WorldWideScience

Sample records for metal ferrites afe2o4

  1. Rapid and efficient visible light photocatalytic dye degradation using AFe2O4 (A = Ba, Ca and Sr) complex oxides

    International Nuclear Information System (INIS)

    Vijayaraghavan, T.; Suriyaraj, S.P.; Selvakumar, R.; Venkateswaran, R.; Ashok, Anuradha

    2016-01-01

    Highlights: • Alkaline earth ferrites AFe 2 O 4 (A = Ba, Ca and Sr) were synthesized by sol–gel method. • Visible light photocatalytic activity of these ferrites were studied using congo red dye degradation. • BaFe 2 O 4 exhibited the best photocatalytic activity under visible light (xenon lamp) irradiation; CaFe 2 O 4 was the best photocatalyst under natural sun light irradiation. - Abstract: Photocatalytic activity of spinel type complex oxides has been investigated in this study. Alkaline earth ferrites AFe 2 O 4 (A = Ba, Ca, Sr) were synthesized by sol–gel method. Structural characterizations reveal that the synthesized ferrites have orthorhombic crystal structures with different space groups and cell dimensions when they have different alkaline earth metals in their A site. All the synthesized ferrites exhibited their bandgap in the range 2.14–2.19 eV. Their photocatalytic activities were studied using congo red dye under sunlight and xenon lamp radiation. The substitution of Ba, Ca and Sr at A site of these ferrites had varying impact on dye degradation process. Under xenon lamp irradiation, BaFe 2 O 4 exhibited the highest percentage of dye degradation (92% after 75 min). However, CaFe 2 O 4 showed the fastest degradation of the dye (70% within 15 min). In the absence of irradiation, SrFe 2 O 4 showed the highest dye adsorption (44% after 75 min).

  2. Rapid and efficient visible light photocatalytic dye degradation using AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) complex oxides

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, T. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Suriyaraj, S.P.; Selvakumar, R. [Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Venkateswaran, R. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Ashok, Anuradha, E-mail: anu@psgias.ac.in [PSG Institute of Advanced Studies, Coimbatore 641004 (India)

    2016-08-15

    Highlights: • Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) were synthesized by sol–gel method. • Visible light photocatalytic activity of these ferrites were studied using congo red dye degradation. • BaFe{sub 2}O{sub 4} exhibited the best photocatalytic activity under visible light (xenon lamp) irradiation; CaFe{sub 2}O{sub 4} was the best photocatalyst under natural sun light irradiation. - Abstract: Photocatalytic activity of spinel type complex oxides has been investigated in this study. Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca, Sr) were synthesized by sol–gel method. Structural characterizations reveal that the synthesized ferrites have orthorhombic crystal structures with different space groups and cell dimensions when they have different alkaline earth metals in their A site. All the synthesized ferrites exhibited their bandgap in the range 2.14–2.19 eV. Their photocatalytic activities were studied using congo red dye under sunlight and xenon lamp radiation. The substitution of Ba, Ca and Sr at A site of these ferrites had varying impact on dye degradation process. Under xenon lamp irradiation, BaFe{sub 2}O{sub 4} exhibited the highest percentage of dye degradation (92% after 75 min). However, CaFe{sub 2}O{sub 4} showed the fastest degradation of the dye (70% within 15 min). In the absence of irradiation, SrFe{sub 2}O{sub 4} showed the highest dye adsorption (44% after 75 min).

  3. Attestation in self-propagating combustion approach of spinel AFe_2O_4 (A = Co, Mg and Mn) complexes bearing mixed oxidation states: Magnetostructural properties

    International Nuclear Information System (INIS)

    Bennet, J.; Tholkappiyan, R.; Vishista, K.; Jaya, N. Victor; Hamed, Fathalla

    2016-01-01

    Highlights: • Spinel type ferrite compounds AFe_2O_4 (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel. • To investigate and confirms the presence of phases in the synthesized ferrite nanoparticles by XRD and FTIR analysis. • The formation of mixed oxidation state of cobalt (Co"2"+ and Co"3"+), iron (Fe"2"+ and Fe"3"+) and manganese (Mn"2"+ and Mn"3"+) ions were studied and confirmed from XPS analysis. • The magnetic properties of the synthesized ferrites were studied by VSM measurement. - Abstract: Spinel type nano-sized ferrite compounds AFe_2O_4 (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel at 400 °C under air atmosphere for 4 h. The crystal structure, chemical composition, morphology and magnetic properties of the synthesized samples were characterized by X−ray diffraction, Fourier transform infrared spectroscopy, X−ray photoelectron spectroscopy, Energy dispersive X−ray, Scanning and Transmission electron microscopy and vibrating sample magnetometer. The chemical reaction and role of fuel on the nanoparticles formation were discussed. The XRD pattern of the synthesized samples shows the formation of pure phase with average crystallite size of 97, 57 and 98 nm from Scherrer formula and 86, 54 and 87 nm from Williamson and Hall (W–H) formula respectively. FTIR absorption spectra revealed that the presence of strong absorption peaks near 400–600 cm"−"1 corresponds to tetrahedral and octahedral complex of spinel ferrites. The relative concentrations of electronic states of elements such as cobalt (Co"2"+ and Co"3"+), iron (Fe"2"+ and Fe"3"+) and manganese (Mn"2"+ and Mn"3"+) oxidation states were studied from XPS and it is found that 55% of Fe ions are in Fe"2"+ state and the remaining is in Fe"3"+ state and thus the cationic distribution of Fe ions occurred in both tetrahedral and octahedral sites. SEM analysis

  4. Attestation in self-propagating combustion approach of spinel AFe{sub 2}O{sub 4} (A = Co, Mg and Mn) complexes bearing mixed oxidation states: Magnetostructural properties

    Energy Technology Data Exchange (ETDEWEB)

    Bennet, J., E-mail: b.eenneett@gmail.com [Department of Physics, College of Engineering, Guindy, Anna University, Sardar Patel Road, Chennai,600025 (India); Tholkappiyan, R. [Department of Physics, College of Engineering, Guindy, Anna University, Sardar Patel Road, Chennai,600025 (India); Department of Physics, College of Science, UAE University, Al Ain 15551 (United Arab Emirates); Vishista, K.; Jaya, N. Victor [Department of Physics, College of Engineering, Guindy, Anna University, Sardar Patel Road, Chennai,600025 (India); Hamed, Fathalla [Department of Physics, College of Science, UAE University, Al Ain 15551 (United Arab Emirates)

    2016-10-15

    Highlights: • Spinel type ferrite compounds AFe{sub 2}O{sub 4} (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel. • To investigate and confirms the presence of phases in the synthesized ferrite nanoparticles by XRD and FTIR analysis. • The formation of mixed oxidation state of cobalt (Co{sup 2+} and Co{sup 3+}), iron (Fe{sup 2+} and Fe{sup 3+}) and manganese (Mn{sup 2+} and Mn{sup 3+}) ions were studied and confirmed from XPS analysis. • The magnetic properties of the synthesized ferrites were studied by VSM measurement. - Abstract: Spinel type nano-sized ferrite compounds AFe{sub 2}O{sub 4} (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel at 400 °C under air atmosphere for 4 h. The crystal structure, chemical composition, morphology and magnetic properties of the synthesized samples were characterized by X−ray diffraction, Fourier transform infrared spectroscopy, X−ray photoelectron spectroscopy, Energy dispersive X−ray, Scanning and Transmission electron microscopy and vibrating sample magnetometer. The chemical reaction and role of fuel on the nanoparticles formation were discussed. The XRD pattern of the synthesized samples shows the formation of pure phase with average crystallite size of 97, 57 and 98 nm from Scherrer formula and 86, 54 and 87 nm from Williamson and Hall (W–H) formula respectively. FTIR absorption spectra revealed that the presence of strong absorption peaks near 400–600 cm{sup −1} corresponds to tetrahedral and octahedral complex of spinel ferrites. The relative concentrations of electronic states of elements such as cobalt (Co{sup 2+} and Co{sup 3+}), iron (Fe{sup 2+} and Fe{sup 3+}) and manganese (Mn{sup 2+} and Mn{sup 3+}) oxidation states were studied from XPS and it is found that 55% of Fe ions are in Fe{sup 2+} state and the remaining is in Fe{sup 3+} state and thus the cationic distribution

  5. Core-Shell Nano structure of a-Fe2O3/Fe3O4: Synthesis and Photo catalysis for Methyl Orange

    International Nuclear Information System (INIS)

    Tian, Y.; Wu, D.; Yu, B.; Jia, X.; Zhan, S.

    2011-01-01

    Fe 3 O 4 nanoparticle was synthesized in the solution involving water and ethanol. Then, a-Fe 2 O 3 shell was produced in situ on the surface of the Fe 3 O 4 nanoparticle by surface oxidation in molten salts, forming α-Fe 2 O 3 /Fe 3 O 4 core-shell nano structure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primary Fe 3 O 4 nanoparticles were oxidized. Furthermore, the obtained a-Fe 2 O 3 /Fe 3 O 4 core-shell nanoparticles were used to photo catalyse solution of methyl orange, and the results revealed that a-Fe 2 O 3 /Fe 3 O 4 nanoparticles were more efficient than the self-prepared α-Fe 2 O 3 nanoparticles. At the same time, the photo catalyzer was recyclable by applying an appropriate magnetic field.

  6. A Highly Selective Room Temperature NH3 Gas Sensor based on Nanocrystalline a-Fe2O3

    Directory of Open Access Journals (Sweden)

    Priyanka A. PATIL

    2017-05-01

    Full Text Available Nanocrystalline a-Fe2O3 powder was synthesized by simple, inexpensive sol-gel method. The obtained powder was calcined at 700 0C in air atmosphere for 2 hours. The structural and morphological properties of calcined powder were studied by X-ray diffraction (XRD and Field Emission Scanning Electron Microscopy (FESEM respectively. Thermal properties of dried gel were studied by Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA/DSC. The XRD pattern of the powder confirmed the a-Fe2O3 (hematite phase of iron oxide with average crystalline size of 30.87 nm calculated from Scherrer equation. The FESEM images showed uniform wormlike morphology of a-Fe2O3 powder. TGA result indicated that a-Fe2O3 is thermodynamically stable. Room temperature NH3 sensing characteristics of a-Fe2O3 were studied for various concentration levels (250-2500 ppm of NH3 at various humid conditions. The sensor based on a-Fe2O3 exhibited good selectivity and excellent sensitivity (S=92 towards 1000 ppm of NH3 with quick response of 4 sec and fast recovery of 9 sec. Room temperature sensing mechanism is also discussed.

  7. Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4 and Zinc Ferrite (ZnFe2O4 Nanoparticles Synthesized by Sol-Gel Self-Combustion Method

    Directory of Open Access Journals (Sweden)

    Samikannu Kanagesan

    2016-08-01

    Full Text Available Spinel copper ferrite (CuFe2O4 and zinc ferrite (ZnFe2O4 nanoparticles were synthesized using a sol-gel self-combustion technique. The structural, functional, morphological and magnetic properties of the samples were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, Transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. XRD patterns conform to the copper ferrite and zinc ferrite formation, and the average particle sizes were calculated by using a transmission electron microscope, the measured particle sizes being 56 nm for CuFe2O4 and 68 nm for ZnFe2O4. Both spinel ferrite nanoparticles exhibit ferromagnetic behavior with saturation magnetization of 31 emug−1 for copper ferrite (50.63 Am2/Kg and 28.8 Am2/Kg for zinc ferrite. Both synthesized ferrite nanoparticles were equally effective in scavenging 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH free radicals. ZnFe2O4 and CuFe2O4 nanoparticles showed 30.57% ± 1.0% and 28.69% ± 1.14% scavenging activity at 125 µg/mL concentrations. In vitro cytotoxicity study revealed higher concentrations (>125 µg/mL of ZnFe2O4 and CuFe2O4 with increased toxicity against MCF-7 cells, but were found to be non-toxic at lower concentrations suggesting their biocompatibility.

  8. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    Science.gov (United States)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  9. Metal ferrite oxygen carriers for chemical looping combustion of solid fuels

    Science.gov (United States)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-01-31

    The disclosure provides a metal ferrite oxygen carrier for the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The metal ferrite oxygen carrier comprises MFe.sub.xO.sub.y on an inert support, where MFe.sub.xO.sub.y is a chemical composition and M is one of Mg, Ca, Sr, Ba, Co, Mn, and combinations thereof. For example, MFe.sub.xO.sub.y may be one of MgFe.sub.2O.sub.4, CaFe.sub.2O.sub.4, SrFe.sub.2O.sub.4, BaFe.sub.2O.sub.4, CoFe.sub.2O.sub.4, MnFeO.sub.3, and combinations thereof. The MFe.sub.xO.sub.y is supported on an inert support. The inert support disperses the MFe.sub.xO.sub.y oxides to avoid agglomeration and improve performance stability. In an embodiment, the inert support comprises from about 5 wt. % to about 60 wt. % of the metal ferrite oxygen carrier and the MFe.sub.xO.sub.y comprises at least 30 wt. % of the metal ferrite oxygen carrier. The metal ferrite oxygen carriers disclosed display improved reduction rates over Fe.sub.2O.sub.3, and improved oxidation rates over CuO.

  10. Nonstoichiometric Zn Ferrite and ZnFe2O4/Fe2O3 Composite Spheres: Preparation, Magnetic Properties, and Chromium Removal

    Science.gov (United States)

    Hang, Chun-Liang; Yang, Li-Xia; Sun, Chang-Mei; Liang, Ying

    2018-03-01

    Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.

  11. Reducing agent (NaBH4) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe2O4) nanorods

    International Nuclear Information System (INIS)

    Saravanakumar, B.; Rani, B. Jansi; Ravi, G.; Thambidurai, M.; Yuvakkumar, R.

    2017-01-01

    Nickel ferrite (Ni-Fe 2 O 4 ) nanorods were synthesized employing a simple chemical reduction method. Reducing agent (NaBH 4 ) influence on structural, morphological and magnetic properties of NiFe 2 O 4 nanorods was investigated. XRD results clearly revealed the presence of inverse cubic spinel nickel ferrite structure characteristic peaks and confirmed the site inversion of inverse spinel structure of Fe 3+ tetrahedral A site and Ni 2+ octahedral B site. The observed Raman characteristic peak at 488 and 683 cm −1 were corresponded to E 1 g and A 1 g mode whereas A and B site respectively corresponded to tetrahedral and octahedral site of NiFe 2 O 4 inverse spinel structure. The obtained PL peaks at 530 and 542 nm were attributed to the emission spectra of Fe 3+ ions in site A of inverse spinel structure and Ni 2+ ions in site B of inverse spinel structure respectively. SEM result clearly revealed that increase in NaBH 4 concentration had remarkable impact on nanorods formation, nano-octahedron structure, homogeneity and regularity of Ni-Ferrites. VSM studies clearly revealed the soft ferromagnetic nature of NiFe 2 O 4 and increase in NaBH 4 concentration further induced raise in metal cations concentration in A- and B- site which might impact the resultant magnetization of ferrites. - Highlights: • Nano rod formation has been initiated while increase of NaBH 4 concentration. • Further increasing NaBH 4 concentration favors nano-octahedron formation. • VSM studies revealed soft ferromagnetic nature of NiFe 2 O 4 .

  12. Synthesis, characterization and adsorption capability for Congo red of CoFe2O4 ferrite nanoparticles

    International Nuclear Information System (INIS)

    Ding, Zui; Wang, Wei; Zhang, Yajun; Li, Feng; Liu, J. Ping

    2015-01-01

    Highlights: • CoFe 2 O 4 ferrite nanoparticles are synthesized by an ethanol-assisted hydrothermal method. • Suitable amount of ethanol can reduce the particle size and increase BET surface area. • The introduction of ethanol leads to the cation redistribution. • Using ethanol/water mixed solution greatly enhances their adsorption capacity for CR dyes. - Abstract: CoFe 2 O 4 ferrite nanoparticles are synthesized by an ethanol-assisted hydrothermal method, where the ethanol is mixed with water as the solution. In this synthesis, a rapid mixing of reducible metal cations with reducing agent and a simultaneous reduction process take place in a colloid mill. Synthesized ferrite samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Raman spectroscopy. XRD patterns reveal the formation of CoFe 2 O 4 ferrites with single spinel phase. SEM and TEM images show that the as-synthesized samples are with narrow size distribution. Raman spectroscopy studies clearly indicate the cation distribution in nanosized particles. Here, it is worthy to note that, with increasing ethanol content in ethanol–water mixed solution, an obvious superparamagnetic behavior of as-synthesized nanoparticles at room temperature is observed. The adsorption capability of the as-synthesized ferrite nanoparticles for Congo Red (CR) is examined. Enhancement of adsorption capability for CR with adding ethanol as the mixing solution is shown. The adsorption mechanism is discussed. This investigation reveals that the composition of ethanol/water mixed solution has great effects on the microstructure and magnetic properties as well as adsorption capacity of Congo Red (CR) dye of the as-synthesized CoFe 2 O 4 ferrite samples

  13. Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites

    Directory of Open Access Journals (Sweden)

    Aurelija GATELYTĖ

    2011-09-01

    Full Text Available In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12, yttrium perovskite ferrite (YFeO3, cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively powders by an aqueous sol-gel processes are investigated. The metal ions, generated by dissolving starting materials of transition metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the transition metal ferrite ceramics. The phase purity of synthesized nano-compounds was characterized by infrared spectroscopy (IR and powder X-ray diffraction analysis (XRD. The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM.http://dx.doi.org/10.5755/j01.ms.17.3.598

  14. Tri-metallic ferrite oxygen carriers for chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-10-25

    The disclosure provides a tri-metallic ferrite oxygen carrier for the chemical looping combustion of carbonaceous fuels. The tri-metallic ferrite oxygen carrier comprises Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta., where Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta. is a chemical composition. Generally, 0.5.ltoreq.x.ltoreq.2.0, 0.2.ltoreq.y.ltoreq.2.5, and 0.2.ltoreq.z.ltoreq.2.5, and in some embodiments, 0.8.ltoreq.x.ltoreq.1.2, y.ltoreq.1.2, and z.gtoreq.0.8. The tri-metallic ferrite oxygen carrier may be used in various applications for the combustion of carbonaceous fuels, including as an oxygen carrier for chemical looping combustion.

  15. Synthesis of nanoparticles of manganese MnFe2O4 by co-precipitation micellar ferrite: structural and magnetic properties

    International Nuclear Information System (INIS)

    Alvarez-Paneque, A.; Diaz, S.; Diaz, C.; Santiago-Jacinto, E.; Reguera, E.

    2008-01-01

    Full text: The microemulsion method was used in reverse, shaped micelles by dodecyl of sodium (NaDBS) in toluene/water system, for MnFe2O4 manganese ferrite magnetic nanoparticles. Were also variants of heat treatments to improve the crystallinity of the material obtained. These were, treatments to reflux to 100 ° C or treatments in an inert atmosphere at temperatures that were varied between 350 and 600 ° C. The retrieved material was characterized by x-ray diffraction (XRD), transmission electron microscopy of high and low resolution (HR-TEM and TEM, respectively), Mössbauer Spectroscopy and vibrational magnetometry. Powder XRD patterns revealed the formation of phase MnFe2O4, cubic type Spinel, of space group Fd3m, accompanied by the minority phase Hematite (a-Fe203) group spatial R-3 c. The size of the nanoparticles was estimated from the profile setting from the pattern of powder by the method of Le Bail, obtaining sizes mean that varied between 5 and 25 mn depending on the heat treatment to which they were subjected. This result was corroborated from TEM micrographs. The vibrational magnetometer showed that the smaller MnFe2O4 nanoparticles, prepared following this route of synthesis They presented a superparamagnetic behavior at room temperature (coercive field and) remanence approximately zeros), which was also confirmed by the study of Mössbauer Spectroscopy. Was also the magnetically inactive layer thickness, of around 0.9 nm, responsible for the decrease in the values of saturation magnetization (as) to decrease the size of nanoparticles. Was obtained a set of nanoparticles with superparamagnetic behavior based in the MnFe2O4 around 5.9 NM in diameter and a-Fe203 around 6.6 NM, as phase secondary. They managed to get this material and the desired magnetic properties optimum crystallinity, applying heat treatment variant proposed in this work, and that It consists of making a reflux at 100 ° C, before the treatment on solid phase under flow N2

  16. A study of NiZnCu-ferrite/SiO2 nanocomposites with different ferrite contents synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Yan Shifeng; Geng Jianxin; Chen Jianfeng; Yin Li; Zhou Yunchun; Liu Leijing; Zhou Enle

    2005-01-01

    Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites with different weight percentages of NiZnCu-ferrite dispersed in silica matrix were successfully fabricated by the sol-gel method using tetraethylorthosilicate (TEOS) as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. The thermal decomposition process of the dried gel was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The obtained Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Mossbauer spectroscopy and vibrating sample magnetometry (VSM). The formation of stoichiometric NiZnCu-ferrite dispersed in silica matrix is confirmed when the weight percentage of ferrite is not more than 30%. Samples with higher ferrite content have small amount of α-Fe 2 O 3 . The transition from the paramagnetic to the ferromagnetic state is observed as the ferrite content increases from 20 to 90wt%. The magnetic properties of the nanocomposites are closely related to the ferrite content. The saturation magnetization increases with the ferrite content, while the coercivity reaches a maximum when the ferrite is 80wt% in the silica matrix

  17. Synthesis, characterization and adsorption capability for Congo red of CoFe{sub 2}O{sub 4} ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zui [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Wei, E-mail: wangwei@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Yajun [Institute of Plastics Machinery and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Feng [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, J. Ping [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2015-08-15

    Highlights: • CoFe{sub 2}O{sub 4} ferrite nanoparticles are synthesized by an ethanol-assisted hydrothermal method. • Suitable amount of ethanol can reduce the particle size and increase BET surface area. • The introduction of ethanol leads to the cation redistribution. • Using ethanol/water mixed solution greatly enhances their adsorption capacity for CR dyes. - Abstract: CoFe{sub 2}O{sub 4} ferrite nanoparticles are synthesized by an ethanol-assisted hydrothermal method, where the ethanol is mixed with water as the solution. In this synthesis, a rapid mixing of reducible metal cations with reducing agent and a simultaneous reduction process take place in a colloid mill. Synthesized ferrite samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Raman spectroscopy. XRD patterns reveal the formation of CoFe{sub 2}O{sub 4} ferrites with single spinel phase. SEM and TEM images show that the as-synthesized samples are with narrow size distribution. Raman spectroscopy studies clearly indicate the cation distribution in nanosized particles. Here, it is worthy to note that, with increasing ethanol content in ethanol–water mixed solution, an obvious superparamagnetic behavior of as-synthesized nanoparticles at room temperature is observed. The adsorption capability of the as-synthesized ferrite nanoparticles for Congo Red (CR) is examined. Enhancement of adsorption capability for CR with adding ethanol as the mixing solution is shown. The adsorption mechanism is discussed. This investigation reveals that the composition of ethanol/water mixed solution has great effects on the microstructure and magnetic properties as well as adsorption capacity of Congo Red (CR) dye of the as-synthesized CoFe{sub 2}O{sub 4} ferrite samples.

  18. Reducing agent (NaBH{sub 4}) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe{sub 2}O{sub 4}) nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Saravanakumar, B.; Rani, B. Jansi; Ravi, G. [Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India); Thambidurai, M. [Luminous Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical & Electronic Engineering, The Photonics Institute (TPI), Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yuvakkumar, R., E-mail: yuvakkumar@gmail.com [Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India)

    2017-04-15

    Nickel ferrite (Ni-Fe{sub 2}O{sub 4}) nanorods were synthesized employing a simple chemical reduction method. Reducing agent (NaBH{sub 4}) influence on structural, morphological and magnetic properties of NiFe{sub 2}O{sub 4} nanorods was investigated. XRD results clearly revealed the presence of inverse cubic spinel nickel ferrite structure characteristic peaks and confirmed the site inversion of inverse spinel structure of Fe{sup 3+} tetrahedral A site and Ni{sup 2+} octahedral B site. The observed Raman characteristic peak at 488 and 683 cm{sup −1} were corresponded to E{sub 1} {sub g} and A{sub 1} {sub g} mode whereas A and B site respectively corresponded to tetrahedral and octahedral site of NiFe{sub 2}O{sub 4} inverse spinel structure. The obtained PL peaks at 530 and 542 nm were attributed to the emission spectra of Fe{sup 3+} ions in site A of inverse spinel structure and Ni{sup 2+} ions in site B of inverse spinel structure respectively. SEM result clearly revealed that increase in NaBH{sub 4} concentration had remarkable impact on nanorods formation, nano-octahedron structure, homogeneity and regularity of Ni-Ferrites. VSM studies clearly revealed the soft ferromagnetic nature of NiFe{sub 2}O{sub 4} and increase in NaBH{sub 4} concentration further induced raise in metal cations concentration in A- and B- site which might impact the resultant magnetization of ferrites. - Highlights: • Nano rod formation has been initiated while increase of NaBH{sub 4} concentration. • Further increasing NaBH{sub 4} concentration favors nano-octahedron formation. • VSM studies revealed soft ferromagnetic nature of NiFe{sub 2}O{sub 4}.

  19. 1s2p resonant inelastic x-ray scattering in a-Fe2O3

    NARCIS (Netherlands)

    Caliebe, W.A.; Kao, C.-C.; Hastings, J.B.; Taguchi, M.; Kotani, A.; Uozumi, T.; Groot, F.M.F. de

    1998-01-01

    We report experimental and theoretical results on the Fe K edge x-ray absorption spectrum and 1s2p resonant inelastic x-ray scattering (RIXS) spectra in a-Fe2O3 . The results are interpreted using an FeO6^9- cluster model with intra-atomic multiplet coupling and interatomic covalency

  20. Electrical and magnetic properties of MgGa_(_2_-_x_)Fe_xO_4 ferrite

    International Nuclear Information System (INIS)

    Ribeiro, Vander Alkmin dos Santos

    2005-01-01

    The ceramics of the type ferrites are materials that present important characteristics of electrical conduction and magnetic properties, as much as material magnetic hard, how much of soft magnetic materials. The cubic ferrites of the spinel structure are oxides with chemical formula MFe_2O_4, where M is a divalent metallic ion. Due to characteristic of the spinel, diverse magnetic configurations are a gotten, depending on the occupation tax of the magnetic ion (in general iron) in each sublattice. The diluted ferrites possess general formula given for: MD_2_-_xFe_xO4, where M and D are diamagnetic ions, being D the ion of substitution doping and x is the concentration of ions of iron (0,002 ≤ x ≤ 0,350). The sample was prepared using ceramics techniques in reaction of solid state and later they were submitted to a magnetic characterization, electric and X-ray diffraction. The results of the magnetic characterization were gotten by a magnetometer of vibrant sample (VSM) EG&G-Princeton Applied Research, model 4500; the characterization for X-ray was used one X-ray diffractometer, model URD 65; of the Seifert & with. Electrical measurements DC were carried through with the use of a unit high-voltage measuring source - Keithley, model 237, where the voltage applied in the samples varied of 0-40 V, the high temperatures. Two types of contacts were used: the arrangement type 'sandwich', being the inferior electrode the proper door-sample, and the superior electrode with ring geometry and a silver was pasted on both sides of the samples to ensure good electrical contact. The magnetic measurements confirm its ferrite characteristics and in the electrical measurements, the electrical conductivity indicated behavior of a semiconductor the high temperatures and the process of electrical conduction thermally presented to be activated. (author)

  1. Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Jain, Palak; Singh, Mandeep

    2015-07-15

    In this paper we report the variation in structural and magnetic properties of ternary ferrite nanoparticles (NPs) having stoichiometery Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) and pure spinel ferrites MFe{sub 2}O{sub 4} (M = Mg, Co). NPs with average particle diameter of 25–45 nm were synthesized employing self-propagating oxalyl dihydrazide - metal nitrate combustion method. The products were characterized using X-ray diffraction (XRD), Vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM) and FT-IR spectroscopy. FT-IR spectral analysis revealed two bands centered at 560 and 440 cm{sup −1} for tetrahedral and octahedral metal–oxygen bond stretching. Zinc doping caused red shift in the frequency band of tetrahedral M−O stretching. XRD powder diffraction patterns confirmed the formation of spinel ferrite nanoparticles, expansion of the lattice on zinc doping and enhancement of spinel phase purity in the doped ferrites. Cobalt ferrite displayed lowering of the magnetic parameters on zinc doping which further decreased in ternary ferrites Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4}Fe{sub 2}O{sub 4} on replacing cobalt ions with non-magnetic magnesium ions up to x = 0.4. At x = 0.6 reverse trend was observed and Ms was enhanced. Magnesium zinc ferrite Mg{sub 0.6}Zn{sub 0.4} Fe{sub 2}O{sub 4} with high value of Ms was obtained. Combustion process employed in the present studies serves as a low temperature facile route for the synthesis and structural analysis of ternary doped ferrite nanoparticles. - Highlights: • Ternary doped cobalt magnesium zinc ferrite nanoparticles are synthesized. • FT-IR displayed red shift in tetrahedral stretching band on Zinc doping. • Expansion of lattice and enhancement of spinel phase purity on zinc doping. • The variation in saturation magnetization (Ms) on doping is explained.

  2. Visible-light photochemical activity of heterostructured core-shell materials composed of selected ternary titanates and ferrites coated by tiO2.

    Science.gov (United States)

    Li, Li; Liu, Xuan; Zhang, Yiling; Nuhfer, Noel T; Barmak, Katayun; Salvador, Paul A; Rohrer, Gregory S

    2013-06-12

    Heterostructured photocatalysts comprised of microcrystalline (mc-) cores and nanostructured (ns-) shells were prepared by the sol-gel method. The ability of titania-coated ATiO3 (A = Fe, Pb) and AFeO3 (A = Bi, La, Y) catalysts to degrade methylene blue in visible light (λ > 420 nm) was compared. The catalysts with the titanate cores had enhanced photocatalytic activities for methylene blue degradation compared to their components alone, whereas the catalysts with ferrite cores did not. The temperature at which the ns-titania shell is crystallized influences the photocatalytic dye degradation. mc-FeTiO3/ns-TiO2 annealed at 500 °C shows the highest reaction rate. Fe-doped TiO2, which absorbs visible light, did not show enhanced photocatalytic activity for methylene blue degradation. This result indicates that iron contamination is not a decisive factor in the reduced reactivity of the titania coated ferrite catalysts. The higher reactivity of materials with the titanate cores suggests that photogenerated charge carriers are more easily transported across the titanate-titanate interface than the ferrite-titanate interface and this provides guidance for materials selection in composite catalyst design.

  3. Magneto-resistive coefficient enhancement observed around Verwey-like transition on spinel ferrites XFe{sub 2}O{sub 4} (X = Mn, Zn)

    Energy Technology Data Exchange (ETDEWEB)

    López Maldonado, K. L., E-mail: liliana.lopez.maldonado@gmail.com; Vazquez Zubiate, L.; Elizalde Galindo, J. T. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Presa, P. de la [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), P.O. Box 155, 28230 Las Rozas (Spain); Departamento de Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); Matutes Aquino, J. A. [Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua (Mexico)

    2014-05-07

    Manganese and Zinc ferrites were prepared by solid state reaction. The resulting powders were pressed into pellets and heat treated at 1100 °C. The samples were characterized by using X-ray diffraction, pure phases of zinc ferrite (ZnFe{sub 2}O{sub 4}) and manganese ferrite (MnFe{sub 2}O{sub 4}) were obtained. Scanning electron microscopy images showed a good contact between particles. A drop of electrical resistance was found in both samples, MnFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4}, with values going from 2750 to 130 Ω and from 1100 to 55 Ω, respectively. Transition temperatures were determined to be T{sub V} = 225 K for MnFe{sub 2}O{sub 4} and T{sub V} = 130 K for ZnFe{sub 2}O{sub 4}. Magnetoresistance measurements were carried out in the temperature range where R showed the transition, defined as the Verwey-like transition temperature range, ΔT{sub V}. No magnetoresistive effect was observed out of it. The magnetoresistive coefficient (MRC) observed at ΔT{sub V} reached its maximum values of 1.1% for MnFe{sub 2}O{sub 4} and 6.68% for ZnFe{sub 2}O{sub 4}. The differences between MRC values are related to the divalent metal element used. Finally, the magnetoresistive response indicates that the electrical transition observed is strongly influencing the magnetoresistance; where the underlying responsible for this behavior could be a charge reordering occurring at the Verwey-like transition temperature.

  4. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    Science.gov (United States)

    Ranjith Kumar, E.; Siva Prasada Reddy, P.; Sarala Devi, G.; Sathiyaraj, S.

    2016-01-01

    Spinel ferrite (MnZnFe2O4, MnCuFe2O4, MnNiFe2O4 and MnCoFe2O4) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe2O4 ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG).

  5. Dopant driven tunability of dielectric relaxation in MxCo(1-x)Fe2O4 (M: Zn2+, Mn2+, Ni2+) nano-ferrites

    Science.gov (United States)

    Datt, Gopal; Abhyankar, A. C.

    2017-07-01

    Nano-ferrites with tunable dielectric and magnetic properties are highly desirable in modern electronics industries. This work reports the effect of ferromagnetic (Ni), anti-ferromagnetic (Mn), and non-magnetic (Zn) substitution on cobalt-ferrites' dielectric and magnetic properties. The Rietveld analysis of XRD data and the Raman spectroscopic study reveals that all the samples are crystallized in the Fd-3m space group. The T2g Raman mode was observed to split into branches, which is due to the presence of different cations (with different vibrational frequencies) at crystallographic A and B-sites. The magnetization study shows that the MnCoFe2O4 sample has the highest saturation magnetization of 87 emu/g, which is attributed to the presence of Mn2+ cations at the B-site with a magnetic moment of 5 μB. The dielectric permittivity of these nanoparticles (NPs) obeys the modified Debye model, which is further supported by Cole-Cole plots. The dielectric constant of MnCoFe2O4 ferrite is found to be one order higher than that of the other two ferrites. The increased bond length of the Mn2+-O2- bond along with the enhanced d-d electron transition between Mn 2 +/Co 2 +⇋Fe 3 + cations at the B-site are found to be the main contributing factors for the enhanced dielectric constant of MnCoFe2O4 ferrite. We find evidence of variable-range hopping of localized polarons in these ferrite NPs. The activation energy, hopping range, and density of states N (" separators="|EF ), of these polarons were calculated using Motts' 1/4th law. The estimated activation energies of these polarons at 300 K were found to be 288 meV, 426 meV, and 410 meV, respectively, for the MnCoFe2O4, NiCoFe2O4, and ZnCoFe2O4 ferrite NPs, while the hopping range of these polarons were found to be 27.14 Å, 11.66 Å, and 8.17 Å, respectively. Observation of a low dielectric loss of ˜0.04, in the frequency range of 0.1-1 MHz, in these NPs makes them potential candidates for energy harvesting devices in

  6. Structural characterization, morphology and magnetic ferrite Ni_0_,_4Zn_0_,_5Fe_2Cu_0_,_1O_4

    International Nuclear Information System (INIS)

    Santos, P.T.A.; Fernandes, P.C.; Santos, P.T.A.; Costa, A.C.F.M.

    2011-01-01

    In this work the system Ni_0_,_4Zn_0_,_5Fe_2Cu_0_,_1O_4 was obtained by combustion reaction using urea as fuel in order to evaluate their structural characteristics, and morphological imaging. The resulting samples were characterized by XRD, BET, SEM / EDS and magnetic measurements. The synthesis by combustion reaction was effective for producing samples of ferrites with crystallite size 13 nm. The X-ray diffraction showed the major phase of the inverse spinel and traces of ZnO second phase. The resulting morphology showed the formation of soft agglomerates with interparticle porosity, and mapping by SEM / EDS indicated a good distribution of elements Ni, Cu, Zn, Fe and O constituent of ferrite. The ferrite showed superparamagnetic behavior with a value of saturation magnetization of 5.60 emu / g. (author)

  7. Scanning Tunneling Microscopy Study of Carbon Tetrachloride Adsorption and Degradation on a Natural a-Fe2O3(0001) Surface in Ultrahigh Vacuum

    Science.gov (United States)

    Taeg Rim, Kwang; Fitts, Jeffrey; Adib, Kaveh; Camillone, Nicholas, III; Schlosser, Peter; Osgood, Richard, Jr.; Flynn, George; Joyce, Stephen

    2001-03-01

    Scanning tunneling microscopy and low energy electron diffraction have been used to study a natural a-Fe2O3(0001) surface and the adsorption and degradation of carbon tetrachloride on the reduced Fe3O4(111) terminated surface. A natural a-Fe2O3 (0001) surface was prepared by repeated cycles of Ar+ ion sputtering and annealing in vacuum or in O2 at 850 K. STM images and a LEED pattern indicate that an Fe3O4(111) terminated surface and a bi-phase can be formed depending on annealing conditions. The Fe3O4(111) terminated surface was dosed with CCl4 at room temperature, and flashed up to 590 K and 850 K. STM images show adsorbates on the surface at room temperature and the degradation products of CCl4 are isolated on the surface as the flashing temperature increases up to 850 K. Results from a companion temperature programmed desorption investigation are used in conjunction with the STM images to propose site specific reactions of CCl4 on the Fe3O4(111) terminated surface.

  8. Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application

    International Nuclear Information System (INIS)

    Kumbhar, V.S.; Jagadale, A.D.; Shinde, N.M.; Lokhande, C.D.

    2012-01-01

    Highlights: ► The first time preparation of cobalt ferrite material in thin film form, using chemical method at low temperature. ► A nano-flake like morphology of the cobalt ferrite thin film. ► An application of the film as an electrode in supercapacitor cell. - Abstract: The present paper reveals the formation of cobalt ferrite (CoFe 2 O 4 ) thin film on stainless steel substrate by simple chemical route from an alkaline bath containing Co 2+ and Fe 2+ ions. The films are characterised for structural, surface morphological and FT-IR properties. The XRD and FT-IR studies revealed formation of single phase of CoFe 2 O 4 . The formation of nano-flakes-like morphology is observed from scanning electron microscope. The electrochemical behaviour of CoFe 2 O 4 film has been studied using cyclic voltammetry in 1 M NaOH electrolyte. The maximum specific capacitance of 366 F g −1 is obtained at the scan rate of 5 mV s −1 . Using AC impedance technique equivalent series resistance (ESR) value is found to be 1.1 Ω.

  9. CoFe2O4-SiO2 Composites: Preparation and Magnetodielectric Properties

    Directory of Open Access Journals (Sweden)

    T. Ramesh

    2016-01-01

    Full Text Available Cobalt ferrite (CoFe2O4 and silica (SiO2 nanopowders have been prepared by the microwave hydrothermal (M-H method using metal nitrates as precursors of CoFe2O4 and tetraethyl orthosilicate as a precursor of SiO2. The synthesized powders were characterized by XRD and FESEM. The (100-x (CoFe2O4 + xSiO2 (where x = 0%, 10%, 20%, and 30% composites with different weight percentages have been prepared using ball mill method. The composite samples were sintered at 800°C/60 min using the microwave sintering method and then their structural and morphological studies were investigated using X-ray diffraction (XRD, Fourier transformation infrared (FTIR spectra, and scanning electron microscopy (SEM, respectively. The effect of SiO2 content on the magnetic and electrical properties of CoFe2O4/SiO2 nanocomposites has been studied via the magnetic hysteresis loops, complex permeability, permittivity spectra, and DC resistivity measurements. The synthesized nanocomposites with adjustable grain sizes and controllable magnetic properties make the applicability of cobalt ferrite even more versatile.

  10. Calculation of exchange constants in manganese ferrite (MnFe2O4)

    International Nuclear Information System (INIS)

    Zuo Xu; Barbiellini, Bernardo; Vittoria, Carmine

    2004-01-01

    The exchange constants and electronic structure of manganese ferrite (MnFe 2 O 4 ) were calculated using Becke's density functional. The total exchange energy consists of Hartree-Fock (HF) and Becke's density functional terms. We introduced one parameter w as the weight of HF's contribution. We also introduced a parameter α to scale the radial part of the 3d wave functions of Fe 3+ ions. By varying w and α the calculated exchange constants were quantitatively fitted to the experimental values of a spinel ferrite for the first time. Direct (d-d) and indirect (d-p-d) hopping are controlled by the parameters w and α

  11. Structural and physical property study of sol-gel synthesized CoFe2-xHoxO4 nano ferrites

    Science.gov (United States)

    Patankar, K. K.; Ghone, D. M.; Mathe, V. L.; Kaushik, S. D.

    2018-05-01

    CoFe2-xHoxO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20) ferrites were prepared by the suitably modified Sol-Gel technique. X-ray diffraction (XRD) analysis revealed that the substituted samples show phase pure formation till 10% substitution, which is far higher phase pure than the earlier reports. Upon further substitution an inevitable secondary phase of HoFeO3 along with the spinel phase despite regulating synthesis parameters in the sol-gel reaction route. These results are further corroborated more convincingly by room temperature neutron diffraction. Morphological features of the ferrites were studied by Scanning Electron Microscopy (SEM). The magnetic parameters viz. the saturation magnetization (Ms), coercivity (Hc) and remanence (Mr) were determined from room temperature isothermal magnetization. These parameters were found to decrease with increase in Ho substitution. The decrease in magnetization is analyzed in the light of exchange interactions between rare earth and transition metal ions. Magnetostriction measurements revealed interesting results and the presence of a secondary phase was found to be responsible for decreased measu-red magnetostriction values. The solubility limit of Ho in CoFe2O4 lattice is also reflected from the X-ray and neutron diffraction analysis and magnetostriction studies.

  12. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu-Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  13. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4 magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light

    Directory of Open Access Journals (Sweden)

    Abul Kalam

    2018-03-01

    Full Text Available Different grads of magnetic nano-scaled cobalt ferrites (CoFe2O4 photocatalysts were synthesized by modified Solvothermal (MST process with and without polysaccharide. The indigenously synthesized photocatalysts were characterized by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM, thermo gravimetric analysis (TGA, Fourier transform infrared (FT-IR, UV–visible (UV–vis spectroscopy and N2 adsorption–desorption isotherm method. The Fourier transform infrared spectroscopy study showed the Fe-O stretching vibration 590–619 cm−1, confirming the formation of metal oxide. The crystallite size of the synthesized photocatalysts was found in the range between 20.0 and 30.0 nm. The surface area of obtained magnetic nanoparticles is found to be reasonably high in the range of 63.0–76.0 m2/g. The results shown that only MST-2 is the most active catalyst for photo-Fenton like scheme for fast photodegradation action of methylene blue dye, this is possible due to optical band gap estimated of 2.65 eV. Captivatingly the percentage of degradation efficiency increases up to 80% after 140 min by using MST-2 photocatalyst. Photocatalytic degradation of methylene blue (MB dye under visible light irradiation with cobalt ferrite magnetic nanoparticles followed first order kinetic constant and rate constant of MST-2 is almost 2.0 times greater than MST-1 photocatalyst. Keywords: Cobalt ferrite, Photocatalysis, Kinetics, Optical properties, Surface area studies

  14. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe{sub 2}O{sub 4} (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India); Siva Prasada Reddy, P.; Sarala Devi, G. [Inorganic and Physical Chemistry Division, Indian Institute Chemical Technology, Hyderabad 500607 (India); Sathiyaraj, S. [Department of Chemistry, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India)

    2016-01-15

    Spinel ferrite (MnZnFe{sub 2}O{sub 4}, MnCuFe{sub 2}O{sub 4}, MnNiFe{sub 2}O{sub 4} and MnCoFe{sub 2}O{sub 4}) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe{sub 2}O{sub 3} after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe{sub 2}O{sub 4} ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG). - Highlights: • The egg white support to achieve sample with shorter reaction time. • Manganese plays a significant role in sensor response. • Nature of the ferrites was affected with increasing annealing temperature.

  15. Structural and magnetic properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) nano-crystalline ferrites

    Science.gov (United States)

    Vijaya Babu, K.; Satyanarayana, G.; Sailaja, B.; Santosh Kumar, G. V.; Jalaiah, K.; Ravi, M.

    2018-06-01

    Nano-crystalline nickel ferrites are interesting materials due to their large physical and magnetic properties. In the present work, two kinds of spinel ferrites Ni0.8M0.2Fe2O4 (M = Cu, Co) are synthesized by using sol-gel auto-combustion method and the results are compared with NiFe2O4. The structural properties of synthesized ferrites are determined by using X-ray powder diffraction; scanning electron microscope and Fourier transform infrared spectroscopy. The cation distribution obtained from X-ray diffraction show that cobalt/copper occupies only tetrahedral site in spinel lattice. The lattice constant increases with the substitution of cobalt/copper. The structural parameters like bond lengths, tetrahedral and octahedral edges have been varied with the substitution. The microstructural study is carried out by using SEM technique and the average grain size is increased with nickel ferrite. The initial permeability (μi) is improving with the substitution. The observed g-value from ESR is approximately equal to standard value.

  16. Solubility of nickel ferrite (NiFe2O4) from 100 to 200 deg. C

    International Nuclear Information System (INIS)

    Bellefleur, Alexandre; Bachet, Martin; Benezeth, Pascale; Schott, Jacques

    2012-09-01

    The solubility of nickel ferrite was measured in a Hydrogen-Electrode Concentration Cell (HECC) at temperatures of 100 deg. C, 150 deg. C and 200 deg. C and pH between 4 and 5.25. The experimental solution was composed of HCl and NaCl (0.1 mol.L -1 ). Based on other studies ([1,2]), pure nickel ferrite was experimentally synthesized by calcination of a mixture of hematite Fe 2 O 3 and bunsenite NiO in molten salts at 1000 deg. C for 15 hours in air. The so obtained powder was fully characterized. The Hydrogen-Electrode Concentration cell has been described in [3]. It allowed us to run solubility experiments up to 250 deg. C with an in-situ pH measurement. To avoid reduction of the solid phase to metallic nickel, a hydrogen/argon mixture was used instead of pure hydrogen. Consequently, the equilibration time for the electrodes was longer than with pure hydrogen. Eight samples were taken on a 70 days period. After the experiments, the powder showed no significant XRD evidence of Ni (II) reduction. Nickel concentration was measured by atomic absorption spectroscopy and iron concentration was measured by UV spectroscopy. The protocol has been designed to be able to measure both dissolved Fe (II) and total iron. The nickel solubility of nickel ferrite was slightly lower than the solubility of nickel oxide in close experimental conditions [3]. Dissolved iron was mainly ferrous and the solution was under-saturated relative to both hematite and magnetite. The nickel/iron ratio indicated a non-stoichiometric dissolution. The solubility measurements were compared with equilibrium calculations using the MULTEQ database. [1] Hayashi et al (1980) J. Materials Sci. 15, 1491-1497. [2] Ziemniak et al (2007) J. Physics and Chem. of Solids. 68,10-21. [3] EPRI Report 1003155 (2002). (authors)

  17. Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Marko, D.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.; Schmidt, H.

    2009-08-21

    In this paper we show that spinel ferrite nanocrystals (NiFe{sub 2}O{sub 4}, and CoFe{sub 2}O{sub 4}) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.

  18. Ferromagnetic Instability in AFe4Sb12 (A = Ca, Sr, and Ba)

    OpenAIRE

    Matsuoka, E.; Hayashi, K.; Ikeda, A.; Tanaka, K.; Takabatake, T.; Higemoto, W.; Matsumura, M.

    2004-01-01

    Magnetic, transport and thermal properties of AFe4Sb12 (A = Ca, Sr, Ba) are reported. All three compounds show a maximum in both the magnetic susceptibility and thermopower at 50 K, and a large electronic specific heat coefficient of 100 mJ/mol K2. These properties are the characteristics of a nearly ferromagnetic metal. Furthermore, a remanent moment of the order of 10-3muB/Fe was observed below 54, 48, and 40 K for A = Ca, Sr, and Ba, respectively. The volume fraction of the ferromagnetic c...

  19. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light

    Science.gov (United States)

    Kalam, Abul; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Du, Gaohui; Ahmad, Tokeer; Ahmad, Irfan; Pannipara, M.

    2018-03-01

    Different grads of magnetic nano-scaled cobalt ferrites (CoFe2O4) photocatalysts were synthesized by modified Solvothermal (MST) process with and without polysaccharide. The indigenously synthesized photocatalysts were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermo gravimetric analysis (TGA), Fourier transform infrared (FT-IR), UV-visible (UV-vis) spectroscopy and N2 adsorption-desorption isotherm method. The Fourier transform infrared spectroscopy study showed the Fe-O stretching vibration 590-619 cm-1, confirming the formation of metal oxide. The crystallite size of the synthesized photocatalysts was found in the range between 20.0 and 30.0 nm. The surface area of obtained magnetic nanoparticles is found to be reasonably high in the range of 63.0-76.0 m2/g. The results shown that only MST-2 is the most active catalyst for photo-Fenton like scheme for fast photodegradation action of methylene blue dye, this is possible due to optical band gap estimated of 2.65 eV. Captivatingly the percentage of degradation efficiency increases up to 80% after 140 min by using MST-2 photocatalyst. Photocatalytic degradation of methylene blue (MB) dye under visible light irradiation with cobalt ferrite magnetic nanoparticles followed first order kinetic constant and rate constant of MST-2 is almost 2.0 times greater than MST-1 photocatalyst.

  20. Synthesis, characterization and hemolysis studies of Zn{sub (1−x)}Ca{sub x}Fe{sub 2}O{sub 4} ferrites synthesized by sol-gel for hyperthermia treatment applications

    Energy Technology Data Exchange (ETDEWEB)

    Jasso-Terán, Rosario Argentina, E-mail: arg.jasso@gmail.com; Cortés-Hernández, Dora Alicia; Sánchez-Fuentes, Héctor Javier; Reyes-Rodríguez, Pamela Yajaira; León-Prado, Laura Elena de; Escobedo-Bocardo, José Concepción; Almanza-Robles, José Manuel

    2017-04-01

    The synthesis of Zn{sub (1−x)}Ca{sub x}Fe{sub 2}O{sub 4} nanoparticles, x=0, 0.25, 0.50, 0.75 and 1.0, was performed by sol-gel method followed by a heat treatment at 400 °C for 30 min. These ferrites showed nanometric sizes and nearly superparamagnetic behavior. The Zn{sub 0.50}Ca{sub 0.50}Fe{sub 2}O{sub 4} and CaFe{sub 2}O{sub 4} ferrites presented a size within the range of 12–14 nm and appropriate heating ability for hyperthermia applications. Hemolysis testing demonstrated that Zn{sub 0.50}Ca{sub 0.50}Fe{sub 2}O{sub 4} ferrite was not cytotoxic when using 10 mg of ferrite/mL of solution. According to the results obtained, Zn{sub 0.50}Ca{sub 0.50}Fe{sub 2}O{sub 4} is a potential material for cancer treatment by magnetic hyperthermia therapy. - Highlights: • The synthesis of Zn{sub (1−x)}Ca{sub x}Fe{sub 2}O{sub 4} ferrites was performed by sol-gel method. • CaFe{sub 2}O{sub 4} and Zn{sub 0.50}Ca{sub 0.}50Fe{sub 2}O{sub 4} ferrites showed heating ability. • The Zn{sub 0.50}Ca{sub 0.50}Fe{sub 2}O{sub 4} ferrite demonstrated to be no hemolytic.

  1. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    International Nuclear Information System (INIS)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-01-01

    Highlights: • An anticorrosive cobalt ferrite nanopigment dispersed in silica matrix was synthesized. • The nanopigment showed proper inhibition performance in solution study. • The nanopigment significantly improved the corrosion resistance of the epoxy coating. - Abstract: This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe 2 O 4 -SiO 2 ) on the corrosion protection properties of steel substrate. NiFe 2 O 4 and NiFe 2 O 4 -SiO 2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe 2 O 4 -SiO 2 ) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe 2 O 4 -SiO 2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  2. Structural, optical and dielectric properties of transition metal (MFe2O4; M = Co, Ni and Zn) nanoferrites

    Science.gov (United States)

    Chand, Prakash; Vaish, Swapnil; Kumar, Praveen

    2017-11-01

    In the present work, transition metal spinel ferrite (MFe2O4; M = Co, Ni, Zn) nanostructures synthesized by chemical co-precipitation method. XRD analysis confirms the formation of cubic spinel-type structure with space group Fd3m and the average crystallite size calculated by Scherrer's formula found to be in 9-14 nm range. Scanning electron microscopy was used to study surface morphology of the samples. Moreover, Raman and PL spectra also confirm the formation of the cubic structure. The Raman spectra measured on cobalt, nickel and zinc ferrite revealed a larger number of phonon bands than expected for the cubic spinel structure. The calculated optical energy band gaps, obtained by Tauc's relation from UV-Vis absorption spectra are found to be as 2.44, 3.54 and 3.25 eV for CoFe2O4, NiFe2O4&ZnFe2O, respectively. The analysis of the complex impedance spectra of all ferrites samples shows the presence of one semicircular arc at all selected temperatures, signifying a key role of the grain boundary contribution. The dielectric constants (ε ‧) were measured in the frequency range from 10 Hz to 5 MHz at different temperatures and is found to be decreased suddenly with an increase in frequency and maintain a steady state or constant at higher frequencies for all the three samples. The AC conductivity is found to be increased with frequency and temperature of all the three samples which is explained on the basis of Koop's phenomenological theory.

  3. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    International Nuclear Information System (INIS)

    Li Siheng; Wang Enbo; Tian Chungui; Mao Baodong; Kang Zhenhui; Li Qiuyu; Sun Guoying

    2008-01-01

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag(MFe 2 O 4 ) (M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag(C) microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe 3+ and M 2+ on the surface of the Ag(C) spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core. - Graphical abstract: MFe 2 O 4 (M=Ni, Co, Mg, Zn) hollow spheres with a noble metal nanoparticle core were successfully prepared by using colloidal metal(C) core-shell spheres as templates with no need of surface modification. The shell thickness and magnetic properties of the ferrite hollow spheres could be controlled by varying the synthetic parameters

  4. Moessbauer characterization of calcium-ferrite oxides prepared by calcining Fe2O3 and CaO

    International Nuclear Information System (INIS)

    Hirabayashi, Daisuke; Sakai, Yoichi; Yoshikawa, Takeshi; Mochizuki, Kazuhiro; Kojima, Yoshihiro; Suzuki, Kenzi; Ohshita, Kazumasa; Watanabe, Yasuo

    2006-01-01

    Calcium ferrite oxides were prepared by calcining a mixture powder of iron- and calcium oxide. The 57 Fe-Moessbauer spectra of the calcium ferrites oxides were measured, revealing that the products should be Ca 2 Fe 2 O 5 and CaFe 2 O 4 , the ratio of which was dependent of the Fe/Ca atomic ratio of the mixture powder.

  5. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  6. Cellulose-precursor synthesis of nanocrystalline Co0.5Cu0.5Fe2O4 spinel ferrites

    International Nuclear Information System (INIS)

    Ounnunkad, Kontad; Phanichphant, Sukon

    2012-01-01

    Highlights: ► Synthesis of spinel copper cobalt nanoferrite particles from a cellulose precursor for the first time. Control of nanosize and properties of nanoferrites can take place by varying the calcining temperature. The simple, low cost, easy cellulose process is a choice of nanoparticle processing technology. -- Abstract: Nanocrystalline Cu 0.5 Co 0.5 Fe 2 O 4 powders were prepared via a metal-cellulose precursor synthetic route. Cellulose was used as a fuel and a dispersing agent. The resulting precursors were calcined in the temperature range of 450–600 °C. The phase development of the samples was determined by using Fourier transform infrared (FT-IR) spectroscopy and powder X-ray diffraction (XRD). The field-dependent magnetizations of the nanopowders were measured by vibrating sample magnetometer (VSM). All XRD patterns are of a spinel ferrite with cubic symmetry. Microstructure of the ferrites showed irregular shapes and uniform particles with agglomeration. From XRD data, the crystallite sizes are in range of 16–42 nm. Saturation magnetization and coercivity increased with increasing calcining temperature due to enhancement of crystallinity and reduction of oxygen vacancies.

  7. Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles

    Science.gov (United States)

    Polishchuk, Dmytro; Nedelko, Natalia; Solopan, Sergii; Ślawska-Waniewska, Anna; Zamorskyi, Vladyslav; Tovstolytkin, Alexandr; Belous, Anatolii

    2018-03-01

    Two sets of core/shell magnetic nanoparticles, CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4, with a fixed diameter of the core ( 4.1 and 6.3 nm for the former and latter sets, respectively) and thickness of shells up to 2.5 nm were synthesized from metal chlorides in a diethylene glycol solution. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The analysis of the results of magnetic measurements shows that coating of magnetic nanoparticles with the shells results in two simultaneous effects: first, it modifies the parameters of the core-shell interface, and second, it makes the particles acquire combined features of the core and the shell. The first effect becomes especially prominent when the parameters of core and shell strongly differ from each other. The results obtained are useful for optimizing and tailoring the parameters of core/shell spinel ferrite magnetic nanoparticles for their use in various technological and biomedical applications.

  8. Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    International Nuclear Information System (INIS)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya; Maensiri, Santi

    2013-01-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe 2 O 4 , MgFe 2 O 4 and MnFe 2 O 4 respectively, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe 2 O 4 powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M s of 68.9 emu/g at 10 kOe were observed for the samples of MnFe 2 O 4 . - Abstract: Nanocrystalline spinel ferrite MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac) 3 , M(acac) 3 (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe 2 O 4 and CoFe 2 O 4 samples contain nanoparticles, whereas the MnFe 2 O 4 and MgFe 2 O 4 samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe 2 O 4 sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe 2 O 4 , MnFe 2 O 4 and MgFe 2 O 4 samples, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 exhibit a superparamagnetic behavior

  9. Novel synthesis of Ni-ferrite (NiFe2O4) electrode material for supercapacitor applications

    International Nuclear Information System (INIS)

    Venkatachalam, V.; Jayavel, R.

    2015-01-01

    Novel nanocrystalline NiFe 2 O 4 has been synthesized through combustion route using citric acid as a fuel. Phase of the synthesized material was analyzed using powder X-ray diffraction. The XRD study revealed the formation of spinel phase cubic NiFe 2 O 4 with high crystallinity. The average crystallite size of NiFe 2 O 4 nanomaterial was calculated from scherrer equation. The electrochemical properties were realized by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The electrode material shows a maximum specific capacitance of 454 F/g with pseudocapacitive behavior. High capacitance retention of electrode material over 1000 continuous charging-discharging cycles suggests its excellent electrochemical stability. The results revealed that the nickel ferrite electrode is a potential candidate for energy storage applications in supercapacitor

  10. Synthesis and magnetic properties of ferrites spinels Mg{sub x}Cu{sub 1-x}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mounkachi, O.; Hamedoun, M. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Belaiche, M. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Laboratoire de Magnetisme, Materiaux Magnetiques, Microonde et Ceramique, Ecole Normale Superieure, Universite Mohammed V-Agdal, B.P. 9235, Ocean, Rabat (Morocco); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); LMPHE, (URAC 12), Faculte des Sciences, Universite Mohammed V-Agdal, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Process, Environment and Quality, Cady Ayad University, National School of Applied Sciences, Safi (Morocco); El Moussaoui, H. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE, (URAC 12), Faculte des Sciences, Universite Mohammed V-Agdal, Rabat (Morocco); Sajieddine, M., E-mail: hamedoun@hotmail.com [Faculte des Sciences et Techniques, Universite Moulay Slimane, Beni Mellal (Morocco)

    2012-01-01

    Polycrystalline Mg{sub 0.6}Cu{sub 0.4}Fe{sub 2}O{sub 4} ferrites have been prepared using solid-state reaction technique. Their structural and magnetic properties have been studied, using X-ray diffraction and magnetic measurements. Using mean field theory and high-temperature series expansions (HTSE), extrapolated with the pade approximants method, the magnetic properties of Mg{sub 1-x}Cu{sub x}Fe{sub 2}O{sub 4} have been studied. The nearest neighbor super-exchange interactions for intra-site and inter-site of the Mg{sub 1-x}Cu{sub x}Fe{sub 2}O{sub 4} ferrites spinels, in the range 0{<=}x{<=}1, have been computed using the probability approach, based on Moessbauer data. The Curie temperature T{sub c} is calculated as a function of Mg concentration. The obtained theoretical results are in good agreement with experimental ones obtained by magnetic measurements.

  11. Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites

    Directory of Open Access Journals (Sweden)

    Aiman Zubair

    Full Text Available Europium (Eu doped spinel cobalt ferrites having composition CoEuxFe2−xO4 where x = 0.00, 0.03, 0.06, 0.09, 0.12 were fabricated by co-precipitation route. In order to observe the phase development of the ferrite samples, thermo-gravimetric analysis was carried out. The synthesized samples were subjected to X-ray diffraction analysis for structural investigation. All the samples were found to constitute face centered cubic (FCC spinel structure belonging to Fd3m space group. Scanning electron microscopy revealed the formation of nanocrystalline grains with spherical shape. Energy dispersive X-ray spectra confirmed the presence of Co, Eu, Fe and O elements with no existence of any impurity. The magnetic hysteresis curves measured at room temperature exhibited ferrimagnetic behavior with maximum saturation magnetization (Ms of 65 emu/g and coercivity (Hc of 966 Oe. The origin of ferrimagnetism in Eu doped cobalt ferrites was discussed in detail with reverence to the allocation of Co2+ and Fe3+ ions within the spinel lattice. The overall coercivity was increased (944–966 Oe and magnetization was decreased (65–46 emu/g with the substitution of Eu3+. The enhancement of former is ascribed to the transition from multi domain to single domain state and reduction in lateral is attributed to the incorporation of nonmagnetic Eu ions for Fe, resulting in weak superexchange interactions. Keywords: Europium doped cobalt ferrites, Co-precipitation, X-ray diffraction, Scanning electron microscopy, Magnetic properties

  12. Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications

    Directory of Open Access Journals (Sweden)

    Bhamini Bhujun

    Full Text Available Nanocrystallites of three mixed ternary transition metal ferrite (MTTMF were prepared by a facile sol–gel method and adopted as electrode material for supercapacitors. The phase development of the samples was determined using Fourier transform infrared (FT-IR and thermal gravimetric analysis (TG. X-ray diffraction (XRD analysis revealed the formation of a single-phase spinel ferrite in CuCoFe2O4 (CuCoF, NiCoFe2O4 (NiCoF and NiCuFe2O4 (NiCuF. The surface characteristics and elemental composition of the nanocomposites have been studied by means of field emission scanning electron microscopy (FESEM, as well as energy dispersive spectroscopy (EDS. The electrochemical performance of the nanomaterials was evaluated using a two-electrode configuration by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic technique in 1 M KOH electrolyte and was found to be in the order of: CuCoF > NiCoF > NiCuF. A maximum specific capacitance of 221 Fg−1 was obtained with CuCoF at a scan rate of 5 mV s−1. In addition to an excellent cycling stability, an energy density of 7.9 kW kg−1 was obtained at a current density of 1 Ag−1. The high electrochemical performance of the MTTMF nanocomposites obtained indicates that these materials are promising electrodes for supercapacitors. Keywords: Mixed ternary transition metal ferrite (MTTMF, Nanocomposites, Sol–gel, Cyclic voltammetry, Asymmetric supercapacitor

  13. Spectroscopy of peaks at microwave range for nanostructure SrFe{sub 12}O{sub 19} and NiFe{sub 2}O{sub 4} ferrite particles

    Energy Technology Data Exchange (ETDEWEB)

    Ariaee, Sina, E-mail: sina.ariaee@tabrizu.ac.ir; Mehdipour, Mostafa, E-mail: Mostafa_mehdipour67@yahoo.com; Moradnia, Mina, E-mail: mina.moradnia86@gmail.com

    2017-05-01

    In this paper, (SrFe{sub 12}O{sub 19} and NiFe{sub 2}O{sub 4}) nanostructure ferrite particles were synthesized via the co-precipitation of chloride salts utilizing the sodium hydroxide solution. The resulting precursors were heat-treated at 1100 °C for 4 h. After cooling in the furnace, the ferrite powders were pressed at 0.1 MPa and then sintered at 1200 °C for 4 h. The spectroscopy and characterization of peaks at the microwave range (X-band) for the nanostructure ferrite particles were investigated by the ferromagnetic resonance/transmit-line theories and Reflection Loss (RL) plots. The extracted data from these theoretical and experimental results showed that the natural ferromagnetic resonance can be lead to the narrow peaks and the width of the peaks can be related to the periodic effects. Two kinds of peaks were seen for NiFe{sub 2}O{sub 4} at X-band (8–12 GHz); the narrow peak at (9.8 GHz) was remaining unchanged and consistent while the wide one was shifted from 11 GHz to 8.5 GHz by decreasing the thickness of the samples. These phenomena were also happened for SrFe{sub 12}O{sub 19} samples. The natural resonance was not happened due to the hard magnetic properties of these nano structure particles. - Highlights: • SrFe{sub 12}O{sub 19} and NiFe{sub 2}O{sub 4} nanostructure ferrite particles were synthesized via the co-precipitation of chloride salts. • Two kinds of peaks were seen for NiFe{sub 2}O{sub 4} at X-band (8–12 GHz); these phenomena were also happened for SrFe{sub 12}O{sub 19} samples. • The narrow peaks were remained unchanged and consistent while the wide ones were shifted by decreasing the thickness of the samples. • Characterization procedure was conducted utilizing the ferromagnetic resonance/transmit-line theories and Reflection Loss (RL) plots. • It was concluded that the natural ferromagnetic resonance can be lead to the narrow peaks while the wide ones can be related to the periodic effects.

  14. Moessbauer spectroscopic characterization of ferrite ceramics

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1999-01-01

    The principle of Moessbauer effect and the nature of hyperfine interactions were presented. The discovery of the Moessbauer effect was the basis of a new spectroscopic technique, called Moessbauer spectroscopy, which has already made important contribution to research in physics, chemistry, metallurgy, mineralogy and biochemistry. In the present work the selected ferrites such as spinel ferrite, NiFe 2 O 4 , and some rare earth orthoferrites and garnets were investigated using Moessbauer spectroscopy. X-ray powder diffraction and Fourier transform infrared spectroscopy were used as complementary techniques. The formation of NiFe 2 O 4 was monitored during the thermal decomposition of mixed salt (Ni(NO 3 ) 2 +2Fe(NO 3 ) 3 )nH 2 O. The ferritization of Ni 2+ ions was observed at 500 deg. C and after heating at 1300 deg. C the stoichiometric NiFe 2 O 4 was produced. The Moessbauer parameters obtained for NiFe 2 O 4 , d Fe = 0.36 mm s -1 and HMF = 528 kOe, can be ascribed to Fe 3+ ions in the octahedral sublattice, while parameters d Fe = 0.28 mm s -1 and HMF = 494 kOe can be ascribed to Fe 3+ ions in the tetrahedral lattice. The effect of ball-milling of NiFe 2 O 4 was monitored. The formation of oxide phases and their properties in the systems Nd 2 O 3 -Fe 2 O 3 , Sm 2 O 3 -Fe 2 O 3 , Gd 2 O 3 -Fe 2 O 3 , Eu 2 O 3 -Fe 2 O 3 and Er 2 O 3 -Fe 2 O 3 were also investigated. Quantitative distributions of oxide phases, a-Fe 2 O 3 , R 2 O 3 , R 3 Fe 5 O 12 and RFeO 3 , R = Gd or Eu, were determined for the systems xGd 2 O 3 +(1-x)Fe 2 O 3 and xEu 2 O 3 +(1-x)Fe 2 O 3 . The samples, prepared by chemical coprecipitation in the system xEu 2 O 3 +(1-x)Fe 2 O 3 , 0≤x≤1, were completely amorphous as observed by XRD, even at the relatively high temperature of the sample preparation (600 deg. C). Similar behavior was observed during the formation of Er 3 Fe 5 O 12 . Moessbauer spectroscopy indicated that this 'amorphous' phase is actually composed of very small and/or poor

  15. Structure and electromagnetic properties of NiZn spinel ferrite with nano-sized ZnAl{sub 2}O{sub 4} additions

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zongliang, E-mail: zzlma@163.com; Zhang, Huaiwu; Yang, Qinghui; Jia, Lijun

    2015-11-05

    In this study, nanocrystalline ZnAl{sub 2}O{sub 4} (ZA) (x = 0–20 wt%) were introduced into Ni{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4} ferrite (NZ) by a solid-state reaction method combining a sol–gel auto-combustion method. The effects of ZA addition on the crystalline phase formation, microstructures, magnetic and dielectric properties were systematically investigated. X-ray diffraction and scanning electron microscope results reveal that the added ZA can fully solve into the NZ to form a ceramic with single-phase cubic spinel structure, and the grain size decreases obviously as x > 5 wt%. Meanwhile, the magnetic and dielectric properties exhibit significantly dependent on the ZA addition content. With the increasing addition level of ZA from 0 to 20 wt%, the initial permeability μ{sub i} is found increased initially and then decreased with the maximum 679 at x = 0.5 wt%. For the samples with x ≤ 5 wt%, permittivity ε′ is relatively higher at low frequencies (ε′ = 91–138 at 1 MHz) and dielectric loss tan δ{sub ε} shows distinct peak behavior. When x reaches 10 wt%, however, the ε′ and tan δ{sub ε} show very stable spectra from 1 MHz to 1 GHz. - Highlights: • Various amount of nanocrystalline ZnAl{sub 2}O{sub 4} (ZA) were introduced into NiZn ferrite. • NiZn ferrite can form single-phase spinel ceramic materials with ZA additives. • ZA has significant effects on magnetic and dielectric properties of the ceramics. • It provides a new method for fabricating NiZn ferrite with tunable properties.

  16. The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity.

    Science.gov (United States)

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2018-06-11

    Two types of magnetic nanoparticles (MNPs), i.e. Ni ferrite nanoparticles (Fe 2 NiO 4 ) and Ni Zn ferrite nanoparticles (Fe 4 NiO 4 Zn) containing the trace metals Ni and Fe, were added to the anaerobic digestion of synthetic municipal wastewater at concentrations between 1 and 100 mg Ni L -1 in order to compare their effects on biogas (methane) production and sludge activity. Using the production of methane over time as a measure, the assays revealed that anaerobic digestion was stimulated by the addition of 100 mg Ni L -1 in Fe 2 NiO 4 NPs, while it was inhibited by the addition of 1-100 mg Ni L -1 in Fe 4 NiO 4 Zn NPs. Especially at 100 mg Ni L -1 , Fe 4 NiO 4 Zn NPs resulted in a total inhibition of anaerobic digestion. The metabolic activity of the anaerobic sludge was tested using the resazurin reduction assay, and the assay clearly revealed the negative effect of Fe 4 NiO 4 Zn NPs and the positive effect of Fe 2 NiO 4 NPs. Re-feeding fresh synthetic medium reactivated the NPs added to the anaerobic sludge, except for the experiment with 100 mg Ni L -1 addition of Fe 4 NiO 4 Zn NPs. The findings in this present study indicate a possible new strategy for NPs design to enhance anaerobic digestion. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  17. Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M = Ni, Co, Zn and Sr) modified TiO2 nanorod arrays

    Science.gov (United States)

    Gao, Xin; Liu, Xiangxuan; Zhu, Zuoming; Wang, Xuanjun; Xie, Zheng

    2016-07-01

    Modified TiO2 nanomaterials are considered to be promising in energy conversion and ferrites modification may be one of the most efficient modifications. In this research, various ferrites, incorporated with various cations (MFe2O4, M = Ni, Co, Zn, and Sr), are utilized to modify the well aligned TiO2 nanorod arrays (NRAs), which is synthesized by hydrothermal method. It is found that all MFe2O4/TiO2 NRAs show obvious red shift into the visible light region compared with the TiO2 NRAs. In particular, NiFe2O4 modification is demonstrated to be the best way to enhance the photoelectrochemical and photocatalytic activity of TiO2 NRAs. Furthermore, the separation and transfer of charge carriers after MFe2O4 modification are clarified by electrochemical impedance spectroscopy measurements. Finally, the underlying mechanism accounting for the enhanced photocatalytic activity of MFe2O4/TiO2 NRAs is proposed. Through comparison among different transition metals modified TiO2 with the same synthesis process and under the same evaluating condition, this work may provide new insight in designing modified TiO2 nanomaterials as visible light active photocatalysts.

  18. Rietveld structure refinement and elastic properties of MgAlxCrxFe2-2xO4 spinel ferrites

    Science.gov (United States)

    Thummer, K. P.; Tanna, Ashish R.; Joshi, Hiren H.

    2017-05-01

    MgAlxCrxFe2-2xO4 (x = 0.1, 03 & 0.6) ferrites are synthesized by solid state reaction method. The Rietveld refinement of X-ray diffraction (XRD) data confirms the cubic spinel structure with Fd3m space group. The Fourier Transform Infrared Transmission Spectroscopy (FTIR) is employed to study elastic properties of present systems at 300K. The force constants for tetrahedral (A) and octahedral (B) sites of the spinel lattice are determined by infrared spectral and X-ray diffraction analysis. The elastic constants like bulk modulus, rigidity modulus, Young's modulus, Poisson's ratio and Debye temperature are determined. The vibrational frequency of both the interstitial sites increases as Al-Cr content increases hence the force constant and elastic moduli for all the samples are found to increase for the present ferrite system.

  19. Nanoscale TiO2 and Fe2O3 Architectures for Solar Energy Conversion Schemes

    Science.gov (United States)

    Sedach, Pavel Anatolyvich

    The direct conversion of sunlight into more useable forms of energy has the potential of alleviating the environmental and social problems associated with a dependence on fossil fuels. If solar energy is to be utilized en-masse, however, it must be inexpensive and widely available. In this vein, the focus of this thesis is on nanostructured materials relevant to solar energy conversion and storage. Specifically, this thesis describes the ambient sol-gel synthesis of titanium dioxide (Ti02) nanowires designed for enhanced charge-transfer in solar collection devices, and the synthesis of novel disordered metal-oxide (MOx) catalysts for water oxidation. The introductory chapter of this thesis gives an overview of the various approaches to solar energy conversion. Sol---gel reaction conditions that enable the growth of one-dimensional (1-D) anatase TiO2 nanostructures from fluorine-doped tin oxide (FTO) for photovoltaics (PVs) are described in the second chapter. The generation of these linear nanostructures in the absence of an external bias or template is achieved by using facile experimental conditions (e.g., acetic acid (HOAc) and titanium isopropoxide (Ti(OiPr)4) in anhydrous heptane). The procedure was developed by functionalizing base-treated substrates with Ti-oxide nucleation sites that serve as a foundation for the growth of linear Ti-oxide macromolecules, which upon calcination, render uniform films of randomly oriented anatase TiO2 nanowires. A systematic evaluation of how reaction conditions (e.g., solvent volume, stoichiometry of reagents, substrate base treatment) affect the generation of these TiO 2 films is presented. A photo-organic MO. deposition route (i.e., photochemical metal-organic deposition (PMOD)) used to deposit thin-films of amorphous iron oxide (a-Fe2O3) for water oxidation catalysis is detailed in third chapter. It is shown that the irradiation of a spin-coated metal-organic film produces a film of non-crystalline a-Fe203. It is shown

  20. Synthesis of nanocrystalline nickel-zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method

    International Nuclear Information System (INIS)

    Pawar, D.K.; Pawar, S.M.; Patil, P.S.; Kolekar, S.S.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → We have successfully synthesized nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films on stainless steel substrates using a low temperature chemical bath deposition method. → The surface morphological study showed the compact flakes like morphology. → The as-deposited thin films are hydrophilic (10 o o ) whereas the annealed thin films are super hydrophilic (θ o ) in nature. → Ni 0.8 Zn 0.2 Fe 2 O 4 thin films could be used in supercapacitor. - Abstract: The nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni 0.8 Zn 0.2 Fe 2 O 4 thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm -1 which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness ∼1.8 μm after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle (θ) of 5 o .The electrochemical supercapacitor study of Ni 0.8 Zn 0.2 Fe 2 O 4 thin films has been carried out in 6 M KOH electrolyte. The values of interfacial and specific capacitances obtained were 0.0285 F cm -2 and 19 F g -1 , respectively.

  1. Structural and optical properties of Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nano ferrites: Effect of sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Prashant, E-mail: prashant007thakur@gmail.com; Sharma, Rohit; Sharma, Vineet, E-mail: vineet.sharma@juiit.ac.in; Sharma, Pankaj, E-mail: pankaj.sharma@juit.ac.in

    2017-06-01

    Mn-Zn ferrites have shown various remarkable applications e.g. in magnetic amplifiers, power transformers and electromagnetic interference etc. due to their high initial permeability. Mn–Zn ferrite powder (Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) has been prepared by the co-precipitation method and subsequently sintered at three different temperatures i.e. 973 K, 1173 K, 1373 K. Optical properties have been correlated with the structural properties. For structural properties X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR) have been employed. It has been observed that there is an increase in crystallite size with sintering from 973 K to 1373 K and FTIR confirms the formation of bond between metal ion and oxygen ion at the octahedral site and tetrahedral site. A red shift has been confirmed from UV–visible absorption spectra and photoluminescence spectra have been reported with an increase in sintering temperature. - Graphical abstract: Mn–Zn ferrite powder (Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) has been prepared by the co-precipitation method and subsequently sintered at three different temperatures i.e. 973 K, 1173 K, 1373 K. A red shift has been confirmed from UV–visible absorption spectra and photoluminescence spectra have been reported with an increase in sintering temperature. - Highlights: • Nanoparticles of Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} have been prepared by the co-precipitation method. • There is an increase in crystallite size with sintering from 973 K to 1373 K. • A red shift is found in UV–visible and PL spectra with an increase in sintering temperature.

  2. Comparison effects and electron spin resonance studies of α-Fe2O4 spinel type ferrite nanoparticles.

    Science.gov (United States)

    Bayrakdar, H; Yalçın, O; Cengiz, U; Özüm, S; Anigi, E; Topel, O

    2014-11-11

    α-Fe2O4 spinel type ferrite nanoparticles have been synthesized by cetyltrimethylammonium bromide (CTAB) and ethylenediaminetetraacetic acid (EDTA) assisted hydrothermal route by using NaOH solution. Electron spin resonance (ESR/EPR) measurements of α-Fe2O4 nanoparticles have been performed by a conventional x-band spectrometer at room temperature. The comparison effect of nanoparticles prepared by using CTAB and EDTA in different α-doping on the structural and morphological properties have been investigated in detail. The effect of EDTA-assisted synthesis for α-Fe2O4 nanoparticles are refined, and thus the spectroscopic g-factor are detected by using ESR signals. These samples can be considered as great benefits for magnetic recording media, electromagnetic and drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Nanocrystalline spinel ferrite (MFe{sub 2}O{sub 4}, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Maensiri, Santi, E-mail: santimaensiri@gmail.com [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)

    2013-06-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe{sub 2}O{sub 4}, MgFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} respectively, whereas the samples of NiFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe{sub 2}O{sub 4} powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M{sub s} of 68.9 emu/g at 10 kOe were observed for the samples of MnFe{sub 2}O{sub 4}. - Abstract: Nanocrystalline spinel ferrite MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac){sub 3}, M(acac){sub 3} (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} samples contain nanoparticles, whereas the MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe{sub 2}O{sub 4} sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe{sub 2}O{sub 4}, MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples, whereas the

  4. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    Science.gov (United States)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  5. Green Synthesis Methods of CoFe_2O_4 and Ag-CoFe_2O_4 Nanoparticles Using Hibiscus Extracts and Their Antimicrobial Potential

    International Nuclear Information System (INIS)

    Gingasu, D.; Mindru, I.; Patron, L.; Caleron-Moreno, J.M.; Mocioiu, O.C.; Preda, S.; Stanica, N.; Nita, S.; Dobre, N.; Popa, M.; Gradisteanu, G.; Chifiriuc, M. C.

    2016-01-01

    The cobalt ferrite (CoFe_2O_4) and silver-cobalt ferrite (Ag-CoFe_2O_4) nanoparticles were obtained through self-combustion and wet ferritization methods using aqueous extracts of Hibiscus rosa-sinensis flower and leaf. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and magnetic measurements were used for the characterization of the obtained oxide powders. The antimicrobial activity of the cobalt ferrite and silver-cobalt ferrite nanoparticles against Gram-positive and Gram-negative bacteria, as well as fungal strains, was investigated by qualitative and quantitative assays. The most active proved to be the Ag-CoFe_2O_4 nanoparticles, particularly those obtained through self-combustion using hibiscus leaf extract, which exhibited very low minimal inhibitory concentration values (0.031-0.062 mg/ml) against all tested microbial strains, suggesting their potential for the development of novel antimicrobial agents.

  6. Green Synthesis Methods of CoFe2O4 and Ag-CoFe2O4 Nanoparticles Using Hibiscus Extracts and Their Antimicrobial Potential

    Directory of Open Access Journals (Sweden)

    Dana Gingasu

    2016-01-01

    Full Text Available The cobalt ferrite (CoFe2O4 and silver-cobalt ferrite (Ag-CoFe2O4 nanoparticles were obtained through self-combustion and wet ferritization methods using aqueous extracts of Hibiscus rosa-sinensis flower and leaf. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and magnetic measurements were used for the characterization of the obtained oxide powders. The antimicrobial activity of the cobalt ferrite and silver-cobalt ferrite nanoparticles against Gram-positive and Gram-negative bacteria, as well as fungal strains, was investigated by qualitative and quantitative assays. The most active proved to be the Ag-CoFe2O4 nanoparticles, particularly those obtained through self-combustion using hibiscus leaf extract, which exhibited very low minimal inhibitory concentration values (0.031–0.062 mg/mL against all tested microbial strains, suggesting their potential for the development of novel antimicrobial agents.

  7. Electrical transport properties of CoMn0.2−xGaxFe1.8O4 ferrites using complex impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Chien-Yie Tsay

    2016-05-01

    Full Text Available In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2−xGaxFe1.8O4 (x=0, 0.1, and 0.2 prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z’ and the imaginary part (Z” of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.

  8. Multifunctional metal ferrite nanoparticles for MR imaging applications

    International Nuclear Information System (INIS)

    Joshi, Hrushikesh M.

    2013-01-01

    Magnetic Resonance Imaging (MRI) is a very powerful non-invasive tool for in vivo imaging and clinical diagnosis. With rapid advancement in nanoscience and nanotechnology, there is rapid growth in nanoparticles-based contrast agents. Progress in synthetic protocols enable synthesis of multifunctional nanoparticles which facilitated efforts toward the development of multimodal contrast agents. In this review, recent developments in metal ferrite-based MR contrast agents have been described. Specifically, effect of size, shape, composition, assembly and surface modification of metal ferrite nanoparticles on their T 2 contrast have been discussed. The review further outlines the effect of leaching on MRI contrast and other various factors which affect the multimodal ability of the (T 1 –T 2 and T 2 -thermal activation) metal ferrite nanoparticles.

  9. Some of Physical Properties of Nanostructured (Mg1-xCoxFe2O4 Ferrites Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Ammer Alsherefi

    2018-01-01

    Full Text Available Sol-gel auto combustion technique was used to prepare nanoparticles of magnesium-cobalt ferrites with the chemical formula Mg1-xCoxFe2O4 for  (x=0, 0.2, 0.4, 0.6, 0.8, 1, where x added as weight  percentages, and sintering  at temperature (1100 oC. The X-ray patterns of prepared powder has confirmed the structure of cubic spinel structure (fcc. The prepared samples were composed of nearly spherical nano particles .An average particle size of  magnesium-cobalt ferrite  were  calculated  using  Debye Scherer’s relation is equal 53.12 nm. The surface structure of the samples was investigated by Scanning Electron Microscope(SEM. The electromagnetic properties for prepared samples were investigated using Vector Network Analyzer (VNA in X-band microwave region.

  10. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the...

  11. Structural and magnetic properties of Mg-Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method

    International Nuclear Information System (INIS)

    Reyes-Rodríguez, Pamela Yajaira; Cortés-Hernández, Dora Alicia; Escobedo-Bocardo, José Concepción; Almanza-Robles, José Manuel; Sánchez-Fuentes, Héctor Javier; Jasso-Terán, Argentina; De León-Prado, Laura Elena; Méndez-Nonell, Juan; Hurtado-López, Gilberto Francisco

    2017-01-01

    In this study, the Mg 1−x Zn x Fe 2 O 4 nanoparticles (x=0–0.9) were prepared by sol-gel method. These ferrites exhibit an inverse spinel structure and the lattice parameter increases as the substitution of Zn 2+ ions is increased. At lower Zn content (0.1≤x≤0.5), saturation magnetization (Ms) increases, while it decreases at higher Zn content (x≥6). The remnant magnetization (0.17–2.0 emu/g) and coercive field (6.0–60 Oe) indicate a ferrimagnetic behavior. The average core diameter of selected ferrites is around 15 nm and the nanoparticles morphology is quasi spherical. The heating ability of some Mg 0.9 Zn 0.1 Fe 2 O 4 and Mg 0.7 Zn 0.3 Fe 2 O 4 aqueous suspensions indicates that the magnetic nanoparticles can increase the medium temperature up to 42 °C in a time less than 10 min - Highlights: • Magnetic nanoparticles of Mg 1−x Zn x Fe 2 O 4 were synthesized by sol-gel method. • Nanoparticles showing a single spinel crystalline structure were obtained. • Aqueous suspensions of Mg 0.7 Zn 0.3 Fe 2 O 4 and Mg 0.9 Zn 0.1 Fe 2 O 4 show heating ability.

  12. Coexistence of ferromagnetism and spin glass freezing in the site-disordered kagome ferrite SrSn2Fe4O11

    Science.gov (United States)

    Shlyk, Larysa; Strobel, S.; Farmer, B.; De Long, L. E.; Niewa, R.

    2018-05-01

    Single-crystal x-ray diffraction refinements indicate SrSn2Fe4O11 crystallizes in the hexagonal R-type ferrite structure with non-centrosymmetric space group P63mc and lattice parameters a = 5.9541(2) Å, c = 13.5761(5) Å, Z = 2 (R(F) = 0.034). Octahedrally coordinated sites are randomly occupied by Sn and Fe; whereas tetrahedrally coordinated sites are exclusively occupied by Fe, whose displacement from ideal trigonal-bipyramidal coordination causes the loss of inversion symmetry. DC magnetization data indicate SrSn2Fe4O11 single crystals undergo ferro- or ferri-magnetic order below a transition temperature TC = 630 K with very low coercive fields Hc ⊥ = 0.27 Oe and Hc// = 1.5 Oe at 300 K, for applied fields perpendicular and parallel to the c-axis, respectively. The value for TC is exceptionally high, and the coercive fields exceptionally low, among the known R-type ferrites. Enhanced coercivity and thermomagnetic hysteresis suggest the onset of short-range, spin glass order occurs below Tf = 35 K. Optical measurements indicate a band gap of 0.8 eV, consistent with wide-gap semiconducting behavior and a previously established empirical correlation between the semiconducting gap and TC for R-type ferrites based upon Ru.

  13. Role of Cu2+ Concentration on the Microstructure and Gas Sensing Properties of Ni1-xCuxFe2O4 (0 ≤ x ≤ 0.8 Ferrite

    Directory of Open Access Journals (Sweden)

    Elena Rezlescu

    2008-04-01

    Full Text Available The microstructure and gas sensor properties of some nanostructured soft ferrites (Ni1-xCuxFe2O4, x = 0.2, 0.4, 0.6, 0.8 are studied. Using sol-gel self-combustion technology and subsequent heat treatment were prepared ferrite powders, having molecular scale homogeneity and nanosized granulation. The scanning electron microscopy (SEM was used to investigate morphology and pore structure. The effect of operating temperature and copper content on the fundamental features of a sensor element such as sensitivity and response time towards acetone, ethanol and LPG vapour has been studied. All samples are sensitive to ethanol and acetone and have a poor sensitivity to LPG. For a large copper content (x > 0.4 the electrical response to ethanol is larger than that to acetone, at the same working temperature, of 280oC. Among the investigated ferrites, Ni0,2Cu0,8Fe2O4 composition shows the best sensitivity to ethanol (about 70 % at operating temperature of 280ºC. The gas sensitivity increases with increasing gas concentration from 25 to 150 ppm, whereas the response time decreases.

  14. The liquid metal embrittlement of iron and ferritic steels in sodium

    International Nuclear Information System (INIS)

    Hilditch, J.P.; Hurley, J.R.; Tice, D.R.; Skeldon, P.

    1995-01-01

    The liquid metal embrittlement of iron and A508 III, 21/4Cr-1Mo and 15Mo3 steels in sodium at 200-400 o C has been studied, using dynamic straining at 10 -6 s -1 , in order to investigate the roles of microstructure and composition. The steels comprised bainitic, martensitic, tempered martensitic and ferritic/pearlitic microstructures. All materials were embrittled by sodium, the embrittlement being associated generally with quasicleavage on fracture surfaces. Intergranular cracking was also found with martensitic and ferritic/pearlitic microstructures. The susceptibility to embrittlement was greater in higher strength materials and at higher temperatures. The embrittlement was similar to that encountered previously in 9Cr steel, which depends upon the presence of non-metallic impurities in the sodium. (author)

  15. Structure and magnetic properties of granular NiZn-ferrite - SiO2

    Directory of Open Access Journals (Sweden)

    Albuquerque Adriana Silva de

    1999-01-01

    Full Text Available Granular systems composed by nanostructured magnetic materials embedded in a non-magnetic matrix present unique physical properties that depend crucially on their nanostructure. In this work, we have studied the structural and magnetic properties of NiZn-ferrite nanoparticles embedded in SiO2, a granular system synthesized by sol-gel processing. Samples with ferrite volumetric fraction x ranging from 6% to 78% were prepared, and characterized by X-ray diffraction, Mössbauer spectroscopy and vibrating sample magnetometry. Our results show the formation of pure stoichiometric NiZn-ferrite in the SiO2 matrix for x < 34%. Above these fraction, our samples presented also small amounts of Fe2O3. Mössbauer spectroscopy revealed the superparamagnetic behaviour of the ferrimagnetic NiZn-ferrite nanoparticles. The combination of different ferrite concentration and heat treatments allowed the obtaintion of samples with saturation magnetization between 1.3 and 68 emu/g and coercivity ranging from 0 to 123 Oe, value which is two orders of magnitude higher than the coercivity of bulk NiZn-ferrite.

  16. Properties of Mn0.4Zn0.6Fe2O4 and Mn0.6Zn0.4Fe2O4 as Nanocatalyst for Ammonia Production

    Directory of Open Access Journals (Sweden)

    Puspitasari Poppy

    2017-01-01

    Full Text Available Ammonia synthesis requires high pressure and high temperature process. Unfortunately, the capital intensive cost resulting low yield of ammonia by using recent catalyst which is iron oxide. Therefore, manganese zinc ferrite as a soft ferrite material will be introduced as a new nanocatalyst to enhance the ammonia yield. As a new nanocatalyst for ammonia production, study of comparasion two different concentration of MnZn Ferrite is very important. This paper will compare the yield of ammonia by using two different nanocatalyst which are Mn0.4Zn0.6Fe2O4 and Mn0.6Zn0.4Fe2O4. Both were synthesized by sol-gel method and has been characterize by using FESEM (morphology, XRD (phase identification, EDX (elemental analysis and TPR (oxide reduction. The ammonia was produce with and without magnetic field applied. The result shows that the ammonia yield is higher for Mn0.4Zn0.6Fe2O4 nanocatalyst than Mn0.6Zn0.4Fe2O4 by using magnetic field applied. 67.2% of yield has been achieved by using new nanocatalyst Mn0.6Zn0.4Fe2O4 and magnetic field applied at ambient environment.

  17. AC and DC electrical conductivity, dielectric and magnetic properties of Co{sub 0.65}Zn{sub 0.35}Fe{sub 2-x}Mo{sub x}O{sub 4} (x = 0.0, 0.1 and 0.2) ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, A.K.; Saha, S. [Vidyasagar University, Department of Physics and Techno Physics, Midnapore, West Bengal (India); Nath, T.K. [Indian Institute of Technology Kharagpur, Department of Physics, Kharagpur, West Bengal (India)

    2017-11-15

    Cobalt-Zinc ferrites are an important material for designing multiferroic composite. The Mo (4d-transition metal) doped Cobalt-Zinc ferrites are synthesized using ceramic (solid-state reaction) method. Investigation of detailed ac and dc electrical conductivity, dielectric and magnetic properties of Co{sub 0.65}Zn{sub 0.35}Fe{sub 2-x}Mo{sub x}O{sub 4} (x = 0.0, 0.1 and 0.2) spinel ferrites have been reported here. The recorded XRD pattern confirms the formation of inverse spinel structure of the material. The dielectric dispersion has been studied in detail and the existence of non-Debye type relaxation behavior has been confirmed. The dielectric tangent loss is found to be very small at high frequency. The ac conductivity follows the correlated barrier hopping like model. Also the conduction process can be best explained on the basis of Verwey-de Boer mechanism. Magnetic phase transition of the material is estimated from magnetization vs. temperature plots. (orig.)

  18. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    Science.gov (United States)

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  19. Effect of Cu-doping on structural and electrical properties of Ni0.4-xCu0.3+xMg0.3Fe2O4 ferrites prepared using sol-gel method

    Science.gov (United States)

    Dhaou, Mohamed Houcine

    2018-06-01

    Ni0.4-xCu0.3+xMg0.3Fe2O4 spinel ferrites were prepared by sol-gel technique. X-ray diffraction results indicate that ferrite samples have a cubic spinel-type structure with ? space group. The electrical properties of the studied samples using complex impedance spectroscopy technique have been investigated as a function of frequency at different temperatures. We found that the addition of copper in Ni0.4-xCu0.3+xMg0.3Fe2O4 ferrite system can improve its conductivity. Dielectric properties have been discussed in terms of hopping of charge carriers between Fe2+ and Fe3+ ions. For all samples, frequency dependence of the imaginary part of impedance (Z") shows the existence of relaxation phenomenon. The appropriate equivalent circuit configuration for modeling the Nyquist plots of impedance is of the type of (Rg + Rgb//Cgb).

  20. Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites and their enhanced microwave absorption properties

    Science.gov (United States)

    Zhang, Kaichuang; Gao, Xinbao; Zhang, Qian; Chen, Hao; Chen, Xuefang

    2018-04-01

    Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites were synthesized using a co-precipitation method and a calcination process. As one kind absorbing material, we researched the electromagnetic absorption properties of the composites that were mixed with a filler loading of 80 wt% paraffin. In addition, we studied the influence of the magnetic nanoparticle content on the absorbing properties. The results showed that the frequency corresponding to the maximum absorptions shifted to lower frequency when the magnetic nanoparticles content increased. The Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites with approximately 60% Fe3O4 nanoparticles showed the best electromagnetic absorption properties. The maximum reflection loss was -52.47 dB with a thickness of 2.0 mm at 10.4 GHz.

  1. Mössbauer and magnetic studies of Mg{sub 1+2x}Sb{sub x}Fe{sub 2−3x}O{sub 4} spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H.M., E-mail: hishammw@squ.edu.om [Department of Physics, College of Science, Sultan Qaboos University, 123 Muscat (Oman); Al-Mamari, F.A.S.; Al-Saqri, N.A.M.; Gismelseed, A.M.; Al-Omari, I.A.; Al-Shahumi, T.M.H. [Department of Physics, College of Science, Sultan Qaboos University, 123 Muscat (Oman); Alhaj, A.F. [Department of Physics, Qasim University, Al-Qasim (Saudi Arabia); Abo El Ata, A.M. [Department of Physics, Faculty of Science, Tanta University, Tanta (Egypt); Elzain, M.E. [Department of Physics, College of Science, Sultan Qaboos University, 123 Muscat (Oman)

    2013-06-15

    Spinel-related Mg{sub 1+2x}Sb{sub x}Fe{sub 2−3x}O{sub 4} samples (x = 0.0, 0.05, 0.10, 0.15, 0.20, and 0.30) prepared using the conventional double sintering technique were investigated using {sup 57}Fe Mössbauer spectroscopy and magnetic measurements. Mössbauer spectra favor a cationic distribution of the form (Mg{sub δ}Fe{sub 1−δ}){sup A}[Mg{sub 1+2x−δ}Sb{sub x}Fe{sub 1+δ−3x}]{sup B}O{sub 4} among the tetrahedral-A and octahedral-B sites of the spinel structure. The cation distribution parameter (δ) was found to vary with the Sb{sup 5+} concentration (x). The Mössbauer hyperfine magnetic fields at both sites and the Curie temperatures of the ferrites decrease as x increases. This was attributed to gradual weakening in the magnetic exchange interaction as more Fe{sup 3+} ions are substituted by diamagnetic Sb{sup 5+} and Mg{sup 2+} ones. The sample with x = 0.30 exhibits short range magnetic order due to cationic clustering and/or superparamagnetism. The magnetization of all samples was found to be temperature-dependent implying that δ depends on temperature in addition to x. At low temperatures the substituted ferrites (x ≠ 0.0) unexpectedly exhibit higher magnetization values relative to that of the pure ferrite MgFe{sub 2}O{sub 4}. This behavior, while at variance with the Néel's model for ferrimagnetism, is explicable in terms of the spin canting mechanism proposed in the Yafet–Kittel model. - Highlights: ► A Mössbauer and magnetic study of Sb{sup 5+} and Mg{sup 2+} co-substituted ferrites of the composition Mg{sub 1+2x}Sb{sub x}Fe{sub 2−3x}O{sub 4} is reported. ► The cation distribution in Mg{sub 1+2x}Sb{sub x}Fe{sub 2−3x}O{sub 4} is shown to depend on both the Sb{sup 5+} ionic concentration and the temperature. ► The A–B magnetic exchange interaction and Mössbauer hyperfine fields weaken with increasing Sb{sup 5+} and Mg{sup 2+} concentrations. ► The magnetization of the substituted samples with x ≠ 0.00 increases

  2. Kinetics of thermal decomposition of ammonium perchlorate with nanocrystals of binary transition metal ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurdip; Kapoor, Inder Pal Singh; Dubey, Shalini [Department of Chemistry, D. D. U. Gorakhpur University, Gorakhpur (India); Siril, Prem Felix [Laboratoire de Chimie Physique (LCP), Universite de Paris Sud, Orsay (France)

    2009-02-15

    Binary transition metal ferrite (BTMF) nanocrystals of formula MFe{sub 2}O{sub 4}(M=Cu,Co,Ni) were prepared by the coprecipitation method and characterized by X-ray diffraction (XRD). XRD patterns gave average particle size by using Scherrer's equation for CuFe{sub 2}O{sub 4}(CuF), CoFe{sub 2}O{sub 4}(CoF), and NiFe{sub 2}O{sub 4} (NiF) as 39.9, 27.3, and 43.8 nm, respectively. The catalytic activity measurements on the thermal decomposition of ammonium perchlorate (AP) were carried out by using thermogravimetry (TG), differential thermal analysis (DTA), and ignition delay studies. Isothermal TG data up to a mass loss of 45% have been used to evaluate kinetic parameters by using model fitting as well as isoconversional method. The order of catalytic activity was found to be: CoFe{sub 2}O{sub 4}>NiFe{sub 2}O{sub 4}. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  3. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    Science.gov (United States)

    Li, Siheng; Wang, Enbo; Tian, Chungui; Mao, Baodong; Kang, Zhenhui; Li, Qiuyu; Sun, Guoying

    2008-07-01

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag@ MFe 2O 4 ( M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag@C microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe 3+ and M 2+ on the surface of the Ag@C spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core.

  4. Interchange core/shell assembly of diluted magnetic semiconductor CeO2 and ferromagnetic ferrite Fe3O4 for microwave absorption

    Directory of Open Access Journals (Sweden)

    Jiaheng Wang

    2017-05-01

    Full Text Available Core/shell-structured CeO2/Fe3O4 and Fe3O4/CeO2 nanocapsules are prepared by interchange assembly of diluted magnetic semiconductor CeO2 and ferromagnetic ferrite Fe3O4 as the core and the shell, and vice versa, using a facile two-step polar solvothermal method in order to utilize the room-temperature ferromagnetism and abundant O-vacancies in CeO2, the large natural resonance in Fe3O4, and the O-vacancy-enhanced interfacial polarization between CeO2 and Fe3O4 for new generation microwave absorbers. Comparing to Fe3O4/CeO2 nanocapsules, the CeO2/Fe3O4 nanocapsules show an improved real permittivity of 3–10% and an enhanced dielectric resonance of 1.5 times at 15.3 GHz due to the increased O-vacancy concentration in the CeO2 cores of larger grains as well as the O-vacancy-induced enhancement in interfacial polarization between the CeO2 cores and the Fe3O4 shells, respectively. Both nanocapsules exhibit relatively high permeability in the low-frequency S and C microwave bands as a result of the bi-magnetic core/shell combination of CeO2 and Fe3O4. The CeO2/Fe3O4 nanocapsules effectively enhance permittivity and permeability in the high-frequency Ku band with interfacial polarization and natural resonance at ∼15 GHz, thereby improving absorption with a large reflection loss of -28.9 dB at 15.3 GHz. Experimental and theoretical comparisons with CeO2 and Fe3O4 nanoparticles are also made.

  5. Faraday effect in cubic and tetragonal copper ferrite CuFe.sub.2./sub.O.sub.4./sub. films—Comparative studies

    Czech Academy of Sciences Publication Activity Database

    Kučera, M.; Kolinský, V.; Višňovský, Š.; Chvostová, Dagmar; Venkataramani, N.; Prasad, S.; Kulkarni, P.D.; Krishnan, R.

    2007-01-01

    Roč. 316, - (2007), e688-e691 ISSN 0304-8853 Institutional research plan: CEZ:AV0Z10100522 Keywords : Faraday rotation * magneto-optic * copper ferrite * CuFe 2 O 4 * thin film Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  6. Influence of metallic additives on manganese ferrites sintering

    Science.gov (United States)

    Shevelev, S. A.; Luchnikov, P. A.; Yarullina, A. R.

    2018-01-01

    Influence of cuprum nanopowder additive received by electric explosion on the process of manganese ferrites MgFe2O4 consolidating at thermal sintering was researched by dilatometry method. Cuprum nanopowder at a rate of 5 mass % was added into the original commercial-grade powder of manganese ferrite MgFe2O4. Powder mixture was numerously blended with screening for better blending before pressing. Powder compacts were formed by cold one-axle static pressing. It was proved that introduction of cuprum additive caused shrinkage increase at final heating stage. There was abnormal compact enlarging at sintering in the air at isothermal stage; the specified process was not observed in vacuum. This difference can be explained by changes in conditions of gaseous discharge from volume of pores.

  7. Antiferromagnetism, structural instability and frustration in intermetallic AFe4X2 systems

    Science.gov (United States)

    Rosner, Helge; Bergmann, Christoph; Weber, Katharina; Kraft, Inga; Mufti, N.; Klauss, Hans-Henning; Dellmann, T.; Woike, T.; Geibel, Christoph

    2013-03-01

    Magnetic systems with reduced dimensionality or frustration attract strong interest because these features lead to an increase of quantum fluctuations and often result in unusual properties. Here, we present a detailed study of the magnetic, thermodynamic, and structural properties of the intermetallic AFe4X2 compounds (A=Sc,Y,Lu,Zr; X=Si,Ge) crystallizing in the ZrFe4Si2 structure type. Our results evidence that these compounds cover the whole regime from frustrated AFM order up to an AFM quantum critical point. Susceptibility χ(T), specific heat, resistivity, and T-dependent XRD measurements were performed on polycrystalline samples. In all compounds we observed a Curie-Weiss behavior in χ(T) at high T indicating a paramagnetic moment of about 3μB/Fe. Magnetic and structural transitions as previously reported for YFe4Ge2 occur in all compounds with trivalent A. However, transition temperatures, nature of the transition as well as the relation between structural and magnetic transitions change significantly with the A element. Low TN's and large θCW /TN ratios confirm the relevance of frustration. The results are analyzed and discussed with respect to electronic, structural and magnetic instabilities applying DFT calculations. Financial support from the DFG (GRK 1621) is acknowledged

  8. Performance of NiFe2O4-SiO2-TiO2 Magnetic Photocatalyst for the Effective Photocatalytic Reduction of Cr(VI in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mike O. Ojemaye

    2017-01-01

    Full Text Available Investigation into the reduction of Cr(VI in aqueous solution was carried out through some batch photocatalytic studies. The photocatalysts used were silica coated nickel ferrite nanoparticles (NiFe2O4-SiO2, nickel ferrite titanium dioxide (NiFe2O4-TiO2, nickel ferrite silica titanium dioxide (NiFe2O4-SiO2-TiO2, and titanium dioxide (TiO2. The characterization of the materials prepared via stepwise synthesis using coprecipitation and sol-gel methods were carried out with the aid of X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared (FTIR spectroscopy, thermal gravimetric analysis (TGA, and vibrating sample magnetometry (VSM. The reduction efficiency was studied as a function of pH, photocatalyst dose, and contact time. The effects of silica interlayer between the magnetic photocatalyst materials reveal that reduction efficiency of NiFe2O4-SiO2-TiO2 towards Cr(VI was higher than that of NiFe2O4-TiO2. However, TiO2 was observed to have the highest reduction efficiency at all batch photocatalytic experiments. Kinetics study shows that photocatalytic reduction of Cr(VI obeyed Langmuir-Hinshelwood model and first-order rate kinetics. Regenerability study also suggested that the photocatalyst materials can be reused.

  9. Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications

    Science.gov (United States)

    Bhujun, Bhamini; Tan, Michelle T. T.; Shanmugam, Anandan S.

    Nanocrystallites of three mixed ternary transition metal ferrite (MTTMF) were prepared by a facile sol-gel method and adopted as electrode material for supercapacitors. The phase development of the samples was determined using Fourier transform infrared (FT-IR) and thermal gravimetric analysis (TG). X-ray diffraction (XRD) analysis revealed the formation of a single-phase spinel ferrite in CuCoFe2O4 (CuCoF), NiCoFe2O4 (NiCoF) and NiCuFe2O4 (NiCuF). The surface characteristics and elemental composition of the nanocomposites have been studied by means of field emission scanning electron microscopy (FESEM), as well as energy dispersive spectroscopy (EDS). The electrochemical performance of the nanomaterials was evaluated using a two-electrode configuration by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic technique in 1 M KOH electrolyte and was found to be in the order of: CuCoF > NiCoF > NiCuF. A maximum specific capacitance of 221 Fg-1 was obtained with CuCoF at a scan rate of 5 mV s-1. In addition to an excellent cycling stability, an energy density of 7.9 kW kg-1 was obtained at a current density of 1 Ag-1. The high electrochemical performance of the MTTMF nanocomposites obtained indicates that these materials are promising electrodes for supercapacitors.

  10. Studies of the magnetic properties of Ni-Zn-Cu ferrite and its synthesis by using metal nitrate salts

    International Nuclear Information System (INIS)

    Koh, Jae Gui

    2004-01-01

    Ni-Zn-Cu ferrite was synthesized by decomposing the metal nitrates Ni(NO 3 ) 2 ·6H 2 O, Cu(NO 3 ) 2 ·6H 2 O, Zn(NO 3 ) 2 ·6H 2 O, and Fe(NO 3 ) 3 ·9H 2 O at 200 .deg. C for 20 hours. The ferrite powder was calcined at 400 .deg. C and pulverized for 3, 6, 9, or 12 hours in a steel ball mill. Then, it was sintered from 700 .deg. C to 1000 .deg. C in 100 .deg. C steps for 1 hour at each step. Thus, we could study the effects of the synthesis conditions on the microstructure and magnetic properties of Ni-Zn-Cu ferrite. We could chemically bond initial specimens in liquid at a low-temperature of 150 .deg. C owing to the low melting points, less than 200 .deg. C, of the metal nitrates instead of mechanical ball-mill pulverization, thus narrowing the distance between the particles a molecular one and lowering the sintering point at least by 200 .deg. C to 300 .deg. C. The initial permeability was 50 to 470, and the maximum magnetic induction and coercive force were 0.2410 T and 39.79 A/m to 95.496 A/m, respectively, which are similar to values for Ni-Zn-Cu ferrite synthesized using a conventional process.

  11. Nickel-zinc ferrite/permalloy (Ni0.5Zn0.5Fe2O4/Ni-Fe soft magnetic nanocomposites fabricated by electro-infiltration

    Directory of Open Access Journals (Sweden)

    Xiao Wen

    2016-05-01

    Full Text Available Magnetically soft NiZn ferrite (Ni0.5Zn0.5Fe2O4 nanoparticles are embedded within a permalloy (Ni-Fe matrix via an electro-infiltration process as thin films intended for use as on-chip inductor cores in the MHz frequency regime. A layer of NiZn ferrite nanoparticles is first deposited, and then permalloy is electroplated through the voids to encapsulate the particles and form three-dimensional ferrite/alloy nanocomposites. The composites are estimated to contain 37% ferrite by volume and exhibit a relative permeability of ∼320, a saturation of ∼1.15 T, and an operational bandwidth of 93 MHz. Compared to a permalloy thin film of similar thickness, the nanocomposite exhibits 39% higher electrical resistivity and 50% higher bandwidth.

  12. Microstructure and magnetic properties of MFe2O4 (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    Science.gov (United States)

    Wang, Wei; Ding, Zui; Zhao, Xiruo; Wu, Sizhu; Li, Feng; Yue, Ming; Liu, J. Ping

    2015-05-01

    Three kinds of spinel ferrite nanocrystals, MFe2O4 (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH4) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (Ms). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  13. Synthesis of metal-doped Mn-Zn ferrite from the leaching solutions of vanadium slag using hydrothermal method

    Science.gov (United States)

    Liu, Shiyuan; Wang, Lijun; Chou, Kuochih

    2018-03-01

    Using vanadium slag as raw material, Metal-doped Mn-Zn ferrites were synthesized by multi-step processes including chlorination of iron and manganese by NH4Cl, selective oxidation of Fe cation, and hydrothermal synthesis. The phase composition and magnetic properties of synthesized metal-doped Mn-Zn ferrite were characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photon spectra (XPS) and physical property measurement. It was found that Mn/Zn mole ratio significantly affected the magnetic properties and ZnCl2 content significantly influenced the purity of the phase of ferrite. Synthesized metal-doped Mn-Zn ferrite, exhibiting a larger saturation magnetization (Ms = 60.01 emu/g) and lower coercivity (Hc = 8.9 Oe), was obtained when the hydrothermal temperature was controlled at 200 °C for 12 h with a Mn/Zn mole ratio of 4. The effect of ZnCl2 content, Mn/Zn mole ratio and temperature on magnetic properties of the synthesized metal-doped Mn-Zn ferrite were systemically investigated. This process provided a new insight to utilize resources in the aim of obtaining functional materials.

  14. Magnetic properties and densification of Manganese-Zinc soft ferrites (Mn1-xZnxFe2O4) doped with low melting point oxides

    International Nuclear Information System (INIS)

    Shokrollahi, H.

    2008-01-01

    Mn-Zn ferrites have high electrical resistivity, low power loss and high initial permeability up to several MHz range. Oxide additives can greatly affect the magnetic properties of these ferrites. The effects of the additives on the sintering behaviour and magnetic properties of Mn-Zn ferrites are different. Some low melting point additives such as Bi 2 O 3 enhance the sintering by forming a liquid phase in the ferrites. The additive V 2 O 5 enhances the sintering by increasing bulk diffusion due to the increased vacancy concentration which is accompanied by the solubility of V 5+ in the ferrites. Some additives are cations that are soluble in the host lattice and enter regular positions on the tetrahedral or octahedral sites. This paper investigates the effect of several low melting point oxides on the magnetic properties, microstructure and densification of Mn-Zn soft ferrites

  15. Phase controlled synthesis of (Mg, Ca, Ba)-ferrite magnetic nanoparticles with high uniformity

    International Nuclear Information System (INIS)

    Wang, S.F.; Li, Q.; Zu, X.T.; Xiang, X.; Liu, W.; Li, S.

    2016-01-01

    (Mg, Ca, Ba)-ferrite magnetic nanoparticles were successfully synthesized through modifying the atomic ratio of polysaccharide and chelating agent at an optimal sintering temperature. In the process, the polysaccharide plays an important role in drastically shrinking the precursor during the gel drying process. In the metal-complex structure, M"2"+ ion active sites were coordinated by −OH of the water molecules except for EDTA anions. The MFe_2O_4 magnetic nanoparticles exhibited enhanced magnetic properties when compared with nano-MFe_2O_4 of similar particle size synthesized by other synthesis route reported in the literature. In particular, the sintering temperature improves the crystallinity and increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles significantly. - Graphical abstract: Schematic representation of the proposed model for MFe_2O_4 nanoparticle synthesis, starting from EDTA-chelated M"2"+ (M=Mg, Ca, or Ba) cations (left). High dispersion (Mg, Ca, Ba)-ferrite magnetic nanoparticles were prepared by a modified polyacrylamide gel route. Optimized utilization of polysaccharide, chelating agent, and sintering temperature allowed the formation of (Mg, Ca, Ba)-ferrite nanoparticles with a narrow diameter distribution. - Highlights: • We report a modified polyacrylamide gel route to synthesize (Mg, Ca, Ba)-ferrite magnetic nanoparticles. • Chelate mechanism of metal ions (Mg, Ca, Ba) and EDTA has been discussed. • Phase transformation process of (Mg, Ca, Ba)-ferrites has been discussed. • The preparation method increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles.

  16. X-ray diffraction and Moessbauer studies on superparamagnetic nickel ferrite (NiFe{sub 2}O{sub 4}) obtained by the proteic sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, N.A.S. [Departamento de Engenharia Metalúrgica e de Materiais, Centro de Tecnologia, Campus do Pici, Universidade Federal do Ceará – UFC, 60455-760 Fortaleza, CE (Brazil); Utuni, V.H.S.; Silva, Y.C. [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil); Kiyohara, P.K. [Instituto de Física, Universidade de São Paulo – USP, 05315-970 São Paulo, SP (Brazil); Vasconcelos, I.F. [Departamento de Engenharia Metalúrgica e de Materiais, Centro de Tecnologia, Campus do Pici, Universidade Federal do Ceará – UFC, 60455-760 Fortaleza, CE (Brazil); Miranda, M.A.R., E-mail: marcus.a.r.miranda@gmail.com [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil); Sasaki, J.M. [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil)

    2015-08-01

    Nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles were synthesized by the proteic sol–gel method at synthesis temperature of 250 °C, 300 °C and 400 °C, with the objective of obtaining superparamagnetic nanoparticles. Thermogravimetric analysis (TGA) and temperature-programed oxidation (TPO) presented peaks around 290 °C indicating that nickel ferrite was forming at this temperature. X-ray powder diffraction (XRPD) confirmed that the polycrystalline sample was single phased NiFe{sub 2}O{sub 4} with space group Fd3m. Scherrer equation applied to the diffraction patterns and transmission electron microscopy (TEM) images showed that the size of the nanoparticles ranged from 9 nm to 13 nm. TEM images also revealed that the nanoparticles were agglomerated, which was supported by the low values of surface area provided by the Brunauer-Emmet-Teller (BET) method. Moessbauer spectroscopy presented spectra composed of a superposition of three components: a sextet, a doublet and a broad singlet pattern. The sample synthetized at 300 °C had the most pronounced doublet pattern characteristic of superparamagnetic nanoparticles. In conclusion, this method was partially successful in obtaining superparamagnetic nickel ferrite nanoparticles, in which the synthetized samples were a mixture of nanoparticles with blocking temperature above and below room temperature. Magnetization curves revealed a small hysteresis, supporting the Moessbauer results. The sample with the higher concentration of superparamagnetic nanoparticles being the one synthetized at 300 °C. - Highlights: • Superparamagnetic nickel ferrite nanoparticles were grown by the proteic sol–gel method. • The proteic sol–gel method provided superparamagnetic nickel ferrite nanoparticles with sizes in the range of 9–13 nm. • Nickel ferrite nanoparticles were prepared at temperatures as low as 250 °C. • The nickel ferrite nanoparticles were studied by x-ray diffraction and Moessbauer.

  17. Exchange coupling behavior in bimagnetic CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Leite, G.C.P. [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Chagas, E.F., E-mail: efchagas@fisica.ufmt.br [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Pereira, R.; Prado, R.J. [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Terezo, A.J. [Departamento de Quimica, Universidade Federal do Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Alzamora, M.; Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 Urca, Rio de Janeiro (Brazil)

    2012-09-15

    In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe{sub 2}O{sub 4} and ferrimagnetic oxide/ferromagnetic metal CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite: (i) first, preparation of CoFe{sub 2}O{sub 4} nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe{sub 2}O{sub 4} particles is about 16 nm. Mossbauer spectra revealed two sites for Fe{sup 3+}. One site is related to Fe in an octahedral coordination and the other one to the Fe{sup 3+} in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe{sub 2}O{sub 4}. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe{sub 2} on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH){sub max} of 1.22 MGOe was achieved at room temperature for CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposites, which is about 115% higher than the value obtained for CoFe{sub 2}O{sub 4} precursor. The exchange coupling interaction and the enhancement of product (BH){sub max} in nanocomposite CoFe{sub 2}O{sub 4}/CoFe{sub 2} are discussed. - Highlights: Black-Right-Pointing-Pointer CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite

  18. Micromagnetic simulations of spinel ferrite particles

    International Nuclear Information System (INIS)

    Dantas, Christine C.; Gama, Adriana M.

    2010-01-01

    This paper presents the results of simulations of the magnetization field ac response (at 2-12 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M 1 - n Zn n Fe 2 O 4 (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0: M={Fe, Mn, Co, Ni, Mg, Cu }; (b) for n=0.1: M = {Fe, Mg} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = {Mg, Cu} ferrites. A comparison of the n=0 and n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M=Fe case. An additional larger scale simulation of a 3 by 3 particle array was performed using similar conditions of the Fe 3 O 4 (magnetite; n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe 3 O 4 one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.

  19. Crystallographic and magnetic properties of the spinel-type ferrites ZnxCo1-xFe2O4 (0.0 ≤ x ≤ 0.75)

    Science.gov (United States)

    Azad, A. K.; Zakaria, A. K. M.; Jewel, Md. Yusuf; Khan, Abu Saeed; Yunus, S. M.; Kamal, I.; Datta, T. K.; Eriksson, S.-G.

    2015-05-01

    Ultrahigh frequencies (UHF) have applications in signal and power electronics to minimize product sizes, increase production quantity and lower manufacturing cost. In the UHF range of 300 MHz to 3 GHz, ferrimagnetic iron oxides (ferrites) are especially useful because they combine the properties of a magnetic material with that of an electrical insulator. Ferrites have much higher electrical resistivity than metallic ferromagnetic materials, resulting in minimization of the eddy current losses, and total penetration of the electromagnetic (EM) field. Hence ferrites are frequently applied as circuit elements, magnetic storage media like read/write heads, phase shifters and Faraday rotators. The electromagnetic properties of ferrites are affected by operating conditions such as field strength, temperature and frequency. The spinel system ZnxCo1-xFe2O4 (x=0.0, 0.25, 0.50 and 0.75) has been prepared by the standard solid state sintering method. X-ray and neutron powder diffraction measurements were performed at room temperature. Neutron diffraction data analysis confirms the cubic symmetry corresponding to the space group Fd3m. The distribution of three cations Zn2+, Co2+ and Fe3+ over the spinel lattice and other crystallographic parameters like lattice constant, oxygen position parameter, overall temperature factor and occupancies of different ions in different lattice sites for the samples have been determined from the analysis of neutron diffraction data. The lattice constant increases with increasing Zn content in the system. The magnetic structure was found to be ferrimagnetic for the samples with x≤0.50. Magnetization measurements show that with the increase of Zn content in the system the value of saturation magnetization first increases and then decreases. The variation of the magnetic moment with Zn substitution has been discussed in terms of the distribution of magnetic and non-magnetic ions over the A and B sub-lattices and their exchange coupling.

  20. Ferrites Ni0,5Zn0,5Fe2O4 doped with samarium: structural analysis, morphological and electromagnetic

    International Nuclear Information System (INIS)

    Costa, A.C.F.M.; Diniz, A.P.; Viana, K.M.S.; Cornejo, D.R.; Kiminami, R.H.G.A.

    2010-01-01

    This paper proposes to investigate the sintering at 1200 deg C/2h of Ni 0.5 Zn 0.5 Fe 2-x Sm x O 4 ferrite doped with 0.05; 0.075 e 0.1 mol of Sm synthesized by combustion reaction to evaluate the performance materials as absorbers of electromagnetic radiation. The influence of the concentration of samarium on the structure, morphology and electromagnetic properties of ferrites was studied. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), magnetic measurements and reflectivity measurements in the frequency range between 8-12 GHz. The results showed that increasing the concentration of samarium caused a decrease in particle size of the samples, encouraging, therefore, to obtain materials with better values of magnetization and reflectivity, allowing for use as absorbers in narrow-band frequency between 9-10 GHz. (author)

  1. Synthesis of nanocrystalline nickel-zinc ferrite (Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}) thin films by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, D.K. [Department of Chemistry, Shivaji University, Kolhapur 416 004 (M.S.) (India); Pawar, S.M. [Department of Materials Science and Engineering, Chonnam National University, 500 757 (Korea, Republic of); Patil, P.S. [Department of Physics, Shivaji University, Kolhapur 416 004 (M.S.) (India); Kolekar, S.S., E-mail: kolekarss2003@yahoo.co.in [Department of Chemistry, Shivaji University, Kolhapur 416 004 (M.S.) (India)

    2011-02-24

    Graphical abstract: Display Omitted Research highlights: > We have successfully synthesized nickel-zinc ferrite (Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}) thin films on stainless steel substrates using a low temperature chemical bath deposition method. > The surface morphological study showed the compact flakes like morphology. > The as-deposited thin films are hydrophilic (10{sup o} < {theta} < 90{sup o}) whereas the annealed thin films are super hydrophilic ({theta} < 10{sup o}) in nature. > Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} thin films could be used in supercapacitor. - Abstract: The nickel-zinc ferrite (Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm{sup -1} which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness {approx}1.8 {mu}m after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle ({theta}) of 5{sup o}.The electrochemical supercapacitor study of Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} thin films has been carried out in 6 M KOH electrolyte. The values of interfacial and specific capacitances obtained were 0.0285 F cm{sup -2} and 19 F g{sup -1}, respectively.

  2. Studies on structure and covalence effects on hyperfine interactions of AFeO sub(2) and BFeS sub(2) compounds by Moessbauer spectroscopy (A= Na, Cu, Ag, B= K, Rb, Cs, Na)

    International Nuclear Information System (INIS)

    Taft, C.A.

    1975-01-01

    The compounds AFeO sub(2) and BFeS sub(2) (A = Na, Cu, Ag, B = K, Rb, Cs, Na) were investigated by Moessbauer spectroscopy. The spectra were registered at temperature range from 4.2 sup(0) to 300 sup(0)K and magnetic transitions were observed determining correspondent temperatures by variation of hyperfine field. The electric field gradient of these compounds and perovskite type compounds (Pb sub(1-x) - Ba sub(x)) Zr O sub(3) were calculated and experimental part were determined by perturbed angular correlation, taking in account the effects of covalence, crystal lattice parameters and dipolar contributions. (M.C.K.)

  3. Synthesis and magnetic properties of CoFe2O4 spinel ferrite nanoparticles doped with lanthanide ions

    International Nuclear Information System (INIS)

    Kahn, Myrtil L.; Zhang, Z. John

    2001-01-01

    Lanthanide ions have been doped into cobalt spinel ferrites using an oil-in-water micellar method to form CoLn 0.12 Fe 1.88 O 4 nanoparticles with Ln=Ce, Sm, Eu, Gd, Dy, or Er. Doping with lanthanide ions (Ln III ) modulates the magnetic properties of cobalt spinel ferrite nanoparticles. In particular cases of Gd 3+ or Dy 3+ ions, a dramatic increase in the blocking temperature and coercivity is observed. Indeed, the introduction of only 4% of Gd 3+ ions increases the blocking temperature ∼100 K and the coercivity 60%. Initial studies on the magnetic properties of these doped nanoparticles clearly demonstrate that the relationship between the modulation of magnetic properties and the nature of doped Ln III ions is interesting but very complex. [copyright] 2001 American Institute of Physics

  4. Ferrites nanoparticles MFe2O4 (M = Ni and Zn: hydrothermal synthesis and magnetic properties

    Directory of Open Access Journals (Sweden)

    Pérez Mazariego, J. L.

    2008-06-01

    Full Text Available MFe2O4 (M = Ni and Zn nanoparticles were prepared by the hydrothermal method. The obtained samples were characterized by X-ray and electron diffraction, Scanning and Transmission Electron Microscopy and Mössbauer spectroscopy. The transmission images show homogeneous shape and particle size ranging from 10 to 40 nm, depending on the nature of the M cation. Mössbauer spectroscopy yields to a ratio of occupancy between the A and B sites of 0.7 in the case of NiFe2O4 oxide. DC magnetization (2-300 K measurements reveal a superparamagnetic behaviour for the ZnFe2O4 sample with a blocking temperature of 20 K. By contrast, in the case of the NiFe2O4 ferrite the blocking temperature appears to be above 300 K and at lower temperature, it shows a ferrimagnetic behaviour arising from the superexchange interactions that take place in this inverse spinel. Mössbauer spectroscopy results confirm the bulk magnetic measurements.Se han preparado mediante el método hidrotermal nanopartículas de ferritas MFe2O4 (M = Ni, Zn. Las muestras obtenidas fueron caracterizadas mediante difracción de rayos X y electrones, microscopía electrónica de transmisión y barrido y espectroscopia Mössbauer. Las imágenes de transmisión muestran partículas de forma y tamaño homogéneo de 10 a 40 nm según la naturaleza del catión M. La espectroscopia Mössbauer revela una relación de ocupación entre los sitios A y B por los átomos de hierro de 0.7 en el caso del óxido NiFe2O4. Las medidas de magnetización DC (2 – 300 K muestran un comportamiento superparamagnético para la muestra ZnFe2O4 con una temperatura de bloqueo de 20 K. En el caso de las nanopartículas de NiFe2O4 la temperatura de bloqueo parece estar por encima de los 300 K mostrando por debajo de la misma, comportamiento ferrimagnético provocado por las interacciones de superintercambio que tienen lugar en esta espinela inversa. Los resultados de espectroscopia Mössbauer confirman los datos de las

  5. Influence of CaCO3 and SiO2 additives on magnetic properties of M-type Sr ferrites

    Science.gov (United States)

    Huang, Ching-Chien; Jiang, Ai-Hua; Hung, Yung-Hsiung; Liou, Ching-Hsuan; Wang, Yi-Chen; Lee, Chi-Ping; Hung, Tong-Yin; Shaw, Chun-Chung; Kuo, Ming-Feng; Cheng, Chun-Hu

    2018-04-01

    An experiment was carried out to investigate the influence of CaCO3 and SiO2 additives on the magnetic and physical properties of M-type Sr ferrites by changing experimental parameters such as the additive composition and Ca/Si ratio. Specimens were prepared by conventional ceramic techniques. It was found that the magnetic properties (Br = 4.42 kG, iHc = 3.32 kOe and (BH)max = 4.863 MGOe) were considerably improved upon adding CaCO3 = 1.1% and SiO2 = 0.4 wt% together with Co3O4, and the mechanical properties thereof were acceptable for motor applications. It was revealed that CaCO3 and SiO2 additives led to an upswing in the magnetic properties via the enhancement of uniform grain growth, particle alignment, and the densification of Sr ferrite.

  6. Coprecipitation synthesis of zinc ferrit (FE 2 O 3 /ZNO) nanoparticles ...

    African Journals Online (AJOL)

    Zinc ferrite (Fe2O3/ZnO) nanocomposites were successfully synthesized by simple co-precipitation method via iron (III) nitrate 9-hydrate (Fe(NO3)3.9H2O) and zinc nitrate hexahydrate (Zn(NO3)2.6H2O) as precursor in the presence of cetyltrimethylammonium bromide (CTAB) surfactant. The samples were characterized by ...

  7. Ferrite formation in the MeO – Fe2O3 (Me - Zn, Cd, Cu) systems and its impact for the zinc hydrometallurgy

    International Nuclear Information System (INIS)

    Boyanov, Boyan S.; Cherkezova-Zheleva, Zara

    2011-01-01

    Study on the solid state interactions between MeO (Me - Zn, Cd, Cu) and α-Fe 2 O 3 is very important for metallurgy as well as for the preparation of magnetic materials and new catalysts. Zinc, copper and cadmium ferrites are obtained by the conventional ceramic technology. Chemical, DTA and TG analyses, Mössbauer spectroscopy and X-ray phase analysis have been used in the study of intermediate and final products of solid state interactions. The kinetics of formation of MeFe 2 O 4 is investigated by different kinetics equations and the activation energy values are obtained. The ferrite formation process in the system ZnO - α-Fe 2 O 3 and the effectiveness of zinc extraction during the hydrometallurgical treatment of the zinc calcine and the fuming of zinc containing slags are discussed. Key words: ferrites, zinc, copper, cadmium, kinetics, zinc concentrate, Mössbauer spectroscopy, Xray phase analysis

  8. Three new d10 transition metal selenites containing PO4 tetrahedron: Cd7(HPO4)2(PO4)2(SeO3)2, Cd6(PO4)1.34(SeO3)4.66 and Zn3(HPO4)(SeO3)2(H2O)

    Science.gov (United States)

    Ma, Yun-Xiang; Gong, Ya-Ping; Hu, Chun-li; Mao, Jiang-Gao; Kong, Fang

    2018-06-01

    Three new d10 transition metal selenites containing PO4 tetrahedron, namely, Cd7(HPO4)2(PO4)2(SeO3)2 (1), Cd6(PO4)1.34(SeO3)4.66 (2) and Zn3(HPO4)(SeO3)2(H2O) (3), have been synthesized by hydrothermal reaction. They feature three different structural types. Compound 1 exhibits a novel 3D network composed of 3D cadmium selenite open framework with phosphate groups filled in the 1D helical tunnels. The structure of compound 2 displays a new 3D framework consisted of 2D cadmium oxide layers bridged by SeO3 and PO4 groups. Compound 3 is isostructural with the reported solids of Co3(SeO3)3-x(PO3OH)x(H2O) when x is equal to 1.0. Its structure could be viewed as a 3D zinc oxide open skeleton with SeO3 and HPO4 polyhedra attached on the wall of the tunnels. They represent the only examples in metal selenite phosphates in addition to the above cobalt compounds. Optical diffuse reflectance spectra revealed that these solids are insulators, which are consistent with the results of band structure computations based on DFT algorithm.

  9. Structural Rietveld refinement and vibrational study of MgCr{sub x}Fe{sub 2−x}O{sub 4} spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, K. [Laboratoire des Sciences et technique de l’Environnement et de la Valorisation, département de Génie des Procédés, Université de Mostaganem, Mostaganem (Algeria); Rais, A., E-mail: amrais@yahoo.com [Laboratoire des Sciences et technique de l’Environnement et de la Valorisation, département de Génie des Procédés, Université de Mostaganem, Mostaganem (Algeria); Taibi, K. [Laboratoire de Science et Génie des Matériaux, USTHB, Alger, Algéria (Algeria); Moreau, M.; Ouddane, B. [Laboratory of LASIR Spectrochemistry, University of Science and Technology, 59650 Villeneuve d’Ascq (France); Addou, A. [Laboratoire des Sciences et technique de l’Environnement et de la Valorisation, département de Génie des Procédés, Université de Mostaganem, Mostaganem (Algeria)

    2016-11-15

    Spinel ferrites with the general formula MgCr{sub x}Fe{sub 2−x}O{sub 4} (0≤x≤1) were synthesized by the standard ceramic technique and characterized by X-ray diffraction. The XRD patterns confirmed that the mixed ferrite samples are in the cubic spinel structure which is further validated by Rietveld refinement in the space group Fd3m. The crystal structure and cell parameters were refined by Rietveld analysis. The vibrational study was achieved using Fourier Transform-InfraRed (FT-IR) and Raman spectroscopy. From FT-IR band frequencies, the force constants K{sub t} and K{sub o} , for tetrahedral (A) and octahedral (B) sites respectively, have been calculated and discussed with the trend of bond lengths obtained from Rietveld refinement. For all compositions, Raman spectra revealed the five active modes showing the vibration of O{sup 2−} ions at both the A-site and B-site ions. The frequencies trend with chromium content of both FT-IR and Raman spectra showed a shift toward higher values for all modes.

  10. Phase controlled synthesis of (Mg, Ca, Ba)-ferrite magnetic nanoparticles with high uniformity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.F., E-mail: wangshifa2006@yeah.net [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Science and technology on vacuum technology and physics laboratory, Lanzhou Institute of Physics, Lanzhou 730000, Gansu (China); Li, Q. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Zu, X.T., E-mail: xtzu@uestc.edu.cn [Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Xiang, X.; Liu, W. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Li, S., E-mail: sean.li@unsw.edu.au [School of Material Science and Engineering, University of New South Wales, Sydney 2052 (Australia)

    2016-12-01

    (Mg, Ca, Ba)-ferrite magnetic nanoparticles were successfully synthesized through modifying the atomic ratio of polysaccharide and chelating agent at an optimal sintering temperature. In the process, the polysaccharide plays an important role in drastically shrinking the precursor during the gel drying process. In the metal-complex structure, M{sup 2+} ion active sites were coordinated by −OH of the water molecules except for EDTA anions. The MFe{sub 2}O{sub 4} magnetic nanoparticles exhibited enhanced magnetic properties when compared with nano-MFe{sub 2}O{sub 4} of similar particle size synthesized by other synthesis route reported in the literature. In particular, the sintering temperature improves the crystallinity and increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles significantly. - Graphical abstract: Schematic representation of the proposed model for MFe{sub 2}O{sub 4} nanoparticle synthesis, starting from EDTA-chelated M{sup 2+} (M=Mg, Ca, or Ba) cations (left). High dispersion (Mg, Ca, Ba)-ferrite magnetic nanoparticles were prepared by a modified polyacrylamide gel route. Optimized utilization of polysaccharide, chelating agent, and sintering temperature allowed the formation of (Mg, Ca, Ba)-ferrite nanoparticles with a narrow diameter distribution. - Highlights: • We report a modified polyacrylamide gel route to synthesize (Mg, Ca, Ba)-ferrite magnetic nanoparticles. • Chelate mechanism of metal ions (Mg, Ca, Ba) and EDTA has been discussed. • Phase transformation process of (Mg, Ca, Ba)-ferrites has been discussed. • The preparation method increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles.

  11. Structural and magnetic properties of Ni0.15Mg0.1Cu0.3Zn0.45Fe2O4 ferrite prepared by NaOH-precipitation method

    International Nuclear Information System (INIS)

    Hou, Wei-xiao; Wang, Zhi

    2015-01-01

    Highlights: • NiMgCuZn ferrites were successfully prepared by low-temperature sintering. • NiMgCuZn ferrites have the advantages of both NiCuZn and MgCuZn ferrites. • NiMgCuZn ferrites exhibit high Curie temperature & high stability of permeability. - Abstract: The Ni 0.15 Mg 0.1 Cu 0.3 Zn 0.45 Fe 2 O 4 ferrite powders have been prepared by NaOH co-precipitation method and characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The XRD patterns confirm the single phase spinel structure of synthesized nanoparticles. The average crystallite size of the particles increases from 12 to 36 nm with calcining temperature (T a ) from 500 to 800 °C. The saturation magnetization (M s ) of the superparamagnetic particles was deduced by Langevin theory. Subsequently, the densification characteristics and magnetic properties of the low-temperature 950 °C-sintered ferrite bulk samples were also investigated. The magnetic measurement showed that the sintered bulk sample of T a = 600 °C has the highest initial permeability (μ i ), lowest coercivity (H c ), largest saturation magnetization (M s ) and satisfactory thermal stability of μ i . The microstructures of sintered samples were examined using field emission scanning electric microscope (FESEM). The T a has significant influence on the bulk density, initial permeability, saturation magnetization and coercivity of Ni 0.15 Mg 0.1 Cu 0.3 Zn 0.45 Fe 2 O 4 ferrite

  12. Heat generation ability in AC magnetic field of nano MgFe2O4-based ferrite powder prepared by bead milling

    International Nuclear Information System (INIS)

    Hirazawa, Hideyuki; Aono, Hiromichi; Naohara, Takashi; Maehara, Tsunehiro; Sato, Mitsunori; Watanabe, Yuji

    2011-01-01

    Nanosized MgFe 2 O 4 -based ferrite powder having heat generation ability in an AC magnetic field was prepared by bead milling and studied for thermal coagulation therapy applications. The crystal size and the particle size significantly decreased by bead milling. The heat generation ability in an AC magnetic field improved with the milling time, i.e. a decrease in crystal size. However, the heat generation ability decreased for excessively milled samples with crystal sizes of less than 5.5 nm. The highest heat ability (ΔT=34 o C) in the AC magnetic field (370 kHz, 1.77 kA/m) was obtained for fine MgFe 2 O 4 powder having a ca. 6 nm crystal size (the samples were milled for 6-8 h using 0.1 mm φ beads). The heat generation of the samples was closely related to hysteresis loss, a B-H magnetic property. The reason for the high heat generation properties of the samples milled for 6-8 h using 0.1 mm φ beads was ascribed to the increase in hysteresis loss by the formation of a single domain. Moreover, the improvement in heating ability was obtained by calcination of the bead-milled sample at low temperature. In this case, the maximum heat generation (ΔT=41 o C) ability was obtained for a ca. 11 nm crystal size sample was prepared by crystal growth during the sample calcination. On the other hand, the ΔT value for Mg 0.5 Ca 0.5 Fe 2 O 4 was synthesized using a reverse precipitation method decreased by bead milling. - Research Highlights: →The crystal and particle size for MgFe 2 O 4 based ferrite were decreased by bead milling. →The highest heat ability was obtained for MgFe 2 O 4 having a ca. 6 nm crystal size. →This high heat generation ability was ascribed to the increase in hysteresis loss. →Hysteresis loss was increased by the formation of a single domain.

  13. AC conductivity and dielectric properties of Ti-doped CoCr{sub 1.2}Fe{sub 0.8}O{sub 4} spinel ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Elkestawy, M.A., E-mail: mkestawy@hotmail.co [Physics Department, Faculty of Science, Suez Canal University, Suez (Egypt); Abdel kader, S.; Amer, M.A. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt)

    2010-01-15

    Dielectric properties of spinel ferrite samples Co{sub 1+x}Ti{sub x}Cr{sub 1.2-2x}Fe{sub 0.8}O{sub 4} (0<=x<=0.5) were investigated as a function of frequency at different temperatures using a complex impedance technique. Also Cole-Cole diagrams of both permittivity and electric modulus were investigated at different temperatures to have an insight into the electric nature of the studied solids. It has been found that the electric modulus M* is the dominating property clarifying the intrinsic picture of these polycrystalline ferrites. The low conductivity and loss factor values indicate that the studied compositions may be good candidates for practical applications.

  14. Magnetic properties of nanostructured CuFe2O4

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Goya, G.F.; Rechenberg, H.R.

    1999-01-01

    The structural evolution and magnetic properties of nanostructured copper ferrite, CuFe2O4, have been investigated by X-ray diffraction, Mossbauer spectroscopy, and magnetization measurements. Nanometre-sized CuFe2O4 particles with a partially inverted spinel structure were synthesized by high...

  15. TiO2 Surface Coating of Mn-Zn Dopped Ferrites Study

    DEFF Research Database (Denmark)

    Solný, Tomáš; Ptacek, Petr; Másilko, Jiří

    2016-01-01

    This study deals with TiO2 coating of powder Mn-Zn ferrite in order to recieve photocatalytic layer on the top of these particles, forming core-shell catalyst. Powder catalysts are of great advance over the world due to the high surface area, considering the kinetics proceeds through heterogenous...... phase boundary catalysis. However their withdrawal from cleaning systems often requires energetically and economically demanding processes such as filtration and ultrafiltration. Since the ferrite is magnetic, the advantage of such formed core-shell photocatalyst is easibility of removing from...... photocatalytic decomposition system using external magnetic field. In this study the surface coating is performed, using Ti alkoxides mixtures with nanosized TiO2 particles and C and Au coating to form film layer of TiO2 on the surface of ferrite. XRD, SEM – EDS analyses are employed to study surface coating....

  16. Ferrite thin films: Synthesis, characterization and gas sensing properties towards LPG

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pratibha; Godbole, R.V. [Department of Physics, Abasaheb Garware College, Karve Road, Pune 411 004 (India); Phase, D.M. [UGC-DAE CSR Centre, Indore (India); Chikate, R.C. [Department of Chemistry, Abasaheb Garware College, Karve Road, Pune 411 004 (India); Bhagwat, Sunita, E-mail: smb.agc@gmail.com [Department of Physics, Abasaheb Garware College, Karve Road, Pune 411 004 (India)

    2015-01-15

    Nanocrystalline (Co, Cu, Ni, Zn) ferrite thin films have been deposited onto the Si (100) and alumina substrates by spray pyrolysis deposition technique. Respective metal chlorides and iron chloride were used as precursors. The structural properties of (Co, Cu, Ni, Zn) ferrite thin films were investigated by X-ray diffraction (XRD) technique which confirms polycrystalline nature and single phase spinel structure. The surface morphology was studied using scanning electron microscopy (SEM) which reveals spherical morphology for these films except NiFe{sub 2}O{sub 4} films that exhibit petal like structure. The optical transmittance and reflectance measurements were recorded using a double beam spectrophotometer. The optical studies reveal that the transition is direct band gap energy. The VSM analyzes reveal the predominant ferrimagnetic nature for CuFe{sub 2}O{sub 4} films. The gas sensing properties towards Liquid Petroleum Gas (LPG) revealed that ZnFe{sub 2}O{sub 4} films are sensitive at lower temperature while NiFe{sub 2}O{sub 4} films show steep rise at higher temperature. - Highlights: • (Co, Cu, Ni, Zn) ferrite thin films are synthesized by simple spray pyrolysis technique. • Homogenization of substituent within ferrite structure. • CuFe{sub 2}O{sub 4} film exhibits predominantly ferrimagnetic nature. • LPG sensing at lower temperature for ZnFe{sub 2}O{sub 4} film. • High sensitivity for NiFe{sub 2}O{sub 4} film at higher temperature due to defects created in the structure.

  17. Microstructure and magnetic properties of MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wangwei@mail.buct.edu.cn; Ding, Zui; Zhao, Xiruo [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Wu, Sizhu [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Feng [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Yue, Ming [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022 (China); Liu, J. Ping [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2015-05-07

    Three kinds of spinel ferrite nanocrystals, MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH{sub 4}) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (M{sub s}). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  18. Synthesis and characterization of nanosized MgxMn1−xFe2O4 ferrites by both sol-gel and thermal decomposition methods

    International Nuclear Information System (INIS)

    De-León-Prado, Laura Elena; Cortés-Hernández, Dora Alicia; Almanza-Robles, José Manuel; Escobedo-Bocardo, José Concepción; Sánchez, Javier; Reyes-Rdz, Pamela Yajaira; Jasso-Terán, Rosario Argentina; Hurtado-López, Gilberto Francisco

    2017-01-01

    This work reports the synthesis of Mg x Mn 1−x Fe 2 O 4 (x=0–1) nanoparticles by both sol-gel and thermal decomposition methods. In order to determine the effect of synthesis conditions on the crystal structure and magnetic properties of the ferrites, the synthesis was carried out varying some parameters, including composition. By both methods it was possible to obtain ferrites having a single crystalline phase with cubic inverse spinel structure and a behavior near to that of superparamagnetic materials. Saturation magnetization values were higher for materials synthesized by sol-gel. Furthermore, in both cases particles have a spherical-like morphology and nanometric sizes (11–15 nm). Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia. - Highlights: • Mg–Mn ferrites were synthesized by sol-gel and thermal decomposition methods. • Materials showed a single cubic inverse spinel crystalline structure. • Ferrites have a soft ferrimagnetic behavior close to superparamagnetic materials.

  19. Magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Raghvendra Singh, E-mail: yadav@fch.vutbr.cz [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Havlica, Jaromir [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Hnatko, Miroslav; Šajgalík, Pavol [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 36 Bratislava (Slovakia); Alexander, Cigáň [Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava (Slovakia); Palou, Martin; Bartoníčková, Eva; Boháč, Martin; Frajkorová, Františka; Masilko, Jiri; Zmrzlý, Martin; Kalina, Lukas; Hajdúchová, Miroslava; Enev, Vojtěch [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic)

    2015-03-15

    In this article, Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles were achieved at 800 °C by starch-assisted sol–gel autocombustion method. To further reduce the particle size, these synthesized ferrite nanoparticles were ball-milled for 2 h. X-ray diffraction patterns demonstrated single phase formation of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles. FE-SEM analysis indicated the nanosized spherical particles formation with spherical morphology. The change in Raman modes and relative intensity were observed due to ball milling and consequently decrease of particle size and cationic redistribution. An X-ray Photoelectron Spectroscopy (XPS) result indicated that Co{sup 2+}, Zn{sup 2+} and Fe{sup 3+} exist in octahedral and tetrahedral sites. The cationic redistribution of Zn{sup 2+} and consequently Fe{sup 3+} occurred between octahedral and tetrahedral sites after ball-milling. The change in saturation magnetization (M{sub s}) and coercivity (H{sub c}) with decrease of nanocrystalline size and distribution of cations in spinel ferrite were observed. - Highlights: • Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles. • Starch-assisted sol–gel auto-combustion method. • Effect of ball-milling on particle size and cation distribution. • Magnetic property dependent on cations and particle size.

  20. Single-crystalline MFe(2)O(4) nanotubes/nanorings synthesized by thermal transformation process for biological applications.

    Science.gov (United States)

    Fan, Hai-Ming; Yi, Jia-Bao; Yang, Yi; Kho, Kiang-Wei; Tan, Hui-Ru; Shen, Ze-Xiang; Ding, Jun; Sun, Xiao-Wei; Olivo, Malini Carolene; Feng, Yuan-Ping

    2009-09-22

    We report a general thermal transformation approach to synthesize single-crystalline magnetic transition metal oxides nanotubes/nanorings including magnetite Fe(3)O(4), maghematite gamma-Fe(2)O(3), and ferrites MFe(2)O(4) (M = Co, Mn, Ni, Cu) using hematite alpha-Fe(2)O(3) nanotubes/nanorings template. While the straightforward reduction or reduction-oxides process was employed to produce Fe(3)O(4) and gamma-Fe(2)O(3), the alpha-Fe(2)O(3)/M(OH)(2) core/shell nanostructure was used as precursor to prepare MFe(2)O(4) nanotubes via MFe(2)O(4-x) (0 MFe(2)O(4) nanocrystals with tunable size, shape, and composition have exhibited unique magnetic properties. Moreover, they have been demonstrated as a highly effective peroxidase mimic catalysts for laboratory immunoassays or as a universal nanocapsules hybridized with luminescent QDs for magnetic separation and optical probe of lung cancer cells, suggesting that these biocompatible magnetic nanotubes/nanorings have great potential in biomedicine and biomagnetic applications.

  1. Synthetic, spectroscopic and structural studies on 4-aminobenzoate complexes of divalent alkaline earth metals: x-ray crystal structures of [[Mg(H2O)6] (4-aba)2].2H2O and [Ca(H2O)2(4-aba)2] (4-aba=4-aminobenzoate)

    International Nuclear Information System (INIS)

    Murugavel, Ramaswamy; Karambelkar, Vivek V.; Anantharaman, Ganapathi

    2000-01-01

    Reactions between MCl 2 .nH 2 O (M = Mg, Ca, Sr, and Ba) and 4-aminobenzoic acid (4-abaH) result in the formation of complexes [(Mg(H 2 O) 6 )(4-aba) 2 ) .2H 2 O (I), [Ca(4-aba) 2 (H2 O ) 2 ] (2), [Sr(4-aba) 2 (H2 O ) 2 ] (3), and [Ba(4-aba) 2 Cl] (4), respectively. The new compounds 1 and 2, as well as the previously reported 3 and 4 form an extended intra- and intermolecular hydrogen bonded network in the solid-state. The compounds have been characterized by elemental analysis, pH measurements, thermogravimetric studies, and IR, NMR, and UV-Vis spectroscopy. The solid state structures of the molecules 1 and 2 have been determined by single crystal x-ray diffraction studies. In the case of magnesium complex 1, the dipositively charged Mg cation is surrounded by six water molecules and the two 4-aminobenzoate ligands show no direct bonding to the metal ion. The calcium ion in 2 is octa-coordinated with direct coordination of the 4-aminobenzoate ligands to the metal ion. The Ca-Ca separation in the polymeric chain of 2 is 3.9047(5) A. (author)

  2. Preparation of cobalt-zinc ferrite (Co0.8Zn0.2Fe2O4) nanopowder via combustion method and investigation of its magnetic properties

    International Nuclear Information System (INIS)

    Yousefi, M.H.; Manouchehri, S.; Arab, A.; Mozaffari, M.; Amiri, Gh. R.; Amighian, J.

    2010-01-01

    Research highlights: → Cobalt-zinc ferrite was prepared by combustion method. → Properties of the sample were characterized by several techniques. → Curie temperature was determined to be 350 o C. -- Abstract: Cobalt-zinc ferrite (Co 0.8 Zn 0.2 Fe 2 O 4 ) was prepared by combustion method, using cobalt, zinc and iron nitrates. The crystallinity of the as-burnt powder was developed by annealing at 700 o C. Crystalline phase was investigated by XRD. Using Williamson-Hall method, the average crystallite sizes for nanoparticles were determined to be about 27 nm before and 37 nm after annealing, and residual stresses for annealed particles were omitted. The morphology of the annealed sample was investigated by TEM and the mean particle size was determined to be about 30 nm. The final stoichiometry of the sample after annealing showed good agreement with the initial stoichiometry using atomic absorption spectrometry. Magnetic properties of the annealed sample such as saturation magnetization, remanence magnetization, and coercivity measured at room temperature were 70 emu/g, 14 emu/g, and 270 Oe, respectively. The Curie temperature of the sample was determined to be 350 o C using AC-susceptibility technique.

  3. Effect of Zn addition on structural, magnetic properties, antistructural modeling of Co1-xZnxFe2O4 nano ferrite

    Science.gov (United States)

    Raghuvanshi, S.; Kane, S. N.; Tatarchuk, T. R.; Mazaleyrat, F.

    2018-05-01

    Effect of Zn addition on cationic distribution, structural properties, magnetic properties, antistructural modeling of nanocrystalline Co1-xZnxFe2O4 (0.08 ≤ x ≤ 0.56) ferrite is reported. XRD confirms the formation of single phase cubic spinel nano ferrites with average grain diameter ranging between 41.2 - 54.9 nm. Coercivity (Hc), anisotropy constant (K1) decreases with Zn addition, but experimental, theoretical saturation magnetization (Ms, Ms(t)) increases upto x = 0.32, then decreases, attributed to the breaking of collinear ferrimagnetic phase. Variation of magnetic properties is correlated with cationic distribution. A new antistructural modeling for describing active surface centers is discussed to explain change in concentration of donor's active centers Zn'B, Co'B, acceptor's active centers Fe*A are explained.

  4. Influences of Ti4+ and Mg2+ substitutions on the properties of lithium ferrites

    International Nuclear Information System (INIS)

    Su Hua; Zhang Huaiwu; Tang Xiaoli; Liu Baoyuan

    2009-01-01

    The Ti 4+ and Mg 2+ co-substituted lithium ferrites with different compositions of Zn 0.1 Li 0.45 Mn 0.1 Fe 2.35-2x (TiMg) x O 4 (x=0.0-0.5) were prepared by the ceramic standard processing. The magnetic properties and microstructure of the samples were investigated. A single phase spinel structure was confirmed by XRD in substituting range. Sintering densities continuously decreased with the increase at x value, which was attributed to the fact that the heavier Fe 3+ ions were replaced by the relatively lighter Ti 4+ and Mg 2+ ions. However, relative density of the samples had no obvious relationship with the substituting value. Saturation magnetization continuously decreased with x value, which was attributed to the decrease of resultant magnetic moment between A and B sub-lattice. Remanence decreased monotonously with x value due to the decrease of saturation magnetization and magnetocrystalline anisotropy constant. But the effect of Ti 4+ and Mg 2+ substitutions on the Br/Bs ratio values was not obvious. Coercive force was mainly determined by the microstructure and magnetocrystalline anisotropy constant of the ferrites. In this research, with the increase of Ti 4+ and Mg 2+ substitutions, the advantageous influence by the decrease of magnetocrystalline anisotropy constant was more significant than the disadvantageous influence caused by the increase of closed pores. As a result, coercive force of the ferrites also decreased monotonously with the increase at x value.

  5. Structural and magnetic properties of Mg-Zn ferrites (Mg{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4}) prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Rodríguez, Pamela Yajaira, E-mail: pamela2244_4@hotmail.com [Cinvestav-Unidad Saltillo, Av. Industrial Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, México (Mexico); Cortés-Hernández, Dora Alicia; Escobedo-Bocardo, José Concepción; Almanza-Robles, José Manuel; Sánchez-Fuentes, Héctor Javier; Jasso-Terán, Argentina; De León-Prado, Laura Elena [Cinvestav-Unidad Saltillo, Av. Industrial Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, México (Mexico); Méndez-Nonell, Juan [Centro de Investigación en Materiales Avanzados, Ave. Miguel Cervantes #120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, México (Mexico); Hurtado-López, Gilberto Francisco [Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, CP 25294 Saltillo, Coahuila, México (Mexico)

    2017-04-01

    In this study, the Mg{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles (x=0–0.9) were prepared by sol-gel method. These ferrites exhibit an inverse spinel structure and the lattice parameter increases as the substitution of Zn{sup 2+} ions is increased. At lower Zn content (0.1≤x≤0.5), saturation magnetization (Ms) increases, while it decreases at higher Zn content (x≥6). The remnant magnetization (0.17–2.0 emu/g) and coercive field (6.0–60 Oe) indicate a ferrimagnetic behavior. The average core diameter of selected ferrites is around 15 nm and the nanoparticles morphology is quasi spherical. The heating ability of some Mg{sub 0.9}Zn{sub 0.1}Fe{sub 2}O{sub 4} and Mg{sub 0.7}Zn{sub 0.3}Fe{sub 2}O{sub 4} aqueous suspensions indicates that the magnetic nanoparticles can increase the medium temperature up to 42 °C in a time less than 10 min - Highlights: • Magnetic nanoparticles of Mg{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} were synthesized by sol-gel method. • Nanoparticles showing a single spinel crystalline structure were obtained. • Aqueous suspensions of Mg{sub 0.7}Zn{sub 0.3}Fe{sub 2}O{sub 4} and Mg{sub 0.9}Zn{sub 0.1}Fe{sub 2}O{sub 4} show heating ability.

  6. Effect of 120 MeV 28Si9+ ion irradiation on structural and magnetic properties of NiFe2O4 and Ni0.5Zn0.5Fe2O4

    Science.gov (United States)

    Sharma, R.; Raghuvanshi, S.; Satalkar, M.; Kane, S. N.; Tatarchuk, T. R.; Mazaleyrat, F.

    2018-05-01

    NiFe2O4, Ni0.5Zn0.5Fe2O4 samples were synthesized using sol-gel auto combustion method, and irradiated by using 120 MeV 28Si9+ ion with ion fluence of 1×1012 ions/cm2. Characterization of pristine, irradiated samples were done using X-Ray Diffraction (XRD), Field Emission Scanning Microscopy (FE-SEM), Energy Dispersive X-ray Analysis (EDAX) and Vibrating Sample Magnetometer (VSM). XRD validates the single phase nature of pristine, irradiated Ni- Zn nano ferrite except for Ni ferrite (pristine, irradiated) where secondary phases of α-Fe2O3 and Ni is observed. FE- SEM images of pristine Ni, Ni-Zn ferrite show inhomogeneous nano-range particle size distribution. Presence of diamagnetic ion (Zn2+) in NiFe2O4 increases oxygen positional parameter (u 4¯3m ), experimental, theoretical saturation magnetization (Msexp., Msth.), while decreases the grain size (Ds) and coercivity (Hc). With irradiation Msexp., Msth. increases but not much change are observed in Hc. New antistructure modeling for the pristine, irradiated Ni and Ni-Zn ferrite samples was used for describing the surface active centers.

  7. Impact of Nd{sup 3+} in CoFe{sub 2}O{sub 4} spinel ferrite nanoparticles on cation distribution, structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Raghvendra Singh, E-mail: yadav@fch.vutbr.cz [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Wasserbauer, Jaromir; Hajdúchová, Miroslava; Enev, Vojtěch [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Kuřitka, Ivo; Kožáková, Zuzana [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01 Zlín (Czech Republic)

    2016-02-01

    Nd{sup 3+} doped cobalt ferrite nanoparticles have been synthesized by starch-assisted sol–gel auto-combustion method. The significant role played by Nd{sup 3+} added to cobalt ferrite in changing cation distribution and further in influencing structural and magnetic properties, was explored and reported. The crystal structure formation and crystallite size were studied from X-ray diffraction studies. The microstructural features were investigated by field emission scanning electron microscopy and transmission electron microscopy that demonstrates the nanocrystalline grain formation with spherical morphology. An infrared spectroscopy study shows the presence of two absorption bands related to tetrahedral and octahedral group complexes within the spinel ferrite lattice system. The change in Raman modes in synthesized ferrite system were observed with Nd{sup 3+} substitution, particle size and cation redistribution. The impact of Nd{sup 3+} on cation distribution of Co{sup 2+} and Fe{sup 3+} at octahedral and tetrahedral sites in spinel ferrite cobalt ferrite nanoparticles was investigated by X-ray photoelectron spectroscopy. Room temperature magnetization measurements showed that the saturation magnetization and coercivity increase with addition of Nd{sup 3+} substitution in cobalt ferrite. - Highlights: • Nd{sup 3+} doped CoFe{sub 2}O{sub 4} nanoparticles by starch-assisted sol–gel auto-combustion method. • The change in Raman modes with Nd{sup 3+} substitution. • Presence of absorption infrared bands related to octahedral and tetrahedral site. • The impact of Nd{sup 3+} on cation distribution at octahedral and tetrahedral sites. • Influence of Nd{sup 3+} substitution in cobalt ferrite on magnetic properties.

  8. Study on Formation Mechanism of Fayalite (Fe2SiO4) by Solid State Reaction in Sintering Process

    Science.gov (United States)

    Wang, Zhongbing; Peng, Bing; Zhang, Lifeng; Zhao, Zongwen; Liu, Degang; Peng, Ning; Wang, Dawei; He, Yinghe; Liang, Yanjie; Liu, Hui

    2018-04-01

    The sintering behaviors among SiO2, FeS and Fe3O4 were detected to reveal the formation mechanism of Fe2SiO4. The results indicated that the formation mechanism is divided into five steps: (1) migration of O2- induced by S2- under a reducing atmosphere; (2) formation of Fe3O4- β ; (3) migration of Fe(II) into a ferrite cluster structure to gain oxygen and form Fe3- x O4; (4) Fe(II) invaded the silicon atomic position and released Si(IV); and (5) formation of the stable structure of Fe2SiO4 through chemical diffusion between cations of Fe(II) and Si(IV). These findings can provide theoretical support for controlling the process of the recovery of valuable metals in copper slag through the combined roasting modification-magnetic separation process.

  9. Study of solid state interactions in the systems ZnFe2O4 - CaO, ZnFe2O4 - MgO and zinc cake with CaO and MgO

    Directory of Open Access Journals (Sweden)

    Peltekov A.B.

    2013-01-01

    Full Text Available The solid state interactions of CaO and MgO with synthetic and industrial ZnFe2O4 (in zinc cake have been studied using chemical, XRD analysis and Mössbauer spectroscopy. The exchange reactions in the systems ZnFe2O4 - CaO and ZnFe2O4 - MgO have been investigated in the range of 850-1200ºC and duration up to 180 min. It has been established that Ca2+ and Mg2+ ions exchange Zn2+ in ferrite partially and the solubility of zinc in a 7% sulfuric acid solution increases. The possibilities for utilization of the obtained results in zinc hydrometallurgy have been discussed.

  10. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye.

    Science.gov (United States)

    Cao, Zhenbang; Zhang, Jia; Zhou, Jizhi; Ruan, Xiuxiu; Chen, Dan; Liu, Jianyong; Liu, Qiang; Qian, Guangren

    2017-05-15

    A zinc-dominant ferrite catalyst for efficient degradation of organic dye was prepared by the calcination of electroplating sludge (ES). Characterizations indicated that zinc ferrite (ZnFe 2 O 4 ) coexisted with Fe 2 O 3 structure was the predominant phase in the calcined electroplating sludge (CES). CES displayed a high decolorization ratio (88.3%) of methylene blue (MB) in the presence of H 2 O 2 combined with UV irradiation. The high efficiency could be ascribed to the photocatalytic process induced by ZnFe 2 O 4 and the photo-Fenton dye degradation by ferrous content, and a small amount of Al and Mg in the sludge might also contribute to the catalysis. Moreover, the degradation capability of dye by CES was supported by the synthetic ZnFe 2 O 4 with different Zn to Fe molar ratio (n(Zn): n(Fe)), as 84.81%-86.83% of dye was removed with n(Zn): n(Fe) ranged from 1:0.5 to 1:3. All synthetic ferrite samples in the simulation achieved adjacent equilibrium decolorization ratio, the flexible proportioning of divalent metal ions (M 2+ ) to trivalent metal ions (M 3+ ) applied in the synthesis indicated that the catalyst has a high availability. Therefore, an efficacious catalyst for the degradation of dye can potentially be derived from heavy metal-containing ES, it's a novel approach for the reutilization of ES. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Complex impedance techniques and some properties of Mn sub 0.5 Zn sub 0.5 Fe sub 2 O sub 4 ferrite

    International Nuclear Information System (INIS)

    Ahmad Nazlim Yusoff; Mustaffa Abdullah

    1995-01-01

    Complex impedances (Z-axes = Z' - jZ ) of a standard parallel R-C circuit and a Mn sub 0.5 Zn sub 0.5 Fe sub 2 O sub 4 ferrite sample at 300 K have been measured in the frequency range 1 Hz to 10 MHz by a technique of phase shift. For comparison, the impedances of both systems were also measured using Schlumberger HF 1255 frequency response analyzer. The complex impedance spectrum (Z' vs Z') from the R-C circuit is a perfect semicircle, whereas the spectrum for the ferrite sample is a semicircular curve with its centre being depressed to below the real impedance axis. The depression of the semicircle for the ferrite is discussed as due to a deviation from the ideal Debye relaxation process. An equivalent circuit model that comprises of a capacitor and a resistor in parallel is suggested for the ferrite, but the result for the impedance is modified by including a factor that accounts for the distribution of the relaxation time. The simulated data from the circuit are in agreement with those from the experiment. The dispersion of the impedance is attributed to the conduction and polarization processes in the material

  12. Magnetic interactions in high-energy ball-milled NiZnFe2O4/SiO2 composites

    International Nuclear Information System (INIS)

    Pozo Lopez, G.; Silvetti, S.P.; Urreta, S.E.; Cabanillas, E.D.

    2007-01-01

    Composites Ni 0.5 Zn 0.5 Fe 2 O 4 /SiO 2 are obtained after high-energy ball milling precursor oxides, in stoichiometric proportions, for 200 h at room temperature and further isothermal annealing for 1 h at 1273 K, under air and argon atmosphere, respectively. After 200 h grinding, a complex microstructure develops with small hematite crystals mixed with SiO 2 and remanent NiO and ZnO particles, and very small NiZn ferrite clusters, reaching a mean size of ∼9 nm. The high temperature treatments remove the hematite grains from the powder and promote the growth of NiZn ferrite grains to reach mean sizes nearly ∼20 nm. For treatments in oxidizing atmospheres, the major phases are SiO 2 and NiZn ferrite, while for annealing in Ar a new phase appears, fayalite, which is paramagnetic at room temperature. The M-H loops are all well described by the sum of a ferromagnetic and a superparamagnetic-like contribution. The observed properties are interpreted considering the different magnetic phases obtained, their crystal sizes and their mutual interactions

  13. Structural and magnetic characterization of co-precipitated Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, Ch., E-mail: srinivas.chintoju75@gmail.com [Department of Physics, Sasi Institute of Technology and Engineering, Tadepalligudem 534101 (India); Tirupanyam, B.V. [Department of Physics, Government College (Autonomous), Rajamahendravaram 533103 (India); Meena, S.S.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400085 (India); Babu, Ch. Seshu [Department of Physics, Sasi Institute of Technology and Engineering, Tadepalligudem 534101 (India); Ramakrishna, K.S. [Department of Physics, Srinivasa Institute of Engineering and Technology, Amalapuram 533222 (India); Potukuchi, D.M. [Department of Physics, University College of Engineering, Jawaharlal Nehru Technological University, Kakinada 533003 (India); Sastry, D.L., E-mail: dl_sastry@rediffmail.com [Department of Physics, Andhra University, Visakhapatnam 530003 (India)

    2016-06-01

    A series of Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} (x=0.5, 0.6 and 0.7) ferrite nanoparticles have been synthesized using a co-precipitation technique, in order to understand the doping effect of nickel on their structural and magnetic properties. XRD and FTIR studies reveal the formation of spinel phase of ferrite samples. Substitution of nickel has promoted the growth of crystallite size (D), resulting the decrease of lattice strain (η). It was also observed that the lattice parameter (a) increases with the increase of Ni{sup 2+} ion concentration. All particles exhibit superparamagnetism at room temperature. The hyperfine interaction increases with the increase of nickel substitution, which can be assumed to the decrease of core–shell interactions present in the nanoparticles. The Mössbauer studies witness the existence of Fe{sup 3+} ions and absence of Fe{sup 2+} ions in the present systems. These superparamagnetic nanoparticles are supposed to be potential candidates for biomedical applications. The results are interpreted in terms of microstructure, cation redistribution and possible core–shell interactions. - Highlights: • Thermodynamic solubility of Ni{sup 2+} in zinc ferrite influences the crystallite sizes. • At room temperature the ferrite systems exhibit superparamagnetism. • Core–shell model was exactly suited to explain magnetic behavior. • Core–shell interactions decrease with increase in Ni{sup 2+} ion concentration.

  14. Structure and magnetic properties of Mg0.35Cu0.2Zn0.45Fe2O4 ferrite synthesized by co-precipitation method

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2017-05-01

    Full Text Available Mg0.35Cu0.2Zn0.45Fe2O4 nanosize particles have been synthesized by chemical co-precipitation method and characterized by X-ray diffraction (XRD and vibrating sample magnetometry (VSM. The XRD patterns confirmed the single phase spinel structure of the synthesized powder. The average crystallite size of the powder varied from 14 to 55 nm by changing annealing temperature. The activation energy for crystal growth was estimated as about 18.61KJ/mol. With the annealing temperature increasing, saturation magnetization (MS was successively increased while the coercivity (HC was first increased, passed through a maximum and then declined. The sintering temperature has significant influence on bulk density, initial permeability and Curie temperature of Mg0.35Cu0.2Zn0.45Fe2O4 ferrite.

  15. Effect of the cations distribution on the magnetic properties of SnFe{sub 2}O{sub 4}: First-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Lamouri, R.; Tadout, M. [Materials and Nanomaterials Center, MAScIR Foundation, Rabat Design Center, Rue Mohamed Al Jazouli – Madinat Al Irfane, Rabat 10 100 (Morocco); LaMCScI (ex LMPHE), B.P. 1014, Faculty of Science-Mohammed V University, Rabat (Morocco); Hamedoun, M. [Materials and Nanomaterials Center, MAScIR Foundation, Rabat Design Center, Rue Mohamed Al Jazouli – Madinat Al Irfane, Rabat 10 100 (Morocco); Benyoussef, A. [Materials and Nanomaterials Center, MAScIR Foundation, Rabat Design Center, Rue Mohamed Al Jazouli – Madinat Al Irfane, Rabat 10 100 (Morocco); LaMCScI (ex LMPHE), B.P. 1014, Faculty of Science-Mohammed V University, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Ez-zahraouy, H.; Benaissa, M. [LaMCScI (ex LMPHE), B.P. 1014, Faculty of Science-Mohammed V University, Rabat (Morocco); Mounkachi, O., E-mail: o.mounkachi@mascir.com [Materials and Nanomaterials Center, MAScIR Foundation, Rabat Design Center, Rue Mohamed Al Jazouli – Madinat Al Irfane, Rabat 10 100 (Morocco)

    2017-08-15

    Highlights: • SnFe{sub 2}O{sub 4} a new half-metal spinel oxides for spintronic application. • The most stable normal spinel structures are identified for SnFe{sub 2}O{sub 4}. • Spin-polarized calculations give a half-metallic character for SnFe{sub 2}O{sub 4}. - Abstract: In this work, a study of the electronic and magnetic properties of SnFe{sub 2}O{sub 4} spinel ferrite for different case of octahedral and tetrahedral distribution was carried out by using the Full Potential Linearized Plane Wave (FP-LAPW) method in density functional theory (DFT) implemented in the WIEN2K package, with the generalized gradient (GGA) and Tran-Blaha modified Becke-Johnson approximations for the exchange and correlation functional. Our spin-polarized calculations based on mBJ correction show a half metallic behavior for SnFe{sub 2}O{sub 4} which confirm the usefulness of SnFe{sub 2}O{sub 4} in spintronic application. From the magnetic properties calculations, it is found that the magnetic moment per formula unit is 8.0327 µ{sub β}, 0.000015 µ{sub β} and 3.99µ{sub β} in SnFe{sub 2}O{sub 4} 100% normal, 100% inverse and 50% inverse, respectively.

  16. From epitaxial growth of ferrite thin films to spin-polarized tunnelling

    International Nuclear Information System (INIS)

    Moussy, Jean-Baptiste

    2013-01-01

    This paper presents a review of the research which is focused on ferrite thin films for spintronics. First, I will describe the potential of ferrite layers for the generation of spin-polarized currents. In the second step, the structural and chemical properties of epitaxial thin films and ferrite-based tunnel junctions will be presented. Particular attention will be given to ferrite systems grown by oxygen-assisted molecular beam epitaxy. The analysis of the structure and chemistry close to the interfaces, a key-point for understanding the spin-polarized tunnelling measurements, will be detailed. In the third part, the magnetic and magneto-transport properties of magnetite (Fe 3 O 4 ) thin films as a function of structural defects such as the antiphase boundaries will be explained. The spin-polarization measurements (spin-resolved photoemission, tunnel magnetoresistance) on this oxide predicted to be half-metallic will be discussed. Fourth, the potential of magnetic tunnel barriers, such as CoFe 2 O 4 , NiFe 2 O 4 or MnFe 2 O 4 , whose insulating behaviour and the high Curie temperatures make it exciting candidates for spin filtering at room temperature will be described. Spin-polarized tunnelling experiments, involving either Meservey–Tedrow or tunnel magnetoresistance measurements, will reveal significant spin-polarizations of the tunnelling current at low temperatures but also at room temperatures. Finally, I will mention a few perspectives with ferrite-based heterostructures. (topical review)

  17. Synthesis, structural, dielectric and magnetic properties of CuFe{sub 2}O{sub 4}/MnO{sub 2} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Kashif, E-mail: kashiiu007@gmail.com [Department of Physics, International Islamic University, Islamabad (Pakistan); Bahadur, Ali [Department of Chemistry, Quaid-i-Azam University, Islamabad (Pakistan); Jabbar, Abdul [Department of Chemistry, Allama Iqbal Open University, Islamabad (Pakistan); Iqbal, Shahid [School of chemistry and chemical engineering, university of Chinese academy of sciences, Beijing 10049 (China); Ahmad, Ijaz [Department of Chemistry, Allama Iqbal Open University, Islamabad (Pakistan); Bashir, Muhammad Imran [Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan)

    2017-07-15

    Novel nanocomposite of (1-x)CuFe{sub 2}O{sub 4}/xMnO{sub 2} [x=10% to 50 wt%] has been synthesized by two step wet chemical route without impurity. The x-ray diffraction analysis shows the formation of both phases with crystallite size 40–100 nm which is consist ant with estimated size of SEM.The FTIR spectra confirms the characteristics vibration of ferrites atoms at tetrahedral and octahedral sites along with Mn-O vibration mode, which also confirms the coexistence of both phases. The dielectric properties studied by LCR meter in frequency range of 1 K Hz to 2 MHz.The dielectric constant and tangent loss shows same dispersion of ferrites while a.c. conductivity decreases with increase in MnO{sub 2} contents. The real and imaginary part of impedance also calculated which shows decreasing trend at higher frequency. The magnetic characterization performed by vibrating sample magnetometer (VSM) at room temperature, which shows normal ferromagnetic behavior of ferrites but saturation magnetization and coercivity decreases with incorporation of MnO{sub 2} contents.

  18. Effects of TiO{sub 2} and Co{sub 2}O{sub 3} combination additions on the elemental distribution and electromagnetic properties of Mn–Zn power ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.D.; Wang, Y.G., E-mail: yingang.wang@nuaa.edu.cn

    2015-06-15

    The effects of TiO{sub 2} and Co{sub 2}O{sub 3} combination additions on the elemental distribution and electromagnetic properties of Mn–Zn power ferrites are investigated. TiO{sub 2} addition can promote Co{sub 2}O{sub 3} transfer from grain boundaries to the bulk of the grains. The temperature at which the highest initial permeability μ{sub i} and the lowest power losses P{sub L} appear shifts to low temperature range with the increase of Co{sub 2}O{sub 3} content. Compared with the reference sample without TiO{sub 2} and Co{sub 2}O{sub 3} addition, the microstructure and electromagnetic properties of Mn–Zn power ferrites can be considerably improved with suitable amounts of TiO{sub 2} and Co{sub 2}O{sub 3} combination additions. At the peak temperature, the sample with the 0.1 wt% TiO{sub 2} and 0.08 wt% Co{sub 2}O{sub 3} additions has an increase of 15.8% in μ{sub i} to 3951, and a decrease of 22.9% in P{sub L} to 286 kW/m{sup 3}. The saturation magnetic induction B{sub s} and electrical resistivity ρ at 25 °C reach the highest values of 532 mT and 8.12 Ω m, respectively. - Highlights: • TiO{sub 2} addition can promote Co{sub 2}O{sub 3} transfer from grain boundaries to the bulk of grains. • The Co{sup 2+} ion addition has a compensation for the effect of Ti{sup 4+}on the Mn–Zn ferrites. • The combination of TiO{sub 2} and Co{sub 2}O{sub 3} additions insures stabilization of crystal lattice. • The lowest power loss P{sub L} as 286 kW/m{sup 3} is relatively lower than reported now.

  19. 4,6-Dimethyl-dibenzothiophene conversion over Al{sub 2}O{sub 3}-TiO{sub 2}-supported noble metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Sara [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Escobar, Jose, E-mail: jeaguila@imp.mx [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico); Vazquez, Armando; Reyes, Jose Antonio de los [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Hernandez-Barrera, Melissa [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico)

    2011-03-15

    Research highlights: {yields} Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were pore-filling impregnated to obtain Pd, Pt and Pd-Pt catalysts with {approx}1 wt% nominal metal loading. {yields} Reduced catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS). {yields} In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts. {yields} Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide. {yields} Yield to different products over various catalysts seemed to be strongly influenced by metallic particles dispersion. - Abstract: Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were synthesized using a low-temperature sol-gel method and were further pore-filling impregnated to obtain Pd and Pt catalysts with {approx}1 wt% nominal metal loading. Simultaneous impregnation was used to prepare bimetallic materials at Pd:Pt = 80:20. Solids characterization was carried out by N{sub 2}-physisorption, high-resolution transmission electron microscopy (HR-TEM and E-FTEM), X-ray diffraction, temperature-programmed reduction and CO-chemisorption. Reduced (350 deg. C, H{sub 2} flow) catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS) (in n-dodecane, at 300 deg. C and 5.5 MPa, batch reactor). In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts, where bimetallic Pd-Pt with AT2 carrier had the highest organo-S compound conversion. Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide (as compared to alumina-supported ones). Yield to different products over various catalysts seemed to be strongly influenced by

  20. The far infrared radiation characteristics for Li2O.Al2O3.4SiO2(LAS) glass-ceramics and transition-metal oxide

    International Nuclear Information System (INIS)

    Huh, Nam Jung; Yang, Joong Sik

    1991-01-01

    The far infrared radiation characteristic for Li 2 O.Al 2 O 3 .4SiO 2 (LAS) glass, the LAS glass-ceramic and sintered transition metal oxides such as CuO, Fe 2 O 3 and Co 3 O 4 , were investigated. LAS glass and LAS glass-ceramic was higher than that of the LAS glass. Heat-treated CuO and Co 3 o 4 had radiation characteristic of high efficiency infrared radiant, and heat-treated Fe 2 O 3 had radiation characteristic that infrared emissivity decreased in higher was length above 15μm. (Author)

  1. Sol-gel auto-combustion synthesis of SiO{sub 2}-doped NiZn ferrite by using various fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.H. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China)]. E-mail: khwu@ccit.edu.tw; Ting, T.H. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China); Li, M.C. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China); Ho, W.D. [Chemical Systems Research Division, Chung Shan Institute of Science and Technology, Taoyuan, Taiwan (China)

    2006-03-15

    A nitrate-chelate-silica gel was prepared from metallic nitrates, citric acid and tetraethoxysilane (TEOS) by sol-gel process with different complexing agents such as glycine, hydrazine and citric acid, and it was further used to synthesize Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}/20 wt% SiO{sub 2} nanocomposites by auto-combustion. The effect of varying complexing agent on the structural and magnetic properties of the composites was studied by FTIR, {sup 29}Si CP/MAS NMR, XRD, TEM, EPR and SQUID measurements. The complexing agent in the starting solution influenced the magnetic interaction between NiZn ferrite and silica, and then determined on the particle size. Further, the complexing agent type had a direct effect on the EPR parameters ({delta}H {sub PP}, g-factor and T {sub 2}) and SQUID parameters (M {sub s}, M {sub r} and H {sub c}) of the as-synthesized powder.

  2. Investigation of structural, morphological and electromagnetic properties of Mg0.25Mn0.25Zn0.5-xSrxFe2O4 ferrites

    Science.gov (United States)

    Rahaman, Md. D.; Nusrat, Tania; Maleque, Rumana; Hossain, A. K. M. Akther

    2018-04-01

    Polycrystalline Mg0.25Mn0.25Zn0.5-xSrxFe2O4 (0 ≤ x ≤ 0.20) ferrites were synthesized using the solid state reaction sintering at 1373 K and 1473 K for 4 h. The XRD patterns revealed the formation of single phase cubic spinel with Sr2FeO4 and SrFe12O19 as impurity phases. The decrement in the lattice parameter for Sr2+ substituted samples is attributed to the difference in ionic radii of cations. The crystallite size decreases with increase in Sr2+ content. Low frequency dielectric dispersion is attributed due to the Maxwell-Wagner interfacial polarization. The appearance of the peak in dielectric loss spectrum for x = 0.15 and 0.20 at 1373 K and x = 0.20 at 1473 K suggests the presence of relaxing dipoles. The loss peak shifts towards lower frequency side with Sr2+ content at 1373 K which is due to the strengthening of dipole-dipole interactions. The complex impedance spectra clearly revealed that the both grain and grain boundary effects on the electrical properties. A complex electric modulus spectrum indicates that a non-Debye type of conductivity relaxation exists. The saturation magnetization and remanence gradually decreases with Sr2+ substitution which may be due to the existence of non-magnetic phase in the space between the magnetic particles and the substitution of Zn2+ cation in Mg0.25Mn0.25Zn0.5Fe2O4 ferrite lattice by Sr2+ content. The permeability decreases significantly while the cut-off frequency increases with the Sr2+ content at 1373 K and decreases at 1473 K, obeying the Snoek's law. The decrease in permeability with Sr2+ content is attributed due to the decrease in magnetization because non-magnetic ions weaken the inter-site exchange interaction.

  3. Synthesis and characterization of nanocomposite NiFe2O4 ...

    African Journals Online (AJOL)

    In this work, nano ferrite spinel NiFe2O4 was synthesized by sol-gel method and characterized by SEM, XRD, FT-IR, and VSM. In second step Schiff base made from salicylaldehyde and amino propyl triethoxy silane was used for modification of the synthesized nano ferrit. In the third step removal of Ni(II) was done using ...

  4. Magnetic Properties of Ni-Zn Ferrite Prepared with the Layered Precursor Method

    International Nuclear Information System (INIS)

    Zhou Xin; Hou Zhi-Ling; Li Feng; Qi Xin

    2010-01-01

    We prepare NiZnFe 2 O 4 soft magnetic ferrites with different molar ratios with the layered precursor method and investigate their magnetic properties. In the layered precursor, metal ions are scattered on the layer plate in a certain way on account of the effect of lowest lattice energy and lattice orientation. After high temperature calcinations, spinel ferrites with uniform structural component and single magnetic domain can be obtained, and the magnetic property is improved greatly. NiZnFe 2 O 4 ferrites prepared have the best specific saturation magnetization of 79.15 emu·g −1 , higher than that of 68 emu·g −1 prepared by the chemical co-precipitation method and that of 59 emu·g −1 prepared by the emulsion-gel method. Meanwhile the coercivity of NiZnFe 2 O 4 ferrites prepared by layered precursor method is 14 kA·m −1 , lower than that of 50 emu·g −1 prepared by the co-precipitation method and that of 59 emu·g −1 prepared by the emulsion-gel method. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation

    Science.gov (United States)

    Dillert, Ralf; Taffa, Dereje H.; Wark, Michael; Bredow, Thomas; Bahnemann, Detlef W.

    2015-10-01

    The utilization of solar light for the photoelectrochemical and photocatalytic production of molecular hydrogen from water is a scientific and technical challenge. Semiconductors with suitable properties to promote solar-driven water splitting are a desideratum. A hitherto rarely investigated group of semiconductors are ferrites with the empirical formula MFe2O4 and related compounds. This contribution summarizes the published results of the experimental investigations on the photoelectrochemical and photocatalytic properties of these compounds. It will be shown that the potential of this group of compounds in regard to the production of solar hydrogen has not been fully explored yet.

  6. Effect of Porous Structure on the Magnetic Properties of NixMgyZn1−x−yFe2O4 Magnetic Materials

    International Nuclear Information System (INIS)

    Qi Xin; Zhou Xin; Shu Di; Zhao Jing-Jing; Wang Wei; Chen Juan

    2011-01-01

    We deal with the preparation of NiMgZnFe III -SO 4 layered double hydroxides (LDHs) with the layered precursor method and introduce excessive ZnO into the NiMgZnFe III -SO 4 LDHs to produce Ni x Mg y Zn 1−x−y Fe 2 O 4 ferrites that contain massive ZnO. Then the Ni x Mg y Zn 1−x−y Fe 2 O 4 ferrites are treated with NaOH solution to remove ZnO to produce the porous Ni x Mg y Zn 1−x−y Fe 2 O 4 magnetic material: when y = 0, porous NiZnFe 2 O 4 ferrite magnetic materials are obtained; when y ≠ 0, porous NiMgZnFe 2 O 4 ferrite magnetic materials are obtained. From analyses of these two ferrites, their pore-forming mechanism and comparison of their properties before and after they undergo the alkali treatment, we find that after being treated by the NaOH solution, NiZnFe 2 O 4 /NiMgZnFe 2 O 4 have better uniform-structure pores, which will greatly expand their pore volume, widen their application scope and improve their magnetic properties. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants).

    Science.gov (United States)

    López-Moreno, Martha L; Avilés, Leany Lugo; Pérez, Nitza Guzmán; Irizarry, Bianca Álamo; Perales, Oscar; Cedeno-Mattei, Yarilyn; Román, Félix

    2016-04-15

    Nanoparticles (NPs) have been synthetized and studied to be incorporated in many industrial and medical applications in recent decades. Due to their different physical and chemical properties compared with bulk materials, researchers are focused to understand their interactions with the surroundings. Living organisms such as plants are exposed to these materials and they are able to tolerate different concentrations and types of NPs. Cobalt ferrite (CoFe2O4) NPs are being studied for their application in medical sciences because of their high coercivity, anisotropy, and large magnetostriction. These properties are desirable in magnetic resonance imaging, drug delivery, and cell labeling. This study is aimed to explore the tolerance of Solanum lycopersicum L. (tomato) plants to CoFe2O4 NPs. Tomato plants were grown in hydroponic media amended with CoFe2O4 nanoparticles in a range from 0 to 1000mgL(-1). Exposure to CoFe2O4 NPs did not affect germination and growth of plants. Uptake of Fe and Co inside plant tissues increased as CoFe2O4 nanoparticle concentration was increased in the media. Mg uptake in plant leaves reached its maximum level of 4.9mgg(-1) DW (dry weight) at 125mgL(-1) of CoFe2O4 NPs exposure and decreased at high CoFe2O4 NPs concentrations. Similar pattern was observed for Ca uptake in leaves where the maximum concentration found was 10mgg(-1) DW at 125mgL(-1) of CoFe2O4 NPs exposure. Mn uptake in plant leaves was higher at 62.5mgL(-1) of CoFe2O4 NPs compared with 125 and 250mgL(-1) treatments. Catalase activity in tomato roots and leaves decreased in plants exposed to CoFe2O4 NPs. Tomato plants were able to tolerate CoFe2O4 NPs concentrations up to 1000mgL(-1) without visible toxicity symptoms. Macronutrient uptake in plants was affected when plants were exposed to 250, 500 and 1000mgL(-1) of CoFe2O4 NPs. Published by Elsevier B.V.

  8. Coexistence of ferromagnetism and unconventional spin-glass freezing in the site-disordered kagome ferrite SrS n2F e4O11

    Science.gov (United States)

    Shlyk, L.; Strobel, S.; Farmer, B.; De Long, L. E.; Niewa, R.

    2018-02-01

    Single-crystal x-ray diffraction refinements indicate SrS n2F e4O11 crystallizes in the hexagonal R -type ferrite structure with noncentrosymmetric space group P 63m c and lattice parameters a =5.9541 (2 )Å , c =13.5761 (5 )Å , Z =2 (R (F )=0.034 ). Octahedrally coordinated 2 a [M (1) and M (1a)] and 6 c sites [M (2 )] have random, mixed occupation by Sn and Fe; whereas the tetrahedrally coordinated 2 b sites [Fe(3) and Fe(3a)] are exclusively occupied by Fe, whose displacement from the ideal position with trigonal-bipyramidal coordination causes the loss of inversion symmetry. Our dc and ac magnetization data indicate SrS n2F e4O11 single crystals undergo a ferro- or ferri-magnetic transition below a temperature TC=630 K with very low coercive fields μoHc ⊥=0.27 Oe and μoHc ∥=1.5 Oe at 300 K, for applied field perpendicular and parallel to the c axis, respectively. The value for TC is exceptionally high, and the coercive fields exceptionally low, among the known R-type ferrites. Time-dependent dc magnetization and frequency-dependent ac magnetization data indicate the onset of short-range, spin-glass freezing below Tf=35.8 K , which results from crystallographic disorder of magnetic F e3 + and nonmagnetic S n4 + ions on a frustrated Kagome sublattice. Anomalous ac susceptibility and thermomagnetic relaxation behavior in the short-range-ordered state differs from that of conventional spin glasses. Optical measurements in the ultraviolet to visible frequency range in a diffuse reflectance geometry indicate an overall optical band gap of 0.8 eV, consistent with observed semiconducting properties.

  9. Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3-xO4) for water splitting: a mini-review

    Science.gov (United States)

    Taffa, Dereje H.; Dillert, Ralf; Ulpe, Anna C.; Bauerfeind, Katharina C. L.; Bredow, Thomas; Bahnemann, Detlef W.; Wark, Michael

    2017-01-01

    Solar-assisted water splitting using photoelectrochemical cells (PECs) is one of the promising pathways for the production of hydrogen for renewable energy storage. The nature of the semiconductor material is the primary factor that controls the overall energy conversion efficiency. Finding semiconductor materials with appropriate semiconducting properties (stability, efficient charge separation and transport, abundant, visible light absorption) is still a challenge for developing materials for solar water splitting. Owing to the suitable bandgap for visible light harvesting and the abundance of iron-based oxide semiconductors, they are promising candidates for PECs and have received much research attention. Spinel ferrites are subclasses of iron oxides derived from the classical magnetite (FeIIFe2IIIO4) in which the FeII is replaced by one (some cases two) additional divalent metals. They are generally denoted as MxFe3-xO4 (M=Ca, Mg, Zn, Co, Ni, Mn, and so on) and mostly crystallize in spinel or inverse spinel structures. In this mini review, we present the current state of research in spinel ferrites as photoelectrode materials for PECs application. Strategies to improve energy conversion efficiency (nanostructuring, surface modification, and heterostructuring) will be presented. Furthermore, theoretical findings related to the electronic structure, bandgap, and magnetic properties will be presented and compared with experimental results.

  10. Synthesis of lithium ferrites from polymetallic carboxylates

    Directory of Open Access Journals (Sweden)

    STEFANIA STOLERIU

    2008-10-01

    Full Text Available Lithium ferrite was prepared by the thermal decomposition of three polynuclear complex compounds containing as ligands the anions of malic, tartaric and gluconic acid: (NH42[Fe2.5Li0.5(C4H4O53(OH4(H2O24H2O (I, (NH46[Fe2.5Li0.5(C4H4O63(OH8]×2H2O (II and (NH42[Fe2.5Li0.5(C6H11O73(OH7] (III. The polynuclear complex precursors were characterized by chemical analysis, IR and UV–Vis spectra, magnetic measurements and thermal analysis. The obtained lithium ferrites were characterized by XRD, scanning electron microscopy, IR spectra and magnetic measurements. The single α-Li0.5Fe2.5O4 phase was obtained by thermal decomposition of the tartarate complex annealed at 700 °C for 1 h. The magnetization value ≈ 50 emu g-1 is lower than that obtained for the bulk lithium ferrite due to the nanostructural character of the ferrite. The particle size was smaller than 100 nm.

  11. Co-firing behavior of ZnTiO3-TiO2 dielectrics/hexagonal ferrite composites for multi-layer LC filters

    International Nuclear Information System (INIS)

    Wang Mao; Zhou Ji; Yue Zhenxing; Li Longtu; Gui Zhilun

    2003-01-01

    The low-temperature co-firing compatibility between ferrite and dielectric materials is the key issue in the production process of multi-layer chip LC filters. This paper presents the co-firing behavior and interfacial diffusion of ZnTiO 3 -TiO 2 dielectric/Co 2 Z hexagonal ferrite multi-layer composites. It has been testified that proper constitutional modification is feasible to diminish co-firing mismatch and enhance co-firing compatibility. Interfacial reactions occur at the interface, which can strengthen combinations between ferrite layers and dielectric layers. Titanium and barium tend to concentrate at the interface; iron and zinc have a wide diffusion range

  12. Neutron diffraction study of magnetic structure in the diluted spinel ferrite Zn0.4Co0.6AlxFe2-xO4 (0.0≤x≤1.0)

    International Nuclear Information System (INIS)

    Zakaria, A.K.M.; Asgar, M.A.; Eriksson, S.G.; Ahmed, F.U.; Yunus, S.M.; Delaplane, R.

    2004-01-01

    The distributions of magnetic moments over the A and B sublattices in the spinel ferrite Zn 0.4 Co 0.6 Al x Fe 2-x O 4 and their ordering as functions of temperature and composition have been investigated by neutron diffraction. An increasing loss in B sublattice magnetization with increasing x causing gradual destabilization of the ferrimagnetic order has been revealed. The features observed in neutron results suggest several transitions for the system

  13. Dicty_cDB: AFE742 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFE742 (Link to dictyBase) - - - - AFE742F (Link to Original s...ite) AFE742F 585 - - - - - - Show AFE742 Library AF (Link to library) Clone ID AFE742 (Link to dictyBase) Atlas ID - NBRP ID - dict...yBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/...Sequences producing significant alignments: (bits) Value N U36937 |U36937.1 Dictyostelium discoideum calreti...NA clone hj81f04, mRNA sequence. 36 3e-04 3 AY342298 |AY342298.1 Ictalurus puncta

  14. The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films

    Science.gov (United States)

    Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet

    2018-06-01

    Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.

  15. ZnFe2O4 nanoparticles for potential application in radiosensitization

    International Nuclear Information System (INIS)

    Hidayatullah, M; Nurhasanah, I; Budi, W S

    2016-01-01

    Radiosensitizer is a material that can increase the effects of radiation in radiotherapy application. Various materials with high effective atomic number have been developed as a radiosensitizer, such as metal, iron oxide and quantum dot. In this study, ZnFe 2 O 4 nanoparticles are included in iron oxide class were synthesized by precipitation method from the solution of zinc nitrate and ferrite nitrate and followed by calcination at 700° C for 3 hours. The XRD pattern shows that most of the observed peaks can be indexed to the cubic phase of ZnFe 2 O 4 with a lattice parameter of 8.424 Å. SEM image reveals that nanoparticles are the sphere-like shape with size in the range 84-107 nm. The ability of ZnFe 2 O 4 nanoparticles as radiosensitizer was examined by loading those nanoparticles into Escherichia coli cell culture which irradiated with photon energy of 6 MV at a dose of 2 Gy. ZnFe 2 O 4 nanoparticles showed ability to increase the absorbed dose by 0.5 to 1.0 cGy/g. In addition, the presence of 1 g/L ZnFe 2 O 4 nanoparticles resulted in an increase radiation effect by 6.3% higher than if exposed to radiation only. These results indicated that ZnFe 2 O 4 nanoparticles can be used as the radiosensitizer for increasing radiation effect in radiotherapy. (paper)

  16. Li2Sr4B12O23: A new alkali and alkaline-earth metal mixed borate with [B10O18]6− network and isolated [B2O5]4− unit

    International Nuclear Information System (INIS)

    Zhang Min; Pan Shilie; Han Jian; Yang Zhihua; Su Xin; Zhao Wenwu

    2012-01-01

    A novel ternary lithium strontium borate Li 2 Sr 4 B 12 O 23 crystal with size up to 20 mm×10 mm×4 mm has been grown via the top-seeded solution growth method below 730 °C. Single-crystal XRD analyses showed that Li 2 Sr 4 B 12 O 23 crystallizes in the monoclinic space group P2 1 /c with a=6.4664(4) Å, b=8.4878(4) Å, c=15.3337(8) Å, β=102.02(3)°, Z=2. The crystal structure is composed of [B 10 O 18 ] 6− network and isolated [B 2 O 5 ] 4− unit. The IR spectrum further confirmed the presence of both BO 3 and BO 4 groups. TG-DSC and Transmission spectrum were reported. Band structures and density of states were calculated. - Graphical abstract: A new phase, Li 2 Sr 4 B 12 O 23 , has been discovered in the ternary M 2 O–M′O–B 2 O 3 (M=alkali-metal, M′=alkalineearth metal) system. The crystal structure consists of [B 10 O 18 ] 6− network and isolated [B 2 O 5 ] 4− unit. Highlights: ► Li 2 Sr 4 B 12 O 23 is a a novel borate discovered in the M 2 O–M′O–B 2 O 3 (M=alkali-metal, M′=alkaline-earth metal) system. ► Li 2 Sr 4 B 12 O 23 crystal structure has a three-dimensional crystal structure with [B 10 O 18 ] 6− network and isolated [B 2 O 5 ] 4− unit. ► Sr 1 and Sr 2 are located in two different channels constructed by 3 ∞ [B 10 O 18 ] network.

  17. Dicty_cDB: AFE557 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFE557 (Link to dictyBase) - - - - AFE557F (Link to Original s...ite) AFE557F 540 - - - - - - Show AFE557 Library AF (Link to library) Clone ID AFE557 (Link to dictyBase) Atlas ID - NBRP ID - dict...yBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/...ificant alignments: (bits) Value N U36937 |U36937.1 Dictyostelium discoideum calr...|CB937139.1 IpCGJx13_12_E07_23 IpCGJx13 Ictalurus punctatus cDNA clone IpCGJx13_12_E07 5', mRNA sequence. 52

  18. Characterization of magnetic nano particles of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} prepared by the chemical co-precipitation method; Caracterizacion de nanoparticulas magneticas de CoFe{sub 2}O{sub 4} y CoZnFe{sub 2}O{sub 4} preparadas por el metodo de coprecipitacion quimica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.; Zambrano, G.; Gomez, M. E. [Universidad del Valle, Departamento de Fisica, Laboratorio de Peliculas Delgadas, Ciudad Universitaria Melendez, 25360 Cali (Colombia); Prieto, P. [Universidad del Valle, Centro de Excelencia en Nuevos Materiales, Ciudad Universitaria Melendez, 25360 Cali (Colombia); Espinoza B, F. J., E-mail: javierlo21@gmail.com [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Queretaro (Mexico)

    2012-07-01

    Magnetic cobalt ferrite nanoparticles of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} were prepared by co-precipitation technique from aqueous salt solutions of Co (II), ZnSO{sub 4} and Fe (III), in an alkaline medium. CoFe{sub 2}O{sub 4} powder samples were structurally characterized by X-ray diffraction, showing the presence of the most intense peat at 2{theta} = 413928{sup o} (Co K{alpha}1) corresponding to the (311) crystallographic orientation of the CoFe{sub 2}O{sub 4} spinel phase. The mean size of the crystalline of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} nanoparticles determined from the full width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation was calculated to be 11.4 and 7.0 ({+-} o.2) nm, respectively. Transmission electron microscopy studies permitted determining nanoparticle size of CoZnFe{sub 2}O{sub 4}. Fourier transform infrared spectroscopy was used to confirm the formation of Fe-O bonds, allowing identifying the presence of ferrite spinel structure. Magnetic properties were investigated with the aid of a vibrating sample magnetometer at room temperature Herein, the sample showed superparamagnetic behavior, determined by the hysteresis loop finally, due to the hysteresis loop of the CoZnFe{sub 2}O{sub 4} is very small, our magnetic nanoparticles can be considered as a soft magnetic material. These magnetic nanoparticles have interesting technological applications in biomedicine given their biocompatibility, in nano technology, and in ferro fluid preparation. (Author)

  19. MnFe2 O4 Nanocrystals Wrapped in a Porous Organic Polymer: A Designed Architecture for Water-Splitting Photocatalysis.

    Science.gov (United States)

    Dhanalaxmi, Karnekanti; Yadav, Rajkumar; Kundu, Sudipta K; Reddy, Benjaram Mahipal; Amoli, Vipin; Sinha, Anil Kumar; Mondal, John

    2016-10-24

    A novel MnFe 2 O 4 -porous organic polymer (POP) nanocomposite was synthesized by a facile hydrothermal method and using the highly cross-linked N-rich benzene-benzylamine POP. The nanocomposite presented highly efficient photocatalytic performance in the hydrogen evolution reaction (HER) from pure water without addition of any sacrificial agent under one AM 1.5 G sunlight illumination. A photocatalytic activity of 6.12 mmol h -1  g -1 was achieved in the absence of any noble metal cocatalyst, which is the highest H 2 production rate reported for nonprecious metal catalysts. The photocatalytic performance of MnFe 2 O 4 -POP could be attributed to the intrinsic synergistic effects of manganese ferrite (MnFe 2 O 4 ) nanoclusters interacting with the nitrogen dopant POP with a unique mesoporous nanoarchitecture and spatially confined growth of MnFe 2 O 4 in the interconnected POP network, leading to high visible-light absorption with fast electron transport. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ammonia Gas Sensing Properties of Nanocrystalline Zn1-xCuxFe2O4 Doped with Noble Metal

    Directory of Open Access Journals (Sweden)

    S. V. JAGTAP

    2010-11-01

    Full Text Available The sensors are required basically for monitoring of trace gases in environment. In order to detect, measure and control these gases; one should know the amount and type of gases present in the environment. Among the most toxic and hazardous gases, it is necessary to detect and monitor the ammonia gas because this is enhance in the agricultural sector by the addition of large amounts of NH3 to cultivated farmland in the form of fertilizers. Nanocrystalline spinel type Zn1-xCuxFe2O4 (x=0, 0.2, 0.4 0.6 & 0.8 has been synthesized by sol-gel citrate method. The synthesized powders were characterized by XRD and SEM. The results revealed that the particle size is in the range of 40–45 nm for Cu–Zn ferrite with good crystallinity. The gas sensing properties were studied towards reducing gases like CO, LPG, NH3 and H2S and it is observed that Cu–Zn ferrite shows high response to ammonia gas at relatively lower operating temperature. The Zn0.6Cu0.4Fe2O4 nanomaterial shows better sensitivity towards NH3 gas at an operating temperature 300 0C. Incorporation of Pd improved the sensitivity, selectivity, response time and reduced the operating temperature from 300 0C to 250 0C for NH3 sensor.

  1. Glass additive influence on the sintering behavior, microstructure and microwave magnetic properties of Cu-Bi-Zn co-doped Co2Z ferrites

    International Nuclear Information System (INIS)

    Hsiang, Hsing-I; Mei, Li-Then; Hsi, Chi-Shiung; Wu, Wei-Cheng; Cheng, Li-Bao; Yen, Fu-Su

    2011-01-01

    The Bi 2 O 3 -B 2 O 3 -ZnO-SiO 2 (BB35SZ) glass effects on the sintering behavior and microwave magnetic properties of Cu-Bi-Zn co-doped Co 2 Z ferrites were investigated to develop low-temperature-fired ferrites. The glass wetting characteristics on the Co 2 Z ferrite surface, X-ray diffractometer, scanning electron microscopy and a dilatometer were used to examine the BB35SZ glass effect on Co 2 Z ferrite densification and the chemical reaction between the glass and Co 2 Z ferrites. The results indicate that BB35SZ glass can be used as a sintering aid to reduce the densification temperature of Co 2 Z ferrites from 1300 to 900 o C. 3(Ba 0.9 Bi 0.1 O).2(Co 0.8 Cu 0.2 O).12(Fe 1.975 Zn 0.025 O 3 ) ferrite with 2 wt% BB35SZ glass can be densified below 900 o C, exhibiting an initial permeability of 3.4. This process provides a promising candidate for multilayer chip magnetic devices for microwave applications. - Research highlights: → Bi 2 O 3 -B 2 O 3 -ZnO-SiO 2 glass can effectively wet Co 2 Z ferrites and promote Co 2 Z ferrite densification. → The excess substitution of Bi and Zn (x=0.2) and glass addition enhanced Z phase decomposition into U, W and spinel phases, which resulted in magnetic property degradation. → 3(Ba 0.9 Bi 0.1 O).2(Co 0.8 Cu 0.2 O).12(Fe 1.975 Zn 0.025 O 3 ) ferrite with 2 wt% glass can be densified at below 900 o C and exhibits an initial permeability of 3.4, which provides a promising candidate for multilayer chip magnetic devices for microwave applications.

  2. Topotactic Solid-State Metal Hydride Reductions of Sr2MnO4.

    Science.gov (United States)

    Hernden, Bradley C; Lussier, Joey A; Bieringer, Mario

    2015-05-04

    We report novel details regarding the reactivity and mechanism of the solid-state topotactic reduction of Sr2MnO4 using a series of solid-state metal hydrides. Comprehensive details describing the active reducing species are reported and comments on the reductive mechanism are provided, where it is shown that more than one electron is being donated by H(-). Commonly used solid-state hydrides LiH, NaH, and CaH2, were characterized in terms of reducing power. In addition the unexplored solid-state hydrides MgH2, SrH2, and BaH2 are evaluated as potential solid-state reductants and characterized in terms of their reductive reactivities. These 6 group I and II metal hydrides show the following trend in terms of reactivity: MgH2 < SrH2 < LiH ≈ CaH2 ≈ BaH2 < NaH. The order of the reductants are discussed in terms of metal electronegativity and bond strengths. NaH and the novel use of SrH2 allowed for targeted synthesis of reduced Sr2MnO(4-x) (0 ≤ x ≤ 0.37) phases. The enhanced control during synthesis demonstrated by this soft chemistry approach has allowed for a more comprehensive and systematic evaluation of Sr2MnO(4-x) phases than previously reported phases prepared by high temperature methods. Sr2MnO3.63(1) has for the first time been shown to be monoclinic by powder X-ray diffraction and the oxidative monoclinic to tetragonal transition occurs at 450 °C.

  3. Synthesis and characterization of Cr doped CoFe2O4

    Science.gov (United States)

    Verma, Kavita; Patel, K. R.; Ram, Sahi; Barbar, S. K.

    2016-05-01

    Polycrystalline samples of pure and Cr-doped cobalt ferrite (CoFe2O4 and CoCrFeO4) were prepared by solid state reaction route method. X-ray diffraction pattern infers that both the samples are in single phase with Fd3m space group. Slight reduction in the lattice parameter of CoCrFeO4 has been observed as compared to CoFe2O4. The dielectric dispersion has been explained on the basis of Fe2+ ↔ Fe3+ hopping mechanism. The polarizations at lower frequencies are mainly attributed to electronic exchange between Fe2+ ↔ Fe3+ ions on the octahedral site in the ferrite lattice. In the present system a part from n-type charge carrier (Fe3+/Fe2+), the presence of (Co3+/Co2+) ions give rise to p-type charge carrier. Therefore in addition to n-type charge carrier, the local displacement of p-type charge carrier in direction of external electric field also contributes to net polarization. However, the dielectric constant and loss tangent of CoCrFeO4 are found to be lower than CoFe2O4 and is attributed to the availability of ferrous ion. CoCrFeO4 have less amount of ferrous ion available for polarization as compared to that of CoFe2O4. The impedance spectra reveal a grain interior contribution to the conduction process.

  4. Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite

    Science.gov (United States)

    Ismail, Mukhils M.; Rafeeq, Sewench N.; Sulaiman, Jameel M. A.; Mandal, Avinandan

    2018-05-01

    Improvement of microwave-absorbing materials (MAMs) is the most important research area in various applications, such as in communication, radiation medical exposure, electronic warfare, air defense, and different civilian applications. Conducting polymer, polyaniline doped with para toluene sulphonic acid (PANI-PTSA) as well as cobalt ferrite (CoFe2O4) is synthesized by sol-gel method and intensely blends in different ratios. The characterization of the composite materials, CoFe2O4/PANI-PTSA (CFP1, CFP2, CFP3 and CFP4), was performed by X-ray diffraction (XRD), atomic force microscopy (AFM) and vibrating sample magnetometry (VSM). The microwave-absorbing properties' reflection loss (dB) and important parameters, such as complex relative permittivity ( ɛ r '- jɛ r ″) and complex relative permeability ( µ r '- jµ r ″) were measured in different microwave frequencies in the X-band (8.2-12.4 GHz) region. The composite material CFP3 showed a wider absorption frequency range and maximum reflection loss of - 28.4 dB (99.8% power absorption) at 8.1 GHz and - 9.6 dB (> 90% power absorption) at 11.2 GHz, and so the composite can be used as a microwave absorber; however, it can be more suitable for application in daily life for making cell phones above 9 GHz. Also the results showed that the thicker composites like CFP3 (4 mm) exhibit obviously better EMI SE as compared with the thinner ones (0.19, 0.19, 0.3 mm); this may be related to the low transmission of the EM wave from the composites.

  5. Metal-assisted chemical etching in HF/Na2S2O8 OR HF/KMnO4 produces porous silicon

    NARCIS (Netherlands)

    Hadjersi, T.; Gabouze, N.; Kooij, Ernst S.; Zinine, A.; Zinine, A.; Ababou, A.; Chergui, W.; Cheraga, H.; Belhousse, S.; Djeghri, A.

    2004-01-01

    A new metal-assisted chemical etching method using Na2S2O8 or KMnO4 as an oxidizing agent was proposed to form a porous silicon layer on a highly resistive p-type silicon. A thin layer of Ag or Pd is deposited on the Si(100) surface prior to immersion in a solution of HF and Na2S2O8 or HF and KMnO4.

  6. Structural and magnetic characteristics of PVA/CoFe{sub 2}O{sub 4} nano-composites prepared via mechanical alloying method

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir

    2016-08-15

    Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. The results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.

  7. Spin-Coating and Characterization of Multiferroic MFe2O4 (M=Co, Ni) / BaTiO3 Bilayers

    Science.gov (United States)

    Quandt, Norman; Roth, Robert; Syrowatka, Frank; Steimecke, Matthias; Ebbinghaus, Stefan G.

    2016-01-01

    Bilayer films of MFe2O4 (M=Co, Ni) and BaTiO3 were prepared by spin coating of N,N-dimethylformamide/acetic acid solutions on platinum coated silicon wafers. Five coating steps were applied to get the desired thickness of 150 nm for both the ferrite and perovskite layer. XRD, IR and Raman spectroscopy revealed the formation of phase-pure ferrite spinels and BaTiO3. Smooth surfaces with roughnesses in the order of 3 to 5 nm were found in AFM investigations. Saturation magnetization of 347 emu cm-3 for the CoFe2O4/BaTiO3 and 188 emu cm-3 for the NiFe2O4/BaTiO3 bilayer, respectively were found. For the CoFe2O4/BaTiO3 bilayer a strong magnetic anisotropy was observed with coercivity fields of 5.1 kOe and 3.3 kOe (applied magnetic field perpendicular and parallel to film surface), while for the NiFe2O4/BaTiO3 bilayer this effect is less pronounced. Saturated polarization hysteresis loops prove the presence of ferroelectricity in both systems.

  8. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    International Nuclear Information System (INIS)

    Qi, B.; Andrew, J. S.; Arnold, D. P.

    2017-01-01

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe_6_6Co_3_4) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe_2O_4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  9. Optimization of the behavior of CTAB coated cobalt ferrite nanoparticles

    Science.gov (United States)

    Kumari, Mukesh; Bhatnagar, Mukesh Chander

    2018-05-01

    In this work, we have synthesized cetyltrimethyl ammonium bromide (CTAB) mixed cobalt ferrite (CoFe2O4) nanoparticles (NPs) using sol-gel auto-combustion method taking a different weight percent ratio of CTAB i.e., 0%, 1%, 2%, 3% and 4% with respect to metal nitrates. The morphological, structural and magnetic properties of these NPs are characterized by high resolution transmitted electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectrometer and physical property measurement system (PPMS). It has been found that saturation magnetization of cobalt ferrite increases with increase in crystalline size of the NPs. Saturation magnetization and crystallite size both were found to be lowest in the case of sample containing 2% CTAB.

  10. Electric-field tunable perpendicular magnetic anisotropy in tetragonal Fe4N/BiFeO3 heterostructures

    Science.gov (United States)

    Yin, Li; Wang, Xiaocha; Mi, Wenbo

    2017-07-01

    Electric field control on perpendicular magnetic anisotropy (PMA) is indispensable for spintronic devices. Herewith, in tetragonal Fe4N/BiFeO3 heterostructures with the FeAFeB/Fe-O2 interface, PMA in each Fe4N layer, not merely interfacial layers, is modulated by the electric field, which is attributed to the broken spin screening of the electric field in highly spin-polarized Fe4N. Moreover, the periodical dx y+dy z+dz2 and dx y+dx2-y2 orbital-PMA oscillation enhances the interactions between adjacent FeAFeB and (FeB)2N atomic layers, which benefits the electric field modulation on PMA in the whole Fe4N atomic layers. The electric-field control on PMA in Fe4N/BiFeO3 heterostructures is favored by the electric-field-lifted potential in Fe4N.

  11. Synthesis, structure and electromagnetic properties of Mn–Zn ferrite by sol–gel combustion technique

    International Nuclear Information System (INIS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn–Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn 1−x Zn x Fe 2 O 4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol–gel combustion method. The microstructure and surface morphology of Mn–Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field. - Highlights: • We designed and synthesized Mn 1−x Zn x Fe 2 O 4 (x=0.2, 0.5 and 0.8), with citrate acid as complex agent by the sol–gel combustion method. • Citrate acid as the complex agent overcomes the aggregation of ferrite resulting in high purity and homogeneous particles. • We investigated the electromagnetic absorbing performance of a fabricated thin coating by introducing Mn–Zn ferrite into epoxy resin (EP). • The Mn 0.8 Zn 0.2 Fe 2 O 4 composite coatings could achieve the satisfactory absorbing value of −17 dB at 800 MHz. • The prepared composites can potentially be used for the application in electromagnetic microwave absorbing field

  12. Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-x Mg x Fe2O4 nanoparticle ferrites

    Science.gov (United States)

    R, M. Rosnan; Z, Othaman; R, Hussin; Ali, A. Ati; Alireza, Samavati; Shadab, Dabagh; Samad, Zare

    2016-04-01

    In this study, nanocrystalline Co-Ni-Mg ferrite powders with composition Co0.5Ni0.5-x Mg x Fe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co-Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ˜ 32 nm to ˜ 36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+ substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ˜ 57.35 emu/g to ˜ 61.49 emu/g and ˜ 603.26 Oe to ˜ 684.11 Oe (1 Oe = 79.5775 A·m-1), respectively. The higher values of magnetization M s and M r suggest that the optimum composition is Co0.5Ni0.4Mg0.1Fe2O4 that can be applied to high-density recording media and microwave devices. Project supported by the Ibnu Sina Institute for Scientific and Industrial Research, Physics Department of Universiti Teknologi Malaysia and the Ministry of Education Malaysia (Grant Nos. Q.J130000.2526.04H65).

  13. Spin-Coating and Characterization of Multiferroic MFe{sub 2}O{sub 4} (M=Co, Ni) / BaTiO{sub 3} Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Quandt, Norman [Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Germany); Roth, Robert [Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Syrowatka, Frank [Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Straße 4, 06120 Halle (Germany); Steimecke, Matthias [Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Germany); Ebbinghaus, Stefan G., E-mail: stefan.ebbinghaus@chemie.uni-halle.de [Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Germany)

    2016-01-15

    Bilayer films of MFe{sub 2}O{sub 4} (M=Co, Ni) and BaTiO{sub 3} were prepared by spin coating of N,N-dimethylformamide/acetic acid solutions on platinum coated silicon wafers. Five coating steps were applied to get the desired thickness of 150 nm for both the ferrite and perovskite layer. XRD, IR and Raman spectroscopy revealed the formation of phase-pure ferrite spinels and BaTiO{sub 3}. Smooth surfaces with roughnesses in the order of 3 to 5 nm were found in AFM investigations. Saturation magnetization of 347 emu cm{sup −3} for the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} and 188 emu cm{sup −3} for the NiFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer, respectively were found. For the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer a strong magnetic anisotropy was observed with coercivity fields of 5.1 kOe and 3.3 kOe (applied magnetic field perpendicular and parallel to film surface), while for the NiFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer this effect is less pronounced. Saturated polarization hysteresis loops prove the presence of ferroelectricity in both systems. - Graphical abstract: The SEM image of the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer on Pt–Si-substrate (left), magnetization as a function of the magnetic field perpendicular and parallel to the film plane (right top) and P–E and I–V hysteresis loops of the bilayer at room temperature. - Highlights: • Ferrite and perovskite oxides grown on platinum using spin coating technique. • Columnar growth of cobalt ferrite particle on the substrate. • Surface investigation showed a homogenous and smooth surface. • Perpendicular and parallel applied magnetic field revealed a magnetic anisotropy. • Switching peaks and saturated P–E hysteresis loops show ferroelectricity.

  14. Effects of microstructure and CaO addition on the magnetic and mechanical properties of NiCuZn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sea-Fue, E-mail: sfwang@ntut.edu.tw; Hsu, Yung-Fu; Liu, Yi-Xin; Hsieh, Chung-Kai

    2015-11-15

    In this study, the effects of grain size and the addition of CaCO{sub 3} on the magnetic and mechanical properties of Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramics were investigated. The bending strength of the ferrites increased from 66 to 84 MPa as the grain size of the sintered ceramics decreased from 10.25 μm to 7.53 μm, while the change in hardness was insignificant. The addition of various amounts of CaCO{sub 3} densified the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramics at 1075 °C. In the pure Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic, second phase CuO was segregated at the grain boundaries. With the CaCO{sub 3} content ≥1.5 wt%, a small amount of discrete plate-like second phase Fe{sub 2}CaO{sub 4} was observed, together with the disappearance of the second phase CuO. The grain size of the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic dropped from 7.80 μm to 4.68 μm, and the grain size distribution widened as the CaCO{sub 3} content increased from 0 to 5 wt%. Initially rising to 807 after CaCO{sub 3} addition up to 2.0 wt%, due to a reduced grain size, the Vickers hardness began to drop as the CaCO{sub 3} content increased. The bending strength grew linearly with the CaCO{sub 3} content and reached twice the value for the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic with an addition of 5.0 wt% CaCO{sub 3}. The initial permeability of the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic decreased substantially from 402 to 103 as the addition of CaCO{sub 3} in ferrite increased from 0 to 5 wt%, and the quality factor of the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic was maximized at 95 for 1.0 wt% CaCO{sub 3} addition. - Highlights: • Effects of grain size and CaCO{sub 3} on the properties of NiCuZn ferrite were studied. • Bending strength increased with grain size of the ferrite but not in the hardness. • Bending strength reached a twice value for

  15. Spark plasma sintering and microwave electromagnetic properties of MnFe{sub 2}O{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Penchal Reddy, M., E-mail: drlpenchal@gmail.com [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Mohamed, A.M.A. [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 4372 (Egypt); Venkata Ramana, M. [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhou, X.B.; Huang, Q. [Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Ningbo 315201 (China)

    2015-12-01

    MnFe{sub 2}O{sub 4} ferrite powder was synthesized by a facile one-pot hydrothermal route and then consolidated into dense nanostructured compacts by the spark plasma sintering (SPS) technique. The effect of sintering temperature, on densification, morphology, magnetic and microwave absorption properties was examined. Spark plasma sintering resulted in uniform microstructure, as well as maximum relative density of 98%. The magnetic analysis indicated that the MnFe{sub 2}O{sub 4} ferrite nanoparticles showed ferrimagnetic behavior. Moreover, the dielectric loss and magnetic loss properties of MnFe{sub 2}O{sub 4} ferrite nanoparticles were both enhanced due to its better dipole polarization, interfacial polarization and shape anisotropy. It is believed that such spark plasma sintered ceramic material will be applied widely in microwave absorbing area. - Highlights: • Successful synthesis of dense MnFe{sub 2}O{sub 4} ceramics using spark plasma sintering. • Lower temperature and shorter sintering time, compared to conventional methods. • Optimal sintering condition was achieved. • The magnetic properties of the sintered samples are sensitive to the density and microstructure.

  16. Structural characterization and photocatalytic analysis of BaFe{sub 2}O{sub 4} obtained at low temperatures; Caracterizacao estrutural e analise fotocatalitica de BaFe{sub 2}O{sub 4} obtido via sintese por combustao

    Energy Technology Data Exchange (ETDEWEB)

    Da Dalt, S.; Sousa, B.B.; Alves, A.K.; Bergmann, C.P., E-mail: silvana.da.dalt@ufrgs.b [Universidade Federal do Rio Grande do Sul (LACER/UFRGS), Porto Alegre, RS (Brazil). Dept. de Materiais. Lab. de Materiais Ceramicos

    2010-07-01

    Barium monoferrite BaFe{sub 2}O{sub 4} classified as permanent magnet stands out among other ceramic magnets due to its high chemical stability, corrosion resistance and low production cost. In addition, experiments conducted on photocatalytic degradation of methyl orange and UV transmittance by spectrophotometry showed that this material has photocatalytic properties. The spinel ferrite has importance in many technological areas as computing, communication and security. Many techniques for synthesis were studied to optimize the properties of this material. The synthesis of BaFe{sub 2}O{sub 4} by conventional processes often occurs at temperatures above 1000 deg C. In this work we obtained the phase BaFe{sub 2}O{sub 4} at low temperatures (600 deg C) from the combustion reaction using nitrates and maleic anhydride as metal complexing agent. Techniques of X-ray diffraction, specific surface area, thermogravimetry analysis and analysis photocatalytic were employed to characterize the products obtained. (author)

  17. Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe{sub 2}O{sub 4}) under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dillert, Ralf [Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstr. 3, 30167 Hannover (Germany); Laboratorium für Nano- und Quantenengineering, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 39, 30167 Hannover (Germany); Taffa, Dereje H.; Wark, Michael [Institut für Chemie, Technische Chemie, Carl-von-Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg (Germany); Bredow, Thomas [Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115 Bonn (Germany); Bahnemann, Detlef W. [Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstr. 3, 30167 Hannover (Germany); Laboratory for Nanocomposite Materials, Department of Photonics, Faculty of Physics, Saint-Petersburg State University, Ulianovskaia Str. 3, Peterhof, Saint-Petersburg 198504 (Russian Federation)

    2015-10-01

    The utilization of solar light for the photoelectrochemical and photocatalytic production of molecular hydrogen from water is a scientific and technical challenge. Semiconductors with suitable properties to promote solar-driven water splitting are a desideratum. A hitherto rarely investigated group of semiconductors are ferrites with the empirical formula MFe{sub 2}O{sub 4} and related compounds. This contribution summarizes the published results of the experimental investigations on the photoelectrochemical and photocatalytic properties of these compounds. It will be shown that the potential of this group of compounds in regard to the production of solar hydrogen has not been fully explored yet.

  18. Crystallographic and magnetic properties of the spinel-type ferrites Zn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 0.75)

    Energy Technology Data Exchange (ETDEWEB)

    Azad, A. K. [Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE 1410 (Brunei Darussalam); Zakaria, A. K. M.; Yunus, S. M.; Kamal, I.; Datta, T. K. [Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka (Bangladesh); Jewel, Md. Yusuf; Khan, Abu Saeed [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Eriksson, S.-G. [Department of Chemical & Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden)

    2015-05-15

    Ultrahigh frequencies (UHF) have applications in signal and power electronics to minimize product sizes, increase production quantity and lower manufacturing cost. In the UHF range of 300 MHz to 3 GHz, ferrimagnetic iron oxides (ferrites) are especially useful because they combine the properties of a magnetic material with that of an electrical insulator. Ferrites have much higher electrical resistivity than metallic ferromagnetic materials, resulting in minimization of the eddy current losses, and total penetration of the electromagnetic (EM) field. Hence ferrites are frequently applied as circuit elements, magnetic storage media like read/write heads, phase shifters and Faraday rotators. The electromagnetic properties of ferrites are affected by operating conditions such as field strength, temperature and frequency. The spinel system Zn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} (x=0.0, 0.25, 0.50 and 0.75) has been prepared by the standard solid state sintering method. X-ray and neutron powder diffraction measurements were performed at room temperature. Neutron diffraction data analysis confirms the cubic symmetry corresponding to the space group Fd3m. The distribution of three cations Zn{sup 2+}, Co{sup 2+} and Fe{sup 3+} over the spinel lattice and other crystallographic parameters like lattice constant, oxygen position parameter, overall temperature factor and occupancies of different ions in different lattice sites for the samples have been determined from the analysis of neutron diffraction data. The lattice constant increases with increasing Zn content in the system. The magnetic structure was found to be ferrimagnetic for the samples with x≤0.50. Magnetization measurements show that with the increase of Zn content in the system the value of saturation magnetization first increases and then decreases. The variation of the magnetic moment with Zn substitution has been discussed in terms of the distribution of magnetic and non-magnetic ions over the A and B

  19. Dicty_cDB: AFE812 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AGTAATTTAAAAAAAAAAAAACCA AAAAAAAAAXXXXXXXXXXCCANATTTCCATANATGTGTTNAAANACGTGGNGGNA.... ID AFE812Z 3' end seq. >AFE812Z.Seq ----------CCANATTTCCATANATGTGTTNAAANACGTGGNGGNATCTTAAGNTGNGA ATTTNATCC...ATACAATTAAAAAAAGTTA AAATTAAATTTGTAAAATCAATTTGTAACAAAAACTAGTAATTTAAAAAAAAAAAAACCA AAAAAAAAA----------CCANATTTCCATANA

  20. Study of some Mg-based ferrites as humidity sensors

    International Nuclear Information System (INIS)

    Rezlescu, N; Rezlescu, E; Doroftei, C; Popa, P D

    2005-01-01

    The micostructure and humidity sensitivity of MgFe 2 O 4 + CaO, Mg 0.5 Cu 0.5 Fe 1.8 Ga 0.2 O 4 , Mg 0.5 Zn 0.5 Fe 2 O 4 + KCl and MgMn 0.2 Fe 1.8 O 4 ferrites were investigated. We have found that the humidity sensitivity largely depends on composition, crystallite size, surface area and porosity. The best results concerning humidity sensitivity were obtained for MgMn 0.2 Fe 1.8 O 4 ferrite

  1. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B. [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States); Andrew, J. S. [University of Florida, Department of Materials Science and Engineering (United States); Arnold, D. P., E-mail: darnold@ufl.edu [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States)

    2017-03-15

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe{sub 66}Co{sub 34}) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  2. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  3. Improvement of catalytic activity in selective oxidation of styrene with H{sub 2}O{sub 2} over spinel Mg–Cu ferrite hollow spheres in water

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Jinhui, E-mail: jinhuitong@126.com [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Cai, Xiaodong; Wang, Haiyan; Zhang, Qianping [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2014-07-01

    Graphical abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. Solid spinel Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods for comparison. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be magnetically separated easily for reuse and no obvious loss of activity was observed when reused in six consecutive runs. - Highlights: • Uniform spinel ferrite hollow spheres were prepared by a simple method. • The catalyst has been proved much more efficient for styrene oxidation than the reported analogues. • The catalyst can be easily separated by external magnetic field and has exhibited excellent reusability. • The catalytic system is environmentally friendly. - Abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. For comparison, solid Mg–Cu ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods. All the samples were characterized by Fourier transform infrared spectrophotometry (FT-IR), X-ray diffractometry (XRD), transmission electron microscopy (TEM) and N{sub 2} physisorption. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed, and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be

  4. Structural and magnetic properties of Ni{sub 0.15}Mg{sub 0.1}Cu{sub 0.3}Zn{sub 0.45}Fe{sub 2}O{sub 4} ferrite prepared by NaOH-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wei-xiao; Wang, Zhi, E-mail: zhiwang@tju.edu.cn

    2015-09-15

    Highlights: • NiMgCuZn ferrites were successfully prepared by low-temperature sintering. • NiMgCuZn ferrites have the advantages of both NiCuZn and MgCuZn ferrites. • NiMgCuZn ferrites exhibit high Curie temperature & high stability of permeability. - Abstract: The Ni{sub 0.15}Mg{sub 0.1}Cu{sub 0.3}Zn{sub 0.45}Fe{sub 2}O{sub 4} ferrite powders have been prepared by NaOH co-precipitation method and characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The XRD patterns confirm the single phase spinel structure of synthesized nanoparticles. The average crystallite size of the particles increases from 12 to 36 nm with calcining temperature (T{sub a}) from 500 to 800 °C. The saturation magnetization (M{sub s}) of the superparamagnetic particles was deduced by Langevin theory. Subsequently, the densification characteristics and magnetic properties of the low-temperature 950 °C-sintered ferrite bulk samples were also investigated. The magnetic measurement showed that the sintered bulk sample of T{sub a} = 600 °C has the highest initial permeability (μ{sub i}), lowest coercivity (H{sub c}), largest saturation magnetization (M{sub s}) and satisfactory thermal stability of μ{sub i}. The microstructures of sintered samples were examined using field emission scanning electric microscope (FESEM). The T{sub a} has significant influence on the bulk density, initial permeability, saturation magnetization and coercivity of Ni{sub 0.15}Mg{sub 0.1}Cu{sub 0.3}Zn{sub 0.45}Fe{sub 2}O{sub 4} ferrite.

  5. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... NUCLEAR REGULATORY COMMISSION [[NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... draft regulatory guide (DG), DG-1279, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in...

  6. Synthesis and crystal structure of hydrogen selenates K(HSeO4)(H2SeO4) and Cs(HSeO4)(H2SeO4)

    International Nuclear Information System (INIS)

    Troyanov, S.I.; Morozov, I.V.; Zakharov, M.A.; Kemnitz, E.

    1999-01-01

    Hydrogen selenates of the compositions K(HSeO 4 )(H 2 SeO 4 ) and Cs(HSeO 4 )(H 2 SeO 4 ) are synthesized by the reaction of alkali metal carbonates with an excess of the concentrated selenic acid. The X-ray diffraction study showed that both compounds are isostructural to the corresponding hydrogen sulfates. The difference in the systems of hydrogen bonding are caused by various combinations of the acceptor functions of the oxygen atoms in the HSeO 4 and H 2 SeO 4 groups

  7. Synthesis and hyperthermia property of hydroxyapatite-ferrite hybrid particles by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Inukai, Akihiro; Sakamoto, Naonori; Aono, Hiromichi; Sakurai, Osamu; Shinozaki, Kazuo; Suzuki, Hisao; Wakiya, Naoki

    2011-01-01

    Biocompatible hybrid particles composed of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) and ferrite (γ-Fe 2 O 3 and Fe 3 O 4 ) were synthesized using a two-step procedure. First, the ferrite particles were synthesized by co-precipitation. Second, the suspension, which was composed of ferrite particles by a co-precipitation method, Ca(NO 3 ) 2 , and H 3 PO 4 aqueous solution with surfactant, was nebulized into mist ultrasonically. Then the mist was pyrolyzed at 1000 o C to synthesize HAp-ferrite hybrid particles. The molar ratio of Fe ion and HAp was (Fe 2+ and Fe 3+ )/HAp=6. The synthesized hybrid particle was round and dimpled, and the average diameter of a secondary particle was 740 nm. The cross section of the synthesized hybrid particles revealed two phases: HAp and ferrite. The ferrite was coated with HAp. The synthesized hybrid particles show a saturation magnetization of 11.8 emu/g. The net saturation magnetization of the ferrite component was calculated as 32.5 emu/g. The temperature increase in the AC-magnetic field (370 kHz, 1.77 kA/m) was 9 o C with 3.4 g (the ferrite component was 1.0 g). These results show that synthesized hybrid particles are biocompatible and might be useful for magnetic transport and hyperthermia studies. - Research Highlights: → Biocompatible hybrid particles composed of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) and ferrite (γ-Fe 2 O 3 and Fe 3 O 4 ) were synthesized using a two-step synthesis, which is comprised of co-precipitation and ultrasonic spray pyrolysis. → Cross sectional TEM observation and X-ray diffraction revealed that synthesized hybrid particles showed two phases (HAp and ferrite), and the ferrite was coated with HAp. → The saturation magnetization of ferrite in the HAp-ferrite hybrid was 32.49 emu/g. → The increased temperature in the AC-magnetic field (370 kHz, 1.77 kA/m) was 9 o C with 3.4 g (the ferrite component was 1.0 g).

  8. Structural parameters and resistive switching phenomenon study on Cd0.25Co0.75Fe2O4 ferrite thin film

    International Nuclear Information System (INIS)

    Chhaya, U.V.; Gadhvi, M.R.; Mistry, B.V.; Bhavsar, K.H.; Joshi, U.S.; Lakhani, V.K.; Modi, K.B.

    2011-01-01

    Cadmium substituted cobalt ferrite thin film with nominal composition Cd 0.25 Co 0.75 Fe 2 O 4 , has been grown on quartz substrate by chemical solution deposition and their structural and electrical properties have been investigated. Grazing incidence X-ray diffraction (XRD) confirmed single phase spine) structure with nanometer grain size. Atomic force microscopic analysis revealed uniform nano structured growth of about 70 nm average crystallite size. The XRD data have been used to determine the distribution of cations among the tetrahedral and octahedral sites of the spinel lattice and various structural parameters. The cation distribution determined from X-ray diffraction line intensity calculations revealed, 60% octahedral sites occupancy of Cd 2+ -ions in the composition. Four terminal I-V measurements show hysteretic curves, suggesting high resistance state (HRS) and low resistance state (LRS) in the film with polarity dependence. Maximum resistance ratio, R high /R low of 57% was observed at room temperature in the Ag/Cd 0.25 Co 0.75 Fe 2 O 4 /Ag planar structure. Observed resistance switching is attributed to combined effects, viz., in the LRS, the major fraction of cadmium occupation and electron exchange between Fe 3+ and Fe 2+ at the B-sites, whereas the HRS shows Schottky-like conduction mechanism at the Ag/Cd 0.25 Co 0.75 Fe 2 O 4 interface. (author)

  9. Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}) ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ditta, Allah [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Junaid, Muhammad, E-mail: junaid.malik95@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khalil, R.M. Arif [Department of Physics, Sahiwal Sub-Campus Bahauddin Zakariya University, Sahiwal (Pakistan); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2017-02-15

    Gadolinium (Gd) and Dysprosium (Dy) co-doped Ni-Co (Ni{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}) ferrites were prepared by micro-emulsion route. X-ray diffraction (XRD) analysis indicated the development of cubic spinel structure. The lattice parameter and X-ray density were found to increase from 8.24 to 8.31 Å and 5.57 to 5.91 (gm/cm{sup 3}) respectively as the Gd-Dy contents increased in nickel-cobalt ferrites. The crystallite size calculated from the Scherrer's formula exhibited the formation of nanocrystalline ferrites (13–26 nm). Two foremost absorption bands observed in FTIR spectra within 400 cm{sup −1} (υ{sub 2}) to 600 cm{sup −1} (υ{sub 1}) which correspond to stretching vibrations of tetrahedral and octahedral complexes respectively. The dielectric constant (ε) and dielectric loss (tanδ) were decreased by the optimization of frequency and abrupt decrease in the low frequency region and higher values in the high frequency region were observed. The dielectric dispersion was due to rapid decrease of dielectric constant in the low frequency region. This variation of dielectric dispersion was explicated in the light of space charge polarization model of Maxwell-Wagner. The dielectric loss occurs in these ferrites due to electron hopping and defects in the dipoles. The electron hopping was possible at low frequency range but at higher frequency the dielectric loss was decreased with the decrease of electron hopping. Magnetic properties were observed by measuring M-H loops. Due to low dielectric loss and dielectric constant these materials were appropriate in the fabrication of switching and memory storage devices.

  10. Microstructural analysis nanoferritas Mn_0_,_5Zn_0_,_5Fe_2O_4 e Mn_0_,_6_5Zn_0_,_3_5Fe_2O_4 synthesized by combustion reaction

    International Nuclear Information System (INIS)

    Diniz, V.C.S.; Figueiredo, A.R.; Costa Junior, A.D.S.; Diniz, H.M.; Vieira, D.A.; Costa, A.C.F.M.

    2014-01-01

    The MnZn ferrites are ferrimagnetic materials that have been studied and used in various technological fields. In this work investigated the microstructural characteristics of ferrites and Mn_0_,_5Zn_0_,_5Fe_2O_4 Mn_0_,_6_5Zn_0_,_3_5Fe_2O_4 synthesized by combustion reaction in 200g scale production. The samples were characterized by XRD, crystallinity, crystallite size, X-ray fluorescence and scanning electron microscopy. Given the results it was observed that for both samples the synthesis combustion reaction was efficient for the production of single-phase ferrites with high crystallinity. With respect to the analysis of X-ray fluorescence was noted that the experimental values composition were consistent with the theoretical values calculated for both samples. Regarding morphology for both samples, the formation of the porous powders with feature consisting of dense clumps in the form of irregular foam was observed. (author)

  11. Dispersion strengthened ferritic alloy for use in liquid-metal fast breeder reactors (LMFBRS)

    International Nuclear Information System (INIS)

    Fischer, J.J.

    1978-01-01

    A dispersion-strengthened ferritic alloy is provided which has high-temperature strength and is readily fabricable at ambient temperatures, and which is useful as structural elements of liquid-metal fast breeder reactors. 4 tables

  12. Zn substitution NiFe_2O_4 nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Mao, Junwei; Hou, Xianhua; Huang, Fengsi; Shen, Kaixiang; Lam, Kwok-ho; Ru, Qiang; Hu, Shejun

    2016-01-01

    Zn"2"+ ion substituted nickel ferrite nanomaterials with the chemical formula Ni_1_−_xZn_xFe_2O_4 for x = 0, 0.3, 0.5, 0.7 and 1 have been synthesized by a facile green-chemical hydrothermal method as anode materials in lithium ion battery. The morphology and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The physical and electrochemical properties were tested by electrochemical system. Furthermore, the energetic and electronic properties of the samples were investigated by density functional calculations. The results suggest that Zn substitution can affect the conduction performance of the zinc - nickel ferrite. Meanwhile, electrochemical results show that an enhancement in the capacity with increasing Zn concentration is observed especially for x = 0.3 which exhibit high discharge capacity of 1416 mAh g"−"1at the end of 100th cycle. Moreover, the theoretical research method with high yield synthesis strategy described in the present work holds promise for the general fabrication of other metallic elements substitution in complex transition metal oxides for high power LIBs. - Highlights: • Ni_1_−_xZn_xFe_2O_4 anodes have been synthesized by hydrothermal method. • First principles calculation was used to investigate the conduction performance. • Electrochemical performance was enhanced with Zn substitution.

  13. Synthesis and characterization of nanosized Mg{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} ferrites by both sol-gel and thermal decomposition methods

    Energy Technology Data Exchange (ETDEWEB)

    De-León-Prado, Laura Elena, E-mail: laura.elena.prado@gmail.com [Cinvestav-Unidad Saltillo, Av. Industria Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, Ramos Arizpe, Coahuila, México (Mexico); Cortés-Hernández, Dora Alicia; Almanza-Robles, José Manuel; Escobedo-Bocardo, José Concepción; Sánchez, Javier; Reyes-Rdz, Pamela Yajaira; Jasso-Terán, Rosario Argentina [Cinvestav-Unidad Saltillo, Av. Industria Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, Ramos Arizpe, Coahuila, México (Mexico); Hurtado-López, Gilberto Francisco [Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, CP 25294, Saltillo, Coahuila, México (Mexico)

    2017-04-01

    This work reports the synthesis of Mg{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} (x=0–1) nanoparticles by both sol-gel and thermal decomposition methods. In order to determine the effect of synthesis conditions on the crystal structure and magnetic properties of the ferrites, the synthesis was carried out varying some parameters, including composition. By both methods it was possible to obtain ferrites having a single crystalline phase with cubic inverse spinel structure and a behavior near to that of superparamagnetic materials. Saturation magnetization values were higher for materials synthesized by sol-gel. Furthermore, in both cases particles have a spherical-like morphology and nanometric sizes (11–15 nm). Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia. - Highlights: • Mg–Mn ferrites were synthesized by sol-gel and thermal decomposition methods. • Materials showed a single cubic inverse spinel crystalline structure. • Ferrites have a soft ferrimagnetic behavior close to superparamagnetic materials.

  14. Processing and microstructure characterisation of oxide dispersion strengthened Fe–14Cr–0.4Ti–0.25Y2O3 ferritic steels fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Zhang, Hongtao; Huang, Yina; Ning, Huanpo; Williams, Ceri A.; London, Andrew J.; Dawson, Karl; Hong, Zuliang; Gorley, Michael J.; Grovenor, Chris R.M.; Tatlock, Gordon J.; Roberts, Steve G.; Reece, Michael J.; Yan, Haixue; Grant, Patrick S.

    2015-01-01

    Highlights: • Nanostructured ODS steels were successfully produced by SPS. • Presence of Y 2 Ti 2 O 7 nanoclusters was confirmed by synchrotron XRD and microscopy. • The chemistry of nanoclusters tested by ATP indicated they are Y–Ti–O oxides. - Abstract: Ferritic steels strengthened with Ti–Y–O nanoclusters are leading candidates for fission and fusion reactor components. A Fe–14Cr–0.4Ti + 0.25Y 2 O 3 (14YT) alloy was fabricated by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS). The densification of the 14YT alloys significantly improved with an increase in the sintering temperature. Scanning electron microscopy and electron backscatter diffraction revealed that 14YT SPS-sintered at 1150 °C under 50 MPa for 5 min had a high density (99.6%), a random grain orientation and a bimodal grain size distribution (<500 nm and 1–20 μm). Synchrotron X-ray diffraction patterns showed bcc ferrite, Y 2 Ti 2 O 7 , FeO, and chromium carbides, while transmission electron microscopy and atom probe tomography showed uniformly dispersed Y 2 Ti 2 O 7 nanoclusters of <5 nm diameter and number density of 1.04 × 10 23 m −3 . Due to the very much shorter consolidation times and lower pressures used in SPS compared with the more usual hot isostatic pressing routes, SPS is shown to be a cost-effective technique for oxide dispersion strengthened (ODS) alloy manufacturing with microstructural features consistent with the best-performing ODS alloys

  15. Magnetic properties of M0.3Fe2.7O4 (M = Fe, Zn and Mn) ferrites nanoparticles

    Science.gov (United States)

    Modaresi, Nahid; Afzalzadeh, Reza; Aslibeiki, Bagher; Kameli, Parviz

    2018-06-01

    In the present article a comparative study on the structural and magnetic properties of nano-sized M0.3Fe0.7Fe2O4 (M = Fe, Zn and Mn) ferrites have been reported. The X-ray diffraction (XRD) patterns show that the crystallite size depends on the cation distribution. The Rietveld refinement of XRD patterns using MAUD software determines the distribution of cations and unit cell dimensions. The magnetic measurements show that the maximum and minimum value of saturation magnetization is obtained for Zn and Mn doped samples, respectively. The peak temperature of AC magnetic susceptibility of Zn and Fe doped samples below 300 K shows the superparamagnetic behavior in these samples at room temperature. the AC susceptibility results confirm the presence of strong interactions between the nanoparticles which leads to a superspin glass state in the samples at low temperatures.

  16. The role of annealing temperature and bio template (egg white) on the structural, morphological and magnetic properties of manganese substituted MFe2O4 (M=Zn, Cu, Ni, Co) nanoparticles

    Science.gov (United States)

    Ranjith Kumar, E.; Jayaprakash, R.; Kumar, Sanjay

    2014-02-01

    Manganese substituted ferrites (ZnFe2O4, CuFe2O4, NiFe2O4 and CoFe2O4) have been prepared in the bio template medium by using a simple evaporation method. The annealing temperature plays an important position on changing particle size and morphology of the mixed ferrite nanoparticles were found out by X-ray diffraction, transmission electron microscopy and scanning electron microscopy methods. The role of manganese substitution in the mixed ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in magnetic properties which is studied by using vibrating sample magnetometer (VSM). These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. However, α-Fe2O3 phase was slowly vanished after ferrites annealing above 900 °C. The effect of this secondary phase on the structural change and magnetic properties of the mixed ferrite nanoparticles is discussed.

  17. Study of the effect of dilution on the microstructural and magnetic properties of Mn{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} ferrites by combustion reaction; Estudo do efeito da diluicao nas propriedades microestruturais e magneticas de ferritas Mn{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} por reacao de combustao

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.L.P.; Costa, A.C.F.M., E-mail: raffitasantos8@hotmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia de Materiais; Diniz, V.C.S., E-mail: veronicacristhina@hotmail.com, E-mail: c_r_i_s_2005@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Dept. de Engenharia de Materiais; Kiminami, R.H.G.A., E-mail: ruth@ufscar.br [Universidade de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil). Dept. de Engenharia de Materiais; Cornejo, D.R., E-mail: cornejo@if.usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2016-10-15

    The Mn-Zn ferrites have been used in various technological areas, due to their attractive properties in technical and scientific senses. This paper aimed to synthesize Mn{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} ferrites by combustion reaction and evaluate the effect of dilution of the reactants in distilled water on the microstructural and magnetic characteristics. The samples were characterized by X-ray diffraction, scanning and transmission electron microscopy, Curie temperature and magnetic measurements. It was observed that increasing dilution with water during synthesis by combustion reaction was favorable for obtaining monophasic Mn{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} ferrite. It also favored a decrease in the agglomerate size and an increase in Curie temperature with maximum value of saturation magnetization of 62 emu/g for the sample diluted in 1:10 ratio. (author)

  18. Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaharieva, Katerina, E-mail: zaharieva@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Rives, Vicente, E-mail: vrives@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Tsvetkov, Martin, E-mail: mptsvetkov@gmail.com [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Cherkezova-Zheleva, Zara, E-mail: zzhel@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Kunev, Boris, E-mail: bkunev@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Trujillano, Raquel, E-mail: rakel@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Mitov, Ivan, E-mail: mitov@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Milanova, Maria, E-mail: nhmm@wmail.chem.uni-sofia.bg [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria)

    2015-06-15

    Nanosized copper ferrite-type materials (Cu{sub x}Fe{sub 3–x}O{sub 4}, 0 ≤ x ≤ 1) have been prepared by combination of co-precipitation and mechanochemical activation and/or thermal treatment. The crystalline structure and morphology of the obtained ferrite nanopowders have been characterized by different instrumental methods, such as Powder X-ray diffraction (PXRD), Mössbauer and FT-IR spectroscopies, specific surface area and porosity measurements, thermal analyses (Differential Thermal Analysis and Thermogravimetric Analysis) and Temperature-Programmed Reduction. The average crystallite size of copper ferrites ranged between 7.8 and 14.7 nm and show a superparamagnetic and collective magnetic excitations nature. The photocatalytic decolorization of Malachite green oxalate under different UV illumination intervals was examined using these copper ferrites as photocatalysts. The results indicate that the prepared nanostructured copper ferrites showed enhanced photocatalytic activity and amount adsorbed Malachite Green dye. The co-precipitated nanosized copper ferrite powder with a low content of copper metal ions in a magnetite host structure (Cu{sub 0.25}Fe{sub 2.75}O{sub 4}) showed an apparent pseudo-first-order rate constant 15.4 × 10{sup −3} min{sup −1} and an amount adsorbed Malachite Green as model organic dye pollutant per 1 g catalyst of 33.4 ppm/g after the dark period. The results confirm that the copper ferrites can be suitable for photocatalytic treatment of wastewaters containing organic dyes. The new aspect of presented investigations is to study the influence of different degree of incorporation of copper ions into the magnetite host structure and preparation methods on the photocatalytic properties of nanosized copper ferrite materials and obtaining of potential photocatalyst (Cu{sub 0.25}Fe{sub 2.75}O{sub 4}) with higher photocatalytic activity (15.4 × 10{sup −3} min{sup −1}) than that of the standard referent Degussa P25 (12 × 10

  19. Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation

    International Nuclear Information System (INIS)

    Zaharieva, Katerina; Rives, Vicente; Tsvetkov, Martin; Cherkezova-Zheleva, Zara; Kunev, Boris; Trujillano, Raquel; Mitov, Ivan; Milanova, Maria

    2015-01-01

    Nanosized copper ferrite-type materials (Cu x Fe 3–x O 4 , 0 ≤ x ≤ 1) have been prepared by combination of co-precipitation and mechanochemical activation and/or thermal treatment. The crystalline structure and morphology of the obtained ferrite nanopowders have been characterized by different instrumental methods, such as Powder X-ray diffraction (PXRD), Mössbauer and FT-IR spectroscopies, specific surface area and porosity measurements, thermal analyses (Differential Thermal Analysis and Thermogravimetric Analysis) and Temperature-Programmed Reduction. The average crystallite size of copper ferrites ranged between 7.8 and 14.7 nm and show a superparamagnetic and collective magnetic excitations nature. The photocatalytic decolorization of Malachite green oxalate under different UV illumination intervals was examined using these copper ferrites as photocatalysts. The results indicate that the prepared nanostructured copper ferrites showed enhanced photocatalytic activity and amount adsorbed Malachite Green dye. The co-precipitated nanosized copper ferrite powder with a low content of copper metal ions in a magnetite host structure (Cu 0.25 Fe 2.75 O 4 ) showed an apparent pseudo-first-order rate constant 15.4 × 10 −3 min −1 and an amount adsorbed Malachite Green as model organic dye pollutant per 1 g catalyst of 33.4 ppm/g after the dark period. The results confirm that the copper ferrites can be suitable for photocatalytic treatment of wastewaters containing organic dyes. The new aspect of presented investigations is to study the influence of different degree of incorporation of copper ions into the magnetite host structure and preparation methods on the photocatalytic properties of nanosized copper ferrite materials and obtaining of potential photocatalyst (Cu 0.25 Fe 2.75 O 4 ) with higher photocatalytic activity (15.4 × 10 −3 min −1 ) than that of the standard referent Degussa P25 (12 × 10 −3 min −1 ) for degradation of organic dye

  20. Inclusion Characteristics and Acicular Ferrite Nucleation in Ti-Containing Weld Metals of X80 Pipeline Steel

    Science.gov (United States)

    Wang, Bingxin; Liu, Xianghua; Wang, Guodong

    2018-06-01

    X80 steel weld metals with Ti contents of 0.003 to 0.13 pct were prepared by the single-pass submerged-arc welding process. The effects of Ti content in weld metals on the constituent phases of inclusions and chemical compositions of the constituent phases, as well as the potency of acicular ferrite (AF) nucleation on the inclusions were investigated. Moreover, the crystallographic orientation relationship between the AF and inclusion was examined. The results show that with an increase in Ti content, the primary constituent phases of the inclusions change from the (Mn-Al-Si-O) compound to a mixture of spinel and pseudobrookite solid solutions, and eventually to pseudobrookite. The spinel solid solution is characterized by the MnTi2O4 constituent. Compared to pseudobrookite, spinel has a lower Ti concentration, but a significantly higher Mn content. In the case of the presence of a considerable amount of spinel, the Mn element is enriched strongly in the inclusions, resulting in the development of a Mn-depleted zone (MDZ) in the matrix around the inclusions, which enhances the driving force for AF formation. AF shows the Baker-Nutting orientation relationship with MnTi2O4. The formation of MDZ and the presence of the Baker-Nutting orientation relationship promote the ability of inclusions to nucleate the intragranular AF.

  1. Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4Nanoparticles Through a Simple Hydrothermal Condition

    Directory of Open Access Journals (Sweden)

    Li Xing-Hua

    2010-01-01

    Full Text Available Abstract Nearly monodisperse cobalt ferrite (CoFe2O4 nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid–solid-solution (LSS process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds.

  2. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    International Nuclear Information System (INIS)

    Raut, A.V.; Barkule, R.S.; Shengule, D.R.; Jadhav, K.M.

    2014-01-01

    Structural morphology and magnetic properties of the Co 1−x Zn x Fe 2 O 4 (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn 2+ content in cobalt ferrite nanoparticles is followed by decrease in n B , M s and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique

  3. Magnetic properties of NiFe{sub 2}O{sub 4}/carbon nanofibers from Venezuelan petcoke

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, Sarah, E-mail: sbriceno@ivic.gob.ve [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Silva, Pedro; Molina, Wilmer; Brämer-Escamilla, Werner; Alcalá, Olgi [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Cañizales, Edgard [Área de Análisis Químico Inorgánico, PDVSA, INTEVEP, Los Teques 1070-A (Venezuela, Bolivarian Republic of)

    2015-05-01

    NiFe{sub 2}O{sub 4}/carbon nanofibers (NiFe{sub 2}O{sub 4}/CNFs) have been successfully synthesized by hydrotermal method using Venezuelan petroleum coke (petcoke) as carbon source and NiFe{sub 2}O{sub 4} as catalyst. The morphology, structural and magnetic properties of nanocomposite products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), vibrating sample magnetometry (VSM) and electron paramagnetic resonance (EPR). XRD analysis revealed a cubic spinel structure and ferrite phase with high crystallinity. HR-TEM reveals the presence of CNFs with diameters of 4±2 nm. At room temperature, NiFe{sub 2}O{sub 4}/CNFs show superparamagnetic behavior with a maximum magnetization of 15.35 emu/g. Our findings indicate that Venezuelan petroleum coke is suitable industrial carbon source for the growth of magnetic CNFs. - Highlights: • NiFe{sub 2}O{sub 4}/CNFs have been synthesized by hydrothermal method using petroleum coke. • Nickel ferrite nanoparticles were used as the catalyst. • HR-TEM reveals the presence of CNFs with diameters of 4±2 nm. • The size of the nanoparticles defines the diameter of the CNFs.

  4. Effects of delta ferrite content on the mechanical properties of E308-16 stainless steel weld metal

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, D. P.; Vandergriff, D. M.; Gray, R. J.

    1978-01-01

    The effects of ferrite content on the properties of type 308 stainless steel shielded metal-arc (SMA) welds were investigated. Welds were made at four levels of ferrite content ranging from 2 to 15 FN (Ferrite Number). Creep and tensile tests were performed. Specimens were aged at 1100/sup 0/C (593/sup 0/C) for times up to 10,000 h (36 Ms) and Charpy V-notch impact tests were performed. Chemical analysis of the original deposits, Magne-gage evaluations, and metallographic evaluation of tested specimens were made. The E308-16 stainless steel electrodes were formulated to produce SMA welds with 2, 5, 9, and 15 FN. The ferrite number was made to vary by varying the nickel and chromium concentrations. Magne-gage determinations revealed that as-welded structures contained an average of 1.8, 4.2, 9.6, and 14.5 FN, respectively. Chemical anslysis of these deposits revealed no unusually high concentrations of tramp elements that would significantly affect mechanical properties. The extra low-ferrite electrodes were made with a different core wire, which produced deposits with slightly higher molybdenum concentrations. This variation in molybdenum should affect properties only minimally. From these chemical analyses and a constitutional diagram, ferrite concentrations were calculated, and the results correlated with the Magne-gage values

  5. MWCNT-MnFe2O4 nanocomposite for efficient hyperthermia applications

    Science.gov (United States)

    Seal, Papori; Hazarika, Monalisa; Paul, Nibedita; Borah, J. P.

    2018-04-01

    In this work we present synthesis of multi-walled carbon nanotube (MWCNT)-Manganese ferrite (MnFe2O4) nanocomposite and its probable application in hyperthermia. MnFe2O4 nanoparticles were synthesized by co-precipitation method. X ray diffractogram (XRD) confirms the formation of cubic phase of MnFe2O4 with preferred crystallographic orientation along (311) plane. High resolution electron microscope (HRTEM) image of the composites confirms the presence of MnFe2O4 spherical nanoparticles on the surface of CNT which are bound strongly to the surface. MWCNT-MnFe2O4 nanocomposite were prepared after acid functionalization of MWCNT. Vibrational features of the synthesized samples were confirmed through Fourier transformed infra-red spectroscopy (FTIR). FTIR spectra of acid functionalized MWCNT shows a peak positioned at ˜1620cm-1 which corresponds to C=O functional group of carboxylic acid. Prepared MnFe2O4 nanoparticles and MWCNT-MnFe2O4 nanocomposites were subjected to hyperthermia studies.

  6. Effect of Ni substitution on the structural and transport properties of Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0.0 {<=} x {<=} 0.40 ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A., E-mail: moala1947@yahoo.com [Materials Science Lab (1), Physics Dept., Faculty of Science, Cairo Univ., Giza (Egypt); Bishay, Samiha T. [Phys. Dept., Faculty of Girls for Art, Science and Education, Ain Shams Univ., Cairo (Egypt); El-dek, S.I.; Omar, G. [Materials Science Lab (1), Physics Dept., Faculty of Science, Cairo Univ., Giza (Egypt)

    2011-01-21

    Research highlights: We aimed to merge the advantages of both Ni and Mn ferrites and to profit from the existence of Mg in small constant ratio to assure the large magnetization of the ferrite under investigation. To achieve such goals one have to investigate the effect of Ni substitution on the structural and electrical properties of Mn-Mg ferrite of the chemical formula Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0 {<=} x {<=} 0.40 prepared by conventional ceramic technique. - Abstract: Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0.0{<=} x {<=}0.40 was prepared by standard ceramic technique, presintering was carried out at 900 deg. C and final sintering at 1200 deg. C with heating/cooling rate 4 deg. C/min. X-ray diffraction analyses assured the formation of the samples in a single phase spinel cubic structure. The calculated crystal size was obtained in the range of 75-130 nm. A slight increase in the theoretical density and decrease in the porosity was obtained with increasing the nickel content. This result was discussed based on the difference in the atomic masses between Ni (58.71) and Mn (54.938). IR spectral analyses show four bands of the spinel ferrite for all the samples. The conductivity and dielectric loss factor give nearly continuous decrease with increasing Ni-content. This was discussed as the result of the significant role of the multivalent cations, such as iron, nickel, manganese, in the conduction mechanism. Anomalous behavior was obtained for the sample with x = 0.20 as highest dielectric constant, highest dielectric loss and highest conductivity. This anomalous behavior was explained due to the existence of two divalent cations on B-sites with the same ratio, namely, Mg{sup 2+} and Ni{sup 2+}.

  7. Investigation of Structural, Morphological, Magnetic Properties and Biomedical applications of Cu2+ Substituted Uncoated Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Margabandhu

    Full Text Available ABSTRACT In the present work, Cu2+ substituted cobalt ferrite (Co1-xCuxFe2O4, x = 0, 0.3, 0.5, 0.7 and 1 magnetic nanopowders were synthesized via chemical co-precipitation method. The prepared powders were investigated by various characterization methods such as X-ray diffraction analysis (XRD, scanning electron microscope analysis (SEM, vibrating sample magnetometer analysis (VSM and fourier transform infrared spectroscopy analysis (FTIR. The XRD analysis reveals that the synthesized nanopowders possess single phase centred cubic spinel structure. The average crystallite size of the particles ranging from 27-49 nm was calculated by using Debye-scherrer formula. Magnetic properties of the synthesized magnetic nanoparticles are studied by using VSM. The VSM results shows the magnetic properties such as coercivity, magnetic retentivity decreases with increase in copper substitution whereas the saturation magnetization shows increment and decrement in accordance with Cu2+ substitution in cobalt ferrite nanoparticles. SEM analysis reveals the morphology of synthesized magnetic nanoparticles. FTIR spectra of Cu2+ substituted cobalt ferrite magnetic nanoparticles were recorded in the frequency range 4000-400cm-1. The spectrum shows the presence of water adsorption and metal oxygen bonds. The adhesion nature of Cu2+ substituted cobalt ferrite magnetic nanoparticles with bacteria in reviewed results indicates that the synthesized nanoparticles could be used in biotechnology and biomedical applications.

  8. Synthesis and magnetic properties of bacterial cellulose—ferrite (MFe2O4, M  =  Mn, Co, Ni, Cu) nanocomposites prepared by co-precipitation method

    Science.gov (United States)

    Sriplai, Nipaporn; Mongkolthanaruk, Wiyada; Pinitsoontorn, Supree

    2017-09-01

    The magnetic nanocomposites based on bacterial cellulose (BC) matrix and ferrite (MFe2O4, M  =  Mn, Co, Ni and Cu) nanoparticles (NPs) were fabricated. The never-dried and freeze-dried BC nanofibrils were used as templates and a co-precipitation method was applied for NPs synthesis. The nanocomposites were either freeze-dried or annealed before subjected to characterization. The x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that only MnFe2O4 and CoFe2O4 NPs could be successfully incorporated in the BC nanostructures. The results also indicated that the BC template should be freeze-dried prior to the co-precipitation process. The magnetic measurement by a vibrating sample magnetometer (VSM) showed that the strongest ferromagnetic signal was found for BC-CoFe2O4 nanocomposites. The morphological investigation by a scanning electron microscope (SEM) showed the largest volume fraction of NPs in the BC-CoFe2O4 sample which was complimentary to the magnetic property measurement. Annealing resulted in the collapse of the opened nanostructure of the BC composites. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  9. Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites

    International Nuclear Information System (INIS)

    Lauda, M.; Füzer, J.; Kollár, P.; Strečková, M.; Bureš, R.; Kováč, J.; Baťková, M.; Baťko, I.

    2016-01-01

    We investigated composites that have been prepared from FeSi powders covered with MnZnFe 2 O 4 (MnZn ferrite), which was prepared by sol–gel synthesis accompanied with the auto-combustion process. The aim of this paper is to analyze the complex permeability and core losses of prepared samples with different amount of MnZn ferrite. The microstructure and the powder morphology were examined by scanning electron microscopy. Magnetic measurements on bulk samples were carried out using a vibrating sample magnetometer, an impedance analyzer and hysteresisgraphs. The results indicate that the composites with 2.6 wt% MnZn ferrite show better soft magnetic properties than the composites with about 6 wt% MnZn ferrite. - Highlights: • Successful preparation of soft magnetic composite FeSi/MnZnFe 2 O 4 . • Study of the complex magnetic permeability. • Comparison of different compositions of prepared SMC's. • Determination of parts of magnetic losses.

  10. Radiation induced structural and magnetic transformations in nanoparticle MnxZn(1−x)Fe2O4 ferrites

    International Nuclear Information System (INIS)

    Naik, P.P.; Tangsali, R.B.; Sonaye, B.; Sugur, S.

    2015-01-01

    Nanoparticle magnetic materials are suitable for multiple modern high end medical applications like targeted drug delivery, gene therapy, hyperthermia and MR thermometry imaging. Majority of these applications are confined to use of Mn–Zn ferrite nanoparticles. These nanoparticles are normally left in the body after their requisite application. Preparing these nanoparticles is usually a much involved job. However with the development of the simple technique Mn x Zn 1−x Fe 2 O 4 nanoparticles could be prepared with much ease. The nanoparticles of Mn x Zn 1−x Fe 2 O 4 with (x=1.0, 0.7, 0.5, 0.3, 0.0) were prepared and irradiated with gamma radiation of various intensities ranging between 500 R to 10,000 R, after appropriate structural and magnetic characterization. Irradiated samples were investigated for structural and magnetic properties, as well as for structural stability and cation distribution. The irradiated nanoparticles exhibited structural stability with varied cation distribution and magnetic properties, dependent on gamma radiation dose. Surprisingly samples also exhibited quenching of lattice parameter and particle size. The changes introduced in the cation distribution, lattice constant, particle size and magnetic properties were found to be irreversible with time lapse and were of permanent nature exhibiting good stability even after several months. Thus the useful properties of nanoparticles could be enhanced on modifying the cation distribution inside the nanoparticles by application of gamma radiation. - Highlights: • Mn x Zn 1−x Fe 2 O 4 nanoparticles were synthesized using auto combustion method. • The irradiated samples showed a change in cation distribution. • Lattice shrinkage observed due to radiation induced change in cation distribution. • Reduction in particle size was also observed due to gamma exposure. • An enhancement in saturation magnetization was observed in irradiated samples

  11. High-Pressure Phase Relations and Crystal Structures of Postspinel Phases in MgV2O4, FeV2O4, and MnCr2O4: Crystal Chemistry of AB2O4 Postspinel Compounds.

    Science.gov (United States)

    Ishii, Takayuki; Sakai, Tsubasa; Kojitani, Hiroshi; Mori, Daisuke; Inaguma, Yoshiyuki; Matsushita, Yoshitaka; Yamaura, Kazunari; Akaogi, Masaki

    2018-06-04

    We have investigated high-pressure, high-temperature phase transitions of spinel (Sp)-type MgV 2 O 4 , FeV 2 O 4 , and MnCr 2 O 4 . At 1200-1800 °C, MgV 2 O 4 Sp decomposes at 4-7 GPa into a phase assemblage of MgO periclase + corundum (Cor)-type V 2 O 3 , and they react at 10-15 GPa to form a phase with a calcium titanite (CT)-type structure. FeV 2 O 4 Sp transforms to CT-type FeV 2 O 4 at 12 GPa via decomposition phases of FeO wüstite + Cor-type V 2 O 3 . MnCr 2 O 4 Sp directly transforms to the calcium ferrite (CF)-structured phase at 10 GPa and 1000-1400 °C. Rietveld refinements of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 confirm that both the CT- and CF-type structures have frameworks formed by double chains of edge-shared B 3+ O 6 octahedra (B 3+ = V 3+ and Cr 3+ ) running parallel to one of orthorhombic cell axes. A relatively large A 2+ cation (A 2+ = Mg 2+ , Fe 2+ , and Mn 2+ ) occupies a tunnel-shaped space formed by corner-sharing of four double chains. Effective coordination numbers calculated from eight neighboring oxygen-A 2+ cation distances of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 are 5.50, 5.16, and 7.52, respectively. This implies that the CT- and CF-type structures practically have trigonal prism (six-coordinated) and bicapped trigonal prism (eight-coordinated) sites for the A 2+ cations, respectively. A relationship between cation sizes of VIII A 2+ and VI B 3+ and crystal structures (CF- and CT-types) of A 2+ B 2 3+ O 4 is discussed using the above new data and available previous data of the postspinel phases. We found that CF-type A 2+ B 2 3+ O 4 crystallize in wide ionic radius ranges of 0.9-1.4 Å for VIII A 2+ and 0.55-1.1 Å for VI B 3+ , whereas CT-type phases crystallize in very narrow ionic radius ranges of ∼0.9 Å for VIII A 2+ and 0.6-0.65 Å for VI B 3+ . This would be attributed to the fact that the tunnel space of CT-type structure is geometrically less flexible due to the smaller coordination

  12. Effect of milling variables on powder character and sintering behaviour of 434L ferritic stainless steel-Al2O3 composites

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Upadhyaya, G.S.

    1985-01-01

    Ball milling of ferritic stainless steel-4 vol% Al 2 O 3 powder was carried out for the duration up to 222 ks. Attritor milling of ferritic stainless steel-6 vol% Al 2 O 3 were also carried out for the duration up to 32.4 ks. The characterization of the milled powders were performed. The sintering of ball milled powders was carried out at 1623 K for 10.8 ks in hydrogen. The premix of as received stainless steel powder and the attritor milled powder was also sintered at 1623 K for 3.6 ks in hydrogen. The results showed that an optimum ball milling period in between 58 and 173 ks was required to achieve better sintered properties. The attritor milling was more effective in grinding the powders as compared to ball milling, and the sinterability was also higher for such powders. (author)

  13. New quaternary alkali metal cadmium selenites, A2Cd(SeO3)2 (A = K, Rb, and Cs) and Li2Cd3(SeO3)4

    Science.gov (United States)

    Lü, Minfeng; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2017-12-01

    A series of new alkali metal cadmium selenites, A2Cd(SeO3)2 (A = K, Rb, and Cs) and Li2Cd3(SeO3)4 have been synthesized in phase pure forms through hydrothermal and solid-state reactions. Structural analyses using single crystal X-ray diffraction indicate that while A2Cd(SeO3)2 and Li2Cd3(SeO3)4 reveal layered structures consisting of CdO6 and SeO3 polyhedra, their symmetry, bonding modes, and the orientation of lone pairs on Se4+ cations are different. A closer examination suggests that the observed structural variations found in the reported materials are attributed to the structure-directing effect of alkali metal cations with different sizes. Scanning electron microscopy/energy dispersive analysis by X-ray, thermogravimetric analysis, Infrared and UV-vis diffuse reflectance spectroscopy, transformation reactions under hydrothermal conditions, and local dipole moment calculations for the reported materials are also reported.

  14. Novel 2D or 3D alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand

    Science.gov (United States)

    Du, Zi-Yi; Wen, He-Rui; Xie, Yong-Rong

    2008-11-01

    Three novel alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand, namely, [Ca(O 3SC 2H 4PO 3H)(H 2O) 2] ( 1), [Sr(O 3SC 2H 4PO 3H)] ( 2) and [Ba 2(O 3SC 2H 4PO 3H) 2] ( 3), have been synthesized by hydrothermal reactions. They represent the first structurally characterized alkaline-earth metal complexes of phosphonic acid attached with a sulfonate group. The structure of compound 1 features a 2D layer based on 1D chains of [Ca 2(PO 3) 2] bridged by -CH 2-CH 2-SO 3- groups. Compounds 2 and 3 show pillar-layer architecture based on two different inorganic layers linked by -CH 2-CH 2- groups. The inorganic layer in compound 2 features a 1D chain of edge-sharing SrO 8 polyhedra whereas that in compound 3 features an edge-sharing Ba 2O 14 di-polyhedral unit which is further corner-shared with four neighboring ones. The [O 3S-C 2H 4-PO 3H] 2- ligand shows diverse coordination modes in the three alkaline-earth metal sulfonate-phosphonates.

  15. Interfaces exchange bias and magnetic properties of ordered CoFe_2O_4/Co_3O_4 nanocomposites

    International Nuclear Information System (INIS)

    Zhang, B.B.; Xu, J.C.; Wang, P.F.; Han, Y.B.; Hong, B.; Jin, H.X.; Jin, D.F.; Peng, X.L.; Li, J.; Yang, Y.T.; Gong, J.; Ge, H.L.; Wang, X.Q.

    2015-01-01

    Graphical abstract: - Highlights: • CoFe_2O_4 nanoparticles were well-dispersed anchored in mesopores of Co_3O_4. • The magnetic behavior of nanocomposites changed greatly at low temperature. • CoFe_2O_4 nanoparticles reinforced the interfaces magnetic interaction of nanocomposites. • M increased with the doping of CoFe_2O_4 and the decreasing temperature. • Exchange bias effect was observed at 100 K and increased with the doping of CoFe_2O_4. - Abstract: Cobalt ferrites (CoFe_2O_4) nanoparticles were implanted into the ordered mesoporous cobaltosic oxide (Co_3O_4) nanowires to synthesize magnetic CoFe_2O_4/Co_3O_4 nanocomposites. X-ray diffraction (XRD), N_2 physical absorption–desorption, transmission electron microscope (TEM) and energy disperse spectroscopy (EDS) were used to characterize the microstructure of mesoporous Co_3O_4 and CoFe_2O_4/Co_3O_4 nanocomposites. The percent of pore-volume of mesoporous Co_3O_4 nanowires was calculated to be about 41.99% and CoFe_2O_4 nanoparticles were revealed to exist in the mesopores of Co_3O_4_. The magnetic behavior of both samples were investigated with superconducting quantum interference device (SQUID). Magnetization increased with the doping CoFe_2O_4 and decreasing temperature, while coercivity hardly changed. The exchange bias effect was obviously observed at 100 K and enhanced with the doping CoFe_2O_4. CoFe_2O_4 nanoparticles reinforced the interfaces magnetic interaction between antiferromagnetic Co_3O_4 and ferrimagnetic CoFe_2O_4.

  16. Synthesis, structure and electromagnetic properties of Mn-Zn ferrite by sol-gel combustion technique

    Science.gov (United States)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn-Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn1-xZnxFe2O4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol-gel combustion method. The microstructure and surface morphology of Mn-Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field.

  17. Fabrication and Properties of Iron-based Soft Magnetic Composites Coated with NiZnFe2O4

    Directory of Open Access Journals (Sweden)

    WU Shen

    2017-07-01

    Full Text Available This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing the sol-gel method prepared Ni-Zn ferrite particles as insulating compound to coat iron powder, and the influence of NiZnFe2O4 content and molding pressure on the magnetic properties was studied. The morphology, magnetic properties and density of Ni-Zn ferrite insulated compacts were investigated. Scanning electron microscope,line-scan EDX analysis and distribution maps show that the iron particle surface is covered with a thin layer of uniform Ni-Zn ferrites. The existing of the insulating layer can effectively improve the electrical resistivity of soft magnetic composites. Magnetic measurements show that the real part of permeability decreases with the increase of the Ni-Zn ferrite content, and the sample with 3%(mass fraction, the same below Ni-Zn ferrite has an acceptable real part and minimum imaginary part of permeability in comparison with other samples. Results show that the addition of NiZnFe2O4 can dramatically decrease the internal magnetic loss, the magnetic loss of coated samples decreases by 83.8% as compared with that of uncoated samples at 100kHz. The density of the Fe-3%NiZnFe2O4 compacts reaches 7.14g/cm3 and the saturation magnetization is 1.47T when the molding pressure is 1000MPa.

  18. Microstructural analysis nanoferritas Mn{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} e Mn{sub 0,65}Zn{sub 0,35}Fe{sub 2}O{sub 4} synthesized by combustion reaction; Analise microestrutural de nanoferritas Mn{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} e Mn{sub 0,65}Zn{sub 0,35}Fe{sub 2}O{sub 4} sintetizadas por reacao de combustao

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, V.C.S.; Figueiredo, A.R.; Costa Junior, A.D.S.; Diniz, H.M.; Vieira, D.A.; Costa, A.C.F.M., E-mail: veronicacristhina@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    The MnZn ferrites are ferrimagnetic materials that have been studied and used in various technological fields. In this work investigated the microstructural characteristics of ferrites and Mn{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} Mn{sub 0,65}Zn{sub 0,35}Fe{sub 2}O{sub 4} synthesized by combustion reaction in 200g scale production. The samples were characterized by XRD, crystallinity, crystallite size, X-ray fluorescence and scanning electron microscopy. Given the results it was observed that for both samples the synthesis combustion reaction was efficient for the production of single-phase ferrites with high crystallinity. With respect to the analysis of X-ray fluorescence was noted that the experimental values composition were consistent with the theoretical values calculated for both samples. Regarding morphology for both samples, the formation of the porous powders with feature consisting of dense clumps in the form of irregular foam was observed. (author)

  19. Effect of particle size on degree of inversion in ferrites

    International Nuclear Information System (INIS)

    Siddique, M.; Butt, N.M.

    2012-01-01

    Ferrites with the spinel structure are important materials because of their structural, magnetic and electrical properties. The suitability of these materials depends on both the intrinsic behavior of the material and the effects of the grain size. Moessbauer spectroscopy was employed to investigate the cation distribution and degree of inversion in bulk and nano sized particles of CuFe/sub 2/O/sub 4/, MnFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ ferrites. The Moessbauer spectra of all bulk ferrites showed complete magnetic behavior, whereas nanoparticle ferrites showed combination of ferromagnetic and superparamagnetic components. Moreover, the cation distribution in nanoparticle materials was also found to be different to that of their bulk counterparts indicating the particle size dependency. The inversion of Cu and Ni ions in bulk sample was greater than that of nanoparticles; whereas the inversion of Mn ions was less in bulk material as compared to the nanoparticles. Hence the degree of inversion decreased in CuFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ samples whereas, it increased in MnFe/sub 2/O/sub 4/ as the particle size decreased and thus showed the anomalous behavior in this case. The nanoparticle samples also showed paramagnetic behaviour due to superparamagnetism and this effect is more prominent in MnFe/sub 2/O/sub 4/. Moessbauer spectra of bulk and nanoparticles CuFe/sub 2/O/sub 4/ is shown. (Orig./A.B.)

  20. Synthesis of Co/MFe(2)O(4) (M = Fe, Mn) Core/Shell Nanocomposite Particles.

    Science.gov (United States)

    Peng, Sheng; Xie, Jin; Sun, Shouheng

    2008-01-01

    Monodispersed cobalt nanoparticles (NPs) with controllable size (8-14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe(2)O(4) (M = Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe(2)O(4) nanocomposites are prepared with tunable shell thickness (1-5 nm). The Co/MFe(2)O(4) nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Comparing to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications.

  1. Magnetic and catalytic properties of inverse spinel CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Anandan, S., E-mail: sanand@nitt.edu [Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015 (India); Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan (China); Selvamani, T.; Prasad, G. Guru [Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015 (India); Asiri, A.M. [The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21413 (Saudi Arabia); Wu, J.J., E-mail: jjwu@fcu.edu.tw [Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan (China)

    2017-06-15

    Highlights: • Copper ferrite (CuFe{sub 2}O{sub 4}) nanoparticles were synthesized via citrate-nitrate combustion method. • Spectroscopic information’s have found that CuFe{sub 2}O{sub 4} nanoparticles as an inverse spinel structure. • Magnetic study exhibits CuFe{sub 2}O{sub 4} nanoparticles have ferromagnetic behavior. • CuFe{sub 2}O{sub 4} nanoparticles employed for photocatalytic decolourisation of methylene blue under visible light irradiation. - Abstract: In this research, inverse spinel copper ferrite nanoparticles (CuFe{sub 2}O{sub 4} NPs) were synthesized via citrate-nitrate combustion method. The crystal structure, particle size, morphology and magnetic studies were investigated using various instrumental tools to illustrate the formation of the inverse spinel structure. Mossbauer spectrometry identified Fe is located both in the tetrahedral and octahedral site in the ratio (40:60) and the observed magnetic parameters values such as saturation magnetization (M{sub s} = 20.62 emu g{sup −1}), remnant magnetization (M{sub r} = 11.66 emu g{sup −1}) and coercivity (H{sub c} = 63.1 mTesla) revealed that the synthesized CuFe{sub 2}O{sub 4} NPs have a typical ferromagnetic behaviour. Also tested CuFe{sub 2}O{sub 4} nanoparticles as a photocatalyst for the decolourisation of methylene blue (MB) in the presence of peroxydisulphate as the oxidant.

  2. Synthesis and characterization of nanoparticles ferrites of the type ZN_xCu_1_-_xFE_2O_4 and your application catalyst in acetylation vegetable oils

    International Nuclear Information System (INIS)

    Casagrande, D.S; Costa, W.V; Hechenleitner, A.A.W.; Oliveira, D.M.F. de; Pineda, E.A.G.

    2016-01-01

    In this work were synthesized copper and zinc ferrites (0 - 10% mol with respect to copper), by the combustion method, using citrate as stabilizer. The obtained products were analyzed by Infrared spectrometry (FTIR), Raman spectroscopy (RAMAN) and x-ray diffractometry (DRX). Synthesized ferrites present hematite phase, maghemite phase and copper ferrite phases. The analysis indicated that increasing the zinc content leads to decreased of hematite phase. Increasing of zinc content lead to an increase of particle size. The best results of oil acylation were obtained with ferrites containing 2 and 4% of zinc, wherein the increase the increase of yield of acetylated product reached at 19% when compared with the yield obtained whit copper ferrite without zinc. (author)

  3. Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient electrocatalysts for oxygen evolution reaction

    Science.gov (United States)

    Yan, Kai-Li; Shang, Xiao; Li, Zhen; Dong, Bin; Li, Xiao; Gao, Wen-Kun; Chi, Jing-Qi; Chai, Yong-Ming; Liu, Chen-Guang

    2017-09-01

    Designing mixed metal oxides with unique nanostructures as efficient electrocatalysts for water electrolysis has been an attractive approach for the storage of renewable energies. The ternary mixed metal spinel oxides FexNi1-xCo2O4 (x = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1) have been synthesized by a facile hydrothermal approach and calcination treatment using nickel foam as substrate. Fe/Ni ratios have been proved to affect the nanostructures of FexNi1-xCo2O, which imply different intrinsic activity for oxygen evolution reaction (OER). SEM images show that Fe0.5Ni0.5Co2O4 has the uniform nanowires morphology with about 30 nm of the diameter and 200-300 nm of the length. The OER measurements show that Fe0.5Ni0.5Co2O4 exhibits the better electrocatalytic performances with lower overpotential of 350 mV at J = 10 mA cm-2. In addition, the smaller Tafel slope of 27 mV dec-1 than other samples with different Fe/Ni ratios for Fe0.5Ni0.5Co2O4 is obtained. The improved OER activity of Fe0.5Ni0.5Co2O4 may be attributed to the synergistic effects from ternary mixed metals especially Fe-doping and the uniform nanowires supported on NF. Therefore, synthesizing Fe-doped multi-metal oxides with novel nanostructures may be a promising strategy for excellent OER electrocatalysts and it also provides a facile way for the fabrication of high-activity ternary mixed metal oxides electrocatalysts.

  4. Ni_0_,_5Zn_0_,_5Fe_2O_3 ferrite synthesized by combustion and Pechini method for use in nanomedicine: methods evaluation

    International Nuclear Information System (INIS)

    Albuquerque, I.L.T. de; Nascimento, A.L.C.; Costa, A.C.F.M.

    2016-01-01

    The objective of this work was to synthesize the Ni0.5Zn0.5Fe2O3 ferrite by combustion reaction and Pechini method, and to evaluate structural characteristics and magnetic behavior for its use in nanomedicine. The synthesized ferrite was characterized by DRX, BET, TG and magnetic properties. According to the results of XRD, the Ni_0_,_5Zn_0_,_5Fe_2O_3 ferrite synthesized by both methods presented nano crystallite sizes, high crystallinity, surface area, stable at high temperatures and with high saturation magnetization, being higher in the ferrite synthesized by combustion reaction. Both methods produced materials that could be used in nanomedicine

  5. Magnetic properties of Sn-substituted Ni-Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2

    Science.gov (United States)

    Ali, MA; Uddin, MM; Khan, MNI; Chowdhury, FUZ; Hoque, SM; Liba, SI

    2017-06-01

    A series of Ni0.6-x/2Zn0.4-x/2Sn x Fe2O4 (x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.3) (NZSFO) ferrite composities have been synthesized from nano powders using a standard solid state reaction technique. The spinel cubic structure of the investigated samples has been confirmed by x-ray diffraction (XRD). The magnetic properties such as saturation magnetization ({M}{{s}}), remanent magnetization ({M}{{r}}), coercive field ({H}{{c}}), and Bohr magneton (μ) are calculated from the hysteresis loops. The value of {M}{{s}} is found to decrease with increasing Sn content in the samples. This change is successfully explained by the variation of A-B interaction strength due to Sn substitution in different sites. The compositional stability and quality of the prepared ferrite composites have also been endorsed by the fairly constant initial permeability ({μ }^{\\prime }) over a wide range of frequency. The decreasing trend of {μ }^{\\prime } with increasing Sn content has been observed. Curie temperature {T}{{C}} has been found to increase with the increase in Sn content. A wide spread frequency utility zone indicates that the NZSFO can be considered as a good candidate for use in broadband pulse transformers and wide band read-write heads for video recording. The composition of x = 0.05 shows unusual results and the possible reason is also mentioned with the established formalism.

  6. The structural changes of Y2O3 in ferritic ODS alloys during milling

    International Nuclear Information System (INIS)

    Hilger, I.; Tegel, M.; Gorley, M.J.; Grant, P.S.; Weißgärber, T.; Kieback, B.

    2014-01-01

    Oxide dispersion strengthened (ODS) ferritic steels are usually fabricated via mechanical alloying and subsequent consolidation via hot extrusion or hot isostatic pressing. During the individual process steps, a complex evolution of the nanoparticle structure is taking place. Powders with different Y 2 O 3 contents were milled and examined by means of X-ray diffraction (XRD) and atom probe tomography (APT). It has been observed that the Y 2 O 3 is fragmented and becomes partially amorphous upon milling due to the grain refinement of Y 2 O 3 during the milling process. There was no compelling evidence for Y 2 O 3 dissociation and dissolution into the steel matrix

  7. Effect of zinc substitution on the structural, electrical and magnetic properties of nano-structured Ni0.5Co0.5Fe2O4 ferrites

    Science.gov (United States)

    Babu, K. Vijaya; Sailaja, B.; Jalaiah, K.; Shibeshi, Paulos Taddesse; Ravi, M.

    2018-04-01

    A series of Ni0.5Co0.5-xZnxFe2O4 (x = 0, 0.02, 0.04 and 0.06) nanoferrites were synthesized by sol-gel method using citric acid as chelating reagent. The synthesized ferrite systems are characterized by XRD, SEM, FTIR, ESR and dielectric techniques. The formation of cubic spinel phase belonging to space group Fd3m is identified from the X-ray diffraction patterns. SEM showed the particles are in spherical shape with an average grain size 5-10 nm. FTIR spectra portrait the fundamental absorption bands in the range 400-600 cm-1 relating to octahedral and tetrahedral sites. Dielectric properties are investigated over the frequency range of 20 Hz to 1 MHz at room temperature. A difference in dielectric constant (εr) and dissipation factor (tanδ) of the ferrites has been observed. The dielectric constant and dielectric loss tangent decreases exponentially with increase in frequency. The obtained results are good agreeing with the reported values.

  8. Harnessing microbial subsurface metal reduction activities to synthesize nanoscale cobalt ferrite with enhanced magnetic properties

    International Nuclear Information System (INIS)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-01-01

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe 2 O 4 ) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of ∼ 10 6 erg cm -3 can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than Fe into the structure

  9. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  10. Point-contact spectroscopic studies on normal and superconducting AFe2As2-type iron pnictide single crystals

    International Nuclear Information System (INIS)

    Lu Xin; Park, W K; Greene, L H; Yuan, H Q; Chen, G F; Luo, G L; Wang, N L; Sefat, A S; McGuire, M A; Jin, R; Sales, B C; Mandrus, D; Gillett, J; Sebastian, Suchitra E

    2010-01-01

    Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe 2 As 2 (A = Ba, Sr) family ('Fe-122'). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba 0.6 K 0.4 )Fe 2 As 2 and Ba(Fe 0.9 Co 0.1 ) 2 As 2 , and the other with a V 2/3 background conductance universally observed, extending even up to 100 meV for Sr 0.6 Na 0.4 Fe 2 As 2 and Sr(Fe 0.9 Co 0.1 ) 2 As 2 . The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe 2 As 2 and superconducting (Ba 0.6 K 0.4 )Fe 2 As 2 crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba 0.6 K 0.4 Fe 2 As 2 , double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder-Tinkham-Klapwijk model, the data show a gap size of ∼ 3.0-4.0 meV with 2Δ 0 /k B T c ∼ 2.0-2.6, consistent with the smaller gap size reported for the LnFeAsO family ('Fe-1111'). For the Ba(Fe 0.9 Co 0.1 ) 2 As 2 , the G(V) curves typically display a zero-bias conductance peak.

  11. Efficiency Enhancement in Bulk Heterojunction Polymer Photovoltaic Cells Using ZrTiO4/Bi2O3 Metal-Oxide Nanocomposites

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Neppolian, B.; Shim, Hee-Sang

    2010-01-01

    We report the effect of metal-oxide nanocomposites on the performance of bulk heterojunction polymer solar cells. A photoactive layer composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was blended with a newly developed ZrTiO4/Bi2O3 (BITZ) metal-oxide...

  12. Synthesis, structural investigation and magnetic properties of Zn{sup 2+} substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Raut, A.V., E-mail: nano9993@gmail.com [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Barkule, R.S.; Shengule, D.R. [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Jadhav, K.M., E-mail: drjadhavkm@gmail.com [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004 Maharastra (India)

    2014-05-01

    Structural morphology and magnetic properties of the Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn{sup 2+} content in cobalt ferrite nanoparticles is followed by decrease in n{sub B}, M{sub s} and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique.

  13. Structural characterization of Mg substituted on A/B sites in NiFe_2O_4 nanoparticles using autocombustion method

    Science.gov (United States)

    De, Manojit; Tewari, H. S.

    2017-07-01

    In the present paper, we are reporting the synthesis of pure nickel and magnesium ferrite [NiFe_2O_4, MgFe_2O_4] and magnesium-substituted nickel ferrite (Ni_{1-x}Mg_{x/y}Fe_{2-y}O_4; x=y=0.60) on A/B sites with particles size in nanometer range using autocombustion technique. In this study, it has been observed that with increase in sintering temperature, the estimated bulk density of the materials increases. The XRD patterns of the samples show the formation of single-phase materials and the lattice parameters are estimated from XRD patterns. From Raman spectra, the Raman shift of pure NiFe_2O_4 and MgFe_2O_4 are comparable with the experimental values reported in literature. The Raman spectra give five Raman active modes (A_{{1g}} + Eg + 3F_{2g}) which are expected in the spinel structure.

  14. Determination of transition metal ion distribution in cubic spinel Co1.5Fe1.5O4 using anomalous x-ray diffraction

    Directory of Open Access Journals (Sweden)

    M. N. Singh

    2015-08-01

    Full Text Available We report anomalous x-ray diffraction studies on Co ferrite with composition Co1.5Fe1.5O4 to obtain the distribution of transition metal ions in tetrahedral and octahedral sites. We synthesize spinel oxide (Co1.5Fe1.5O4 through co-precipitation and subsequent annealing route. The imaginary part (absorption of the energy dependent anomalous form factor is measured and the real part is calculated theoretically through Kramers–Krönig transformation to analyze anomalous x-ray diffraction peak intensities. Fe and Co K-edge x-ray absorption near edge structure (XANES spectra are used to estimate charge states of transition metals. Our analysis, within experimental errors, suggests 44% of the tetrahedral sites contain Co in +2 oxidation state and the rest 56% sites contain Fe in +2 and +3 oxidation states. Similarly, 47% of the octahedral sites contain Fe in +3 oxidation states, whereas, the rest of the sites contain Co in +2 and +3 oxidation states. While a distinct pre-edge feature in the Fe K-edge XANES is observed, Co pre-edge remains featureless. Implications of these results to magnetism are briefly discussed.

  15. Magnetic properties and loss separation in FeSi/MnZnFe{sub 2}O{sub 4} soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Lauda, M. [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik Univesity, Park Angelinum 9, 04154 Košice (Slovakia); Füzer, J., E-mail: jan.fuzer@upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik Univesity, Park Angelinum 9, 04154 Košice (Slovakia); Kollár, P. [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik Univesity, Park Angelinum 9, 04154 Košice (Slovakia); Strečková, M.; Bureš, R. [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice (Slovakia); Kováč, J.; Baťková, M.; Baťko, I. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice (Slovakia)

    2016-08-01

    We investigated composites that have been prepared from FeSi powders covered with MnZnFe{sub 2}O{sub 4} (MnZn ferrite), which was prepared by sol–gel synthesis accompanied with the auto-combustion process. The aim of this paper is to analyze the complex permeability and core losses of prepared samples with different amount of MnZn ferrite. The microstructure and the powder morphology were examined by scanning electron microscopy. Magnetic measurements on bulk samples were carried out using a vibrating sample magnetometer, an impedance analyzer and hysteresisgraphs. The results indicate that the composites with 2.6 wt% MnZn ferrite show better soft magnetic properties than the composites with about 6 wt% MnZn ferrite. - Highlights: • Successful preparation of soft magnetic composite FeSi/MnZnFe{sub 2}O{sub 4}. • Study of the complex magnetic permeability. • Comparison of different compositions of prepared SMC's. • Determination of parts of magnetic losses.

  16. Evolution of frozen magnetic state in co-precipitated ZnδCo1-δFe2O4 (0 ≤ δ ≤ 1) ferrite nanopowders

    Science.gov (United States)

    Kubisztal, M.; Kubisztal, J.; Karolus, M.; Prusik, K.; Haneczok, G.

    2018-05-01

    The evolution of frozen magnetic state of ZnδCo1-δFe2O4 (0 ≤ δ ≤ 1) ferrite nanoparticles was studied by applying vibrating sample magnetometer measurements in temperature range 5-350 K and magnetic fields up to 7 T. It was shown that gradual conversion from the inverse spinel (δ = 0) to the normal one (δ = 1.0) is correlated with a drop of freezing temperature Tf (corresponding to blocking of mean magnetic moment of the system) from 238 K (δ = 0) to 9 K (δ = 1.0) and with a decrease of magnetic anisotropy constant K1 from about 8 · 105 J/m3 to about 3 · 105 J/m3. The percolation threshold predicted for bulk ferrites at 1 - δ ≈ 0.33 was observed as a significant weakness of ferrimagnetic coupling. In this case magnetization curves, determined according to the zero field cooling protocol, reveal two distinct maxima indicating that the system splits into two assemblies with specific ions distribution between A and B sites.

  17. Investigation of structural, magnetic and dielectric properties of Cr3+ substituted Cu0.75Co0.25Fe2-xO4 ferrite nanoparticles

    Science.gov (United States)

    Reddi, M. Sushma; Ramesh, M.; Sreenivasu, T.; Rao, G. S. N.; Samatha, K.

    2018-05-01

    Chromium doped Copper-Cobalt ferrite Nanoparticles were obtained by sol-gel auto-combustion method using citric acid as a fuel. The metal nitrates to citric acid ratio was taken as 1:1. The prepared powder of Cr3+ doped copper-cobalt ferrite nanoparticles is annealed at 600°C for 5 hrs and the same powder was used for characterization and investigations of structural properties. The phase composition, micro-structural, micro morphological and elemental analysis studies were carried out by X-ray diffraction (XRD), scanning electron microscope (SEM) technique and energy dispersive spectroscopy (EDS). The FTIR spectra of these samples are recorded to ensure the presence of the metallic compounds. The average crystallite size obtained by Scherrer's formula is of the order of 19.28 nm to 32.92 nm. The dielectric properties are investigated as a function of frequency at room temperature using LCR-Q meter. The saturation magnetization (Ms) of the Cr3+ substituted Cu-Co ferrite sintered at 1100°C lies in the range of 5.4136-28.9943 emu/g, the coercivity (Hc) dropped desperately from about 2091.3-778.53Oe as Cr3+ composition increases from 0.0 to 0.25.

  18. Low temperature synthesis of nanosized Mn1–xZnxFe2O4 ferrites ...

    Indian Academy of Sciences (India)

    Administrator

    spectrum analysis were carried out to confirm the spinel phase formation as well as to ascertain the cation distri- bution in the ferrite ... structured materials technology opening up in the last few ... recent years, the design and synthesis of nano-magnetic particles ..... complex system like the ferrites where many cations are.

  19. Structural and magnetic properties of Co substituted Li{sub 0.5}Fe{sub 2.5}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Patil, R.P., E-mail: raj_rbm_raj@yahoo.co.in [Department of Chemistry, M.H. Shinde Mahavidyalaya, Tisangi 416206, MH (India); Patil, S.B. [Department of Physics, Krantisinh Nana Patil College Walwa, Sangli 416313, MH (India); Jadhav, B.V. [Department of Chemistry, Changu Kana Thakur Arts, Commerce and Science College, New Panvel 400035, MH (India); Delekar, S.D.; Hankare, P.P. [Department of Chemistry, Shivaji University, Kolhapur 416004, MH (India)

    2016-03-01

    Nanocrystalline Li{sub 0.5}Fe{sub 2.5−x}Co{sub x}O{sub 4} (2.5≥x≥0) system was prepared by sol–gel route. Formation of single phase cubic spinel structure for all the compositions was confirmed from their X-ray diffraction studies. These ferrite samples existed as homogenous and uniform grains as observed from Scanning Electron Microscopy technique. The magnetic studies indicated that, the ferrimagnetic behavior decreases with Cobalt substitution. In general, the substitution of cobalt plays an important role in changing the structural and magnetic properties of these ferrites. - Highlights: • Novel Co doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} system. • Sol–gel method synthesized Co–Lithium ferrites. • Single Phase Cubic spinel structure. • Homogenous and uniform grain size of samples. • Ferrimagnetic behavior for all the samples.

  20. Zn substitution NiFe{sub 2}O{sub 4} nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Junwei [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hou, Xianhua, E-mail: houxh@scnu.edu.cn [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Huang, Fengsi; Shen, Kaixiang [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Lam, Kwok-ho [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hunghom, Kowloon 999077 (Hong Kong); Ru, Qiang [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hu, Shejun, E-mail: husj@scnu.edu.cn [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2016-08-15

    Zn{sup 2+} ion substituted nickel ferrite nanomaterials with the chemical formula Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} for x = 0, 0.3, 0.5, 0.7 and 1 have been synthesized by a facile green-chemical hydrothermal method as anode materials in lithium ion battery. The morphology and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The physical and electrochemical properties were tested by electrochemical system. Furthermore, the energetic and electronic properties of the samples were investigated by density functional calculations. The results suggest that Zn substitution can affect the conduction performance of the zinc - nickel ferrite. Meanwhile, electrochemical results show that an enhancement in the capacity with increasing Zn concentration is observed especially for x = 0.3 which exhibit high discharge capacity of 1416 mAh g{sup −1}at the end of 100th cycle. Moreover, the theoretical research method with high yield synthesis strategy described in the present work holds promise for the general fabrication of other metallic elements substitution in complex transition metal oxides for high power LIBs. - Highlights: • Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} anodes have been synthesized by hydrothermal method. • First principles calculation was used to investigate the conduction performance. • Electrochemical performance was enhanced with Zn substitution.

  1. Ferrites Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} doped with samarium: structural analysis, morphological and electromagnetic; Ferritas Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} dopada com samario: analise estrutural, morfologica e eletromagnetica

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A.C.F.M.; Diniz, A.P., E-mail: anacristina@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academinca de Engenharia de Materiais; Viana, K.M.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, PE (Brazil). Escola de Ciencias e Tecnologia; Cornejo, D.R. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2010-07-01

    This paper proposes to investigate the sintering at 1200 deg C/2h of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2-x}Sm{sub x}O{sub 4} ferrite doped with 0.05; 0.075 e 0.1 mol of Sm synthesized by combustion reaction to evaluate the performance materials as absorbers of electromagnetic radiation. The influence of the concentration of samarium on the structure, morphology and electromagnetic properties of ferrites was studied. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), magnetic measurements and reflectivity measurements in the frequency range between 8-12 GHz. The results showed that increasing the concentration of samarium caused a decrease in particle size of the samples, encouraging, therefore, to obtain materials with better values of magnetization and reflectivity, allowing for use as absorbers in narrow-band frequency between 9-10 GHz. (author)

  2. Influence of silane agent in magnetic properties of the type MFe2O4 (M = Co e NiZn)

    International Nuclear Information System (INIS)

    Santos, P.T.A.; Araujo, P.M.A.G.; Costa, A.C.F.M.; Cornejo, D.R.

    2014-01-01

    This paper proposes to evaluate the influence of silane agent on the magnetic properties of ferrite is a MFe 2 O 4 (M = Co and NiZn). The ferrites were synthesized by combustion reaction, the surface modified with 3-aminopropyltrimethoxysilane agent silane (APTS) and characterized by XRD, FTIR, EDX and magnetic measurements. The results indicated that after modification of the surface of the spinel single phase was maintained. Surface modification was achieved with efficiency and Si-O confirmed by FTIR analysis. The surface modification kept the ferrimagnetic behavior of ferrites. (author)

  3. Influence of Zn{sup 2+} content on morphological and magnetic properties of Mn{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} ferrites synthesized on a large scale by combustion reaction; Influencia do teor de Zn{sup 2+} nas caracteristicas morfologicas e magneticas de ferritas Mn{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} sintetizados em grande escala por reacao de combustao

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, V.C.S.; Silveira Junior, J.E.R.; Costa, A.C.F.M., E-mail: veronicacristhina@hotmail.com, E-mail: juniorramos_1@hotmail.com, E-mail: c_r_i_s_2005@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Departamento de Engenharia de Materiais; Cornejo, D.R., E-mail: cornejo@if.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Kiminami, R.H.G.A., E-mail: ruth@ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2017-04-15

    This study aimed to evaluate the influence of Zn{sup 2+} in the morphological and magnetic characteristics of ferrites Mn{sub 1-x}Zn{sub x} Fe{sub 2} O{sub 4} (where x= 0.0, 0.35, 0.5 and 0.65 mol of Zn) synthesized by combustion reaction in a pilot scale with batches of 200 g/reaction. The samples were characterized by X-ray diffraction, scanning/transmission electron microscopy, and magnetic measurements. The results indicated that all compositions were single phase of ferrite; morphologically the addition of Zn to MnFe{sub 2} O{sub 4} system caused a slight reduction in size of the agglomerates, and reduced the particle size, but this behavior was not linear with the Zn{sup 2+} content. The samples had characteristic magnetic behavior of soft magnetic materials, maximum saturation magnetization of 62 emu/g for the sample with lower zinc content in its composition. (author)

  4. Magnetic properties of bioactive glass-ceramics containing nanocrystalline zinc ferrite

    International Nuclear Information System (INIS)

    Singh, Rajendra Kumar; Srinivasan, A.

    2011-01-01

    Glass-ceramics with finely dispersed zinc ferrite (ZnFe 2 O 4 ) nanocrystallites were obtained by heat treatment of x(ZnO,Fe 2 O 3 )(65-x)SiO 2 20(CaO,P 2 O 5 )15Na 2 O (6≤x≤21 mole%) glasses. X-ray diffraction patterns of the glass-ceramic samples revealed the presence of calcium sodium phosphate [NaCaPO 4 ] and zinc ferrite [ZnFe 2 O 4 ] as major crystalline phases. Zinc ferrite present in nanocrystalline form contributes to the magnetic properties of the glass-ceramic samples. Magnetic hysteresis cycles of the glass-ceramic samples were obtained with applied magnetic field sweeps of ±20 kOe and ±500 Oe, in order to evaluate the potential of these glass-ceramics for hyperthermia treatment of cancer. The evolution of magnetic properties in these samples, viz., from a partially paramagnetic to fully ferrimagnetic nature has been explored using magnetometry and X-ray diffraction studies. - Research highlights: → The glass-ceramics contain bone mineral and magnetic phases. → Calcium sodium phosphate and zinc ferrite nanocrystallites have been identified in all the sample. → With an increase in ZnO and Fe2O3 content, magnetic property of samples evolved from partially paramagnetic to fully ferrimagnetic nature. → Large magnetic hysteresis loops have been obtained for samples with high ZnO+Fe2O3 content.

  5. A comparative study of dissolution of {alpha}-Fe{sub 2}O{sub 3} and {gamma}-Fe{sub 2}O{sub 3} in DCD formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Raghavan, P.S.; Gopalan, R. [Madras Christian Coll. (India). Dept. of Chemistry; Srinivasan, M.P.; Narasimhan, S.V.

    1998-12-31

    The important corrosion products deposited on the surfaces of structural materials such as stainless steel in the primary coolant system of BWRs are haematite in the outer layers and ferrites such as magnetite, nickel ferrite, cobalt ferrite, etc., in the inner layers. Magnetite dissolution by 2, 6 Pyridinedicarboxylic acid (PDCA), Ethylenediaminetetraacetic acid (EDTA) and Nitrolotriacetic acid (NTA) showed that there is an optimum pH of dissolution for each ligand. The leaching of the metal ions from the oxides is controlled in part by reductive dissolution; this is due to the presence of Fe(II)-L complexes generated from the released Fe{sup 2+} ions. The addition of Fe(II)-L with the formulation greatly increases the rate of dissolution. In order to understand the role of Fe{sup 2+} arising from the spinel lattice of Fe{sub 3}O{sub 4} in aiding the dissolution of magnetite, it is appropriate to study the dissolution behaviour of the system like Fe{sub 2}O{sub 3} which is not containing any Fe{sup 2+} in the crystal lattice. The present study has been carried out with {alpha}-Fe{sub 2}O{sub 3} and {gamma}-Fe{sub 2}O{sub 3} in DCD formulation in the presence of ascorbic acid and with the addition of Fe(II)-L as a reductant. (author)

  6. Synthesized of PEG-6000 coated MgFe2O4 nanoparticles based on natural iron sand by co-precipitation method

    Science.gov (United States)

    Setiadi, E. A.; Simbolon, S.; Saputra, A. S. P.; Marlianto, E.; Djuhana; Kurniawan, C.; Yunus, M.; Sebayang, P.

    2018-02-01

    The polymer coated Magnesium Ferrite nanoparticles (MgFe2O4) based on natural iron sand, Mg(CH3COO)2.4H2O, and PEG-6000 have been successfully prepared by co-precipitation method. The mass variation of PEG-6000 content was from 0 to 12 gram. It was prepared at synthesize temperature of 70°C. The PEG coating reduced the effect of agglomeration, so the coercivity value can be closed to soft magnets. The nanoparticle of synthesized has MgFe2O4 single phase and cubic spinel structure. The bonding of MgFe2O4 and PEG-6000 as a coating material was confirmed by FTIR curve. The MgFe2O4 density decreased with the increasing of PEG 6000 content. On the other hand, the coercivity value was slightly reduced as the addition of PEG-6000, with the lowest value was obtained on 8 gram PEG content. The optimum condition is obtained at addition of 8 gram PEG 6000 to MgFe2O4, with coercivity, saturation, and remanence are 198.41 Oe, 52.53 emu/g, and 8.51 emu/g, respectively. So that, the sample is widely used as absorbance material of heavy metal.

  7. Magnetic measurements and neutron diffraction study of the layered hybrid compounds Mn(C8H4O4)(H2O)2 and Mn2(OH)2(C8H4O4)

    International Nuclear Information System (INIS)

    Sibille, Romain; Mesbah, Adel; Mazet, Thomas; Malaman, Bernard; Capelli, Silvia; François, Michel

    2012-01-01

    Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ) layered organic–inorganic compounds based on manganese(II) and terephthalate molecules (C 8 H 4 O 4 2− ) have been studied by DC and AC magnetic measurements and powder neutron diffraction. The dihydrated compound behaves as a 3D antiferromagnet below 6.5 K. The temperature dependence of its χT product is typical of a 2D Heisenberg system and allows determining the in-plane exchange constant J≈−7.4 K through the carboxylate bridges. The magnetic structure confirms the in-plane nearest neighbor antiferromagnetic interactions and the 3D ordering. The hydroxide based compound also orders as a 3D antiferromagnet with a higher Néel temperature (38.5 K). Its magnetic structure is described from two antiferromagnetically coupled ferromagnetic sublattices, in relation with the two independent metallic sites. The isothermal magnetization data at 2 K are consistent with the antiferromagnetic ground-state of these compounds. However, in both cases, a slope change points to field-induced modification of the magnetic structure. - Graphical abstract: The macroscopic magnetic properties and magnetic structures of two metal-organic frameworks based on manganese (II) and terephthalate molecules are presented. Highlights: ► Magnetic study of Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ). ► Two compounds with common features (interlayer linker/distance, S=5/2 spin). ► Magnetic measurements quantitatively analyzed to deduce exchange constants. ► Magnetic structures determined from neutron powder diffraction experiments.

  8. Microstructural and magnetic study of ferrites Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} sintered by microwave energy; Estudo microestrutral e magnetico de ferritas Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} sinterizadas por energia de micro-ondas

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, V.C.S.; Costa, A.C.F.M., E-mail: veronicacristhina@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Ciencias e Engenharia de Materiais; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais; Cornejo, D.R. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2014-07-01

    The study of the processing of Ni-Zn ferrite is of extreme importance to improve its magnetic properties, as they are directly influenced by the final microstructure of the material. This study evaluated the influence of exposure time in the sintering of Ni-Zn ferrite phase by microwave energy, and its subsequent microstructural characterization, and magnetic. The samples of Ni-Zn ferrite were sintered using microwave energy at a temperature of 1200 °C and an exposure time of 10, 20 and 30 minutes, respectively. Then were characterized by X-ray diffraction spectroscopy, scanning electron microscopy and magnetic measurements. With the results, it was observed that all samples obtained from the formation Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} phase with all high intensity peaks. It was possible to obtain a nanostructure with maximum saturation magnetization of 71 emu / g for the sample sintered in longer exposure time. (author)

  9. Synthesis and Characterization of Polyol-Assisted Nano Cu0.2Ni0.2Sn0.2Ba0.4 Fe2O4 by a Wet Hydroxyl Route

    Science.gov (United States)

    Pavithradevi, S.; Suriyanarayanan, N.; Boobalan, T.; Velumani, S.; Chandramohan, M.; Manivel Raja, M.

    2017-08-01

    Nanocrystalline spinel ferrite of composition Cu0.2Ni0.2Sn0.2Ba0.4 Fe2O4 has been synthesized by a wet hydroxyl chemical route in ethylene glycol as chelating agent and sodium hydroxide as precipitator at pH 8. Ethylene glycol has been used as the medium which serves as the solvent as well as a complexing agent. The synthesized particles are annealed at temperatures of 350°C, 700°C, and 1050°C. Thermogravimetric (TG) analysis confirms that at 240°C, ethylene glycol has evaporated completely, and a stable phase is formed above 670°C. Fourier transform infrared (FT-IR) spectroscopy of mixed Cu0.2Ni0.2Sn0.2Ba0.4 ferrite nanoparticles like as synthesized and annealed at 1050°C are recorded between 400 cm-1 and 4000 cm-1. FT-IR appraises the structural formation of Cu0.2Ni0.2Sn0.2Ba0.4 Fe2O4 between the as-synthesized sample and the sample annealed at 1050°C. Structural characterizations of all the samples are carried out by x-ray diffraction (XRD) technique. XRD reveals that the particle size increases with the increase in annealing temperatures. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) confirms that the particles are flaky and spherical with the crystallite size in the range of 11-27 nm. The decrement of dielectric properties, like dielectric constant and dielectric loss, with the increment of frequency as seen in all the samples is an usual dielectric behavior of spinel ferrites. The lack of net magnetization is noticed immediately when the applied magnetic field is removed which prompts superparamagnetic behavior, as seen in all the samples.

  10. Structural characterization of ferrite nanoparticles and composite materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Albuquerque, A.S.; Macedo, W.A.A.; Plivelic, T.; Torriani, I.L.; Jimenez, J.A.L.; Saitovich, E.B.

    2001-01-01

    During the last decade nanocrystalline magnetic materials have been widely studied due to the multiple technological applications. Amongst the magnetic materials of major technological interest are the soft magnetic ferrites and the granular solids formed by ferrites dispersed in non-magnetic matrices. It is a well known fact that the magnetic properties of these materials, such as coercivity, magnetic saturation and magnetization, depend on the shape, size and size distribution of the nanoparticles. For this reason, the general purpose of this work was to obtain structural information on ferrite nanoparticles (NiFe 2 O 4 and NiZnFe 2 O 4 ) and granular solids obtained by dispersion of these particles in non magnetic matrices, like SiO 2 and SnO 2 . The ferrite samples were prepared by co-precipitation and heat treated between 300 and 600 deg. C at the Applied Physics Laboratory of tile CDTN. The granular solids, with 30% in volume concentration of ferrite, were obtained by mechanical alloying with milling times (t m ) varying between 1.25 and 10 h, at the CBPF

  11. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application

    Directory of Open Access Journals (Sweden)

    Rajendra S. Gaikwad

    2011-01-01

    Full Text Available Cobalt ferrite, CoFe2O4, nanocrystalline films were deposited using electrostatic spray method and explored in sustainable hydrogen production application. Reflection planes in X-ray diffraction pattern confirm CoFe2O4 phase. The surface scanning microscopy photoimages reveal an agglomeration of closely-packed CoFe2O4 nanoflakes. Concentrated solar-panel, a two-step water splitting process, measurement technique was preferred for measuring the hydrogen generation rate. For about 5 hr sustainable, 440 mL/hr, hydrogen production activity was achieved, confirming the efficient use of cobalt ferrite nanocrystallites film in hydrogen production application.

  12. Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction

    Science.gov (United States)

    Li, Mian; Xiong, Yueping; Liu, Xiaotian; Bo, Xiangjie; Zhang, Yufan; Han, Ce; Guo, Liping

    2015-05-01

    Designing and preparing porous transition metal ferrites without using any template, shape-directing agent, and surfactant is a challenge. Herein, heterojunction MFe2O4 (M = Co, Ni, Cu, Mn) nanofiber (NF) based films with three-dimensional configurations were synthesized by electrospinning and the subsequent thermal treatment processes. Characterization results indeed show the 3D net-like textural structures of the electrospun spinel-type MFe2O4 NFs. In particular, the resulting MFe2O4 NFs have lengths up to several dozens of micrometers with an average diameter size of about 150 nm and possess abundant micro/meso/macropores on both the surface and within the films. The hierarchically porous structures and high surface areas of these MFe2O4 NFs (for example, the CoFe2O4 NFs possess a larger BET specific surface area (61.48 m2 g-1) than those of the CoFe2O4 NPs (5.93 m2 g-1)) can afford accessible transport channels for effectively decreasing the mass transport resistances, enhancing the electrical conductivity, and increasing the density and reactivity of the exposed catalytic active sites. All these advantages will be responsible for the better electrocatalytic performances of these MFe2O4 NFs compared with their structural isomers (i.e. the MFe2O4 NPs) for the oxygen evolution reaction (OER) and H2O2 reduction in alkaline solution. Meanwhile, both the OER and H2O2 reduction catalytic activities for these MFe2O4 NFs obey the order of CoFe2O4 NFs > CuFe2O4 NFs > NiFe2O4 NFs > MnFe2O4 NFs > Fe2O3 NFs. The CoFe2O4 NFs represent a new class of highly efficient non-noble-metal catalysts for both OER and H2O2 reduction/detection in alkaline media.Designing and preparing porous transition metal ferrites without using any template, shape-directing agent, and surfactant is a challenge. Herein, heterojunction MFe2O4 (M = Co, Ni, Cu, Mn) nanofiber (NF) based films with three-dimensional configurations were synthesized by electrospinning and the subsequent thermal treatment

  13. Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method

    Science.gov (United States)

    Kurian, Jessyamma; Mathew, M. Jacob

    2018-04-01

    In this paper we report the structural, optical and magnetic studies of three spinel ferrites namely CuFe2O4, MgFe2O4 and ZnFe2O4 prepared in an autoclave under the same physical conditions but with two different liquid medium and different surfactant. We use water as the medium and trisodium citrate as the surfactant for one method (Hydrothermal method) and ethylene glycol as the medium and poly ethylene glycol as the surfactant for the second method (solvothermal method). The phase identification and structural characterization are done using XRD and morphological studies are carried out by TEM. Cubical and porous spherical morphologies are obtained for hydrothermal and solvothermal process respectively without any impurity phase. The optical studies are carried out using FTIR and UV-Vis reflectance spectra. In order to elucidate the nonlinear optical behaviour of the prepared nanomaterial, open aperture z-scan technique is used. From the fitted z-scan curves nonlinear absorption coefficient and the saturation intensity are determined. The magnetic characterization of the samples is performed at room temperature using vibrating sample magnetometer measurements. The M-H curves obtained are fitted using theoretical equation and the different components of magnetization are determined. Nanoparticles with high saturation magnetization are obtained for MgFe2O4 and ZnFe2O4 prepared under solvothermal reaction. The magnetic hyperfine parameters and the cation distribution of the prepared materials are determined using room temperature Mössbauer spectroscopy. The fitted spectra reveal the difference in the magnetic hyperfine parameters owing to the change in size and morphology.

  14. Morphological and structural analysis of ferrite NiFe{sub 2}O{sub 4} doped with chromium; Analise estrutural e morfologica de ferrita NiFe{sub 2}O{sub 4} dopada com cromo

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A.C.F., E-mail: anacristina@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Viana, K.M.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Escola de Ciencias e Tecnologia; Miola, E.J.; Antonio, S.G.; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Paiva-Santos, C.O. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Departamento de Fisico-Quimica

    2011-07-01

    This paper reports on the effect of the substitution of Fe{sup 3+} for Cr{sup 3+} ions in the spinel lattice of the powders was investigated. Nickel ferrite powders with a NiFe{sub 2-x}Cr{sub x}O{sub 4} nominal composition (x = 0.0; 0.5; 1.0 and 1.5 mol of the chromium) were synthesized by combustion reaction using urea as fuel. The powders resulting were characterized by XRD, nitrogen adsorption by BET, SEM and Mössbauer spectroscopy ({sup 57}Fe Mössbauer spectra). The results show that the substitution of the Fe{sup 3+} for Cr{sup 3+} ions increased the crystalline degree of the phase, reduced the superficial area and consequently increased the particle size. The Mössbauer spectra of the samples also confirm the distribution of the particles size by the magnetic properties. Analyze of the spectra Mössbauer gives an estimate of the superparamagnetic and ferromagnetic particles behavior in each sample for several chromium concentrations. (author)

  15. Effect of surfactant amount on the morphology and magnetic properties of monodisperse ZnFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haitao, E-mail: zht95711lunwen@163.com; Liu, Ruiping; Zhang, Qiang; Wang, Qiao

    2016-03-15

    Graphical abstract: Polyol process to monodisperse ZnFe{sub 2}O{sub 4} nanoparticles. - Highlights: • An one-step, facile and inexpensive synthetic route to monodisperse ZnFe{sub 2}O{sub 4} nanoparticles is described. • The sodium citrate stabilized ZnFe{sub 2}O{sub 4} nanoparticles with a diameter in the 5–8 nm size range can be easily dispersed in water. • The synthesis is very robust in terms of variations of experimental parameters. • ZnFe{sub 2}O{sub 4} nanoparticles present ferrimagnetic behavior at room temperature with a small hysteresis. - Abstract: The spinel ZnFe{sub 2}O{sub 4} ferrites with sodium citrate as a surfactant were fabricated by polyol process. The effect of surfactant amount on the structure, morphology and magnetic properties of ZnFe{sub 2}O{sub 4} ferrites were investigated by X-ray diffraction(XRD), transmission electron microscope (TEM), thermogravimetric and differential scanning calorimetry (TG–DSC) and vibrating sample magnetometry (VSM), respectively. The results indicate that the structure of ZnFe{sub 2}O{sub 4} ferrites is a pure cubic spinel structure with a particle size of 5–8 nm. The dispersion of the synthesized ZnFe{sub 2}O{sub 4} is enhanced when the mole ratio of Fe(acac){sub 3} to sodium citrate decreases. The synthesized particles present ferrimagnetic behavior with a small hysteresis at room temperature. The increase of surfactant amount conversely leads to the decrease in the saturation magnetization value (Ms) especially when the mole ratio of Fe(acac){sub 3} to sodium citrate decreases to 8:3. Its Ms value is drastically reduced to 18.97 emu/g.

  16. Mechanical alloying in Fe2O3-MO (M: Zn, Ni, Cu, Mg) systems

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gerward, Leif; Mørup, Steen

    1999-01-01

    of MFe2O4 ferrites are critically discussed. No significant with respect to ferrite formation rates was observed in open and closed containers used here. In the Fe2O3/ZnO system, a single ferrite phase can be synthesized but in other systems no significant amounts of ferrites are formed by high...

  17. Investigations on structural, vibrational and dielectric properties of nanosized Cu doped Mg-Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Anand [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Department of Physics, MEDICAPS Institute of Science and Technology, Pithampur 453331 (India); Rajpoot, Rambabu; Dar, M. A.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: anand.212@gmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India)

    2016-05-23

    Transition metal Cu{sup 2+} doped Mg-Zn ferrite [Mg{sub 0.5}Zn{sub 0.5-x}Cu{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 0.5)] were prepared by sol gel auto combustion (SGAC) method to probe the structural, vibrational and electrical properties. X-ray diffraction (XRD) pattern reveals a single-phase cubic spinel structure without the presence of any secondary phase corresponding to other structure. The average particle size of the parent Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} is found to be ~29.8 nm and is found to increase with Cu{sup 2+} doping. Progressive reduction in lattice parameter of Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been observed due to difference in ionic radii of cations with improved Cu doping. Spinel cubic structure is further confirmed by Raman spectroscopy. Small shift in Raman modes towards higher wave number has been observed in doped Mg-Zn ferrites. The permittivity and dielectric loss decreases at lower doping and increases at higher order doping of Cu{sup 2+}.

  18. Mechanism of thermal decomposition of K{sub 2}FeO{sub 4} and BaFeO{sub 4}: A review

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Virender K., E-mail: vsharma@sph.tamhsc.edu [Texas A& M University, Department of Environmental and Occupational Health, School of Public Health (United States); Machala, Libor [Palacky University, Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science (Czech Republic)

    2016-12-15

    This paper presents thermal decomposition of potassium ferrate(VI) (K{sub 2}FeO{sub 4}) and barium ferrate(VI) (BaFeO{sub 4}) in air and nitrogen atmosphere. Mössbauer spectroscopy and nuclear forward scattering (NFS) synchrotron radiation approaches are reviewed to advance understanding of electron-transfer processes involved in reduction of ferrate(VI) to Fe(III) phases. Direct evidences of Fe {sup V} and Fe {sup IV} as intermediate iron species using the applied techniques are given. Thermal decomposition of K{sub 2}FeO{sub 4} involved Fe {sup V}, Fe {sup IV}, and K{sub 3}FeO{sub 3} as intermediate species while BaFeO{sub 3} (i.e. Fe {sup IV}) was the only intermediate species during the decomposition of BaFeO{sub 4}. Nature of ferrite species, formed as final Fe(III) species, of thermal decomposition of K{sub 2}FeO{sub 4} and BaFeO{sub 4} under different conditions are evaluated. Steps of the mechanisms of thermal decomposition of ferrate(VI), which reasonably explained experimental observations of applied approaches in conjunction with thermal and surface techniques, are summarized.

  19. MgFe{sub 2}O{sub 4}/ZrO{sub 2} composite nanoparticles for hyperthermia applications

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Amin ur [Magnetism Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Department of Applied Physical and Material Sciences, University of Swat, Khyber Pakhtunkhwa (Pakistan); Humayun, Asif [Magnetism Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Manzoor, Sadia, E-mail: sadia_manzoor@comsats.edu.pk [Magnetism Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2017-04-15

    MgFe{sub 2}O{sub 4}/ZrO{sub 2} composites containing ZrO{sub 2} in different weight percentages from 0% to 80% were prepared via the citrate gel technique as potential candidate materials for magnetic hyperthermia. The biocompatible ceramic ZrO{sub 2} was introduced to prevent MgFe{sub 2}O{sub 4} nanoparticles from aggregation and to reduce their dipolar interactions in order to enhance the specific absorption rate (SAR). Structural and magnetic properties of the samples were studied using powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and a vibrating sample magnetometer (VSM). Magnetically induced heating in radio frequency (RF) magnetic fields was observed in all samples. Most significantly, the sample with only 20 wt% MgFe{sub 2}O{sub 4} has been found to have a SAR that is larger than that of pure MgFe{sub 2}O{sub 4}. This is an important finding from the point of view of biomedical applications, because ZrO{sub 2} in known to have low toxicity and a higher biocompatibility as compared to ferrites. - Highlights: • MgFe{sub 2}O{sub 4} and ZrO{sub 2} composite nanoparticles with different weight percentages of ZrO{sub 2} were prepared via the citrate gel technique. • Significant variation in magnetic properties was observed with increasing the weight % of ZrO{sub 2}. • Magnetically induced heating was observed when the composites were subjected to RF magnetic field. • Most significantly, the sample 80 wt% ZrO{sub 2} has been found to have SAR that is larger than that of pure MgFe{sub 2}O{sub 4}. • The SAR was found to have a strong dependence on magnetic dipolar interactions.

  20. Solubility limits in Mn–Mg ferrites system under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Mostafa, N.Y. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Faculty of Science, Taif University, PO Box 888, Al-Haweiah, Taif (Saudi Arabia); Abd Elkader, O.H. [Electron Microscope and Thin Films Department, National Research Center, Dokki 12622, Cairo (Egypt); Electron Microscope Unit, Zoology Department, King Saud University, Riyadh 11451 (Saudi Arabia); Ahmed, M.A. [Physics Department, Faculty of Science, Al Azhar University, Nasr City, Cairo (Egypt)

    2014-09-01

    In the present investigation, we successfully synthesized a pure MnFe{sub 2}O{sub 4} ferrite by the hydrothermal method. Moreover, the effect of Mg ion content on the formation of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} particles (with x varying from 0.1 to 1.0) was also investigated using XRD, SEM, TEM and Mossbauer Spectroscopy. Phases formed in the system Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4}; 0.0≤x≤1.0 were investigated under hydrothermal conditions at 453 K.The produced phases were characterized by X-ray diffraction, Scanning, transmission microscopy and Mossbauer spectroscopy. The information of composition, cation distribution in the spinel structure and the particle size of the products were obtained. The spinel ferrites; Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} were formed in the range 0.0≤x≤0.3. However, sample with x>0.3 showed semi-crystalline magnesium hydroxide (Mg(OH){sub 2}) and hematite (Fe{sub 2}O{sub 3}) beside the ferrite phase. For x=1.0, only magnesium hydroxide and hematite are formed without any ferrites. Particles of uniform size around 10–20 nm were obtained in the spinel structure of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} with x=0.0 and 0.1. The corresponding average crystallite size for each sample was 40.3 nm and 39.2 nm respectively. In addition, the Mossbauer spectra were analyzed into two subspectra, one for the tetrahedral A-site and the other for the octahedral B-site. The Mossbauer parameters were determined and discussed for the studied system. The cation distribution was estimated from the analysis of the Mossbauer spectra as well as the X-ray diffraction patterns. The results showed that Mg ions occupy mainly B-site while both Mn and Fe ions are distributed between A- and B-sites. - Highlights: • Mossbauer characterization of Mg–Mn ferrite prepared by hydrothermal route. • X-ray powder diffraction analysis of Mg–Mn ferrite prepared by hydrothermal route. • Solubility limit of MgMn ferrite under

  1. Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol

    Science.gov (United States)

    Godbole, Rhushikesh; Rao, Pratibha; Bhagwat, Sunita

    2017-02-01

    Highly porous spinel MgFe2O4 nanoparticles with a high specific surface area have been successfully synthesized by a sintering free auto-combustion technique and characterized for their structural and surface morphological properties using XRD, BET, TEM and SEM techniques. Their sensing properties to alcohol vapors viz. ethanol and methanol were investigated. The site occupation of metal ions was investigated by VSM. The as-synthesized sample shows the formation of sponge-like porous material which is necessary for gas adsorption. The gas sensing characteristics were obtained by measuring the gas response as a function of operating temperature, concentration of the gas, and the response-recovery time. The response of magnesium ferrite to ethanol and methanol vapors was compared and it was revealed that magnesium ferrite is more sensitive and selective to ethanol vapor. The sensor operates at a substantially low vapor concentration of about 1 ppm of alcohol vapors, exhibits fantastic response reproducibility, long term reliability and a very fast response and recovery property. Thus the present study explored the possibility of making rapidly responding alcohol vapor sensor based on magnesium ferrite. The sensing mechanism has been discussed in co-relation with magnetic and morphological properties. The role of occupancy of Mg2+ ions in magnesium ferrite on its gas sensing properties has also been studied and is found to influence the response of magnesium ferrite ethanol sensor.

  2. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    International Nuclear Information System (INIS)

    Weng Shengfeng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-01-01

    Two novel materials, [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1-bar (No. 2); compound 2 crystallized in monoclinic space group P2 1 /c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of Cu II ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d 1 excited state and two levels of the 4f 1 ground state ( 2 F 5/2 and 2 F 7/2 ). Compounds 1b and 2 containing Ce III ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers. - Graphical Abstract: [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2)—with 1D and 2D structures were synthesized and characterized. Highlights: ► Two MOF – [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2) – with 1D and 2D structures. ► The adjacent chains of the 1D framework were correlated with each other through an oxalate ligand to form a 2D layer structure. ► The source of the oxalate ligand was the decomposition in situ of citric acid oxidized in the presence of Cu II ions.

  3. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Abstract. Synthesis of non-collinear (spin canted) ferrites having the formula, CoCdFe2O4 ( = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), has been carried out using the sol–gel auto combustion method. The ferrite samples show an interesting magnetic transition from Neel to Yafet–Kittel configuration, as the Cd2+ ...

  4. Associations between active trachoma and community intervention with Antibiotics, Facial cleanliness, and Environmental improvement (A,F,E.

    Directory of Open Access Journals (Sweden)

    Jeremiah Ngondi

    2008-04-01

    Full Text Available Surgery, Antibiotics, Facial cleanliness and Environmental improvement (SAFE are advocated by the World Health Organization (WHO for trachoma control. However, few studies have evaluated the complete SAFE strategy, and of these, none have investigated the associations of Antibiotics, Facial cleanliness, and Environmental improvement (A,F,E interventions and active trachoma. We aimed to investigate associations between active trachoma and A,F,E interventions in communities in Southern Sudan.Surveys were undertaken in four districts after 3 years of implementation of the SAFE strategy. Children aged 1-9 years were examined for trachoma and uptake of SAFE assessed through interviews and observations. Using ordinal logistic regression, associations between signs of active trachoma and A,F,E interventions were explored. Trachomatous inflammation-intense (TI was considered more severe than trachomatous inflammation-follicular (TF. A total of 1,712 children from 25 clusters (villages were included in the analysis. Overall uptake of A,F,E interventions was: 53.0% of the eligible children had received at least one treatment with azithromycin; 62.4% children had a clean face on examination; 72.5% households reported washing faces of children two or more times a day; 73.1% households had received health education; 44.4% of households had water accessible within 30 minutes; and 6.3% households had pit latrines. Adjusting for age, sex, and district baseline prevalence of active trachoma, factors independently associated with reduced odds of a more severe active trachoma sign were: receiving three treatments with azithromycin (odds ratio [OR] = 0.1; 95% confidence interval [CI] 0.0-0.4; clean face (OR = 0.3; 95% CI 0.2-0.4; washing faces of children three or more times daily (OR = 0.4; 95% CI 0.3-0.7; and presence and use of a pit latrine in the household (OR = 0.4; 95% CI 0.2-0.9.Analysis of associations between the A,F,E components of the SAFE strategy and

  5. FTIR and structural properties of co-precipitated cobalt ferrite nano particles

    International Nuclear Information System (INIS)

    Hutamaningtyas, E.; Utari; Suharyana; Purnama, B.; Wijayanta, A. T.

    2016-01-01

    The FTIR and structural properties in co-precipitated cobalt ferrite (CoFe 2 O 4 ) nanoparticles are discussed in this paper. The synthesis was conducted at temperatures of 75°C and 95°C following post annealing at 1200°C for 5 hours. Other modification samples were synthesis at temperature of 95°C and then annealing at temperature of 1000°C and 1200°C for 5 hours. For both modification of synthesis and annealing temperature, FTIR result showed a metal oxide at a wave number of 590 cm -1 which indicated cobalt ferrite nanoparticles. The crystalline structure was confirmed using x-ray diffraction that the high purity of cobalt ferrite was realized. Calculation of the cation distribution by using comparison I 220 /I 222 and I 422 /I 222 show that the synthesis and annealing temperature succesfully modify cation occupy the site octahedral and tetrahedral. (paper)

  6. Synthesis of Nano-Structured La0.6Sr0.4Co0.2Fe0.8O3 Perovskite by Co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Ebrahim Mostafavi

    2015-06-01

    Full Text Available Nano-structured lanthanum strontium cobalt ferrite, La0.6Sr0.4Co0.2Fe0.8O3 (LSCF, was successfully synthesized via co-precipitation method using metal nitrates as starting materials. Effects of precipitating agent and calcination temperature on the phase composition and morphology of synthesized powders were systematically studied using X-ray diffraction (XRD and field emission scanning electron microscopy (FESEM, respectively. XRD analysis revealed that a single phase La0.6Sr0.4Co0.2Fe0.8O3 perovskite was obtained in the processed sample using ammonium carbonate as precipitating agent with a NH4+/NO3-molar ratio of 2 after calcination at 1000C for 1 h. The phase composition of products was also affected by changing pH values. Moreover, using sodium hydroxide as a precipitant resulted in a mixture of La0.6Sr0.4Co0.2Fe0.8O3 and cobalt ferrite (CoFe2O4 phases. Careless washing of the precursors can also led to the formation of mixed phase after calcination of final powders. Mean crystallite size of the obtained powders was not noticeably affected by varying calcination temperature from 900 to 1050C and remained almost the same at 10 nm, however increasing calcination temperature to 1100C resulted in sharp structural coarsening. FESEM studies demonstrate that relatively uniform particles with mean particle size of 90 nm were obtained in the sample processed with a NH4+/NO3- molar ratio of 2 after calcination at 1000C for 1 h.

  7. Nonlocal magnon spin transport in NiFe2O4 thin films

    NARCIS (Netherlands)

    Shan, Juan; Bougiatioti, P; Liang, Lei; Reiss, G; Kuschel, Timo; van Wees, Bart

    2017-01-01

    We report magnon spin transport in nickel ferrite(NiFe2O4, NFO)/platinum (Pt) bilayer systems at room temperature. A nonlocal geometry is employed, where the magnons are excited by the spin Hall effect or by the Joule heating induced spin Seebeck effect at the Pt injector and detected at a certain

  8. Li4SiO4-Based Artificial Passivation Thin Film for Improving Interfacial Stability of Li Metal Anodes.

    Science.gov (United States)

    Kim, Ji Young; Kim, A-Young; Liu, Guicheng; Woo, Jae-Young; Kim, Hansung; Lee, Joong Kee

    2018-03-14

    An amorphous SiO 2 (a-SiO 2 ) thin film was developed as an artificial passivation layer to stabilize Li metal anodes during electrochemical reactions. The thin film was prepared using an electron cyclotron resonance-chemical vapor deposition apparatus. The obtained passivation layer has a hierarchical structure, which is composed of lithium silicide, lithiated silicon oxide, and a-SiO 2 . The thickness of the a-SiO 2 passivation layer could be varied by changing the processing time, whereas that of the lithium silicide and lithiated silicon oxide layers was almost constant. During cycling, the surface of the a-SiO 2 passivation layer is converted into lithium silicate (Li 4 SiO 4 ), and the portion of Li 4 SiO 4 depends on the thickness of a-SiO 2 . A minimum overpotential of 21.7 mV was observed at the Li metal electrode at a current density of 3 mA cm -2 with flat voltage profiles, when an a-SiO 2 passivation layer of 92.5 nm was used. The Li metal with this optimized thin passivation layer also showed the lowest charge-transfer resistance (3.948 Ω cm) and the highest Li ion diffusivity (7.06 × 10 -14 cm 2 s -1 ) after cycling in a Li-S battery. The existence of the Li 4 SiO 4 artificial passivation layer prevents the corrosion of Li metal by suppressing Li dendritic growth and improving the ionic conductivity, which contribute to the low charge-transfer resistance and high Li ion diffusivity of the electrode.

  9. Rapid and facile preparation of zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Anchieta, Chayene G.; Severo, Eric C.; Rigo, Caroline; Mazutti, Marcio A. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Kuhn, Raquel C., E-mail: raquelckuhn@yahoo.com.br [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Muller, Edson I.; Flores, Erico M.M. [Department of Chemistry, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Moreira, Regina F.P.M. [Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis (Brazil); Foletto, Edson L. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil)

    2015-06-15

    In this work zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide was rapidly and easily prepared by microwave-solvothermal route and its catalytic property in photo-Fenton reaction was evaluated. The effects of microwave heating time and power on the properties of produced particles were investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and nitrogen adsorption–desorption isotherms were the techniques used for characterizing the solid products. The synthesized material was tested as a catalyst in the degradation of the textile dye molecule by the heterogeneous photo-Fenton process. Characterization results showed that the microwave heating time and power have significant influences on the formation of the phase spinel as well as on its physical properties. The reaction results showed that the ZnFe{sub 2}O{sub 4} oxide has good photocatalytic activity, which can be attributed to high surface area and pore volume, and large pore size. The ZnFe{sub 2}O{sub 4} oxide produced by the microwave irradiation exhibited promising photocatalytic activity for the removal of textile dye, reaching nearly 100% of decolorization at 40 min and 60% of mineralization at 240 min. Therefore, ZnFe{sub 2}O{sub 4} particles rapidly prepared by the microwave route have the potential for use in treatment of textile wastewater by the heterogeneous photo-Fenton process. - Highlights: • ZnFe{sub 2}O{sub 4} was synthesized by microwave-solvothermal method. • ZnFe{sub 2}O{sub 4} was prepared by different microwave heating times and powers. • ZnFe{sub 2}O{sub 4} was used as heterogeneous photo-Fenton catalyst. • Degradation of Procion red dye using heterogeneous photo-Fenton process. • ZnFe{sub 2}O{sub 4} was highly efficient to degrade textile dye under visible light.

  10. The influence of the cations Cu+2/Co+2/Nd+3 at the ferrite Mi0,2Y0,3Zn0,5Fe2O4 at different temperatures

    International Nuclear Information System (INIS)

    Lima, U.R.; Nasar, R.S.; Nasar, M.C.; Silva, J.E.M. da

    2016-01-01

    The work consisted of Ni 0,2 Y 0,3 Zn 0,5 Fe 2 O 4 composition ferrites synthesis ranging copper ions (Cu +2 ), cobalt (Co +2 ) and neodymium (Nd +3 ) whose objective is to evaluate the particle size by the method citrate precursor. After synthesis, the samples were calcined at 350° C and subsequently sintered at 1000° for 3 hours, with controlled heating and cooling rate. The calcined materials were characterized by XRD and SEM showed that the method of the precursor citrate is an effective method. The X-ray diffraction spectra and refinement show good agreement between the experimental peaks and the theoretical spectrum. In Scanning Electron Microscopy (SEM), the samples to 350° C/3h, have dimensions in the micrometer order in all compositions. The average size of the crystals are consistent with the higher definition and intensity of peaks of X-rays, that is, there is high correlation with those obtained by refining method. (author)

  11. Spin canting observation and cation distribution in CoFe{sub 2−x}In{sub x}O{sub 4} (0.0 ⩽ x ⩽ 1.0) ferrites through low temperature–high field Mössbauer spectral study

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Rabia, E-mail: rabiabest@gmail.com [Department of Physics, National Institute of Technology, Hamirpur (H.P) 177 005 (India); Sharma, K.K.; Kaur, Pawanpreet [Department of Physics, National Institute of Technology, Hamirpur (H.P) 177 005 (India); Reddy, V.R. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 4520 17 (India); Kumar, Ravi [Centre for Material Science and Engineering, National Institute of Technology, Hamirpur (H.P) 177 005 (India); Shah, Jyoti [National Physical Laboratory, New Delhi 110 012 (India)

    2014-05-01

    Highlights: • Rietveld refinement of CoIn{sub x}Fe{sub 2−x}O{sub 4} samples confirm single phase spinel structure. • The in-field Mössbauer study reveals canted spin structures in CoIn{sub x}Fe{sub 2−x}O{sub 4} ferrites. • In-field Mössbauer study is in line with magnetization measurements. • Cation distribution matches well with experimental integrated intensity ratios. • Shifting of resonance peaks to high frequencies is useful for industrial purposes. - Abstract: In the present work, In{sup 3+} substituted cobalt ferrites (CoFe{sub 2−x}In{sub x}O{sub 4}, x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) have been synthesized via solid-state reaction technique. The Rietveld fitted X-ray diffraction patterns confirm the formation of single phase cubic spinel structure with space group Fd3{sup ¯}m for all the samples, with additional slight traces of secondary phase for x = 0.6, 0.8 and 1.0 samples. The low temperature (5 K)–high field Mössbauer (5T) spectra are analyzed in detail for probing the magnetic properties of Fe based In{sup 3+} substituted cobalt ferrites. The canted spin structures associated with Fe{sup 3+} ions both at A- and B-sites in the presence of external magnetic field of 5T have been noticed in all the samples. A fair agreement is obtained between the experimental integrated intensity ratios of {sup 57}Fe Mössbauer spectra at A- and B-sites and those calculated on the basis of cation distribution. The effect of In{sup 3+} substitution on various Mössbauer parameters viz hyperfine field distribution, isomer shift, quadrupole splitting and the line width has also been noticed. The magnetization measurements performed at low temperature also reveal the canted spin structures in all the samples. The variations in initial permeability over a wide range of frequency (125 kHz–30 MHz) at 300 K have also been recorded. The initial permeability study reveals the occurrence of resonance phenomenon at very high frequencies which widens the area

  12. Layer-by-Layer Self-Assembled Ferrite Multilayer Nanofilms for Microwave Absorption

    Directory of Open Access Journals (Sweden)

    Jiwoong Heo

    2015-01-01

    Full Text Available We demonstrate a simple method for fabricating multilayer thin films containing ferrite (Co0.5Zn0.5Fe2O4 nanoparticles, using layer-by-layer (LbL self-assembly. These films have microwave absorbing properties for possible radar absorbing and stealth applications. To demonstrate incorporation of inorganic ferrite nanoparticles into an electrostatic-interaction-based LbL self-assembly, we fabricated two types of films: (1 a blended three-component LbL film consisting of a sequential poly(acrylic acid/oleic acid-ferrite blend layer and a poly(allylamine hydrochloride layer and (2 a tetralayer LbL film consisting of sequential poly(diallyldimethylammonium chloride, poly(sodium-4-sulfonate, bPEI-ferrite, and poly(sodium-4-sulfonate layers. We compared surface morphologies, thicknesses, and packing density of the two types of ferrite multilayer film. Ferrite nanoparticles (Co0.5Zn0.5Fe2O4 were prepared via a coprecipitation method from an aqueous precursor solution. The structure and composition of the ferrite nanoparticles were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. X-ray diffraction patterns of ferrite nanoparticles indicated a cubic spinel structure, and energy dispersive X-ray spectroscopy revealed their composition. Thickness growth and surface morphology were measured using a profilometer, atomic force microscope, and scanning electron microscope.

  13. Synthesis of ferrite grade γ-Fe2O3

    Indian Academy of Sciences (India)

    Unknown

    carboxylates in air yield α-Fe2O3, but the controlled atmosphere of moisture requires for the oxalates to stabi- ... structure form, α-Fe2O3, is made to react with the cubic divalent metal .... water of crystallization show multistep exothermic peaks.

  14. The role of reduced graphene oxide on the electrochemical activity of MFe2O4 (M = Fe, Co, Ni and Zn) nanohybrids

    Science.gov (United States)

    Suresh, Shravan; Prakash, Anand; Bahadur, D.

    2018-02-01

    In this work, a comparative study of electrochemical performance of reduced graphene oxide-ferrites (RGO-MFe2O4, M = Fe, Co, Ni, and Zn) nanohybrids synthesized by hydrothermal method was done. The structural morphology and investigation of other physical properties of nanohybrids confirm the cubic spinel phase of the MFe2O4, reduction of graphene oxide and the distribution of ferrite nanoparticles (NPs) on RGO nanosheets. The role of RGO on the electrochemical behavior of nanohybrids was understood by quantifying the charge storage capacitance and charging-discharging behavior in a 0.1 M Na2SO4 electrolyte. The specific capacitance values of pristine Fe3O4, CoFe2O4, NiFe2O4, and ZnFe2O4 are 128, 117, 15.2 and 9.1 F g-1 respectively whereas specific capacitance of RGO-Fe3O4, RGO-CoFe2O4, RGO-NiFe2O4 and RGO-ZnFe2O4 are 233, 200, 25 and 66.8 F g-1 respectively. Our investigation suggests that apart from specific surface area of nanohybrids other factors such as structural morphology determine interaction between nanohybrids and electrolyte ions which play critical role in elevating the performance of electrodes.

  15. Evaluation of structural, morphological and magnetic properties of CuZnNi (Cu_xZn_0_._5_−_xNi_0_._5Fe_2O_4) nanocrystalline ferrites for core, switching and MLCI’s applications

    International Nuclear Information System (INIS)

    Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M.S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni–Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni–Zn nanoferrites. The nanocrystalline ferrites of Cu substituted Cu_xZn_0_._5_−_xNi_0_._5Fe_2O_4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni–Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu–Zn–Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35–46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M–H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni–Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni–Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI’s due to variety of the soft magnetic characteristics. - Highlights: • Cu substituted

  16. Electrokinetic properties of PMAA functionalized NiFe2O4 nanoparticles synthesized by thermal plasma route

    Science.gov (United States)

    Bhosale, Shivaji V.; Mhaske, Pravin; Kanhe, N.; Navale, A. B.; Bhoraskar, S. V.; Mathe, V. L.; Bhatt, S. K.

    2014-04-01

    The magnetic nickel ferrite (NiFe2O4) nanoparticles with an average size of 30nm were synthesised by Transferred arc DC Thermal Plasma route. The synthesized nickel ferrite nanoparticles were characterized by TEM and FTIR techniques. The synthesized nickel ferrite nanoparticles were further functionalized with PMAA (polymethacrylic acid) by self emulsion polymerization method and subsequently were characterized by FTIR and Zeta Analyzer. The variation of zeta potential with pH was systematically studied for both PMAA functionalized (PNFO) and uncoated nickel ferrite nanoparticles (NFO). The IEP (isoelectric points) for PNFO and NFO was determined from the graph of zeta potential vs pH. It was observed that the IEP for NFO was at 7.20 and for PNFO it was 2.52. The decrease in IEP of PNFO was attributed to the COOH functional group of PMAA.

  17. Synthesis, characterization and Monte Carlo simulation of CoFe2O4/Polyvinylpyrrolidone nanocomposites: The coercivity investigation

    International Nuclear Information System (INIS)

    Mirzaee, Sh; Farjami shayesteh, S.; Mahdavifar, S; Hekmatara, S Hoda.

    2015-01-01

    To study the influence of polymer matrix on the effective magnetic anisotropy constant and coercivity of magnetic nanoparticles, we have synthesized the Cobalt ferrite/Polyvinylpyrrolidone (PVP) nanocomposites by co-precipitation method in four different processes. In addition the Monte Carlo simulation and law of approach to the saturation magnetization have been applied to achieve the anisotropy constants. The obtained experimental and theoretical results showed a decrease in anisotropy constant relative to the bulk cobalt ferrite. We have showed that the PVP matrix can interact with metal cations and made them approximately immobilized to participate in spinel structure. Hence different anisotropy constants or coercivity were obtained for synthesized nanocomposites. In addition, PVP matrix can attach to the surface of magnetic particles and make them approximately non-interacting. The synthesized samples have been characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Magnetic measurements were made at room temperature using a vibrating sample magnetometer (VSM). - Highlights: • We studied the effect of polymer matrix on the coercivity of the CoFe 2 O 4 /PVP nanocomposites. • The polymer matrix decreases the anisotropy of the nanocomposite system. • We have synthesized nanocomposites with approximately the same size, but significantly different coercivity. • We showed that the PVP/CoFe 2 O 4 nanocomposite has the considerable coercivity due to the spin hindrance. • Magnetic properties of nanocomposites simulated by Monte Carlo method

  18. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  19. Methods of acicular ferrite forming in the weld bead metal (Brief analysis

    Directory of Open Access Journals (Sweden)

    Володимир Олександрович Лебедєв

    2016-11-01

    Full Text Available A brief analysis of the methods of acicular ferrite formation as the most preferable structural component in the weld metal has been presented. The term «acicular ferrite» is meant as a structure that forms during pearlite and martensite transformation and austenite decomposition. Acicular ferrite is a packet structure consisting of battens of bainitic ferrite, there being no cementite particles inside these battens at all. The chemical elements most effectively influencing on the formation of acicular ferrite have been considered and their combined effect as well. It has been shown in particular, that the most effective chemical element in terms of impact toughness and cost relation is manganese. Besides, the results of multipass surfacing with impulse and constant feed of low-alloy steel wire electrode have been considered. According to these results acicular ferrite forms in both cases. However, at impulse feed of the electrode wire high mechanical properties of surfacing layer were got in the first passes, the form of the acicular ferrite crystallite has been improved and volume shares of polygonal and lamellar ferrite have been reduced. An assumption has been made, according to which acicular ferrite in the surfacing layer may be obtained through superposition of mechanical low-frequency oscillation on the welding torch or on the welding pool instead of periodic thermal effect due to electrode wire periodic feed

  20. On the nature of phase transitions in the tetragonal tungsten bronze GdK2Nb5O15 ceramics

    International Nuclear Information System (INIS)

    Gagou, Y.; Lukyanchuk, I.; El Marssi, M.; Amira, Y.; Mezzane, D.; Courty, M.; Masquelier, C.; Yuzyuk, Yu. I.

    2014-01-01

    Phase transitions in gadolinium potassium niobate GdK 2 Nb 5 O 15 (GKN) ceramics have been investigated by x-ray diffraction, dielectric susceptibility, differential scanning calorimetry, and Raman scattering. The results of our complementary studies show that GKN exhibits two phase transitions at T c1  = 238 °C and T c2  = 375 °C attributed to the ferroelectric-antiferroelectric-paraelectric (FE-AFE-PE) phase transitions. According to the x-ray diffraction analysis, the FE and PE phases were refined in the polar P4bm and centrosymmetric P4/mbm space groups. For the intermediate phase, the structure is refined in the space group P4nc with doubling of the c unit cell parameter, which is compatible with an AFE phase. This result was confirmed by Raman spectroscopy since new low-frequency lines are activated in the AFE phase due to the Brillouin zone-folding effect, typical for the modulated phases. The presence of the AFE phase between the FE and PE phases and the complex nature of tetragonal tungsten bronze crystal structure can explain the large thermal hysteresis observed at the FE-AFE transition between heating and cooling cycle and the strong depression of the Curie-Weiss temperature T 0 . The semi-phenomenological Ising-like model based on the obtained experimental data is proposed to account for the observed FE-AFE-PE transition sequence

  1. High temperature dissolution of ferrites, chromites and bonaccordite in chelating media

    Energy Technology Data Exchange (ETDEWEB)

    Sathyaseelan, V.S.; Subramanian, H.; Anupkumar, B.; Rufus, A.L.; Velmurugan, S.; Narasimhan, S.V., E-mail: snv@igcar.gov.in [BARC Facilities, Water and Steam Chemistry Div., Tamilnadu (India)

    2010-07-01

    Different methods have been employed world wide for the decontamination of reactor coolant system surfaces. The success of a decontamination process mainly depends on the oxide dissolution efficiency of the decontamination formulation. Among the oxides, Fe{sub 3}O{sub 4} undergoes easy dissolution in organic acid media at normal temperatures. However, dissolution of chromites and mixed ferrites is not that easy in organic chelant media at normal temperatures even in the presence of redox reagents. Hence, a high temperature process was attempted for the dissolution of ferrites and chromites. A re-circulation system consisting of an autoclave, pump, heat exchanger etc. all lined with teflon was used for carrying out high temperature dissolution experiments. This study describes the high temperature dissolution kinetics of Fe{sub 3}O{sub 4}, NiFe{sub 2}O{sub 4}, and Cr{sub 2}O{sub 3}. Nitrilotriacetic acid (NTA), a well known solvent for metal oxides, was applied at temperatures ranging from 80 to 180{sup o}C. About six fold increase in dissolution rate was observed for Fe{sub 3}O{sub 4} in this temperature range. Effect of N{sub 2}H{sub 4} on oxide dissolution was studied. Lower dissolution rates were observed for Fe{sub 3}O{sub 4} and NiFe{sub 2}O{sub 4} in the presence of hydrazine. Oxide dissolution efficiency of other chelating agents like EDTA, PDCA etc. and the effect of reducing agents like oxalic acid and ascorbic acid on high temperature dissolution also has been studied. The effect of incorporation of boron and zinc in the iron and chromium oxides has also been studied. Bonaccordite (Ni{sub 2}FeBO{sub 5}) has been observed in the fuel deposits of pressurized Water Reactors especially in the AOA affected plants. Zinc ferrite/chromite are formed in reactors adopting zinc injection passivation technique to control radiation field. Bonaccordite and zinc ferrite/chromite formed over the reactor coolant system structural materials are also difficult to dissolve

  2. [H2en]2{La2M(SO4)6(H2O)2} (M=Co, Ni): First organically templated 3d-4f mixed metal sulfates

    International Nuclear Information System (INIS)

    Yuan Yanping; Wang Ruiyao; Kong Deyuan; Mao Jianggao; Clearfield, Abraham

    2005-01-01

    The first organically templated 3d-4f mixed metal sulfates, [H 2 en] 2 {La 2 M(SO 4 ) 6 (H 2 O) 2 } (M=Co 1, Ni 2) have been synthesized and structurally determined from non-merohedrally twinned crystals. The two compounds are isostructural and their structures feature a three-dimensional anionic network formed by the lanthanum(III) and nickel(II) ions bridged by sulfate anions. The La(III) ions in both compounds are 10-coordinated by four sulfate anions in bidentate chelating fashion, and two sulfate anions in a unidentate fashion. The transition metal(II) ion is octahedrally coordinated by six oxygens from four sulfate anions and two aqua ligands. The doubly protonated enthylenediamine cations are located at the tunnels formed by 8-membered rings (four La and four sulfate anions)

  3. The filler powders laser welding of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shenyong, E-mail: s_y_liang@126.com; Lei, Yucheng; Zhu, Qiang

    2015-01-15

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y–M–O and TiC), submicron particles (Y–M–O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  4. Mechanochemical synthesis of TiO2/NiFe2O4 magnetic catalysts for operation under RF field

    International Nuclear Information System (INIS)

    Houlding, Thomas K.; Gao, Pengzhao; Degirmenci, Volkan; Tchabanenko, Kirill; Rebrov, Evgeny V.

    2015-01-01

    Highlights: • Novel NiFe 2 O 4 –TiO 2 composite magnetic catalysts have been prepared by mechanochemical synthesis. • The synthesis time of 30 min provides the highest specific absorption rate (SAR) in RF heating. • Formation of NiTiO 3 phase during calcination decreases the SAR of the catalysts. • High stability of the NiFe 2 O 4 –TiO 2 catalyst was observed in a continuous amide bond synthesis under RF heating. - Abstract: Composite NiFe 2 O 4 –TiO 2 magnetic catalysts were prepared by mechanochemical synthesis from a mixture of titania supported nickel ferrite nanoparticles and P25 titania (Evonic). The former provides fast and efficient heating under radiofrequency field, while the latter serves as an active catalyst or catalyst support. The highest heating rate was observed over a catalyst prepared for a milling time of 30 min. The catalytic activity was measured over the sulfated composite catalysts in the condensation of aniline and 3-phenylbutyric acid in a stirred tank reactor and in a continuous RF heated flow reactor in the 140–170 °C range. The product yield of 47% was obtained over the sulfated P25 titania catalyst in the flow reactor

  5. Compatibility of dip-coated Er2O3 coating by MOD method with liquid Li

    International Nuclear Information System (INIS)

    Zhang Dongxun; Kondo, Masatoshi; Tanaka, Teruya; Muroga, Takeo; Valentyn, Tsisar

    2011-01-01

    An electrical insulating ceramic coating on the self-cooled lithium blanket is a promising technology for suppressing MHD pressure drop in the blanket system. Er 2 O 3 is thought to be one of the potential candidate materials for ceramic coatings because of their high electrical resistivity and high compatibility with liquid lithium. In this study, Er 2 O 3 coating was fabricated on the ferritic steels by dip-coating method with MOD (metal organic decomposition) liquid precursor followed by baking in different atmosphere. The coated specimens were immersed at 500 o C in the static liquid lithium to test the compatibility. It was shown that the compatibility of the coating was degraded when Fe 2 O 3 or Fe 3 O 4 was formed as the main composition of the substrate oxidation layer during the baking. On the other hand, thin Cr 2 O 3 layer in the substrate oxidation layer did not influence the stability of Er 2 O 3 coating. Atmosphere controlling for suppressing the substrate oxidation, especially Fe 2 O 3 or Fe 3 O 4 , during the baking is shown to be essential for the compatibility of MOD Er 2 O 3 coating on ferritic steels.

  6. Synthesis of high aspect ratio of Ni 0.5Zn 0.5Fe 2O 4 platelets for electromagnetic devices

    Science.gov (United States)

    Hallynck, Sylvain; Pourroy, Geneviève; Vilminot, Serge; Jacquart, Pierre-Marie; Autissier, Denis; Vukadinovic, Nicolas; Pascard, Hubert

    2006-01-01

    Ni 0.5Zn 0.5Fe 2O 4 ferrite platelets of 5 to 300 μm have been obtained by reaction in a molten salt between hematite platelets, NiO and ZnO powders. The hematite platelets are obtained by a hydrothermal treatment in an alkaline medium between 180 and 270 °C through a dissolution-recrystallization mechanism from maghemite which crystallizes first. The key parameter for size control is the mixture alkalinity. The largest platelets are obtained for [Fe 3+] = 2.0 mol dm -3 and [OH -] = 15.3 N. The size distribution is narrow and the aspect ratio about 30. The reaction with nickel and zinc oxides yields the formation of polycrystalline platelets through a topotactic reaction allowing the platelet morphology, initial shape and size to be conserved. SEM observations reveal the ferrite platelets are made of adjacent micronic ferrite crystals with their [111] faces parallel to the platelet surface. Increasing the reaction temperature promotes an enlargement of the [111] faces. The respective solubilities of oxides and ferrites in the molten salts control the ferrite stoichiometry. KCl as a flux gives better results than NaCl with no modification of the crystal shape and no ZnO loss.

  7. Effect of annealing temperatures on the electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 spinel ferrite prepared by chemical reaction at different pH values

    Science.gov (United States)

    Aneesh Kumar, K. S.; Bhowmik, R. N.

    2017-12-01

    The electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 ferrite has been controlled by varying the annealing temperature of the chemical routed samples. The frequency activated conductivity obeyed Jonscher’s power law and universal scaling suggested semiconductor nature. An unusual metal like state has been revealed in the measurement temperature scale in between two semiconductor states with different activation energy. The metal like state has been affected by thermal annealing of the material. The analysis of electrical impedance and modulus spectra has confirmed non-Debye dielectric relaxation with contributions from grains and grain boundaries. The dielectric relaxation process is thermally activated in terms of measurement temperature and annealing temperature of the samples. The hole hopping process, due to presence of Ni3+ ions in the present Ni rich ferrite, played a significant role in determining the thermal activated conduction mechanism. This work has successfully applied the technique of a combined variation of annealing temperature and pH value during chemical reaction for tuning electrical parameters in a wide range; for example dc limit of conductivity ~10-4-10-12 S cm-1, and unusually high activation energy ~0.17-1.36 eV.

  8. Surfactant assisted synthesis of aluminum doped SrFe{sub 10}Al{sub 2}O{sub 19} hexagonal ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, D., E-mail: dneupane@memphis.edu; Wang, L.; Mishra, S. R. [Department of Physics, The University of Memphis, Memphis, Tennessee 38152 (United States); Poudyal, N.; Liu, J. P. [Department of Physics, The University of Texas, Arlington, Texas 76019 (United States)

    2015-05-07

    M-type aluminum doped SrFe{sub 10}Al{sub 2}O{sub 19} were synthesized via co-precipitation method using cetyltrimethyl ammonium bromide (CTAB) as a surfactant. The effects of CTAB content (x = 0, 1, 3, and 9 wt. %) on the formation, structure, morphology, magnetic, and dielectric properties of the SrFe{sub 10}Al{sub 2}O{sub 19} nanoparticles were investigated. X-ray diffraction results show elimination of α-Fe{sub 2}O{sub 3} phase from samples prepared using CTAB. Morphological changes including grain and crystallite size was noticed with the increase in the CTAB content. With the increase in CTAB, powder particles grew in hexagonal plates. A linear increase in saturation magnetization, Ms, with CTAB content was observed from 56.5 emu/g at 0% CTAB to 66.4 emu/g at 9% CTAB. This is a net increase of 17.5% in Ms. The coercivity (Hc ∼ 5700 Oe) of sample reached maximum at 1% CTAB and reduced with further CTAB content reaching to a minimum value of 4488 Oe at 9% CTAB. A slight increase in Curie temperature (735 K) was also observed for samples synthesized using CTAB as compared to that of sample prepared in the absence of CTAB (729 K). Samples synthesized with CTAB show higher dielectric constants as compared to samples prepared without CTAB, while dielectric constant for all samples show decrease in value with the increase in frequency. These results imply that CTAB may act as a crystallization master, controlling the nucleation and growth of SrFe{sub 10}Al{sub 2}O{sub 19} crystal. The study delineates the scope of improving magnetic properties of ferrites without substitution of metal ions.

  9. on the magnetic properties of ultra-fine zinc ferrites

    NARCIS (Netherlands)

    Anantharaman, M.R.; Jagatheesan, S.; Malini, K.A.; Sindhu, S.; Narayanasamy, A.; Chinnasamy, C.N.; Jacobs, J.P.; Reijne, S.; Seshan, Kulathuiyer; Smits, R.H.H.; Smits, R.H.H.; Brongersma, H.H.

    1998-01-01

    Zinc ferrite belongs to the class of normal spinels where it is assumed to have a cation distribution of Zn2+(Fe3+)2(O2−)4, and it is purported to be showing zero net magnetisation. However, there have been recent reports suggesting that zinc ferrite exhibits anomaly in its magnetisation. Zinc

  10. Synthesis and characterization of multilayered BaTiO3/NiFe2O4 thin films

    Directory of Open Access Journals (Sweden)

    Branimir Bajac

    2013-03-01

    Full Text Available Presented research was focused on the fabrication of multiferroic thin film structures, composed of ferrielectric barium titanate perovskite phase and magnetostrictive nickel ferrite spinel phase. The applicability of different, solution based, deposition techniques (film growth from solution, dip coating and spin coating for thefabrication of multilayered BaTiO3 /NiFe2O4 thin films was investigated. It was shown that only spin coating produces films of desired nanostructure, thickness and smooth and crackfree surfaces.

  11. Studies on oxidation and deuterium permeation behavior of a low temperature α-Al_2O_3-forming Fe−Cr−Al ferritic steel

    International Nuclear Information System (INIS)

    Xu, Yu-Ping; Zhao, Si-Xiang; Liu, Feng; Li, Xiao-Chun; Zhao, Ming-Zhong; Wang, Jing; Lu, Tao; Hong, Suk-Ho; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-01-01

    To evaluate the capability of Fe−Cr−Al ferritic steels as tritium permeation barrier in fusion systems, the oxidation behavior together with the permeation behavior of a Fe−Cr−Al steel was investigated. Gas driven permeation experiments were performed. The permeability of the oxidized Fe−Cr−Al steel was obtained and a reduced activation ferritic/martensitic steel CLF-1 was used as a comparison. In order to characterize the oxide layer, SEM, XPS, TEM, HRTEM were used. Al_2O_3 was detected in the oxide film by XPS, and HRTEM showed that Al_2O_3 in the α phase was found. The formation of α-Al_2O_3 layer at a relatively low temperature may result from the formation of Cr_2O_3 nuclei.

  12. Stability under irradiation of a fine dispersion of oxides in a ferritic matrix

    International Nuclear Information System (INIS)

    Monnet, I.

    1999-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels are being considered for high temperature, high fluence nuclear applications, like fuel pin cladding in Fast Breeder Reactors. ODS alloys offer improved out of pile strength characteristics at temperature above 550 deg.C and ferritic-martensitic matrix is highly swelling resistant. A clad in an ODS ferritic steel, call DY (Fe-13Cr-1,5Mo+TiO 2 +Y 2 O 3 ) has been irradiated in the experimental reactor Phenix. Under irradiation oxide dissolution occurs. Microstructural observations indicated that oxide evolution is correlated with the dose and consist in four phenomena: the interfaces of oxide particles with the matrix become irregular, the uniform distribution of the finest oxide ( 2 O 3 , Y 2 O 3 , MgO or MgAl 2 O 4 . These materials were irradiated with charged particles in order to gain a better understanding of the mechanisms of dissolution. Irradiation with 1 MeV Helium does not induce any modification, neither in the chemical modification of the particles nor in their spatial and size distribution. Since most of the energy of helium ions is lost by inelastic interaction, this result proves that this kind of interaction does not induce oxide dissolution. Irradiation with 1 MeV or 1.2 MeV electrons leads to a significant dissolution with a radius decrease proportional to the dose. These experiments prove that oxide dissolution can be induced by Frenkel pairs alone, provided that metallic atoms are displaced. The comparison between irradiation with ions (displacements cascades) and electrons (Frenkel pairs only) shows the importance of free point defects in the dissolution phenomena. For all the irradiations (ions or electrons) the spinel MgAl 2 O 4 seems more resistant than Y 2 O 3 to dissolution, and MgO and Al 2 O 3 are even less resistant. This is the order of stability under irradiation of bulk oxides. (author)

  13. Tuning the magnetism of ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Viñas, S. Liébana [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Departamento de Física Aplicada, Universidade de Vigo, Vigo 36310 (Spain); Simeonidis, K. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Li, Z.-A.; Ma, Z. [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Myrovali, E.; Makridis, A.; Sakellari, D. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Angelakeris, M., E-mail: agelaker@auth.gr [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Wiedwald, U.; Spasova, M. [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Farle, M., E-mail: michael.farle@uni-due.de [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany)

    2016-10-01

    The importance of magnetic interactions within an individual nanoparticle or between adjacent ones is crucial not only for the macroscopic collective magnetic behavior but for the AC magnetic heating efficiency as well. On this concept, single-(MFe{sub 2}O{sub 4} where M=Fe, Co, Mn) and core–shell ferrite nanoparticles consisting of a magnetically softer (MnFe{sub 2}O{sub 4}) or magnetically harder (CoFe{sub 2}O{sub 4}) core and a magnetite (Fe{sub 3}O{sub 4}) shell with an overall size in the 10 nm range were synthesized and studied for their magnetic particle hyperthermia efficiency. Magnetic measurements indicate that the coating of the hard magnetic phase (CoFe{sub 2}O{sub 4}) by Fe{sub 3}O{sub 4} provides a significant enhancement of hysteresis losses over the corresponding single-phase counterpart response, and thus results in a multiplication of the magnetic hyperthermia efficiency opening a novel pathway for high-performance, magnetic hyperthermia agents. At the same time, the existence of a biocompatible Fe{sub 3}O{sub 4} outer shell, toxicologically renders these systems similar to iron-oxide ones with significantly milder side-effects. - Highlights: • Magnetic hyperthermia is studied for 10 nm single and core/shell ferrite nanoparticles. • Maximum heating rate is observed for Fe{sub 3}O{sub 4}-coated CoFe{sub 2}O{sub 4} nanoparticles. • The increase is attributed to the interaction of phases with different anisotropy. • The presence of biocompatible Fe{sub 3}O{sub 4} shell potentially minimizes toxic side-effects.

  14. Synthesis, characterization and magnetic properties of MWCNTs decorated with Zn-substituted MnFe{sub 2}O{sub 4} nanoparticles using waste batteries extract

    Energy Technology Data Exchange (ETDEWEB)

    Gabal, M.A., E-mail: mgabalabdonada@yahoo.com [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al-Harthy, E.A. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, PO Box 80216, Jeddah 21589 (Saudi Arabia); Al Angari, Y.M.; Abdel Salam, M.; Asiri, A.M. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia)

    2016-06-01

    Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.2–0.8) nano-crystals, synthesized from recycling of Zn–C batteries, were successfully self-assembled alongside multi-walled carbon nanotubes (MWCNTs) via an environmentally friend sucrose auto-combustion method. The effect of Zn-content on structural and magnetic properties were investigated and discussed. XRD revealed the formation of single-phase ferrites. DTA–TG experiment showed that the auto-combustion reaction finished at about 350 {sup °}C. TEM exhibited that the MWCNTs are well decorated with ferrite particles. Hysteresis loop measurements revealed ferromagnetic behavior, with saturation magnetization decrease by the addition of MWCNTs or increasing Zn-Content. The kinetics of methylene blue dye (MB) removal using MWCNTs/Mn{sub 0.8}Zn{sub 0.2}Fe{sub 2}O nano-composite was investigated and discussed. - Graphical abstract: TEM image of MWCNTs/Mn{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} nano-composite showed that the MWCNTs were completely decorated with magnetic nanoparticles. The decoration passed through nucleation and growth processes in which nucleation of ferrite nanoparticles first takes place on the surface of MWCNTs followed by a subsequent growth of these nuclei. - Highlights: • Mn-Zn-ferrites were obtained via recycling process of spent Zn-C batteries. • Mn1−xZnxFe2O4/MWCNTS nano-composites were synthesized via sucrose combustion route. • Zn-substitution effect on structural and magnetic properties was investigated. • MWCNTs/Mn0.8Zn0.2Fe2O4 was investigated to remove MB dye from aqueous media.

  15. Comparative studies of the dielectric properties of (1−x)BiFeO{sub 3}-xNi{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (x=0.0, 0.2, 0.5, 0.8, 1.0) multiferroic nanocomposite with their single phase BiFeO{sub 3} and Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Angom Devadatta, E-mail: angomdevadattamani@gmail.com; Soibam, Ibetombi

    2017-02-15

    BiFeO{sub 3} (BFO) and nickel zinc ferrite Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (NZFO) were prepared by sol gel and auto combustion route respectively. Stoichiometric proportions were mixed to obtain the multiferroic nanocomposites having the compositional formula (1−x)BiFeO{sub 3}-x Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (x=0.0, 0.2, 0.5, 0.8, 1.0). The phases were confirmed by XRD analyses. SEM micrographs showed the agglomerated nature of the particles with continuous grain growth in all directions. Elemental compositions were confirmed from EDAX studies. FTIR studies showed the stretching and bending vibrations of the various bonds present in the samples. The dielectric properties such as dielectric constant, ε′ and dielectric loss tangent, tanδ were studied for the spinel, perovskite and nanocomposite ferrites. Experimental result shows an increasing trend in the value of dielectric constant in going from spinel to perovskite phase. The frequency dependence of tanδ showed minimum loss for x=0.5 nanocomposite. Possible mechanisms explaining the above results were being discussed.

  16. Effect of weld metal properties on fatigue crack growth behaviour of gas tungsten arc welded AISI 409M grade ferritic stainless steel joints

    International Nuclear Information System (INIS)

    Shanmugam, K.; Lakshminarayanan, A.K.; Balasubramanian, V.

    2009-01-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on fatigue crack growth behaviour of the gas tungsten arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single 'V' butt welded joints. Centre cracked tensile (CCT) specimens were prepared to evaluate fatigue crack growth behaviour. Servo hydraulic controlled fatigue testing machine was used to evaluate the fatigue crack growth behaviour of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength, hardness and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  17. Preparation, characterization, and antibacterial activity of NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Allafchian, Alireza, E-mail: Allafchian@cc.iut.ac.ir [Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of); Jalali, Seyed Amir Hossein [Institute of Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of); Department of Natural Resources, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of); Bahramian, Hamid; Ahmadvand, Hossein [Department of physics, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of)

    2016-04-15

    We have described a facile fabrication of silver deposited on the TiO{sub 2}, Poly Acrylonitrile Co Maleic Anhydride (PAMA) polymer and nickel ferrite composite (NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2}) through a three-step procedure. A pre-synthesized NiFe{sub 2}O{sub 4} was first coated with PAMA polymer and then Ag–TiO{sub 2} was deposited on the surface of PAMA polymer shell. After the characterization of this three-component composite by various techniques, such as FTIR, XRD, FESEM, BET, TEM and VSM, it was impregnated in standard antibiotic discs. The antibacterial activity of NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} nanocomposite was investigated against some gram positive and gram negative bacteria by employing disc diffusion assay and then compared with that of naked NiFe{sub 2}O{sub 4}, NiFe{sub 2}O{sub 4}/Ag, AgNPs and NiFe{sub 2}O{sub 4}/PAMA. The results demonstrated that the AgNPs, when embedded in TiO{sub 2} and combined with NiFe{sub 2}O{sub 4}/PAMA, became an excellent antibacterial agent. The NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} nanocomposite could be readily separated from water solution after the disinfection process by applying an external magnetic field. - Highlights: • A novel NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} magnetic nanocomposite has been prepared. • This nanocomposite displays potent antimicrobial activity. • The antibacterial effect was evaluated by the disk diffusion method. • Recyclable antibacterial activity of NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} was studied.

  18. Effective surface modification of MnFe2O4@SiO2@PMIDA magnetic nanoparticles for rapid and high-density antibody immobilization

    Science.gov (United States)

    Rashid, Zahra; Soleimani, Masoud; Ghahremanzadeh, Ramin; Vossoughi, Manouchehr; Esmaeili, Elaheh

    2017-12-01

    The present study is aimed at the synthesis of MnFe2O4@SiO2@PMIDA in terms of highly efficient sensing platform for anti-prostate specific membrane antigen (PSMA) immobilization. Superparamagnetic manganese ferrite nanoparticles were synthesized following co-precipitation method and then SiO2 shell was coated on the magnetic core with tetraethyl orthosilicate (TEOS) through a silanization reaction to prevent oxidation, agglomeration and, increase the density of OH groups on the surface of MnFe2O4. Subsequently, MnFe2O4@SiO2@PMIDA obtained as a result of the reaction between N-(phosphonomethyl)iminodiacetic acid (PMIDA) and MnFe2O4@SiO2. The reactive carboxyl groups on the surface of magnetic nanoparticles can efficiently conjugate to a monoclonal antibody, specific to PSMA, which was confirmed by enzyme-linked immune sorbent assay (ELISA). Thus, this kind of functionalized magnetic nanoparticles is promising to be utilized in the improvement of ELISA-based biosensors and also will be effective in a variety of biomedical applications such as cell separation, diagnosis, and monitoring of human diseases.

  19. Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, A.V., E-mail: knyazevav@gmail.com [N.I. Lobachevsky State University of Nizhni Novgorod, Gagarin Prospekt 23/2, 603950 Nizhni Novgorod (Russian Federation); Zakharchuk, I.; Lähderanta, E. [Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland); Baidakov, K.V.; Knyazeva, S.S. [N.I. Lobachevsky State University of Nizhni Novgorod, Gagarin Prospekt 23/2, 603950 Nizhni Novgorod (Russian Federation); Ladenkov, I.V. [Joint-stock Company “Research and Production Company “Salut”, Nizhni Novgorod (Russian Federation)

    2017-08-01

    Highlights: • Ni-Zn and Ni-Zn-Co ferrite powders were prepared by the solid-state reaction at 1073 K. • The room temperature saturation magnetizations are 59.7 emu/g for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and 57.1 emu/g for Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4}. • The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. • The temperature dependences of magnetization exhibit large spin frustration and spin-glass-like behavior. - Abstract: Ni-Zn and Ni-Zn-Co ferrite powders with nominal compositions Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4} were prepared by the solid-state reaction synthesis with periodic regrinding during the calcination at 1073 K. The structure of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4} was refined assuming space group F d-3m. Scanning electron microscopy revealed the average sizes of the crystalline ferrite particles are 130–630 nm for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and 140–350 nm for Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4}. The room temperature saturation magnetizations are 59.7 emu/g for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and 57.1 emu/g for Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4}. The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. The Curie temperature tends to increase upon Zn substitution by Co, as well. The temperature dependences of magnetization measured using zero-field cooled and field cooled protocols exhibit large spin frustration and spin-glass-like behavior.

  20. Synthesis of surfactant-coated cobalt ferrite nanoparticles for adsorptive removal of acid blue 45 dye

    Science.gov (United States)

    Waheed Mushtaq, Muhammad; Kanwal, Farah; Imran, Muhammad; Ameen, Naila; Batool, Madeeha; Batool, Aisha; Bashir, Shahid; Mustansar Abbas, Syed; Rehman, Ata ur; Riaz, Saira; Naseem, Shahzad; Ullah, Zaka

    2018-03-01

    Cobalt ferrite (CoFe2O4) nanoparticles (NPs) are synthesized by wet chemical coprecipitation method using metal chlorides as precursors and potassium hydroxide (KOH) as a precipitant. The tergitol-1x (T-1x) and didecyldimethyl ammonium bromide (DDAB) are used as capping agents and their effect is investigated on particle size, size distribution and morphology of cobalt ferrite nanoparticles (CFNPs). The Fourier transform infrared spectroscopy confirms the synthesis of CFNPs and formation of metal-oxygen (M-O) bond. The spinel phase structure, morphology, polydispersity and magnetic properties of ferrite nanoparticles are investigated by x-ray diffraction, scanning electron microscopy, dynamic light scattering and vibrating sample magnetometry analyses, respectively. The addition of capping agents effects the secondary growth of CFNPs and reduces their particle size, as is investigated by dynamic light scattering and atomic force microscopy. The results evidence that the DDAB is more promising surfactant to control the particle size (∼13 nm), polydispersity and aggregation of CFNPs. The synthesized CFNPs, CFNPs/T-1x and CFNPs/DDAB are used to study their adsorption potential for removal of acid blue 45 dye, and a maximum adsorptive removal of 92.25% is recorded by 0.1 g of CFNPs/DDAB at pH 2.5 and temperature 20 ± 1 °C. The results show that the dye is physically adsorbed by magnetic NPs and follows the Langmuir isotherm model.

  1. Effect of MnCuFe{sub 2}O{sub 4} content on magnetic and dielectric properties of poly (O-Phenylenediamine)/MnCuFe{sub 2}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kannapiran, Nagarajan [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India); Muthusamy, Athianna, E-mail: muthusrkv@gmail.com [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India); Chitra, Palanisamy [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India)

    2016-03-01

    Poly o-phenylenediamine (PoPD)/MnCuFe{sub 2}O{sub 4} nanocomposites with three different ratios of MnCuFe{sub 2}O{sub 4} (10%, 20%, 30% w/w) were synthesized by in-situ oxidative chemical polymerization method ammonium persulphate used as oxidant, while MnCuFe{sub 2}O{sub 4} nanoparticles was prepared by auto-combustion method. The structure, morphology and magnetic properties of synthesized PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites were characterized by FT-IR, UV–visible absorption spectra, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Vibrating sample magnetometer (VSM). FTIR spectra and XRD were confirmed the formation of the PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites. The morphology of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites is visualized through SEM and TEM. The spherical morphology of the PoPD was confirmed using SEM analysis. Dielectric properties of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites at different temperatures have been performed in the frequency range of 50 Hz–5 MHz. The optical absorption experiments of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites reveal that the direct transition with an energy band gap is around 2 eV. - Highlights: • Green synthesis of PoPD (the polymerization carried out only in aqueous medium) by in-situ chemical polymerization method. • For the first time, PoPD incorporated with MnCuFe{sub 2}O{sub 4} with lesser particle size. • The auto combustion reaction, support to achieve less particle size. • Ferrite content affects the magnetic properties of the nanocomposites.

  2. On the metal-support synergy for selective gas-phase ethanol oxidation over MgCuCr2O4 supported metal nanoparticle catalysts

    NARCIS (Netherlands)

    Liu, P.; Zhu, X.; Yang, S.; Li, T.; Hensen, E.J.M.

    2015-01-01

    Achieving high yields in the production of bulk chemicals is an important goal for the chemical industry. We investigated the influence of the metal on the catalytic performance of M/MgCuCr2O4 (M = Cu, Ag, Pd, Pt, Au) catalysts to better understand the metal-support synergy for the aerobic oxidation

  3. Structural and transport properties of nanocrystalline MnFe/sub 2/O/sub 4/ synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Akhtar, M.J.; Younas, M.

    2012-01-01

    The nanocrystalline ferrites with spinel structures have been the focus of scientific investigation and received continuous interest in recent decades. The structural and electrical properties of these materials have become an important area of research and are attracting considerable interest due to broad range of applications. Spinel ferrites have been shown to exhibit interesting dielectric properties in the nanocrystalline form in comparison to the corresponding bulk materials. Structural and electrical properties of nanocrystalline MnFe/sub 2/O/sub 4/ were investigated. X-ray diffraction and X-ray absorption fine structure spectroscopy results showed that nanocrystalline MnFe/sub 2/O/sub 4/ had cubic symmetry with 80% inversion. shows the X-ray absorption near edge structure (XANES) spectra of MnFe/sub 2/O/sub 4/ and Zn/sub 1-x/Ni/sub x/Fe/sub 2/O/sub 4/, used as model compounds. The electrical transport properties were investigated by employing impedance spectroscopy. It was observed that the dielectric constant decreased with the increase in frequency. The effects of frequency on dielectric properties were more prominent in the low frequency region, where dielectric constant increased as temperature was increased. (Orig./A.B.)

  4. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    Energy Technology Data Exchange (ETDEWEB)

    Das, Supriyo [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and an- tiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides VnO2n-1 where 2 ≤ n ≤ 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions.[1–6] The only exception is V7O13 which remains metallic down to 4 K.[7] The ternary vanadium oxide LiV2O4 has the normal spinel structure, is metallic, does not un- dergo magnetic ordering and exhibits heavy fermion behavior below 10 K.[8] CaV2O4 has an orthorhombic structure[9, 10] with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase.[11, 12] These provide great motivation for further investigation of some known vanadium compounds as well as to ex- plore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x- ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV2O4, YV4O8, and YbV4O8. The recent discovery of superconductivity in RFeAsO1-xFx (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe2As2 (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high Tc has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high Tc superconductors in 1986. To discover more supercon- ductors

  5. Phase evaluation of Li{sup +} substituted CoFe{sub 2}O{sub 4} nanoparticles, their characterizations and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, R.H. [Materials Science Research Lab, Shrikrishna Mahavidyalaya Gunjoti, Osmanabad, Maharashtra (India); Alone, Suresh T. [Department of Physics, RS Art' s, Science and Commerce College, Pathri, Aurangabad, Maharashtra (India); Mane, Maheshkumar L. [Department of Physics, Rajarshi Shahu Mahavidyalaya, Latur, Maharashtra (India); Biradar, A.R. [Materials Science Research Lab, Shrikrishna Mahavidyalaya Gunjoti, Osmanabad, Maharashtra (India); Shirsath, Sagar E., E-mail: shirsathsagar@hotmail.com [Spin Device Technology Center, Department of Information Engineering, Shinshu University, Nagano 380-8553 (Japan)

    2014-04-15

    Li{sup +} substituted CoFe{sub 2}O{sub 4} with the chemical formula Li{sub 3x}CoFe{sub 2−x}O{sub 4} were synthesized by sol–gel auto combustion method. The synthesized samples were annealed at 600 °C for 4 h. X-ray diffraction data were used to evaluate the structure of the prepared samples. Spinel ferrite phase of CoFe{sub 2}O{sub 4} changes to ordered like lithium ferrite phase with increase in L{sup i+} substitution. Lattice constant increases whereas particle size found to decrease with Li{sup +} substitution. Infrared spectroscopy also confirmed the phase transition of CoFe{sub 2}O{sub 4} after the incorporation of lithium ions. Substitution of Li{sup +} ions for Fe{sup 3+} caused a decrease in the saturation magnetization from 69.59 emu/g to 47.71 emu/g and the coercivity increased from 647 Oe to 802 Oe. Resistivity and dielectric properties shows inverse relation to each other. - Highlights: • Li{sup +} ion substituted CoFe{sub 2}O{sub 4}. • Single phase cubic spinel structure changes with Li{sup +} substitution. • Magnetization decreases whereas coercivity increases with increasing Li{sup +}. • Resistivity decreases with Li{sup +} substitution.

  6. Synthesis of nanocrystalline cobalt ferrite through soft chemistry methods: A green chemistry approach using sesame seed extract

    Energy Technology Data Exchange (ETDEWEB)

    Gingasu, Dana [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest (Romania); Mindru, Ioana, E-mail: imandru@yahoo.com [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest (Romania); Mocioiu, Oana Catalina; Preda, Silviu; Stanica, Nicolae; Patron, Luminita [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest (Romania); Ianculescu, Adelina; Oprea, Ovidiu [Politehnica University of Bucharest, Faculty of Chemistry, 1-7 Polizu Street, 011061, Bucharest (Romania); Nita, Sultana; Paraschiv, Ileana [National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299, Bucharest (Romania); Popa, Marcela; Saviuc, Crina [University of Bucharest, Faculty of Biology, Microbiology Department, Research Institute of the University of Bucharest-ICUB, Life, Environmental and Earth Sciences Division, 91-95 Splaiul Independentei, Bucharest (Romania); Bleotu, Coralia [Stefan S. Nicolau Institute of Virology, Cellular and Molecular Pathology Department, 285 Mihai Bravu Avenue, Bucharest (Romania); Chifiriuc, Mariana Carmen [University of Bucharest, Faculty of Biology, Microbiology Department, Research Institute of the University of Bucharest-ICUB, Life, Environmental and Earth Sciences Division, 91-95 Splaiul Independentei, Bucharest (Romania)

    2016-10-01

    The nanocrystalline cobalt ferrites (CoFe{sub 2}O{sub 4}) were obtained through self-combustion and wet ferritization methods using aqueous extracts of sesame (Sesamum indicum L) seeds. The multimetallic complex compounds were characterized by Fourier transform infrared spectroscopy (FTIR), UV-VIS spectroscopy and thermal analysis. Phase identification, morphological evolution and magnetic properties of the obtained cobalt ferrites were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), FTIR and magnetic measurements. FE-SEM investigations revealed the particle size of CoFe{sub 2}O{sub 4} obtained by wet ferritization method ranged between 3 and 20.45 nm. Their antimicrobial, anti-biofilm and cytotoxic properties were evaluated. - Highlights: • CoFe{sub 2}O{sub 4} were obtained by two chemical synthesis methods. • Sesame seed extract was used as gelling or chelating agent. • The morphological features of CoFe{sub 2}O{sub 4} nanoparticles were evaluated. • CoFe{sub 2}O{sub 4} exhibited good microbicidal and anti-biofilm features.

  7. Mechanistic insights into the interaction between energetic oxygen ions and nanosized ZnFe2O4: XAS-XMCD investigations.

    Science.gov (United States)

    Singh, Jitendra Pal; Kaur, Baljeet; Sharma, Aditya; Kim, So Hee; Gautam, Sanjeev; Srivastava, Ramesh Chandra; Goyal, Navdeep; Lim, Weol Cheol; Lin, H-J; Chen, J M; Asokan, K; Kanjilal, D; Won, Sung Ok; Lee, Ik-Jae; Chae, Keun Hwa

    2018-04-20

    The interactions of energetic ions with multi-cation compounds and their consequences in terms of changes in the local electronic structure, which may facilitate intriguing hybridization between O 2p and metal d orbitals and magnetic ordering, are the subject of debate and require a deep understanding of energy transfer processes and magnetic exchange mechanisms. In this study, nanocrystals of ZnFe2O4 were exposed to O7+ ions with an energy of 100 MeV to understand, qualitatively and quantitatively, the metal-ligand field interactions, cation migration and magnetic exchange interactions by employing X-ray absorption fine structure measurements and X-ray magnetic circular dichroism to get deeper mechanistic insights. Nanosized zinc ferrite nanoparticles (NPs) with a size of ∼16 nm synthesized in the cubic spinel phase exhibited deterioration of the crystalline phase when 100 MeV O7+ ions passed through them. However, the size of these NPs remained almost the same. The behaviour of crystal deterioration is associated with the confinement of heat in this interaction. The energy confined inside the nanoparticles promotes cation redistribution as well as the modification of the local electronic structure. Prior to this interaction, almost 42% of Zn2+ ions occupied AO4 tetrahedra; however, this value increased to 63% after the interaction. An inverse effect was observed for metal ion occupancies in BO6 octahedra. The L-edge spectra of Fe and Zn reveal that the spin and valence states of the metal ions were not affected by this interaction. This effect is also supported by K-edge measurements for Fe and Zn. The t2g/eg intensity ratio in the O K-edge spectra decreased after this interaction, which is associated with detachment of Zn2+ ions from the lattice. The extent of hybridization, as estimated from the ratio of the post-edge to the pre-edge region of the O K-edge spectra, decreased after this interaction. The metal-oxygen and metal-metal bond lengths were modified

  8. Effects of V{sub 2}O{sub 5} addition on NiZn ferrite synthesized using two-step sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Hu Jun [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Shi Gang; Ni Zheming; Zheng Li [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Aimin, E-mail: hjzjut@zjut.edu.cn [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-06-15

    The combined influence of a two-step sintering (TSS) process and addition of V{sub 2}O{sub 5} on the microstructure and magnetic properties of NiZn ferrite was investigated. As comparison, samples prepared by the conventional single-step sintering (SSS) procedure were also studied. It was found that with 0.3 wt% V{sub 2}O{sub 5} additive, the sample sintered by the two-step sintering process at a high temperature of 1250 Degree-Sign C for 30 min and a lower temperature of 1180 Degree-Sign C for 3 h exhibited more homogeneous microstructure and higher permeability with a high Q-factor. The results showed that the TSS method with suitable additive brought positive improvement of the microstructure and magnetic properties of NiZn ferrite.

  9. Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal.

    Science.gov (United States)

    Zhao, Ling; Li, Xinyong; Zhao, Qidong; Qu, Zhenping; Yuan, Deling; Liu, Shaomin; Hu, Xijun; Chen, Guohua

    2010-12-15

    A type of uniform Mg ferrite nanospheres with excellent SO(2) adsorption capacity could be selectively synthesized via a facile solvothermal method. The size of the MgFe(2)O(4) nanospheres was controlled to be 300-400 nm in diameter. The structural, textural, and surface properties of the adsorbent have been fully characterized by a variety of techniques (Brunauer-Emmett-Teller, BET; X-ray diffraction analysis, XRD; scanning electron microscopy, SEM; and energy-dispersive X-ray spectroscopy, EDS). The valence states and the surface chemical compositions of MgFe(2)O(4) nanospheres were further identified by X-ray photoelectron spectroscopy (XPS). The behaviors of SO(2) oxidative adsorption on MgFe(2)O(4) nanospheres were studied using Fourier transform infrared spectroscopy (FTIR). Both the sulfite and sulfate species could be formed on the surface of MgFe(2)O(4). The adsorption equilibrium isotherm of SO(2) was analyzed using a volumetric method at 298 K and 473 K. The results indicate that MgFe(2)O(4) nanospheres possess a good potential as the solid-state SO(2) adsorbent for applications in hot fuel gas desulfurization. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. On the nature of phase transitions in the tetragonal tungsten bronze GdK{sub 2}Nb{sub 5}O{sub 15} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Gagou, Y.; Lukyanchuk, I.; El Marssi, M., E-mail: mimoun.elmarssi@u-picardie.fr [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex (France); Amira, Y. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex (France); Laboratoire de la Matière Condensée et Nanostructures, FSTG, Université Cadi Ayyad Marrakech, Maroc (Morocco); Mezzane, D. [Laboratoire de la Matière Condensée et Nanostructures, FSTG, Université Cadi Ayyad Marrakech, Maroc (Morocco); Courty, M.; Masquelier, C. [Laboratoire de Réactivité et Chimie des Solides, UMR 7314, Université de Picardie Jules Verne, Pôle Scientifique, 33 rue Saint-Leu, 80039 Amiens Cedex 1 (France); Yuzyuk, Yu. I. [Faculty of Physics, Southern Federal University, 5, Zorge Str. Rostov-on-Don 344090 (Russian Federation)

    2014-02-14

    Phase transitions in gadolinium potassium niobate GdK{sub 2}Nb{sub 5}O{sub 15} (GKN) ceramics have been investigated by x-ray diffraction, dielectric susceptibility, differential scanning calorimetry, and Raman scattering. The results of our complementary studies show that GKN exhibits two phase transitions at T{sub c1} = 238 °C and T{sub c2} = 375 °C attributed to the ferroelectric-antiferroelectric-paraelectric (FE-AFE-PE) phase transitions. According to the x-ray diffraction analysis, the FE and PE phases were refined in the polar P4bm and centrosymmetric P4/mbm space groups. For the intermediate phase, the structure is refined in the space group P4nc with doubling of the c unit cell parameter, which is compatible with an AFE phase. This result was confirmed by Raman spectroscopy since new low-frequency lines are activated in the AFE phase due to the Brillouin zone-folding effect, typical for the modulated phases. The presence of the AFE phase between the FE and PE phases and the complex nature of tetragonal tungsten bronze crystal structure can explain the large thermal hysteresis observed at the FE-AFE transition between heating and cooling cycle and the strong depression of the Curie-Weiss temperature T{sub 0}. The semi-phenomenological Ising-like model based on the obtained experimental data is proposed to account for the observed FE-AFE-PE transition sequence.

  11. Influence of carboxylic acid type on microstructure and magnetic properties of polymeric complex sol–gel driven NiFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hessien, M.M. [Materials Science & Engineering Group, Department of Chemistry, Faculty of Science, Taif University (Saudi Arabia); Advanced Materials Dept, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87, Helwan, Cairo (Egypt); Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Materials Science & Engineering Group, Department of Chemistry, Faculty of Science, Taif University (Saudi Arabia); Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia (Egypt); Abd-Elkader, Omar H. [Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Electron Microscope and Thin Films Department, National Research Center (NRC), El-Behooth Street, Dokki, Cairo 12622 (Egypt)

    2016-01-15

    Citric, oxalic and tartaric acids were used for synthesis of NiFe{sub 2}O{sub 4} using polymeric complex precursor route. The dry precursor gels were calcined at various temperatures (400–1100 °C) for 2 h. All carboxylic acids produce iron-deficient NiFe{sub 2}O{sub 4} with considerable amount of α-Fe{sub 2}O{sub 3} at 400 °C. Increase in the annealing temperature caused reaction of α-Fe{sub 2}O{sub 3} with iron-deficient ferrite phase. The amount of initially formed α-Fe{sub 2}O{sub 3} is directly correlated with stability constant and inversely correlated with the decomposition temperature of Fe(III) carboxylate precursors. In case of tartaric acid precursor, single phase of the ferrite was obtained at 450 °C. However, in case of oxalic acid and citric acid precursors, single phase ferrite was obtained at 550 °C and 700 °C, respectively. The lattice parameters were increased with increasing annealing temperature and with decreasing the amount of α-Fe{sub 2}O{sub 3}. Maximum saturation magnetization (55 emu/g) was achieved using tartaric acid precursor annealed at 1100 °C. - Highlights: • Citric, oxalic and tartaric acids were used for synthesis of NiFe{sub 2}O{sub 4}. • Carboxylic acid type affects the produced powders. • At low temperatures all carboxylic acids produce iron-deficient NiFe{sub 2}O{sub 4} and α-Fe{sub 2}O{sub 3}. • α-Fe{sub 2}O{sub 3} is correlated with the decomposition of Fe(III) carboxylate precursors.

  12. Removal of heavy metals from aqueous solutions using Fe{sub 3}O{sub 4}, ZnO, and CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Shahriar, E-mail: smahdaviha@yahoo.com; Jalali, Mohsen, E-mail: jalali@basu.ac.ir [College of Agriculture, Bu-Ali Sina University, Department of Soil Science (Iran, Islamic Republic of); Afkhami, Abbas, E-mail: afkhami@basu.ac.ir [College of Chemistry, Bu-Ali Sina University, Department of Analytical Chemistry (Iran, Islamic Republic of)

    2012-08-15

    This study investigated the removal of Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Pb{sup 2+} from aqueous solutions with novel nanoparticle sorbents (Fe{sub 3}O{sub 4}, ZnO, and CuO) using a range of experimental approaches, including, pH, competing ions, sorbent masses, contact time, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The images showed that Fe{sub 3}O{sub 4}, ZnO, and CuO particles had mean diameters of about 50 nm (spheroid), 25 nm (rod shape), and 75 nm (spheroid), respectively. Tests were performed under batch conditions to determine the adsorption rate and uptake at equilibrium from single and multiple component solutions. The maximum uptake values (sum of four metals) in multiple component solutions were 360.6, 114.5, and 73.0 mg g{sup -1}, for ZnO, CuO, and Fe{sub 3}O{sub 4}, respectively. Based on the average metal removal by the three nanoparticles, the following order was determined for single component solutions: Cd{sup 2+} > Pb{sup 2+} > Cu{sup 2+} > Ni{sup 2+}, while the following order was determined in multiple component solutions: Pb{sup 2+} > Cu{sup 2+} > Cd{sup 2+} > Ni{sup 2+}. Sorption equilibrium isotherms could be described using the Freundlich model in some cases, whereas other isotherms did not follow this model. Furthermore, a pseudo-second order kinetic model was found to correctly describe the experimental data for all nanoparticles. Scanning electron microscopy, energy dispersive X-ray before and after metal sorption, and soil solution saturation indices showed that the main mechanism of sorption for Cd{sup 2+} and Pb{sup 2+} was adsorption, whereas both Cu{sup 2+} and Ni{sup 2+} sorption were due to adsorption and precipitation. These nanoparticles have potential for use as efficient sorbents for the removal of heavy metals from aqueous solutions and ZnO nanoparticles were identified as the most promising sorbent due to their high metal uptake.

  13. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid–solid reactions

    International Nuclear Information System (INIS)

    Siriwardane, Ranjani; Riley, Jarrett; Tian, Hanjing; Richards, George

    2016-01-01

    Highlights: • BaFe 2 O 4 and CaFe 2 O 4 are excellent for chemical looping coal gasification. • BaFe 2 O 4 and CaFe 2 O 4 have minimal reactivity with synthesis gas. • Steam enhances the gasification process with these oxygen carriers. • Reaction rates of steam gasification of coal with CaFe 2 O 4 was better than with gaseous oxygen. • Coal gasification appears to be via solid–solid interaction with the oxygen carrier. - Abstract: Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe 2 O 4 ) and calcium ferrite (CaFe 2 O 4 ). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe 2 O 4 and CaFe 2 O 4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H 2 ) and carbon monoxide (CO), but carbon dioxide (CO 2 ) remained low because these oxygen carriers have minimal reactivity with H 2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H 2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.

  14. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  15. Irregular distribution of metal ions in ferrites prepared by co-precipitation technique structure analysis of Mn-Zn ferrite using extended X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Jeyadevan, B.; Tohji, K.; Nakatsuka, K.; Narayanasamy, A.

    2000-01-01

    The tetrahedral/octahedral site occupancy of non-magnetic zinc ion, added to maximize the net magnetic moment of mixed ferrites has been found to depend on the method of preparation. In this paper, we qualitatively analyze the metal ion distribution in Mn-Zn ferrite particles prepared by co-precipitation and ceramic methods using extended X-ray absorption fine structure (EXAFS) technique. The results suggest that the differences observed in the magnetic properties of the samples prepared by different methods are not only due to the difference in particle size but also due to the difference in cation distribution. The difference in cation distributions between ferrites of similar composition prepared differently has been found to depend on the crystal field stability energies of the metal ion of interest and associated cations

  16. Oxidation behaviour of ferritic stainless steel grade Crofer 22 APU at 700 °C in flowing Ar−75%CO{sub 2}−12%H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Shariff, Nurul Atikah; Othman, Norinsan Kamil [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Jalar, Azman [Institute of Micro Engineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    The oxidation of Ferritic Stainless Steel (FSS) grade Crofer 22 APU has been investigated. FSS alloys were exposed to isothermal conditions in a horizontal tube furnace at a 700 °C in flowing Ar−75%CO{sub 2}−12%H{sub 2}O at a pressure of approximately 1 atm. The results showed that the growth of non protective Fe{sub 2}O{sub 3} and spinel was observed after 50 h exposure in the presence of 12% H{sub 2}O. The weight was increased significantly with time of exposure. The formation of different oxides is presented on the interface of the specimen such as MnCr{sub 2}O{sub 4}, Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3} were revealed by X-ray diffraction and supported by EDAX analysis. FSS did not form a protective Cr{sub 2}O{sub 3} layer due to water vapour accelerates the kinetics oxidation. Data of microstructure observation is presented and discussed in this paper in term of water vapour effects.

  17. Magnetism and thermal induced characteristics of Fe{sub 2}O{sub 3} content bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chun-Shiang; Hsi, Chi-Shiung [Department of Materials Science and Engineering, National United University, Miaoli 36003, Taiwan (China); Hsu, Fang-Chi, E-mail: fangchi@nuu.edu.tw [Department of Materials Science and Engineering, National United University, Miaoli 36003, Taiwan (China); Wang, Moo-Chin [Department of Fragrance and Cosmetics, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, Yung-Sheng [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 803, Taiwan (China)

    2012-11-15

    Magnetic properties of Li{sub 2}O-MnO{sub 2}-CaO-P{sub 2}O{sub 5}-SiO{sub 2} (LMCPS) glasses doped with various amounts of Fe{sub 2}O{sub 3} were investigated. There is a dramatic change in the magnetic property of pristine LMCPS after the addition of Fe{sub 2}O{sub 3} and crystallized at 850 Degree-Sign C for 4 h. Both the electron paramagnetic resonance and magnetic susceptibility measurements showed that the glass ceramic with 4 at% Fe{sub 2}O{sub 3} exhibited the coexistence of superparamagnetism and ferromagnetism at room temperature. When the Fe{sub 2}O{sub 3} content was higher than 8 at%, the LMCPS glasses showed ferromagnetism behavior. The complex magnetic behavior is due to the distribution of (Li, Mn)ferrite particle sizes driven by the Fe{sub 2}O{sub 3} content. The thermal induced hysteresis loss of the crystallized LMCPS glass ceramics was characterized under an alternating magnetic field. The energy dissipations of the crystallized LMCPS glass ceramics were determined by the concentration and Mn/Fe ratios of Li(Mn, Fe)ferrite phase formed in the glass ceramics. - Highlights: Black-Right-Pointing-Pointer Presence of Fe{sub 2}O{sub 3} in LMCPS glass ceramic promotes the growth of (Li, Mn)ferrite. Black-Right-Pointing-Pointer The amount of Fe{sub 2}O{sub 3} determines the size of (Li,Mn)ferrite particles. Black-Right-Pointing-Pointer Room temperature superparamagnetism was obtained at 4 at% of Fe{sub 2}O{sub 3} addition. Black-Right-Pointing-Pointer In addition, Li(Mn, Fe)ferrite phase contributes to the magnetic energy loss. Black-Right-Pointing-Pointer The largest energy loss is the trade-off between the ferrite content and Mn/Fe ratio.

  18. Structural and magnetic properties correlated with cation distribution of Mo-substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Heiba, Z.K. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Abd-Elkader, Omar H. [Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Electron Microscope and Thin Films Department, National Research Center (NRC), El-Behooth Street, Dokki, Cairo 12622 (Egypt)

    2014-11-15

    Mo-substituted cobalt ferrite nanoparticles; CoFe{sub 22x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by a one-step solution combustion synthesis technique. The reactants were metal nitrates and glycine as a fuel. The samples were characterized using an X-ray diffraction (XRD), a transmission electron microscope (TEM) and a vibrating sample magnetometer (VSM). XRD analysis revealed a pure single phase of cubic spinel ferrites for all samples with x up to 0.3. The lattice parameter decreases with Mo{sup 6+} substitution linearly up to x=0.15, then nonlinearly for x≥0.2. Rietveld analysis and saturation magnetization (M{sub s}) revealed that Mo{sup 6+} replaced Fe{sup 3+} in the tetrahedral A-sites up to x=0.15, then it replaced Fe{sup 3+} in both A-sites and B-sites for x≥0.2. The saturation magnetization (M{sub s}) increases with increasing Mo{sup 6+} substitution up to x=0.15 then decreases. The crystallite size decreased while the microstrain increased with increasing Mo{sup 6+} substitution. Inserting Mo{sup 6+} produces large residents of defects and cation vacancies. - Highlights: • Nano-sized Mo-substituted cobalt ferrite CoFe{sub 22x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by solution combustion. • The change in M{sub s} with increasing Mo-substitution was investigated. • The cations distributions of ferrites were obtained from Rietveld analysis. • Inserting Mo{sup 6+} produces large residents of defects and cation vacancies.

  19. NiFe{sub 2}O{sub 4}/activated carbon nanocomposite as magnetic material from petcoke

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, Sarah, E-mail: sbriceno@ivic.gob.ve [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Brämer-Escamilla, W., E-mail: wbramer@ivic.gob.ve [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Silva, P. [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); García, J.; Del Castillo, H.; Villarroel, M. [Laboratorio de Cinética y Catálisis, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes ULA, Mérida 5101-A (Venezuela, Bolivarian Republic of); Rodriguez, J.P. [Laboratorio de Microscopia Electrónica. Instituto de Estudios Científicos y Tecnológicos IDECYT. Apartado 47925 - Caracas 1041-A (Venezuela, Bolivarian Republic of); Ramos, M.A.; Morales, R. [Instituto Zuliano de Investigaciones Tecnológicas INZIT. Apdo. Postal 331. La Cañada-Maracaibo (Venezuela, Bolivarian Republic of); Diaz, Y. [Centro de Química, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2014-06-01

    Nickel ferrite (NiFe{sub 2}O{sub 4}) was supported on activated carbon (AC) from petroleum coke (petcoke). Potassium hydroxide (KOH) was employed with petcoke to produce activated carbon. NiFe{sub 2}O{sub 4} were synthesized using PEG-Oleic acid assisted hydrothermal method. The structural and magnetic properties were determined using thermogravimetric and differential thermal analysis (TGA–DTA), X-ray diffraction (XRD), Fourier Transform Infrared (IR-FT), surface area (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). XRD analysis revealed the cubic spinel structure and ferrite phase with high crystallinity. IR-FT studies showed that chemical modification promoted the formation of surface oxygen functionalities. Morphological investigation by SEM showed conglomerates of spherical nanoparticles with an average particle size of 72 nm and TEM showed the formation of NiFe{sub 2}O{sub 4}/carbon nanofibers. Chemical modification and activation temperature of 800 °C prior to activation dramatically increased the BET surface area of the resulting activated carbon to 842.4 m{sup 2}/g while the sulfur content was reduced from 6 to 1%. Magnetic properties of nanoparticles show strong dependence on the particle size. - Highlights: • TEM showed the formation of NiFe{sub 2}O{sub 4}/carbon nanofibers. • Nanoparticles were supported on the activated carbon from petcoke. • Activation dramatically increased the BET surface area to 842 m{sup 2}/g. • Magnetic properties show strong dependence on the particle size. • Sulphur content was reduced from 6 to 1% with the petcoke activation.

  20. Photoelectrochemical Characterization of Sprayed alpha-Fe2O3 Thin Films : Influence of Si Doping and SnO2 Interfacial Layer

    NARCIS (Netherlands)

    Liang, Y.; Enache, C.S.; Van De Krol, R.

    2008-01-01

    a-Fe2O3 thin film photoanodes for solar water splitting were prepared by spray pyrolysis of Fe(AcAc)3. The donor density in the Fe2O3 films could be tuned between 10171020cm-3 by doping with silicon. By depositing a 5 nm SnO2 interfacial layer between the Fe2O3 films and the transparent conducting

  1. NiCrxFe2− xO4 ferrite nanoparticles and their composites with ...

    Indian Academy of Sciences (India)

    Half of the samples have been sintered at 620°C and the other at 1175°C. Then polypyrrole (PPy)–NiCrFe2-O4 composites have been synthesized by polymerization of pyrrole monomer in the presence of NiCrFe2-O4 nanoparticles. The structure, morphology and magnetic properties of the samples have been ...

  2. Thermal decomposition of barium ferrate(VI): Mechanism and formation of FeIV intermediate and nanocrystalline Fe2O3 and ferrite

    International Nuclear Information System (INIS)

    Machala, Libor; Sharma, Virender K.; Kuzmann, Ernö; Homonnay, Zoltán; Filip, Jan; Kralchevska, Radina P.

    2016-01-01

    Simple high-valent iron-oxo species, ferrate(VI) (Fe VI O 4 2− , Fe(VI)) has applications in energy storage, organic synthesis, and water purification. Of the various salts of Fe(VI), barium ferrate(VI) (BaFeO 4 ) has also a great potential as a battery material. This paper presents the thermal decomposition of BaFeO 4 in static air and nitrogen atmosphere, monitored by combination of thermal analysis, Mössbauer spectroscopy, X-ray powder diffraction, and electron-microscopic techniques. The formation of Fe IV species in the form of BaFeO 3 was found to be the primary decomposition product of BaFeO 4 at temperature around 190 °C under both studied atmospheres. BaFeO 3 was unstable in air reacting with CO 2 to form barium carbonate and speromagnetic amorphous iron(III) oxide nanoparticles (<5 nm). Above 600 °C, a solid state reaction between BaCO 3 and Fe 2 O 3 occurred, leading to the formation of barium ferrite nanoparticles, BaFe 2 O 4 (20–100 nm). - Highlights: • We explained the mechanism of thermal decomposition of barium ferrate(VI). • We confirmed the formation of Fe(IV) intermediate phase during the decomposition. • The mechanism of the decomposition is influenced by a presence of carbon dioxide.

  3. Improvement of solvents for chemical decontamination: nickel ferrites removal

    International Nuclear Information System (INIS)

    Figueroa, Carlos A.; Morando, Pedro J.; Blesa, Miguel A.

    1999-01-01

    Carboxylic acids are usually included in commercial solvents for the chemical cleaning and decontamination of metal surfaces from the oxide layers grown and/or deposited from high temperature water by corrosive process. In particular oxalic acid is included in second path of AP-Citrox method. However, in some cases, their use shows low efficiency. This fact is attributed to the special passivity of the mixed oxides as nickel ferrites. This work reports a kinetic study of dissolution of a synthetic nickel ferrite (NiFe 2 O 4 ) confronted with simple oxides (NiO and Fe 2 O 3 ) in mineral acids and oxalic acid. The dissolution factor and reaction rate were determined in several conditions (reactive concentrations, pH and added ferrous ions). Experimental data of dissolution (with and without Fe(II) added) show a congruent kinetic regime. Pure nickel oxide (NiO) is rather resistant to the attack by oxalic acid solutions, and ferrous ions do not accelerate dissolution. In fact, nickel oxide dissolves better by oxidative attack that takes advantage of the higher lability of Ni 3+ . It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel. Our results point to use more reactive solvents in iron from mixed oxides and to the possibility of using one stage decontamination method. (author)

  4. Effects of In{sub 3+} substitution on structural properties, cation distribution and Mössbauer spectra of CoFe{sub 2}O{sub 4} ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ravi, E-mail: ranade65@gmail.com [Centre for Material Science and Engineering, National Institute of Technology Hamirpur (H.P.)-177005 (India); Pandit, Rabia; Sharma, K. K.; Kaur, Pawanpreet [Department of Physics, National Institute of Technology Hamirpur (H.P.)-177005 (India)

    2014-04-24

    The use of non-destructive, high resolution technique namely Mössbauer spectroscopy is discussed in detail for the investigation of structural and magnetic properties of Fe based indium substituted cobalt ferrites. The polycrystalline samples of CoFe{sub 2−x}In{sub x}O{sub 4} (x = 0.2, 0.6) were prepared by double sintering solid state reaction method. To ensure a single phase formation of the as prepared samples the X-ray diffraction (XRD) data of the powdered samples was Rietveld refined using Fd3m space group. An excellent agreement is obtained between the integrated intensity ratios of 57 Fe spectra at A- and B-sites and those calculated on the basis of cation distribution the cation distribution obtained data analysis. The results of Mössbauer spectra and cation distribution are also correlated well with magnetization versus applied field (M-H) study.

  5. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  6. Modelos de regressão para estimativa da área foliar de espécies brasileiras do gênero Tillandsia L. (Bromeliaceae.

    Directory of Open Access Journals (Sweden)

    Patrícia Gabarra Mendonça

    2005-06-01

    Full Text Available O objetivo deste trabalho foi ajustar equações de regressão para estimativa da área foliar de Tillandsia spp. nativas do Brasil. Determinaram-se o comprimento ao longo da nervura principal (C, a largura máxima (L e a área foliar real de, no mínimo, 100 folhas de cada espécie, mantidas intactas nas plantas. Calcularam-se relações lineares existentes entre a área foliar real e as dimensões C, L e CL (produto entre o comprimento e a largura da folha. O modelo de regressão linear com intercepto foi o mais adequado, e as equações recomendadas, sendo AFE= área foliar estimada, foram: para Tillandsia carminea, AFE= 0,281188 + 0,562219 CL (R2= 0,7296; :Tillandsia dura, AFE= 0,891231 + 0,412457 CL (R2= 0,8432; Tillandsia gardneri, AFE= 2,54412 + 0,445525 CL (R2= 0,8662; Tillandsia geminiflora, AFE= 0,674484 + 0,444418 CL (R2= 0,8474; Tillandsia globosa, AFE= 1,9494 + 0,3804 CL (R2= 0,8178; Tillandsia grazielae, AFE= 0,518512 + 0,530259 CL (R2= 0,7608; Tillandsia kautskyi, AFE= 0,59338 + 0,374353 CL (R2= 0,6931; Tillandsia reclinata, AFE= 0,0379111 + 0,641623 CL (R2= 0,9169; Tillandsia stricta, AFE= 0,3937 + 0,4277 C (R2= 0,8661, ou AFE= 1,21336 + 0,385727 CL (R2= 0,8607; Tillandsia tenuifolia, AFE= 0,991226 + 0,402221 CL (R2= 0,7523.

  7. Magnetic and magnetoelastic properties of M-substituted cobalt ferrites (M=Mn, Cr, Ga, Ge)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sang-Hoon [Iowa State Univ., Ames, IA (United States)

    2007-12-15

    Magnetic and magnetoelastic properties of a series of M-substituted cobalt ferrites, CoMxFe2-xO4 (M=Mn, Cr, Ga; x=0.0 to 0.8) and Ge-substituted cobalt ferrites Co1+xGexFe2-2xO4 (x=0.0 to 0.6) have been investigated.

  8. Porous ZnCo 2 O 4 nanoparticles derived from a new mixed-metal organic framework for supercapacitors

    KAUST Repository

    Chen, Siru

    2015-01-01

    Cobalt-based oxides have been shown to be promising materials for application in high-energy-density Li-ion batteries and supercapacitors. In this paper, we report a new and simple strategy for the synthesis of a mixed-metal spinel phase (ZnCo2O4) from a zinc and cobalt mixed-metal organic framework (JUC-155). It is important to rationally design a MOF with a precise ratio (Co/Zn) and a synthetic process that is simple and time saving. After solid-state annealing of the mixed-metal MOF precursor at 400 °C for two hours, a pure ZnCo2O4 phase with a high surface area (55 cm2 g−1) was obtained. When used as electrode materials for supercapacitors, an exceptionally high specific capacitance of 451 F g−1 was obtained at the scan rate of 5 mV s−1. The capacitance loss after 1500 cycles was only 2.1% at a current density of 2 A g−1, indicating that this phase has an excellent cycling stability. These remarkable electrochemical performances suggest that this phase is potentially promising for application as an efficient electrode in electrochemical capacitors.

  9. Structural, impedance and Mössbauer studies of magnesium ferrite synthesized via sol–gel auto-combustion process

    Directory of Open Access Journals (Sweden)

    Shahid Khan Durrani

    2017-12-01

    Full Text Available Crystalline magnesium ferrite (MgFe2O4 spinel oxide powder was synthesized by nitrate–citrate sol–gel auto-combustion process with stoichiometric composition of metal nitrate salts, urea and citric acid. The study was focused on the modification of synthesis conditions and effect of these modified conditions on the structural and electrical properties of synthesized MgFe2O4 ceramic materials. Phase composition, crystallinity, structure and surface morphology were studied by X-ray diffraction, FTIR and SEM. Pure single phase MgFe2O4 spinel ferrite was obtained after calcination at 850 °C. Rietveld refinement of XRD result confirmed the single cubic phase spinel oxide with the lattice constant of a = 8.3931 Å and Fd3m symmetry. UV–visible absorption study of calcined powder revealed an optical band gap of 2.17 eV. SEM images of sintered specimens (1050–1450 °C showed that the grain size increased with the increase in sintering temperature. From the impedance results of the sintered MgFe2O4 specimens, it was found that the resistance of grain, grain boundary and electrode effect decreased with an increase in sintering temperature and associated grain growth. In the intermediate frequency region lowering of impedance and dielectric values was observed due to the decrease in grain boundary areas. Mössbauer studies indicated that magnesium ferrite had a mixed spinel structure in calcined and sintered samples, however, the well refined single phase MgFe2O4 was observed due to well developed high crystalline structure at 1350 °C and 1450 °C. Keywords: Sol–gel auto-combustion, Magnesium ferrite, X-ray diffraction, SEM, Mössbauer spectroscopy, Impedance spectroscopy

  10. Electrical and optical properties of nickel ferrite/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Khairy

    2015-07-01

    Full Text Available Polyaniline–NiFe2O4 nanocomposites (PANI–NiFe2O4 with different contents of NiFe2O4 (2.5, 5 and 50 wt% were prepared via in situ chemical oxidation polymerization, while the nanoparticles nickel ferrite were synthesized by sol–gel method. The prepared samples were characterized using some techniques such as Fourier transforms infrared (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and thermogravimetric analysis (TGA. Moreover, the electrical conductivity and optical properties of the nanocomposites were investigated. Pure (PANI and the composites containing 2.5 and 5 wt% NiFe2O4 showed amorphous structures, while the one with 50 wt% NiFe2O4 showed a spinel crystalline structure. The SEM images of the composites showed different aggregations for the different nickel ferrite contents. FTIR spectra revealed to the formation of some interactions between the PANI macromolecule and the NiFe2O4 nanoparticles, while the thermal analyses indicated an increase in the composites stability for samples with higher NiFe2O4 nanoparticles contents. The electrical conductivity of PANI–NiFe2O4 nanocomposite was found to increase with the rise in NiFe2O4 nanoparticle content, probably due to the polaron/bipolaron formation. The optical absorption experiments illustrate direct transition with an energy band gap of Eg = 1.0 for PANI–NiFe2O4 nanocomposite.

  11. High adsorptive γ-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water.

    Science.gov (United States)

    Wei, Yan; Yang, Ran; Zhang, Yong-Xing; Wang, Lun; Liu, Jin-Huai; Huang, Xing-Jiu

    2011-10-21

    γ-AlOOH(boehmite)@SiO(2)/Fe(3)O(4) porous magnetic microspheres with high adsorption capacity toward heavy metal ions were found to be useful for the simultaneous and selective electrochemical detection of five metal ions, such as ultratrace zinc(II), cadmium(II), lead(II), copper(II), and mercury(II), in drinking water.

  12. Hollow mesoporous CuCo2O4 microspheres derived from metal organic framework: A novel functional materials for simultaneous H2O2 biosensing and glucose biofuel cell.

    Science.gov (United States)

    Cui, Shiqiang; Gu, Shuqing; Ding, Yaping; Zhang, Jiangjiang; Zhang, Zhen; Hu, Zongqian

    2018-02-01

    Hollow mesoporous CuCo 2 O 4 (meso-CuCo 2 O 4 ) microspheres were successfully synthesized by decomposing metal-organic frameworks (MOFs) as the template. The as-prepared CuCo 2 O 4 microspheres were first simultaneously used for H 2 O 2 biosensing and glucose biofuel cell (GFC) as the enzyme mimic. The resulting of meso-CuCo 2 O 4 displayed not only excellent catalytic performances to H 2 O 2 including a super-fast response time (within 2s), a super-high sensitivity (654.23 μA mM -1 cm -2 ) and a super-low detection limit (3nM at S/N = 3) on the sensor, but also great values in GFC as anode material with an open circuit voltage of 0.85V, a maximum power density of 0.33 mWcm -2 and a limiting current density of 1.27 mAcm -2 , respectively. The preeminent catalytic abilities to H 2 O 2 and glucose may be attributed to the surpassing intrinsic catalytic activity of CuCo 2 O 4 and large specific area of mesoporous structure. These significant findings deriving from this work not only provided a novel exploration for the fabrication of hollow spherical mesoporous bimetallic oxides, but also promoted the development of the supersensitive detection of H 2 O 2 and non-enzymatic biofuel cell. Copyright © 2017. Published by Elsevier B.V.

  13. Assessment of thyroid endocrine system impairment and oxidative stress mediated by cobalt ferrite (CoFe2 O4 ) nanoparticles in zebrafish larvae.

    Science.gov (United States)

    Ahmad, Farooq; Liu, Xiaoyi; Zhou, Ying; Yao, Hongzhou; Zhao, Fangfang; Ling, Zhaoxing; Xu, Chao

    2016-12-01

    Fascinating super paramagnetic uniqueness of iron oxide particles at nano-scale level make them extremely useful in the state of the art therapies, equipments, and techniques. Cobalt ferrite (CoFe 2 O 4 ) magnetic nanoparticles (MNPs) are extensively used in nano-based medicine and electronics, results in extensive discharge and accumulation into the environment. However, very limited information is available for their endocrine disrupting potential in aquatic organisms. In this study, the thyroid endocrine disrupting ability of CoFe 2 O 4 NPs in Zebrafish larvae for 168-h post fertilization (hpf) was evaluated. The results showed the elevated amounts of T4 and T3 hormones by malformation of hypothalamus pituitary axis in zebrafish larvae. These elevated levels of whole body THs leads to delayed hatching, head and eye malformation, arrested development, and alterations in metabolism. The influence of THs disruption on ROS production and change in activities of catalase (CAT), mu-glutathione s-transferase (mu-GST), and acid phosphatase (AP) were also studied. The production of significantly higher amounts of in vivo generation of ROS leads to membrane damage and oxidative stress. Presences of NPs and NPs agglomerates/aggregates were also the contributing factors in mechanical damaging the membranes and physiological structure of thyroid axis. The increased activities of CAT, mu-GST, and AP confirmed the increased oxidative stress, possible DNA, and metabolic alterations, respectively. The excessive production of in vivo ROS leads to severe apoptosis in head, eye, and heart region confirming that malformation leads to malfunctioning of hypothalamus pituitary axis. ROS-induced oxidative DNA damage by formation of 8-OHdG DNA adducts elaborates the genotoxicity potential of CoFe 2 O 4 NPs. This study will help us to better understand the risk and assessment of endocrine disrupting potential of nanoparticles. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2068

  14. Tunable Twin Matching Frequency (fm1/fm2) Behavior of Ni1-xZnxFe2O4/NBR Composites over 2-12.4 GHz: A Strategic Material System for Stealth Applications

    Science.gov (United States)

    Saini, Lokesh; Patra, Manoj Kumar; Jani, Raj Kumar; Gupta, Goutam Kumar; Dixit, Ambesh; Vadera, Sampat Raj

    2017-03-01

    The gel to carbonate precipitate route has been used for the synthesis of Ni1-xZnxFe2O4 (x = 0, 0.25, 0.5 and 0.75) bulk inverse spinel ferrite powder samples. The optimal zinc (50%) substitution has shown the maximum saturation magnetic moment and resulted into the maximum magnetic loss tangent (tanδm) > -1.2 over the entire 2-10 GHz frequency range with an optimum value ~-1.75 at 6 GHz. Ni0.5Zn0.5Fe2O4- Acrylo-Nitrile Butadiene Rubber (NBR) composite samples are prepared at different weight percentage (wt%) of ferrite loading fractions in rubber for microwave absorption evaluation. The 80 wt% loaded Ni0.5Zn0.5Fe2O4/NBR composite (FMAR80) sample has shown two reflection loss (RL) peaks at 5 and 10 GHz. Interestingly, a single peak at 10 GHz for 3.25 mm thickness, can be scaled down to 5 GHz by increasing the thickness up to 4.6 mm. The onset of such twin matching frequencies in FMAR80 composite sample is attributed to the spin resonance relaxation at ~5 GHz (fm1) and destructive interference at λm/4 matched thickness near ~10 GHz (fm2) in these composite systems. These studies suggest the potential of tuning the twin frequencies in Ni0.5Zn0.5Fe2O4/NBR composite samples for possible microwave absorption applications.

  15. Synthesis of nanocrystalline Zn0.5Mn0.5Fe2O4 via in situ polymerization technique

    International Nuclear Information System (INIS)

    Liu Xianming; Fu Shaoyun

    2007-01-01

    Nanocrystalline Zn 0.5 Mn 0.5 Fe 2 O 4 was synthesized through the pyrolysis of polyacrylate salt precursors prepared via in situ polymerization of the metal salts and acrylic acid. The pyrolysis behavior of the polymeric precursors was studied by use of thermal analysis. The as-obtained product was characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), electron diffraction (ED) pattern, scanning electron microscopy (SEM) and electron dispersive X-ray (EDX) analysis. The results revealed that the particle size is in the range of 15-25 nm for Zn-Mn ferrites with good crystallinity. Magnetic properties of the sample at 300 K were measured using a vibrating sample magnetometer, which showed that the sample exhibited characteristics of superparamagnetism

  16. Enhancement in dielectric behavior of (Ni, Zn)Fe{sub 2}O{sub 4} ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, Javed R.; Gaikwad, Vishwajit M.; Moon, Vaibhav C.; Acharya, Smita A., E-mail: saha275@yahoo.com [Advanced Materials Laboratory, Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Nagpur-440033 (India)

    2016-05-06

    In present work, NiFe{sub 2}O{sub 4}(NFO), ZnFe{sub 2}O{sub 4} (ZFO) and Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} (NZFO) are synthesized by microwave assisted co-precipitation route. Their structural properties are confirmed by X-ray diffraction and data is fitted through Reitveld refinement using Full-Prof software suite. After refinement, the systematic crystal structures of NFO, ZFO and NZFO compounds are generated using output .cif file by VESTA (Visualization for Electronic and Structural Analysis) program. Structural parameters obtained after refinement and unit cell construction, are systematically tabulated. Room temperature frequency dependence dielectric properties are studied. We found enhanced values of dielectric constant for NZFO than individual NFO and ZFO phases. For NZFO sample, greater electron exchange between Fe{sup 2+} and Fe{sup 3+} which enhances polarization and dielectric constant.

  17. Nanostructural and magnetic studies of virtually monodispersed NiFe2O4 nanocrystals synthesized by a liquid–solid-solution assisted hydrothermal route

    International Nuclear Information System (INIS)

    Li Xinghua; Tan Guoguo; Chen Wei; Zhou Baofan; Xue Desheng; Peng Yong; Li, Fashen; Mellors, Nigel J.

    2012-01-01

    This study presents a comprehensively and systematically structural, chemical and magnetic characterization of ∼9.5 nm virtually monodispersed nickel ferrite (NiFe 2 O 4 ) nanoparticles prepared using a modified liquid–solid-solution (LSS) assisted hydrothermal method. Lattice-resolution scanning transmission electron microscope (STEM) and converged beam electron diffraction pattern (CBED) techniques are adapted to characterize the detailed spatial morphology and crystal structure of individual NiFe 2 O 4 particles at nano scale for the first time. It is found that each NiFe 2 O 4 nanoparticle is single crystal with an fcc structure. The morphology investigation reveals that the prepared NiFe 2 O 4 nanoparticles of which the surfaces are decorated by oleic acid are dispersed individually in hexane. The chemical composition of nickel ferrite nanoparticles is measured to be 1:2 atomic ratio of Ni:Fe, indicating a pure NiFe 2 O 4 composition. Magnetic measurements reveal that the as-synthesized nanocrystals displayed superparamagnetic behavior at room temperature and were ferromagnetic at 10 K. The nanoscale characterization and magnetic investigation of monodispersed NiFe 2 O 4 nanoparticles should be significant for its potential applications in the field of biomedicine and magnetic fluid using them as magnetic materials.

  18. The Effect of Catalyst Type on The Microstructure and Magnetic Properties of Synthesized Hard Cobalt Ferrite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Shaima'a Jaber Kareem

    2018-02-01

    Full Text Available A sol-gel process prepared the nanoparticles of hard cobalt ferrite (CoFe2O4. Cobalt nitrate hexahydrate (Co (NO32⋅6H2O, iron nitrate nonahydrate (Fe (NO33⋅9H2O with using two catalysis acid (citric acid and alkaline (hydroxide ammonium were used as precursor materials. Crystallization behavior of the CoFe2O4 nanoparticles were studied by X-ray diffraction (XRD. Nanoparticles phases can change from amorphous to spinel ferrite crystalline depending on the calcinated temperature at 600°C, with using citric acid as a catalysis without finding forgone phase, while using hydroxide ammonium was shown second phase (α-Fe2O3 with CoFe2O4. Crystallite size was measured by Scherrer’s formula about (25.327 nm and (27.119 nm respectively. Structural properties were investigated by FTIR, which was appeared main bond of (Fe-O, (Co-O, (C-O, and (H-O. Scanning electron microscopy (FE- SEM was shown the microstructure observation of cobalt ferrite and the particle size at the range about (28.77-42.97 nm. Magnetization measurements were carried out on a vibrating sample magenometer (VSM that exhibited hard spinel ferrite.

  19. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    Science.gov (United States)

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  20. Structural and magnetic properties of sol-gel derived CaFe2O4 nanoparticles

    Science.gov (United States)

    Das, Arnab Kumar; Govindaraj, Ramanujan; Srinivasan, Ananthakrishnan

    2018-04-01

    Calcium ferrite nanoparticles with average crystallite size of ∼11 nm have been synthesized by sol-gel method by mixing calcium and ferric nitrates in stoichiometric ratio in the presence of ethylene glycol. As-synthesized nanoparticles were annealed at different temperatures and their structural and magnetic properties have been evaluated. X-ray diffraction studies showed that unlike most ferrites, as-synthesized cubic calcium ferrite showed a slow transformation to orthorhombic structure when annealed above 400 °C. Single phase orthorhombic CaFe2O4 was obtained upon annealing at 1100 °C. Divergence of zero field cooled and field cooled magnetization curves at low temperatures indicated superparamagnetic behavior in cubic calcium ferrite particles. Superparamagnetism persisted in cubic samples annealed up to 500 °C. As-synthesized nanoparticles heat treated at 1100 °C exhibited mixed characteristics of antiferromagnetic and paramagnetic grains with saturation magnetization of 0.4 emu/g whereas nanoparticles calcined at 400 °C exhibited superparamagnetic characteristics with saturation magnetization of 22.92 emu/g. An antiferromagnetic to paramagnetic transition was observed between 170 and 190 K in the sample annealed at 1100 °C, which was further confirmed by Mössbauer studies carried out at different temperatures across the transition.

  1. Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior.

    Science.gov (United States)

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-09-01

    Stabilization efficiencies of spinel-based construction ceramics incorporating simulated nickel-laden waste sludge were evaluated and the leaching behavior of products investigated. To simulate the process of immobilization, nickel oxide was mixed alternatively with gamma-alumina, kaolinite, and hematite. These tailoring precursors are commonly used to prepare construction ceramics in the building industry. After sintering from 600 to 1480 degrees C at 3 h, the nickel aluminate spinel (NiAl204) and the nickel ferrite spinel (NiFe204) crystallized with the ferrite spinel formation commencing about 200-300 degrees C lower than for the aluminate spinel. All the precursors showed high nickel incorporation efficiencies when sintered at temperatures greater than 1250 degrees C. Prolonged leach tests (up to 26 days) of product phases were carried out using a pH 2.9 acetic acid solution, and the spinel products were invariably superior to nickel oxide for immobilization over longer leaching periods. The leaching behavior of NiAl2O4 was consistent with congruent dissolution without significant reprecipitation, but for NiFe2O4, ferric hydroxide precipitation was evident. The major leaching reaction of sintered kaolinite-based products was the dissolution of cristobalite rather than NiAl2O4. This study demonstrated the feasibility of transforming nickel-laden sludge into spinel phases with the use of readily available and inexpensive ceramic raw materials, and the successful reduction of metal mobility under acidic environments.

  2. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    Science.gov (United States)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  3. GeO{sub x} interfacial layer scavenging remotely induced by metal electrode in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taehoon; Jung, Yong Chan; Seong, Sejong; Ahn, Jinho, E-mail: jhahn@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Lee, Sung Bo [Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826 (Korea, Republic of); Park, In-Sung, E-mail: parkis77@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 04763 (Korea, Republic of)

    2016-07-11

    The metal gate electrodes of Ni, W, and Pt have been investigated for their scavenging effect: a reduction of the GeO{sub x} interfacial layer (IL) between HfO{sub 2} dielectric and Ge substrate in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors. All the capacitors were fabricated using the same process except for the material used in the metal electrodes. Capacitance-voltage measurements, scanning transmission electron microscopy, and electron energy loss spectroscopy were conducted to confirm the scavenging of GeO{sub x} IL. Interestingly, these metals are observed to remotely scavenge the interfacial layer, reducing its thickness in the order of Ni, W, and then Pt. The capacitance equivalent thickness of these capacitors with Ni, W, and Pt electrodes are evaluated to be 2.7 nm, 3.0 nm, and 3.5 nm, and each final remnant physical thickness of GeO{sub x} IL layer is 1.1 nm 1.4 nm, and 1.9 nm, respectively. It is suggested that the scavenging effect induced by the metal electrodes is related to the concentration of oxygen vacancies generated by oxidation reaction at the metal/HfO{sub 2} interface.

  4. Structural and magnetic studies of the Co{sub 1+x}Ti{sub x}Fe{sub 2(1−x)}O{sub 4} ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Amer, M.A., E-mail: moazamer@hotmail.com

    2017-03-15

    The cubic spinel Co{sub 1+x}Ti{sub x}Fe{sub 2(1−x)}O{sub 4} ferrites, 0.0≤x≤0.5, were prepared by the standard ceramic technique. The samples were examined using the techniques; XRD, FT-IR, SEM and VSM. The average lattice parameter showed dependence on x, whereas the crystallite and grain size and strain did not. The infrared spectra showed six absorption bands in the range of 200–1000 cm{sup −1}. They were assigned to the corresponding metallic ion–oxygen bonds among the A- and B-sites. The absorption bands ν{sub 1} and ν{sub 2} and their intensities and force constants F{sub 1} and F{sub 2} were increased against x. Using the transmitted and absorbed energy, the IR velocity and refractive index and jump rate of vacancies were determined and discussed as functions of x. The trend of sauration magnetization Ms was decreased with x, whereas that of coercivity and anisotropy constant was increased. The determined Debye temperature and stiffness constant of the samples were discussed as functions of x. The absorption bands ν{sub 1} and ν{sub 2} proved dependence on the distance between magnetic ions (hopping length) L{sub A-A} and L{sub B-B} at the A- and B-sites, respectively, whereas F{sub 1} and F{sub 2} proved dependence on Ms. - Highlights: • Trend of Ms showed decrease with x, whereas that of Hc and K showed increase. • IR velocity and refractive index and jump rate of vacancies revealed dependence on x. • Debye temperature and stiffness constant showed increase with the additional factor x. • IR bands ν{sub 1} and ν{sub 2} were decreased with the distance between magnetic ions L{sub A} and L{sub B}. • Force constants F{sub 1} and F{sub 2} were affected by the saturation magnetization Ms.

  5. Soldagem de um aço inoxidável ferrítico com o processo A-TIG Ferritic stainless steel welding with the A-TIG process

    Directory of Open Access Journals (Sweden)

    Alessandra Gois Luciano de Azevedo

    2009-03-01

    Full Text Available O processo de soldagem TIG com fluxo (processo A-TIG apresenta como principal vantagem a possibilidade de se obter uma maior penetração do cordão de solda empregando os mesmos parâmetros de soldagem do processo TIG convencional. Diversos estudos mostram a influência dos fluxos ativos sobre as características geométricas das soldas em aços inoxidáveis austeníticos, porém pouco se sabe sobre a influência deste processo nas características geométricas e metalúrgicas de cordões de solda em aços inoxidáveis ferríticos. Neste trabalho são aplicados diferentes tipos de fluxo na soldagem de aço inoxidável ferrítico com o objetivo de verificar possíveis influências no perfil do cordão de solda, no seu aspecto visual, na microestrutura, na dureza da zona fundida e na resistência ao impacto (ensaio Charpy. As soldagens "bead-on-plate" foram realizadas sem metal de adição. Foram utilizados seis tipos de fluxo, sendo um óxido elaborado em laboratório (TiO2 e cinco fluxos comerciais. Os resultados mostraram que a utilização do fluxo permite um aumento na penetração com mudanças significativas no aspecto do cordão de solda. Verificou-se ainda que a microestrutura e a dureza do cordão de solda do aço estudado não foram afetadas pelo tipo de fluxo utilizado, com a microestrutura analisada em microscópio óptico. Oo em estudo mostrou um alto grau de fragilidade à temperatura ambiente.The A-TIG welding process presents as main advantage the possibility of increase in the penetration depth using the same parameters as conventional TIG welding. Many researchers show the influence of the active flux on the weld geometry in austenitic stainless steel, however little it is known of the influence of this process in the weld fillet shape and metallurgic characteristics of the weld fillet in ferritic stainless steel. In this work different types of flux are applied with the objective to verify possible influences on the weld

  6. Mg1-xZnxFe2O4 nanoparticles: Interplay between cation distribution and magnetic properties

    Directory of Open Access Journals (Sweden)

    S. Raghuvanshi

    2018-04-01

    Full Text Available Correlation between cationic distribution, magnetic properties of Mg1-xZnxFe2O4 (0.0 ≤ x ≤ 1.0 ferrite is demonstrated, hardly shown in literature. X-ray diffraction (XRD confirms the formation of cubic spinel nano ferrites with grain diameter between 40.8 to 55.4 nm. Energy dispersive spectroscopy (EDS confirms close agreement of Mg/Fe, Zn/Fe molar ratio, presence of all elements (Mg, Zn, Fe, O, formation of estimated ferrite composition. Zn addition (for Mg shows: i linear increase of lattice parameter aexp, accounted for replacement of an ion with higher ionic radius (Zn > Mg; ii presence of higher population of Fe3+ ions on B site, and unusual occurrence of Zn, Mg on A and B site leads to non-equilibrium cation distribution where we observe inverse to mixed structure, and is in contrast to reported literature where inverse to normal transition is reported; iii effect on A-A, A-B, B-B exchange interactions, affecting coercivity Hc, Ms. A new empirical relation is also obtained showing linear relation between saturation magnetization Ms – inversion parameter δ, oxygen parameter u4¯3m. Non-zero Y-K angle (αYK values implies Y-K type magnetic ordering in the studied samples.

  7. Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity

    Science.gov (United States)

    Bhosale, S. V.; Ekambe, P. S.; Bhoraskar, S. V.; Mathe, V. L.

    2018-05-01

    The present work reports the role of surface properties of NiFe2O4 nanoparticles on the antimicrobial activity. The NiFe2O4 nanoparticles were synthesized by gas phase condensation and chemical co-precipitation route. These nanoparticles were extensively investigated using X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electro-kinetic property measurements. The HRTEM was used to analyze surface morphology of nickel ferrite nanoparticles obtained by two different routes. Electro-kinetic properties of the nanoparticles under investigation were recorded, analyzed and correlated with the antimicrobial properties. It was observed that nickel ferrite nanoparticles synthesized by thermal plasma route (NFOTP) formed highly stable colloidal solution as compared to chemically synthesized (NFOCP), as the later tends to agglomerate due to low surface charge. The antimicrobial activity of NiFe2O4 nanoparticles were investigated on two Gram positive bacteria Staphylococcus aureus and Streptococcus pyogenes, two Gram negative bacteria Escherichia coli and Salmonella typhimurium and one fungal species Candida albicans. It was noted that the surface properties of NiFe2O4 particles have revealing effect on the antimicrobial activity. The NFOTP nanoparticles showed significant activity for gram negative E. coli bacteria however no activity was observed for other bacteria's and fungi under study. Moreover NFOCP particles did not show any significant activity for both bacteria's and fungi. Further, antimicrobial activity of nickel ferrite nanoparticles were studied even for different concentration to obtain the minimum inhibition concentration (MIC).

  8. Complexing in (NH4)2SeO4-UO2SeO4 H2O system

    International Nuclear Information System (INIS)

    Serezhkina, L.B.

    1994-01-01

    Isotherm of solubility in the (NH 4 ) 2 SeO 4 -UO 2 SeO 4 -H 2 O system has been constructed at 25 deg C. (NH 4 ) 2 (UO 2 ) 2 (SeO 4 ) 3 x6H 2 O formation is established for the first time and certain its physicochemical properties are determined. Regularities of complexing in the R 2 Se) 4 -UO 2 SeO 4 -H 2 O systems, where R-univalent cation are under discussion. 6 refs.; 3 tabs

  9. Bismuth Ferrite for Active Control of Surface Plasmon Polariton Modes

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose and investigate several layouts of m etal-insulator-metal waveguide with active core which can be utilized for dynamic switching in photonic integrated circuits. The active material, bismuth ferrite (BiFeO3), is sandwiched between metal plates and changes i ts refractive index through...

  10. Ferrites and ceramic composites

    CERN Document Server

    Jotania, Rajshree B

    2013-01-01

    The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component. Ferrites are very attractive materials because they simultaneously show high resistivity and high saturation magnetization, and attract now considerable attention, because of the interesting physics involved. Typical ferrite material possesses excellent chemical stability, high corrosion resistivity, magneto-crystalline anisotropy, magneto-striction, and magneto-optical properties. Ferrites belong to the group of ferrimagnetic oxides, and include rare-earth garnets and ortho-ferrites. Several

  11. The mechanism of nickel ferrite formation by glow discharge effect

    Science.gov (United States)

    Frolova, L. A.

    2018-04-01

    The influence of various factors on the formation of nickel ferrite by the glow discharge effect has been studied. The ferritization process in the system FeSO4-NiSO4-NaOH-H2O has been studied by the methods of potentiometric titration, measurement of electrical conductivity, residual concentrations and apparent sediment volume. It has been established that the process proceeds in a multistage fashion at pH 11-12 with the formation of polyhydroxo complexes, an intermediate compound and the ferrite formation by its oxidation with active radicals.

  12. REMOVAL OF ORGANIC DYES FROM CONTAMINATED WATER USING COFE2O4 /REDUCED GRAPHENE OXIDE NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    F. Sakhaei

    2016-12-01

    Full Text Available Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thick layer features, has attracted much attention recently due to its high specific surface area. Reduced graphene oxide (rGO has also been of great interest because of its unique properties, which are similar to those of graphene, such as specific surface area, making it an ideal candidate for dye removal. Thus far, few works have been carried out on the preparation of CoFe2O4-rGO composite and its applications in removal of contaminants from water. In this paper, CoFe2O4 reduced graphene oxide nanocomposite was fabricated using hydrothermal process. During the hydrothermal process, the reduction of graphene oxide and growth of CoFe2O4 simultaneously occurred on the carbon basal planes under the conditions generated in the hydrothermal system. The samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy contaminant and UV-Vis spectroscopy as the analytical method. The experimental results suggest that this material has great potential for treating Congo red contaminated water.

  13. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    Science.gov (United States)

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  14. One-pot production of copper ferrite nanoparticles using a chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Naoki, E-mail: nnishida@rs.tus.ac.jp; Amagasa, Shota [Tokyo University of Science, Department of Chemistry (Japan); Kobayashi, Yoshio [The University of Electro-Communications, Department of Engineering Science (Japan); Yamada, Yasuhiro [Tokyo University of Science, Department of Chemistry (Japan)

    2016-12-15

    Copper ferrite nanoparticles were synthesized via the oxidation of precipitates obtained from the reaction of FeCl{sub 2}, CuSO{sub 4} and N{sub 2}H{sub 4} in the presence of gelatin. These copper ferrite particles were subsequently examined using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Mössbauer spectroscopy. The average size of the copper ferrite nanoparticles was less than 5 nm, and they exhibited superparamagnetic behavior as a result of their small size. The low temperature Mössbauer spectrum exhibited three sets of sextets, two corresponding to the tetrahedral and octahedral sites of the copper spinel structure and one with small hyperfine magnetic field corresponding to the surface or defects of the nanoparticles. When the ratio of copper salt was increased, the tetrahedral site became preferable for copper, and metallic copper and copper ferrite were both present in a single nanoparticle.

  15. Investigation of structural and magnetic properties of Zr-Co doped nickel ferrite nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Rajjab [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Manzoor, Alina [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Department of Physics, Government College University, Faisalabad 38000 (Pakistan); Shahid, Muhammad [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Haider, Sajjad [Chemical Engineering Department, College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia); Malik, Abdul Sattar [Department of Electrical Engineering, University College of Engineering and Technology, Bahauddin Zakariya University, Multan 60800 Pakistan (Pakistan); Sher, Muhammad [Department of Chemistry, University of Sargodha, Sargodha 40100 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); FarooqWarsi, Muhammad, E-mail: farooq.warsi@iub.edu.pk [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2017-05-01

    Nano-sized Zr-Co doped nickel ferrites with nominal composition, NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} (x=0.0, 0.2, 0.4, 0.6, 0.8) were synthesized using the micro-emulsion route. The structural elucidation of the synthesized materials was carried out by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The XRD analysis confirmed face centered cubic (FCC) structure of all compositions of NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nanocrystallites. Crystallite size was calculated by Scherrer's formula found in the range 10–15 nm. The variation in lattice parameter as determined by XRD data agreed with size variation of host (Fe{sup 3+}) and guest (Zr{sup 4+} and Co{sup 2+}) cations. FTIR spectra of doped NiFe{sub 2}O{sub 4} exhibited the typical octahedral bands at 528.4 cm{sup −1} which is the characteristic feature of spinel structure of spinel ferrites. The characterized spinel NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nano-ferrites were evaluated for their potential applications by magnetic hysteresis loops and dielectric measurements. The value of saturation magnetization (M{sub s}) decreased from 47.9 to 13.09 emu/g up to x=0.8 with ups and downs fluctuations in between x=0.0 to x=0.8. The high values of Ms of some compositions predicted the potential applications in high density perpendicular recording media and microwave devices. The frequency dependent behavior of permittivity (ε') is recorded and discussed with the help of hopping mechanism of both holes and electrons. The dielectric and magnetic data of NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nano-ferrites suggested the potential applications of these ferrite nanoparticles in high frequency and magnetic data storage devices fabrication. - Graphical abstract: Zr-Co doped nickel nano-ferrites were prepared via micro-emulsion method. The crystallite size calculated by scherrer's formula lie in the range 10–15 nm. The saturation magnetization decreases from 47

  16. Development of Ferrite-Coated Soft Magnetic Composites: Correlation of Microstructure to Magnetic Properties

    Science.gov (United States)

    Sunday, Katie Jo

    Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and boast high melting temperatures, thus providing adequate electrical barriers between metallic particles. These insulating layers are necessary for reducing eddy current losses by increasing resistivity in order to improve the overall magnetic efficiency and subsequent frequency range. The goals of this work are to correlate ferrite-coated Fe powder composites microstructure for the coating and core powder to magnetic properties such as permeability, coercivity, and core loss. We first explore the relevant concepts of SMC materials from their composition to processing steps to pertinent properties. This thesis employs a suite of characterization techniques for powder and composite properties. We use X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to provide a complete understanding of the effect of processing conditions on ferrite-coated Fe-based SMCs. Magnetic, mechanical, and electrical properties are then analyzed to correlate microstructural features and determine their effect on such properties. In the second part of this thesis, we present a proof of concept study on Al2O3- and Al2O3- Fe3O4-coated Fe powder composites, illustrating magnetization is highly dependent on ferromagnetic volume. We then expand on previous work to compare an ideal, crystalline state using Fe3O 4-Fe thin film heterostructures to a highly strained state using bulk powder studies. Fe3O4-coated Fe composites are produced via mechanical

  17. Synthesis and characterization of magnetic diphase ZnFe2O4/γ-Fe2O3 electrospun fibers

    International Nuclear Information System (INIS)

    Arias, M.; Pantojas, V.M.; Perales, O.; Otano, W.

    2011-01-01

    Magnetic nanofibers of ZnFe 2 O 4 /γ-Fe 2 O 3 composite were synthesized by electrospinning from a sol-gel solution containing a molar ratio (Fe/Zn) of 3. The effects of the calcination temperature on phase composition, particle size and magnetic properties have been investigated. Zinc ferrite fibers were obtained by calcinating the electrospun fibers in air from 300 to 800 deg. C and characterized by thermogravimetric analyses, Fourier transformed infrared spectroscopy, X-ray photoemission spectroscopy, X-ray diffraction, vibration sample magnetometry and magnetic force microscopy. The resulting fibers, with diameters ranging from 90 to 150 nm, were ferrimagnetic with high saturation magnetization as compared to bulk. An increase in the calcination temperature resulted in an increase in particle size and saturation magnetization. The observed increase in saturation magnetization was most likely due to the formation and growth of ZnFe 2 O 4 /γ-Fe 2 O 3 diphase crystals. The highest saturation magnetization (45 emu/g) was obtained for fibers calcined at 800 deg. C. - Research highlights: → Nanofibers were produced by electrospinning from a sol-gel. → ZnFe 2 O 4 /γ-Fe 2 O 3 formed after cacination in air from 300 to 800 deg. C. → Fibers were ferrimagnetic with high saturation magnetization. → Crystallite particle size and saturation magnetization increase with temperature. → Magnetic domains with sizes similar to topographical grains were observed.

  18. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    Science.gov (United States)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  19. Moessbauer spectroscopy study of the synthesis of SnFe2O4 by high energy ball milling (HEBM) of SnO and α-Fe2O3

    International Nuclear Information System (INIS)

    Uwakweh, Oswald N C; Perez Moyet, Richard; Mas, Rita; Morales, Carolyn; Vargas, Pedro; Silva, Josue; Rossa, Angel; Lopez, Neshma

    2010-01-01

    The formation of single phase nanoparticles of spinel structured ferrite, SnFe 2 O 4 , by mechanochemical syntheses using HEBM of stoichiometric amounts of solid SnO and α-Fe 2 O 3 with acetone as surfactant was achieved progressively as function of ball milling time. Single phase SnFe 2 O 4 formation commenced from five hours of continuous ball milling, and reached completion after 22 hours, thereby yielding a material with a lattice parameter of 8.543 A, and particle size of 10.91 nm. The coercivity was 4.44 mT, magnetic saturation value of 17.75 Am 2 /kg, and remanent magnetizations of 1.50 Am 2 /kg, correspondingly. The nanosized particles exhibited superparamagnetic behavior phenomenon based on Moessbauer spectroscopy measurements. The kinetic analyses based on the modified Kissinger method yielded four characteristic stages during the thermal evolution of the 22 hours milled state with activation energies of 0.23 kJ/mol, 2.52 kJ/mol, 0.024 kJ/mol, and 1.57 kJ/mol respectively.

  20. Modified voltammetric, impedimetric and optical behavior of polymer- assisted sol-gel MgFe2O4 nanostructured thin films

    International Nuclear Information System (INIS)

    Bazhan, Z.; Ghodsi, F.E.; Mazloom, J.

    2017-01-01

    Highlights: •Electrochemical properties of spinel PEG/PVP MgFe 2 O 4 thin films prepared by spin coating technique have been investigated. •PSD analysis indicated that spectral roughness of films decreased by polymer incorporation. •Optical calculations exhibited a blue shift on optical band gap by polymer addition. •CV curves revealed that ion storage capacitance of PEG/MgFe 2 O 4 is two times higher than MgFe 2 O 4 thin films. •EIS analysis confirmed that incorporation of appropriate amount of PEG reduced the charge transfer resistance. -- Abstract: The effect of polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) on physical properties of sol-gel prepared magnesium ferrite (MF) thin films was investigated. The X-ray diffraction (XRD) results showed the formation of cubic spinel magnesium ferrite for all samples. The surface morphology of films changed and average surface roughness decreased by polymer addition. The height-height correlation function and fractal dimension were evaluated using cube counting and triangulation methods from atomic force microscopy (AFM) images. The refractive index and extinction coefficient of MF thin films decreased by adding polymer while the band gap value increased from 2.24 to 2.72 eV. The PEG addition enhanced the electrochemical performance while PVP addition didn’t have significant effect on cyclic voltammetry (CV) of magnesium ferrite thin films. The sample with highest value of PEG showed the maximum specific capacitance (68.5 mF cm −2 ) and the smallest charge transfer resistance (565 Ω) among all samples.

  1. Long afterglow properties of Eu2+/Mn2+ doped Zn2GeO4

    International Nuclear Information System (INIS)

    Wan, Minhua; Wang, Yinhai; Wang, Xiansheng; Zhao, Hui; Li, Hailing; Wang, Cheng

    2014-01-01

    Zn 2 GeO 4 :Eu 2+ 0.01 and Zn 2 GeO 4 :Mn 2+ 0.01 long afterglow phosphors were synthesized via a high temperature solid state reaction. X-ray diffraction (XRD), afterglow spectra, decay curves and thermoluminescence curves were utilized to characterize the samples. The X-ray diffraction phases indicate that the doping of small amount of transition metal ions or rare earth ions has no significant influence on the crystal structure of Zn 2 GeO 4 . According to the afterglow spectra, we found that the Zn 2 GeO 4 :Eu 2+ 0.01 exhibits a broad band emission with a peak at 474 nm, which could be ascribed to Eu 2+ transition between 4f 6 5d 1 and 4f 7 electron configurations. The Zn 2 GeO 4 :Mn 2+ 0.01 shows a narrow band emission peaking at 532 nm corresponding to the characteristic transition of Mn 2+ ( 4 T 1 → 6 A 1 ). The thermoluminescence (TL) curves above room temperature are employed for the discussion of the origin of the traps and the mechanism of the persistent luminescence. The results indicate that Zn 2 GeO 4 may be an excellent host material for the rare earth ions or transition metal ions long afterglows. -- Highlights: • Zn 2 GeO 4 :Eu 2+ 0.01 and Zn 2 GeO 4 :Mn 2+ 0.01 long afterglow phosphors were synthesized. • Found that these phosphors possess a persistent luminescence property. • The long afterglow spectra were measured. • Found that these phosphors possess a trap level by thermoluminescence

  2. Tunable Twin Matching Frequency (fm1/fm2) Behavior of Ni1−xZnxFe2O4/NBR Composites over 2–12.4 GHz: A Strategic Material System for Stealth Applications

    Science.gov (United States)

    Saini, Lokesh; Patra, Manoj Kumar; Jani, Raj Kumar; Gupta, Goutam Kumar; Dixit, Ambesh; Vadera, Sampat Raj

    2017-01-01

    The gel to carbonate precipitate route has been used for the synthesis of Ni1−xZnxFe2O4 (x = 0, 0.25, 0.5 and 0.75) bulk inverse spinel ferrite powder samples. The optimal zinc (50%) substitution has shown the maximum saturation magnetic moment and resulted into the maximum magnetic loss tangent (tanδm) > −1.2 over the entire 2–10 GHz frequency range with an optimum value ~−1.75 at 6 GHz. Ni0.5Zn0.5Fe2O4- Acrylo-Nitrile Butadiene Rubber (NBR) composite samples are prepared at different weight percentage (wt%) of ferrite loading fractions in rubber for microwave absorption evaluation. The 80 wt% loaded Ni0.5Zn0.5Fe2O4/NBR composite (FMAR80) sample has shown two reflection loss (RL) peaks at 5 and 10 GHz. Interestingly, a single peak at 10 GHz for 3.25 mm thickness, can be scaled down to 5 GHz by increasing the thickness up to 4.6 mm. The onset of such twin matching frequencies in FMAR80 composite sample is attributed to the spin resonance relaxation at ~5 GHz (fm1) and destructive interference at λm/4 matched thickness near ~10 GHz (fm2) in these composite systems. These studies suggest the potential of tuning the twin frequencies in Ni0.5Zn0.5Fe2O4/NBR composite samples for possible microwave absorption applications. PMID:28294151

  3. Hydrothermal synthesis and structural characterization of an organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en)2(H2O)]4[Cu(en)2(H2O)2][Cu2Na4(α-SbW9O33)2]·6H2O

    International Nuclear Information System (INIS)

    Liu, Yingjie; Cao, Jing; Wang, Yujie; Li, Yanzhou; Zhao, Junwei; Chen, Lijuan; Ma, Pengtao; Niu, Jingyang

    2014-01-01

    An organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en) 2 (H 2 O)] 4 [Cu(en) 2 (H 2 O) 2 ][Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ]·6H 2 O (1) has been synthesized by reaction of Sb 2 O 3 , Na 2 WO 4 ·2H 2 O, CuCl 2 ·2H 2 O with en (en=ethanediamine) under hydrothermal conditions and structurally characterized by elemental analysis, inductively coupled plasma atomic emission spectrometry, IR spectrum and single-crystal X-ray diffraction. 1 displays a centric dimeric structure formed by two equivalent trivacant Keggin [α-SbW 9 O 33 ] 9− subunits sandwiching a hexagonal (Cu 2 Na 4 ) cluster. Moreover, those related hexagonal hexa-metal cluster sandwiched tungstoantimonates have been also summarized and compared. The variable-temperature magnetic measurements of 1 exhibit the weak ferromagnetic exchange interactions within the hexagonal (Cu 2 Na 4 ) cluster mediated by the oxygen bridges. - Graphical abstract: An organic–inorganic hybrid (Cu 2 Na 4 ) sandwiched tungstoantimonate [Cu(en) 2 (H 2 O)] 4 [Cu (en) 2 (H 2 O) 2 ][Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ]·6H 2 O was synthesized and magnetic properties was investigated. Display Omitted - Highlights: • Organic–inorganic hybrid sandwich-type tungstoantimonate. • (Cu 2 Na 4 sandwiched) tungstoantimonate [Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ] 10− . • Ferromagnetic tungstoantimonate

  4. Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties

    KAUST Repository

    Zeng, Xue; Zhang, Junwei; Zhu, Shimeng; Deng, Xia; Ma, Hongbin; Zhang, Junli; Zhang, Qiang; Li, Peng; Xue, Desheng; Mellors, Nigel J; Zhang, Xixiang; Peng, Yong

    2017-01-01

    multiferroic heterostructures. Although we know that the distribution of cations (Fe3+ and Co2+) in a spinel structure governs its magnetic properties, their distribution in the so-called ideal inverse spinel structure of a ferrite, CoFe2O4, has not yet been

  5. A study of magnetoplumbite-type (M-type) cobalt-titanium-substituted barium ferrite, BaCoxTixFe12-2xO19 (x = 1-6)

    International Nuclear Information System (INIS)

    Teh, G.B.; Saravanan, N.; Jefferson, D.A.

    2007-01-01

    Cobalt(II)-titanium(IV)-substituted barium ferrite forming the chemical formula of BaCo x Ti x Fe 12-2x O 19 (x = 1-6) have been investigated using X-ray diffraction spectroscopy (XRD), Superconducting Quantum Interference Device (SQUID) and high-resolution transmission electron microscopy (HRTEM). The specimen of magnetoplumbite (M-type) Co-Ti-substituted BaFe 12 O 19 were synthesised via sol-gel method using ethylene glycol as precursor. Significant increase in line broadening of the XRD patterns were observed indicating the decrease of particle sizes due to the Co(II)-Ti(IV) substitution. BaCo 3 Ti 3 Fe 6 O 19 showed the highest coercivity but moderate saturation and remnant magnetisations. HRTEM imaging showed that Co(II)-Ti(IV) substitution in the system of BaCo x Ti x Fe 12-2x O 19 (x = 1-6) produced no drastic change in the structure of the M-type ferrites. Most of the M-types crystals examined by HRTEM displayed a long axis perpendicular to the c-axis of the M-type structure. Disordered crystals showing the intergrowth between Co-Ti-substituted barium ferrite and the spinel-structured iron oxide were detected

  6. Reduction under hydrogen of ferrite MFe{sub 2}O{sub 4} (M: Fe, Co, Ni) nanoparticles obtained by hydrolysis in polyol medium: A novel route to elaborate CoFe{sub 2}, Fe and Ni{sub 3}Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ballot, N.; Schoenstein, F.; Mercone, S.; Chauveau, T.; Brinza, O. [Laboratoire des Sciences des Procedes et des Materiaux, CNRS, LSPM - UPR 3407, Universite Paris 13, PRES Sorbonne-Paris-Cite, 99 Avenue J.-B. Clement, 93430 Villetaneuse (France); Jouini, N., E-mail: jouini@univ-paris13.fr [Laboratoire des Sciences des Procedes et des Materiaux, CNRS, LSPM - UPR 3407, Universite Paris 13, PRES Sorbonne-Paris-Cite, 99 Avenue J.-B. Clement, 93430 Villetaneuse (France)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Spinels nano-particles MFe{sub 2}O{sub 4} (M: Co, Fe or Ni) are obtained by hydrolysis in polyol medium. Black-Right-Pointing-Pointer Gentle reduction under hydrogen flow of spinel nano-particles yields metal and alloy nanoparticles. Black-Right-Pointing-Pointer TEM and X-ray analysis show that CoFe{sub 2}, Fe and Ni{sub 3}Fe nano-particles are monocrystalline particles with size less than 160 nm. Black-Right-Pointing-Pointer Iron with size of 150 nm presents ferromagnetic behavior. Black-Right-Pointing-Pointer CoFe{sub 2} alloy with size of 55 nm could be considered as a superparamagnetic material. - Abstract: A novel method to process metal and various alloy particles of nanometric size is described. The first step consists in the elaboration of MFe{sub 2}O{sub 4} (M: Fe, Ni or Co) spinel nanoparticles in polyol medium via hydrolysis and the second one in gently reducing these latter under hydrogen at 300 Degree-Sign C. X-ray diffraction analysis shows that pure Fe and CoFe{sub 2} alloy are well obtained by reducing Fe{sub 3}O{sub 4} and CoFe{sub 2}O{sub 4}, respectively. This is not the case when we try to reduce NiFe{sub 2}O{sub 4}. A mixture of Fe and Ni{sub 3}Fe is observed. TEM analysis reveals that the size of metal particles stays within the range of a few tenths of nm up to 150 nm, while the precursors (MFe{sub 2}O{sub 4}) never exceed 5 nm. Our results show that the formation of metal particles occurs via two main steps: (i) reduction of the spinel oxide nanoparticles into metal ones and (ii) aggregation of the latter, leading to larger metal nanoparticles. Magnetic measurements indicate that the as-obtained metallic materials have good magnetic properties mainly affected by the sizes of the nanoparticles and the purity of the reduced phases.

  7. Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties

    KAUST Repository

    Zeng, Xue

    2017-04-25

    Low-dimensional spinel ferrites have recently attracted increasing attention because their tunable magnetic properties make them attractive candidates as spin-filtering tunnel barriers in spintronic devices and as magnetic components in artificial multiferroic heterostructures. Although we know that the distribution of cations (Fe3+ and Co2+) in a spinel structure governs its magnetic properties, their distribution in the so-called ideal inverse spinel structure of a ferrite, CoFe2O4, has not yet been imaged with sub-ångstrom resolution. In this work, we fill this gap in evidence by reporting a direct observation of the distribution of cations in an ideal inverse spinel structure of CoFe2O4 nanofibres using aberration-corrected transmission electron microscopy (TEM). The ordering of Co2+ and Fe3+ at the octahedral sites imaged along either [001], [011] or [-112] orientation was identified as 1 : 1, in accordance with the ideal inverse spinel structure. The saturation magnetisation calculated based on the crystal structure as determined from the TEM image is in good agreement with that measured experimentally on the spinel CoFe2O4 nanofibres, further confirming results from TEM.

  8. Particle size, spin wave and surface effects on magnetic properties of MgFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Aslibeiki, B., E-mail: b.aslibeiki@tabrizu.ac.ir [Department of Physics, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Varvaro, G.; Peddis, D. [Istituto di Struttura della Materia, National Research Council, Monterotondo Scalo, Roma 00015 (Italy); Kameli, P. [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2017-01-15

    Magnesium ferrite, MgFe{sub 2}O{sub 4}, nanoparticles with a mean diameter varying from ∼6 to ∼17 nm were successfully synthesized using a simple thermal decomposition method at different annealing temperatures ranging in between 400 and 600 °C. Pure spinel ferrite nanoparticles were obtained at temperatures lower than 500 °C, while the presence of hematite (α-Fe{sub 2}O{sub 3}) impurities was observed at higher temperatures. Single-phase samples show a superparamagnetic behavior at 300 K, the saturation magnetization (M{sub s}) becoming larger with the increase of particles size. The temperature dependence of M{sub s} was explained in terms of surface spin-canting as well as spin wave excitations in the core. Using a modified Bloch law, [M{sub s}(T)=M{sub s}(0)(1−βT{sup α})], we observed a size dependent behavior of the Bloch constant β and the exponent α, whose values increase and decrease, respectively, as the particle size reduces. - Highlights: • MgFe{sub 2}O{sub 4} nanoparticles were synthesized using a thermal decomposition method. • Pure ferrite nanoparticles were obtained at temperatures lower than 500 °C. • Samples show a superparamagnetic behavior at room temperatures. • Spin wave excitations were studied using a modified Bloch law.

  9. Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Gyergyek, Saso; Makovec, Darko; Kodre, Alojz; Arcon, Iztok; Jagodic, Marko; Drofenik, Miha

    2010-01-01

    The Co-ferrite nanoparticles having a relatively uniform size distribution around 8 nm were synthesized by three different methods. A simple co-precipitation from aqueous solutions and a co-precipitation in an environment of microemulsions are low temperature methods (50 o C), whereas a thermal decomposition of organo-metallic complexes was performed at elevated temperature of 290 o C. The X-ray diffractometry (XRD) showed spinel structure, and the high-resolution transmission electron microscopy (HRTEM) a good crystallinity of all the nanoparticles. Energy-dispersive X-ray spectroscopy (EDS) showed the composition close to stoichiometric (∼CoFe 2 O 4 ) for both co-precipitated nanoparticles, whereas the nanoparticles prepared by the thermal decomposition were Co-deficient (∼Co 0.6 Fe 2.4 O 4 ). The X-ray absorption near-edge structure (XANES) analysis showed Co valence of 2+ in all the samples, Fe valence 3+ in both co-precipitated samples, but average Fe valence of 2.7+ in the sample synthesized by thermal decomposition. The variations in cation distribution within the spinel lattice were observed by structural refinement of X-ray absorption fine structure (EXAFS). Like the bulk CoFe 2 O 4 , the nanoparticles synthesized at elevated temperature using thermal decomposition displayed inverse spinel structure with the Co ions occupying predominantly octahedral lattice sites, whereas co-precipitated samples showed considerable proportion of cobalt ions occupying tetrahedral sites (nearly 1/3 for the nanoparticles synthesized by co-precipitation from aqueous solutions and almost 1/4 for the nanoparticles synthesized in microemulsions). Magnetic measurements performed at room temperature and at 10 K were in good agreement with the nanoparticles' composition and the cation distribution in their structure. The presented study clearly shows that the distribution of the cations within the spinel lattice of the ferrite nanoparticles, and consequently their magnetic

  10. Microwave-Assisted Synthesis of CuFe2O4 Nanoparticles and Starch-Based Magnetic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Gh. Nabiyouni

    2013-06-01

    Full Text Available Magnetic CuFe2O4 nanoparticles were synthesized by a facile microwave-assisted reaction between Cu(NO32 and Fe(NO33. The magnetic nanoparticles were added to starch to make magnetic polymeric nanocomposite. The nanoparticles and nanocomposites were characterized using X-ray diffraction and scanning electron microscopy. The magnetic properties of the samples were investigated using an alternating gradient force magnetometer (AGFM. The copper ferrite nanoparticles exhibited ferromagnetic behavior at room temperature, with a saturation magnetization of 29emu/g and a coercivity of 136 Oe. The distribution of the CuFe2O4 nanoparticles into the polymeric matrixes decreases the coercivity (136 Oe to 66 Oe. The maximum coercivity of 82 Oe was found for 15% of CuFe2O4 distributed to the starch matrix.

  11. Effect of trivalent transition metal ion substitution in Dy2O3 system

    International Nuclear Information System (INIS)

    Dhilip, M.; Saravana Kumar, K.; Anbarasu, V.

    2015-01-01

    One of the very promising approaches to create novel materials is to combine different physical properties in one material to achieve rich functionality. Magnetoelectric multiferroics are attracting attention for fundamental physics due to their unique coupling behaviour between ferroelectricity, ferromagnetism and ferroelasticity and also because of their promising applications for devices in spintronics, information storage, sensing and actuation. The existence of spontaneous magnetization in the perovskite like phase (layer of perovskite) has encouraged exploring the possibility of fabrication of a multiferroic material for multifunctional devices using the concept of magnetoelectric effect. The rare earth orthoferrites (LnFeO 3 where, Ln = La, Sm, Gd, Dy, Er and Yb) are a class of materials having potential for various applications. These compounds and metal ion substituted ferrites crystallising in perovskite structure show promise as catalysts gas separators, cathodes in solid oxide fuel cells, sensor materials, magneto-optic materials and as spin valves. In this present work, Fe substituted in Dysprosium Oxide compounds were prepared by standard solid state reaction at a temperature of 1300℃. The structural analysis of the prepared samples was characterized with powder X-Ray Diffraction technique and the lattice parameters were calculated with PodwerX indexing software. The structural analysis reveals that the substitution of Fe in Dy 2 O 3 system leads to change of crystalline structure from Cubic to Tetragonal. Further, decreasing trend of volume of the unit cell confirms the occupation of smaller ionic radii element Fe in the Dy site of Dy 2 O 3 system. Hence the possibilities of incorporation of trivalent transition metal ion in to the host Dy 2 O 3 site were analyzed. (author)

  12. Rapid processing of ferrite ceramics with promising magneto-dielectric characteristics

    Directory of Open Access Journals (Sweden)

    Zhuohao Xiao

    2017-12-01

    Full Text Available Ferrite ceramics, Ni0.88Zn0.07Co0.05Fe1.98O4, with the addition of 4wt.% Bi2O3 as sintering aid, were fabricated by using a simple one-step processing without involving the step of calcination. X-ray diffraction (XRD results indicated that single phase ferrite ceramics can be achieved after sintering at 1000∘C for 2h. The samples demonstrated relative densities in the range of 97–99%. Desired magneto-dielectric properties have been approached by adjusting the sintering temperature and sintering time duration. This technique is believed to be applicable to other ceramic materials.

  13. Poly(o-phenylenediamine)/NiCoFe{sub 2}O{sub 4} nanocomposites: Synthesis, characterization, magnetic and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Kannapiran, Nagarajan [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India); Muthusamy, Athianna, E-mail: muthusrkv@gmail.com [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India); Chitra, Palanisamy; Anand, Siddeswaran [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India); Jayaprakash, Rajan [Nanotechnology Laboratory, Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India)

    2017-02-01

    In this study, poly(o-phenylenediamine) (PoPD)/NiCoFe{sub 2}O{sub 4} nanocomposites were synthesized by in-situ oxidative chemical polymerization method with different amount of NiCoFe{sub 2}O{sub 4} nanoparticles. The NiCoFe{sub 2}O{sub 4} nanoparticles were prepared by auto-combustion method. The structural, morphological, thermal properties of the synthesized PoPD/NiCoFe{sub 2}O{sub 4} nanocomposites were characterized by fourier transform infrared spectrum (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). Magnetic properties of NiCoFe{sub 2}O{sub 4} nanoparticles and PoPD/NiCoFe{sub 2}O{sub 4} nanocomposites were studied by vibrating sample magnetometer (VSM). The FTIR and XRD techniques were used to confirm the formation of PoPD/NiCoFe{sub 2}O{sub 4} nanocomposites. The average crystalline size of NiCoFe{sub 2}O{sub 4} nanoparticles and PoPD/NiCoFe{sub 2}O{sub 4} nanocomposites were calculated from XRD. From the SEM analysis, spherical morphology of the PoPD was confirmed. The TGA results showed that the NiCoFe{sub 2}O{sub 4} nanoparticles have improved the thermal stability of PoPD. Dielectric properties of PoPD/NiCoFe{sub 2}O{sub 4} nanocomposites at different temperatures have been carried in the frequency range 50 Hz to 5 MHz. - Highlights: • Auto-combustion method was support to achieve less particle size. • Green synthesis of PoPD and nanocomposites by in-situ oxidative chemical polymerization method. • For the first time, PoPD incorporated with NiCoFe{sub 2}O{sub 4} nanoparticles. • Ferrite content affects the magnetic and dielectric properties of the nanocomposites.

  14. Local structural and electronic properties of V2O3 and ZnV2O4

    International Nuclear Information System (INIS)

    Pfalzer, P.

    2004-01-01

    In this thesis the electronically correlated transition metal oxide compounds V 2 O 3 and ZnV 2 O 4 , which are of basic interest for solid state physics, are investigated using X-ray absorption techniques. Measurements of the fine structure at Vanadium and Oxygen K absorption edges together with a comparison to theoretically calculated spectra show that the local properties of these materials, which under certain conditions deviate drastically from the long-range properties known so far, crucially influence the characteristic behaviour. It is shown that the two insulating phases of V 2 O 3 (the paramagnetic insulating (PI) and the antiferromagnetic insulating (AFI) phase) exhibit very similar local properties which are well distinguished from those of the paramagnetic metallic (PM) phase. In particular, a disagreement is found between the local and the long-range spatial symmetry of the PI phase. It is further shown that at the metal-insulator transition from the PM to the AFI phase structural changes preceed changes of the electronic and magnetic properties. This suggests that the metal-insulator transition is structurally driven. In ZnV 2 O 4 characteristic differences are found between the local properties of single crystalline and powdered samples. These originate either from strain in the single crystals or from anisotropy of the electronic states

  15. Effect of the delta ferrite solidification morphology of austenitic steels weld metal on the joint properties

    International Nuclear Information System (INIS)

    Bilmes, P.; Gonzalez, A.; Llorente, C.; Solari, M.

    1996-01-01

    The properties of austenitic stainless steel weld metals are largely influenced by the appearance in the microstructure of delta ferrite of a given morphology. The susceptibility to hot cracks and low temperature toughness are deeply conditioned by the mixed complex austenitic-ferritic structures which depending on the steel chemical composition and on the cooling rate may be developed. The latest research on this issue points out the importance of the sodification mode as regards to the influence in the appearance of delta ferrite of a certain morphology. In fact, it is very important to understand the solidification sequences, the primary solidification modes which are possible and the subsequent solid state transformations to correlate the structural elements of the weld metal with the parameters of the welding process on the one had, and the weld joint properties on the other. (Author) 19 refs

  16. Microstructure and toughness of ferritic weld metal of hyperbaric welded joints

    International Nuclear Information System (INIS)

    Mueller, L.

    1988-01-01

    In the present work ferritic weld metals of hyperbaric MIG/MAG welds with pressures up to 100 bar were examined. As a result of the pressure, interactions with the shielding gas, the filler metal as well as with the welding parameters had to be expected and were consequently included in the analysis. Investigation was focused on the influence of these parameters on the chemical composition of the weld metals, the microstructure and toughness behaviour, including fracture mechanics test. Using quantitative microstructural analysis as well as fractography a correlation between microstructure and toughness has been shown. (orig.) [de

  17. Pressure-induced charge ordering of LiV2O4

    International Nuclear Information System (INIS)

    Takeda, K.; Hidaka, H.; Kotegawa, H.; Kobayashi, T.C.; Shimizu, K.; Harima, H.; Fujiwara, K.; Miyoshi, K.; Takeuchi, J.; Ohishi, Y.; Adachi, T.; Takata, M.; Nishibori, E.; Sakata, M.; Watanuki, T.; Shimomura, O.

    2005-01-01

    The powder X-ray diffraction experiments of LiV 2 O 4 have been performed at low temperature and high pressure using synchrotron radiation. In the isothermal experiment at 10K, the cubic-rhombohedral phase transition corresponding to the metal-insulator transition is found at around 13GPa. This transition seems to be due to charge ordering of V ions on the analogy of the metal-insulator transition in AlV 2 O 4

  18. Structural investigation of chemically synthesized ferrite magnetic nanomaterials

    Science.gov (United States)

    Uyanga, E.; Sangaa, D.; Hirazawa, H.; Tsogbadrakh, N.; Jargalan, N.; Bobrikov, I. A.; Balagurov, A. M.

    2018-05-01

    In recent times, interest in ferrite magnetic nanomaterials has considerably grown, mainly due to their highly promising medical and biological applications. Spinel ferrite powder samples, with high heat generation abilities in AC magnetic fields, were studied for their application to the hyperthermia treatment of cancer tumors. These properties of ferrites strongly depend on their chemical composition, ion distribution between crystallographic positions, magnetic structure and method of preparation. In this study, crystal and magnetic structures of several magnetic spinels were investigated by neutron diffraction. The explanation of the mechanism triggering the heat generation ability in the magnetic materials, and the electronic and magnetic states of ferrite-spinel type structures, were theoretically defined by a first-principles method. Ferrites with the composition of CuxMg1-xFe2O4 have been investigated as a heat generating magnetic nanomaterial. Atomic fraction of copper in ferrite was varied between 0 and 100% (that is, x between 0 and 1.0 with 0.2 steps), with the copper dope limit corresponding to appear a tetragonal phase.

  19. Structure, ferroelectric ordering, and semiempirical quantum calculations of lanthanide based metal-organic framework: [Nd(C4H5O6)(C4H4O6)][3H2O

    Science.gov (United States)

    Ahmad, Bhat Zahoor; Want, Basharat

    2016-04-01

    We investigate the structure and ferroelectric behavior of a lanthanide based metal-organic framework (MOF), [Nd(C4H5O6)(C4H4O6)][3H2O]. X-ray crystal structure analyses reveal that it crystallizes in the P41212 space group with Nd centres, coordinated by nine oxygen atoms, forming a distorted capped square antiprismatic geometry. The molecules, bridged by tartrate ligands, form a 2D chiral structure. The 2D sheets are further linked into a 3D porous framework via strong hydrogen-bonding scheme (O-H…O2.113 Å). Dielectric studies reveal two anomalies at 295 K and 185 K. The former is a paraelectric-ferroelectric transition, and the later is attributed to the freezing down of the motion of the hydroxyl groups. The phase transition is of second order, and the spontaneous polarization in low temperature phase is attributed to the ordering of protons of hydroxyl groups. The dielectric nonlinearity parameters have been calculated using Landau- Devonshire phenomenological theory. In addition, the most recent semiempirical models, Sparkle/PM7, Sparkle/RM1, and Sparkle/AM1, are tested on the present system to assay the accuracy of semiempirical quantum approaches to predict the geometries of solid MOFs. Our results show that Sparkle/PM7 model is the most accurate to predict the unit cell structure and coordination polyhedron geometry. The semiempirical methods are also used to calculate different ground state molecular properties.

  20. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    O4 ( = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), has been carried out using the sol–gel auto combustion method. The ferrite samples show an interesting magnetic transition from Neel to Yafet–Kittel configuration, as the Cd2+ concentration is increased ...

  1. Variable dimensionality and framework found in a series of quaternary zinc selenites, A2Zn3(SeO3)4·xH2O (A = Na, Rb, and Cs; 0≤x≤1) and Cs2Zn2(SeO3)3·2H2O

    International Nuclear Information System (INIS)

    Lü, Minfeng; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2017-01-01

    Five new alkali metal zinc selenites, A 2 Zn 3 (SeO 3 ) 4 ·xH 2 O (A = Na, Rb, and Cs; 0≤x≤1) and Cs 2 Zn 2 (SeO 3 ) 3 ·2H 2 O have been synthesized by heating a mixture of ZnO, SeO 2 and A 2 CO 3 (A = Na, Rb, and Cs), and characterized by X-ray diffraction (XRD) and spectroscopic analyses techniques. All of the reported materials revealed a rich structural chemistry with different frameworks and connection modes of Zn 2+ . While Rb 2 Zn 3 (SeO 3 ) 4 and Cs 2 Zn 3 (SeO 3 ) 4 ·H 2 O revealed three-dimensional frameworks consisting of isolated ZnO 4 tetrahedra and SeO 3 polyhedra, Na 2 Zn 3 (SeO 3 ) 4 , Cs 2 Zn 3 (SeO 3 ) 4 , and Cs 2 Zn 2 (SeO 3 ) 3 ·2H 2 O contained two-dimensional [Zn 3 (SeO 3 ) 4 ] 2- layers. Specifically, whereas isolated ZnO 4 tetrahedra and SeO 3 polyhedra are arranged into two-dimensional [Zn 3 (SeO 3 ) 4 ] 2- layers in two cesium compounds, circular [Zn 3 O 10 ] 14- chains and SeO 3 linkers are formed in two-dimensional [Zn 3 (SeO 3 ) 4 ] 2- layers in Na 2 Zn 3 (SeO 3 ) 4 . Close structural examinations suggest that the size of alkali metal is significant in determining the framework geometry as well as connection modes of transition metal cations. - Graphical abstract: Variable dimensions and frameworks were found in a series of quaternary zinc selenites, A 2 Zn 3 (SeO 3 ) 4 (A = Na, Rb and Cs). - Highlights: • Five novel quaternary zinc selenites are synthesized. • All the selenites with different structures contain polarizable d 10 and lone pair cations. • The size of alkali metal cations is significant in determining the framework geometry.

  2. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, A., E-mail: debnathanimesh@gmail.com [Department of Civil Engineering, National Institute of Technology Agartala, Jirania, West Tripura, 799046 India (India); Bera, A.; Saha, B. [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Chattopadhyay, K. K. [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-05-23

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl{sub 3}) and Calcium chloride dihydrate (CaCl{sub 2}.2H{sub 2}O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  3. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    International Nuclear Information System (INIS)

    Debnath, A.; Bera, A.; Saha, B.; Chattopadhyay, K. K.

    2016-01-01

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl_3) and Calcium chloride dihydrate (CaCl_2.2H_2O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  4. Synthesis, structural, optical, electrical and Mössbauer spectroscopic studies of Co substituted Li{sub 0.5}Fe{sub 2.5}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Parul [School of Physics & Materials Science, Shoolini University, Solan, HP (India); Thakur, Preeti, E-mail: preetithakur@shooliniuniversity.com [School of Physics & Materials Science, Shoolini University, Solan, HP (India); Mattei, Jean Luc; Queffelec, Patrick [Laboratoire des Sciences et Techniques, de l’Information, de la Communication et de la Connaissance, UMR CNRS 6285, 6 av. Le Gorgeu, CS 93837, 29238 BREST CEDEX 3 (France); Thakur, Atul [School of Physics & Materials Science, Shoolini University, Solan, HP (India); Nanotechnology Wing, Innovative Science Research Society, Shimla 171001 (India)

    2016-06-01

    A series of cobalt substituted lithium ferrite Li{sub 0.5}Co{sub x}Fe{sub 2.5−x}O{sub 4} with x=0, 0.2, 0.4 was prepared by a chemical technique called citrate precursor method. In this technique citric acid was used as a reducing agent. Structural, morphological, topographical, optical, electrical, and magnetic properties were studied by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, DC resistivity, Mössbauer Spectroscopy. XRD patterns showed characteristic (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), (4 4 0) peaks which confirmed the inverse spinel phase. SEM and TEM support the formation of cubic nanoparticles. FTIR studies reported the ferrite peaks between 400 cm{sup −1} and 800 cm{sup −1} confirming the inverse spinel structure. Five optical Raman modes (A{sub 1g}+E{sub g}+3F{sub 2g}), characteristics of the cubic spinel structure with (P4{sub 3}32) space group are also observed. Electrical DC resistivity studied from room temperature to 300 °C showed the semiconducting behavior of lithium ferrite. Porosity, transition temperature and activation energy are found to decrease with cobalt ion concentration. The room temperature Mössbauer spectra of all the samples showed normal Zeeman Splitting sextets supporting the formation of ferromagnetic phase. With increase in cobalt content, the value of hyperfine field at A site is found to vary from 53.15 to 54.96 T whereas at B site it vary from 54.79 to 52.82 T. The obtained results have been explained based on possible mechanisms, models and theories. - Highlights: • XRD studies confirmed the spinel structure. • In FTIR studies, two frequency metal oxide bands are observed. • Raman spectra confirmed the symmetric and anti-symmetric band position. • Mössbauer spectroscopy reveals the two magnetic sextets.

  5. Studies of Mn0.5Cr0.5Fe2O4 ferrite by neutron diffraction at different temperatures in the range 768K ≥ T ≥ 13K

    International Nuclear Information System (INIS)

    Zakaria, A.K.M.; Ahmed, F.U.; Azad, A.K.; Yunus, S.M.; Asgar, M.A.; Paranjpe, S.K.; Das, A.

    2002-01-01

    Neutron diffraction studies of a polycrystalline manganese-chromium- ferrite with composition Mn 0.5 Cr 0.5 Fe 2 O 4 have been performed at a number of temperatures in the range 768K ≥ T ≥ 13K. The cation distributions, oxygen position parameter (u) and lattice constant (a o ) have been determined from the analysis of the higher angle neutron diffraction data. The temperature response of the lattice constant has also been investigated and a slight anomalous expansion has been found around the magnetic transition temperature. Sublattice as well as net ferrimagnetic moments of the specimen have been found out from the analysis of the neutron diffraction data at different temperatures. A randomly canted ordering of spins has been observed in the B sublattice, while the A sublattice moments appear to exhibit collinear Neel type ordering at all temperatures. (author)

  6. Structure, ferroelectric ordering, and semiempirical quantum calculations of lanthanide based metal-organic framework: [Nd(C4H5O6)(C4H4O6)][3H2O

    International Nuclear Information System (INIS)

    Ahmad, Bhat Zahoor; Want, Basharat

    2016-01-01

    We investigate the structure and ferroelectric behavior of a lanthanide based metal-organic framework (MOF), [Nd(C 4 H 5 O 6 )(C 4 H 4 O 6 )][3H 2 O]. X-ray crystal structure analyses reveal that it crystallizes in the P4 1 2 1 2 space group with Nd centres, coordinated by nine oxygen atoms, forming a distorted capped square antiprismatic geometry. The molecules, bridged by tartrate ligands, form a 2D chiral structure. The 2D sheets are further linked into a 3D porous framework via strong hydrogen-bonding scheme (O-H…O ≈ 2.113 Å). Dielectric studies reveal two anomalies at 295 K and 185 K. The former is a paraelectric-ferroelectric transition, and the later is attributed to the freezing down of the motion of the hydroxyl groups. The phase transition is of second order, and the spontaneous polarization in low temperature phase is attributed to the ordering of protons of hydroxyl groups. The dielectric nonlinearity parameters have been calculated using Landau– Devonshire phenomenological theory. In addition, the most recent semiempirical models, Sparkle/PM7, Sparkle/RM1, and Sparkle/AM1, are tested on the present system to assay the accuracy of semiempirical quantum approaches to predict the geometries of solid MOFs. Our results show that Sparkle/PM7 model is the most accurate to predict the unit cell structure and coordination polyhedron geometry. The semiempirical methods are also used to calculate different ground state molecular properties.

  7. The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, B., E-mail: mazumderb@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Parish, C.M.; Bei, H. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Miller, M.K. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-10-15

    Nanostructured ferritic alloys have outstanding high temperature creep properties and enhanced tolerance to radiation damage over conventional ferritic alloys. To achieve these properties, NFAs are fabricated by mechanical alloying of metallic and yttria powders. Atom probe tomography has demonstrated that milling times of at least 40 h are required to produce a uniform distribution of solutes in the flakes. After milling and hot extrusion, the microstructure consists of α-Fe, high number densities of Ti–Y–O-vacancy-enriched nanoclusters, and coarse Y{sub 2}Ti{sub 2}O{sub 7} and Ti(O,C,N) precipitates on the grain boundaries. In contrast, the as-cast condition consists of α-Fe with 50–100 μm irregularly-shaped Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore precipitates with smaller embedded precipitates with the Y{sub 3}Al{sub 5}O{sub 12} (yttrium–aluminum garnet) crystal structure indicating that this traditional processing route is not a viable approach to achieve the desired microstructure. The nano-hardnesses were also substantially different, i.e., 4 and 8 GPa for the as-cast and as-extruded conditions, respectively. These variances can be explained by the microstructural differences and the effects of the high vacancy content introduced by mechanical alloying, and the strong binding energy of vacancies with O, Ti, and Y atoms that retard diffusion. - Highlights: • Mechanical alloying produces nanostructured ferritic alloy with excellent properties. • Short milling time wastes solutes in low number densities of coarse precipitates. • Milling for 40 h yields UFG alloy with optimum distribution of ultrafine precipitates. • Longer milling times increase cost and increases impurities from attritor mill. • Casting produces undesirable course grain microstructure of α-Fe, YAG and pyrochlore.

  8. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3 O 4 and SrFe 12 O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic

  9. Variable dimensionality and framework found in a series of quaternary zinc selenites, A2Zn3(SeO3)4·xH2O (A = Na, Rb, and Cs; 0≤x≤1) and Cs2Zn2(SeO3)3·2H2O

    Science.gov (United States)

    Lü, Minfeng; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2017-01-01

    Five new alkali metal zinc selenites, A2Zn3(SeO3)4·xH2O (A = Na, Rb, and Cs; 0≤x≤1) and Cs2Zn2(SeO3)3·2H2O have been synthesized by heating a mixture of ZnO, SeO2 and A2CO3 (A = Na, Rb, and Cs), and characterized by X-ray diffraction (XRD) and spectroscopic analyses techniques. All of the reported materials revealed a rich structural chemistry with different frameworks and connection modes of Zn2+. While Rb2Zn3(SeO3)4 and Cs2Zn3(SeO3)4·H2O revealed three-dimensional frameworks consisting of isolated ZnO4 tetrahedra and SeO3 polyhedra, Na2Zn3(SeO3)4, Cs2Zn3(SeO3)4, and Cs2Zn2(SeO3)3·2H2O contained two-dimensional [Zn3(SeO3)4]2- layers. Specifically, whereas isolated ZnO4 tetrahedra and SeO3 polyhedra are arranged into two-dimensional [Zn3(SeO3)4]2- layers in two cesium compounds, circular [Zn3O10]14- chains and SeO3 linkers are formed in two-dimensional [Zn3(SeO3)4]2- layers in Na2Zn3(SeO3)4. Close structural examinations suggest that the size of alkali metal is significant in determining the framework geometry as well as connection modes of transition metal cations.

  10. A feasibility study on SnO2/NiFe2O4 nanocomposites as anodes for Li ion batteries

    International Nuclear Information System (INIS)

    Balaji, S.; Vasuki, R.; Mutharasu, D.

    2013-01-01

    Highlights: ► The morphological analysis performed has shown the existence of nanocomposite. ► Sp. capacity after 50 cycles of pure NiFe 2 O 4 , 5 and 10 wt.% SnO 2 are 450, 750 and 780 mA h/g. ► The results are higher than the theoretical capacity of graphite (374 mA h/g). ► The capacity retention is also found to increase with SnO 2 addition in the NiFe 2 O 4 . ► Charge and discharge capacities of LiMn 2 O 4 vs. 10 wt.% SnO 2 /NiFe 2 O 4 are 232 and 138 mA h/g. -- Abstract: The SnO 2 /NiFe 2 O 4 nanocomposite samples with varying concentration of SnO 2 such as 5 wt.% and 10 wt.% were synthesized via urea assisted combustion synthesis. The kinetics of the combustion reactions were studied using thermo gravimetry analysis and from which the compound formation temperature of all the samples were observed to be below 400 °C. From the morphological analysis the grain size of NiFe 2 O 4 , 5 wt.% SnO 2 /NiFe 2 O 4 and 10 wt.% SnO 2 /NiFe 2 O 4 samples were observed to be around 1.7, 2.3 and 3.5 μm. The chrono potentiometry analyses of the samples were performed against lithium metal electrode. The capacity retention was found to be higher for composite with 10 wt.% SnO 2 . The discharge capacity of 10 wt.% SnO 2 sample with respect to Li metal and LiMn 2 O 4 electrode was observed to be around 980 mA h/g and 138 mA h/g respectively

  11. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ahmad, Tanveer; Bae, Hongsub; Iqbal, Yousaf; Rhee, Ilsu; Hong, Sungwook; Chang, Yongmin; Lee, Jaejun; Sohn, Derac

    2015-01-01

    We report evidence for the possible application of chitosan-coated nickel-ferrite (NiFe 2 O 4 ) nanoparticles as both T 1 and T 2 contrast agents in magnetic resonance imaging (MRI). The coating of nickel-ferrite nanoparticles with chitosan was performed simultaneously with the synthesis of the nickel-ferrite nanoparticles by a chemical co-precipitation method. The coated nanoparticles were cylindrical in shape with an average length of 17 nm and an average width of 4.4 nm. The bonding of chitosan onto the ferrite nanoparticles was confirmed by Fourier transform infrared spectroscopy. The T 1 and T 2 relaxivities were 0.858±0.04 and 1.71±0.03 mM −1 s −1 , respectively. In animal experimentation, both a 25% signal enhancement in the T 1 -weighted mage and a 71% signal loss in the T 2 -weighted image were observed. This demonstrated that chitosan-coated nickel-ferrite nanoparticles are suitable as both T 1 and T 2 contrast agents in MRI. We note that the applicability of our nanoparticles as both T 1 and T 2 contrast agents is due to their cylindrical shape, which gives rise to both inner and outer sphere processes of nanoparticles. - Highlights: • Chitosan-coated nickel-ferrite (Ni-Fe 2 O 4 ) nanoparticles were synthesized in an aqueous system by chemical co-precipitation. • The characterization of bare and chitosan-coated nanoparticles were performed using various analytical tools, such as TEM, FTIR, XRD, and VMS. • We evaluated the coated particles as potential T 1 and T 2 contrast agents for MRI by measuring T 1 and T 2 relaxation times as a function of iron concentration. • Both T 1 and T 2 effects were also observed in animal experimentation

  12. Manganese ferrite prepared using reverse micelle process: Structural and magnetic properties characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd, E-mail: md.hashim09@gmail.com [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Shirsath, Sagar E. [Spin Device Technology Centre, Department of Engineering, Shinshu University, Nagano 380-8553 (Japan); Meena, S.S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mane, M.L. [Department of Physics, S.G.R.G. Shinde Mahavidyalaya, Paranda 413502, MS (India); Kumar, Shalendra [School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); Bhatt, Pramod [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur, HP (India); Prasad, N.K.; Alla, S.K. [Deptartment of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Shah, Jyoti; Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Mohammed, K.A. [Department of Mathematics & Physics Sciences, College of Arts and Sciences, University of Nizwa, Nizwa (Oman); Şentürk, Erdoğan [Department of Physics, Sakarya University, Esentepe, 54187 Sakarya (Turkey); Alimuddin [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2015-09-05

    Highlights: • Preparation of Mn{sup 3+} substituted MnFe{sub 2}O{sub 4} ferrite by Reverse microemulsion process. • Characterization by XRD, SEM, VSM, Mössbauer spectroscopy and dielectric measurements techniques. • Magnetic properties of MnFe{sub 2}O{sub 4} enhanced after Mn{sup 3+} substitution. • The dielectric constant and ac conductivity increased with Mn{sup 3+} substitution. - Abstract: Reverse microemulsion process was employed to prepare of nanocrystalline Mn{sup 3+} substituted MnFe{sub 2−x}Mn{sub x}O{sub 4} ferrites. The structural, magnetic and dielectric properties were studied for different concentrations of Mn{sup 3+}. The structural and microstructural properties were analyzed using X-ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy techniques. The phase identification of the materials was studied by Rietveld refined XRD patterns which reveals single phase with cubic symmetry for the samples. The lattice parameters were ranged in between 8.369 and 8.379 Å and do not show any significant change with the substitution of Mn{sup 3+}. The average particles size was found to be around 11 ± 3 nm. Magnetization results obtained from the vibrating sample magnetometer (VSM) confirm that the substitution of Mn{sup 3+} in MnFe{sub 2}O{sub 4} ferrite caused an increase in the saturation magnetization and coercivity. The dependence of Mössbauer parameters on Mn{sup 3+} substitution has been analyzed. Magnetic behavior of the samples were also studied at field cooled (FC) and zero field cooled (ZFC) mode. The dependence of Mössbauer parameters on Mn{sup 3+} substitution was also analyzed. All the magnetic characterization shows that Mn{sup 3+} substitution enhance the magnetic behavior of MnFe{sub 2}O{sub 4} ferrite nanoparticles.

  13. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  14. Structural, catalytic and magnetic properties of Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Briceno, Sarah, E-mail: sbriceno@ivic.gob.ve [Laboratorio de Fisica de la Materia Condensada, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Del Castillo, Hector [Laboratorio de Cinetica y Catalisis, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101-A (Venezuela, Bolivarian Republic of); Sagredo, V. [Laboratorio de Magnetismo, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101-A (Venezuela, Bolivarian Republic of); Bramer-Escamilla, Werner; Silva, Pedro [Laboratorio de Fisica de la Materia Condensada, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4} ferrite synthesized by sol-gel auto-combustion method. Black-Right-Pointing-Pointer Structural identification, magnetic and catalytic properties were investigated. Black-Right-Pointing-Pointer Characterization by TGA, DTA, XRD, SEM, TEM and VSM techniques. Black-Right-Pointing-Pointer Magnetic properties decrease with the increase of Cu{sup 2+} doping. Black-Right-Pointing-Pointer The selective conversion to N{sub 2} is higher for Cu-Co mixed ferrites. - Abstract: Copper substituted cobalt ferrite Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4} (0 {<=}x {<=} 1) have been synthesized using sol-gel auto combustion method with citric acid as fuel. Structural identification, magnetic and catalytic properties were investigated using thermogravimetric and differential thermal analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry and their application in the selective catalytic reduction of NOx were studied. Analysis of structural properties reveals that all samples have cubic spinel structure. Room temperature magnetic hysteresis measurements as a function of magnetic field infer that the magnetic properties decrease with Cu{sup 2+} doping which may be due to the difference of the magnetic moment of Cu{sup 2+} and Co{sup 2+} ions. The higher activity of the samples in NO selective reduction to N{sub 2} occurs at 350 Degree-Sign C, reaching a maximum of 38% NO conversion and 95% of selective conversion to N{sub 2}. The compositions containing both Cu{sup 2+} and Co{sup 2+} ions are more active to the products selectivity to N{sub 2}, suggesting a synergistic effect on the active surface of ferrite and the effect of Co{sup 2+} is more pronounced than Cu{sup 2+} towards NO conversion.

  15. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hyun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Lee, Se-Ho [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Shim, In-Bo [Department of Electronic Physics, Kookmin University, Seoul 136-702 (Korea, Republic of); Lee, Yong-Keun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of) and Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of)]. E-mail: leeyk@yumc.yonsei.ac.kr

    2005-05-15

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe{sub 3}O{sub 4} and SrFe{sub 12}O{sub 19} ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.

  16. Determination of milling parameters to obtain mechanosynthesized ZnFe2O4

    International Nuclear Information System (INIS)

    Jean, Malick; Nachbaur, Virginie

    2008-01-01

    In this work, the mechanosynthesis of zinc ferrite in WC vials is studied. Millings are performed under air, with a planetary ball-milling, starting from elemental oxides α-Fe 2 O 3 and ZnO. As-milled powders are structurally and magnetically characterized by X-ray diffraction and Moessbauer spectroscopy. Milling parameters as rotational speeds of main disc and vials are particularly discussed in terms of influence on the obtaining of a pure zinc ferrite phase. These parameters have a strong influence on injected power, on radial and tangential components of the impact force. Friction phenomenon, associated with injected power, have been found to be the governing parameters of the end product

  17. Characteristics and Modification of Non-metallic Inclusions in Titanium-Stabilized AISI 409 Ferritic Stainless Steel

    Science.gov (United States)

    Kruger, Dirk; Garbers-Craig, Andrie

    2017-06-01

    This study describes an investigation into the improvement of castability, final surface quality and formability of titanium-stabilized AISI 409 ferritic stainless steel on an industrial scale. Non-metallic inclusions found in this industrially produced stainless steel were first characterized using SEM-EDS analyses through the INCA-Steel software platform. Inclusions were found to consist of a MgO·Al2O3 spinel core, which acted as heterogeneous nucleation site for titanium solubility products. Plant-scale experiments were conducted to either prevent the formation of spinel, or to modify it by calcium treatment. Modification to spherical dual-phase spinel-liquid matrix inclusions was achieved with calcium addition, which eliminated submerged entry nozzle clogging for this grade. Complete modification to homogeneous liquid calcium aluminates was achieved at high levels of dissolved aluminum. A mechanism was suggested to explain the extent of modification achieved.

  18. Evaluation of structural, morphological and magnetic properties of CuZnNi (Cu{sub x}Zn{sub 0.5−x}Ni{sub 0.5}Fe{sub 2}O{sub 4}) nanocrystalline ferrites for core, switching and MLCI’s applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Majid Niaz, E-mail: majidniazakhtar@ciitlahore.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan (Pakistan); Ahmad, Mukhtar [Department of Physics, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Nazir, M.S. [Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Imran, M.; Ali, A.; Sattar, A. [Department of Physics, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Murtaza, G. [Centre for Advanced Studies in Physics, G.C. University, Lahore (Pakistan)

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni–Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni–Zn nanoferrites. The nanocrystalline ferrites of Cu substituted Cu{sub x}Zn{sub 0.5−x}Ni{sub 0.5}Fe{sub 2}O{sub 4} ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni–Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu–Zn–Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35–46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M–H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni–Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni–Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI’s due to variety of the soft magnetic characteristics. - Highlights

  19. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Ramana, C.V.

    2015-01-01

    Graphical abstract: Room temperature Raman spectra of CoFe 2−x Gd x O 4 (CFGO, x = 0.0–0.3) compounds as a function of wavenumber (cm −1 ). - Highlights: • Gd substituted ferrites were synthesized under controlled concentration. • Gd ion induced lattice dynamical changes are significant. • Enhanced magnetization is observed upon Gd-incorporation in cobalt ferrite. • A correlation between lattice dynamics and magnetic properties is established. - Abstract: Polycrystalline gadolinium (Gd) substituted cobalt ferrites (CoFe 2−x Gd x O 4 ; x = 0–0.3, referred to CFGO) ceramics have been synthesized by solid state reaction method. Chemical bonding, crystal structure and magnetic properties of CFGO compounds have been evaluated as a function of Gd-content. X-ray diffraction (XRD) and Raman spectroscopic analyses confirmed the formation of inverse spinel cubic structure. However, a secondary ortho-ferrite phase (GdFeO 3 ) nucleates for higher values of Gd-content. A considerable increase in the saturation magnetization has been observed upon the initial substitution of Gd (x = 0.1). The saturation magnetization drastically decreases at higher Gd content (x ⩾ 0.3). No contribution from ortho-ferrite GdFeO 3 phase is noted to the magnetic properties. The increase in the magnetic saturation magnetization is attributed to the higher magnetic moment of Gd 3+ (4f 7 ) residing in octahedral sites is higher when compared to that of Fe 3+ (3d 5 ) and as well due to the migration of Co 2+ (3d 7 ) ions from the octahedral to the tetrahedral sites with a magnetic moment aligned anti-parallel to those of rare earth (RE 3+ ) ions in the spinel lattice. Increase in coercivity with increase in Gd 3+ is content is attributed to magnetic anisotropy in the ceramics

  20. Structural and magnetic properties of cadmium substituted manganese ferrites prepared by hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Zaki, Z.I. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Advanced Materials Division, Central Metallurgical R and D Institute (CMRDI), P.O. Box: 87 Helwan, Cairo (Egypt); Heiba, Z.K. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    2013-03-15

    Cd-substituted manganese ferrite Mn{sub 1-x}Cd{sub x}Fe{sub 2}O{sub 4} powders with x having values 0.0, 0.1, 0.3 and 0.5 have been synthesized by hydrothermal route at 180 Degree-Sign C in presence of NaOH as mineralizer. The obtained ferrite samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The XRD analysis showed that pure single phases of cubic ferrites were obtained with x upto 0.3. However, sample with x{>=}0.5 showed hexagonal phase of cadmium hydroxide (Cd(OH){sub 2}) besides the ferrite phase. The increase in Cd-substitution upto x=0.3 leads to an increase in the lattice parameter as well as the average crystallite size of the prepared ferrites. The average crystallite size increased by increasing the Cd-content and was in the range of 39-57 nm. According to VSM results, the saturation magnetization increased with Cd ion substitution. - Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesized of mono dispersed Cd-substituted MnFe{sub 2}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer The change in Ms with increasing Cd-substitution was investigated Black-Right-Pointing-Pointer Pure single phases of cubic ferrites were obtained with x up to 0.3 Black-Right-Pointing-Pointer Sample with x{>=}0.5 showed hexagonal phase of Cd(OH){sub 2} beside the ferrite.

  1. XXIst Century Ferrites

    International Nuclear Information System (INIS)

    Mazaleyrat, F; Zehani, K; Pasko, A; Loyau, V; LoBue, M

    2012-01-01

    Ferrites have always been a subject of great interest from point of view of magnetic application, since the fist compass to present date. In contrast, the scientific interest for iron based magnetic oxides decreased after Oersted discovery as they where replaced by coil as magnetizing sources. Neel discovery of ferrimagnetism boosted again interest and leads to strong developments during two decades before being of less interest. Recently, the evolution of power electronics toward higher frequency, the down sizing of ceramics microstructure to nanometer scale, the increasing price of rare-earth elements and the development of magnetocaloric materials put light again on ferrites. A review on three ferrite families is given herein: harder nanostructured Ba 2+ Fe 12 O 19 magnet processed by spark plasma sintering, magnetocaloric effect associated to the spin transition reorientation of W-ferrite and low temperature spark plasma sintered Ni-Zn-Cu ferrites for high frequency power applications.

  2. The ceramic SiO2 and SiO2-TiO2 coatings on biomedical Ti6Al4VELI titanium alloy

    International Nuclear Information System (INIS)

    Surowska, B.; Walczak, M.; Bienias, J.

    2004-01-01

    The paper presents the study of intermediate SiO 2 and SiO 2 -TiO 2 sol-gel coatings and dental porcelain coatings on Ti6Al4VELI titanium alloy. Surface microstructures and wear behaviour by pin-on-disc method of the ceramic coatings were investigated. The analysis revealed: (1) a compact, homogeneous SiO 2 and SiO 2 -TiO 2 coating and (2) that intermediate coatings may provide a durable joint between metal and porcelain, and (3) that dental porcelain on SiO 2 and TiO 2 coatings shows high wear resistance. (author)

  3. High temperature dissolution of chromium substituted nickel ferrite in nitrilotriacetic acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Sathyaseelan, V.S.; Chandramohan, P.; Velmurugan, S., E-mail: svelu@igcar.gov.in

    2016-12-01

    High temperature (HT) dissolution of chromium substituted nickel ferrite was carried out with relevance to the decontamination of nuclear reactors by way of chemical dissolution of contaminated corrosion product oxides present on stainless steel coolant circuit surfaces. Chromium substituted nickel ferrites of composition, NiFe{sub (2−x)}Cr{sub x}O{sub 4} (x ≤ 1), was synthetically prepared and characterized. HT dissolution of these oxides was carried out in nitrilotriacetic acid medium at 160 °C. Dissolution was remarkably increased at 160 °C when compared to at 85 °C in a reducing decontamination formulation. Complete dissolution could be achieved for the oxides with chromium content 0 and 0.2. Increasing the chromium content brought about a marked reduction in the dissolution rate. About 40 fold decrease in rate of dissolution was observed when chromium was increased from 0 to 1. The rate of dissolution was not very significantly reduced in the presence of N{sub 2}H{sub 4}. Dissolution of oxide was found to be stoichiometric. - Highlights: • Dissolution of NiFe{sub (2−x)}Cr{sub x}O{sub 4} was remarkably increased at 160 °C in NTA medium. • The dissolution was significantly decreasing with the increase in Cr content in the oxide. • Dissolution rate is dependent on the lability of metal-oxo bonds. • The rate of dissolution was not significantly reduced in the presence of N{sub 2}H{sub 4.} • NTA at high temperature is effective for decontamination of stainless steel surfaces.

  4. A new metal-organic framework for separation of C2H2/CH4 and CO2/CH4 at room temperature

    Science.gov (United States)

    Duan, Xing; Zhou, You; Lv, Ran; Yu, Ben; Chen, Haodong; Ji, Zhenguo; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2018-04-01

    A 3D microporous metal-organic framework with open Cu2+ sites and suitable pore space, [Cu2(L)(H2O)2]·(H2O)4(DMF)8 (ZJU-15, H4L = 5,5‧-(9H-carbazole-2,7-diyl)diisophthalic acid; DMF = N,N-dimethylformamide; ZJU = Zhejiang University), has been constructed and characterized. The activated ZJU-15a has three different types of cages and exhibits BET surface area of 1660 m2 g-1, and can separate gas mixture of C2H2/CH4 and CO2/CH4 at room temperature.

  5. Development on UO3-K2O and MoO3-K2O binary systems and study of UO2MoO4-MoO3 domain within UO3-MoO3-K2O ternary system

    International Nuclear Information System (INIS)

    Dion, C.; Noel, A.

    1983-01-01

    This paper confirms the previous study on the MoO 3 -K 2 O system, and constitutes a clarity of the UO 3 -K 2 O system. Four distinct uranates VI with alkaline metal/uranium ratio's 2, 1, 0,5 and 0,285 exist. Preparation conditions and powder diffraction spectra of these compounds are given. Additional informations relative to K 2 MoO 4 allotropic transformations are provided. Study of UO 2 MoO 4 -K 2 MoO 4 diagram has brought three new phases into prominence: (B) K 6 UMo 4 O 18 incongruently melting point, (E) K 2 UMo 2 O 10 congruently melting and (F) K 2 U 3 Mo 4 O 22 incongruently melting point. Within MoO 3 -K 2 MoO 4 -UO 2 MoO 4 ternary system, no new phase is found. The general appearance of ternary liquidus and crystallization fields of several compounds are given. These three new compounds become identified with these of UO 2 MoO 4 -Na 2 MoO 4 binary system [fr

  6. Synthesis, optical, and photocatalytic properties of a new visible-light-active ZnFe{sub 2}O{sub 4}-TiO{sub 2} nanocomposite material

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, E. [University of Lisbon, Department of Chemistry and Biochemistry, Faculty of Sciences (Portugal); Fraga, L. A. [Universidade da Coruna, Facultade de Ciencias (Spain); Mendonca, M. H.; Monteiro, O. C., E-mail: ocmonteiro@fc.ul.pt [University of Lisbon, Department of Chemistry and Biochemistry, Faculty of Sciences (Portugal)

    2012-06-15

    The synthesis of new ZnFe{sub 2}O{sub 4}-TiO{sub 2} crystalline nanocomposites with enhanced visible-light catalytic performance is reported. Zinc ferrite powders were prepared by a wet method through oxalate precursor at 400 Masculine-Ordinal-Indicator C during 12 h and the nanocomposite materials were obtained through TiO{sub 2} incorporation before (ZnFe{sub 2}O{sub 4}/TiO{sub 2}) and after (TiO{sub 2}/ZnFe{sub 2}O{sub 4}) the ZnFe{sub 2}O{sub 4} synthesis. The influence of the nanocomposite design in the structural, morphological, and optical properties of the composite oxide materials was studied, by XRD, SEM/TEM, BET measurements, and DRS. New and improved optical features were observed in the ZnFe{sub 2}O{sub 4}-TiO{sub 2} absorption spectra comparatively with the TiO{sub 2} and ZnFe{sub 2}O{sub 4} ones. These results are discussed based on the interface effect and a proposal for the photogenerated electron transitions in the ZnFe{sub 2}O{sub 4}-TiO{sub 2} is presented. The photocatalytic performance of the prepared samples was evaluated for the methyl orange (MO) degradation process. From all the tested materials, the TiO{sub 2}/ZnFe{sub 2}O{sub 4} was the one with the best photocatalytic activity, even superior to the nanocrystalline TiO{sub 2} one. 100 % reduction of the MO concentration was achieved after 10 min of UV-Vis irradiation on a 10 ppm dye aqueous solution with 0.43 g L{sup -1} of TiO{sub 2}/ZnFe{sub 2}O{sub 4} catalyst. By performing visible-light experiments, it was possible to discuss the influence of the visible-light absorption, charge separation, and photogenerated charge-carrier recombination in the TiO{sub 2}/ZnFe{sub 2}O{sub 4} photocatalytic performance.

  7. Study of ZrO2-H2SO4-(NH4)2SO4(NH4Cl)-H2O systems

    International Nuclear Information System (INIS)

    Motov, D.L.; Sozinova, Yu.P.; Rys'kina, M.P.

    1988-01-01

    Regions of formation, composition and solubility of ammonium sulfatozirconates (ASZ) in ZrO 2 -H 2 SO 4 -(NH 4 ) 2 SO 4 (NH 4 Cl)-H 2 O systems at 25 and 75 deg C are studied by the isothermal method. Five ASZ: (NH 4 ) 2 Zr(OH) 2 (SO 4 ) 2 , NH 4 ZrOH(SO 4 ) 2 xH 2 O, NH 4 ZrO 0.5 (OH) 2 SO 4 x1.5H 2 O, (NH 4 ) 2 Zr(SO 4 ) 3 x2H 2 O, (NH 4 ) 4 Zr(SO 4 ) 4 x4H 2 O are detected, their properties are investigated. Main sulfates are new compounds never described ealier

  8. Structural, morphological and dielectric studies of zirconium substituted CoFe2O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Anand

    2017-12-01

    Full Text Available In this work, the influence of zirconium substitution in cubic spinel nanocrystalline CoFe2O4 on the structural, morphological and dielectric properties are reported. Zirconium substituted cobalt ferrite Co1-xZrxFe2O4 (x = 0.7 nanoparticles were synthesized by sol-gel route. The structural and morphological investigations using powder X-ray diffraction and high resolution scanning electron microscope (HRSEM analysis are reported. Scherrer plot, Williamson–Hall analysis and Size-strain plot method were used to calculate the crystallite size and lattice strain of the samples. High purity chemical composition of the sample was confirmed by energy dispersive X-ray analysis. The atoms vibration modes of as synthesized nanoparticles were recorded using Fourier transform infrared (FTIR spectrometer in the range of 4000–400 cm-1. The temperature-dependent dielectric properties of zirconium substituted cobalt ferrite nanoparticles were also carried out. Relative dielectric permittivity, loss tangent and AC conductivity were measured in the frequency range 50 Hz to 5 MHz at temperatures between 323 K and 473 K. The dielectric constant and dielectric loss values of the sample decreased with increasing in the frequency of the applied signal.

  9. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.

    Science.gov (United States)

    Li, L H; Deng, Z X; Xiao, J X; Yang, G W

    2015-01-26

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  10. LiV2O4: A heavy fermion transition metal oxide

    International Nuclear Information System (INIS)

    Shinichiro, Kondo

    1999-01-01

    The format of this dissertation is as follows. In the remainder of Chapter 1, brief introductions and reviews are given to the topics of frustration, heavy fermions and spinels including the precedent work of LiV 2 O 4 . In Chapter 2, as a general overview of this work the important publication in Physical Review Letters by the author of this dissertation and collaborators regarding the discovery of the heavy fermion behavior in LiV 2 O 4 is introduced [removed for separate processing]. The preparation methods employed by the author for nine LiV 2 O 4 and two Li 1+x Ti 2-x O 4 (x = 0 and 1/3) polycrystalline samples are introduced in Chapter 3. The subsequent structural characterization of the LiV 2 O 4 and Li 1+x Ti 2-x O 4 samples was done by the author using thermogravimetric analysis (TGA), x-ray diffraction measurements and their structural refinements by the Rietveld analysis. The results of the characterization are detailed in Chapter 3. In Chapter 4 magnetization measurements carried out by the author are detailed. In Chapter 5, after briefly discussing the resistivity measurement results including the single-crystal work by Rogers et al., for the purpose of clear characterization of LiV 2 O 4 it is of great importance to introduce in the following chapters the experiments and subsequent data analyses done by his collaborators. Heat capacity measurements (Chapter 6) were carried out and analyzed by Dr. C.A. Swenson, and modeled theoretically by Dr. D.C. Johnston. In Chapter 7 a thermal expansion study using neutron diffraction by Dr. O. Chmaissem et al. and capacitance dilatometry measurements by Dr. C.A. Swenson are introduced. The data analyses for the thermal expansion study were mainly done by Dr. O. Chmaissem (for neutron diffraction) and Dr. C.A. Swendon (for dilatometry), with assistances by Dr. J.D. Jorgensen, Dr. D.C. Johnston, and S. Kondo the author of this dissertation. Chapter 8 describes nuclear magnetic resonance (NMR) measurements and

  11. Heavy-metal extraction from sewage sludge using phosphorous-based salts: optimization process with Na2H2P2O7.

    Science.gov (United States)

    Navarro-González, Milagros; Ortega-López, Vanesa; Lópéz-Fernández, Juana I; Amo-Salas, Mariano; González-Carcedo, Salvador

    2017-09-01

    Land application is one of the important disposal alternatives for sewage sludge, but availability of potential toxic metals often restricts its uses. Three phosphorous-based salts (Na 2 H 2 P 2 O 7 , K 4 P 2 O 7 , KH 2 PO 4 ) were studied as potential metal extractants. The conclusions of the research were that greater extractive efficiency is achieved through a 30-min process of vertical shaking with disodium diacid pyrophosphate - Na 2 H 2 P 2 O 7 - at a concentration of 0.2 M at pH 2. Alternatively, the optimized process with oscillating shaking equipment would require 60 min. In both cases the average of set of extracted metals is around 50%. A second extraction process with potassium pyrophosphate - K 4 P 2 O 7 at pH 6 achieved the reduction of further total amounts of metal, upper 65% with respect to the initial content. In this way the sludge could be used in land applications, with restrictions on each soil, according to the limit values specified in the future regulations.

  12. Chlorination of UO2, PuO2, and rare-earth oxides using ZrCl4

    International Nuclear Information System (INIS)

    Sakamura, Yoshiharu; Inoue, Tadashi; Iwai, Takashi; Moriyama, Hirotake

    2001-01-01

    A new chlorination method using ZrCl 4 , which has a high reactivity with oxygen, has been investigated for more efficient oxide treatment. After actinide oxides are chlorinated and dissolved in a molten salt bath, actinide metals can be selectively collected using the electrorefining process. This process is well suited for pyrochemical reprocessing of metallic fuels. In LiCl-KCI eutectic melts, rare-earth oxides (Y 2 O 3 , La 2 O 3 , CeO 2 , and Nd 2 O 3 ) and actinide oxides (UO 2 and PuO 2 ) were chlorinated by adding ZrCl 4 . As a result, rare-earth and actinide elements were dissolved into the salt as trivalent ions and ZrO 2 was precipitated. When an excess of ZrCI 4 was added, oxides in powder form were completely chlorinated in five hours. It was demonstrated that the ZrCI 4 chlorination method, free from corrosive gas such as chlorine, was very simple and useful. (author)

  13. Electrochemical characterization of core@shell CoFe{sub 2}O{sub 4}/Au composite

    Energy Technology Data Exchange (ETDEWEB)

    Carla, Francesco [' Ugo Schiff' , Universita degli Studi di Firenze, Dipartimento di Chimica (Italy); Campo, Giulio; Sangregorio, Claudio; Caneschi, Andrea; Julian Fernandez, Cesar de; Cabrera, Lourdes I., E-mail: lourisa_cabrera@yahoo.com [Universita degli Studi di Firenze, Laboratorio di Magnetismo Molecolare, INSTM, Dipartimento di Chimica (Italy)

    2013-08-15

    In this paper, we address the synthesis and characterization of the core@shell composite magneto-plasmonic cobalt ferrite-gold (Co-ferrite/Au) nanosystem. The synthesis Co-ferrite/Au nanocomposite is not obvious, hence it was of interest to generate it in a simple straightforward method. Co-ferrite/Au nanocomposite was generated by synthesizing first by thermal decomposition Co-ferrite nanoparticles (NPs). On a second step, ionic gold (Au{sup 3+}) was reduced at the surface of Co-ferrite NPs by ultrasound, to obtain the metallic Au shell. The characterization of the nanomaterial was achieved by microscopy, spectroscopy, and performing magnetic measurements. However, what is attractive about our work is the use of electrochemical techniques as analytical tools. The key technique was cyclic voltammetry, which provided information about the nature and structure of the nanocomposite, allowing us to confirm the core@shell structure.

  14. Metal-free indoline dye sensitized solar cells based on nanocrystalline Zn{sub 2}SnO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lihua [Institute of New Energy Technology and Nano-Materials, Fuzhou University, Fuzhou, Fujian 350002 (China); Jiang, Lilong; Wei, Mingding [Institute of New Energy Technology and Nano-Materials, Fuzhou University, Fuzhou, Fujian 350002 (China); National Engineering Research Center for Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002 (China)

    2010-02-15

    Zn{sub 2}SnO{sub 4} nanocrystals were synthesized and first used as the electrode materials for the metal-free indoline dyes sensitized solar cells (DSSCs). The highest efficiency of 3.08% was achieved for a D131 DSSC. This might be attributed to the fact that the D131 dye has a greater positive oxidation potential, which can lead to rapid dye regeneration, avoiding the geminate charge recombination between oxidized dye molecules and injected electrons in the Zn{sub 2}SnO{sub 4} film. The efficiency can be improved significantly using a mixture solution of D131 and N719 dyes for which an efficiency of 3.6% was obtained. (author)

  15. Hydrothermal synthesis and characterizations of Ti substituted Mn-ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Hessien, M.M. [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Advanced materials Division-Central metallurgical R and D Institute (CMRDI), P.O. Box 87 Helwan, Cairo (Egypt); Shaltout, Abdallah A. [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Spectroscopy Department, Physics Division, National Research Center, El Behooth Str., 12622 Dokki, Cairo (Egypt)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesized of well-crystallized Ti-substituted MnFe{sub 2}O{sub 4} nanoparticles at 180 Degree-Sign C without any calcination step. The chemical composition was represented by Mn{sub 1-2x}Ti{sub x}Fe{sub 2}O{sub 4} with x having values 0.0, 0.1, 0.2, 0.3 and 0.4. Black-Right-Pointing-Pointer The change in lattice parameter and saturation magnetization with increasing Ti-substitution was investigated and explained. Black-Right-Pointing-Pointer The change in microstructure due to Ti{sup 4+} ions substitutions was investigated using TEM analysis. - Abstarct: A series of well-crystallized Mn{sub 1-2x}Ti{sub x}Fe{sub 2}O{sub 4} nanoparticles with x values of 0.0, 0.1, 0.2, 0.3 and 0.4 have been synthesized by hydrothermal route at 180 Degree-Sign C in the presence of NaOH as mineralizer. The obtained ferrite samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The XRD analysis showed that pure single phases of cubic ferrites were obtained with x up to 0.2. However, samples with x > 0.2 showed traces of unreacted anatase. The increase in Ti-substitution up to x = 0.2 leads to an increase in the lattice parameter of the prepared ferrites. On the other hand, the increase in Ti-substitution over x = 0.2 leads to a decrease in the lattice parameter. The average crystallite size was in the range of 39-57 nm, where it is increased by increasing the Ti-substitution up to x = 0.3, then decreased for x = 0.4. According to VSM results, the saturation magnetization increased with Ti ion substitution of x = 0.1 and decreased for x > 0.1.

  16. SYNTHESIS OF M–Nd DOPED Fe3O4 NANOPARTICLES (M = Co ...

    African Journals Online (AJOL)

    Preferred Customer

    nanoparticles were spherical shaped with inverse spinel structure. ... To obtain nano sized spinel ferrite particles, various preparation techniques have been ... SEM images of (a) Fe3O4, (b) Fe3O4 doped with Nd3+ and Co2+, (c) Fe3O4 doped with. Nd3+ .... Nayar, S.; Mir, A.; Ashok, A.; Sharma, A. J. Bionic Eng. 2010, 7, 29.

  17. Development of novel exchange spring magnet by employing nanocomposites of CoFe_2O_4 and CoFe_2

    International Nuclear Information System (INIS)

    Safi, Rohollah; Ghasemi, Ali; Shoja-Razavi, Reza; Tavoosi, Majid

    2016-01-01

    CoFe_2O_4−CoFe2 hard–soft nanocomposites were prepared via reduction of the cobalt ferrite CoFe_2O_4 in hydrogen atmosphere at different temperature. The structure and the room temperature magnetization of the samples were characterized by X-ray diffraction, field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). It was found that the saturation magnetization of the nanocomposite powders increases by reduction temperature while their coercivity decreases. The highest M_r/M_s ratio of 0.52 was obtained for sample reduced at 550 °C. Single smooth hysteresis loops of nanocomposites show that these nanocomposites behave as the single-phase materials. This result indicates the presence of exchange coupling between two different hard and soft phases. - Highlights: • CoFe_2O_4–CoFe_2 was successfully synthesized by reduction diffusion process. • Two phases are effectively exchange coupled in nanocomposite. • Single smooth hysteresis loop was developed in nanocomposites.

  18. Nanostructural origin of semiconductivity and large magnetoresistance in epitaxial NiCo2O4/Al2O3 thin films

    Science.gov (United States)

    Zhen, Congmian; Zhang, XiaoZhe; Wei, Wengang; Guo, Wenzhe; Pant, Ankit; Xu, Xiaoshan; Shen, Jian; Ma, Li; Hou, Denglu

    2018-04-01

    Despite low resistivity (~1 mΩ cm), metallic electrical transport has not been commonly observed in inverse spinel NiCo2O4, except in certain epitaxial thin films. Previous studies have stressed the effect of valence mixing and the degree of spinel inversion on the electrical conduction of NiCo2O4 films. In this work, we studied the effect of nanostructural disorder by comparing the NiCo2O4 epitaxial films grown on MgAl2O4 (1 1 1) and on Al2O3 (0 0 1) substrates. Although the optimal growth conditions are similar for the NiCo2O4 (1 1 1)/MgAl2O4 (1 1 1) and the NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films, they show metallic and semiconducting electrical transport, respectively. Post-growth annealing decreases the resistivity of NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films, but the annealed films are still semiconducting. While the semiconductivity and the large magnetoresistance in NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films cannot be accounted for in terms of non-optimal valence mixing and spinel inversion, the presence of anti-phase boundaries between nano-sized crystallites, generated by the structural mismatch between NiCo2O4 and Al2O3, may explain all the experimental observations in this work. These results reveal nanostructural disorder as being another key factor for controlling the electrical transport of NiCo2O4, with potentially large magnetoresistance for spintronics applications.

  19. Effect of carbon and manganese on the microstructure and mechanical properties of 9Cr2WVTa deposited metals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Rong, Lijian [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Li, Dianzhong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Lu, Shanping, E-mail: shplu@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China)

    2017-03-15

    Six 9Cr2WVTa deposited metals with different carbon and manganese contents have been studied to reveal the role of major elements, which guide for the design of welding consumables for reduced activation ferritic/martensitic steel and meet for the requirements of accelerator driven systems-lead fusion reactors. The typical microstructure for the 9Cr2WVTa deposited metals is the lath martensite along with the fine stripe δ-ferrite. The chemical compositions influence the solidification sequence and therefore, change the δ-ferrite content in the deposited metal. The impact toughness for the 9Cr2WVTa deposited metals decreases remarkably when the δ-ferrite content is more than 5.2 vol%, also the impact toughness decreases owing to the high quenching martensite formation. Increasing the level of manganese addition, α phase of each alloy shifts to the bottom right according to the CCT diagram. - Highlights: • The typical deposited metals is the lath martensite with the fine stripe δ-ferrite. • The impact toughness is dependent on the δ-ferrite and the high quenching martensite. • The chemical compositions influence the solidification sequence.

  20. Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Poorbafrani, A., E-mail: a.poorbafrani@gmail.com; Kiani, E.

    2016-10-15

    In an attempt to find a solution to the problem of the traditional spinel ferrite used as the microwave absorber, the Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were investigated. Cobalt–zinc ferrite powders, synthesized through PVA sol–gel method, were combined with differing concentrations of Paraffin wax. The nanocomposite samples were characterized employing various experimental techniques including X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Alternating Gradient Force Magnetometer (AGFM), and Vector Network Analyzer (VNA). The saturation magnetization and coercivity were enhanced utilizing appropriate stoichiometry, coordinate agent, and sintering temperature required for the preparation of cobalt–zinc ferrite. The complex permittivity and permeability spectra, and Reflection Loss (RL) of Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were measured in the frequency range of 1–18 GHz. The microwave absorption properties of nanocomposites indicated that the absorbing composite containing 20 wt% of paraffin manifests the strongest microwave attenuation ability. The composite exhibited the reflection loss less than –10 dB in the whole C-band and 30% of the X-band frequencies. - Highlights: • We enhanced the magnetic properties of cobalt–zinc Ferrite nanocomposites. • The samples showed absorption in the whole C-band and 30% of the X-band frequencies. • We tried to solve the problem of the spinel ferrite utilized as efficient absorber. • We enhanced the microwave reflection loss over extended frequency ranges.

  1. Direct reduction of 238PuO2 and 239PuO2 to metal

    International Nuclear Information System (INIS)

    Mullins, L.J.; Foxx, C.L.

    1982-02-01

    The process for reducing 700 g 239 PuO 2 to metal is a standard procedure at Los Alamos National Laboratory. This process is based on research for reducing 200 g 238 PuO 2 to metal. This report describes in detail the experiments and development of the 200-g process. The procedure uses calcium metal as the reducing agent in a molten CaCl 2 solvent system. The process to convert impure plutonia to high-purity metal by oxide reduction followed by electrorefining is also described

  2. The role of electrolyte anions (ClO4-, NO3-, and Cl-) in divalent metal (M2+) adsorption on oxide and hydroxide surfaces in salt solutions

    International Nuclear Information System (INIS)

    Criscenti, L.J.; Sverjensky, D.A.

    1999-01-01

    Adsorption of divalent metal ions (M 2+ ) onto oxide and hydroxide surfaces from solutions of strong electrolytes has typically been inferred to take place without the involvement of the electrolyte anion. Only in situations where M 2+ forms a strong enough aqueous complex with the electrolyte anion (for example, CdCl + or PbCl + ) has it been frequently suggested that the metal and the electrolyte anion adsorb simultaneously. A review of experimental data for the adsorption of Cd 2+ , Pb 2+ , Co 2+ , UO 2 2+ , Zn 2+ , Cu 2+ , Ba 2+ , Sr 2+ , and Ca 2+ onto quartz, silica, goethite, hydrous ferric oxide, corundum, γ-alumina, anatase, birnessite, and magnetite, from NaNO 3 , KNO 3 , NaCl, and NaClO 4 solutions over a wide range of ionic strengths (0.0001 M-1.0 M), reveals that transition and heavy metal adsorption behavior with ionic strength is a function of the type of electrolyte. In NaNO 3 solutions, metal adsorption exhibits little or no dependence on the ionic strength of the solution. However, in NaCl solutions, transition and heavy metal adsorption decreases strongly with increasing ionic strength. In NaClO 4 solutions, metal adsorption decreases strongly with increasing ionic strength. In NaClO 4 solutions, metal adsorption exhibits little dependence on ionic strength but is often suggestive of an increase in metal adsorption with increasing ionic strength. Analysis of selected adsorption edges was carried out using the extended triple-layer model and aqueous speciation models that included metal-nitrate, metal-chloride, and metal-hydroxide complexes

  3. Catalysts for selective hydrogenation of furfural derived from the double complex salt [Pd(NH 3 ) 4 ](ReO 4 ) 2 on γ-Al 2 O 3

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Simon T.; Lamb, H. Henry

    2017-06-01

    The double complex salt [Pd(NH3)4](ReO4)2 was employed as precursor of supported bimetallic catalysts for selective hydrogenation of furfural. Direct reduction of [Pd(NH3)4](ReO4)2 on γ-Al2O3 in flowing H2 at 400 °C yields bimetallic nanoparticles 1–2 nm in size that exhibit significant interaction between the metals, as evidenced by temperature-programmed hydride decomposition (complete suppression of β-PdHx formation), extended X-ray absorption fine structure spectroscopy at the Pd K and Re LIII edges (PdRe distance = 2.72 Å), and scanning transmission electron microscopy with energy dispersive X-ray analysis. In contrast, calcination of [Pd(NH3)4](ReO4)2 on γ-Al2O3 at 350 °C in air and subsequent reduction in H2 at 400 °C results in metal segregation and formation of large (>50 nm) supported Pd particles; Re species cover the Pd particles and γ-Al2O3 support. A PdRe 1:2 catalyst prepared by sequential impregnation and calcination using HReO4 and [Pd(NH3)4](NO3)2 has a similar morphology. The catalyst derived by direct reduction of [Pd(NH3)4](ReO4)2 on γ-Al2O3 exhibits remarkably high activity for selective hydrogenation of furfural to furfuryl alcohol (FAL) at 150 °C and 1 atm. Suppression of H2 chemisorption via elimination of Pd threefold sites, as evidenced by CO diffuse-reflectance infrared Fourier transform spectroscopy, correlates with increased FAL selectivity.

  4. PEG/CaFe2O4 nanocomposite: Structural, morphological, magnetic and thermal analyses

    International Nuclear Information System (INIS)

    Khanna, Lavanya; Verma, Narendra K.

    2013-01-01

    The coating of Polyethylene Glycol (PEG) on calcium ferrite (CaFe 2 O 4 ) nanoparticles has been reported in the present study. The X-ray diffraction pattern revealed the formation of orthorhombic structure of bare CaFe 2 O 4 nanoparticles, which was also retained after the PEG coating, along with additional characteristic peaks of PEG at 19° and 23°. The rings of CaFe 2 O 4 nanoparticles were identified by the selected area electron diffraction pattern. The characteristic bands of PEG as observed in its Fourier transform infrared spectrum were also present in PEG coated CaFe 2 O 4 nanoparticles, hence confirming its presence. In the thermal gravimetric studies, the complete thermal decomposition of PEG occurred in a one step process, but in case of PEG coated CaFe 2 O 4 nanoparticles, the decomposition took place at a higher temperature owing to the formation of covalent bonds of PEG with CaFe 2 O 4 nanoparticles. The presence of PEG on CaFe 2 O 4 nanoparticles, spherical formation of PEG coated CaFe 2 O 4 nanoparticles and reduced agglomeration in the CaFe 2 O 4 nanoparticles were revealed by high resolution transmission electron microscope, transmission electron microscope and scanning electron microscope studies, respectively. In vibrating sample magnetometer analysis, both bare as well as coated CaFe 2 O 4 nanoparticles exhibited superparamagnetic behavior. However, a drop in the magnetic saturation value was observed from 36.76 emu/g for CaFe 2 O 4 nanoparticles to 6.74 emu/g for PEG coated CaFe 2 O 4 nanoparticles, due to the formation of magnetically dead layer of PEG. In ZFC and FC analyses, superparamagnetic behavior with blocking temperature for bare and coated nanoparticles has been observed at ∼40 K and ∼60 K, respectively. The increase in the blocking temperature is attributed to the increase in the particle size after PEG coating

  5. Synthesis, characterization and adsorptive performance of MgFe{sub 2}O{sub 4} nanospheres for SO{sub 2} removal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Ling [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Li Xinyong, E-mail: xyli@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Zhao Qidong; Qu Zhenping; Yuan Deling [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Liu Shaomin [Department of Chemical Engineering, Curtin University of Technology, Perth, WA 6845 (Australia); Hu Xijun; Chen Guohua [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-12-15

    A type of uniform Mg ferrite nanospheres with excellent SO{sub 2} adsorption capacity could be selectively synthesized via a facile solvothermal method. The size of the MgFe{sub 2}O{sub 4} nanospheres was controlled to be 300-400 nm in diameter. The structural, textural, and surface properties of the adsorbent have been fully characterized by a variety of techniques (Brunauer-Emmett-Teller, BET; X-ray diffraction analysis, XRD; scanning electron microscopy, SEM; and energy-dispersive X-ray spectroscopy, EDS). The valence states and the surface chemical compositions of MgFe{sub 2}O{sub 4} nanospheres were further identified by X-ray photoelectron spectroscopy (XPS). The behaviors of SO{sub 2} oxidative adsorption on MgFe{sub 2}O{sub 4} nanospheres were studied using Fourier transform infrared spectroscopy (FTIR). Both the sulfite and sulfate species could be formed on the surface of MgFe{sub 2}O{sub 4}. The adsorption equilibrium isotherm of SO{sub 2} was analyzed using a volumetric method at 298 K and 473 K. The results indicate that MgFe{sub 2}O{sub 4} nanospheres possess a good potential as the solid-state SO{sub 2} adsorbent for applications in hot fuel gas desulfurization.

  6. Synthesis and Characterization of Oxide Dispersion Strengthened Ferritic Steel via a Sol-Gel Route

    International Nuclear Information System (INIS)

    Sun Qinxing; Zhang Tao; Wang Xianping; Fang Qianfeng; Hu Jing; Liu Changsong

    2012-01-01

    Nanocrystalline oxide dispersion strengthened (ODS) ferritic steel powders with nominal composition of Fe-14Cr-3W-0.3Ti-0.4Y 2 O 3 are synthesized using sol-gel method and hydrogen reduction. At low reduction temperature the impurity phase of CrO is detected. At higher reduction temperature the impurity phase is Cr 2 O 3 which eventually disappears with increasing reduction time. A pure ODS ferritic steel phase is obtained after reducing the sol-gel resultant products at 1200°C for 3 h. The HRTEM and EDS mapping indicate that the Y 2 O 3 particles with a size of about 15 nm are homogenously dispersed in the alloy matrix. The bulk ODS ferritic steel samples prepared from such powders exhibit good mechanical performance with an ultimate tensile stress of 960 MPa.

  7. Facile synthesis, dielectric properties and electrocatalytic activities of PMMA-NiFe2O4 nanocomposite

    International Nuclear Information System (INIS)

    Maji, Pranabi; Choudhary, Ram Bilash

    2017-01-01

    The paper deals with the dielectric and catalytic properties of poly (methyl methacrylate)-nikel ferrite (PMMA-NiFe 2 O 4 ) nanocomposite. The nanocomposite was prepared by using a general and facile synthesis strategy. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectra confirmed the formation of PMMA-NiFe 2 O 4 nanocomposite. Field effect scanning electron microscopic (FESEM) and transmission electron microscopic (TEM) images revealed that NiFe 2 O 4 nanoparticles were uniformly distributed and were tightly adhered with PMMA matrix owing to surface modification with 3-methacryloyloxy propyl trimethoxy silane (KH-570). Thermal stability was enhanced by incorporation of NiFe 2 O 4 nanofillers. The nanocomposite showed high dielectric constant and low dielectric loss. The achieved dielectric and thermal property inferred the potential application of this material in energy storage and embedded electronics devices. Further, the as prepared nanocomposite also offered a remarkable electrochemical performance towards hydrogen peroxide (H 2 O 2 ) sensing. - Highlights: • PMMA-NiFe 2 O 4 nanocomposite was synthesized via free radical polymerization. • The nanocomposite exhibited high value of dielectric constant (51) and tanδ (0.3). • Thermal stability of the PMMA matrix was improved by the incorporation of NiFe 2 O 4. • The H 2 O 2 detection limit was estimated 44 μM when signal to noise (S/N) ration was 3. • The electrochemical sensitivity of H 2 O 2 was calculated 0.6727 μA mM -1 .

  8. Effect of In substitution on structural, dielectric and magnetic properties of CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, V., E-mail: manikandan570@gmail.com [Department of Physics, Government College of Technology, Coimbatore, Tamilnadu 13 (India); Vanitha, A. [Department of Physics, Government College of Technology, Coimbatore, Tamilnadu 13 (India); Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore, Tamilnadu 48 (India); Chandrasekaran, J. [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts & Science, Coimbatore, Tamilnadu 20 (India)

    2017-06-15

    Highlights: • Peak shift is due to smaller ionic radius of Cu than In element. • Particle size is increased and also lattice constant increased and then decreased with respect to sintering temperature. • The average particle size is estimated in the range of 30–50 nm. - Abstract: Cu ferrite and In substituted Cu ferrite has been successfully synthesized (In{sub x}Cu{sub 1−x}Fe{sub 2}O{sub 4}; x = 0.0, 0.2) at pH 11 and sintered at 300 °C, 600 °C, 900 °C. From the XRD analysis, the ferrite phase is confirmed and particle size varied from 28 to 37 nm owing to sintering temperature. TEM microstructure confirms that samples having polycrystalline nature because of superimposition of bright spots. FT-IR spectra exhibit general behaviour of ferrite. The significant change of dielectric constant has been noticed from dielectric measurement while substitution of In element. The room temperature magnetic measurements demonstrate a solid impact of sintering temperature and In substitution on saturation magnetization and coercivity.

  9. Modified ferrite core-shell nanoparticles magneto-structural characterization

    Science.gov (United States)

    Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-06-01

    In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.

  10. Resistive switching in ZrO2 based metal-oxide-metal structures

    International Nuclear Information System (INIS)

    Kaerkkaenen, Irina

    2014-01-01

    The goal of this work is a deeper understanding of the influence of the (i) metal-oxide-metal (MOM) layer stacks configuration, (ii) the oxide films microstructure, (iii) and their defect structure on the appearance of different switching modes, i.e. unipolar (UP) and bipolar (BP). The first part deals with the fabrication of ZrO 2 thin films by an industrial compatible atomic layer deposition (ALD) process, the chemical, structural and morphological characterization of the films, the growth of ZrO 2 /TiO 2 bilayers, the integration of the layers into metal-oxide-metal (MOM) devices and the electrical characterization with focus on the RS behavior. In the second part the effect of the device structure, in particular the thickness of the electrochemical active electrode (EAE) and the ZrO 2 film morphology, on the RS switching polarity of Pt/ZrO 2 /(EAE) cells is discussed. ZrO 2 films and ZrO 2 /TiO 2 bilayers were grown by ALD and were carefully structurally and electrically characterized. The ZrO 2 films grown from Zr[N(CH 3 )C 2 H 5 ] 4 (TEMA-Zr) at 240 C were polycrystalline with a mixture of cubic/tetragonal phases. ALD/H 2 O-ZrO 2 films exhibited a random oriented polycrystalline structure, whereas the ALD/O 3 -ZrO 2 films consisted of preferably oriented cubic shaped grains. Pt/ZrO 2 /Ti/Pt structures with a Ti top electrode (TE) thickness of 5 to 20 nm showed unipolar type RS behavior, while by increasing the Ti TE thickness a gradual change of switching polarity from unipolar to bipolar with a completely bipolar type RS behavior for a Ti TE thickness of 40 nm is found. The switching in Pt/ZrO 2 /TiO 2 /Ti/Pt devices was unipolar, comparable to Pt/ZrO 2 /Ti/Pt cells. In contrast, bilayers with the reverse structure, Pt/TiO 2 /ZrO 2 /Ti/Pt, showed non-switching behavior. The effect of the cells stack structure on the polarity of the RS behavior was studied in detail for 20 nm thick ZrO 2 films grown by an ozone based ALD process and integrated into Pt/ZrO 2

  11. Influence of annealing temperature on structural and magnetic properties of MnFe2O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Surowiec Zbigniew

    2015-03-01

    Full Text Available Nanoparticles of manganese ferrite were obtained by the impregnation of highly ordered mesoporous MCM-41 silica support. The investigated sample contained 20% wt. Fe. The obtained nanocrystallites were strongly dispersed in silica matrix and their size was about 2 nm. The sample annealing at 500°C led to increase of particle size to about 5 nm. The Mössbauer spectroscopy investigations performed at room temperature show on occurrence of MnFe2O4 nanoparticle in superparamagnetic state for the sample annealed in all temperatures. The coexistence of superparamagnetic and ferromagnetic phase was observed at liquid nitrogen temperature. The sample annealed at 400°C and 500°C has bigger manganese ferrite particle and better crystallized structure. One can assign them the discrete hyperfine magnetic field components.

  12. Effect of doping and chemical ordering on the optoelectronic properties of complex oxides: Fe 2 O 3 –V 2 O 3 solid solutions and hetero-structures

    Energy Technology Data Exchange (ETDEWEB)

    Nayyar, Iffat H.; Chamberlin, Sara E.; Kaspar, Tiffany C.; Govind, Niranjan; Chambers, Scott A.; Sushko, Petr

    2017-01-01

    The electronic and optical properties of a-(Fe1xVx)2O3 at low (x = 0.04) and high (x = 0.5) doping levels are investigated using a combination of periodic and embedded cluster approaches, and time dependent density functional theory. At low V concentrations the onset of the optical absorption is B0.5 eV (i.e., nearly 1.6 eV lower than that in pure a-Fe2O3) and corresponds to the electron transitions from V 3d to Fe 3d* orbitals. At high V concentrations, optical absorption energies and intensities are sensitive to specific arrangements of Fe and V atoms and their spin configuration that determine Fe–V hybridization. The onset of the lowest inter-vanadium absorption band in the case of Fe2O3/V2O3 hetero-structures is as low as B0.3 eV and the corresponding peak is at B0.7 eV. In contrast, in the case of solid solutions this peak has lower intensity and is shifted to higher energy (B1.2 eV). Analysis of the orbital character of electronic excitation suggests that Fe2O3/V2O3 hetero-structures absorb light much more effectively than random alloys, thus promoting efficient photo-induced carrier generation. These predictions can be tested in a-(Fe1xVx)2O3 thin films synthesized with well-controlled spatial distribution of Fe and V species.

  13. A solution for the preparation of hexagonal M-type SrFe{sub 12}O{sub 19} ferrite using egg-white: Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingting; Li, Yang; Wu, Ruonan; Zhou, Han; Fang, Xiaochen [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Su, Shubing [School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315016 (China); Xia, Ailin, E-mail: alxia@126.com [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Jin, Chuangui; Liu, Xianguo [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China)

    2015-11-01

    A new sol–gel route using egg-white as the binder of metal ions, is developed to prepare hexagonal M-type SrFe{sub 12}O{sub 19} ferrite in this study, and the effects of different atomic ratio of Sr and Fe (Sr/Fe), sintering temperature (T{sub s}) and usage of egg-white (M{sub ew}) on the phase formation, morphology and magnetic properties of specimens are studied. It is found that the single-phase SrFe{sub 12}O{sub 19} ferrite only can be obtained under a Sr/Fe of 1:8 and a T{sub s} between 1000 °C and 1300 °C. The magnetic properties of specimens are also obviously affected by the different Sr/Fe and T{sub s}, primarily due to the emergency of impurities. The M{sub ew} has an obvious impact on the crystallinity of specimens, which consequently affects their magnetic properties. In our study, the optimum conditions to prepare the single-phase SrFe{sub 12}O{sub 19} ferrite are Sr/Fe=1:8, M{sub ew}= 3 g and T{sub s} =1200 °C. - Highlights: • Single-phase SrM ferrite was obtained via a novel sol–gel method using egg-white. • Single-phase SrM ferrite was obtained under Sr/Fe=1:8 and T{sub s} between 1000 and 1300 °C. • The usage of egg-white affects the crystallinity and magnetic properties markedly.

  14. Thermal decomposition of barium ferrate(VI): Mechanism and formation of Fe{sup IV} intermediate and nanocrystalline Fe{sub 2}O{sub 3} and ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Machala, Libor, E-mail: libor.machala@upol.cz [Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics, Faculty of Science, Palacký University, Olomouc (Czech Republic); Sharma, Virender K. [Department of Environmental and Occupational Health, School of Public Health, Texas A& M University, 1266 TAMU, College Station, TX 77843 (United States); Kuzmann, Ernö; Homonnay, Zoltán [Institute of Chemistry, Eötvös Loránd University, Budapest (Hungary); Filip, Jan; Kralchevska, Radina P. [Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics, Faculty of Science, Palacký University, Olomouc (Czech Republic)

    2016-05-25

    Simple high-valent iron-oxo species, ferrate(VI) (Fe{sup VI}O{sub 4}{sup 2−}, Fe(VI)) has applications in energy storage, organic synthesis, and water purification. Of the various salts of Fe(VI), barium ferrate(VI) (BaFeO{sub 4}) has also a great potential as a battery material. This paper presents the thermal decomposition of BaFeO{sub 4} in static air and nitrogen atmosphere, monitored by combination of thermal analysis, Mössbauer spectroscopy, X-ray powder diffraction, and electron-microscopic techniques. The formation of Fe{sup IV} species in the form of BaFeO{sub 3} was found to be the primary decomposition product of BaFeO{sub 4} at temperature around 190 °C under both studied atmospheres. BaFeO{sub 3} was unstable in air reacting with CO{sub 2} to form barium carbonate and speromagnetic amorphous iron(III) oxide nanoparticles (<5 nm). Above 600 °C, a solid state reaction between BaCO{sub 3} and Fe{sub 2}O{sub 3} occurred, leading to the formation of barium ferrite nanoparticles, BaFe{sub 2}O{sub 4} (20–100 nm). - Highlights: • We explained the mechanism of thermal decomposition of barium ferrate(VI). • We confirmed the formation of Fe(IV) intermediate phase during the decomposition. • The mechanism of the decomposition is influenced by a presence of carbon dioxide.

  15. Determination and modeling for the solubility of Na_2WO_4·2H_2O and Na_2MoO_4·2H_2O in the (Na"+ + MoO_4"2"− + WO_4"2"− + SO_4"2"− + H_2O) system

    International Nuclear Information System (INIS)

    Ning, Pengge; Xu, Weifeng; Cao, Hongbin; Xu, Hongbin

    2016-01-01

    Highlights: • The solubility of Na_2MoO_4·2H_2O and Na_2WO_4·2H_2O in Na_2MoO_4–Na_2WO_4–Na_2SO_4–H_2O were performed. • The solubility of sodium tungstate dihydrate in Na_2WO_4–Na_2SO_4–H_2O was determined. • The new model was established via regressing the published and the determined data. • The Pitzer parameter and the solubility product constant of the salt in solution were calculated. • The model was used to estimate the solubility of the sodium molybdate and sodium tungstate. - Abstract: The solubility of sodium tungstate dihydrate and sodium molybdate dihydrate in the (Na_2MoO_4 + Na_2WO_4 + Na_2SO_4 + H_2O) system was studied using experimental and calculated methods. The osmotic coefficient of sodium tungstate was fitted to calculate the thermodynamics parameters of (Na_2WO_4 + H_2O) system. The solubility of sodium tungstate dihydrate was determined using the dynamic method in Na_2WO_4–Na_2SO_4–H_2O to establish the new model which can provide an estimate the solubility of sodium tungstate dihydrate in various conditions, combined with the data published, the solubility of sodium tungstate dihydrate and the sodium molybdate dihydrate in quaternary system of (Na_2MoO_4 + Na_2WO_4 + Na_2SO_4 + H_2O) was estimated using the parameters of the two ternary systems of (Na_2WO_4 + Na_2SO_4 + H_2O) and (Na_2MoO_4 + Na_2SO_4 + H_2O). The results show that the AARD is always small and the calculated value is basically consistent with the experimental values for the system studied.

  16. Crystal structure of zdenekite NaPbCu5(AsO4)4Cl · 5H2O

    International Nuclear Information System (INIS)

    Zubkova, N.V.; Pushcharovsky, D.Yu.; Sarp, H.; Teat, S. J.; MacLean, E. J.

    2003-01-01

    The crystal structure of the mineral zdenekite NaPbCu 5 (AsO 4 ) 4 Cl · 5H 2 O was established (Bruker SMART CCD diffractometer, synchrotron radiation, λ = 0.6843 A, R = 0.096 for 1356 reflections). Single-crystal X-ray diffraction study demonstrated that zdenekite belongs to the monoclinic system with the unit-cell parameters a = 10.023(7) A, b 19.55(1) A, c = 10.023(6) A, β = 90.02(1) deg., sp. gr. P2 1 /n, Z = 4. The structure consists of polyhedral layers parallel to the (010) plane. These layers are formed by Cuφ 5 polyhedra (φ = O, Cl, H 2 O) and AsO 4 tetrahedra. Distorted Na octahedra and Pb 7-vertex polyhedra and H 2 O molecules coordinated to these metal atoms are located between the layers

  17. Symmetry transition via tetravalent impurity and investigations on magnetic properties of Li0.5Fe2.5O4

    Science.gov (United States)

    Kounsalye, Jitendra S.; Kharat, Prashant B.; Chavan, Apparao R.; Humbe, Ashok V.; Borade, R. M.; Jadhav, K. M.

    2018-04-01

    The present study, deals with the phase symmetry transformation of lithium ferrite after introducing tetravalent (Ti4+) impurity. The sol-gel auto combustion technique was adopted for the synthesis of nanoparticle samples with generic chemical formula Li0.5Fe2.5O4 and Li0.55Ti0.10Fe2.35O4. The synthesized nanoparticles were characterized by X-ray diffraction (XRD) technique for structural analysis. The XRD patterns show the single phase cubic structure without any impurity phase but the P4332 to Fd-3m transformation was observed after introducing Ti4+ impurity. The Nano size of the synthesized particles was confirmed by crystallite size ( 20nm) calculated using Debye-Scherrer's formula. The Fourier transform infrared spectroscopy (FTIR) studies shows shifting of band frequencies which reflect the structural changes after tetravalent substitutional impurities. The magnetic properties were studied through pulse field hysteresis loop (M-H loop) technique at room temperature, the M-H loops showdecrease in magnetic properties afternonmagnetic Ti4+ ion substitution. This is attributed to transition of inverse spinel structure of lithium ferrite to random spinel structure.

  18. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles.

    Science.gov (United States)

    Hu, Qingsong; Liu, Yuling; Gu, Xueyuan; Zhao, Yaping

    2017-08-01

    Arsenic pollution poses severe threat to human health, therefore dealing with the problem of arsenic contamination in water bodies is extremely important. The adsorption behaviors of different arsenic species, such as arsenate (As(V)), p-arsanilic acid (p-ASA), roxarsone (ROX), dimethylarsenate (DMA) from water using mesoporous bimetal oxide magnetic manganese ferrite nanoparticles (MnFe 2 O 4 ) have been detailedly investigated. The adsorbent was synthesized via a facile co-precipitation approach and recovered conveniently owing to its strong magnetic properties. The obtained MnFe 2 O 4 with large surface area and abundant hydroxyly functional groups exhibited excellent adsorption performance for As(V) and p-ASA, in contrast to ROX and DMA with the maximum adsorption capacities of As(V), p-ASA, ROX and DMA of 68.25 mg g -1 , 59.45 mg g -1 , 51.49 mg g -1 , and 35.77 mg g -1 , respectively. The Langmuir model and the pseudo-second-order kinetic model correlated satisfactorily with the adsorption thermodynamics and kinetics, and thermodynamic parameters depicted the spontaneous endothermic nature for the adsorption of different arsenic species. The adsorption mechanism of different arsenic species onto MnFe 2 O 4 nanoparticles at various pH values could be explained by surface complexation and molecular structural variations. Attenuated Total internal Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) further proved that arsenic species were bonded to the surface of MnFe 2 O 4 through the formation of an inner-sphere complex between the arsenic acid moiety and surface metal centers. The results would help to know the interaction of arsenic species with iron-manganese minerals and the mobility of arsenic species in natural environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tanveer [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, Abdul Wali Khan University, Mardan (Pakistan); Bae, Hongsub; Iqbal, Yousaf [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Rhee, Ilsu, E-mail: ilrhee@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hong, Sungwook [Division of Science Education, Daegu University, Gyeongsan 712-714 (Korea, Republic of); Chang, Yongmin; Lee, Jaejun [Department of Diagnostic Radiology, College of Medicine, Kyungpook National University and Hospital, Daegu 700-721 (Korea, Republic of); Sohn, Derac [Department of Physics, Hannam University, Daejon (Korea, Republic of)

    2015-05-01

    We report evidence for the possible application of chitosan-coated nickel-ferrite (NiFe{sub 2}O{sub 4}) nanoparticles as both T{sub 1} and T{sub 2} contrast agents in magnetic resonance imaging (MRI). The coating of nickel-ferrite nanoparticles with chitosan was performed simultaneously with the synthesis of the nickel-ferrite nanoparticles by a chemical co-precipitation method. The coated nanoparticles were cylindrical in shape with an average length of 17 nm and an average width of 4.4 nm. The bonding of chitosan onto the ferrite nanoparticles was confirmed by Fourier transform infrared spectroscopy. The T{sub 1} and T{sub 2} relaxivities were 0.858±0.04 and 1.71±0.03 mM{sup −1} s{sup −1}, respectively. In animal experimentation, both a 25% signal enhancement in the T{sub 1}-weighted mage and a 71% signal loss in the T{sub 2}-weighted image were observed. This demonstrated that chitosan-coated nickel-ferrite nanoparticles are suitable as both T{sub 1} and T{sub 2} contrast agents in MRI. We note that the applicability of our nanoparticles as both T{sub 1} and T{sub 2} contrast agents is due to their cylindrical shape, which gives rise to both inner and outer sphere processes of nanoparticles. - Highlights: • Chitosan-coated nickel-ferrite (Ni-Fe{sub 2}O{sub 4}) nanoparticles were synthesized in an aqueous system by chemical co-precipitation. • The characterization of bare and chitosan-coated nanoparticles were performed using various analytical tools, such as TEM, FTIR, XRD, and VMS. • We evaluated the coated particles as potential T{sub 1} and T{sub 2} contrast agents for MRI by measuring T{sub 1} and T{sub 2} relaxation times as a function of iron concentration. • Both T{sub 1} and T{sub 2} effects were also observed in animal experimentation.

  20. Synthesis and characterization of nanoparticles ferrites of the type ZN{sub x}Cu{sub 1-x}FE{sub 2}O{sub 4} and your application catalyst in acetylation vegetable oils; Sintese e caracterizacao de nanoparticulas de ferritas do tipo Zn{sub x}Cu{sub 1-x}Fe{sub 2}O{sub 4} e a sua aplicacao como catalisador em acetilacao em oleos vegetais

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, D.S; Costa, W.V; Hechenleitner, A.A.W.; Oliveira, D.M.F. de; Pineda, E.A.G., E-mail: diogo_casagrande@msn.com [Universidade Estadual de Maringa (UEM), PR (Brazil)

    2016-07-01

    In this work were synthesized copper and zinc ferrites (0 - 10% mol with respect to copper), by the combustion method, using citrate as stabilizer. The obtained products were analyzed by Infrared spectrometry (FTIR), Raman spectroscopy (RAMAN) and x-ray diffractometry (DRX). Synthesized ferrites present hematite phase, maghemite phase and copper ferrite phases. The analysis indicated that increasing the zinc content leads to decreased of hematite phase. Increasing of zinc content lead to an increase of particle size. The best results of oil acylation were obtained with ferrites containing 2 and 4% of zinc, wherein the increase the increase of yield of acetylated product reached at 19% when compared with the yield obtained whit copper ferrite without zinc. (author)

  1. Fe(II)-substituted cobalt ferrite nanoparticles against multidrug resistant microorganisms

    Science.gov (United States)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Mažeika, Kęstutis; Jagminas, Arūnas

    2018-03-01

    The present study is focused on the determination the influence of cobalt content in the magnetic cobalt ferrite nanoparticles (Nps) on their antibacterial efficiency against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria and several Candida species, in particular C. parapsilosis and C. albicans. For the synthesis of Fe(II) substituted cobalt ferrite Nps by co-precipitation way, the L-lysine was used as the capping biocompatible agent and the particle size was successfully controlled to be in the range of 5-6.4 nm. The antimicrobial efficiencies of the CoxFe1-xFe2O4@Lys Nps, where x varies from 0.2 to 1.0, were evaluated through the quantitative analysis by comparing with that of Fe3O4@Lys Nps and L-lysine. In this way, it was evidenced that increase in the Co2+ content in the similar sized cobalt ferrite Nps resulted in an increase in their antimicrobial potency into 93.1-86.3 % for eukaryotic and into 96.4-42.7 % for prokaryotic strains. For characterization the composition, structure, and morphology of the tested herein Nps inductively coupled plasma optical emission spectrometry, X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer, and FTIR spectroscopy techniques were conferred.

  2. High frequency permeability and permittivity spectra of BiFeO{sub 3}/(CoTi)-BaM ferrite composites

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yun; Wu, Xiaohan; Li, Qifan; Yu, Ting; Feng, Zekun, E-mail: fengzekun@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Zhongyan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Jiangmen Magsource New Material CO., LTD., 529000 Guangdong (China); Su, Zhijuan; Chen, Yajie; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2015-05-07

    Low magnetic loss ferrite composites consisting of Ba(CoTi){sub 1.2}Fe{sub 9.6}O{sub 19} and BiFeO{sub 3} (BFO) ferrite were investigated for permeability, permittivity, and high frequency losses at 10 MHz–1 GHz. The phase fraction of BiFeO{sub 3} was quantitatively analyzed by X-ray diffraction measurements. An effective medium approach was employed to predict the effective permeability and permittivity for the ferrite composites, which was found to be in good agreement with experimental data. The experiment demonstrated low magnetic losses (<0.128), modified by BFO phase fraction, while retaining high permeability (∼10.86) at 300 MHz. More importantly, the BFO phase resulted in a reduction of magnetic loss by 32%, as BFO phase increased from 2.7 vol. % to 12.6 vol. %. The effect of BFO phase on magnetic and dielectric properties revealed great potential for use in the miniaturization of high efficiency antennas.

  3. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    International Nuclear Information System (INIS)

    Chandra Babu Naidu, K.; Madhuri, W.

    2016-01-01

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni–Mg ferrites of general chemical formula Ni_1_−_xMg_xFe_2O_4 (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K–873 K and 42 Hz–5 MHz. - Highlights: • First article on microwave processed NiMgFe_2O_4 giving. • The article gives systematic magnetic studies. • Cation distribution is discussed based on magnetic moments from VSM. • Promising candidates for transformer core and soft magnet manufacturing.

  4. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Babu Naidu, K.; Madhuri, W., E-mail: madhuriw12@gmail.com

    2016-12-15

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni–Mg ferrites of general chemical formula Ni{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K–873 K and 42 Hz–5 MHz. - Highlights: • First article on microwave processed NiMgFe{sub 2}O{sub 4} giving. • The article gives systematic magnetic studies. • Cation distribution is discussed based on magnetic moments from VSM. • Promising candidates for transformer core and soft magnet manufacturing.

  5. Effect of PVP as a capping agent in single reaction synthesis of nanocomposite soft/hard ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, H.A. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor (Malaysia); Saiden, N.M., E-mail: nlaily@upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor (Malaysia); Saion, E.; Azis, R.S.; Mamat, M.S. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor (Malaysia); Hashim, M. [Advanced Material and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor (Malaysia)

    2017-04-15

    Nanocomposite magnets consist of soft and hard ferrite phases are known as an exchange spring magnet when they are sufficiently spin exchange coupled. Hard and soft ferrites offer high value of coercivity, H{sub c} and saturation magnetization, M{sub s} respectively. In order to obtain a better permanent magnet, both soft and hard ferrite phases need to be “exchange coupled”. The nanoparticles were prepared by a simple one-pot technique of 80% soft phase and 20% hard phase. This technique involves a single reaction mixture of metal nitrates and aqueous solution of varied amounts of polyvinylpyrrolidone (PVP). The heat treatment applied was at 800 °C for 3 h. The synthesized composites were characterized by Transmission Electron Microscope (TEM), Fourier Transform Infra-red (FT-IR), Energy Dispersive X-Ray (EDX), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM). The coexistence of two phases, Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and SrFe{sub 12}O{sub 19} were observed by XRD patterns. It also verified by the EDX that no impurities detected. The magnetic properties of nanocomposite ferrites for 0.06 g/ml PVP gives a better properties of H{sub c} 932 G and M{sub s} 39.0 emu/g with average particle size obtained from FESEM was 49.2 nm. The concentration of PVP used gives effect on the magnetic properties of the samples. - Highlights: • Amount of PVP play important roles in controlling the particle size distribution and magnetic properties. • This is a novel technique to produce nanocomposite ferrites effectively. • This study contributes better understanding on magnetic properties in nanoparticle composite magnets.

  6. Magnetic and Moessbauer study of Mg{sub 0.9}Mn{sub 0.1}Cr{sub x}Fe{sub 2-x}O{sub 4} ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Widatallah, H.; Gismelseed, A.; Bouziane, K.; Yousif, A.; Al Rawas, A.; Al-Omari, I.; Sellai, A. [Sultan Qaboos University, Department of Physics, College of Science (Oman)

    2006-02-15

    The ferrites Mg{sub 0.9}Mn{sub 0.1}Cr{sub x}Fe{sub 2-x}O{sub 4} (0x0.9) were prepared using the conventional double sintering method. The XRD showed that the samples maintain a single spinel cubic phase. The Moessbauer measurements were carried out at room and liquid nitrogen temperatures. From the area ratios of the A and B sites, it was found that the Fe cation population of the A and B sites decreases in proportion to Cr concentration. The contact hyperfine fields at the A and B sites were found to decrease with increasing Cr contents. This was found to be in approximate agreement with the results of magnetization measurement. The distributions of Mg and Mn cations versus Cr concentration were also determined using the Moessbauer and magnetization results. The Curie temperatures were determined and found to agree with the reported values. As the Cr contents increases the relative magnetization, was found to increase at low temperatures and decreases at higher temperatures.

  7. Summary of mechanical properties data and correlations for Li2O, Li4SiO4, LiAlO2, and Be

    International Nuclear Information System (INIS)

    Billone, M.C.; Grayhack, W.T.

    1988-04-01

    The data base for thermal expansion, elastic constants, compressive and tensile failure strengths and secondary thermal creep of leading solid-breeder (Li 2 O, Li 4 SiO 4 , and LiAlO 2 ) and multiplier (Be) materials is reviewed, porosity, grain size, and stress (for thermal creep). Because the data base is rather sparse in some areas, general properties of ceramics and metals are used to help guide the formulation of the correlations. The primary purpose of the data base summary and correlation development is to pave the way for stress analysis sensitivity studies. These studies will help determine which properties are important enough to structural lifetime and deformation assessments to require more data. 18 refs., 5 figs., 20 tabs

  8. Microemulsion synthesis and magnetic properties of hydroxyapatite-encapsulated nano CoFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Foroughi, Firoozeh [Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of); Hassanzadeh-Tabrizi, S.A., E-mail: tabrizi1980@gmail.com [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of); Amighian, Jamshid [Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of)

    2015-05-15

    Hydroxyapatite-encapsulated cobalt ferrite (CoFe{sub 2}O{sub 4}) nanopowders were synthesized by one step microemulsion method. The powders were characterized by X-ray Diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometer. TEM results showed that nanoparticles calcined at 700 °C have core–shell morphology. It was found that the resultant phases, morphology and magnetic properties of the samples depend on calcining temperature. The synthesized nanoparticles showed a maximum saturation magnetization of 7.8 emu/g with a wasp-waisted hysteresis loop. The magnetion was reduced by increasing calcining temperature to 900 °C. This reduction is due to the reaction of cobalt ferrite with hydroxyapatite which leads to CaFe{sub 12}(PO{sub 4}){sub 8}(OH){sub 12} phase. - Highlights: • Hydroxyapatite-encapsulated cobalt ferrite nanopowders were synthesized by a microemulsion method. • The characterization of nanoparticles was performed using various analytical tools, such as TEM, FE-SEM, FTIR, XRD and VSM. • The nanoparticles showed a maximum saturation magnetization of 7.8 emu/g. • The samples indicated a wasp-waisted hysteresis loop.

  9. Efecto de la adición de Gd2O3 sobre las propiedades magnéticas de hexaferritas de estroncio

    Directory of Open Access Journals (Sweden)

    Sánchez Ll., J. L.

    1999-12-01

    Full Text Available The hexaferrites (AFe12O19, A = Ba, Sr have been used since years ago. Because of their low cost these materials continue in the market and they have not been substituted for other powerful magnets. The partial substitution of metallic elements or the use of additives in small proportions have been widely used for industrial processes in order to improve magnetic properties or the sintering process. Efforts had been made to determinate the effect of an important number of diamagnetic or paramagnetic cations on the microstructure and magnetic properties of the hexagonal ferrites. Previous studies have reported a remarkable increase in the coercitive field of the hexaferrites of barium with the substitution partial of that by La, Lu, Sm, Nd and Gd. In the present research a structural and magnetic study of sintered permanent magnets with the general formula Sr1-XGdX/2NaX/2Fe12O19 (0.00≤ X ≤0.10 was made. The samples were characterized by X-ray diffraction, vibrating sample magnetometry, scanning electron microscopy and elemental analysis (EDAX. The dependency of the densification, the medium grain size, the cells parameters and the magnetic properties with the gadolinium oxide content is discussed.Las hexaferritas (AFe12O19, A = Ba, Sr se vienen utilizando desde hace varios años; debido a su bajo costo dominan el mercado y no han sido sustituidas por imanes permanentes más potentes. La sustitución parcial de los elementos metálicos o la utilización de aditivos en pequeña proporción ha sido ampliamente utilizada en la industria con el objeto de mejorar las propiedades magnéticas o facilitar el proceso de sinterización. Se han dedicado esfuerzos importantes para determinar el efecto de un número importante de iones diamagnéticos y paramagnéticos sobre la microestructura y las propiedades magnéticas de las ferritas hexagonales. Trabajos previos reportaron un aumento notable del campo coercitivo en hexaferritas de bario con substituci

  10. Investigation of local fields in different barium ferrite sublattices by means of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Utrecht, R.; Hankiewicz, J.

    1995-01-01

    The local fields on 57 Fe nuclei in ferrite (BaFe 12 O 19 ) polycrystals have been investigated by means of spin echo amplitudes measurements at 4.2 and 77 K. The magnetic moment orientation and local field intensity have been determined for five different ferrite sublattices

  11. Pb4(OH)4(BrO3)3(NO3): An Example of SHG Crystal in Metal Bromates Containing π-Conjugated Planar Triangle.

    Science.gov (United States)

    Kong, Fang; Hu, Chun-Li; Liang, Ming-Li; Mao, Jiang-Gao

    2016-01-19

    The first example of SHG crystal in the metal bromates containing π-conjugated planar triangle systems, namely, Pb4(OH)4(BrO3)3(NO3), was successfully synthesized via the hydrothermal method. Furthermore, a single crystal of centrosymmetric Pb8O(OH)6(BrO3)6(NO3)2·H2O was also obtained. Both compounds contain similar [Pb4(OH)4] cubane-like tetranuclear clusters, but they display different one-dimensional (1D) chain structures. Pb4(OH)4(BrO3)3(NO3) features a zigzag [Pb4(OH)4(BrO3)3](+) 1D chain, while Pb8O(OH)6(BrO3)6(NO3)2·H2O is composed of two different orthogonal chains: the linear [Pb4(OH)4(BrO3)2](2+) 1D chain along the b-axis and the zigzag [Pb4O2(OH)2(BrO3)4](2-) 1D chain along the a-axis. The NO3 planar triangles of the compounds are all isolated and located in the spaces of the structures. Pb4(OH)4(BrO3)3(NO3) exhibits the first example of SHG crystal in the metal bromates with π-conjugated planar triangle. The second-harmonic generation (SHG) efficiency of Pb4(OH)4(BrO3)3(NO3) is approximately equal to that of KDP and it is phase-matchable. Dipole moment and theory calculations indicate that BrO3, NO3, and PbO4 groups are the origin of its SHG efficiency, although some of the contributions cancel each other out.

  12. RHEED oscillations in spinel ferrite epitaxial films grown by conventional planar magnetron sputtering

    Science.gov (United States)

    Ojima, T.; Tainosho, T.; Sharmin, S.; Yanagihara, H.

    2018-04-01

    Real-time in situ reflection high energy electron diffraction (RHEED) observations of Fe3O4, γ-Fe2O3, and (Co,Fe)3O4 films on MgO(001) substrates grown by a conventional planar magnetron sputtering was studied. The change in periodical intensity of the specular reflection spot in the RHEED images of three different spinel ferrite compounds grown by two different sputtering systems was examined. The oscillation period was found to correspond to the 1/4 unit cell of each spinel ferrite, similar to that observed in molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) experiments. This suggests that the layer-by-layer growth of spinel ferrite (001) films is general in most physical vapor deposition (PVD) processes. The surfaces of the films were as flat as the surface of the substrate, consistent with the observed layer-by-layer growth process. The observed RHEED oscillation indicates that even a conventional sputtering method can be used to control film thickness during atomic layer depositions.

  13. RHEED oscillations in spinel ferrite epitaxial films grown by conventional planar magnetron sputtering

    Directory of Open Access Journals (Sweden)

    T. Ojima

    2018-04-01

    Full Text Available Real-time in situ reflection high energy electron diffraction (RHEED observations of Fe3O4, γ-Fe2O3, and (Co,Fe3O4 films on MgO(001 substrates grown by a conventional planar magnetron sputtering was studied. The change in periodical intensity of the specular reflection spot in the RHEED images of three different spinel ferrite compounds grown by two different sputtering systems was examined. The oscillation period was found to correspond to the 1/4 unit cell of each spinel ferrite, similar to that observed in molecular beam epitaxy (MBE and pulsed laser deposition (PLD experiments. This suggests that the layer-by-layer growth of spinel ferrite (001 films is general in most physical vapor deposition (PVD processes. The surfaces of the films were as flat as the surface of the substrate, consistent with the observed layer-by-layer growth process. The observed RHEED oscillation indicates that even a conventional sputtering method can be used to control film thickness during atomic layer depositions.

  14. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce, Nd

    International Nuclear Information System (INIS)

    De Almeida, Lucie; Grandjean, Stephane; Abraham, Francis; Rivenet, Murielle; Patisson, Fabrice

    2014-01-01

    New hydrazinium lanthanide oxalates N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce (Ce-H_yO_x) and Nd (Nd- H_yO_x), were synthesized by hydrothermal reaction at 150 C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2_1/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Angstroms, β = 116.638(4) degrees, V = 2021.4(7) Angstroems"3, Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO_9 and NdO_8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm"-"1 confirms the coordination of N_2H_5"+ to the metal. These polyhedra are connected through μ"2 and μ"3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-H_yO_x) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO_2 and Ce_0_._5Nd_0_._5O_1_._7_5 are formed at low temperature from Ce-H_yO_x and CeNd-H_yO_x, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxy-mono-cyanamides Ln_2O_2CN_2 are formed. (authors)

  15. Thermal expansion studies on Th(MoO4)2, Na2Th(MoO4)3 and Na4Th(MoO4)4

    International Nuclear Information System (INIS)

    Keskar, Meera; Krishnan, K.; Dahale, N.D.

    2008-01-01

    Thermal expansion behavior of Th(MoO 4 ) 2 , Na 2 Th(MoO 4 ) 3 and Na 4 Th(MoO 4 ) 4 was studied under vacuum in the temperature range of 298-1123 K by high temperature X-ray diffractometer. Th(MoO 4 ) 2 was synthesized by reacting ThO 2 with 2 mol of MoO 3 , at 1073 K in air and Na 2 Th(MoO 4 ) 3 and Na 4 Th(MoO 4 ) 4 were prepared by reacting Th(MoO 4 ) 2 with 1 and 2 mol of Na 2 MoO 4 , respectively at 873 K in air. The XRD data of Th(MoO 4 ) 2 was indexed on orthorhombic system where as XRD data of Na 2 Th(MoO 4 ) 3 and Na 4 Th(MoO 4 ) 4 were indexed on tetragonal system. The lattice parameters and cell volume of all the three compounds, fit into polynomial expression with respect to temperature, showed positive thermal expansion (PTE) up to 1123 K. The average value of thermal expansion coefficients for Th(MoO 4 ) 2 , Na 2 Th(MoO 4 ) 3 and Na 4 Th(MoO 4 ) 4 were determined from the high temperature data

  16. CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2017-04-01

    Full Text Available High-performance lithium ion batteries (LIBs require electrode material to have an ideal electrode construction which provides fast ion transport, short solid-state ion diffusion, large surface area, and high electric conductivity. Herein, highly porous three-dimensional (3D aerogels composed of cobalt ferrite (CoFe2O4, CFO nanoparticles (NPs and carbon nanotubes (CNTs are prepared using sustainable alginate as the precursor. The key feature of this work is that by using the characteristic egg-box structure of the alginate, metal cations such as Co2+ and Fe3+ can be easily chelated via an ion-exchange process, thus binary CFO are expected to be prepared. In the hybrid aerogels, CFO NPs interconnected by the CNTs are embedded in carbon aerogel matrix, forming the 3D network which can provide high surface area, buffer the volume expansion and offer efficient ion and electron transport pathways for achieving high performance LIBs. The as-prepared hybrid aerogels with the optimum CNT content (20 wt% delivers excellent electrochemical properties, i.e., reversible capacity of 1033 mAh g−1 at 0.1 A g−1 and a high specific capacity of 874 mAh g−1 after 160 cycles at 1 A g−1. This work provides a facile and low cost route to fabricate high performance anodes for LIBs. Keywords: Alginate, Aerogels, Cobalt ferrite, Anode, Lithium-ion battery

  17. Magnetic, Fluorescence and Transition Metal Ion Response Properties of 2,6-Diaminopyridine Modified Silica-Coated Fe3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yunhui Zhai

    2016-08-01

    Full Text Available Multi-functional nanoparticles possessing magnetic, fluorescence and transition metal ion response properties were prepared and characterized. The particles have a core/shell structure that consists of silica-coated magnetic Fe3O4 and 2,6-diaminopyridine anchored on the silica surface via organic linker molecules. The resultant nanoparticles were found by transmission electron microscopy to be well-dispersed spherical particles with an average diameter of 10–12 nm. X-ray diffraction analysis suggested the existence of Fe3O4 and silica in/on the particle. Fourier transform infrared spectra revealed that 2,6-diaminopyridine molecules were successfully covalently bonded to the surface of magnetic composite nanoparticles. The prepared particles possessed an emission peak at 364 nm with an excitation wavelength of 307 nm and have a strong reversible response property for some transition metal ions such as Cu2+ and Zn2+. This new material holds considerable promise in selective magneto separation and optical determination applications.

  18. Phase formation in the Li2MoO4-Rb2MoO4-Ln2(MoO4)3 systems and the properties of LiRbLn2(MoO4)4

    International Nuclear Information System (INIS)

    Basovich, O.M.; Khajkina, E.G.; Vasil'ev, E.V.; Frolov, A.M.

    1995-01-01

    Phase equilibria within subsolidus range of ternary salt systems Li 2 MoO 4 -Rb 2 MoO 4 -Ln 2 (MoO 4 ) 4 (Ln - Nd, Er) are analyzed. Formation of ternary molybdate LiRbNd 2 (MoO 4 ) 4 is proved along LiNd(MoO 4 ) 2 -RbNd(MoO 4 )-2 cross-section. Phase diagram of this cross-section is plotted. Similar compounds are synthesized for Ln = La-Eu. The parameters of their monoclinic elementary cells are determined. Luminescent properties of LiRbLa 2 (MoO 4 ) 4 -Nd 3+ are studied. 17 refs., 4 figs., 2 tabs

  19. Synthesis of nanostructured NiO/Co3O4 through thermal decomposition of a bimetallic (Ni/Co) metal-organic framework as catalyst for cyclooctene epoxidation

    Science.gov (United States)

    Abbasi, Alireza; Soleimani, Mohammad; Najafi, Mahnaz; Geranmayeh, Shokoofeh

    2017-04-01

    Hydrothermal approach has led to the formation of a three-dimensional metal-organic framework (MOF), [NiCo(μ2-tp)(μ4-tp)(4,4‧-bpy)2]n (1) (tp = terephthalic acid and 4,4‧-bpy = 4,4‧-bipyridine) which was characterized by means of single-crystal X-ray diffraction analysis, powder X-ray diffraction (PXRD), FT-IR spectroscopy, scanning electron microscopy (SEM) and inductive coupled plasma optical emission spectroscopy (ICP-OES). Thermal decomposition of the MOF afforded nanostructured mixed metal oxide, namely NiO/Co3O4. The XRD and SEM analysis confirm the formation of the mixed metal oxide. The nanostructured NiO/Co3O4 demonstrated good catalytic activity and selectivity in the epoxidation of cyclooctene in the presence of tert-butyl hydroperoxide (TBHP) as oxidant.

  20. Al2O3-Cact-(CuO, Cr2O3, Co3O4 Adsorbents-Catalysts: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Gitana DABRILAITĖ-KUDŽMIENĖ

    2013-03-01

    Full Text Available Al2O3-Cact-(CuO, Cr2O3 Co3O4 adsorbents-catalysts were prepared using Al2O3-Cact (alumina gel–activated carbon adsorbent and different amount of CuO, Cr2O3 and Co3O4. The active components were incorporated into wet alumina gel–carbon mixture using different conditions (by sol-gel method and mixing a milled metal oxides. Equilibrium adsorptive capacity measurements of alcohol vapours were carried out in order to determine the influence of preparation conditions on the stability of prepared adsorbents–catalysts. Specific surface area of the prepared adsorbents-catalysts were measured by BET method. It was established that for adsorbent-catalyst produced by sol-gel method SBET = 244.7 m2/g. Surface area SBET = 29.32 m2/g was obtained for adsorbent-catalyst with metal oxides. On the basis of these results it was assumed that active carbon was lost in this adsorbent-catalyst during the preparation process. Sol-gel derived adsorbent–catalyst was tested for the oxidation of methanol vapours. Catalytic oxidation was carried out in fixed-bed reactor. Experimental data indicate that adsorptive capacity of the adsorbent–catalyst is (3.232 – 3.259 mg/m3 CH3OH at relative air humidity is 40 % – 50 %. During a fast heating of CH3OH – saturated adsorbent-catalyst a part of adsorbate is converted to CO2 and H2O. Methanol conversion increases with increasing of adsorbent-catalyst heating rate.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3832

  1. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas, E-mail: vspuli@utep.edu [Department of Mechanical Engineering, University of Texas, El Paso, TX 79968 (United States); Adireddy, Shiva [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Ramana, C.V. [Department of Mechanical Engineering, University of Texas, El Paso, TX 79968 (United States)

    2015-09-25

    Graphical abstract: Room temperature Raman spectra of CoFe{sub 2−x}Gd{sub x}O{sub 4} (CFGO, x = 0.0–0.3) compounds as a function of wavenumber (cm{sup −1}). - Highlights: • Gd substituted ferrites were synthesized under controlled concentration. • Gd ion induced lattice dynamical changes are significant. • Enhanced magnetization is observed upon Gd-incorporation in cobalt ferrite. • A correlation between lattice dynamics and magnetic properties is established. - Abstract: Polycrystalline gadolinium (Gd) substituted cobalt ferrites (CoFe{sub 2−x}Gd{sub x}O{sub 4}; x = 0–0.3, referred to CFGO) ceramics have been synthesized by solid state reaction method. Chemical bonding, crystal structure and magnetic properties of CFGO compounds have been evaluated as a function of Gd-content. X-ray diffraction (XRD) and Raman spectroscopic analyses confirmed the formation of inverse spinel cubic structure. However, a secondary ortho-ferrite phase (GdFeO{sub 3}) nucleates for higher values of Gd-content. A considerable increase in the saturation magnetization has been observed upon the initial substitution of Gd (x = 0.1). The saturation magnetization drastically decreases at higher Gd content (x ⩾ 0.3). No contribution from ortho-ferrite GdFeO{sub 3} phase is noted to the magnetic properties. The increase in the magnetic saturation magnetization is attributed to the higher magnetic moment of Gd{sup 3+} (4f{sup 7}) residing in octahedral sites is higher when compared to that of Fe{sup 3+} (3d{sup 5}) and as well due to the migration of Co{sup 2+} (3d{sup 7}) ions from the octahedral to the tetrahedral sites with a magnetic moment aligned anti-parallel to those of rare earth (RE{sup 3+}) ions in the spinel lattice. Increase in coercivity with increase in Gd{sup 3+} is content is attributed to magnetic anisotropy in the ceramics.

  2. Mechanosynthesis of MFe2O4 (M = Co, Ni, and Zn Magnetic Nanoparticles for Pb Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    America R. Vazquez-Olmos

    2016-01-01

    Full Text Available Adsorption of Pb(II from aqueous solution using MFe2O4 nanoferrites (M = Co, Ni, and Zn was studied. Nanoferrite samples were prepared via the mechanochemical method and were characterized by X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, micro-Raman, and vibrating sample magnetometry (VSM. XRD analysis confirms the formation of pure single phases of cubic ferrites with average crystallite sizes of 23.8, 19.4, and 19.2 nm for CoFe2O4, NiFe2O4, and ZnFe2O4, respectively. Only NiFe2O4 and ZnFe2O4 samples show superparamagnetic behavior at room temperature, whereas CoFe2O4 is ferromagnetic. Kinetics and isotherm adsorption studies for adsorption of Pb(II were carried out. A pseudo-second-order kinetic describes the sorption behavior. The experimental data of the isotherms were well fitted to the Langmuir isotherm model. The maximum adsorption capacity of Pb(II on the nanoferrites was found to be 20.58, 17.76, and 9.34 mg·g−1 for M = Co, Ni, and Zn, respectively.

  3. Antibacterial Effect of CrO and CoFe2O4 Nanoparticles upon Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Saber Imani

    2011-12-01

    Full Text Available Background & Objectives: The use of metal oxide nanoparticles can be effective to eliminate the bacterial infections, as an alternative to antibiotics. In this study, antibacterial properties of nonmaterials of CrO and CoFe2O4 are investigated against Staphylococcus aureus as a major and prevalent pathogenic bacterium to achieve sterile nano-containers. Materials & Methods: Different concentrations of CrO and CoFe2O4 nanoparticles, (0.2, 0.4, 0.6, 0.8, and 1% of each, were examined with respect to their optical density (OD culture separately. Different percentages of each nanoparticles were also examined together for the best antibacterial combination. Kinetics of Bactericidal of nanoparticles were calculated in two-hour periods and were compared with the power of other common antibiotics. Ratios of MIC/MBC were calculated by Micro dilution method, to demonstrate the bactericidal power of nanoparticles. Results: The best concentration of the nanoparticles with the highest effect of bactericidal was obtained in the presence of 1% concentration of CrO that the OD of S. aureus culture medium had reduced 4/6 times than the control group (p<0/001.Ratio of 70% CrO to 30% CoFe2O4 was the best of the Bacteriostatic properties that OD was reduced 3/3 times than the control group (p<0/05. Best kinetics of bactericidal with survival rate in the presence of 1% CrO and CoFe2O4 were obtained in 24 and 36 hours respectively. In critical concentration of 1% CrO and CoFe2O4 bactericidal power was about 67 and 56 % respectively. The MIC/MBC rate for CrO and CoFe2O4 was obtained 0/2 and 0/4 respectively. Conclusion: The results showed that CrO nanoparticle compared with CoFe2O4 has a higher bactericidal power for S. aureus infection. Therefore, by completion of these experiments and the use of metal oxide nanoparticles complex in sensitive environments such as food storage containers, etc. are suggested.

  4. Sintering effect on structural, magnetic and optical properties of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ferrite nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Y.B., E-mail: ybkans@gmail.com [Department of Physics, Arumugam Pillai Seethai Ammal College, Tiruppattur 630211 (India); Saravanan, R. [PG & Research Department of Physics, The Madura College, Madurai 625011 (India); Srinivasan, N. [PG & Research Department of Physics, Thiagarajar College, Madurai 625009 (India); Ismail, I. [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2017-02-01

    Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nano ferrite particles have been prepared by mechanical alloying via high energy ball milling and sintered at different temperatures from 700 °C to 1000 °C. Spinel structure is confirmed from the analysis of XRD data. Rietveld refinement method is employed to refine the XRD powder data and the structural parameters are calculated from the refinement. Small amount of hematite phase is found in all samples. The SEM, EDAX and XRF analysis reveals respectively the morphology, stoichiometric composition and purity of the powder samples. Using Maximum Entropy Method (MEM) the values of the bond strength between various sites interactions in ferrites are evaluated and compared with theoretical predictions of strengthening/weakening of various sites interactions from the values of interionic distances and interionic bond angles. Ferromagnetic nature of the samples is confirmed from the vibrating sample magnetometer study. The obtained low saturation magnetization values are attributed to presence of second phase. The optical band gap energy of the samples was determined by using UV–VIS techniques. - Highlights: • Raw XRD data were refined using Rietveld refinement method using JANA 2006 software. • Fraction of zinc ions occupies at B site. • Bond strength between the atoms at A-site and B-site is studied by employing maximum entropy method (MEM). • From the MEM result, numerical values of the bond strength between various interactions (A–B, A–A, B–B) have been evaluated. • Various sites interactions results are compared with that of hitherto existing theoretical predictions.

  5. Viscosity of SiO2-"FeO"-Al2O3 System in Equilibrium with Metallic Fe

    Science.gov (United States)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2013-08-01

    The present study delivered the measurements of viscosities in SiO2-"FeO"-Al2O3 system in equilibrium with metallic Fe. The rotational spindle technique was used in the measurements at the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The Fe saturation condition was maintained by an iron plate placed at the bottom of the crucible. The equilibrium compositions of the slags were measured by EPMA after the viscosity measurements. The effect of up to 20 mol. pct Al2O3 on the viscosity of the SiO2-"FeO" slag was investigated. The "charge compensation effect" of the Al2O3 and FeO association has been discussed. The modified quasi-chemical viscosity model has been optimized in the SiO2-"FeO"-Al2O3 system in equilibrium with metallic Fe to describe the viscosity measurements of the present study.

  6. Liquid crystal based optical platform for the detection of Pb2+ ions using NiFe2O4 nanoparticles

    Science.gov (United States)

    Zehra, Saman; Gul, Iftikhar Hussain; Hussain, Zakir

    2018-06-01

    A simple, sensitive, selective and real time detection protocol was developed for Pb2+ ions in water using liquid crystals (LCs). In this method, NiFe2O4 nanoparticles were synthesized using chemical co-precipitation method. Crystallite size, morphological, functional groups and magnetization studies were confirmed using X-ray diffraction, Scanning Electron Microscopy, and Fourier transform infrared spectroscopy techniques, respectively. The nanoparticles were mono dispersed with average particle size of 20 ± 2 nm. The surfactant stabilized magnetic nanoparticles were incubated in liquid crystal based sensor system for the detection of Pb+2 ions. The bright to dark transition of LC was observed through optical microscope. When this system was further immersed with a solution containing Pb2+ ions, it caused homeotropic to planar orientation of LC. This interaction is attributed to the presence of abundant hydroxyl groups in such as M-OH, Fe-OH on the surface of spinel ferrites nanoparticles. These groups interact with metal ions at aqueous interface, causing disruption in LCs orientation giving bright texture. This sensor showed higher selectivity towards Pb2+ ions. The detection limit was estimated to be 100 ppb. The cheap and effective protocol reported here should make promising development of LC based sensor for lead ion detection.

  7. Effects of intrinsic defects on the electronic structure and magnetic properties of CoFe{sub 2}O{sub 4}: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.L.; Fan, W.B. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Hou, Y.H., E-mail: hyhhyl@163.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Guo, K.X. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Ouyang, Y.F. [Department of Physics, Guangxi University, Nanning 530004 (China); Liu, Z.W. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2017-05-01

    The cobalt ferrite (CoFe{sub 2}O{sub 4}) with spinel structure has achieved a great interest as a very important magnetic material which has covered a wide range of applications. The formation condition and energy of possible intrinsic point defects have been investigated by the first-principles calculations, and the effects of the intrinsic point defects on the electronic and magnetic properties of CoFe{sub 2}O{sub 4} have been analyzed. It is found that the growth conditions have a great effect on the formation energy of intrinsic point defects, and each point defect with its fully ionized state is the most stable for the intrinsic point defects with various charge states. In an oxygen rich environment, the cation vacancies are easy to form shallow acceptors, which is conducive to the strength of the p-type conductivity. While in the metal rich environment, the oxygen vacancies tend to form donors which lead to the n-type conductivity. There exists extra levels in the band gap when point defects are present, resulting in a reduction of the band gap. The net magnetic moment depends highly on the defects. - Highlights: • The intrinsic defects in CoFe{sub 2}O{sub 4} were investigated by first-principles calculation. • The effects of intrinsic defects on the electronic structures and magnetic properties of CoFe{sub 2}O{sub 4} were analyzed.

  8. Generalized green synthesis and formation mechanism of sponge-like ferrite micro-polyhedra with tunable structure and composition

    Science.gov (United States)

    Tong, Guoxiu; Du, Fangfang; Xiang, Lingjing; Liu, Fangting; Mao, Lulu; Guan, Jianguo

    2013-12-01

    This paper describes a green versatile glucose-engineered precipitation-sintering process that allows for the selective and mass preparation of spongy porous ferrite (M = Fe, Zn, Co, Ni, Mn, etc.) micro-polyhedra with tunable morphology, texture, and composition. Some kinetic factors, such as the molar ratio of glucose to metal nitrates, reaction temperature, sintering temperature and time, and type of metal nitrates, can be expediently employed to modulate their aspect ratio, shape, size, composition, and textural properties. In this protocol, glucose functions as a reductant, protecting agent, structure-directing agent, and a sacrificial template to guide the assembly of sheet-like nuclei into polyhedral precursors and the formation of spongy porous structures. Owing to larger EM parameters, multiresonant behavior, and dissipative current, spongy porous Fe3O4 polyhedra exhibited enhanced microwave-absorbing properties. This endows them with important potential applications in magnetic devices, catalysis, sorption, photoluminescence, electromagnetic wave absorbing materials, anode materials, and so on. Meanwhile, this general approach can be extended to synthesize other porous sponges with regular geometric configuration because it is simple, inexpensive, environmentally benign, and suitable for extensive production.This paper describes a green versatile glucose-engineered precipitation-sintering process that allows for the selective and mass preparation of spongy porous ferrite (M = Fe, Zn, Co, Ni, Mn, etc.) micro-polyhedra with tunable morphology, texture, and composition. Some kinetic factors, such as the molar ratio of glucose to metal nitrates, reaction temperature, sintering temperature and time, and type of metal nitrates, can be expediently employed to modulate their aspect ratio, shape, size, composition, and textural properties. In this protocol, glucose functions as a reductant, protecting agent, structure-directing agent, and a sacrificial template to

  9. Identification and Analysis of a Novel Gene Cluster Involves in Fe2+ Oxidation in Acidithiobacillus ferrooxidans ATCC 23270, a Typical Biomining Acidophile.

    Science.gov (United States)

    Ai, Chenbing; Liang, Yuting; Miao, Bo; Chen, Miao; Zeng, Weimin; Qiu, Guanzhou

    2018-07-01

    Iron-oxidizing Acidithiobacillus spp. are applied worldwide in biomining industry to extract metals from sulfide minerals. They derive energy for survival through Fe 2+ oxidation and generate Fe 3+ for the dissolution of sulfide minerals. However, molecular mechanisms of their iron oxidation still remain elusive. A novel two-cytochrome-encoding gene cluster (named tce gene cluster) encoding a high-molecular-weight cytochrome c (AFE_1428) and a c 4 -type cytochrome c 552 (AFE_1429) in A. ferrooxidans ATCC 23270 was first identified in this study. Bioinformatic analysis together with transcriptional study showed that AFE_1428 and AFE_1429 were the corresponding paralog of Cyc2 (AFE_3153) and Cyc1 (AFE_3152) which were encoded by the extensively studied rus operon and had been proven involving in ferrous iron oxidation. Both AFE_1428 and AFE_1429 contained signal peptide and the classic heme-binding motif(s) as their corresponding paralog. The modeled structure of AFE_1429 showed high resemblance to Cyc1. AFE_1428 and AFE_1429 were preferentially transcribed as their corresponding paralogs in the presence of ferrous iron as sole energy source as compared with sulfur. The tce gene cluster is highly conserved in the genomes of four phylogenetic-related A. ferrooxidans strains that were originally isolated from different sites separated with huge geographical distance, which further implies the importance of this gene cluster. Collectively, AFE_1428 and AFE_1429 involve in Fe 2+ oxidation like their corresponding paralog by integrating with the metalloproteins encoded by rus operon. This study provides novel insights into the Fe 2+ oxidation mechanism in Fe 2+ -oxidizing A. ferrooxidans ssp.

  10. Zinc substituted ferrite nanoparticles with Zn{sub 0.9}Fe{sub 2.1}O{sub 4} formula used as heating agents for in vitro hyperthermia assay on glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hanini, Amel [Interface Traitement Organisation et Dynamique des Systèmes (TODYS), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7086, 75013, Paris (France); Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS UMR-8104, INSERM U1016, 75005 Paris (France); Laboratoire de Physiologie Intégrée (LPI), Université de Carthage, 7021, Jarzouna (Tunisia); Lartigue, Lenaic [Matière et Systèmes Complexes (MSC), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7057, 75013, Paris (France); Gavard, Julie [Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS UMR-8104, INSERM U1016, 75005 Paris (France); Kacem, Kamel [Laboratoire de Physiologie Intégrée (LPI), Université de Carthage, 7021, Jarzouna (Tunisia); Wilhelm, Claire; Gazeau, Florence [Matière et Systèmes Complexes (MSC), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7057, 75013, Paris (France); Chau, François [Interface Traitement Organisation et Dynamique des Systèmes (TODYS), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7086, 75013, Paris (France); and others

    2016-10-15

    In this paper we investigate the ability of zinc rich ferrite nanoparticles to induce hyperthermia on cancer cells using an alternating magnetic field (AMF). First, we synthesized ferrites and then we analyzed their physico-chemical properties by transmission electron microscopy, X-ray diffraction and magnetic and magnetocalorimetric measurements. We found that the polyol-made magnetically diluted particles are of 11 nm in size. They are superparamagnetic at body temperature (310 K) with a low but non-negligible magnetization. Interestingly, as nano-ferrimagnets they exhibit a Curie temperature of 366 K, close to the therapeutic temperature range. Their effect on human healthy endothelial (HUVEC) and malignant glioma (U87-MG) cells was also evaluated using MTT viability assays. Incubated with the two cell lines, at doses ≤100 µg mL{sup −1} and contact times ≤4 h, they exhibit a mild in vitro toxicity. In these same operating biological conditions and coupled to AMF (700 kHz and 34.4 Oe) for 1 h, they rapidly induce a net temperature increase. In the case of tumor cells it reaches 4 K, making the produced particles particularly promising for self-regulated magnetically-induced heating in local glioma therapy. - Highlights: • Highly crystallized monodisperse 11 nm sized Zn{sub 0.9}Fe{sub 2.1}O{sub 4} particles were produced in polyol. • They exhibit a superparamagnetic behavior at 37 °C with a magnetization of 12 emu g{sup −1} at 50 kOe. • Their Curie temperature reaches 88 °C, close to the therapeutic hyperthermia temperatures. • Incubated with glioma cells and exposed to ac-magnetic field they induce a 4 °C temperature increase. • They can be considered as potential self-regulated heating probes for glioma therapy.

  11. Microstructure and magnetic studies of Mg-Ni-Zn-Cu ferrites

    International Nuclear Information System (INIS)

    Bachhav, S.G.; Patil, R.S.; Ahirrao, P.B.; Patil, A.M.; Patil, D.R.

    2011-01-01

    Highlights: → Ni x Mg 0.5-x Cu 0.1 Zn 0.4 Fe 2 O 4 ferrite shows spinel structure. → Lattice parameter, X-ray density, porosity increase with increase in Ni content. → The IR spectra show tetrahedral and octahedral complexes. → Initial permeability remains constant with temperature and drops to zero at certain temperature which is in close agreement with Curie temperature. → The Curie temperature shows increasing trend with Ni content. - Abstract: Soft Mg-Ni-Zn-Cu spinel ferrites having general chemical formula Ni x Mg 0.5-x Cu 0.1 Zn 0.4 Fe 2 O 4 (where x 0.1, 0.2, 0.3, 0.4 and 0.5) were prepared by standard double sintering ceramic method. The samples were characterized by X-ray diffraction at room temperature. The X-ray diffraction (XRD) study revealed that lattice parameter decreases with increase in Ni content, resulting in a reduction in lattice strain. The electrical and magnetic properties of the synthesized ferrites have been investigated as a function of temperature. The variation of initial permeability and AC susceptibility with temperature exhibits normal ferrimagnetic behavior. The variation of initial permeability with frequency is studied. The Curie temperature (T C ) in the present work was determined from initial permeability and AC susceptibility. The Curie temperature increases with Ni content.

  12. Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jagadeesha Angadi, V. [Department of Physics, Bangalore University, Bangalore, Karnataka 560056 (India); Anupama, A.V.; Choudhary, Harish K.; Kumar, R. [Materials Research Centre, Indian Institute of Science, Bangalore, 560012 (India); Somashekarappa, H.M. [Center for Application of Radioisotopes and Radiation Technology, Mangalore University, Mangalore 574199 (India); Mallappa, M. [Department of Chemistry, Government Science College, Bangalore 560001 (India); Rudraswamy, B. [Department of Physics, Bangalore University, Bangalore, Karnataka 560056 (India); Sahoo, B., E-mail: bsahoo@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore, 560012 (India)

    2017-02-15

    The structural, infrared absorption and magnetic property transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} samples irradiated with different doses (0, 15, 25 and 50 kGy) of γ-irradiation were investigated in this work and a mechanism of phase transformation/decomposition is provided based on the metastable nature of the Mn-atoms in the spinel lattice. The nano-powder sample was prepared by solution combustion route and the pellets of the sample were exposed to γ-radiation. Up to a dose of 25 kGy of γ-radiation, the sample retained the single phase cubic spinel (Fd-3m) structure, but the disorder in the sample increased. On irradiating the sample with 50 kGy γ-radiation, the spinel phase decomposed into new stable phases such as α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases along with amorphous MnO phase, leading to a change in the surface morphology of the sample. Along with the structural transformations the magnetic properties deteriorated due to breakage of the ferrimagnetic order with higher doses of γ-irradiation. Our results are important for the understanding of the stability, durability and performance of the Mn-Zn ferrite based devices used in space applications. - Graphical abstract: The nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramic sample transforms to crystalline α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases (and amorphous MnO phase) at a γ-irradiation dose of 50 kGy, as MnO goes out of the spinel lattice. The high energy γ-irradiation causes structural damage to the nanomaterials leading to change in morphology of the sample as seen in the SEM images. - Highlights: • Mn atoms are more unstable in the Mn-Zn ferrite spinel lattice than Zn-atoms. • Displacement of Mn atoms by γ-radiation from the lattice renders phase transformation. • In Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}, Mn-ferrite cell transforms to crystalline α-Fe{sub 2}O{sub 3} and amorphous MnO. • The stable ZnFe{sub 2}O

  13. Hydrometallurgical Approach for Leaching of Metals from Copper Rich Side Stream Originating from Base Metal Production

    Directory of Open Access Journals (Sweden)

    Udit Surya Mohanty

    2018-01-01

    Full Text Available Pyrometallurgical metal production results in side streams, such as dusts and slags, which are carriers of metals, though commonly containing lower metal concentrations compared to the main process stream. In order to improve the circular economy of metals, selective leaching of copper from an intermediate raw material originating from primary base metal production plant was investigated. The raw material investigated was rich in Cu (12.5%, Ni (2.6%, Zn (1.6%, and Fe (23.6% with the particle size D80 of 124 µm. The main compounds present were nickel ferrite (NiFe2O4, fayalite (Fe2SiO4, cuprite (Cu2O, and metallic copper. Leaching was studied in 16 different solutions. The results revealed that copper phases could be dissolved with high yield (>90% and selectivity towards nickel (Cu/Ni > 7 already at room temperature with the following solutions: 0.5 M HCl, 1.5 M HCl, 4 M NaOH, and 2 M HNO3. A concentration of 4 M NaOH provided a superior selectivity between Cu/Ni (340 and Cu/Zn (51. In addition, 1–2 M HNO3 and 0.5 M HCl solutions were shown to result in high Pb dissolution (>98%. Consequently, 0.5 M HCl leaching is suggested to provide a low temperature, low chemical consumption method for selective copper removal from the investigated side stream, resulting in PLS (pregnant leach solution which is a rich in Cu and lead free residue, also rich in Ni and Fe.

  14. Complexation in the system K2SeO4-UO2SeO4-H2O

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Kuchumova, N.V.; Serezhkin, V.N.

    1994-01-01

    Complexation in the system K 2 SeO 4 -UO 2 SeO 4 -H 2 O at 25 degrees C is studied by isothermal solubility. Congruently soluble K 2 UO 2 (SeO 4 ) 2 ·4H 2 O (I) and incongruently soluble K 2 (UO 2 ) 2 (SeO 4 ) 3 ·6H 2 O (II) are observed. The unit-cell constants of I and II are determined from an X-ray diffraction investigation. For I, a = 12,969, b = 11.588, c = 8.533 angstrom, Z = 4, space group Pmmb. For II, a = 23.36, b = 6.784, c = 13.699 angstrom, β = 104.42 degrees, Z = 4, space group P2/m, P2, or Pm. Complexes I and II are representatives of the crystal-chemical groups AB 2 2 M 1 and A 2 T 3 3 M 1 , respectively, of uranyl complexes

  15. Voltage linearity modulation and polarity dependent conduction in metal-insulator-metal capacitors with atomic-layer-deposited Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} nano-stacks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bao; Liu, Wen-Jun; Wei, Lei; Zhang, David Wei; Jiang, Anquan; Ding, Shi-Jin, E-mail: sjding@fudan.edu.cn [State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433 (China)

    2015-07-07

    Excellent voltage linearity of metal-insulator-metal (MIM) capacitors is highly required for next generation radio frequency integration circuits. In this work, employing atomic layer deposition technique, we demonstrated how the voltage linearity of MIM capacitors was modulated by adding different thickness of SiO{sub 2} layer to the nano-stack of Al{sub 2}O{sub 3}/ZrO{sub 2}. It was found that the quadratic voltage coefficient of capacitance (α) can be effectively reduced from 1279 to −75 ppm/V{sup 2} with increasing the thickness of SiO{sub 2} from zero to 4 nm, which is more powerful than increasing the thickness of ZrO{sub 2} in the Al{sub 2}O{sub 3}/ZrO{sub 2} stack. This is attributed to counteraction between the positive α for Al{sub 2}O{sub 3}/ZrO{sub 2} and the negative one for SiO{sub 2} in the MIM capacitors with Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} stacks. Interestingly, voltage-polarity dependent conduction behaviors in the MIM capacitors were observed. For electron bottom-injection, the addition of SiO{sub 2} obviously suppressed the leakage current; however, it abnormally increased the leakage current for electron top-injection. These are ascribed to the co-existence of shallow and deep traps in ZrO{sub 2}, and the former is in favor of the field-assisted tunnelling conduction and the latter contributes to the trap-assisted tunnelling process. The above findings will be beneficial to device design and process optimization for high performance MIM capacitors.

  16. Effect of carbon and manganese on the microstructure and mechanical properties of 9Cr2WVTa deposited metals

    Science.gov (United States)

    Wang, Jian; Rong, Lijian; Li, Dianzhong; Lu, Shanping

    2017-03-01

    Six 9Cr2WVTa deposited metals with different carbon and manganese contents have been studied to reveal the role of major elements, which guide for the design of welding consumables for reduced activation ferritic/martensitic steel and meet for the requirements of accelerator driven systems-lead fusion reactors. The typical microstructure for the 9Cr2WVTa deposited metals is the lath martensite along with the fine stripe δ-ferrite. The chemical compositions influence the solidification sequence and therefore, change the δ-ferrite content in the deposited metal. The impact toughness for the 9Cr2WVTa deposited metals decreases remarkably when the δ-ferrite content is more than 5.2 vol%, also the impact toughness decreases owing to the high quenching martensite formation. Increasing the level of manganese addition, α phase of each alloy shifts to the bottom right according to the CCT diagram.

  17. Structural characterization of a new vacancy ordered perovskite modification found for Ba3Fe3O7F (BaFeO2.333F0.333): Towards understanding of vacancy ordering for different perovskite-type ferrites

    International Nuclear Information System (INIS)

    Clemens, Oliver

    2015-01-01

    The new vacancy ordered perovskite-type compound Ba 3 Fe 3 O 7 F (BaFeO 2.33 F 0.33 ) was prepared by topochemical low-temperature fluorination of Ba 2 Fe 2 O 5 (BaFeO 2.5 ) using stoichiometric amounts of polyvinylidene difluoride (PVDF). The vacancy order was found to be unique so far for perovskite compounds, and the connectivity pattern can be explained by the formula Ba 3 (FeX 6/2 ) (FeX 5/2 ) (FeX 3/2 X 1/1 ), with X=O/F. Mössbauer measurements were used to confirm the structural analysis and agree with the presence of Fe 3+ in the above mentioned coordination environments. Group–subgroup relationships were used to build a starting model for the structure solution and to understand the relationship to the cubic perovskite structure. Furthermore, a comparison of a variety of vacancy-ordered iron-containing perovskite-type structures is given, highlighting the factors which favour one structure type over the other depending on the composition. - Graphical abstract: The crystal structure of Ba 3 Fe 3 O 7 F in comparison to other perovskite type ferrites. - Highlights: • The crystal structure of Ba 3 Fe 3 O 7 F in comparison to other perovskite type ferrites. • Ba 3 Fe 3 O 7 F was synthesized by low temperature fluorination of Ba 2 Fe 2 O 5 . • Ba 3 Fe 3 O 7 F shows a unique vacancy order not found for other perovskite type compounds. • The structure of Ba 3 Fe 3 O 7 F was solved using group–subgroup relationships. • A systematic comparison to other ferrite type compounds reveals structural similarities and differences. • The A-site coordination of the cation is shown to play an important role for the type of vacancy order found

  18. Ferrite control--Measurement problems and solutions during stainless steel fabrication

    International Nuclear Information System (INIS)

    Pickering, E.W.

    1986-01-01

    Ferrite is one of the magnetic phases found in many grades of otherwise nonmagnetic austenitic stainless steel weldments. Control of ferrite during the fabrication of cryogenic component parts is necessary to produce a reliable product, free of cracking and microfissuring. This is accomplished by balancing compositions in order to produce a small amount of ferrite which is generally accompanied with reduced toughness. Control of ferrite is essential during the fabrication of component parts. The means to accomplish this will vary with the type of material being welded, thickness, welding process, method of measurement and fabrication procedures. An application used during the fabrication of component parts for the Fast Flux Test Facility (FFTF) required specially formulated shielded manual arc welding (SMAW) electrodes and consumable inserts. Control of ferrite measurements and shop welding procedures were essential. The special materials and techniques were used to weld Type 316 stainless steel pipe joints, 28 in. (0.71 m) in diameter. By using three lots of electrodes, each with a different ferrite level, a compatible range of ferrite was achieved throughout the layers of weld metal. By extensive use of the Schaeffler and DeLong modified constitution diagrams for stainless steel weld metal, E-16-8-2 SMAW electrodes were developed with ''0'' ferrite level. The electrodes were used during fabrication of the Liquid Metal Fast Breader Reactor (LMFBR) component parts of Type 316 stainless steel. Metallographic evaluation of laboratory specimens, control of shop welding techniques and individual laboratory training of shop welders combined to produce a quality product

  19. Phase relations in the M2MoO4 - Ag2MoO4 - Hf(MoO4)2 (M=Li, Na) systems

    International Nuclear Information System (INIS)

    Bazarova, Zh.G.; Bazarov, B.G.; Balsanova, L.V.

    2002-01-01

    The M 2 MoO 4 - Ag 2 MoO 4 - Hf(MoO 4 ) 2 (M=Li, Na) systems were studied by X-ray diffraction and differential thermal analyses in the subsolidus area (450 - 500 Deg C) for the first time. The formation of the binary compound with the variable composition Li 4-x Hf 1+0.2x (MoO 4 ) 4 (0 ≤ x ≤ 0.6) in the Li 2 MoO 4 - Hf(MoO 4 ) 2 system and the ternary molybdates Li 4 Ag 2 Hf(MoO 4 ) 5 (S 1 ) and Na 2 Ag 2 Hf(MoO 4 ) 4 (S 2 ) was established and the thermal characteristics of the prepared compounds were examined. The new binary molybdate Ag 2 Hf(MoO 4 ) 3 was prepared by the reaction between Ag 2 MoO 4 and Hf(MoO 4 ) 2 [ru

  20. Immobilization of Alkali Metal Fluorides via Recrystallization in a Cationic Lamellar Material, [Th(MoO4)(H2O)4Cl]Cl·H2O.

    Science.gov (United States)

    Lin, Jian; Bao, Hongliang; Qie, Meiying; Silver, Mark A; Yue, Zenghui; Li, Xiaoyun; Zhu, Lin; Wang, Xiaomei; Zhang, Linjuan; Wang, Jian-Qiang

    2018-06-05

    Searching for cationic extended materials with a capacity for anion exchange resulted in a unique thorium molybdate chloride (TMC) with the formula of [Th(MoO 4 )(H 2 O) 4 Cl]Cl·H 2 O. The structure of TMC is composed of zigzagging cationic layers [Th(MoO 4 )(H 2 O) 4 Cl] + with Cl - as interlamellar charge-balancing anions. Instead of performing ion exchange, alkali thorium fluorides were formed after soaking TMC in AF (A = Na, K, and Cs) solutions. The mechanism of AF immobilization is elucidated by the combination of SEM-EDS, PXRD, FTIR, and EXAFS spectroscopy. It was observed that four water molecules coordinating with the Th 4+ center in TMC are vulnerable to competition with F - , due to the formation of more favorable Th-F bonds compared to Th-OH 2 . This leads to a single crystal-to-polycrystalline transformation via a pathway of recrystallization to form alkali thorium fluorides.

  1. Synthesis of ZnFe2O4/SiO2 composites derived from a diatomite template.

    Science.gov (United States)

    Liu, Zhaoting; Fan, Tongxiang; Zhou, Han; Zhang, Di; Gong, Xiaolu; Guo, Qixin; Ogawa, Hiroshi

    2007-03-01

    A novel porous ZnFe2O4/SiO2 composite product has been generated with a template-directed assembly method from porous diatomite under different synthesis conditions, such as precursor concentrations (metallic nitrates), calcination temperature and diatomite type. The phase composition and morphology of all the materials were examined by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The results indicated that an inherited hierarchical porous structure from the diatomite template can be obtained, and the synthesis conditions were found to have clear effects on the formation of the ZnFe2O4/SiO2 composite. The ideal composite of ZnFe2O4/SiO2 can be obtained through optimization of diatomite template type, precursor solution and calcination temperature. Furthermore, the adsorption abilities of two types of diatomites were analyzed in detail using FTIR spectra and nitrogen adsorption measurements etc, which proved that A-diatomite (Shengzhou-diatomite) is better than B-diatomite (Changbai-diatomite) on the aspect of adsorbing Zn and Fe ions, and of forming the ZnFe2O4.

  2. Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route

    International Nuclear Information System (INIS)

    Vinaykumar, R.; Mazumder, R.; Bera, J.

    2017-01-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo 1.5 Ti 1.5 Fe 9 O 19 ) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO 2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δ µ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route. - Highlights: • SrCo 1.5 Ti 1.5 Fe 9 O 19 ferrite was successfully prepared by sol–gel combustion process. • Sol-gel synthesis of the ferrite using titanyl nitrate has been reported first time. • Phase formation was easier in the titanyl nitrate based sol-gel process. • Better magneto-dielectric properties were observed in sol-gel processed ferrite.

  3. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  4. Systems Li2B4O7 (Na2B4O7, K2B4O7)-N2H3H4OH-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Sadetdinov, Sh.V.; Akimov, V.M.; Mitrasov, Yu.N.; Petrova, O.V.; Klopov, Yu.N.

    1994-01-01

    Phase equilibriums in the Li 2 B 4 O 7 (Na 2 B 4 O 7 , K 2 B 4 O 7 )-N 2 H 3 H 4 OH-H 2 O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM 2 B 4 O 7 ·nN 2 H 3 C 2 H 4 OH·XH 2 O, where M=Li, Na with hydrazine ethanol. K 2 B 4 O 7 ·4H 2 O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods

  5. Synthesis, electrical and magnetic properties of sodium borosilicate glasses containing Co-ferrites nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Othman, H.A. [Department of Physics, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Menoufia (Egypt); Eltabey, M.M. [Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shibin El-Kom, Menoufia (Egypt); Department of Physics, Faculty of Science, Jazan University (Saudi Arabia); Ibrahim, Samia E.; El-Deen, L.M. Sharaf; Elkholy, M.M. [Department of Physics, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Menoufia (Egypt)

    2017-02-01

    Co-ferrites nanoparticles that have been prepared by the co-precipitation method were added to sodium borosilicate (Na{sub 2}O–B{sub 2}O{sub 3}–SiO{sub 2}) glass matrix by the solid solution method and they were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and magnetization measurements. (XRD) revealed the formation of the Co-ferrite magnetic crystalline phase embedded in an amorphous matrix in all the samples. The investigated samples by (TEM) showed the formation of the cobalt ferrite nanoparticles with a spherical shape and highly monodispersed with an average size about 13 nm. IR data revealed that the BO{sub 3} and BO{sub 4} are the main structural units of these samples network. IR spectra of the investigated samples showed the characteristic vibration bands of Co-ferrite. Composition and frequency dependent dielectric properties of the prepared samples were measured at room temperature in the frequency range 100–100 kHz. The conductivity was found to increase with increasing cobalt ferrite content. The variations of conductivity and dielectric properties with frequency and composition were discussed. Magnetic hysteresis loops were traced at room temperature using VSM and values of saturation magnetization M{sub S} and coercive field H{sub C} were determined. The obtained results revealed that a ferrimagnetic behavior were observed and as Co-ferrite concentration increases the values of M{sub S} and H{sub C} increase from 2.84 to 8.79 (emu/g) and from 88.4 to 736.3 Oe, respectively.

  6. Sol-gel synthesis and characterization of single-phase Ni ferrite nanoparticles dispersed in SiO2 matrix

    International Nuclear Information System (INIS)

    Nadeem, K.; Traussnig, T.; Letofsky-Papst, I.; Krenn, H.; Brossmann, U.; Wuerschum, R.

    2010-01-01

    Nanoparticles of NiFe 2 O 4 dispersed in SiO 2 (25 wt%) matrix were synthesized by sol-gel method using tetraethyl orthosilicate (TEOS), as a precursor for SiO 2 . The sol-gel method for nanocomposites normally provides multi-phase nanoparticles. We investigated by a synopsis of different analysis methods, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and SQUID-magnetometry, how the various chemical phases are transformed to a single-phase spinel structure during the various stages of annealing from 300 to 900 o C. We have developed a full phase diagram of chemical phases as a function of annealing temperature. The average particle size lies in the range 16-27 nm. The chemical phases formed below 900 o C are NiFe, NiO, γ-Fe 2 O 3 , α-Fe 2 O 3 , and NiFe 2 O 4 , respectively. The role of the TEOS prepared SiO 2 matrix is to restrict the particle size in a small range in order to rule out particle size effects. In the mid-infrared, a shift of the vibrational Fe-O bond is observed from 568 to 586 cm -1 for annealing between 500 and 700 o C which indicates an increasing NiFe 2 O 4 phase formation. A systematic study of coercivity field (ranging from 32 to 200 Oe) and saturation magnetic moment (ranging from 12.2 to 32.1 emu/g) for differently annealed samples supports our findings about the evolution of single-phase NiFe 2 O 4 at 900 o C. The opposite trend of saturation magnetic moment and coercivity with respect to annealing temperature clearly separates the different phases of metallic, antiferromagnetic, and finally single-phase spinel NiFe 2 O 4 .

  7. Experimental determination of magnetocrystalline anisotropy constants and saturation magnetostriction constants of NiZn and NiZnCo ferrites intended to be used for antennas miniaturization

    International Nuclear Information System (INIS)

    Mattei, Jean-Luc; Le Guen, Emmanuel; Chevalier, Alexis; Tarot, Anne-Claude

    2015-01-01

    This study investigates the magnetocrystalline anisotropy constants (K 1 ) and the saturation magnetostriction constants (λ S ) of Ni 1−x Zn x Fe 2 O 4 (NiZn) and Ni 0.8−x Zn x Co 0.2 Fe 1.98 O 4−δ (NiZnCo) ferrites intended to be used for antenna downsizing. Composite materials constituted of soft ferrite nanosized particles (NiZn or NiZnCo ferrites) embedded in an epoxy matrix are realized. Measurements of their magnetic permeability in the frequency range of 200 MHz–6 GHz are performed. The influence of compressive stress (in the range of 32–96 MPa) on their Ferrimagnetic Resonance (FMR) is demonstrated. An analytical modeling of stress-induced FMR changes is proposed that allows simultaneous determinations of the Natural Ferrimagnetic Resonance (NFMR, F 0 ), K 1 and λ S of Ni 1−x Zn x Fe 2 O 4 and Ni 0.8−x Zn x Co 0.2 Fe 1.98 O 4−δ ferrites. The obtained results for NiZn ferrites are in agreement with literature data, validating both the experimental process and the proposed modeling of the stress-induced FMR changes. Regarding NiZnCo ferrites, extended data on K 1 and λ S are presented for the first time. Increasing zinc content (x) induces a spin disorder that reduces in a same time K 1 and the magnetization at saturation M S . The rapid variation of K 1 (x) is related to that of the magnetization M S (x) through a power law. The single-ion anisotropy model allows a satisfactory interpretation of K 1 dependence on zinc content. The unexpected low values of λ S got for NiZnCo ferrites, compared to those got for NiZn ferrites, are also discussed. Application of compressive stress lowers noticeably magnetic losses of Ni 0.6 Zn 0.2 Co 0.2 Fe 1.98 O 4−δ at given frequency, thereby enhancing the ability of this spinel ferrite to be used as a substrate in the aim of antenna miniaturization. - Highlights: • We measure permeability of ferrite-based composites from 0.1 GHz to 6 GHz. • The influence of compressive stress on the FMR of

  8. NH4In(SeO4)2x4H2O crystal structure interpretation

    International Nuclear Information System (INIS)

    Soldatov, E.A.; Kuz'min, Eh.A.; Ilyukhin, V.V.

    1979-01-01

    The rhomb method has been applied to interpret the structure of monoclinic ammonium indium selenate NH 4 In(SeO 4 ) 2 x4H 2 O the elementary cell of which contains Z=4 formula units (a=10.728, b=9.434, c=11.086 A, γ=101.58). The space group is P2 1 /b. The structure foundation is composed of [In(SeO 4 ) 2 x2H 2 O] 1- mixed layers parallel to (100). ''Free'' H 2 O molecules and NH 4 + cations are situated between the layers

  9. Pb3O4 type antimony oxides MSb2O4 (M = Co, Ni) as anode for Li-ion batteries

    International Nuclear Information System (INIS)

    Jibin, A.K.; Reddy, M.V.; Subba Rao, G.V.; Varadaraju, U.V.; Chowdari, B.V.R.

    2012-01-01

    Graphical abstract: Isostructural Pb 3 O 4 type MSb 2 O 4 (M = Co, Ni) compounds were investigated as possible anodes for lithium ion batteries. The reversible capacity is due to electrochemically active Sb and the transition metal and Li 2 O form an inactive matrix which buffers volume variations associated with alloying-de-alloying of antimony. Highlights: ► Isostructural MSb 2 O 4 (M = Co, Ni) were studied as anode for LIBs for first time. ► Li/MSb 2 O 4 (M = Co, Ni) cells displayed reversibility due to electrochemically active Sb. ► CoSb 2 O 4 showed good reversibility compared to NiSb 2 O 4 . - Abstract: Polycrystalline samples of isostructural MSb 2 O 4 (M = Co, Ni) have been prepared by solid state synthesis and lithium-storage is investigated as possible anode materials for lithium-ion batteries. The reaction mechanism of lithium with MSb 2 O 4 (M = Co, Ni) is explored by galvanostatic cycling, cyclic voltammogram and ex situ studies. Both CoSb 2 O 4 and NiSb 2 O 4 exhibit similar electrochemical behavior and show reversible capacity of 490 and 412 mAh g −1 respectively in the first cycle. Reversible alloying de-alloying of Li x Sb takes place in an amorphous matrix of M (Co, Ni) and Li 2 O during electrochemical cycling.

  10. Effects of consolidation temperature, strength and microstructure on fracture toughness of nanostructured ferritic alloys

    International Nuclear Information System (INIS)

    Miao, P.; Odette, G.R.; Yamamoto, T.; Alinger, M.; Hoelzer, D.; Gragg, D.

    2007-01-01

    Fully consolidated nanostructured ferritic alloys (NFAs) were prepared by attritor milling pre-alloyed Fe-14Cr-3W-0.4Ti and 0.3 wt% Y 2 O 3 powders, followed by hot isostatic pressing (HIPing) at 1000 o C or 1150 o C at 200 MPa for 4 h. Transmission electron microscopy (TEM) revealed similar bimodal distributions of fine and coarse ferrite grains in both cases. However, as expected, the alloy microhardness decreased with increasing in HIPing temperature. Three point bend tests on single edge notched specimens, with a nominal root radius ρ = 0.15 mm, were used to measure the notch fracture toughness, K ρ , as a function of test temperature. The K ρ curves were found to be similar for both processing conditions. It appears that the coarser ferrite grains control cleavage fracture, in a way that is independent of alloy strength and HIPing temperature

  11. Ruddlesden-Popper compounds (SrO)(LaFeO3)n (n = 1 and 2) as p-type semiconductors for photocatalytic hydrogen production

    International Nuclear Information System (INIS)

    Chen, Hongmei; Sun, Xiaoqin; Xu, Xiaoxiang

    2017-01-01

    Graphical abstract: Two layered ferrites LaSrFeO 4 and La 2 SrFe 2 O 7 have been investigated which demonstrate interesting p-type semconductivity and efficient hydrogen production from water. Display Omitted -- Abstract: Here we report two Ruddlesden-Popper type ferrite perovskites (SrO)(LaFeO 3 ) n (n = 1 and 2) which demonstrate p-type semiconductivity. Their crystal structure, optical absorption and other physicochemical properties have been systematically explored. Our results show that both ferrites crystallize in tetragonal symmetry with structural lamination along c axis. Efficient photocatalytic hydrogen production has been achieved for both samples under full range and visible light illumination. Better performance is noticed for LaSrFeO 4 with apparent quantum efficiency approaches 0.31% and 0.19% under full range and visible light illumination, respectively. The p-type semiconductivity is verified by their cathodic photocurrent as well as negative Mott-Schottky slop during Photoelectrochemical measurement. The relative lower activity for La 2 SrFe 2 O 7 compared to LaSrFeO 4 is likely due to its higher defect concentration which facilitates charge recombination. Both compounds exhibit anisotropic phenomenon for charge migrations according to theoretical calculations. Their p-type semiconductivity, strong visible light absorption, chemical inertness and high abundance of constituent elements signify promising applications in the field of solar energy conversion and optoelectronics.

  12. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    Science.gov (United States)

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  13. Size-controlled synthesis of NiFe2O4 nanospheres via a PEG assisted hydrothermal route and their catalytic properties in oxidation of alcohols by periodic acid

    International Nuclear Information System (INIS)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-01-01

    Graphical abstract: - Highlights: • Hydrothermal synthesis of NiFe 2 O 4 NPs with (C 4 H 9 ) 3 N as hydroxylating agent. • PEG 4000 was used as surfactant to control sizes of NPs. • The TEM images revealed the material to be spherical in shape with sizes 2–10 nm. • NiFe 2 O 4 was used as recyclable catalyst for oxidation of alcohols by periodic acid. - Abstract: A novel and facile approach for synthesis of spinel nickel ferrites (NiFe 2 O 4 ) nanoparticles (NPs) employing homogeneous chemical precipitation followed by hydrothermal heating is reported. The synthesis involves use of tributylamine (TBA) as a hydroxylating agent in synthesis of nickel ferrites. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized NiFe 2 O 4 NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption–desorption isotherm (BET) and vibrating sample magnetometry (VSM). The XRD pattern revealed formation of cubic face-centered NiFe 2 O 4 and TEM image showed spherical particles of sizes 2–10 nm. These NiFe 2 O 4 NPs were used as magnetically recoverable catalyst in oxidation of cyclic alcohols to their corresponding aldehydes by periodic acid. This eco-friendly procedure affords products in very high yield and selectivity. The reusability of the catalyst is proved to be noteworthy as the material exhibits no significant changes in its catalytic activity even after five cycles of reuse.

  14. A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process

    International Nuclear Information System (INIS)

    Arivazhagan, B.; Srinivasan, G.; Albert, S.K.; Bhaduri, A.K.

    2011-01-01

    Reduced activation ferritic martensitic (RAFM) steel is a major structural material for test blanket module (TBM) to be incorporated in International Thermonuclear Experimental Reactor (ITER) programme to study the breeding of tritium in fusion reactors. This material has been mainly developed to achieve significant reduction in the induced radioactivity from the structural material used. Fabrication of TBM involves extensive welding, and gas tungsten arc welding (GTAW) process is one of the welding processes being considered for this purpose. In the present work, the effect of heat input on microstructure of indigenously developed RAFM steel weld metal produced by GTAW process has been studied. Autogenous bead-on-plate welding, autogenous butt-welding, butt-welding with filler wire addition, and pulsed welding on RAFMS have been carried out using GTAW process respectively. The weld metal is found to contain δ-ferrite and its volume fraction increased with increase in heat input. This fact suggests that δ-ferrite content in the weld metal is influenced by the cooling rate during welding. It was also observed that the hardness of the weld metal decreased with increase in δ-ferrite content. This paper highlights the effect of heat input and PWHT duration on microstructure and hardness of welds.

  15. Systematic study on surface and magnetostructural changes in Mn-substituted dysprosium ferrite by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Rekha, G. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Tholkappiyan, R. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates); Vishista, K., E-mail: raovishista@gmail.com [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Hamed, Fathalla [Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates)

    2016-11-01

    Highlights: • Garnet type Dy{sub 3}Fe{sub 5-x}Mn{sub x}O{sub 12} (x = 0–0.06) nanoparticles of 88.4–86.8 nm were synthesized by hydrothermal method. • The Dy, Mn, Fe and O elements in the ferrites were confirmed from XPS. • The multiple oxidation states of Fe and Mn ions, bonding energy and cationic distributions of the samples were examined by XPS. • The magnetic property shows ferromagnetic behavior from VSM technique. • The results from these studies are correlated with respect to Mn dopant. - Abstract: Dysprosium iron garnets are of scientific importance because of the wide range of magnetic properties that can be obtained in substituting dysprosium by a rare earth metal. In the present work, the effect of Mn substitution on magnetostructural changes in dysprosium ferrite nanoparticles is studied. Highly crystalline pure and Mn doped dysprosium ferrite nanoparticles were synthesized by hydrothermal method. The samples were calcined at 1100 °C for 2 h in air atmosphere which is followed by characterization using XRD, FT-IR analysis, SEM, XPS and VSM. The average crystallite size of synthesized samples were calculated by X-ray diffraction falls in the range of 88.4–86.8 nm and was found to be in cubic garnet structure. For further investigation of the structure and corresponding changes in the tetrahedral and octahedral stretching vibrational bonds, FT-IR was used. The synthesized samples consist of multiple oxidation (Fe{sup 3+} and Fe{sup 2+}) states for Fe ions and (Mn{sup 3+} and Mn{sup 2+}) Mn ions analyzed in three ways of Fe 2p and Mn 2p spectra from the XPS analysis. With respect to Mn dopant in Dy{sub 3}Fe{sub 5}O{sub 12}, the cationic distributions of elements were discussed from high resolution XPS spectra by peak position and shift, area, width. To find out the porous/void surface morphology of the sample, scanning electron microscopy was used. From XPS analysis, the presence of elements (Dy, Mn, Fe and O) and their composition in the

  16. Synthesis of nano-crystalline NiFe2O4 powders in subcritical and supercritical ethanol

    Czech Academy of Sciences Publication Activity Database

    Ćosović, A.; Žák, Tomáš; Glisić, S.; Sokić, M.; Lazarević, S.; Ćosović, V.; Orlović, A.

    2016-01-01

    Roč. 113, JUL (2016), s. 96-105 ISSN 0896-8446 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : supercritical * subcritical * nano-crystalline powders * nickel ferrite * metal oxide * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.991, year: 2016

  17. Surface chemical and photocatalytic consequences of Ca-doping of BiFeO{sub 3} as probed by XPS and H{sub 2}O{sub 2} decomposition studies

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, Mohamed I., E-mail: mizaki@link.net [Chemistry Department, Faculty of Science, Minia University, El-Minia 61519 (Egypt); Ramadan, Wegdan [Physics Department, Faculty of Science, Alexandria University, Alexandria 21511 (Egypt); Katrib, Ali [Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Rabee, Abdallah I.M. [Chemistry Department, Faculty of Science, Minia University, El-Minia 61519 (Egypt)

    2014-10-30

    Graphical abstract: - Highlights: • BiFeO{sub 3} is a modest visible-light heterogeneous photocatalyst for H{sub 2}O{sub 2} decomposition. • The ferrite activity is promoted with Ca-doping up to 10 wt%-Ca. • Favourable consequences are enhanced surface metal redoxability and oxide basicity. • Furthering doping to >10 wt%-Ca retrogresses the ferrite photocatalytic activity. • A retrogressive doping consequence is bulk phase separation of α(γ)-Fe{sub 2}O{sub 3}. - Abstract: Pure and Ca-doped Bi{sub 1−x}Ca{sub x}FeO{sub 3} samples were prepared with x = 0.0–0.2, adopting a sol–gel method. Previously reported studies performed on similarly composed and prepared samples revealed that Ca-doping, above solubility limit (namely at ≥10%-Ca), results in phase separation and formation of BiFeO{sub 3}/α(γ)-Fe{sub 2}O{sub 3} nanocomposite particles. Hetero p/n nanojunctions thus established were considered to help separating photo-generated electron–hole pairs and, therefore, explain consequent promotion of photo-Fenton catalytic activity of BiFeO{sub 3} towards methylene blue degradation in presence of H{sub 2}O{sub 2} additive. However, the encompassed decomposition of H{sub 2}O{sub 2} was not addressed. To bridge this gap of knowledge, the present investigation was designed to assess Ca-doping-effected surface chemical modifications and gauge its impact on the heterogeneous photo-/thermo-catalytic activity of BiFeO{sub 3} towards H{sub 2}O{sub 2} decomposition, by means of X-ray photoelectron spectroscopy (XPS) and H{sub 2}O{sub 2} decomposition gravimetry. XPS results revealed generation of high binding energy Bi 4f and Fe 2p states, as well as enhancement of the surface basicity, upon doping to 10%-Ca. These surface chemical consequences are rendered hardly detectable upon further increase of the dopant magnitude to 20%-Ca. In parallel, the H{sub 2}O{sub 2} decomposition activity of the ferrite, under natural visible light, is enhanced to optimize

  18. An X-ray absorption spectroscopic study of the metal site preference in Al1-xGaxFeO3

    Science.gov (United States)

    Walker, James D. S.; Grosvenor, Andrew P.

    2013-01-01

    Magnetoelectric materials have potential for being introduced into next generation technologies, especially memory devices. The AFeO3 (Pna21; A=Al, Ga) system has received attention to better understand the origins of magnetoelectric coupling. The magnetoelectric properties this system exhibits depend on the amount of anti-site disorder present, which is affected by the composition and the method of synthesis. In this study, Al1-xGaxFeO3 was synthesized by the ceramic method and studied by X-ray absorption spectroscopy. Al L2,3-, Ga K-, and Fe K-edge spectra were collected to examine how the average metal coordination number changes with composition. Examination of XANES spectra from Al1-xGaxFeO3 indicate that with increasing Ga content, Al increasingly occupies octahedral sites while Ga displays a preference for occupying the tetrahedral site. The Fe K-edge spectra indicate that more Fe is present in the tetrahedral site in AlFeO3 than in GaFeO3, implying more anti-site disorder is present in AlFeO3.

  19. Structural, luminescence and photophysical properties of novel trimetallic nanocomposite CeO2·ZnO·ZnAl2O4

    International Nuclear Information System (INIS)

    Subhan, Md Abdus; Ahmed, Tanzir; Sarker, Prosenjit; Pakkanen, Tuula T.; Suvanto, Mika; Horimoto, Masahiro; Nakata, Hiroyasu

    2014-01-01

    A novel trimetallic nanocomposite was prepared at a temperature of around 220 °C using co-precipitation of their carbonates from aqueous solutions of the metal nitrates. The morphology of the composite was investigated with scanning electron microscopy (SEM). The X-ray, FTIR and SEM/EDS analyses data indicate that as-synthesized composite which was heated at around 220 °C exists in a nanosized form consisting of crystalline Zn 6 Al 2 (OH) 16 CO 3 ·4H 2 O and CeO 2 . Annealing at temperatures between 400 and 920 °C converts the as-synthesized composite to CeO 2 ·ZnO·ZnAl 2 O 4 multi-metal oxide consisting of crystalline CeO 2 , ZnO and semicrystalline ZnAl 2 O 4 . Photoluminescence (PL) spectra of the as-synthesized sample showed emissions at 440 and 590 nm. PL spectra of CeO 2 ·ZnO·ZnAl 2 O 4 annealed at 920 °C was recorded and three sharp lines were observed at 627 nm (1.98 eV), 530 nm (2.34 eV) and 465 nm (2.67 eV) with broad peaks at 540 nm (2.3 eV) and 400 nm (3.1 eV). These sharp lines resemble to those of CeO 2 and the broad peaks originate from ZnO. The indirect band gap of the as-synthesized composite was found to be 2.44 eV. The luminescence lifetime at 4 K was measured to be 38 μs. -- Highlights: • A novel trimetallic nanocomposite, CeO 2 ·ZnO·ZnAl 2 O 4 has been synthesized and characterized. • At around 220 °C as-synthesized samples exist in crystalline Zn 6 Al 2 (OH) 16 CO 3 ·4H 2 O and CeO 2 . • Annealing at temperatures between 400 and 920 °C converts the composite to CeO 2 ·ZnO·ZnAl 2 O 4 . • The luminescence lifetime of the composite at 4 K was measured to be 38 μs. • PL of CeO 2 ·ZnO·ZnAl 2 O 4 shows three sharp peaks at 627 nm, 530 nm and 465 nm

  20. Novel microwave initiated synthesis of Zn{sub 2}SiO{sub 4} and MCrO{sub 4} (M = Ca, Sr, Ba, Pb)

    Energy Technology Data Exchange (ETDEWEB)

    Parhi, Purnendu [Department of Mechanical Engineering, Colorado State University, Fort Collins 80523 (United States); Manivannan, V. [Department of Mechanical Engineering, Colorado State University, Fort Collins 80523 (United States)], E-mail: mani@engr.colostate.edu

    2009-02-05

    A novel microwave initiated solid-state metathesis synthesis of metal chromates and zinc silicate has been investigated. The high lattice energy of NaCl drives the solid-state metathesis reaction (CaCl{sub 2}.2H{sub 2}O + Na{sub 2}CrO{sub 4}.4H{sub 2}O {yields} NaCl + CaCrO{sub 4} + 6H{sub 2}O{up_arrow}) in the forward direction to obtain the products. The structural, optical, and chemical properties of synthesized compounds are determined by powder X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and diffused reflectance spectroscopy in the UV-vis range.