is seen in the grain interiors. The localization of the deformation to the grain boundaries......Nanocrystalline metals, i.e., metals in which the grain size is in the nanometer range, have a range of technologically interesting properties including increased hardness and yield strength. We present atomic-scale simulations of the plastic behavior of nanocrystalline copper. The simulations show...

  19. FY 2000 report on the survey on the future development of high grade board forming simulation technology; 2000 nendo kodoban seikei simulation gijutsu no kongo no tenkai ni kansuru chosa hokokusho

    NONE

    2001-03-01

    For the purpose of achieving energy conservation by reducing weight of vehicles, survey was made of forming/processing technology of new materials such as high-tensile steel and aluminum alloys, and the future development was studied of 'high grade board forming simulation technology.' The subject of the board forming simulation is to develop a method to precisely predict dimensional accuracy (mainly spring back) and sectional shape. When applying the forming simulation technology to difficult-processing materials such as high-tensile steel and aluminum alloys and unknown materials such as super metal, subjects seem to remain in the predicted accuracy because the material models used do not describe characteristics of these materials. The important subject is to upgrade the forming simulation of difficult-processing materials and unknown materials such as by precisely describing plastic anisotropy and instable phenomena of materials into the shape suitable for difficult-processing materials. The subject is also the development of the continuous simulation technology including a series of more than one processes in press processing - welding assembly - strength analysis. (NEDO)

  20. FY 2000 report on the survey on the future development of high grade board forming simulation technology; 2000 nendo kodoban seikei simulation gijutsu no kongo no tenkai ni kansuru chosa hokokusho

    NONE

    2001-03-01

    For the purpose of achieving energy conservation by reducing weight of vehicles, survey was made of forming/processing technology of new materials such as high-tensile steel and aluminum alloys, and the future development was studied of 'high grade board forming simulation technology.' The subject of the board forming simulation is to develop a method to precisely predict dimensional accuracy (mainly spring back) and sectional shape. When applying the forming simulation technology to difficult-processing materials such as high-tensile steel and aluminum alloys and unknown materials such as super metal, subjects seem to remain in the predicted accuracy because the material models used do not describe characteristics of these materials. The important subject is to upgrade the forming simulation of difficult-processing materials and unknown materials such as by precisely describing plastic anisotropy and instable phenomena of materials into the shape suitable for difficult-processing materials. The subject is also the development of the continuous simulation technology including a series of more than one processes in press processing - welding assembly - strength analysis. (NEDO)

  1. Insight on the glass-forming ability of Al–Y–Ni–Ce bulk metallic glass

    Chen, Shih-Fan, E-mail: sfchen@ntut.edu.tw [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China); Chen, Chih-Yuan, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Lin, Chia-Hung [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China)

    2015-07-15

    Highlights: • Adding 1 at.% cerium to Al{sub 87}Y{sub 8}Ni{sub 5} alloy causes glass transition. • A large ΔT{sub x} indicates that (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 99}Ce{sub 1} is possibly a ductile amorphous alloy. • Ce is effective in improving the thermal stability of the Al–Y–Ni amorphous alloy. • The hardness of the crystallized cerium-bearing alloy was as high as 593 Hv. - Abstract: In the present study, the role of Ce in the thermal stability and glass forming ability (GFA) of (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 99}Ce{sub 1} alloy ribbons produced by a single roller melt-spinning process has been investigated in an attempt to understand the influences of multiple RE elements in an Al–TM–RE (TM: transition metal, RE: rear earth metal) alloy system. Only the (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 99}Ce{sub 1} alloy ribbon showed a glass transition temperature (T{sub g}) at 483.2 K, and its ΔT{sub x} value was 41.3 K. Crystallization occurred in the temperature range of 500–750 K in three exothermic reaction stages. The peak temperature for these reactions shifted toward higher temperatures at higher heating rates. XRD and SEM analysis of annealed samples revealed that nano-sized Al particles precipitated within the amorphous matrix during the first exothermic reaction. The maximum hardness was obtained for both non-cerium and cerium addition alloys after crystallization in the 550–660 K region due to numerous nano-sized precipitates randomly and homogeneously distributed in the amorphous matrix. Moreover, from observation of the fracture surface, it is found that the fracture mode transforms from ductile to brittle when the sample is annealed at a higher crystallization temperature, at which brittle intermetallic compounds appear.

  2. Simulative Winding of Roll Formed Profile in Carcass Production for Flexible Pipes

    Nielsen, Peter Søe; Ormstrup, Casper Alexander; Hartz, Benjamin Arnold Krekeler

    2015-01-01

    numerous welds between coils of stainless steel, often duplex grades. The welds are a source of failure, since fracture from time to time occurs here in the winding stage. A simulative test in form of three-point-bending is developed, which shows promising results together with simplified air- and v......-bent profiles allowing offline testing of welds for optimisation purposes. Comparative studies are shown possible but discrepancies in boundary conditions cause the maximum strains in the simulative test to differ from those in production. A study of weld failure is done applying the simulative test and tensile...... tests using GOM ARAMIS 4M system for strain measurements. The results show strain localization at the weld from onset of yielding caused by the soft, heat affected zone next to the weld seam resulting in a local thinning of the strip similar to what is observed in production....

  3. Stability analysis and finite element simulations of superplastic forming in the presence of hydrostatic pressure

    Nazzal, M. A.

    2018-04-01

    It is established that some superplastic materials undergo significant cavitation during deformation. In this work, stability analysis for the superplastic copper based alloy Coronze-638 at 550 °C based on Hart's definition of stable plastic deformation and finite element simulations for the balanced biaxial loading case are carried out to study the effects of hydrostatic pressure on cavitation evolution during superplastic forming. The finite element results show that imposing hydrostatic pressure yields to a reduction in cavitation growth.

  4. Analysis and simulation of non-metallic inclusions in spheroidal graphite iron

    Pustal, B; Schelnberger, B; Bührig-Polaczek, A

    2016-01-01

    Non-metallic inclusions in spheroidal cast iron (SGI) reduce fatigue strength and yield strength. This type of inclusion usually accumulates at grain boundaries. Papers addressing this topic show the overall impact of both the fraction of so-called white (carbides) and black (non-metallic) inclusions on mechanical properties. In the present work we focus on the origin and the formation conditions of black Mg-bearing inclusions, further distinguishing between Si-bearing and non-Si-bearing Mg inclusions. The formation was simulated applying thermodynamic approaches. Moreover, appropriate experiments have been carried out and a large number of particles have been studied applying innovative feature analysis with regard to shape, size, and composition. Magnesium silicates are predicted at elevated oxygen concentrations, whereas at low levels of oxygen sulphides and carbides appear at a late stage of solidification. Experiments with three consecutive flow obstacles show that the amount of magnesium silicates decrease after each of the three obstacles, whereas the fraction of non-Si-bearing inclusions remains approximately constant. The size of inclusions divides in halves over the flow path and the number of particles increases accordingly. We point out that based on feature analysis Mg-O-C bearing inclusion show disadvantageous form factors for which reason this kind of inclusions may be extremely harmful in terms of crack initiation. All results obtained indicate that magnesium silicates are entrapped on mould filling, whereas Mg-(O, C, S, P, N) bearing particles are precipitates at late stages of solidification. Consequently, the only avoidance strategy is setting up optimum retained magnesium content. (paper)

  5. Ion bombardment induced smoothing of amorphous metallic surfaces: Experiments versus computer simulations

    Vauth, Sebastian; Mayr, S. G.

    2008-01-01

    Smoothing of rough amorphous metallic surfaces by bombardment with heavy ions in the low keV regime is investigated by a combined experimental-simulational study. Vapor deposited rough amorphous Zr 65 Al 7.5 Cu 27.5 films are the basis for systematic in situ scanning tunneling microscopy measurements on the smoothing reaction due to 3 keV Kr + ion bombardment. The experimental results are directly compared to the predictions of a multiscale simulation approach, which incorporates stochastic rate equations of the Langevin type in combination with previously reported classical molecular dynamics simulations [Phys. Rev. B 75, 224107 (2007)] to model surface smoothing across length and time scales. The combined approach of experiments and simulations clearly corroborates a key role of ion induced viscous flow and ballistic effects in low keV heavy ion induced smoothing of amorphous metallic surfaces at ambient temperatures

  6. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    Ren Penghao; Wang Aimin; Wang Xiaolong; Zhang Yanlin

    2017-01-01

    After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation ...

  7. Nanometric mechanical cutting of metallic glass investigated using atomistic simulation

    Wu, Cheng-Da, E-mail: nanowu@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li District, Taoyuan City 32023, Taiwan (China); Fang, Te-Hua, E-mail: fang.tehua@msa.hinet.net [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China); Su, Jih-Kai, E-mail: yummy_2468@yahoo.com.tw [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China)

    2017-02-28

    Highlights: • A nanoscale chip with a shear plane of 135° is extruded by the tool. • Tangential force and normal force increase with increasing tool nose radius. • Resistance factor increases with increasing cutting depth and temperature. - Abstract: The effects of cutting depth, tool nose radius, and temperature on the cutting mechanism and mechanics of amorphous NiAl workpieces are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. These effects are investigated in terms of atomic trajectories and flow field, shear strain, cutting force, resistance factor, cutting ratio, and pile-up characteristics. The simulation results show that a nanoscale chip with a shear plane of 135° is extruded by the tool from a workpiece surface during the cutting process. The workpiece atoms underneath the tool flow upward due to the adhesion force and elastic recovery. The required tangential force and normal force increase with increasing cutting depth and tool nose radius; both forces also increase with decreasing temperature. The resistance factor increases with increasing cutting depth and temperature, and decreases with increasing tool nose radius.

  8. Rubber pad forming - Efficient approach for the manufacturing of complex structured sheet metal blanks for food industry

    Spoelstra, Paul; Djakow, Eugen; Homberg, Werner

    2017-10-01

    The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.

  9. Determination of Lubricant Bulk Modulus in Metal Forming by Means of a Simple Laboratory Test and Inverse FEM Analysis

    Hafis, S. M.; Christiansen, P.; Martins, P. A. F.

    2016-01-01

    The influence of workpiece surface topography on friction, lubrication and final surface equality in metal forming operations is well known and has been pointed out by many researchers.This is especially the case when liquid lubricants are applied in situations, where increased surface roughness ...... couples lubricant flow with plastic deformation of the metal directly. Results show that the proposed procedure allows determining an approximate bulk modulus for the lubricant.......The influence of workpiece surface topography on friction, lubrication and final surface equality in metal forming operations is well known and has been pointed out by many researchers.This is especially the case when liquid lubricants are applied in situations, where increased surface roughness...... facilitates the lubricant entrainment, pressurization and possible escape by micro-plasto-hydrodynamic lubrication. In order to model these mechanisms an important lubricant propertyd esignated as the bulk modulus is needed for characterizing the compressibility of the lubricant. The present paper describes...

  10. The metallicity distribution of H I systems in the EAGLE cosmological simulations

    Rahmati, Alireza; Oppenheimer, Benjamin D.

    2018-06-01

    The metallicity of strong H I systems, spanning from damped Lyman α absorbers (DLAs) to Lyman-limit systems (LLSs), is explored between z = 5 → 0 using the EAGLE high-resolution cosmological hydrodynamic simulation of galaxy formation. The metallicities of LLSs and DLAs steadily increase with time in agreement with observations. DLAs are more metal rich than LLSs, although the metallicities in the LLS column density range (N_{H I }≈ 10^{17}-10^{20} cm^{-2}) are relatively flat, evolving from a median H I-weighted metallicity of {Z}≲ 10^{-2} Z_{⊙} at z = 3 to ≈10-0.5 Z⊙ by z = 0. The metal content of H I systems tracks the increasing stellar content of the Universe, holding ≈ 5 {per cent} of the integrated total metals released from stars at z = 0. We also consider partial LLS (pLLS, N_{H I}≈ 10^{16}-10^{17} cm^{-2}) metallicities, and find good agreement with Wotta et al. for the fraction of systems above (37 per cent) and below (63 per cent) 0.1 Z⊙. We also find a large dispersion of pLLS metallicities, although we do not reproduce the observed metallicity bimodality and instead we make the prediction that a larger sample will yield more pLLSs around 0.1 Z⊙. We underpredict the median metallicity of strong LLSs, and predict a population of Z 3 that are not observed, which may indicate more widespread early enrichment in the real Universe compared to EAGLE.

  11. An Assessment of Binary Metallic Glasses: Correlations Between Structure, Glass Forming Ability and Stability (Preprint)

    2011-07-01

    volume (via indentation, relaxation or positron annihilation ) are expected to significantly clarify structural descriptions. Further insights may be... applicability of the concept of smaller spheres filling the interstices of larger spheres diminishes with decreasing difference in size, the efficient...alloys observed by Mossbauer spectroscopy and calorimetry’, Rapidly Quenched Metals, Proc. 4th International Conference on Rapidly Quenched Metals

  12. Anomalous Crystallization as a Signature of the Fragile-to-Strong Transition in Metallic Glass-Forming Liquids

    Yang, X.N.; Zhou, C.; Sun, Q.J.

    2014-01-01

    We study the fragile-to-strong (F−S) transition of metallic glass-forming liquids (MGFLs) by measuring the thermal response during annealing and dynamic heating of La55Al25Ni5Cu15 glass ribbons fabricated at different cooling rates. We find that the glasses fabricated in the intermediate regime o...

  13. Novel enhancement of thin-form-factor galvanic cells: Probing halogenated organic oxidizers and metal anodes

    Cardenas-Valencia, Andres M.; Adornato, Lori; Short, R. Timothy; Langebrake, Larry [SRI International, Engineering and Systems Division, Marine Technology Program, 140 Seventh Avenue South, St Petersburg, FL 33701 (United States)

    2008-09-15

    The work reported herein demonstrates a novel method to improve the overall performance of thin-form-factor galvanic cells, fabricated via micro-electromechanical systems (MEMS) processes. Use of solid, low cost, cyclic-halogenated, organic catholyte materials permits water activation of cells consisting of metal anode and catalytic platinum positive electrodes. Similar cells, employing aluminum and zinc anodes, have been activated using sodium hypochlorite (NaClO) solutions, i.e. bleach, in the past. The oxidizers chosen for this study (bromo-, chloro- and iodo-succinimides, and sodium dichloroisocyanuric acid) supply the cathode's oxy-halogenated ions when in contact with water. Zinc, magnesium and aluminum anodes are utilized to fabricate galvanic cells. A comparison between these anodes, coupled with various oxidizers, is included herein. Results using aluminum anode cells show that, even though the utilization efficiency of the catholyte reagents is low (faradic efficiencies between 16 and 19%), the performance of the new water-activated cells (6 cm x 6 cm x 0.25 cm) is superior when compared to those activated with bleach. For instance, operational lives of 6 h (activation with 10% NaClO solution) increase to more than 30 h using the new approach, with a 100-ohm-load. It is also shown that specific energies of 90-110 Wh kg{sup -1} (calculated to include both reagent and packaging mass) could be obtained using the described approach with current draws between 10 and 20 mA. The specific energies obtained suggest that novel MEMS-type cells could have much broader application than low-current, bleach-activated cells. (author)

  14. Microstructure distribution and mechanical properties prediction of boron alloy during hot forming using FE simulation

    Cui Junjia; Lei Chengxi; Xing Zhongwen; Li Chunfeng

    2012-01-01

    Highlights: ► We model microstructural evolution during hot forming using a metallo-thermo-mechanical model. ► The effect of water-cooled on temperature distribution of blank and tools was investigated. ► The effect of process parameters on microstructure and mechanical properties were investigated. ► FE results were compared to experimental results and the errors of mechanical properties were in a reasonable scope. - Abstract: As a theoretical tool predicting microstructural evolution of boron alloy, the finite element (FE) method has received considerable attention in recent years. In this work, we focus on the boron alloy under non-isothermal hot forming conditions and establish a fully coupled metallo-thermo-mechanical model taking account of cooling and oxide. Based on the proposed model, we investigate the phase transformation and predict the hardness during the hot forming process via FE simulation. In addition, according to the hardness, the tensile strength during non-isothermal forming is predicted. Supporting the feasibility of the proposed model is the experiments where BR1500HS alloy is hot-worked at various conditions that derive a promising agreement of microstructures, hardness, and tensile strength to the simulation data.

  15. METAL STRUCTURES SURVIVABILITY ASSESSMENT WHEN SIMULATING SERVICE CONDITIONS

    O. M. Gibalenko

    2016-04-01

    Full Text Available Purpose. The research is aimed at improving the quality and reliability of measures of primary and secondary protection of metal structures at manufacturing companies, to prolong the service life of cyclically loaded structures of production facilities taking into account the corrosion level of danger. Methodology. Authors proposed to use the principles of process approach for statement and realization of management problems of operational service life in corrosion environments. The principles of ensuring reliability on the level of corrosion danger include justification of stages sequence for survivability assessment of a structural metalwork based on the strategy of DMAIC (define, measure, analyze, improve, control: definitions, measurements, analysis, improvement and monitoring of measures of primary and secondary corrosion protection. Findings. Providing control measures from corrosion according to the criterion of corrosion danger allows providing requirements of reliability of structural metalwork based on calculated provisions of the limiting conditions method and solving the problems of management in technological safety during the expected service life of structural objects. Originality. The developed strategy of maintenance of the industrial facilities on an actual state includes the process approach to resource management by creation of system for the account and the functional controlling, risk analysis and regulation of technological safety in production facilities of the enterprises. Realization of the principles of process approach to management of technological safety at the object level is directed to perfecting of tools and methods of anticorrosive protection, extension of a resource taking into account indexes of survivability (, and justification of program measures to ensure the reliability of enterprises(PER. Practical value. On the basis of process approach to quality and reliability management, generalizations of the

  16. Recovery of metals from simulant spent lithium-ion battery as organophosphonate coordination polymers in aqueous media

    Perez, Emilie; Andre, Marie-Laure; Navarro Amador, Ricardo [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Hyvrard, François; Borrini, Julien [SARPI VEOLIA, Direction Technique et Innovations, Zone portuaire de Limay-Porcheville, 427 route du Hazay, 78520 Limay (France); Carboni, Michaël, E-mail: michael.carboni@cea.fr [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Meyer, Daniel [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France)

    2016-11-05

    Highlights: • Original waste disposal strategies for battery. • Precipitation of metals as coordination polymers. • Organo-phosphonate coordination polymers. • Selective extraction of manganese or co-precipitation of manganese/cobalt. • The recycling process give a promising application on any waste solution. - Abstract: An innovative approach is proposed for the recycling of metals from a simulant lithium-ion battery (LIBs) waste aqueous solution. Phosphonate organic linkers are introduced as precipitating agents to selectively react with the metals to form coordination polymers from an aqueous solution containing Ni, Mn and Co in a hydrothermal process. The supernatant is analyzed by ICP-AES to quantify the efficiency and the selectivity of the precipitation and the materials are characterized by Scanning Electron Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Thermogravimetric Analyses (TGA) and nitrogen gas sorption (BET). Conditions have been achieved to selectively precipitate Manganese or Manganese/Cobalt from this solution with a high efficiency. This work describes a novel method to obtain potentially valuable coordination polymers from a waste metal solution that can be generalized on any waste solution.

  17. Short Forms of Wechsler Scales Assessing the Intellectually Gifted Children Using Simulation Data

    Alexandre Aubry

    2018-05-01

    Full Text Available Intellectual giftedness is usually defined in terms of having a very high Intellectual Quotient (IQ. The intellectual capacity is assessed by a standardized test such as the Wechsler Intelligence Scale for Children (WISC. However, the identification of intellectually gifted children (IGC often remains time-consuming. A short-form WISC can be used as a screening instrument. The practitioners and researchers in this field can then make a more in-depth evaluation of the IGC's cognitive and socioemotional characteristics if needed. The aim of our study is thus to determine the best short tests, in terms of their psychometric qualities, for the identification of IGC. The current study is composed of three-step analyses. Firstly, we created nine IQs short forms (IQSF with 2-subtests, and nine IQSF with 4-subtests from the WISC-IV (Wechsler, 2005. Secondly, we estimated psychometric parameters (i.e., reliability and validity from empirical and simulated dataset with WISC-IV. The difference in the estimation of psychometric qualities of each IQSF from the simulated data is very close to those derived from empirical data. We thus selected the three best IQSF based on these psychometrics parameters estimated from simulated datasets. For each selected short form of the WISC-IV, we estimated the screening quality in our sample of IGC. Thirdly, we created IQSF with 2- and 4-subtests from the WISC-V (Wechsler, 2016 with simulated dataset. We then highlighted the three best short forms of WISC-V based on the estimated psychometric parameters. The results are interpreted in terms of validity, reliability and screening quality of IGC. In spite of the important changes in the WISC-V, our findings show that the 2-subtest form, Similitaries + Matrix Reasoning, and 4-subtest form, Similitaries + Vocabulary + Matrix Reasoning + Block Design, are the most efficient to identify the IGC at the two recent versions of Wechsler scales. Finally, we discuss the advantages

  18. Determination of the bioaccessible fraction of metals in urban aerosol using simulated lung fluids

    Coufalík, Pavel; Mikuška, Pavel; Matoušek, Tomáš; Večeřa, Zbyněk

    2016-01-01

    Roč. 140, SEP (2016), s. 469-475 ISSN 1352-2310 R&D Projects: GA ČR(CZ) GA14-25558S; GA ČR(CZ) GA13-01438S Institutional support: RVO:68081715 Keywords : metal * aerosol * simulated lung fluid Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.629, year: 2016

  19. Kinematic and dynamic simulation of the functioning of torsionally flexible metal coupling

    Krzysztof FILIPOWICZ

    2010-01-01

    Full Text Available The article presents the process of visualization and the accuracy of performance of the prototype of bidirectional torsionally flexible metal coupling using Autodesk® Inventor® Professional 2009. Selected figures from the simulations are presented and discussed on the basis of a virtual model of the coupling.

  20. Numerical and experimental validation of a particle Galerkin method for metal grinding simulation

    Wu, C. T.; Bui, Tinh Quoc; Wu, Youcai; Luo, Tzui-Liang; Wang, Morris; Liao, Chien-Chih; Chen, Pei-Yin; Lai, Yu-Sheng

    2018-03-01

    In this paper, a numerical approach with an experimental validation is introduced for modelling high-speed metal grinding processes in 6061-T6 aluminum alloys. The derivation of the present numerical method starts with an establishment of a stabilized particle Galerkin approximation. A non-residual penalty term from strain smoothing is introduced as a means of stabilizing the particle Galerkin method. Additionally, second-order strain gradients are introduced to the penalized functional for the regularization of damage-induced strain localization problem. To handle the severe deformation in metal grinding simulation, an adaptive anisotropic Lagrangian kernel is employed. Finally, the formulation incorporates a bond-based failure criterion to bypass the prospective spurious damage growth issues in material failure and cutting debris simulation. A three-dimensional metal grinding problem is analyzed and compared with the experimental results to demonstrate the effectiveness and accuracy of the proposed numerical approach.

  1. Development of an expert system for the simulation model for casting metal substructure of a metal-ceramic crown design.

    Matin, Ivan; Hadzistevic, Miodrag; Vukelic, Djordje; Potran, Michal; Brajlih, Tomaz

    2017-07-01

    Nowadays, the integrated CAD/CAE systems are favored solutions for the design of simulation models for casting metal substructures of metal-ceramic crowns. The worldwide authors have used different approaches to solve the problems using an expert system. Despite substantial research progress in the design of experts systems for the simulation model design and manufacturing have insufficiently considered the specifics of casting in dentistry, especially the need for further CAD, RE, CAE for the estimation of casting parameters and the control of the casting machine. The novel expert system performs the following: CAD modeling of the simulation model for casting, fast modeling of gate design, CAD eligibility and cast ability check of the model, estimation and running of the program code for the casting machine, as well as manufacturing time reduction of the metal substructure. The authors propose an integration method using common data model approach, blackboard architecture, rule-based reasoning and iterative redesign method. Arithmetic mean roughness values was determinated with constant Gauss low-pass filter (cut-off length of 2.5mm) according to ISO 4287 using Mahr MARSURF PS1. Dimensional deviation between the designed model and manufactured cast was determined using the coordinate measuring machine Zeiss Contura G2 and GOM Inspect software. The ES allows for obtaining the castings derived roughness grade number N7. The dimensional deviation between the simulation model of the metal substructure and the manufactured cast is 0.018mm. The arithmetic mean roughness values measured on the casting substructure are from 1.935µm to 2.778µm. The realized developed expert system with the integrated database is fully applicable for the observed hardware and software. Values of the arithmetic mean roughness and dimensional deviation indicate that casting substructures are surface quality, which is more than enough and useful for direct porcelain veneering. The

  2. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress

    Faucher, Giulia; Hoffmann, Linn; Bach, Lennart T.; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf

    2017-07-01

    The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.

  3. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress

    G. Faucher

    2017-07-01

    Full Text Available The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae, intermediate- (E. huxleyi and G. oceanica and least-tolerant (C. pelagicus taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.

  4. Modelling Sawing of Metal Tubes Through FEM Simulation

    Bort, C. M. Giorgio; Bosetti, P.; Bruschi, S.

    2011-01-01

    The paper presents the development of a numerical model of the sawing process of AISI 304 thin tubes, which is cut through a circular blade with alternating roughing and finishing teeth. The numerical simulation environment is the three-dimensional FEM software Deform v.10.1. The teeth actual trajectories were determined by a blade kinematics analysis developed in Matlab. Due to the manufacturing rolling steps and subsequent welding stage, the tube material is characterized by a gradient of properties along its thickness. Consequently, a simplified cutting test was set up and carried out in order to identify the values of relevant material parameters to be used in the numerical model. The dedicated test was the Orthogonal Tube Cutting test (OTC), which was performed on an instrumented lathe. The proposed numerical model was validated by comparing numerical results and experimental data obtained from sawing tests carried out on an industrial machine. The following outputs were compared: the cutting force, the chip thickness, and the chip contact area.

  5. Modelling Sawing of Metal Tubes Through FEM Simulation

    Bort, C. M. Giorgio; Bosetti, P.; Bruschi, S.

    2011-05-01

    The paper presents the development of a numerical model of the sawing process of AISI 304 thin tubes, which is cut through a circular blade with alternating roughing and finishing teeth. The numerical simulation environment is the three-dimensional FEM software Deform™ v.10.1. The teeth actual trajectories were determined by a blade kinematics analysis developed in Matlab™. Due to the manufacturing rolling steps and subsequent welding stage, the tube material is characterized by a gradient of properties along its thickness. Consequently, a simplified cutting test was set up and carried out in order to identify the values of relevant material parameters to be used in the numerical model. The dedicated test was the Orthogonal Tube Cutting test (OTC), which was performed on an instrumented lathe. The proposed numerical model was validated by comparing numerical results and experimental data obtained from sawing tests carried out on an industrial machine. The following outputs were compared: the cutting force, the chip thickness, and the chip contact area.

  6. Simulation of short-term annealing of displacement cascades in FCC metals

    Heinisch, H.L.; Doran, D.G.; Schwartz, D.M.

    1980-01-01

    Computer models have been developed for the simulation of high energy displacement cascades. The objective is the generation of defect production functions for use in correlation analysis of radiation effects in fusion reactor materials. In particular, the stochastic cascade annealing simulation code SCAS has been developed and used to model the short-term annealing behavior of simulated cascades in FCC metals. The code is fast enough to make annealing of high energy cascades practical. Sets of cascades from 5 keV to 100 keV in copper were generated by the binary collision code MARLOWE

  7. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  8. Simulation of Microstructure during Laser Rapid Forming Solidification Based on Cellular Automaton

    Zhi-jian Wang

    2014-01-01

    Full Text Available The grain microstructure of molten pool during the solidification of TC4 titanium alloy in the single point laser cladding was investigated based on the CAFE model which is the cellular automaton (CA coupled with the finite element (FE method. The correct temperature field is the prerequisite for simulating the grain microstructure during the solidification of the molten pool. The model solves the energy equation by the FE method to simulate the temperature distribution in the molten pool of the single point laser cladding. Based on the temperature field, the solidification microstructure of the molten pool is also simulated with the CAFE method. The results show that the maximum temperature in the molten pool increases with the laser power and the scanning rate. The laser power has a larger influence on the temperature distribution of the molten pool than the scanning rate. During the solidification of the molten pool, the heat at the bottom of the molten pool transfers faster than that at the top of the molten pool. The grains rapidly grow into the molten pool, and then the columnar crystals are formed. This study has a very important significance for improving the quality of the structure parts manufactured through the laser cladding forming.

  9. Thermoplastic forming of bulk metallic glasses for precision robotics components, Phase I

    National Aeronautics and Space Administration — Demand for novel manufacturing methods for space systems brings unique properties of bulk metallic glasses (BMG) into the spotlight. In addition to superior...

  10. Fuel Rod Melt Progression Simulation Using Low-Temperature Melting Metal Alloy

    Seung Dong Lee; Suh, Kune Y.; GoonCherl Park; Un Chul Lee

    2002-01-01

    The TMI-2 accident and various severe fuel damage experiments have shown that core damage is likely to proceed through various states before the core slumps into the lower head. Numerous experiments were conducted to address when and how the core can lose its original geometry, what geometries are formed, and in what processes the core materials are transported to the lower plenum of the reactor pressure vessel. Core degradation progresses along the line of clad ballooning, clad oxidation, material interaction, metallic blockage, molten pool formation, melt progression, and relocation to the lower head. Relocation into the lower plenum may occur from the lateral periphery or from the bottom of the core depending upon the thermal and physical states of the pool. Determining the quantities and rate of molten material transfer to the lower head is important since significant amounts of molten material relocated to the lower head can threaten the vessel integrity by steam explosion and thermal and mechanical attack of the melt. In this paper the focus is placed on the melt flow regime on a cylindrical fuel rod utilizing the LAMDA (Lumped Analysis of Melting in Degrading Assemblies) facility at the Seoul National University. The downward relocation of the molten material is a combination of the external film flow and the internal pipe flow. The heater rods are 0.8 m long and are coated by a low-temperature melting metal alloy. The electrical internal heating method is employed during the test. External heating is adopted to simulate the exothermic Zircaloy-steam reaction. Tests are conducted in several quasi-steady-state conditions. Given the variable boundary conditions including the heat flux and the water level, observation is made for the melting location, progression, and the mass of molten material. Finally, the core melt progression model is developed from the visual inspection and quantitative analysis of the experimental data. As the core material relocates

  11. Molecular dynamics simulation of self-diffusion coefficients for liquid metals

    Ju Yuan-Yuan; Zhang Qing-Ming; Gong Zi-Zheng; Ji Guang-Fu

    2013-01-01

    The temperature-dependent coefficients of self-diffusion for liquid metals are simulated by molecular dynamics methods based on the embedded-atom-method (EAM) potential function. The simulated results show that a good inverse linear relation exists between the natural logarithm of self-diffusion coefficients and temperature, though the results in the literature vary somewhat, due to the employment of different potential functions. The estimated activation energy of liquid metals obtained by fitting the Arrhenius formula is close to the experimental data. The temperature-dependent shear-viscosities obtained from the Stokes—Einstein relation in conjunction with the results of molecular dynamics simulation are generally consistent with other values in the literature. (atomic and molecular physics)

  12. Combined transmission electron microscope and ion channeling study of metastable metal alloys formed by ion implantation

    Cullis, A.G.; Borders, J.A.; Hirvonen, J.K.; Poate, J.M.

    1977-01-01

    Recently, ion implantation has been used to produce metastable alloy layers with a range of structures from crystalline substitutional solid solutions to amorphous. The technique offers the possibility of producing metastable metal layers with unique physical properties. Its application in the formation of alloys exhibiting different although complementary types of metastability is described. The metal combinations chosen (Ag-Cu and Ta-Cu) show little mutual solubility under equilibrium conditions

  13. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication

  14. A YOUNG GIANT MOLECULAR CLOUD FORMED AT THE INTERFACE OF TWO COLLIDING SUPERSHELLS: OBSERVATIONS MEET SIMULATIONS

    Dawson, J. R. [Department of Physics and Astronomy and MQ Research Centre in Astronomy, Astrophysics and Astrophotonics, Macquarie University, NSW 2109 (Australia); Ntormousi, E. [Service d' Astrophysique, CEA/DSM/IRFU Orme des Merisiers, Bat 709 Gif-sur-Yvette F-91191 (France); Fukui, Y.; Hayakawa, T. [Department of Physics and Astrophysics, Nagoya University, Chikusa-ku, Nagoya (Japan); Fierlinger, K., E-mail: joanne.dawson@mq.edu.au [University Observatory Munich, Scheinerstr. 1, D-81679 München (Germany)

    2015-01-20

    Dense, star-forming gas is believed to form at the stagnation points of large-scale interstellar medium flows, but observational examples of this process in action are rare. We here present a giant molecular cloud (GMC) sandwiched between two colliding Milky Way supershells, which we argue shows strong evidence of having formed from material accumulated at the collision zone. Combining {sup 12}CO, {sup 13}CO, and C{sup 18}O(J = 1-0) data with new high-resolution, three-dimensional hydrodynamical simulations of colliding supershells, we discuss the origin and nature of the GMC (G288.5+1.5), favoring a scenario in which the cloud was partially seeded by pre-existing denser material, but assembled into its current form by the action of the shells. This assembly includes the production of some new molecular gas. The GMC is well interpreted as non-self-gravitating, despite its high mass (M{sub H{sub 2}}∼1.7×10{sup 5} M{sub ⊙}), and is likely pressure confined by the colliding flows, implying that self-gravity was not a necessary ingredient for its formation. Much of the molecular gas is relatively diffuse, and the cloud as a whole shows little evidence of star formation activity, supporting a scenario in which it is young and recently formed. Drip-like formations along its lower edge may be explained by fluid dynamical instabilities in the cooled gas.

  15. THE METALLICITY DEPENDENCE OF THE CO {yields} H{sub 2} CONVERSION FACTOR IN z {>=} 1 STAR-FORMING GALAXIES

    Genzel, R.; Tacconi, L. J.; Schreiber, N. M. Foerster; Gracia-Carpio, J.; Lutz, D.; Saintonge, A. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748 Garching (Germany); Combes, F. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Neri, R.; Cox, P. [IRAM, 300 Rue de la Piscine, 38406 St. Martin d' Heres, Grenoble (France); Sternberg, A. [Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Cooper, M. C. [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (United States); Bouche, N. [Department of Physics, University of California, Santa Barbara, Broida Hall, Santa Barbara, CA 93106 (United States); Bournaud, F. [Service d' Astrophysique, DAPNIA, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Burkert, A. [Universitaetssternwarte der Ludwig-Maximiliansuniversitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Comerford, J. [Department of Astronomy and McDonald Observatory, 1 University Station, C1402 Austin, TX 78712-0259 (United States); Davis, M.; Newman, S. [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Garcia-Burillo, S. [Observatorio Astronomico Nacional-OAN, Apartado 1143, 28800 Alcala de Henares- Madrid (Spain); Naab, T., E-mail: genzel@mpe.mpg.de, E-mail: linda@mpe.mpg.de [Max-Planck Institut fuer Astrophysik (MPA), Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); and others

    2012-02-10

    We use the first systematic samples of CO millimeter emission in z {>=} 1 'main-sequence' star-forming galaxies to study the metallicity dependence of the conversion factor {alpha}{sub CO,} from CO line luminosity to molecular gas mass. The molecular gas depletion rate inferred from the ratio of the star formation rate (SFR) to CO luminosity, is {approx}1 Gyr{sup -1} for near-solar metallicity galaxies with stellar masses above M{sub S} {approx} 10{sup 11} M{sub Sun }. In this regime, the depletion rate does not vary more than a factor of two to three as a function of molecular gas surface density or redshift between z {approx} 0 and 2. Below M{sub S} the depletion rate increases rapidly with decreasing metallicity. We argue that this trend is not caused by starburst events, by changes in the physical parameters of the molecular clouds, or by the impact of the fundamental-metallicity-SFR-stellar mass relation. A more probable explanation is that the conversion factor is metallicity dependent and that star formation can occur in 'CO-dark' gas. The trend is also expected theoretically from the effect of enhanced photodissociation of CO by ultraviolet radiation at low metallicity. From the available z {approx} 0 and z {approx} 1-3 samples we constrain the slope of the log({alpha}{sub CO})-log (metallicity) relation to range between -1 and -2, fairly insensitive to the assumed slope of the gas-SFR relation. Because of the lower metallicities near the peak of the galaxy formation activity at z {approx} 1-2 compared to z {approx} 0, we suggest that molecular gas masses estimated from CO luminosities have to be substantially corrected upward for galaxies below M{sub S}.

  16. Characterization of the conformational space of a triple-stranded beta-sheet forming peptide with molecular dynamics simulations

    Soto, P; Colombo, G

    2004-01-01

    Molecular dynamics (MD) simulations have been performed on a series of mutants of the 20 amino acid peptide Betanova in order to critically assess the ability of MD simulations to reproduce the folding and stability of small beta-sheet-forming peptides on currently accessible timescales. Simulations

  17. Use of a hyperelastic constitutive law for dry woven forming simulations

    Vidal-Salle, Emmanuelle; Boisse, Philippe; Aimene, Yamina

    2011-01-01

    The increasing use of composite materials in industry implies an increasing use of automatic processes between which LCM processes take a large place. The improvement of such processes needs an extensive use of numerical simulations for all the stages of the process. In particular, it is necessary to know how the dry reinforcement is shaped. This paper presents a hyperelastic constitutive model for textile composite reinforcement at large strain based on an additive potential representative to tension and in-plane shearing. The proposed potential is a function of the right Cauchy Green and structural tensor invariants whose choice corresponds to textile composite reinforcement mechanical behaviour. The model is implemented in a user subroutine of ABAQUS/Explicit. The accuracy of the model has been checked and some simulations are performed on deep drawing with hemispheric punch. A good agreement is obtained with experimental forming experiments.

  18. Modelling and simulation of the consolidation behavior during thermoplastic prepreg composites forming process

    Xiong, H.; Hamila, N.; Boisse, P.

    2017-10-01

    Pre-impregnated thermoplastic composites have recently attached increasing interest in the automotive industry for their excellent mechanical properties and their rapid cycle manufacturing process, modelling and numerical simulations of forming processes for composites parts with complex geometry is necessary to predict and optimize manufacturing practices, especially for the consolidation effects. A viscoelastic relaxation model is proposed to characterize the consolidation behavior of thermoplastic prepregs based on compaction tests with a range of temperatures. The intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg. Within a hyperelastic framework, several simulation tests are launched by combining a new developed solid shell finite element and the consolidation models.

  19. Liquid -to-glass transition in bulk glass-forming Cu55-xZr45Agx alloys using molecular dynamic simulations

    Celtek M.

    2011-05-01

    Full Text Available We report results from molecular dynamics (MD studies concerning the microscopic structure of the ternary, bulk metallic glass-forming Cu55-x Zr45Agx (x=0,10,20 alloys using tight-binding potentials. Understanding of the nature of Glass Forming Ability (GFA of studied alloys, GFA parameters, glass transition temperature (T-g, melting temperature (T-m, reduced glass transition temperature (T-g/T-m, the supercooled liquid region and other parameters were simulated and compared with experiments. The computed pair distribution functions reproduce well experimental x-ray data of Inoue and co-workers. Structure analysis of the Cu-Zr-Ag alloy based on MD simulation will be also presented

  20. A molecular dynamics computer simulation of the time dependence of surface damage production in ion irradiated metal targets

    Webb, R.P.; Harrison, D.E.

    1984-01-01

    Molecular dynamics computer simulations have been used to study the development of ion-induced cascades in the surface region of an initially perfect single crystal metal target. A 16 mm movie has been produced to show the temporal progress of individual cascades. The cascades can then be seen to be formed from a few high energy primary knock-on initiated replacement collision sequences which overlap to form the more usual interpretation of a mature collision cascade. However, it is before the collision cascade has matured, and while the replacement sequences are spreading, that the majority of atoms (> 80%) are ejected. These qualitative observations are also upheld more quantatively in a global average, over many cascades, of the ejection time of each atom. This gives rise to the appearance of a statistical ejection front which propagates radially outwards, from the impact point on the crystal surface, with a well defined velocity. (author)

  1. Simulant - water experiments to characterize the debris bed formed in severe core melt accidents

    Mathai, Amala M.; Anandan, J.; Sharma, Anil Kumar; Murthy, S.S.; Malarvizhi, B.; Lydia, G.; Das, Sanjay Kumar; Nashine, B.K.; Selvaraj, P.

    2015-01-01

    Molten Fuel Coolant Interaction (WO) and debris bed configuration on the core catcher plate assumes importance in assessing the Post Accident Heat Removal (PARR) of a heat generating debris bed. The key factors affecting the coolability of the debris bed are the bed porosity, morphology of the fragmented particles, degree of spreading/heaping of the debris on the core catcher and the fraction of lump formed. Experiments are conducted to understand the fragmentation kinetics and subsequent debris bed formation of molten woods metal in water at interface temperatures near the spontaneous nucleation temperature of water. Morphology of the debris particles is investigated to understand the fragmentation mechanisms involved. The spreading behavior of the debris on the catcher plate and the particle size distribution are presented for 5 kg and 10 kg melt inventories. Porosity of the undisturbed bed on the catcher plate is evaluated using a LASER sensor technique. (author)

  2. Simulation and comparison of the illuminance, uniformity, and efficiency of different forms of lighting used in basketball court illumination.

    Sun, Wen-Shing; Tien, Chuen-Lin; Tsuei, Chih-Hsuan; Pan, Jui-Wen

    2014-10-10

    We simulate and compare the illuminance, uniformity, and efficiency of metal-halide lamps, white LED light sources, and hybrid light box designs combining sunlight and white LED lighting used for indoor basketball court illumination. According to the optical simulation results and our examination of real situations, we find that hybrid light box designs combining sunlight and white LEDs do perform better than either metal-halide lamps or white LED lights. An evaluation of the sunlight concentrator system used in our inverted solar cell shows that the energy consumption of stadium lighting can be reduced significantly.

  3. Simulation studies of current transport in metal-insulator-semiconductor Schottky barrier diodes

    Chand, Subhash; Bala, Saroj

    2007-01-01

    The current-voltage characteristics of Schottky diodes with an interfacial insulator layer are analysed by numerical simulation. The current-voltage data of the metal-insulator-semiconductor Schottky diode are simulated using thermionic emission diffusion (TED) equation taking into account an interfacial layer parameter. The calculated current-voltage data are fitted into ideal TED equation to see the apparent effect of interfacial layer parameters on current transport. Results obtained from the simulation studies shows that with mere presence of an interfacial layer at the metal-semiconductor interface the Schottky contact behave as an ideal diode of apparently high barrier height (BH), but with same ideality factor and series resistance as considered for a pure Schottky contact without an interfacial layer. This apparent BH decreases linearly with decreasing temperature. The effects giving rise to high ideality factor in metal-insulator-semiconductor diode are analysed. Reasons for observed temperature dependence of ideality factor in experimentally fabricated metal-insulator-semiconductor diodes are analysed and possible mechanisms are discussed

  4. Experimental identification for physical mechanism of fiber-form nanostructure growth on metal surfaces with helium plasma irradiation

    Takamura, S., E-mail: takamura@aitech.ac.jp [Faculty of Engineering, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392 (Japan); Uesugi, Y. [Faculty of Electrical and Computer Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192 (Japan)

    2015-11-30

    Highlights: • Initial growth process of fiber-form nanostructure on metal surfaces under helium ion irradiation is given based on experimental knowledge, where the pitting of original surface and forming nano-walls and/or loop-like nanostructure works as precursors. • The physical mechanism of fiber growth is discussed in terms of shear modulus of metals influenced by helium content as well as surface temperature. • The physical model explains the reason why tantalum does not make sufficiently grown nano-fibers, and the temperature dependence of surface morphology of titanium. - Abstract: The initial stage of fiber-form nanostructure growth on metal surface with helium plasma irradiation is illustrated, taking recent research knowledge using a flux gradient technique, and including loop-like nano-scale structure as precursors. The growth mechanism of fibers is discussed in terms of the shear modulus of various materials that is influenced by the helium content as well as the surface temperature, and the mobility of helium atoms, clusters and/or nano-bubbles in the bulk, loops and fibers. This model may explain the reason why tantalum does not provide fiber-form nanostructure although the loop-like structure was identified. The model also suggests the mechanism of an existence of two kinds of nanostructure of titanium depending on surface temperature. Industrial applications of such nanostructures are suggested in the properties and the possibilities of its growth on other basic materials.

  5. Shape optimization of metal forming and forging products using the stress equivalent static loads calculated from a virtual model

    Jang, Hwan Hak; Jeong, Seong Beom; Park, Gyung Jin

    2012-01-01

    A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes

  6. Metals and metalloids in the water-bloom-forming cyanobacteria and ambient water from Nanquan coast of Taihu Lake, China.

    Su, Yanping; Liu, Hongbo; Yang, Jian

    2012-08-01

    Concentrations of 12 metal(oid)s were investigated in the bloom-forming cyanobacteria and ambient water samples collected monthly between March 2009 and February 2010 at the Nanquan coast of Taihu Lake, China. The metal(oid) concentrations in ambient water decreased in the order Fe > Zn > Ni ≈ As ≈ Cu > Mn > Ag > Cr > Se > Cd > Co > Tl, while those in cyanobacteria followed a sequence Fe > Mn > Zn > Cu ≈ Ni > Co > Ag > Cr ≈ As > Cd > Tl > Se. The metal(loid) burdens removed by cyanobacteria were estimated as 164 t Fe, 12.4 t Mn, 3.6 t Zn, 2.0 t Ni, 2.0 t Cu, 0.5 t As, 0.5 t Cr, 0.4 t Cd, 0.9 t Ag, 1.1 t Co, 0.2 t Tl, and 0.09 t Se during the 2008-2010 bloom seasons.

  7. Time dependent enhanced resistance against antibiotics & metal salts by planktonic & biofilm form of Acinetobacter haemolyticus MMC 8 clinical isolate

    Sharvari Vijaykumar Gaidhani

    2014-01-01

    Full Text Available Background & objectives: Available literature shows paucity of reports describing antibiotic and metal resistance profile of biofilm forming clinical isolates of Acinetobacter haemolyticus. The present study was undertaken to evaluate the antibiotic and metal resistance profile of Indian clinical isolate of A. haemolyticus MMC 8 isolated from human pus sample in planktonic and biofilm form. Methods: Antibiotic susceptibility and minimum inhibitory concentration were determined employing broth and agar dilution techniques. Biofilm formation was evaluated quantitatively by microtiter plate method and variation in complex architecture was determined by scanning electron microscopy. Minimum biofilm inhibiting concentration was checked by Calgary biofilm device. Results: Planktonic A. haemolyticus MMC 8 was sensitive to 14 antibiotics, AgNO 3 and HgC1 2 resistant to streptomycin and intermediately resistant to netilmycin and kanamycin. MMC 8 exhibited temporal variation in amount and structure of biofilm. There was 32 - 4000 and 4 - 256 fold increase in antibiotic and metal salt concentration, respectively to inhibit biofilm over a period of 72 h as against susceptible planktonic counterparts. Total viable count in the range of 10 5 -10 6 cfu / ml was observed on plating minimum biofilm inhibiting concentration on Muller-Hinton Agar plate without antimicrobial agents. Biofilm forming cells were several folds more resistant to antibiotics and metal salts in comparison to planktonic cells. Presence of unaffected residual cell population indicated presence of persister cells. Interpretation & conclusions: The results indicate that biofilm formation causes enhanced resistance against antibiotics and metal salts in otherwise susceptible planktonic A. haemolyticus MMC 8.

  8. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    Hsyu, Tiffany; Prochaska, J. Xavier; Bolte, Michael [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95060 (United States); Cooke, Ryan J. [Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2017-08-20

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O iii] λ 4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way–like galaxy.

  9. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    Hsyu, Tiffany; Cooke, Ryan J.; Prochaska, J. Xavier; Bolte, Michael

    2017-08-01

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O III] λ4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way-like galaxy.

  10. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    Hsyu, Tiffany; Prochaska, J. Xavier; Bolte, Michael; Cooke, Ryan J.

    2017-01-01

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O iii] λ 4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way–like galaxy.

  11. Metallic elements in fossil fuel combustion products: amounts and form of emissions and evaluation of carcinogenicity and mutagenicity.

    Vouk, V B; Piver, W T

    1983-01-01

    Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined.

  12. Global Simulations of the Asymmetry in Forming Kelvin-Helmholtz Instability at Mercury

    Paral, J.; Rankin, R.

    2013-12-01

    MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) is the first spacecraft to provide data from the orbit of Mercury. After the probe's insertion into the orbit on March 2011, the in situ measurements revealed a dawn-dusk asymmetry in the observations of Kelvin-Helmholtz (KH) instability. This instability forms at the magnetopause boundary due to the high shear of the plasma flows. The asymmetry in the observations is unexpected and largely unexplained, although it has been speculated that finite ion gyroradius effect plays an important role. The large gyroradius implies that kinetic effects are important and thus must be taken into account. We employ global ion hybrid-kinetic simulations to obtain a 2D model of Mercury's magnetosphere. This code treats ions as particles and follows the full trajectory while electrons act as a charge neutralizing fluid. The planet is treated as the perfect conductor placed in the streaming solar wind to form a quasi steady state of the magnetosphere. By placing a virtual probe in the simulation domain we obtain time series of the plasma parameters which can be compared to the observations by the MESSENGER spacecraft. The comparison of the KH instability is remarkably close to the observations of MESSENGER; to within a factor of two. The model also confirms the asymmetry in the observations. The ion density obtained from the computer model is shown together with velocity vectors (represented by arrows). The solid line represents the trajectory of the third flyby of MESSENGER on September 29, 2009.

  13. A comparative study of ibuprofen and ketoprofen glass-forming liquids by molecular dynamics simulations

    Ottou Abe, M. T.; Correia, N. T.; Ndjaka, J. M. B.; Affouard, F.

    2015-10-01

    In this paper, structural and dynamical properties of ibuprofen and ketoprofen glass-forming liquids have been investigated by means of molecular dynamics simulations. Molecular mobility of both materials is analyzed with respect to the different inter-molecular linear/cyclic hydrogen bonding associations. For ibuprofen, the dominant organization is found to be composed of small hydrogen bonding aggregates corresponding to cyclic dimers through the carboxyl group. For ketoprofen, the propensity of cyclic dimers is significantly reduced by the formation of hydrogen bonds with the ketone oxygen of the molecule altering the hydrogen bond (HB) associating structures that can be formed and thus molecular dynamics. The issue of the presence/absence of the peculiar low frequency Debye-type process in dielectric relaxation spectroscopy (DRS) data in these materials is addressed. Results obtained from simulations confirm that the Debye process originates from the internal cis-trans conversion of the —COOH carboxyl group. It is shown that the specific intermolecular HB structures associated to a given profen control the main dynamical features of this conversion, in particular its separation from the α-process, which make it detectable or not from DRS. For ibuprofen, the possible role of the —CCCO torsion motion, more "local" than the —COOH motion since it is less influenced by the intermolecular HBs, is suggested in the microscopic origin of the quite intense secondary γ-relaxation process detected from DRS.

  14. Studies on the finite element simulation in sheet metal stamping processes

    Huang, Ying

    The sheet metal stamping process plays an important role in modern industry. With the ever-increasing demand for shape complexity, product quality and new materials, the traditional trial and error method for setting up a sheet metal stamping process is no longer efficient. As a result, the Finite Element Modeling (FEM) method has now been widely used. From a physical point of view, the formability and the quality of a product are influenced by several factors. The design of the product in the initial stage and the motion of the press during the production stage are two of these crucial factors. This thesis focuses on the numerical simulation for these two factors using FEM. Currently, there are a number of commercial FEM software systems available in the market. These software systems are based on an incremental FEM process that models the sheet metal stamping process in small incremental steps. Even though the incremental FEM is accurate, it is not suitable for the initial conceptual design for its needing of detailed design parameters and enormous calculation times. As a result, another type of FEM, called the inverse FEM method or one-step FEM method, has been proposed. While it is less accurate than that of the incremental method, this method requires much less computation and hence, has a great potential. However, it also faces a number of unsolved problems, which limits its application. This motivates the presented research. After the review of the basic theory of the inverse method, a new modified arc-length search method is proposed to find better initial solution. The methods to deal with the vertical walls are also discussed and presented. Then, a generalized multi-step inverse FEM method is proposed. It solves two key obstacles: the first one is to determine the initial solution of the intermediate three-dimensional configurations and the other is to control the movement of nodes so they could only slide on constraint surfaces during the search by

  15. Leaching behavior of a simulated bituminized radioactive waste form under deep geological conditions

    Nakayama, Shinichi; Iida, Yoshihisa; Nagano, Tetsushi; Akimoto, Toshiyuki

    2003-01-01

    The leaching behavior of a simulated bituminized waste form was studied to acquire data for the performance assessment of the geologic disposal of bituminized radioactive waste. Laboratory-scale leaching tests were performed for radioactive and non-radioactive waste specimens simulating bituminized waste of a French reprocessing company, COGEMA. The simulated waste was contacted with deionized water, an alkaline solution (0.03-mol/l KOH), and a saline solution (0.5-mol/l KCl) under atmospheric and anoxic conditions. The concentrations of Na, Ba, Cs, Sr, Np, Pu, NO 3 , SO 4 and I in the leachates were determined. Swelling of the bituminized waste progressed in deionized water and KOH. The release of the soluble components, Na and Cs, was enhanced by the swelling, and considered to be diffusion-controlled in the swelled layers of the specimens. The release of sparingly soluble components such as Ba and Np was solubility-limited in addition to the progression of leaching. Neptunium, a redox-sensitive element, showed a distinct difference in release between anoxic and atmospheric conditions. The elemental release from the bituminized waste specimens leached in the KCl was very low, which is likely due to the suppression of swelling of the specimens at high ionic strength. (author)

  16. Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories

    González-Samaniego, A.; Avila-Reese, V.; Rodríguez-Puebla, A.; Valenzuela, O.; Colín, P.

    2014-01-01

    We present zoom-in N-body/hydrodynamics resimulations of dwarf galaxies formed in isolated cold dark matter (CDM) halos with the same virial mass (M v ≈ 2.5 × 10 10 M ☉ ) at redshift z = 0. Our goals are to (1) study the mass assembly histories (MAHs) of the halo, stellar, and gaseous components; and (2) explore the effects of the halo MAHs on the stellar/baryonic assembly of simulated dwarfs. Overall, the dwarfs are roughly consistent with observations. More specific results include: (1) the stellar-to-halo mass ratio remains roughly constant since z ∼ 1, i.e., the stellar MAHs closely follow halo MAHs. (2) The evolution of the galaxy gas fractions, f g , are episodic, showing that the supernova-driven outflows play an important role in regulating f g —and hence, the star formation rate (SFR)—however, in most cases, a large fraction of the gas is ejected from the halo. (3) The star formation histories are episodic with changes in the SFRs, measured every 100 Myr, of factors of 2-10 on average. (4) Although the dwarfs formed in late assembled halos show more extended SF histories, their z = 0 specific SFRs are still below observations. (5) The inclusion of baryons most of the time reduces the virial mass by 10%-20% with respect to pure N-body simulations. Our results suggest that rather than increasing the strength of the supernova-driven outflows, processes that reduce the star formation efficiency could help to solve the potential issues faced by CDM-based simulations of dwarfs, such as low values of the specific SFR and high stellar masses.

  17. Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories

    González-Samaniego, A.; Avila-Reese, V.; Rodríguez-Puebla, A.; Valenzuela, O. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510 México D. F. (Mexico); Colín, P. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, A.P. 72-3 (Xangari), Morelia, Michoacán 58089 (Mexico)

    2014-04-10

    We present zoom-in N-body/hydrodynamics resimulations of dwarf galaxies formed in isolated cold dark matter (CDM) halos with the same virial mass (M{sub v} ≈ 2.5 × 10{sup 10} M {sub ☉}) at redshift z = 0. Our goals are to (1) study the mass assembly histories (MAHs) of the halo, stellar, and gaseous components; and (2) explore the effects of the halo MAHs on the stellar/baryonic assembly of simulated dwarfs. Overall, the dwarfs are roughly consistent with observations. More specific results include: (1) the stellar-to-halo mass ratio remains roughly constant since z ∼ 1, i.e., the stellar MAHs closely follow halo MAHs. (2) The evolution of the galaxy gas fractions, f{sub g} , are episodic, showing that the supernova-driven outflows play an important role in regulating f{sub g} —and hence, the star formation rate (SFR)—however, in most cases, a large fraction of the gas is ejected from the halo. (3) The star formation histories are episodic with changes in the SFRs, measured every 100 Myr, of factors of 2-10 on average. (4) Although the dwarfs formed in late assembled halos show more extended SF histories, their z = 0 specific SFRs are still below observations. (5) The inclusion of baryons most of the time reduces the virial mass by 10%-20% with respect to pure N-body simulations. Our results suggest that rather than increasing the strength of the supernova-driven outflows, processes that reduce the star formation efficiency could help to solve the potential issues faced by CDM-based simulations of dwarfs, such as low values of the specific SFR and high stellar masses.

  18. Microstructural Control via Copious Nucleation Manipulated by In Situ Formed Nucleants: Large-Sized and Ductile Metallic Glass Composites.

    Song, Wenli; Wu, Yuan; Wang, Hui; Liu, Xiongjun; Chen, Houwen; Guo, Zhenxi; Lu, Zhaoping

    2016-10-01

    A novel strategy to control the precipitation behavior of the austenitic phase, and to obtain large-sized, transformation-induced, plasticity-reinforced bulk metallic glass matrix composites, with good tensile properties, is proposed. By inducing heterogeneous nucleation of the transformable reinforcement via potent nucleants formed in situ, the characteristics of the austenitic phase are well manipulated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan

    Howard, Jeffrey L., E-mail: jhoward@wayne.edu [Department of Geology, Wayne State University, Detroit, MI 48202 (United States); Olszewska, Dorota [Department of Geology, Wayne State University, Detroit, MI 48202 (United States)

    2011-03-15

    An urban soil chronosequence in downtown Detroit, MI was studied to determine the effects of time on pedogenesis and heavy metal sequestration. The soils developed in fill derived from mixed sandy and clayey diamicton parent materials on a level late Pleistocene lakebed plain under grass vegetation in a humid-temperate (mesic) climate. The chronosequence is comprised of soils in vacant lots (12 and 44 years old) and parks (96 and 120 years old), all located within 100 m of a roadway. An A-horizon 16 cm thick with 2% organic matter has developed after only 12 years of pedogenesis. The 12 year-old soil shows accelerated weathering of iron (e.g. nails) and cement artifacts attributed to corrosion by excess soluble salts of uncertain origin. Carbonate and Fe-oxide are immobilizing agents for heavy metals, hence it is recommended that drywall, plaster, cement and iron artifacts be left in soils at brownfield sites for their ameliorating effects. - Research highlights: > An A horizon has developed in these urban soils after only 12 years of pedogenesis. > Iron and cement artifacts have undergone accelerated weathering due to deicing salts. > One soil is contaminated by lead derived from weathered paint. > Artifact weathering can have ameliorating effects on urban soils contaminated by heavy metals. - Weathering of artifacts can have ameliorating effects on heavy metal-polluted soils at brownfield sites.

  20. Significance of wave form parameters in stripping chronopotentiometric metal speciation analysis

    Town, R.M.; Leeuwen, van H.P.

    2002-01-01

    An analysis is presented of the significance of stripping chronopotentiometric (SCP) stripping peak parameters (peak potential, Ep, and peak half-width, w1/2) for determination of metal ion speciation. This study focuses on depletive SCP (low stripping current, I¿ constant), and considers the change

  1. Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan

    Howard, Jeffrey L.; Olszewska, Dorota

    2011-01-01

    An urban soil chronosequence in downtown Detroit, MI was studied to determine the effects of time on pedogenesis and heavy metal sequestration. The soils developed in fill derived from mixed sandy and clayey diamicton parent materials on a level late Pleistocene lakebed plain under grass vegetation in a humid-temperate (mesic) climate. The chronosequence is comprised of soils in vacant lots (12 and 44 years old) and parks (96 and 120 years old), all located within 100 m of a roadway. An A-horizon 16 cm thick with 2% organic matter has developed after only 12 years of pedogenesis. The 12 year-old soil shows accelerated weathering of iron (e.g. nails) and cement artifacts attributed to corrosion by excess soluble salts of uncertain origin. Carbonate and Fe-oxide are immobilizing agents for heavy metals, hence it is recommended that drywall, plaster, cement and iron artifacts be left in soils at brownfield sites for their ameliorating effects. - Research highlights: → An A horizon has developed in these urban soils after only 12 years of pedogenesis. → Iron and cement artifacts have undergone accelerated weathering due to deicing salts. → One soil is contaminated by lead derived from weathered paint. → Artifact weathering can have ameliorating effects on urban soils contaminated by heavy metals. - Weathering of artifacts can have ameliorating effects on heavy metal-polluted soils at brownfield sites.

  2. New insight on glass-forming ability and designing Cu-based bulk metallic glasses: The solidification range perspective

    Wu, Jili; Pan, Ye; Li, Xingzhou; Wang, Xianfei

    2014-01-01

    Highlights: • The equation, T rg = T g /T l , was rotationally modified to T rg = κ(T m /T l ) + C/T l . • The newly generalized equation suggests a way for describing glass-forming ability. • Several new Cu-based bulk metallic glasses were discovered by solidification range. - Abstract: In this paper, a new equation was rationally generalized from the reduced glass transition temperature. This equation indicates that solidification range can be used for describing glass-forming ability, which can be calculated with the aid of computational thermodynamic approach. Based on this scenario, several new Cu-based bulk metallic glasses in the ternary Cu–Zr–Ti alloy system were discovered. The as-cast samples were characterized by X-ray diffraction and transmission electronic microscopy. The results indicate that as-cast samples have monolithic amorphous nature. Thermal analysis validates that the smaller solidification range is closely related to the higher glass-forming ability, which is contributed to the effect of solidification time on the formation of bulk metallic glasses. This work also suggests that solidus can influence glass formation

  3. A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS

    Zahid, H. J.; Dima, G. I.; Kewley, L. J.; Erb, D. K.; Davé, R.

    2012-01-01

    In this contribution, we present the first census of oxygen in star-forming galaxies in the local universe. We examine three samples of galaxies with metallicities and star formation rates (SFRs) at z = 0.07, 0.8, and 2.26, including the Sloan Digital Sky Survey (SDSS) and DEEP2 survey. We infer the total mass of oxygen produced and mass of oxygen found in the gas-phase from our local SDSS sample. The star formation history is determined by requiring that galaxies evolve along the relation between stellar mass and SFR observed in our three samples. We show that the observed relation between stellar mass and SFR for our three samples is consistent with other samples in the literature. The mass-metallicity relation is well established for our three samples, and from this we empirically determine the chemical evolution of star-forming galaxies. Thus, we are able to simultaneously constrain the SFRs and metallicities of galaxies over cosmic time, allowing us to estimate the mass of oxygen locked up in stars. Combining this work with independent measurements reported in the literature, we conclude that the loss of oxygen from the interstellar medium of local star-forming galaxies is likely to be a ubiquitous process with the oxygen mass loss scaling (almost) linearly with stellar mass. We estimate the total baryonic mass loss and argue that only a small fraction of the baryons inferred from cosmological observations accrete onto galaxies.

  4. The Distribution between the Dissolved and the Particulate Forms of 49 Metals across the Tigris River, Baghdad, Iraq

    Samera Hussein Hamad

    2012-01-01

    Full Text Available The distribution of dissolved and particulate forms of 49 elements was investigated along transect of the Tigris River (one of the major rivers of the world within Baghdad city and in its major tributary (Diyala River from 11 to 28 July 2011. SF-ICP-MS was used to measure total and filterable elements at 17 locations along the Tigris River transect, two samples from the Diyala River, and in one sample from the confluence of the two rivers. The calculated particulate forms were used to determine the particle-partition coefficients of the metals. No major changes in the elements concentrations down the river transect. Dissolved phases dominated the physical speciation of many metals (e.g., As, Mo, and Pt in the Tigris River, while Al, Fe, Pb, Th, and Ti were exhibiting high particulate fractions, with a trend of particle partition coefficients of [Ti(40 > Th(35 > Fe(15 > Al(13 > Pb(4.5] * 106 L/kg. Particulate forms of all metals exhibited high concentrations in the Diyala River, though the partition coefficients were low due to high TSS (~270 mg/L. A comparison of Tigris with the major rivers of the world showed that Tigris quality in Baghdad is comparable to Seine River quality in Paris.

  5. Simulated optical properties of noble metallic nanopolyhedra with different shapes and structures

    Zhang, An-Qi; Qian, Dong-Jin; Chen, Meng

    2013-11-01

    The optical properties of nanostructured architectures are highly sensitive to their compositions, structures, dimensions, geometries and embedding mediums. Nanopolyhedra, including homogeneous metal nanoparticles and core-shell structures, have unique optical properties. In the beginning of this study, Discrete Dipole Approximation (DDA) method has been introduced. Then the simulated extinction spectra of single-component metal nanoparticles and Au@Ag polyhedra were calculated using both Mie and DDA methods. The influence of morphology and components on the optical response is discussed and well-supported by previously published experimental results. It is observed that the Localized Surface Plasmon Resonance peaks are mainly decided by sharp vertexes and symmetry of noble metallic polyhedra, as well as the structure of the Au@Ag core-shell nanoparticles.

  6. Quantum mechanical ab initio simulation of the electron screening effect in metal deuteride crystals

    Huke, A.; Chun, S.M.; Biller, A.; Heide, P. [Technische Universitaet Berlin, Institut fuer Optik und Atomare Physik, Berlin (Germany); Czerski, K. [Technische Universitaet Berlin, Institut fuer Optik und Atomare Physik, Berlin (Germany); University of Szczecin, Institute of Physics, Szczecin (Poland)

    2008-02-15

    In antecedent experiments the electron screening energies of the d+d reactions in metallic environments have been determined to be enhanced by an order of magnitude in comparison to the case of gaseous deuterium targets. The analytical models describing averaged material properties have not been able to explain the experimental results so far. Therefore, a first effort has been undertaken to simulate the dynamics of reacting deuterons in a metallic lattice by means of an ab initio Hartree-Fock calculation of the total electrostatic force between the lattice and the successively approaching deuterons via path integration. The calculations have been performed for Li and Ta, clearly showing a migration of electrons from host metallic to the deuterium atoms. However, in order to avoid more of the necessary simplifications in the model the utilization of a massive parallel supercomputer would be required. (orig.) 3.

  7. Noble metal behavior during melting of simulated high-level nuclear waste glass feeds

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Noble metals and their oxides can settle in waste glass melters and cause electrical shorting. Simulated waste feeds from Hanford, Savannah River, and Germany were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C and examined by electron microscopy to determine shapes, sizes, and distribution of noble metal particles as a function of temperature. Individual noble metal particles and agglomerates of rhodium (Rh), ruthenium (RuO 2 ), and palladium (Pd), as well as their alloys, were seen. the majority of particles and agglomerates were generally less than 10 microns; however, large agglomerations (up to 1 mm) were found in the German feed. Detailed particle distribution and characterization was performed for a Hanford waste to provide input to computer modeling of particle settling in the melter

  8. Noble metal behavior during melting of simulated high-level nuclear waste glass feeds

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Noble metals and their oxides can settle in waste glass melters and cause electrical shorting. Simulate waste feeds from Hanford, Savannah River, and Kernforschungszentrum Karlsruhe were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C and examined by electron microscopy to determine shapes, sizes, and distribution of noble metal particles as a function of temperature. Individual noble metal particles and agglomerates of rhodium (Rh), ruthenium (RuO 2 ), and palladium (Pd), as well as their alloys, were seen. The majority of particles and agglomerates were generally less than 10 μm; however, large agglomerations (up to 1 mm) were found in the German feed. 5 refs., 6 figs., 2 tabs

  9. Three-dimensional phase-field simulation on the deformation of metallic glass nanowires

    Zhang, H.Y.; Zheng, G.P.

    2014-01-01

    Highlights: • 3D phase-field modeling is developed to investigate the deformation of MG nanowires. • The surface defects significantly affect the mechanical properties of nanowires. • Multiple shear bands are initiated from the surfaces of nanowires with D < 50 nm. - Abstract: It is very challenging to investigate the deformation mechanisms in micro- and nano-scale metallic glasses with diameters below several hundred nanometers using the atomistic simulation or the experimental approaches. In this work, we develop the fully three-dimensional phase-field model to bridge this gap and investigate the sample size effects on the deformation behaviors of metallic glass nanowires. The initial deformation defects on the surface are found to significantly affect the mechanical strength and deformation mode of nanowires. The improved ductility of metallic glass nanowires could be related with the multiple shear bands initiated from the nanowire surfaces

  10. Numerical modelling of adsorption of metallic particles on graphite substrate via molecular dynamics simulation

    Rafii-Tabar, H.

    1998-01-01

    A computer-based numerical modelling of the adsorption process of gas phase metallic particles on the surface of a graphite substrate has been performed via the application of molecular dynamics simulation method. The simulation related to an extensive STM-based experiment performed in this field, and reproduces part of the experimental results. Both two-body and many-body inter-atomic potentials have been employed. A Morse-type potential describing the metal-carbon interactions at the interface was specially formulated for this modelling. Intercalation of silver in graphite has been observed as well as the correct alignments of monomers, dimers and two-dimensional islands on the surface. (author)

  11. Numerical simulation of a metal corrosion for a point defect for a organic protection layer

    Vautrin-Ul, Ch.; Chausse, A.; Stafiej, J.; Badiali, J.P.

    2005-01-01

    The safety of radioactive wastes disposal requires a big knowledge on their aging facing a corrosive environment. The corrosion is a complex phenomenon which implies many processes bound to the physic and the chemistry of the system. This approach proposes, from a little number of simple processes, numerical simulation which will define theses complex phenomenon. The presented model is a 2 dimension model at a mesoscopic scale and based on cellular automates. It allows the simulation of a metal evolution, protected by a polymer layer and in contact at one point with a corrosive media at a defect of the layer. (A.L.B.)

  12. Vitrification of noble metals containing NCAW simulant with an engineering scale melter (ESM): Campaign report

    Grunewald, W.; Roth, G.; Tobie, W.; Weisenburger, S.; Weiss, K.; Elliott, M.; Eyler, L.L.

    1996-03-01

    ESM has been designed as a 10th-scale model of the DWPF-type melter, currently the reference melter for nitrification of Hanford double shell tankwaste. ESM and related equipment have been integrated to the existing mockup vitrification plant VA-WAK at KfK. On June 2-July 10, 1992, a shakedown test using 2.61 m{sup 3} of NCAW (neutralized current acid waste) simulant without noble metals was performed. On July 11-Aug. 30, 1992, 14.23 m{sup 3} of the same simulant with nominal concentrations of Ru, Rh, and Pd were vitrified. Objective was to investigate the behavior of such a melter with respect to discharge of noble metals with routine glass pouring via glass overflow. Results indicate an accumulation of noble metals in the bottom area of the flat-bottomed ESM. About 65 wt% of the noble metals fed to the melter could be drained out, whereas 35 wt% accumulated in the melter, based on analysis of glass samples from glass pouring stream in to the canisters. After the melter was drained at the end of the campaign through a bottom drain valve, glass samples were taken from the residual bottom layer. The samples had significantly increased noble metals content (factor of 20-45 to target loading). They showed also a significant decrease of the specific electric resistance compared to bulk glass (factor of 10). A decrease of 10- 15% of the resistance between he power electrodes could be seen at the run end, but the total amount of noble metals accumulated was not yet sufficient enough to disturb the Joule heating of the glass tank severely.

  13. Discrete element method (DEM) simulations of stratified sampling during solid dosage form manufacturing.

    Hancock, Bruno C; Ketterhagen, William R

    2011-10-14

    Discrete element model (DEM) simulations of the discharge of powders from hoppers under gravity were analyzed to provide estimates of dosage form content uniformity during the manufacture of solid dosage forms (tablets and capsules). For a system that exhibits moderate segregation the effects of sample size, number, and location within the batch were determined. The various sampling approaches were compared to current best-practices for sampling described in the Product Quality Research Institute (PQRI) Blend Uniformity Working Group (BUWG) guidelines. Sampling uniformly across the discharge process gave the most accurate results with respect to identifying segregation trends. Sigmoidal sampling (as recommended in the PQRI BUWG guidelines) tended to overestimate potential segregation issues, whereas truncated sampling (common in industrial practice) tended to underestimate them. The size of the sample had a major effect on the absolute potency RSD. The number of sampling locations (10 vs. 20) had very little effect on the trends in the data, and the number of samples analyzed at each location (1 vs. 3 vs. 7) had only a small effect for the sampling conditions examined. The results of this work provide greater understanding of the effect of different sampling approaches on the measured content uniformity of real dosage forms, and can help to guide the choice of appropriate sampling protocols. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Computational simulation studies of the reduction process of UF4 to metallic uranium

    Borges, Wesden de Almeida

    2011-01-01

    The production of metallic uranium is essential for production of fuel elements for using in nuclear reactors manufacturing of radioisotopes and radiopharmaceuticals. In IPEN, metallic uranium is produced by magnesiothermical reduction of UF 4 . This reaction is performed in a closed graphite crucible inserted in a sealed metal reactor and no contact with the outside environment. The set is gradually heated in an oven pit, until it reaches the ignition temperature of the reaction (between 600-650 degree C). The modeling of the heating profile of the system can be made using simulation programs by finite element method. Through the thermal profiles in the load, we can have a notion of heating period required for the reaction to occur, allowing the identification of the same group in a greater or smaller yield in metallic uranium production. Thermal properties of UF 4 are estimated, obtaining thermal conductivity and heat capacity using the Flash Laser Method, and for the load UF 4 + Mg, either. The results are compared to laboratory tests to simulate the primary production process. (author)

  15. Molecular dynamics simulations of the DNA interaction with metallic nanoparticles and TiO2 surfaces

    Kholmurodov, Kh.T.; Krasavin, E.A.; Dushanov, E.B.; Hassan, H.K.; Galal, A.; ElHabashy, H.A.; Sweilam, N.H.; Yasuoka, K.

    2013-01-01

    The understanding of the mechanism of DNA interactions and binding with metallic nanoparticles (NPs) and surfaces represents a great interest in today's medicine applications due to diagnostic and treatment of oncology diseases. Recent experimental and simulation studies involve the DNA interaction with highly localized proton beams or metallic NPs (such as Ag, Au, etc.), aimed at targeted cancer therapy through the injection of metal micro- or nanoparticles into the tumor tissue with consequent local microwave or laser heating. The effects of mutational structure changes in DNA and protein structures could result in destroying of native chemical (hydrogen) bonds or, on the contrary, creating of new bonds that do not normally exist there. The cause of such changes might be the alteration of one or several nucleotides (in DNA) or the substitution of specific amino acid residues (in proteins) that can lead to the essential structural destabilization or unfolding. At the atomic or molecular level, the replacement of one nucleotide by another (in DNA double helices) or replacement of one amino acid residue by another (in proteins) cause essential modifications of the molecular force fields of the environment that break locally important hydrogen bonds underlying the structural stability of the biological molecules. In this work, the molecular dynamics(MD) simulations were performed for four DNA models and the flexibilities of the purine and pyrimidine nucleotides during the interaction process with the metallic NPs and TiO 2 surface were clarified

  16. Numerical simulation of minor actinide recovery behaviour in batch processing of spent metallic fuel by electrorefining

    Nawada, H P; Bhat, N P [Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Balasubramanian, G R [Atomic Energy Commission, Mumbai (India)

    1994-06-01

    Numerical simulation of electro-transport of fuel actinides (FAs), minor actinides (MAs) and rare earths (REs) in the electro-refiner (ER) for pyrochemical reprocessing of a typical spent IFR metallic fuel has been attempted based on improved thermo-chemical model developed for application to multi-component system in the ER. Optimization of MA recovery and decontamination factors (DFs) for MAs and REs in batch processing is presented. (author). 7 refs., 4 figs., 1 tab.

  17. Simulation of the accumulation kinetics for radiation point defects in a metals with impurity

    Iskakov, B.M.; Nurova, A.B.

    2001-01-01

    In the work a kinetics of vacancies (V) and interstitial atoms (IA) accumulation for cases when the V and IA are recombining with each other, absorbing by drain and capturing by impurity atoms has been simulated. The differential equations system numerical solution was carried out by the Runge-Kutta method. The dynamical equilibrium time achievement for the point radiation defects accumulation process in the metal with impurity is considered

  18. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    Winklhofer, Johannes; Trattnig, Gernot; Lind, Christoph; Sommitsch, Christof; Feuerhuber, Hannes

    2010-01-01

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metal at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.

  19. Metal-insulator transition in nanocomposite VO{sub x} films formed by anodic electrodeposition

    Tsui, Lok-kun; Lu, Jiwei; Zangari, Giovanni, E-mail: gz3e@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States); Hildebrand, Helga; Schmuki, Patrik [Department for Materials Science LKO, University of Erlangen-Nuremberg, Martensstr. 7, D-91058 Erlangen (Germany)

    2013-11-11

    The ability to grow VO{sub 2} films by electrochemical methods would open a low-cost, easily scalable production route to a number of electronic devices. We have synthesized VO{sub x} films by anodic electrodeposition of V{sub 2}O{sub 5}, followed by partial reduction by annealing in Ar. The resulting films are heterogeneous, consisting of various metallic/oxide phases and including regions with VO{sub 2} stoichiometry. A gradual metal insulator transition with a nearly two order of magnitude change in film resistance is observed between room temperature and 140 °C. In addition, the films exhibit a temperature coefficient of resistance of ∼ −2.4%/ °C from 20 to 140 °C.

  20. Development and Testing of Tailored Tool Surfaces for Sheet Metal Forming

    Sulaiman, Mohd Hafis Bin

    MPa. The above mentioned simple experimental procedure for determining lubricant bulk modulus gives a first rough estimate, and it is supplemented by a more advanced laboratory test based on a newly designed equipment. The lubricant compressibility experiment with a direct pressure measurement inside...... to achieve this purpose. A simple laboratory test consisting of upsetting a specially designed metal cylinder with a lubricant reservoir together with elasto-plastic, numerical modelling of the metal cylinder is carried out in order to determine the bulk modulus at low pressure regimes of approximately 100...... for the manufacturing. The SRT tools were manufactured with longitudinal, shallow pocket geometries oriented perpendicular to the sliding direction. The pockets have small angles to the workpiece surface and varying distance. The experiments show an optimum distance between the pockets to exist that creates a table...