WorldWideScience

Sample records for metal contaminated soils

  1. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  2. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  3. Remediation of soils contaminated with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Boni, M.R.; D' Aprile, L. [Univ. of Rome ' ' La Sapienza' ' , Dept. of Hydraulic Transportation and Roads (Italy)

    2001-07-01

    In December 1999 Italy issued the national regulation (DM 471/99) for the clean-up of contaminated sites. This regulation applies both to derelict and to still operating industrial plants and waste management facilities. Target concentration values for clean-up interventions are issued and the requirements for design and planning of technical operation are defined. The selection of the appropriate clean-up technology are based on the following main criteria: - reduce the concentration in environmental media and the migration of pollutants without removing soil off-site; - in order to reduce contaminated material removal and transportation, remedial actions of soil, subsoil and groundwater should preferably be based on in-situ treatments. In-situ technologies commonly applied in Italy to the remediation of soils contaminated by heavy metals (As, Cd, Cr, Hg, Pb) are: - containment (caps, vertical barriers); - soil flushing; - cement based solidification/stabilization. (orig.)

  4. Heavy metal movement in metal-contaminated soil profiles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenbin; Shuman, L.M. [Univ. of Georgia, Griffin, GA (United States)

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  5. Heavy metal contamination of soil and sediment in Zambia

    African Journals Online (AJOL)

    USER

    Key words: Heavy metal, contamination, mining, soil, sediment. INTRODUCTION ... drinking water and inhaling air or soil contaminated by mining activities and the ..... indicates that copper waste discharged into the upper reaches of the Kafue ...

  6. Prospects for separating heavy metal from contaminated soil

    International Nuclear Information System (INIS)

    Langen, M.; Hoberg, H.; Hamacher, B.

    1994-01-01

    For decades, large quantities of organic and inorganic pollutants have been brought into the soil as a result of the industrial operations of smelting and coking plants. This paper reports on the prospects of separating heavy metals from soil contaminated by smelting and coking plants by means of a physical/chemical washing procedure. Besides the description of virgin soil characteristics, cleaning results and process parameters of calssification, density separation and flotation processes are presented. It is shown that heavy metal pollution of virgin soil can be reduced by the classical process stages of soil washing. The metal content of virgin soil are critically assessed whereby the limits of the physical-chimical washing process will also be entered into. Emphasis is placed on the significance of the determination of limiting values for inorganic contamination, especially for soil contaminated with both organic and inorganic pollution. (orig.) [de

  7. Functioning of metal contaminated garden soil after remediation

    International Nuclear Information System (INIS)

    Jelusic, Masa; Grcman, Helena; Vodnik, Dominik; Suhadolc, Metka; Lestan, Domen

    2013-01-01

    The effect of remediation using three EDTA doses (10, 30, 60 mmol kg −1 ) on soil functioning was assessed using column experiment and Brassica rapa. Soil washing removed up to 77, 29 and 72% of metals from soil contaminated with 1378, 578 and 8.5 mg kg −1 of Pb, Zn and Cd, respectively. Sequential extraction indicated removal from the carbonate soil fraction. Metal oral-accessibility from the stomach phase was reduced by up to 75 and from the small intestine by up to 79% (Pb). Part of metals (up to 0.8% Cd) was lost due to leaching from columns. Remediation reduced toxic metal soil-root transfer by up to 61% but did not prevent metal accumulation in leaves. The fitness of plants grown on EDTA washed soils (gas exchange, fluorescence) was not compromised. Remediation initially reduced the soil DNA content (up to 29%, 30 mmol kg −1 EDTA) and changed the structure of microbial population. -- Highlights: ► Toxic metals contaminated garden soil was remediated in a pilot-scale. ► EDTA washing reduced soil Pb, Zn and Cd content and bioavailability. ► Remediated soil preserved the function of plant and microbial substrate. ► Remediation didn't prevent the accumulation of toxic metals in the test plant. -- EDTA soil washing effectively removed toxic metals and reduced their transfer from the soil to plant roots but did not prevent their accumulation in leaves

  8. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  9. Recent developments for in situ treatment of metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Metals contamination is a common problem at hazardous waste sites. This report assists the remedy selection process by providing information on four in situ technologies for treating soil contaminated with metals. The four approaches are electrokinetic remediation, phytoremediation, soil flushing, and solidification/stabilization. Electrokinetic remediation separates contaminants from soil through selective migration upon application of an electric current. Phytoremediation is an emerging technology that uses plants to isolate or stabilize contaminants. Soil flushing techniques promote mobility and migration of metals by solubilizing contaminants so that they can be recovered. Two types of in situ solidification/stabilization (S/S) techniques are discussed, one based on addition of reagents and the other based on the use of energy. The report discusses different techniques currently in practice or under development, identifies vendors and summarizes performance data, and discusses technology attributes that should be considered during early screening of potential remedies. 8 refs., 9 figs., 9 tabs., 2 apps.

  10. Deciphering heavy metal contamination zones in soils of a granitic ...

    Indian Academy of Sciences (India)

    ., Ba, Cr, Cu,. Ni, Pb, Rb, Sr ... metal contamination in soils of different regions. The study ... in the Hyderabad city. ... A network of first and second order streams ... In this case, redun- ...... strategy for developing countries; In: Lead, mercury, cad-.

  11. assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    ABSTRACT. This study was carried out to determine the level of soil contamination by metals around some automobile mechanic .... and this was done all through the sample preparation. ... shaking was done by a mechanical sieve shaker and.

  12. Soil microbial effects of smelter induced heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, A

    1986-01-01

    The soil concentrations of Cu and Zn at the secondary smelter were 20 00 mu g/g dry soil. Close to the primary smelter the soil was contaminated with more than ten elements including Pb, Zn, Cu and As at levels ranging between 6000 and 1000 mu g/g dry soil. The correlations between the concentrations of the metals were high at both smelters. Soil respiration rate decreased by about 75% close to both smelters. Total and fluorescein diacetate stained mycelial lengths decrease with increasing heavy metal pollution at the secondary but not at the primary smelter. The fungal community structure was strongly affected by the contamination. General common in coniferous forest soils such as Penicillium and Oidiodendron virtually vanished, while less frequent species like Paecilomyces farinosus and Geomyces pannorum dominated the site close to the smelter. Colony forming units of a number of functional groups of bacteria were found to be very sensitive to metal contamination. The urease activity of the soil was inhibited. Multivariate statistical analyses showed that the metal contamination was the major environmental influence on the microbiotain the soils studied. A study of about 200 decomposition curves resulting from glutamic acid additions to the different soils produced four microbially related parameters: basal respiration rate, initial respiration rate after the addition of the glutamic acid, specific respiration rate during the exponential increase of the respiration rate and the lag time before the exponential phase. With 53 refs.

  13. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  14. Assessment of trace metal contamination of soils around Oluyole ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of metals contamination of the soils around Oluyole industrial estate in Ibadan. Oluyole industrial estate has heavy concentration of manufacturing industries that generate a lot of waste products capable of introducing metals into the environment. Consequently, twenty-one ...

  15. Assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of soil contamination by metals around some automobile mechanic workshops in Oyo town in order to assess their possible adverse health implications on man and his environment. Concentrations of metals above certain levels have been shown to impair man's health.

  16. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  17. Assessment of Heavy Metal Contamination in Soils around Cassava ...

    African Journals Online (AJOL)

    The concentrations, contamination/pollution index, anthropogenic input and enrichment factors for metals in soil in the vicinity of cassava processing mills in sub-urban areas of Delta State of Nigeria were examined. The concentrations of metals in all sites and depths ranged from 0.1 to 383.2 mg kg-1 for Mn, 4.0 to 11.3 mg ...

  18. Remediation of Cd-contaminated soil around metal sulfide mines

    Science.gov (United States)

    Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan

    2017-04-01

    The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is

  19. Chemodynamics of heavy metals in long-term contaminated soils: metal speciation in soil solution.

    Science.gov (United States)

    Kim, Kwon-Rae; Owens, Gary

    2009-01-01

    The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd2+, CU2+, Pb2+, and Zn2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd2+ (3%-52%) and Zn2+ (11%-72%) in soil solutions were generally higher than those of Cu2+ (0.2%-30%) and Pb2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (K(p)) and dissolved organic carbon did not show any significant influence on K(p).

  20. Air separation of heavy metal contaminants from soil

    International Nuclear Information System (INIS)

    Nelson, M.E.; Harper, M.J.; Buckon, A.D.

    1995-01-01

    Several heavy metal separation techniques are currently being developed for soil remediation at various Department of Defense and Department of Energy (DOE) Facilities. The majority of these techniques involve a wet process using water, pH modifiers or other compounds. The US Naval Academy (USNA) has developed a dry process for heavy metal separation. The process uses air classification technology to concentrate the metal contaminant into a fraction of the soil. The advantages of this dry process are that it creates no contaminated byproduct and uses commercially available technology. The USNA process is based on using a Gayco-Reliance air classifier. Tests have been conducted with the system at the Naval Academy and the University of Nevada-Reno (UNR). The USNA tests used soil from the Nevada Test Site mixed with bismuth at a concentration of 500--1,000 ppm. The UNR tests used soil from four DOE sites mixed with uranium oxides and plutonium at an activity level of 100--700 pCi per gram. Concentration of activities and volume reduction percentages are presented for the various soils and contaminants tested

  1. Chelant extraction of heavy metals from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple

  2. Chelant extraction of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.

    1999-01-01

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  3. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  4. Leaching of metals from soil contaminated by mining activities.

    Science.gov (United States)

    Yukselen, M A; Alpaslan, B

    2001-10-12

    Stabilization/solidification (s/s) is one of the most effective methods of dealing with heavy metal contaminated sites. The ability of lime and cement stabilization to immobilize Pb, Cu and Fe contained in a contaminated soil originating from an old mining and smelting area located along the Mediterranean Sea shore in northern Cyprus was investigated. The stabilization was evaluated by applying leaching tests. A series of tests were conducted to optimize the additive soil ratio for the best immobilization process. Additive/soil=1/15 (m/m) ratio was found to be the optimum for both lime and cement. Application of the US EPA toxicity characteristic leaching procedure (TCLP) on the soil samples treated with lime at additive/soil=1/15 (m/m) mixing ratios showed that Cu and Fe solubility was reduced at 94 and 90%, respectively. The results of cement treatment using the same ratio, reduced the solubility 48 and 71% for Cu and Fe, respectively. The Pb solubility was found to be below the regulatory limit of 5mg/l so no additive treatment was needed. The optimum additive/soil amount (1/15) was selected for more detailed column studies, that were carried out in the acidic pH range. According to the results of column leaching tests, it was found that, the degree of heavy metal leaching is highly dependent on pH.

  5. Remediation of soil contaminated with the heavy metal (Cd2+)

    International Nuclear Information System (INIS)

    Lin, C.-C.; Lin, H.-L.

    2005-01-01

    Soil contamination by heavy metals is increasing. The biosorption process for removal of the heavy metal Cd 2+ from contaminated soil is chosen for this study due to its economy, commercial applications, and because it acts without destroying soil structure. The study is divided into four parts (1) soil leaching: the relationships between the soil leaching effect and agitation rates, solvent concentrations, ratios of soil to solvent, leaching time and pH were studied to identify their optimum conditions; (2) adsorption Cd 2+ tests of immobilized Saccharomycetes pombe beads: different weight percentages of chitosan and polyvinyl alcohol (PVAL) were added to alginate (10 wt.%) and then blended or cross-linked by epichlorohydrin (ECH) to increase their mechanical strength. Next, before blending or cross-linking, different weight percentages of S. pombe 806 or S. pombe ATCC 2476 were added to increase Cd 2+ adsorption. Thus, the optimum beads (blending or cross-linking, the percentages of chitosan, PVAL and S. pombe 806 or S. pombe ATCC 2476) and the optimum adsorption conditions (agitation rate, equilibrium adsorption time, and pH in the aqueous solution) were ascertained; (3) regeneration tests of the optimum beads: the optimum beads adsorbing Cd 2+ were regenerated by various concentrations of aqueous HCl solutions. The results indicate that the reuse of immobilized pombe beads was feasible; and (4) adsorption model/kinetic model/thermodynamic property: the equilibrium adsorption, kinetics, change in Gibbs free energy of adsorption of Cd 2+ on optimum beads were also investigated

  6. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    Science.gov (United States)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  7. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    Science.gov (United States)

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  8. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  9. Metal contamination of vineyard soils in wet subtropics (southern Brazil)

    International Nuclear Information System (INIS)

    Mirlean, Nicolai; Roisenberg, Ari; Chies, Jaqueline O.

    2007-01-01

    The vine-growing areas in Brazil are the dampest in the world. Copper maximum value registered in this study was as much as 3200 mg kg -1 , which is several times higher than reported for vineyard soils in temperate climates. Other pesticide-derived metals accumulate in the topsoil layer, surpassing in the old vineyards the background value several times for Zn, Pb, Cr and Cd. Copper is transported to deeper soils' horizons and can potentially contaminate groundwater. The soils from basaltic volcanic rocks reveal the highest values of Cu extracted with CaCl 2 , demonstrating a high capacity of copper transference into plants. When evaluating the risks of copper's toxic effects in subtropics, the soils from rhyolitic volcanic rocks are more worrisome, as the Cu extracted with ammonium acetate 1 M surpasses the toxic threshold as much as 4-6 times. - Copper-based pesticide use in wet subtropics is environmentally more risky

  10. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-01-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. - Highlights: • Plant shoot Cd decreased in high-Cd acid soil and also plant Zn did in two acid soils. • Plant shoot Cd remained constant in low-Cd acid soil and also plant Zn did in alkaline soils. • Acidic soils showed much higher total metal removal efficiency than the alkaline soils. - Acid soil has high total metal phytoremediation efficiency while a strategy based on stripping of the bioavailable contaminant might be feasible for alkaline soil phytoremediation

  11. Remediation of metal-contaminated urban soil using flotation technique

    Energy Technology Data Exchange (ETDEWEB)

    Dermont, G., E-mail: dermonge@gmail.com [Institut National de la Recherche Scientifique Eau Terre et Environnement (INRS-ETE), 490, rue de la Couronne, Quebec, QC, Canada G1K 9A9 (Canada); Bergeron, M.; Richer-Lafleche, M.; Mercier, G. [Institut National de la Recherche Scientifique Eau Terre et Environnement (INRS-ETE), 490, rue de la Couronne, Quebec, QC, Canada G1K 9A9 (Canada)

    2010-02-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions > 250 {mu}m. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor > 2.5), and volume reduction (> 80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (< 20 {mu}m) caused a flotation selectivity drop, especially with a long flotation time (> 5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 {mu}m) showed the best flotation selectivity.

  12. Remediation of metal-contaminated urban soil using flotation technique.

    Science.gov (United States)

    Dermont, G; Bergeron, M; Richer-Laflèche, M; Mercier, G

    2010-02-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions >250microm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor>2.5), and volume reduction (>80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (flotation selectivity drop, especially with a long flotation time (>5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 microm) showed the best flotation selectivity. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Remediation of metal-contaminated urban soil using flotation technique

    International Nuclear Information System (INIS)

    Dermont, G.; Bergeron, M.; Richer-Lafleche, M.; Mercier, G.

    2010-01-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions > 250 μm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor > 2.5), and volume reduction (> 80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles ( 5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 μm) showed the best flotation selectivity.

  14. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.J.; Clemente, Rafael; Roig, Asuncion; Bernal, M.P

    2003-04-01

    The effects of organic amendments on metal bioavailability were not always related to their degree of humification. - Two heavy metal contaminated calcareous soils from the Mediterranean region of Spain were studied. One soil, from the province of Murcia, was characterised by very high total levels of Pb (1572 mg kg{sup -1}) and Zn (2602 mg kg{sup -1}), whilst the second, from Valencia, had elevated concentrations of Cu (72 mg kg{sup -1}) and Pb (190 mg kg{sup -1}). The effects of two contrasting organic amendments (fresh manure and mature compost) and the chelate ethylenediaminetetraacetic acid (EDTA) on soil fractionation of Cu, Fe, Mn, Pb and Zn, their uptake by plants and plant growth were determined. For Murcia soil, Brassica juncea (L.) Czern. was grown first, followed by radish (Raphanus sativus L.). For Valencia soil, Beta maritima L. was followed by radish. Bioavailability of metals was expressed in terms of concentrations extractable with 0.1 M CaCl{sub 2} or diethylenetriaminepentaacetic acid (DTPA). In the Murcia soil, heavy metal bioavailability was decreased more greatly by manure than by the highly-humified compost. EDTA (2 mmol kg{sup -1} soil) had only a limited effect on metal uptake by plants. The metal-solubilising effect of EDTA was shorter-lived in the less contaminated, more highly calcareous Valencia soil. When correlation coefficients were calculated for plant tissue and bioavailable metals, the clearest relationships were for Beta maritima and radish.

  15. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite.

    Science.gov (United States)

    Malandrino, Mery; Abollino, Ornella; Buoso, Sandro; Giacomino, Agnese; La Gioia, Carmela; Mentasti, Edoardo

    2011-01-01

    We evaluated the distribution of 15 metal ions, namely Al, Cd, Cu, Cr, Fe, La, Mn, Ni, Pb, Sc, Ti, V, Y, Zn and Zr, in the soil of a contaminated site in Piedmont (Italy). This area was found to be heavily contaminated with Cu, Cr and Ni. The availability of these metal ions was studied using Tessier's sequential extraction procedure: the fraction of mobile species, which potentially is the most harmful for the environment, was much higher than that normally present in unpolluted soils. This soil was hence used to evaluate the effectiveness of treatment with vermiculite to reduce the availability of the pollutants to two plants, Lactuca sativa and Spinacia oleracea, by pot experiments. The results indicated that the addition of vermiculite significantly reduces the uptake of metal pollutants by plants, confirming the possibility of using this clay in amendment treatments of metal-contaminated soils. The effect of plant growth on metal fractionation in soils was investigated. Finally, the sum of the metal percentages extracted into the first two fractions of Tessier's protocol was found to be suitable in predicting the phytoavailability of most of the pollutants present in the investigated soil. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil

    DEFF Research Database (Denmark)

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils...... from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42– radiotracer method, was restricted to reduced soil horizons with rates of 142 ± 20 nmol cm–3 day–1. Concentrations...... of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone...

  17. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity.

    Science.gov (United States)

    Gutiérrez, Carmen; Fernández, Carlos; Escuer, Miguel; Campos-Herrera, Raquel; Beltrán Rodríguez, Mª Eulalia; Carbonell, Gregoria; Rodríguez Martín, Jose Antonio

    2016-06-01

    Among soil organisms, nematodes are seen as the most promising candidates for bioindications of soil health. We hypothesized that the soil nematode community structure would differ in three land use areas (agricultural, forest and industrial soils), be modulated by soil parameters (N, P, K, pH, SOM, CaCO3, granulometric fraction, etc.), and strongly affected by high levels of heavy metals (Cd, Pb, Zn, Cr, Ni, Cu, and Hg) and emerging contaminants (pharmaceuticals and personal care products, PPCPs). Although these pollutants did not significantly affect the total number of free-living nematodes, diversity and structure community indices vastly altered. Our data showed that whereas nematodes with r-strategy were tolerant, genera with k-strategy were negatively affected by the selected pollutants. These effects diminished in soils with high levels of heavy metals given their adaptation to the historical pollution in this area, but not to emerging pollutants like PPCPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Heavy Metal Contaminated Soil Imitation Biological Treatment Overview

    Science.gov (United States)

    Pan, Chang; Chen, Jun; Wu, Ke; Zhou, Zhongkai; Cheng, Tingting

    2018-01-01

    In this paper, the treatment methods of heavy metal pollution in soils were analyzed, the existence and transformation of heavy metals in soil were explored, and the mechanism of heavy metal absorption by plants was studied. It was concluded that the main form of plants absorb heavy metals in the soil is exchangeable. The main mechanism was that the plant cell wall can form complex with heavy metals, so that heavy metals fixed on the cell wall, and through the selective absorption of plasma membrane into the plant body. In addition, the adsorption mechanism of the adsorbed material was analyzed. According to the results of some researchers, it was found that the mechanism of adsorption of heavy metals was similar to that of plants. According to this, using adsorbent material as the main material, Imitate the principle of plant absorption of heavy metals in the soil to removing heavy metals in the soil at one-time and can be separated from the soil after adsorption to achieve permanent removal of heavy metals in the soil was feasibility.

  19. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils

    International Nuclear Information System (INIS)

    Keller, Catherine; Hammer, Daniel

    2004-01-01

    Metal phytoextraction with hyperaccumulating plants could be a useful method to decontaminate soils, but it is not fully validated yet. In order to quantify the efficiency of Cd and Zn extraction from a calcareous soil with and without Fe amendment and an acidic soil, we performed a pot experiment with three successive croppings of Thlaspi caerulescens followed by 3 months without plant and 7 weeks with lettuce. We used a combined approach to assess total extraction efficiency (2 M HNO 3 -extractable metals), changes in metal bio/availability (0.1 M NaNO 3 -extractable metals and lettuce uptake) and toxicity (lettuce biomass and the BIOMETreg] biosensor). The soil solution was monitored over the whole experiment. In the calcareous soil large Cu concentrations were probably responsible for chlorosis symptoms observed on T. caerulescens. When this soil was treated with Fe, the amount of extracted metal by T. caerulescens increased and metal availability and soil toxicity decreased when compared to the untreated soil. In the acidic soil, T. caerulescens was most efficient: Cd and Zn concentrations in plants were in the range of hyperaccumulation and HNO 3 -extractable Cd and Zn, metal bio/availability, soil toxicity, and Cd and Zn concentrations in the soil solution decreased significantly. However, a reduced Cd concentration measured in the third T. caerulescens cropping indicated a decrease in metal availability below a critical threshold, whereas the increase of dissolved Cd and Zn concentrations after the third cropping may be the early sign of soil re-equilibration. This indicates that phytoextraction efficiency must be assessed by different approaches in order not to overlook any potential hazard and that an efficient phytoextraction scheme will have to take into account the different dynamics of the soil-plant system

  20. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Wang Quanying; Wu Danya

    2009-01-01

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm -1 of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  1. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  2. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    Science.gov (United States)

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined uranium increased in carbon-amended treatments, reaching metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  3. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques

    Directory of Open Access Journals (Sweden)

    Chao Su

    2014-06-01

    Full Text Available Heavy metals in the soil refers to some significant heavy metals of biological toxicity, including mercury (Hg, cadmium (Cd, lead (Pb, chromium (Cr, and arsenic (As, etc. With the development of the global economy, both type and content of heavy metals in the soil caused by human activities have gradually increased in recent years, which have resulted in serious environment deterioration. In present study we compared and analyzed soil contamination of heavy metals in various cities/countries, and reviewed background, impact and remediation methods of soil heavy metal contamination worldwide.

  4. CLOPYRALID DISSIPATION IN THE SOIL CONTAMINATED WITH HEAVY METALS

    Directory of Open Access Journals (Sweden)

    Mariusz Kucharski

    2014-12-01

    Full Text Available The aim of the studies was to determine the influence of copper and zinc contamination on clopyralid dissipation in soil. The experiment was carried out in laboratory conditions (plant growth chamber. Clopyralid was applied to three different soils [similar textures, pH, organic carbon content and contrasting copper and zinc content: soil natural contaminated with Cu and Zn (S1, soil with natural low Cu and Zn concentration (S2 and soil S21 prepared in the laboratory (S2 soil additionally contaminated with Cu and Zn salts in the amounts equivalent to contamination level of S1 soil]. Soil samples were taken for analyses for 1 hour (initial concentration and 2, 4, 8, 16, 32, 64 and 96 days after treatment. Clopyralid residue was analysed using GC/ECD (gas chromatography with electron capture detector. Good linearity was found between logarithmic concentration of clopyralid residues and time. The differences in Cu and Zn content influenced the clopyralid decay in soil. The values of DT50 obtained in the experiment ranged from 21 to 27 days. A high concentration of Cu and Zn in soil slowed down clopyralid degradation (the DT50 value was higher – 25–27 days.

  5. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    International Nuclear Information System (INIS)

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-01-01

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad ® 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils

  6. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    Directory of Open Access Journals (Sweden)

    Miroslava Marić

    2008-09-01

    Full Text Available Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil.

  7. Evidence for groundwater contamination by heavy metals through soil passage under acidifying conditions

    NARCIS (Netherlands)

    Wilkens, B.J.

    1995-01-01

    The research reported here is aimed at improving the knowledge of the mobility of the heavy metals cadmium and zinc in vulnerable soil types. We use the term vulnerable with reference to vulnerability of groundwater for contamination by soil leaching. At diffuse soil immissions of heavy metals,

  8. Indices of soil contamination by heavy metals - methodology of calculation for pollution assessment (minireview).

    Science.gov (United States)

    Weissmannová, Helena Doležalová; Pavlovský, Jiří

    2017-11-07

    This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.

  9. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques

    OpenAIRE

    Chao Su; LiQin Jiang; WenJun Zhang

    2014-01-01

    Heavy metals in the soil refers to some significant heavy metals of biological toxicity, including mercury (Hg), cadmium (Cd), lead (Pb), chromium (Cr), and arsenic (As), etc. With the development of the global economy, both type and content of heavy metals in the soil caused by human activities have gradually increased in recent years, which have resulted in serious environment deterioration. In present study we compared and analyzed soil contamination of heavy metals in various cities/count...

  10. Modeling phytoextraction of heavy metals at multiply contaminated soils with hyperaccumulator plants

    OpenAIRE

    Khodaverdiloo, Habib

    2009-01-01

    Soils and waters contaminated with heavy metals pose a major environmental and human health problem that needs an effective and affordable technological solution. Phytoextraction offers a reasonable technology which uses plants to extract the heavy metals from soils. However, the effectiveness of this new method needs to be demonstrated by means of mathematical modeling. The phytoextraction models also are needed to manage the contaminated soils. A thorough literature review indic...

  11. Subcellular partitioning of metals in Aporrectodea caliginosa along a gradient of metal exposure in 31 field-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Beaumelle, Léa [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Gimbert, Frédéric [Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex (France); Hedde, Mickaël [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Guérin, Annie [INRA, US 0010 LAS Laboratoire d' analyses des sols, 273 rue de Cambrai, 62000 Arras (France); Lamy, Isabelle, E-mail: lamy@versailles.inra.fr [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France)

    2015-07-01

    Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl{sub 2}-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl{sub 2} extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. - Highlights: • Earthworms were exposed to a wide panel of historically contaminated soils • Subcellular partitioning of Cd, Pb and Zn was investigated in earthworms • Three proxies of soil metal availability were

  12. The use of chelating agents in the remediation of metal-contaminated soils: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lestan, Domen [Agronomy Department, Centre for Soil and Environmental Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia); Luo Chunling [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)], E-mail: cexdli@polyu.edu.hk

    2008-05-15

    This paper reviews current remediation technologies that use chelating agents for the mobilization and removal of potentially toxic metals from contaminated soils. These processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column leaching. Current proposals on how to treat and recycle waste washing solutions after soil is washed are discussed. The major controlling factors in phytoextraction and possible strategies for reducing the leaching of metals associated with the application of chelants are also reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of metals left after the washing of soil and enhanced phytoextraction are briefly addressed. - The use of synthetic chelants for soil washing and enhanced phytoextraction by plants has been well studied for the remediation of metal-contaminated soils in the last two decades.

  13. The use of chelating agents in the remediation of metal-contaminated soils: A review

    International Nuclear Information System (INIS)

    Lestan, Domen; Luo Chunling; Li Xiangdong

    2008-01-01

    This paper reviews current remediation technologies that use chelating agents for the mobilization and removal of potentially toxic metals from contaminated soils. These processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column leaching. Current proposals on how to treat and recycle waste washing solutions after soil is washed are discussed. The major controlling factors in phytoextraction and possible strategies for reducing the leaching of metals associated with the application of chelants are also reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of metals left after the washing of soil and enhanced phytoextraction are briefly addressed. - The use of synthetic chelants for soil washing and enhanced phytoextraction by plants has been well studied for the remediation of metal-contaminated soils in the last two decades

  14. Plasma treatment of INEL soil contaminated with heavy metals

    International Nuclear Information System (INIS)

    Detering, B.A.; Batdorf, J.A.

    1992-01-01

    INEL soil spiked with inorganic salts of chromium, lead, mercury, silver, and zinc was melted in a 150 kW plasma furnace to produce a glassy slag product. This glassy slag is an environmentally safe waste form. In order to reduce the melting temperature of the soil, sodium carbonate was added to half of the test batches. Random sample from each batch of glassy slag product were analyzed by an independent laboratory for total metals concentration and leachability of metals via the Environmental Protection Agency (EPA) toxicity characterization leaching procedure (RCLP) tests. These tests showed the residual metals were very tightly bound to the slag matrix and were within EPA TCLP limits under these test conditions. Additionally, scanning electron microscopy (SEM) and emissions dispersive spectroscopy (EDS) analysis of the vitrified soil also confirmed that the added metals present in the vitrified soil were totally contained in the crystalline phase as distinct oxide crystallites

  15. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.

    Science.gov (United States)

    Derakhshan Nejad, Zahra; Jung, Myung Chae; Kim, Ki-Hyun

    2018-06-01

    The major frequent contaminants in soil are heavy metals which may be responsible for detrimental health effects. The remediation of heavy metals in contaminated soils is considered as one of the most complicated tasks. Among different technologies, in situ immobilization of metals has received a great deal of attention and turned out to be a promising solution for soil remediation. In this review, remediation methods for removal of heavy metals in soil are explored with an emphasis on the in situ immobilization technique of metal(loid)s. Besides, the immobilization technique in contaminated soils is evaluated through the manipulation of the bioavailability of heavy metals using a range of soil amendment conditions. This technique is expected to efficiently alleviate the risk of groundwater contamination, plant uptake, and exposure to other living organisms. The efficacy of several amendments (e.g., red mud, biochar, phosphate rock) has been examined to emphasize the need for the simultaneous measurement of leaching and the phytoavailability of heavy metals. In addition, some amendments that are used in this technique are inexpensive and readily available in large quantities because they have been derived from bio-products or industrial by-products (e.g., biochar, red mud, and steel slag). Among different amendments, iron-rich compounds and biochars show high efficiency to remediate multi-metal contaminated soils. Thereupon, immobilization technique can be considered a preferable option as it is inexpensive and easily applicable to large quantities of contaminants derived from various sources.

  16. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    International Nuclear Information System (INIS)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-01-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb"2"+), copper (Cu"2"+), nickel (Ni"2"+), and zinc (Zn"2"+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  17. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    Science.gov (United States)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-04-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb2+), copper (Cu2+), nickel (Ni2+), and zinc (Zn2+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  18. Testing Single and Combinations of Amendments for Stabilization of Metals in Contrasting Extremely Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Siebielec G.

    2013-04-01

    Full Text Available Metals can be stabilized by soil amendments that increase metals adsorption or alter their chemical forms. Such treatments may limit the risk related to the contamination through reduction of metal transfer to the food chain (reduction of metal uptake by plants and its availability to soil organisms and metals migration within the environment. There is a need for experiments comparing various soil amendments available at reasonable amounts under similar environmental conditions. The other question is whether all components of soil environment or soil functions are similarly protected after remediation treatment. We conducted a series of pot studies to test some traditional and novel amendments and their combinations. The treatments were tested for several highly Zn/Cd/Pb contaminated soils. Among traditional amendments composts were the most effective – they ensured plant growth, increased soil microbial activity, reduced Cd in earthworms, reduced Pb bioaccessibility and increased share of unavailable forms of Cd and Pb.

  19. Chelant extraction and REDOX manipulation for mobilization of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Brewster, M.D.; Peters, R.W.; Miller, G.A.; Patton, T.L.; Martino, L.E.

    1994-01-01

    Was the result of open burning and open detonation of chemical agents and munitions in the Toxic Burning Pits area at J-Field, located in the Edgewood Area of Aberdeen Proving Ground in Harford County, Maryland, soils have been contaminated with heavy metals. Simultaneous extraction is complicated because of the multitude of contaminant forms that exist. This paper uses data from a treatability study performed at Argonne National Laboratory to discuss and compare several treatment methods that were evaluated for remediating metals-contaminated soils. J-Field soils were subjected to a series of treatability experiments designed to determine the feasibility of using soil washing/soil flushing, enhancements to soil washing/soil flushing, solidification/stabilization, and electrokinetics for remediating soils contaminated with metals. Chelating and mobilizing agents evaluated included ammonium acetate, ethylenediaminetetraacetic acid, citric acid, Citranox, gluconic acid, phosphoric acid, oxalic acid, and nitrilotriacetic acid, in addition to pH-adjusted water. REDOX manipulation can maximize solubilities, increase desorption, and promote removal of heavy metal contaminants. Reducing agents that were studied included sodium borohydride, sodium metabisulfite, and thiourea dioxide. The oxidants studied included hydrogen peroxide, sodium percarbonate, sodium hypochlorite, and potassium permanganate. This paper summaries the results from the physical/chemical characterization, soil washing/soil flushing, and enhancements to soil washing/soil flushing portions of the study

  20. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Research Progress of Artificial Forest in the Remediation of Heavy Metal Contaminated Soils

    Science.gov (United States)

    Jiafang, MA; Guangtao, MENG; Liping, HE; Guixiang, LI

    2017-01-01

    (1) Remediation of soil contaminated by heavy metals has become a hot topic in the world, and phytoremediation technology is the most widely used. (2) In addition to traditional economic benefits, ecological benefits of artificial forest have been more and more important, which are very helpful to soil polluted with heavy metals in the environment. (3) The characteristics of heavy metal pollution of soil and plantations of repair mechanism have been reviewed, and the current mining areas, wetlands, urban plantations on heavy metal elements have enriched the research results. The purpose is to find a new path for governance of heavy metal soil pollution.

  2. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    Directory of Open Access Journals (Sweden)

    Amir Waseem

    2014-01-01

    Full Text Available Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water, soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  3. Remediation of Heavy Metal(loid)s Contaminated Soils – To Mobilize or To Immobilize?

    Science.gov (United States)

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy ...

  4. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area

    International Nuclear Information System (INIS)

    Zhang Junhui; Hang Min

    2009-01-01

    Paddy soil samples taken from different sites in an old primitive electronic-waste (e-waste) processing region were examined for eco-toxicity and metal contamination. Using the environmental quality standard for soils (China, Grade II) as reference, soil samples of two sites were weakly contaminated with trace metal, but site G was heavily contaminated with Cd (6.37 mg kg -1 ), and weakly contaminated with Cu (256.36 mg kg -1 ) and Zn (209.85 mg kg -1 ). Zn appeared to be strongly bound in the residual fraction (72.24-77.86%), no matter the soil was metal contaminated or not. However, more than 9% Cd and 16% Cu was present in the non-residual fraction in the metal contaminated soils than in the uncontaminated soil, especially for site G and site F. Compared with that of the control soil, the micronucleus rates of site G and site F soil treatments increased by 2.7-fold and 1.7-fold, respectively. Low germination rates were observed in site C (50%) and site G (50%) soil extraction treated rice seeds. The shortest root length (0.2377 cm) was observed in site G soil treated groups, which is only 37.57% of that of the control soil treated groups. All of the micronucleus ratio of Vicia faba root cells, rice germination rate and root length after treatment of soil extraction indicate the eco-toxicity in site F and G soils although the three indexes are different in sensitivity to soil metal contamination.

  5. Partitioning of heavy metals in a soil contaminated by slag: A redistribution study

    International Nuclear Information System (INIS)

    Bunzl, K.; Trautmannsheimer, M.; Schramel, P.

    1999-01-01

    In order to interpret reasonably the partitioning of heavy metals in a contaminated soil as observed from applying a sequential extraction procedure, information on possible redistribution processes of the metals during the various extraction steps is essential. For this purpose, sequential extraction was used to study the chemical partitioning of Ag, Cu, Ni, Pb, and Zn in a soil contaminated wither by a slag from coal firing or by a slag from pyrite roasting. Through additional application of sequential extraction to the pure slags as well as to the uncontaminated soil, it was shown that during the various extraction steps applied to the soil/slag mixtures, substantial redistribution processes of the metals between the slag- and soil particles can occur. In many cases, metals ions released during the extraction with acid hydroxylamine or acid hydrogen peroxide are partially readsorbed by solid constituents of the mixture and will therefore be found in the subsequent fractions extracted. As a result, one has to realize that (1) it will be difficult to predict the chemical partitioning of these metals in contaminated soils by investigating pure slags only, and (2) information on the partitioning of a metal in a slag contaminated soil will not necessarily give any relevant information on the form of this metal in the slag or in the slag/soil mixture, because the redistribution processes during sequential extraction will not be the same as those occurring in the soil solution under natural conditions

  6. Distribution of six heavy metals in contaminated clay soils before and after extractive cleaning

    NARCIS (Netherlands)

    Tuin, B.J.W.; Tels, M.

    1990-01-01

    A sequential extraction procedure according to Tessier et al. is carried out to compare the distribution of six metals (Cd, Cr, Cu, Ni, Pb and Zn) in contaminated clay soils before and after extractive cleaning. Extraction of metals from the ‘soil fractions’ with 0.1 N HC1 or 0.1 M EDTA becomes more

  7. Proximal spectral sensing to monitor phytoremediation of metal - contaminated soils

    NARCIS (Netherlands)

    Rathod, P.H.; Rossiter, D.; Noomen, M.; van der Meer, F.D.

    2013-01-01

    Assessment of soil contamination and its long-term monitoring are necessary to evaluate the effectiveness of phytoremediation systems. Spectral sensing-based monitoring methods promise obvious benefits compared to field-based methods: lower cost, faster data acquisition and better spatio-temporal

  8. A comparison of technologies for remediation of heavy metal contaminated soils

    OpenAIRE

    Khalid , Sana; Shahid , Muhammad; Niazi , Nabeel Khan; Murtaza , Behzad; Bibi , Irshad; Dumat , Camille

    2016-01-01

    International audience; Soil contamination with persistent and potentially (eco)toxic heavy metal(loid)s is ubiquitous around the globe. Concentration of these heavy metal(loid)s in soil has increased drastically over the last three decades, thus posing risk to the environment and human health. Some technologies have long been in use to remediate the hazardous heavy metal(loid)s. Conventional remediation methods for heavy metal(loid)s are generally based on physical, chemical and biological a...

  9. Mobilization of heavy metals from contaminated paddy soil by EDDS, EDTA, and elemental sulfur

    NARCIS (Netherlands)

    Wang, G.; Koopmans, G.F.; Song, J.; Temminghoff, E.J.M.; Luo, Y.; Zhao, Q.; Japenga, J.

    2007-01-01

    For enhanced phytoextraction, mobilization of heavy metals (HMs) from the soil solid phase to soil pore water is an important process. A pot incubation experiment mimicking field conditions was conducted to investigate the performance of three soil additives in mobilizing HMs from contaminated paddy

  10. Evidence for groundwater contamination by heavy metals through soil passage under acidifying conditions

    NARCIS (Netherlands)

    Wilkens, B.J,

    1995-01-01

    The research reported here is aimed at improving the knowledge of the mobility of the heavy metals cadmium and zinc in vulnerable soil types. We use the term vulnerable with reference to vulnerability of groundwater for contamination by soil leaching. At diffuse soil immissions of heavy

  11. Low-cost bioremediation of heavy metals and radionuclides of contaminated soils

    International Nuclear Information System (INIS)

    Sathiyamoorthy, P.; Golan-Goldhrish, A.

    2005-01-01

    The environmental pollution by toxic metals, especially lead (Pb), mercury (Hg), cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), chromium (Cr) and radionuclides ( 137 Cs, 90 Sr, 238 Pu, 226 Ra) is a potential hazard to health and welfare of mankind. Rapid industrial revolution has left an international legacy of soil and water contaminated with a combination of toxic and potentially carcinogenic compounds and heavy metals. Many of the contaminated sites were abandoned due to high cost of traditional clean-up approaches. Various approaches are being practiced to decontaminate heavy metals and radionuclides from polluted-soil. Remediation of heavy metal and radionuclides contaminated soils poses a significant expense to many industries and government organizations. Remediation cost in the United States and European Union alone is expected to exceed US$20 billion annually. Bioremediation strategy depends on the limitations of technology, cost and nature of the contaminant in the soil. Certain higher plants are capable of accumulation of heavy metals (2-5 %) in roots and shoots to the level far exceeding those present in the soils, these are called hyper-accumulators. Using heavy metal hyper-accumulating higher plants for environmental clean-up of contaminated soil is a recently emerged technology known as 'phytoremediation'. Genetically engineered (Transgenic) plants have a remarkable potential to absorb heavy metals and show a new avenue for biotechnology technique in Phytoremediation. The cost-effective approach of using heavy metal and radionuclide hyper-accumulators in phytoremediation is discussed. (author)

  12. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Salati, S.; Quadri, G.; Tambone, F. [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Adani, F., E-mail: fabrizio.adani@unimi.i [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2010-05-15

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.

  13. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    International Nuclear Information System (INIS)

    Salati, S.; Quadri, G.; Tambone, F.; Adani, F.

    2010-01-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.

  14. Remediation of Steel Slag on Acidic Soil Contaminated by Heavy Metal

    OpenAIRE

    Gu, Haihong; Li, Fuping; Guan, Xiang; Li, Zhongwei; Yu, Qiang

    2013-01-01

    The technology of in situ immobilization with amendments is an important measure that remediates the soil contaminated by heavy metal, and selecting economical and effective modifier is the key. The effects and mechanism of steel slag, the silicon-rich alkaline by-product which can remediate acidic soil contaminated by heavy metal, are mainly introduced in this paper to provide theory inferences for future research. Firstly, the paper analyzes current research situation of in situ immobilizat...

  15. Soil Contamination with Heavy Metals around Jinja Steel Rolling Mills in Jinja Municipality, Uganda

    Directory of Open Access Journals (Sweden)

    Noel Namuhani

    2015-01-01

    Conclusions. The concentration levels of heavy metals around the steel rolling mills did not appear to be of serious concern, except for copper and cadmium, which showed moderate pollution and moderate to strong pollution, respectively. All heavy metals were within the limits of the United States Environmental Protection Agency (USEPA residential soil standards and the Dutch intervention soil standards. Overall, soils around the Jinja steel rolling mills were slightly polluted with heavy metals, and measures therefore need to be taken to prevent further soil contamination with heavy metals.

  16. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review.

    Science.gov (United States)

    Rehman, Muhammad Zia Ur; Rizwan, Muhammad; Ali, Shafaqat; Ok, Yong Sik; Ishaque, Wajid; Saifullah; Nawaz, Muhammad Farrakh; Akmal, Fatima; Waqar, Maqsooda

    2017-09-01

    Heavy metals are among the major environmental pollutants and the accumulation of these metals in soils is of great concern in agricultural production due to the toxic effects on crop growth and food quality. Phytoremediation is a promising technique which is being considered as an alternative and low-cost technology for the remediation of metal-contaminated soils. Solanum nigrum is widely studied for the remediation of heavy metal-contaminated soils owing to its ability for metal uptake and tolerance. S. nigrum can tolerate excess amount of certain metals through different mechanism including enhancing the activities of antioxidant enzymes and metal deposition in non-active parts of the plant. An overview of heavy metal uptake and tolerance in S. nigrum is given. Both endophytic and soil microorganisms can play a role in enhancing metal tolerance in S. nigrum. Additionally, optimization of soil management practices and exogenous application of amendments can also be used to enhance metal uptake and tolerance in this plant. The main objective of the present review is to highlight and discuss the recent progresses in using S. nigrum for remediation of metal contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder

    OpenAIRE

    Xia, Wei-Yi; Feng, Ya-Song; Jin, Fei; Zhang, Li-Ming; Du, Yan-Jun

    2017-01-01

    Synthetic hydroxyapatite (HA) is an efficient and environment-friendly material for the remediation of heavy metal contaminated soils. However, the application of conventional HA powder in stabilizing contaminated soils is limited, due to high cost of final products, difficulties in synthesizing purified HA crystals. A new binder named SPC, which composes of single superphosphate (SSP) and calcium oxide (CaO), is presented as an alternative in this study. HA can form in the soil matrix by an ...

  18. In-Situ Electrokinetic Remediation for Metal Contaminated Soils

    Science.gov (United States)

    2001-03-01

    phytoremediation , and electrokinetic extraction. The US Army Environmental Center (USAEC) and Engineer Research and Development Center (ERDC...California (CA) List Metals: Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury , molybdenum, nickel, selenium...Comparison Technologies with which electrokinetic remediation must compete are "Dig and Haul", Soil Washing, and Phytoremediation . "Dig and haul

  19. Metal contamination of agricultural soils in the copper mining areas ...

    Indian Academy of Sciences (India)

    Soma Giri

    2017-06-07

    Jun 7, 2017 ... Agricultural soil; heavy metals; copper mining areas; multivariate analysis; ... multivariate statistical analysis. 2. ... sieved through standard sieve of 200 mesh size (Giri ... Pearson's correlation is a bivariate correlation ... is a variation reduction technique in which a num- ... Varimax rotation is applied to all the.

  20. Assessment of Heavy Metal Contamination in Soils around Cassava ...

    African Journals Online (AJOL)

    Manihot esculentum is a major farm produce in southern .... Heavy metals enrichment factor was derived based ... VII. 0-15. 6.1. 2.3. 58.41. 15-30. 6.3. 1.8. 54.28. VIII. 0-15. 6.5. 2.5. 62.21 ... levels of iron in soils around foam manufacturing, ...

  1. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Bhabananda; Sarkar, Binoy [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); Mandal, Asit [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Division of Soil Biology, Indian Institute of Soil Science, Bhopal, Madhya Pradesh (India); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia)

    2015-11-15

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad{sup ®} 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils.

  2. Design and Development of a Continuous-Flow Countercurrent Metal Extraction System to Remove Heavy Metals from Contaminated Soils

    National Research Council Canada - National Science Library

    Neale, Christopher M. U

    1997-01-01

    .... The research focused on eight contaminated soils from Army installations and the metal extraction capabilities of eight extracting agents including HNO3, HCI, fluorosilicic acid, citric acid, EDTA, DTPA, NTA, and NaOH...

  3. Effects of incubation on solubility and mobility of trace metals in two contaminated soils

    International Nuclear Information System (INIS)

    Ma, Lena Q.; Dong Yan

    2004-01-01

    Much research has focused on changes in solubility and mobility of trace metals in soils under incubation. In this experiment, changes in solubility and mobility of trace metals (Pb, Cu and As) and Fe in two contaminated soils from Tampa, Florida and Montreal, Canada were examined. Soils of 30 g were packed in columns and were incubated for 3-80 days under water-flooding incubation. Following incubation, metal concentrations in pore water (water soluble) and in 0.01 M CaCl 2 leachates (exchangeable+water soluble) were determined. While both soils were contaminated with Pb (1600-2500 mg kg -1 ), Tampa soil was also contaminated with As (230 mg kg -1 ). Contrast to the low pH (3.8) of Tampa soil, Montreal soil had an alkaline pH of 7.7 and high Ca of 1.6%. Concentrations of Fe(II) increased with incubation time in the Tampa soil mainly due to reductive Fe dissolution, but decreased in the Montreal soil possibly due to formation of FeCO 3 . The inverse relationship between concentrations of Pb and Fe(II) in pore water coupled with the fact that Fe(II) concentrations were much greater than those of Pb in pore water may suggest the importance of Fe(II) in controlling Pb solubility in soils. However, changes in concentrations of Fe(II), Pb, Cu and As in pore water with incubation time were similar to those in leachate, i.e. water soluble metals were positively related to exchangeable metals in the two contaminated soils. This research suggests the importance of Fe in controlling metal solubility and mobility in soils under water-flooded incubation. - Iron is important in controlling metal solubility and mobility in flooded soils

  4. Toxic heavy metal contamination assessment and speciation in sugarcane soil

    Science.gov (United States)

    Wang, Xiaofei; Deng, Chaobing; Yin, Juan; Tang, Xiang

    2018-01-01

    The increasing heavy metal pollution in the sugarcane soils along the Great Huanjiang River was caused by leakage and spills of Lead (Pb) and Zinc (Zn) tailing dams during a flood event. Copper (Cu), Zn, Pb, Cadmium (Cd), and Arsenic (As) concentrations of soil samples collected from 16 different sites along the Great Huanjiang River coast typical pollution area were analyzed by Inductive Coupled Plasma Mass Spectrometry (ICP-MS). The mean concentrations of Pb, Cd, Zn, Cu, and As in the sugarcane soils were 151.57 mg/kg, 0.33 mg/kg, 155.52 mg/kg, 14.19 mg/kg, and 18.74 mg/kg, respectively. Results from the analysis of heavy metal speciation distribution showed that Cu, Zn, Pb, and Cd existed in weak acid, reducible, and oxidizable fractions, and the sum of these fractions accounted for significant proportions in sugarcane soils. However, the residual fraction of As with high proportion of reducible fraction indicated that this trace element still poses some environmental risk in the sugarcane soils because of its high content. Assessments of pollution levels revealed that the highest environmental risk was arouse by Pb. In addition, moderate to strong Cd and Zn pollution were found, while As has zero to medium level of pollution and Cu has zero level.

  5. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review.

    Science.gov (United States)

    Mahar, Amanullah; Wang, Ping; Ali, Amjad; Awasthi, Mukesh Kumar; Lahori, Altaf Hussain; Wang, Quan; Li, Ronghua; Zhang, Zengqiang

    2016-04-01

    Mining operations, industrial production and domestic and agricultural use of metal and metal containing compound have resulted in the release of toxic metals into the environment. Metal pollution has serious implications for the human health and the environment. Few heavy metals are toxic and lethal in trace concentrations and can be teratogenic, mutagenic, endocrine disruptors while others can cause behavioral and neurological disorders among infants and children. Therefore, remediation of heavy metals contaminated soil could be the only effective option to reduce the negative effects on ecosystem health. Thus, keeping in view the above facts, an attempt has been made in this article to review the current status, challenges and opportunities in the phytoremediation for remediating heavy metals from contaminated soils. The prime focus is given to phytoextraction and phytostabilization as the most promising and alternative methods for soil reclamation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.

    Science.gov (United States)

    Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-02-15

    Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

  7. Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils.

    Science.gov (United States)

    Galal, Tarek M

    2016-07-01

    The present study was carried out to investigate the heavy metal concentration accumulated by summer squash cultivated in contaminated soil and their health hazards for public consumers at south Cairo Province, Egypt. Soil and plants were sampled from contaminated and reference farms, using 1 m(2) quadrats, for biomass estimation and nutrient analysis. The daily intake of metals (DIM) and health risk index (HRI) were estimated. Significant differences in soil variables (except As) between contaminated and reference sites were recognized. Summer squash showed remarkable reduction in fresh and dry biomass, fruit production, and photosynthetic pigments under pollution stress. The inorganic and organic nutrients in the aboveground and belowground parts showed significant reduction in contaminated site. In addition, higher concentrations of heavy metals were accumulated in the edible parts and roots more than shoots. The bioaccumulation factor of summer squash for investigated metals was greater than 1, while the translocation factor did not exceed unity in both contaminated and reference sites. The DIM for all investigated metals in the reference site and in the contaminated site (except Fe and Mn) did not exceed 1 in both adults and children. However, HRI of Ni and Mn in the reference site and Pb, Cd, Cu, Ni, Fe, Mn, and Zn in the contaminated one exceeded unity indicating great potential to pose health risk to the consumers. The author recommends that people living in the contaminated area should not eat large quantities of summer squash, so as to avoid excess accumulation of heavy metals in their bodies.

  8. Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metal contaminated soils.

    Science.gov (United States)

    Juwarkar, Asha Ashok; Yadav, Santosh Kumar; Kumar, Phani; Singh, Sanjeev Kumar

    2008-10-01

    The pot experiments were conducted to evaluate the effect of different concentrations of arsenic, chromium and zinc contaminated soils, amended with biosludge and biofertilizer on the growth of Jatropha curcas which is a biodiesel crop. The results further showed that biosludge alone and in combination with biofertilizer significantly improved the survival rates and enhanced the growth of the plant. With the amendments, the plant was able to grow and survive upto 500, 250 and 4,000 mg kg(-1) of As, Cr and Zn contaminated soils, respectively. The results also showed that zinc enhanced the growth of J. curcas more as compared to other metals contaminated soils. The heavy metal accumulation in plant increased with increasing concentrations of heavy metals in soil, where as a significant reduction in the metal uptake in plant was observed, when amended with biosludge and biofertilizer and biosludge alone. It seems that the organic matter present in the biosludge acted as metal chelator thereby reducing the toxicity of metals to the plant. Findings suggest that plantation of J. curcas may be promoted in metal contaminated soils, degraded soils or wasteland suitably after amending with organic waste.

  9. METAL TOLERANCE ANALYSIS OF MICROFUNGI ISOLATED FROM METAL CONTAMINATED SOIL AND WASTE WATER

    Directory of Open Access Journals (Sweden)

    Mathan Jayaraman

    2014-08-01

    Full Text Available The influence of Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ on the development of 24 fungi was investigated for Metal Tolerance Index (MTI at 1mg ml-1 Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ concentrations and also for Minimum Inhibitory Concentration (MIC. The MIC ranged from 0.5 to 1.5 mg ml-1 depending on the isolate Aspergillus, Fusarium and Penicillium sp. were tested for their metal tolerance index. Out of these Aspergillus flavus (ED4 shows a better tolerance index of 0.80 Cr6+, 0.72 for Pb2+ , 0.63 for Cu2+, 0.58 for Ni2+, 0.46 for Zn2+ and 0.60 Cd2+ for MIC value for the removal of heavy metals from contaminated soil and wastewaters.

  10. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.

    Science.gov (United States)

    Salati, S; Quadri, G; Tambone, F; Adani, F

    2010-05-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.

    Science.gov (United States)

    Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo

    2011-01-30

    As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Soil contamination of toxic metals from zinc carbon batteries inadequate disposal

    International Nuclear Information System (INIS)

    Gazano, Vanessa Santos Oliveira

    2006-01-01

    The aim of the present study was to determine the concentration of Zn, Mn, Pb, Cd, Cu, Cr, and Ni in an oxisol column contaminated with zinc-carbon batteries. Two control and two contaminated columns, and batteries alone were leached for a periods of six months and one year with aqueous solution of HNO3 and H2SO4 (1:1, pH 4,0) to simulate rainwater. The metal concentrations in effluent and soil were measured by means of ICP-OES technique. Results from the contaminated column showed enhanced concentrations in both effluent and soil (mainly zinc, manganese and lead). In addition, the total amount of metals in effluent and soil showed similar sequence order as observed for batteries alone (Zn > Mn > Pb > Cr > Cu > Ni > Cd) indicating that batteries can be considered the main source of contamination. We also observed migration of Zn and Mn from the top to the lower layers of the soil columns. The study gives further evidence that batteries can significantly contaminate the soil with metals like Zn, Mn and Pb, and maybe Cd too. This soil contamination combined with the enhanced concentrations found in the effluent can point out a probable groundwater contamination. (author)

  13. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.

    Science.gov (United States)

    Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng

    2014-09-01

    When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.

  14. Remediation of a heavy metal-contaminated soil by means of agglomeration.

    Science.gov (United States)

    Polettini, Alessandra; Pomi, Raffaella; Valente, Mattia

    2004-01-01

    The feasibility of treating a heavy metal-contaminated soil by means of a solidification/stabilization treatment consisting of a granulation process is discussed in the present article. The aim of the study was to attain contaminant immobilization within the agglomerated solid matrix. The soil under concern was characterized by varying levels of heavy metal contamination, ranging from 50 to 500 mg kg(-1) dry soil for chromium. from 300 to 2000 mg kg(-1) dry soil for lead and from 270 to 5000 mg kg(-1) dry soil for copper. An artificially contaminated soil with contaminant concentrations corresponding to the upper level of the mentioned ranges was prepared from a sample of uncontaminated soil by means of spiking experiments. Pure soluble species of chromium, copper and lead. namely CrCl3.6H2O, CuCl2.2H2O and Pb(NO3)2, were selected for the spiking experiments, which were arranged according to a 2(3) full factorial design. The solidification/stabilization treatment was based on an agglomeration process making use of hydraulic binders including Portland cement, hydrated lime and sodium methasilicate, which were selected on the basis of preliminary test runs. It was found that after 7 days of curing the applied treatment was able to efficiently immobilize the investigated heavy metals within the hydrated matrix. Good acid neutralization behavior was also observed, indicating improved matrix resistance to acid attack and decreased potential for metal leaching.

  15. Characterization of soil and plant-associated bacteria on a metal contaminated site

    International Nuclear Information System (INIS)

    Boulet, J.; Weyens, N.; Barac, T.; Dupae, J.; Lelie, D. van der; Taghavi, S.; Vaqngronsveld, J.

    2009-01-01

    Conventional methods for the remediation of heavy metal contaminated soils and ground water are very expensive and often damaging to the environment. Complementary to these traditional methods, especially for sites with a diffuse contamination in relatively low concentrations, phyto extraction is proposed as a promising technology for effective and inexpensive radiation. (Author)

  16. Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.R.T.; Koskinen, P.E.P.; Tuhkanen, T.A.; Puhakka, J.A. [Inst. of Environmental Engineering and Biotechnology, Tampere Univ. of Tech., Tampere (Finland); Pichtel, J. [Natural Resources and Environmental Management, Ball State Univ., Muncie, IN (United States); Vaajasaari, K. [Pirkanmaa Regional Environment Centre, Tampere (Finland); Joutti, A. [Finnish Environment Inst., Helsinki (Finland)

    2006-08-15

    Background, Aims, and Scope. Phytoremediation is remediation method which uses plants to remove, contain or detoxify environmental contaminants. Phytoremediation has successfully been applied for the removal of fresh hydrocarbon contamination, but removal of aged hydrocarbons has proven more difficult. Biodegradation of hydrocarbons in the subsurface can be enhanced by the presence of plant roots, i.e. the rhizosphere effect. Phytostabilization reduces heavy metal availability via immobilization in the rhizosphere. Soils contaminated by both hydrocarbons and heavy metals are abundant and may be difficult to treat. Heavy metal toxicity can inhibit the activity of hydrocarbon-degrading micro-organisms and decrease the metabolic diversity of soil bacteria. In this experiment, weathered hydrocarbon- and heavy metal-contaminated soil was treated using phytoremediation in a 39-month field study in attempts to achieve both hydrocarbon removal and heavy metal stabilization. Methods. A combination of hydrocarbon degradation and heavy metal stabilization was evaluated in a field-scale phytoremediation study of weathered contaminants. Soil had been contaminated over several years with hydrocarbons (11,400{+-}4,300 mg kg dry soil){sup -1} and heavy metals from bus maintenance activities and was geologically characterized as till. Concentrations of soil copper, lead and zinc were 170{+-}50 mgkg{sup -1}, 1,100{+-}1,500 mg kg{sup -1} and 390{+-} 340 mg kg{sup -1}, respectively. The effect of contaminants, plant species and soil amendment (NPK fertilizer or biowaste compost) on metabolic activity of soil microbiota was determined. Phytostabilization performance was investigated by analyses of metal concentrations in plants, soil and site leachate as well as acute toxicity to Vibrio fischeri and Enchtraeus albidus. Results. Over 39 months hydrocarbon concentrations did not decrease significantly (P=0.05) in non-amended soil, although 30% of initial hydrocarbon concentrations were

  17. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Martim P. S. R.; Correia, António Alberto S., E-mail: aalberto@dec.uc.pt [University of Coimbra, Department of Civil Engineering, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre (Portugal); Rasteiro, Maria G. [University of Coimbra, Department of Chemical Engineering, CIEPQPF (Portugal)

    2017-04-15

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb{sup 2+}), copper (Cu{sup 2+}), nickel (Ni{sup 2+}), and zinc (Zn{sup 2+}), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  18. Spatial assessment of soil contamination by heavy metals from informal electronic waste recycling in Agbogbloshie, Ghana.

    Science.gov (United States)

    Kyere, Vincent Nartey; Greve, Klaus; Atiemo, Sampson M

    2016-01-01

    This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (C deg ), we analyzed the individual contribution of each heavy metal contamination and the overall C deg . We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall C deg . Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and C deg , indicating soil contamination in AEPS with the nine heavy metals studied.

  19. Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant.

    Science.gov (United States)

    Liu, Jie; Zhang, Xue-Hong; Tran, Henry; Wang, Dun-Qiu; Zhu, Yi-Nian

    2011-11-01

    The objective of this paper is to assess the impact of long-term electroplating industrial activities on heavy metal contamination in agricultural soils and potential health risks for local residents. Water, soil, and rice samples were collected from sites upstream (control) and downstream of the electroplating wastewater outlet. The concentrations of heavy metals were determined by an atomic absorption spectrophotometer. Fractionation and risk assessment code (RAC) were used to evaluate the environmental risks of heavy metals in soils. The health risk index (HRI) and hazard index (HI) were calculated to assess potential health risks to local populations through rice consumption. Hazardous levels of Cu, Cr, and Ni were observed in water and paddy soils at sites near the plant. According to the RAC analysis, the soils showed a high risk for Ni and a medium risk for Cu and Cr at certain sites. The rice samples were primarily contaminated with Ni, followed by Cr and Cu. HRI values >1 were not found for any heavy metal. However, HI values for adults and children were 2.075 and 1.808, respectively. Water, paddy soil, and rice from the studied area have been contaminated by Cu, Cr, and Ni. The contamination of these elements is related to the electroplating wastewater. Although no single metal poses health risks for local residents through rice consumption, the combination of several metals may threaten the health of local residents. Cu and Ni are the key components contributing to the potential health risks.

  20. Lead (Pb) and other metals in New York City community garden soils: factors influencing contaminant distributions.

    Science.gov (United States)

    Mitchell, Rebecca G; Spliethoff, Henry M; Ribaudo, Lisa N; Lopp, Donna M; Shayler, Hannah A; Marquez-Bravo, Lydia G; Lambert, Veronique T; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Stone, Edie B; McBride, Murray B

    2014-04-01

    Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Lead (Pb) and other metals in New York City community garden soils: factors influencing contaminant distributions

    Science.gov (United States)

    Mitchell, Rebecca G.; Spliethoff, Henry M.; Ribaudo, Lisa N.; Lopp, Donna M.; Shayler, Hannah A.; Marquez-Bravo, Lydia G.; Lambert, Veronique T.; Ferenz, Gretchen S.; Russell-Anelli, Jonathan M.; Stone, Edie B.; McBride, Murray B.

    2014-01-01

    Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures. PMID:24502997

  2. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil

    International Nuclear Information System (INIS)

    Clistenes do Nascimento, Williams A.; Amarasiriwardena, Dula; Xing, Baoshan

    2006-01-01

    Chemically assisted phytoremediation has been developing to induce accumulation of metals by high biomass plants. Synthetic chelates have shown high effectiveness to reach such a goal, but they pose serious drawbacks in field application due to the excessive amount of metals solubilized. We compared the performance of synthetic chelates with naturally occurring low molecular weight organic acids (LMWOA) in enhancing phytoextraction of metals by Indian mustard (Brassica juncea) from multi-metal contaminated soils. Gallic and citric acids were able to induce removal of Cd, Zn, Cu, and Ni from soil without increasing the leaching risk. Net removal of these metals caused by LMWOA can be as much as synthetic chelates. A major reason for this is the lower phytotoxicity of LMWOA. Furthermore, supplying appropriate mineral nutrients increased biomass and metal removal. - Organic acids can be as efficient as synthetic chelates for use in phytoextraction of multi-metal contaminated soils

  3. Heavy metals in soils along unpaved roads in south west Cameroon: Contamination levels and health risks.

    Science.gov (United States)

    Ngole-Jeme, Veronica M

    2016-04-01

    Soils enriched with heavy metals from vehicular emission present a significant exposure route of heavy metals to individuals using unpaved roads. This study assessed the extent of Cd, Cr, Co, Cu, Ni, Pb and Zn contamination of soils along unpaved roads in Cameroon, and the health risks presented by incidental ingestion and dermal contact with the soils using metal contamination factor (CF) pollution load index, hazard quotients (HQ) and chronic hazard index (CHI). CF values obtained (0.9-12.2) indicate moderate to high contamination levels. HQ values for Cr, Cd and Pb exceeded the reference doses. Moderate health hazard exists for road users in the areas with intense anthropogenic activities and high average daily traffic (ADT) volume according to CHI values (1-4) obtained. The economy and quality of life in cities with unpaved roads could be threatened by health challenges resulting from long-term exposure to heavy metal derived from high ADT volumes.

  4. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization.

    Science.gov (United States)

    Zhai, Xiuqing; Li, Zhongwu; Huang, Bin; Luo, Ninglin; Huang, Mei; Zhang, Qiu; Zeng, Guangming

    2018-09-01

    The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl 3 ) and in situ immobilization (with lime, biochar, and black carbon). The results showed that the removal rate of Cd, Pb, Zn, and Cu was 62.9%, 52.1%, 30.0%, and 16.7%, respectively, when washed with FeCl 3 . After the combined remediation (immobilization with 1% (w/w) lime), the contaminated soils showed 36.5%, 73.6%, 70.9%, and 53.4% reductions in the bioavailability of Cd, Cu, Pb, and Zn (extracted with 0.11M acetic acid), respectively, than those of the soils washed with FeCl 3 only. However, the immobilization with 1% (w/w) biochar or 1% (w/w) carbon black after washing exhibited low effects on stabilizing the metals. The differences in effects between the immobilization with lime, biochar, and carbon black indicated that the soil pH had a significant influence on the lability of heavy metals during the combined remediation process. The activity of the soil enzymes (urease, sucrase, and catalase) showed that the addition of all the materials, including lime, biochar, and carbon black, exhibited positive effects on microbial remediation after soil washing. Furthermore, lime was the most effective material, indicating that low soil pH and high acid-soluble metal concentrations might restrain the activity of soil enzymes. Soil pH and nutrition were the major considerations for microbial remediation during the combined remediation. These findings suggest that the combination of soil washing and in situ immobilization is an effective method to amend the soils contaminated with multiple heavy metals. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1.

    Science.gov (United States)

    Bang, Jihye; Kamala-Kannan, Seralathan; Lee, Kui-Jae; Cho, Min; Kim, Chang-Hwan; Kim, Young-Jin; Bae, Jong-Hyang; Kim, Kyong-Ho; Myung, Hyun; Oh, Byung-Taek

    2015-01-01

    The aim of this study is to characterize the heavy metal phytoremediation potential of Miscanthus sp. Goedae-Uksae 1, a hybrid, perennial, bio-energy crop developed in South Korea. Six different metals (As, Cu, Pb, Ni, Cd, and Zn) were used for the study. The hybrid grass effectively absorbed all the metals from contaminated soil. The maximum removal was observed for As (97.7%), and minimum removal was observed for Zn (42.9%). Similarly, Goedae-Uksae 1 absorbed all the metals from contaminated water except As. Cd, Pb, and Zn were completely (100%) removed from contaminated water samples. Generally, the concentration of metals in roots was several folds higher than in shoots. Initial concentration of metals highly influenced the phytoremediation rate. The results of the bioconcentration factor, translocation factor, and enrichment coefficient tests indicate that Goedae-Uksae 1 could be used for phytoremediation in a marginally contaminated ecosystem.

  6. Use of Hydrophilic Insoluble Polymers in the Restoration of Metal-Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Guiwei Qu

    2009-01-01

    Full Text Available To develop cost-effective techniques that contribute to phytostabilization of severely metal-contaminated soils is a necessary task in environmental research. Hydrophilic insoluble polymers have been used for some time in diapers and other hygienic products and to increase the water-holding capacity of coarse-textured soils. These polymers contain groups, such as carboxyl groups, that are capable of forming bonds with metallic cations, thereby decreasing their bioavailability in soils. The use of polyacrylate polymers as soil amendments to restore metal-contaminated soils has been investigated in the Technical University of Lisbon since the late nineties. Plant growth and plant nutrients concentrations, extractable levels of metals in soil, and soil enzyme activities were used to monitor the improvement in soil quality following the application of these polymers. In contaminated soils, hydrophilic insoluble polymers can create microcosms that are rich in water and nutrients (counterions but only contain small concentrations of toxic elements; the conditions of these microenvironments are favorable to roots and microorganisms. In this paper we described the most relevant information available about this topic.

  7. Use of Hydrophilic Insoluble Polymers in the Restoration of Metal-Contaminated Soils

    International Nuclear Information System (INIS)

    Qu, G.; De Varennes, A.; Qu, G.

    2010-01-01

    To develop cost-effective techniques that contribute to phyto stabilization of severely metal-contaminated soils is a necessary task in environmental research. Hydrophilic insoluble polymers have been used for some time in diapers and other hygienic products and to increase the water-holding capacity of coarse-textured soils. These polymers contain groups, such as carboxyl groups, that are capable of forming bonds with metallic cations, thereby decreasing their bioavailability in soils. The use of polyacrylate polymers as soil amendments to restore metal-contaminated soils has been investigated in the Technical University of Lisbon since the late nineties. Plant growth and plant nutrients concentrations, extractable levels of metals in soil, and soil enzyme activities were used to monitor the improvement in soil quality following the application of these polymers. In contaminated soils, hydrophilic insoluble polymers can create microcosms that are rich in water and nutrients (counterions) but only contain small concentrations of toxic elements; the conditions of these micro environments are favorable to roots and microorganisms. In this paper we described the most relevant information available about this topic.

  8. Utilization of plants for stabilization and cleaning up of metal contaminated soil and water

    Directory of Open Access Journals (Sweden)

    Miroslav Štofko

    2006-06-01

    Full Text Available Phytoremediation has been defined as the use of green plants and their associated rhizospheric microorganisms to remove, degrade, or contain contaminants located in soisl, sediments, groundwater, surface water, and even the atmosphere. Categories of phytoremediation include - phytoextraction or phytoaccumulation, phytotransformation, phytostimulation or plant-assisted bioremediation, phytovolatilization, rhizofiltration, pump and tree, phytostabilization, and hydraulic control. Phytoremediation of heavy metal contaminated soils basically includes phytostabilization, phytoextraction, rhizofiltration and phytovolatilization. Selection of plants for phytoremediation of metals depends on a particular application.

  9. Potential of Sunflower (Helianthus annuus L.) for Phytoremediation of Soils Contaminated with Heavy Metals

    OpenAIRE

    Violina R. Angelova; Mariana N. Perifanova-Nemska; Galina P. Uzunova; Krasimir I. Ivanov; Huu Q. Lee

    2016-01-01

    A field study was conducted to evaluate the efficacy of the sunflower (Helianthus annuus L.) for phytoremediation of contaminated soils. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. Field experiments with a randomized, complete block design with five treatments (control, compost amendments added at 20 and 40 t/daa, and vemicompost amendments added at 20 and 40 t/daa) were carried out. The accumulation of heavy metals...

  10. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Antonkiewicz, Jacek; Para, Andrzej

    2016-01-01

    Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.

  11. The Research of Nanoparticle and Microparticle Hydroxyapatite Amendment in Multiple Heavy Metals Contaminated Soil Remediation

    Directory of Open Access Journals (Sweden)

    Zhangwei Li

    2014-01-01

    Full Text Available It was believed that when hydroxyapatite (HAP was used to remediate heavy metal-contaminated soils, its effectiveness seemed likely to be affected by its particle size. In this study, a pot trial was conducted to evaluate the efficiency of two particle sizes of HAP: nanometer particle size of HAP (nHAP and micrometer particle size of HAP (mHAP induced metal immobilization in soils. Both mHAP and nHAP were assessed for their ability to reduce lead (Pb, zinc (Zn, copper (Cu, and chromium (Cr bioavailability in an artificially metal-contaminated soil. The pakchoi (Brassica chinensis L. uptake and soil sequential extraction method were used to determine the immobilization and bioavailability of Pb, Zn, Cu, and Cr. The results indicated that both mHAP and nHAP had significant effect on reducing the uptake of Pb, Zn, Cu, and Cr by pakchoi. Furthermore, both mHAP and nHAP were efficient in covering Pb, Zn, Cu, and Cr from nonresidual into residual forms. However, mHAP was superior to nHAP in immobilization of Pb, Zn, Cu, and Cr in metal-contaminated soil and reducing the Pb, Zn, Cu, and Cr utilized by pakchoi. The results suggested that mHAP had the better effect on remediation multiple metal-contaminated soils than nHAP and was more suitable for applying in in situ remediation technology.

  12. Uptake of certain heavy metals from contaminated soil by mushroom--Galerina vittiformis.

    Science.gov (United States)

    Damodaran, Dilna; Vidya Shetty, K; Raj Mohan, B

    2014-06-01

    Remediation of soil contaminated with heavy metals has received considerable attention in recent years. In this study, the heavy metal uptake potential of the mushroom, Galerina vittiformis, was studied in soil artificially contaminated with Cu (II), Cd (II), Cr (VI), Pb (II) and Zn (II) at concentrations of 50 and 100mg/kg. G. vittiformis was found to be effective in removing the metals from soil within 30 days. The bioaccumulation factor (BAF) for both mycelia and fruiting bodies with respect to these heavy metals at 50mg/kg concentrations were found to be greater than one, indicating hyper accumulating nature by the mushroom. The metal removal rates by G. vittiformis was analyzed using different kinetic rate constants and found to follow the second order kinetic rate equation except for Cd (II), which followed the first order rate kinetics. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    Science.gov (United States)

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Assessment of metals contamination and ecological risk in ait Ammar abandoned iron mine soil, Morocco

    Directory of Open Access Journals (Sweden)

    Nouri Mohamed

    2016-03-01

    Full Text Available The present study is an attempt to assess the pollution intensity and corresponding ecological risk of phosphorus and metals including Cd, Cr, Cu, Zn, Pb and Fe using various indices like geo-accumulation index, enrichment factor, pollution and ecological risk index. In all, 20 surface soil samples were collected from the Ait Ammar iron mine of Oued Zem city, province of Khouribga, in central Morocco. The concentrations of heavy metals in soil samples were used to assess their potential ecological risks. According to the results of potential ecological risk index (RI, pollution index (PI, geo-accumulation index (Igeo, enrichment factor (EF, potential contamination index (Cp, contaminant factor (Cf and degree of contamination (Cd, based on the averages, considerable pollution of metals in soils of study area was observed. The consequence of the correlation matrix and principal component analysis (PCA indicated that Fe, Cu, Zn, Cr and P mainly originated from natural sources and Cd and Pb are mostly derived from anthropogenic sources. The results showed that these metals in soil were ranked by severity of ecological risk as Pb > Cd > Cu > Cr > Zn, based on their single-element indexes. In view of the potential ecological risk (RI, soils from all soil samples showed a potential ecological risk. These results will provide basic information for the improvement of soil environment management and heavy metal pollution prevention in Ait Ammar.

  15. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    Science.gov (United States)

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  16. Metal contamination disturbs biochemical and microbial properties of calcareous agricultural soils of the Mediterranean area.

    Science.gov (United States)

    de Santiago-Martín, Ana; Cheviron, Natalie; Quintana, Jose R; González, Concepción; Lafuente, Antonio L; Mougin, Christian

    2013-04-01

    Mediterranean climate characteristics and carbonate are key factors governing soil heavy-metal accumulation, and low organic matter (OM) content could limit the ability of microbial populations to cope with resulting stress. We studied the effects of metal contamination on a combination of biological parameters in soils having these characteristics. With this aim, soils were spiked with a mixture of cadmium, copper, lead, and zinc, at the two limit values proposed by current European legislation, and incubated for ≤12 months. Then we measured biochemical (phosphatase, urease, β-galactosidase, arylsulfatase, and dehydrogenase activities) and microbial (fungal and bacterial DNA concentration by quantitative polymerase chain reaction) parameters. All of the enzyme activities were strongly affected by metal contamination and showed the following inhibition sequence: phosphatase (30-64 %) soils was attributed to the different proportion of fine mineral fraction, OM, crystalline iron oxides, and divalent cations in soil solution. The decrease of fungal DNA concentration in metal-spiked soils was negligible, whereas the decrease of bacterial DNA was ~1-54 % at the lowest level and 2-69 % at the highest level of contamination. The lowest bacterial DNA decrease occurred in soils with the highest OM, clay, and carbonate contents. Finally, regarding the strong inhibition of the biological parameters measured and the alteration of the fungal/bacterial DNA ratio, we provide strong evidence that disturbance on the system, even within the limiting values of contamination proposed by the current European Directive, could alter key soil processes. These limiting values should be established according to soil characteristics and/or revised when contamination is produced by a mixture of heavy metals.

  17. Contamination features and health risk of soil heavy metals in China

    International Nuclear Information System (INIS)

    Chen, Haiyang; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Wang, Jinsheng

    2015-01-01

    China faces a big challenge of environmental deterioration amid its rapid economic development. To comprehensively identify the contamination characteristics of heavy metals in Chinese soils on a national scale, data set of the first national soil pollution survey was employed to evaluate the pollution levels using several pollution indicators (pollution index, geoaccumulation index and enrichment factor) and to quantify their exposure risks posed to human health with the risk assessment model recommended by the US Environmental Protection Agency. The results showed that, due to the drastically increased industrial operations and fast urban expansion, Chinese soils were contaminated by heavy metals in varying degrees. As a whole, the exposure risk levels of soil metals in China were tolerable or close to acceptable. Comparatively speaking, children and adult females were the relatively vulnerable populations for the non-carcinogenic and carcinogenic risks, respectively. Cadmium and mercury have been identified as the priority control metals due to their higher concentrations in soils or higher health risks posed to the public, as well as, arsenic, lead, chromium and nickel. Spatial distribution pattern analysis implied that the soil metal pollutions in southern provinces of China were relatively higher than that in other provinces, which would be related to the higher geochemical background in southwest regions and the increasing human activities in southeast areas. Meanwhile, it should be noticed that Beijing, the capital of China, also has been labeled as the priority control province for its higher mercury concentration. These results will provide basic information for the improvement of soil environment management and heavy metal pollution prevention and control in China. - Highlights: • Soil contamination with heavy metals in China was systematically studied. • Spatial distribution patterns of heavy metals in Chinese soils were identified. • Monte

  18. Contamination features and health risk of soil heavy metals in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiyang [Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875 (China); College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Teng, Yanguo, E-mail: Teng1974@163.com [Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875 (China); College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Lu, Sijin; Wang, Yeyao [China National Environmental Monitoring Center, Beijing 100012 (China); Wang, Jinsheng [Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875 (China); College of Water Sciences, Beijing Normal University, Beijing 100875 (China)

    2015-04-15

    China faces a big challenge of environmental deterioration amid its rapid economic development. To comprehensively identify the contamination characteristics of heavy metals in Chinese soils on a national scale, data set of the first national soil pollution survey was employed to evaluate the pollution levels using several pollution indicators (pollution index, geoaccumulation index and enrichment factor) and to quantify their exposure risks posed to human health with the risk assessment model recommended by the US Environmental Protection Agency. The results showed that, due to the drastically increased industrial operations and fast urban expansion, Chinese soils were contaminated by heavy metals in varying degrees. As a whole, the exposure risk levels of soil metals in China were tolerable or close to acceptable. Comparatively speaking, children and adult females were the relatively vulnerable populations for the non-carcinogenic and carcinogenic risks, respectively. Cadmium and mercury have been identified as the priority control metals due to their higher concentrations in soils or higher health risks posed to the public, as well as, arsenic, lead, chromium and nickel. Spatial distribution pattern analysis implied that the soil metal pollutions in southern provinces of China were relatively higher than that in other provinces, which would be related to the higher geochemical background in southwest regions and the increasing human activities in southeast areas. Meanwhile, it should be noticed that Beijing, the capital of China, also has been labeled as the priority control province for its higher mercury concentration. These results will provide basic information for the improvement of soil environment management and heavy metal pollution prevention and control in China. - Highlights: • Soil contamination with heavy metals in China was systematically studied. • Spatial distribution patterns of heavy metals in Chinese soils were identified. • Monte

  19. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    Science.gov (United States)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  20. Effect of leaf and soil contaminations on heavy metals content in spring wheat crops

    International Nuclear Information System (INIS)

    Weber, R.; Hrynczuk, B.

    2000-01-01

    Glass house experiments were carried out in Wagner pots containing 6 kg of soil. The amounts were compared of Zn, Pb and Cd taken up by the crop of spring wheat from contamination introduced into the soil or upon leaves. The heavy metals were labelled with the radioactive isotopes 65 Zn, 210 Pb and 115 Cd. The experiment was performed as a series of independent analyses in four replications. The dynamics of the labelled heavy metals translocation from contaminations sprayed on the upper or bottom side of the flag leaf was also tested. The highest concentration of 65 Zn was found in the straw and gain of wheat. much higher amounts of the metals appeared to have been taken up by the plants from leaf contamination than from soil. The highest dynamics of translocation from leaves to other vegetative and generative organs of plants was that of zinc. (author)

  1. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    Directory of Open Access Journals (Sweden)

    Zueng-Sang Chen

    2010-10-01

    Full Text Available Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1 food safety risk assessment for brown rice growing in a HMs-contaminated site; (2 a tiered approach to health risk assessment for a contaminated site; (3 risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4 soil remediation cost analysis for contaminated sites in Taiwan.

  2. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    Science.gov (United States)

    Lai, Hung-Yu; Hseu, Zeng-Yei; Chen, Ting-Chien; Chen, Bo-Ching; Guo, Horng-Yuh; Chen, Zueng-Sang

    2010-01-01

    Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act) uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs) have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1) food safety risk assessment for brown rice growing in a HMs-contaminated site; (2) a tiered approach to health risk assessment for a contaminated site; (3) risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4) soil remediation cost analysis for contaminated sites in Taiwan. PMID:21139851

  3. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil

    International Nuclear Information System (INIS)

    Brunner, Ivano; Luster, Joerg; Guenthardt-Goerg, Madeleine S.; Frey, Beat

    2008-01-01

    Root systems of Norway spruce (Picea abies) and poplar (Populus tremula) were long-term exposed to metal-contaminated soils in open-top chambers to investigate the accumulation of the heavy metals in the fine roots and to assess the plants suitability for phytostabilisation. The heavy metals from the contaminated soil accumulated in the fine roots about 10-20 times more than in the controls. The capacity to bind heavy metals already reached its maximum after the first vegetation period. Fine roots of spruce tend to accumulate more heavy metals than poplar. Copper and Zinc were mainly detected in the cell walls with larger values in the epidermis than in the cortex. The heavy metals accumulated in the fine roots made up 0.03-0.2% of the total amount in the soils. We conclude that tree fine roots adapt well to conditions with heavy metal contamination, but their phytostabilisation capabilities seem to be very low. - Long-term exposed fine roots of trees are well adapted to soils with high heavy metal contents, but their phytostabilisation capabilities are rather low

  4. Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides

    International Nuclear Information System (INIS)

    Ryser, Peter; Sauder, Wendy R.

    2006-01-01

    The effects of low levels of heavy metals on plant growth, biomass turnover and reproduction were investigated for Hieracium pilosella. Plants were grown for 12 weeks on substrates with different concentrations of heavy metals obtained by diluting contaminated soils with silica sand. To minimize effects of other soil factors, the substrates were limed, fertilized, and well watered. The more metal-contaminated soil the substrate contained, the lower the leaf production rate and the plant mass were, and the more the phenological development was delayed. Flowering phenology was very sensitive to metals. Leaf life span was reduced at the highest and the lowest metal levels, the latter being a result of advanced seed ripening. Even if the effect of low metal levels on plant growth may be small, the delayed and reduced reproduction may have large effects at population, community and ecosystem level, and contribute to rapid evolution of metal tolerance. - Flowering phenology shows a very sensitive response to heavy metal contamination of soils

  5. Metal accumulation in plants with added economical value grown on metal contaminated soils: sustainable use of these soils for bio-energy production and possibilities for phyto extraction

    International Nuclear Information System (INIS)

    Vangronsveld, J.; Boulet, J.; Weyens, N.; Meers, E.; Meiresonne, L.; Colpaert, J.; Thewys, T.; Lelie, D. van der; Carleer, R.; Ruttens, A.

    2009-01-01

    Phyto remediation has been proposed as an economic alternative for remediation of metal contaminated soils. It can be applied over extended surface areas and targets the bioavailable soil fraction of heavy metals, which is the most relevant fraction from an environmental risk assessment perspective. The most important drawback is the long remediation period required (years to decades). (Author)

  6. Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils

    International Nuclear Information System (INIS)

    Dumat, C.; Quenea, K.; Bermond, A.; Toinen, S.; Benedetti, M.F.

    2006-01-01

    The role of metals in the behaviour of soil organic matter (SOM) is not well documented. Therefore, we investigated the influence of metals (Pb, Zn, Cu and Cd) on the dynamic of SOM in contaminated soils where maize (C 4 plant) replaced C 3 cultures. Three pseudogley brown leached soil profiles under maize with a decreasing gradient in metals concentrations were sampled. On size fractions, stable carbon isotopic ratio (δ 13 C), metals, organic carbon and nitrogen concentrations were measured in function of depth. The determined sequence for the amount of C 4 organic matter in the bulk fractions: M 3 (0.9) > M 2 (0.4) > M 1 (0.3) is in agreement with a significant influence of metals on the SOM turnover. New C 4 SOM, mainly present in the labile coarser fractions and less contaminated by metals than the stabilised C 3 SOM of the clay fraction, is more easily degraded by microorganisms. - Measure of δ 13 C and total metal concentrations in size fractions of contaminated soils suggests an influence of metals on the soil organic matter dynamic

  7. Determination of heavy metal pollution in soils from selected potentially contaminated sites in Tema

    International Nuclear Information System (INIS)

    Nyaaba, A.K.L.

    2011-01-01

    The objective of the study was to assess the concentration and determine the level of pollution by harmful heavy metals in soils from selected potentially contaminated sites in Tema. The metals of interest include; mercury, lead, cadmium, cobalt zinc, arsenic, nickel, copper and chromium. A total of forty seven (47) samples comprising thirty eight sub-samples (38) and nine (9) composite samples were collected from nine (9) different locations. These included playgrounds, steel processing factories, used Lead Acid Battery (ULAB) recycling plant, mechanic workshops and the municipal waste disposal site. The samples were prepared after which the elemental concentrations were determined using energy dispersive X-ray fluorescence (EDXRF) with a secondary target excitation arrangement (5.9 keV). The analysis of the samples yielded the following mean heavy metal concentrations in mg/kg: 424.38 (Cr); 408.68 (Ni); 14427 (Cu); 4129.87 (Zn); 1580.68 (As); 647.48 (Hg); 73361.51 (Pb) and 1176.16 (Co). The mean concentrations of heavy metals in the soils were in the following order Pb>Zn>As>Co>Cu>Hg>Cr>Ni. Mercury was detected at only two of the sites. The average heavy metals in the soils from the sites were generally high since most of them exceeded the optimum and action values of the New Dutch List. The Enrichment Factor (EF) ratios show that the enrichment of the elements in the soils ranged from deficiently to extremely highly enriched. The contamination factor show that the contamination by the heavy metals were low at some of the sites and very high at others. The geoaccumulation indices indicated that the playground (PG) has not been contaminated by any of the metals, C8 is contaminated strongly by mercury only and the contamination at the remaining sites varied from moderately contaminated to extremely contaminated by the metals. The Igeo also indicated that the elements accounting for extreme contamination are lead, arsenic, copper, zinc mercury and chromium. Lead

  8. Solubility and Potential Mobility of Heavy Metals in Two Contaminated Urban Soils from Stockholm, Sweden

    International Nuclear Information System (INIS)

    Oborn, Ingrid; Linde, Mats

    2001-01-01

    The solubility and potential mobility of heavy metals (Cd, Cu,Hg, Pb and Zn) in two urban soils were studied by sequential and leaching extractions (rainwater). Compared to rural (arable) soils on similar parent material, the urban soils were highly contaminated with Hg and Pb and to a lesser extent also with Cd,Cu and Zn. Metal concentrations in rainwater leachates were related to sequential extractions and metal levels reported from Stockholm groundwater. Cadmium and Zn in the soils were mainly recovered in easily extractable fractions, whereas Cu and Pb were complex bound. Concentrations of Pb in the residual fraction were between two- and eightfold those in arable soils, indicating that the sequential extraction scheme did not reflect the solid phases affected by anthropogenic inputs. Cadmium and Zn conc. in the rainwater leachates were within the range detected in Stockholm groundwater, while Cu and Pb conc. were higher, which suggests that Cu and Pb released from the surface soil were immobilised in deeper soil layers. In a soil highly contaminated with Hg, the Hg conc. in the leachate was above the median concentration, but still 50 times lower than the max concentration found in groundwater, indicating the possibility of other sources. In conclusion, it proved difficult to quantitatively predict the mobility of metals in soils by sequential extractions

  9. Review in Strengthening Technology for Phytoremediation of Soil Contaminated by Heavy Metals

    Science.gov (United States)

    Wu, Chishan; Zhang, Xingfeng; Deng, Yang

    2017-07-01

    In view of current problems of phytoremediation technology, this paper summarizes research progress for phytoremediation technology of heavy metal contaminated soil. When the efficiency of phytoremediation may not meet the demand in practice of contaminated soil or water. Effective measures should be taken to improve the plant uptake and translocation. This paper focuses on strengthening technology mechanism, which can not only increase the biomass of plant and hyperaccumulators, but also enhance the tolerance and resistance to heavy metals, and application effect of phytoremediation, including agronomic methods, earthworm bioremediation and chemical induction technology. In the end of paper, deficiencies of each methods also be discussed, methods of strengthening technology for phytoremediation need further research.

  10. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments

    International Nuclear Information System (INIS)

    Mench, Michel; Renella, Giancarlo; Gelsomino, Antonio; Landi, Loretta; Nannipieri, Paolo

    2006-01-01

    The effectiveness of two amendments for the in situ remediation of a Cd- and Ni-contaminated soil in the Louis Fargue long-term field experiment was assessed. In April 1995, one replicate plot (S1) was amended with 5% w/w of beringite (B), a coal fly ash (treatment S1 + B), and a second plot with 1% w/w zerovalent-Fe iron grit (SS) (treatment S1+SS), with the aim of increasing metal sorption and attenuating metal impacts. Long-term responses of daily respiration rates, microbial biomass, bacterial species richness and the activities of key soil enzymes (acid and alkaline phosphatase, arylsulfatase, β-glucosidase, urease and protease activities) were studied in relation to soil metal extractability. Seven years after initial amendments, the labile fractions of Cd and Ni in both the S1 + B and S1 + SS soils were reduced to various extents depending on the metal and fractions considered. The soil microbial biomass and respiration rate were not affected by metal contamination and amendments in the S1 + B and S1 + SS soils, whereas the activity of different soil enzymes was restored. The SS treatment was more effective in reducing labile pools of Cd and Ni and led to a greater recovery of soil enzyme activities than the B treatment. Bacterial species richness in the S1 soil did not alter with either treatment. It was concluded that monitoring of the composition and activity of the soil microbial community is important in evaluating the effectiveness of soil remediation practices. - Amendments (coal fly ash, zerovalent-Fe iron grit), reduced labile fractions of Cd and Ni in contaminated soils and restored the activity of key soil hydrolases

  11. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.

    Science.gov (United States)

    Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen

    2015-01-01

    This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.

  12. Remediation techniques for heavy metal-contaminated soils: Principles and applicability.

    Science.gov (United States)

    Liu, Lianwen; Li, Wei; Song, Weiping; Guo, Mingxin

    2018-08-15

    Globally there are over 20millionha of land contaminated by the heavy metal(loid)s As, Cd, Cr, Hg, Pb, Co, Cu, Ni, Zn, and Se, with the present soil concentrations higher than the geo-baseline or regulatory levels. In-situ and ex-situ remediation techniques have been developed to rectify the heavy metal-contaminated sites, including surface capping, encapsulation, landfilling, soil flushing, soil washing, electrokinetic extraction, stabilization, solidification, vitrification, phytoremediation, and bioremediation. These remediation techniques employ containment, extraction/removal, and immobilization mechanisms to reduce the contamination effects through physical, chemical, biological, electrical, and thermal remedy processes. These techniques demonstrate specific advantages, disadvantages, and applicability. In general, in-situ soil remediation is more cost-effective than ex-situ treatment, and contaminant removal/extraction is more favorable than immobilization and containment. Among the available soil remediation techniques, electrokinetic extraction, chemical stabilization, and phytoremediation are at the development stage, while the others have been practiced at full, field scales. Comprehensive assessment indicates that chemical stabilization serves as a temporary soil remediation technique, phytoremediation needs improvement in efficiency, surface capping and landfilling are applicable to small, serious-contamination sites, while solidification and vitrification are the last remediation option. The cost and duration of soil remediation are technique-dependent and site-specific, up to $500ton -1 soil (or $1500m -3 soil or $100m -2 land) and 15years. Treatability studies are crucial to selecting feasible techniques for a soil remediation project, with considerations of the type and degree of contamination, remediation goals, site characteristics, cost effectiveness, implementation time, and public acceptability. Copyright © 2018 Elsevier B.V. All rights

  13. Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Chul [Department of Chemical and Biomolecular Engineering (BK21 program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Eun Jung [Advanced Biomass R and D Center, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ko, Dong Ah [Department of Chemical and Biomolecular Engineering (BK21 program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Yang, Ji-Won, E-mail: jiwonyang@kaist.ac.kr [Department of Chemical and Biomolecular Engineering (BK21 program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Advanced Biomass R and D Center, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Aminoclays have synthesized using centered metals with aminopropyl silane. Black-Right-Pointing-Pointer Developed aminoclay has unique nano-sized and water-soluble properties. Black-Right-Pointing-Pointer Aminoclay showed high heavy metal capacity with metal ions and its less toxicity. Black-Right-Pointing-Pointer Aminoclay could be used to remediate heavy metals from soils an alternative soil-flushing agent. - Abstract: We demonstrated that water-soluble aminopropyl magnesium functionalized phyllosilicate could be used as a soil-flushing agent for heavy metal contaminated soils. Soil flushing has been an attractive means to remediate heavy metal contamination because it is less disruptive to the soil environment after the treatment was performed. However, development of efficient and non-toxic soil-flushing agents is still required. We have synthesized aminoclays with three different central metal ions such as magnesium, aluminum, and ferric ions and investigated applicability of aminoclays as soil flushing agents. Among them, magnesium (Mg)-centered aminoclay showed the smallest size distribution and superior water solubility, up to 100 mg/mL. Mg aminoclay exhibited cadmium and lead binding capacity of 26.50 and 91.31 mg/g of Mg clay, respectively, at near neutral pH, but it showed negligible binding affinity to metals in acidic conditions. For soil flushing with Mg clay at neutral pH showed cadmium and lead were efficiently extracted from soils by Mg clay, suggesting strong binding ability of Mg clay with cadmium and lead. As the organic matter and clay compositions increased in the soil, the removal efficiency by Mg clay decreased and the operation time increased.

  14. Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil

    International Nuclear Information System (INIS)

    Lee, Young-Chul; Kim, Eun Jung; Ko, Dong Ah; Yang, Ji-Won

    2011-01-01

    Highlights: ► Aminoclays have synthesized using centered metals with aminopropyl silane. ► Developed aminoclay has unique nano-sized and water-soluble properties. ► Aminoclay showed high heavy metal capacity with metal ions and its less toxicity. ► Aminoclay could be used to remediate heavy metals from soils an alternative soil-flushing agent. - Abstract: We demonstrated that water-soluble aminopropyl magnesium functionalized phyllosilicate could be used as a soil-flushing agent for heavy metal contaminated soils. Soil flushing has been an attractive means to remediate heavy metal contamination because it is less disruptive to the soil environment after the treatment was performed. However, development of efficient and non-toxic soil-flushing agents is still required. We have synthesized aminoclays with three different central metal ions such as magnesium, aluminum, and ferric ions and investigated applicability of aminoclays as soil flushing agents. Among them, magnesium (Mg)-centered aminoclay showed the smallest size distribution and superior water solubility, up to 100 mg/mL. Mg aminoclay exhibited cadmium and lead binding capacity of 26.50 and 91.31 mg/g of Mg clay, respectively, at near neutral pH, but it showed negligible binding affinity to metals in acidic conditions. For soil flushing with Mg clay at neutral pH showed cadmium and lead were efficiently extracted from soils by Mg clay, suggesting strong binding ability of Mg clay with cadmium and lead. As the organic matter and clay compositions increased in the soil, the removal efficiency by Mg clay decreased and the operation time increased.

  15. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils.

    Science.gov (United States)

    Sharma, Swati; Tiwari, Sakshi; Hasan, Abshar; Saxena, Varun; Pandey, Lalit M

    2018-04-01

    Remediation of heavy metal-contaminated soils has been drawing our attention toward it for quite some time now and a need for developing new methods toward reclamation has come up as the need of the hour. Conventional methods of heavy metal-contaminated soil remediation have been in use for decades and have shown great results, but they have their own setbacks. The chemical and physical techniques when used singularly generally generate by-products (toxic sludge or pollutants) and are not cost-effective, while the biological process is very slow and time-consuming. Hence to overcome them, an amalgamation of two or more techniques is being used. In view of the facts, new methods of biosorption, nanoremediation as well as microbial fuel cell techniques have been developed, which utilize the metabolic activities of microorganisms for bioremediation purpose. These are cost-effective and efficient methods of remediation, which are now becoming an integral part of all environmental and bioresource technology. In this contribution, we have highlighted various augmentations in physical, chemical, and biological methods for the remediation of heavy metal-contaminated soils, weighing up their pros and cons. Further, we have discussed the amalgamation of the above techniques such as physiochemical and physiobiological methods with recent literature for the removal of heavy metals from the contaminated soils. These combinations have showed synergetic effects with a many fold increase in removal efficiency of heavy metals along with economic feasibility.

  16. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.

  17. Phytoremediation of heavy metals and hydrocarbon contaminated soils; Phytoremediation des sols contamines aux metaux lourds et aux hydrocarbures recalcitrants

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, R.; Chateauneuf, G.; Sura, C. [Inspec-Sol Inc., Montreal, PQ (Canada); Labrecque, M.; Galipeau, C. [Jardin botanique de Montreal, Montreal, PQ (Canada). Institut de Recherche en Biologie Vegetale; Greer, C.; Delisle, S.; Roy, S.; Labelle, S. [National Research Council of Canada, Montreal, PQ (Canada). Inst. for Research in Biotechnology

    2003-07-01

    Phytoremediation is a technology that uses plants to decontaminate soils and underground water. Inspec-Sol, a company located in Montreal, Quebec, conducted a two-year study to evaluate the decontamination capabilities of this technology. Trials in greenhouses and field studies at the Pitt Park along the Lachine Canal were conducted. The soils chosen for the studies were soils with concentrations of polycyclic aromatic hydrocarbons (PAH) and heavy metals (lead, copper, zinc) higher than those prescribed for the safe utilization of soils. The trials identified the three plant species (Salix viminalis, Brassica juncea, and Festuca arundinacea) which had the best characteristics for phytoremediation. Controlled experiments were performed to optimize the technology to achieve the maximum extraction of contaminant. It was concluded that phytoremediation has potential for the remediation of urban soils contaminated with organic and inorganic pollutants.

  18. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    Science.gov (United States)

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China.

    Science.gov (United States)

    Xiao, Ran; Wang, Shuang; Li, Ronghua; Wang, Jim J; Zhang, Zengqiang

    2017-07-01

    Soil contamination with heavy metals due to mining activities poses risks to ecological safety and human well-being. Limited studies have investigated heavy metal pollution due to artisanal mining. The present study focused on soil contamination and the health risk in villages in China with historical artisanal mining activities. Heavy metal levels in soils, tailings, cereal and vegetable crops were analyzed and health risk assessed. Additionally, a botany investigation was conducted to identify potential plants for further phytoremediation. The results showed that soils were highly contaminated by residual tailings and previous mining activities. Hg and Cd were the main pollutants in soils. The Hg and Pb concentrations in grains and some vegetables exceeded tolerance limits. Moreover, heavy metal contents in wheat grains were higher than those in maize grains, and leafy vegetables had high concentrations of metals. Ingestion of local grain-based food was the main sources of Hg, Cd, and Pb intake. Local residents had high chronic risks due to the intake of Hg and Pb, while their carcinogenic risk associated with Cd through inhalation was low. Three plants (Erigeron canadensis L., Digitaria ciliaris (Retz.) Koel., and Solanum nigrum L.) were identified as suitable species for phytoremediation. Copyright © 2017. Published by Elsevier Inc.

  20. INVESTIGATION OF HEAVY METAL CONTAMINATION IN THE ROADSIDE SOIL AT MORENA DISTRICT IN INDIA

    OpenAIRE

    Laxmi Kant Sharma

    2016-01-01

    Pollution of natural environment due to release of heavy metals from various sources is a widespread problem throughout the world. This study explains the effect of heavy metal contaminants in Roadside soil of Morena district. Twelve air dried surface soil samples were collected from 50cm – 1m (point A) and twelve from 30m (point B) away from the roadside along a road with a distance of 50 km. Heavy metals were found in both points with highest concentration at 50cm – 1m (point A). Roadside s...

  1. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

    International Nuclear Information System (INIS)

    Ren Wanxia; Li Peijun; Geng Yong; Li Xiaojun

    2009-01-01

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils.

  2. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Ren Wanxia, E-mail: ren_laura@163.com [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li Peijun, E-mail: lipeijun@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Geng Yong; Li Xiaojun [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2009-08-15

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils.

  3. Chemical stabilization of metals and arsenic in contaminated soils using oxides – A review

    International Nuclear Information System (INIS)

    Komárek, Michael; Vaněk, Aleš; Ettler, Vojtěch

    2013-01-01

    Oxides and their precursors have been extensively studied, either singly or in combination with other amendments promoting sorption, for in situ stabilization of metals and As in contaminated soils. This remediation option aims at reducing the available fraction of metal(loid)s, notably in the root zone, and thus lowering the risks associated with their leaching, ecotoxicity, plant uptake and human exposure. This review summarizes literature data on mechanisms involved in the immobilization process and presents results from laboratory and field experiments, including the subsequent influence on higher plants and aided phytostabilization. Despite the partial successes in the field, recent knowledge highlights the importance of long-term and large-scale field studies evaluating the stability of the oxide-based amendments in the treated soils and their efficiency in the long-term. - In situ stabilization of metals and As in contaminated soils using oxides combined with phytostabilization is a potential alternative to conventional remediation techniques.

  4. EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)

    Science.gov (United States)

    Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

  5. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    Science.gov (United States)

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil

  6. Enumeration and characterization of arsenic-tolerant diazotrophic bacteria in a long-term heavy-metal-contaminated soil

    OpenAIRE

    Oliveira, A.; Pampulha, M.E.; Neto, M.M.; Almeida, A.C.

    2009-01-01

    The abundance of arsenic-tolerant diazotrophic bacteria was compared in a long-term contaminated soil versus a non-contaminated one. In addition, the characterization of tolerant diazotrophic bacteria was carried out. Differences in the number of heterotrophic N2 fixers were found between soils. Contaminated soil showed a decrease in the microbial population size of about 80%, confirming the great sensitivity of this group of soil bacteria to metals. However, quantitat...

  7. Distribution and geology accumulation contamination analysis of heavy metal cadmium in agricultural soil of Zunyi county

    International Nuclear Information System (INIS)

    Chen Hongliang; Long Qian; Ke Yang

    2011-01-01

    The pollution of heavy metal Cd in agricultural soils of Zunyi County, Guizhou Province, was investigated and assessed by using geology accumulation indices (igeo) and pollution index method in this study. Results showed that the average content of Cd is 0.356 mg/kg, and the geochemistry baseline content of Cd was 0.147 mg/kg. The I geo s of Cd was 0.691, which suggested that non-contaminated soil accounts for 13.84%, 59.17% of tested soils was between non-polluted and mid-level polluted, 21.37% with mid-level polluted and 5.17% was between mid-level polluted and severely polluted, 0.45% of which was severely polluted. Contamination degree analysis indicated that non-contaminated soil was only 10.57%, 54.44% was influenced by Cd and 34.98% was seriously influenced by Cd. (authors)

  8. Phytoextraction with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils.

    NARCIS (Netherlands)

    Grispen, V.M.J.; Nelissen, H.J.M.; Verkleij, J.A.C.

    2006-01-01

    Phytoextraction is a promising tool to extract metals from contaminated soils and Brassica napus L. seems to be a possible candidate species for this purpose. To select accessions with the ability to accumulate cadmium, hydroponically grown 21 day old seedlings of 77 B. napus L. accessions were

  9. Leaching of heavy metals from contaminated soils: An experimental and modeling study

    NARCIS (Netherlands)

    Dijkstra, J.J.; Meeussen, J.C.L.; Comans, R.N.J.

    2004-01-01

    In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling.

  10. Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals

    OpenAIRE

    de Oliveira da Mota, Izabel; de Castro, José Adilson; de Góes Casqueira, Rui; de Oliveira Junior, Angelo Gomes

    2015-01-01

    Electroflotation method (EFM) for treatment of synthetic solutions simulating wastewater from washing soil contaminated by drilling fluids from oil wells was investigated in this paper. Experiments were carried out to examine the effects of the operating conditions on the removal of lead, barium and zinc from solutions containing 15 mg dm−3 for each metal representing a typical concentration of wastewater generated in the washing soil in this treatment. The experimental results showed that it...

  11. Review on utilization of biochar for metal-contaminated soil and sediment remediation.

    Science.gov (United States)

    Wang, Mingming; Zhu, Yi; Cheng, Lirong; Andserson, Bruce; Zhao, Xiaohui; Wang, Dayang; Ding, Aizhong

    2018-01-01

    Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant- and animal-based biomass under oxygen-limited conditions. Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications. Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects. But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment. Copyright © 2017. Published by Elsevier B.V.

  12. Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil.

    Science.gov (United States)

    Wang, Xin; Jia, Youngfeng

    2010-08-01

    Field experiments at the Shenyang Experimental Station of Ecology were conducted to study the adsorption, accumulation, and remediation of heavy metals by poplar and larch grown in artificially contaminated soil. The soil was spiked with a combination of Cd, Cu, and Zn at concentrations of 1.5, 100, and 200 mg.kg(-1), respectively. The results showed that the biomass of poplar (Populus canadensis Moench) was lower by 26.0% in the soil spiked with a mixture of Cd, Cu, and Zn, compared with the control. Concentrations of Cd in poplar leaf and Cu in poplar roots in the treated soil were 4.11 and 14.55 mg kg(-1), respectively, which are much greater than in corresponding controls. The migration of heavy metals in woody plant body was in the order Cd > Zn > Cu. Poplar had higher metal concentrations in aboveground tissues and a higher biomass compared with larch of the same age and therefore is potentially more suitable for remediation. In the heavy metal-polluted soil of this study, phytoremediation by poplar may take 56 and 245 years for Cd and Cu, respectively, for meeting the soil standards of heavy metals, and the corresponding phytoremediation times by larch would take 211 and 438 years. The research findings could be used as a basis to develop ecological engineering technologies for environmental control and remediation of pollution caused by heavy metals in soils.

  13. Risk-Based Approach for Thermal Treatment of Soils Contaminated with Heavy Metals

    Directory of Open Access Journals (Sweden)

    Cocârţă D. M.

    2013-04-01

    Full Text Available In the actual context of limited soil resources and the significant degree of environmental pollution, public administrations and authorities are interested in restoring contaminated sites paying attention to the impact of these soils on human health. This paper aims to present the efficiency of the the incineration as a method for treatment of the contaminated soils t based on human health risk assessment. Through various experimentations, the following metals have been studied: Zn, Cu, Fe, Mn, Ni, Pb, Cr, Co, Cd, Hg, As and Be. The most important and interesting results concerning both thermal treatment removal efficiency and associated human health risk assessments were achieved concerning Cd, Pb and Ni contaminants. The behavior of Cadmium (Cd, Lead (Pb and Nickel (Ni concentrations from heavy metals incineration soil has been analyzed for three incineration temperatures (600°C, 800°C and 1000°C and two resident times of soil within the incineration reactor (30 min. and 60 min.. In this case, the level of contaminants in the treated soil can be reduced but not enough to ensure an acceptable risk for human health.

  14. The effects of heavy metal contamination on the soil arthropod community of a shooting range

    International Nuclear Information System (INIS)

    Migliorini, Massimo; Pigino, Gaia; Bianchi, Nicola; Bernini, Fabio; Leonzio, Claudio

    2004-01-01

    Soils in clay pigeon shooting ranges can be seriously contaminated by heavy metals. The pellets contained in ammunition are composed of Pb, Sb, Ni, Zn, Mn and Cu. The total concentrations of these metals in soils, and the effects of their increasing levels on the arthropod community were investigated at seven sampling sites in a clay pigeon shooting range and compared with two controls. Research revealed that the spatial distribution of Pb and Sb contamination in the shot-fall area was strongly correlated with the flight path of the pellets. Ordination obtained through Redundance Analysis showed that Collembola, Protura and Diplura were positively correlated with major detected contaminants (Pb, Sb), while Symphyla showed a negative correlation with these pollutants. Determination of the soluble lead fraction in soil, and of its bioaccumulation in the saprophagous Armadillidium sordidum (Isopoda) and the predator Ocypus olens (Coleoptera), showed that a significant portion of metallic Pb from spent pellets is bioavailable in the soil and can be bioaccumulated by edaphic organisms, entering the soil trophic network, but without biomagnification. - Significant relationships were found between lead accumulation in soil from a shooting range and inhabiting arthropod communities

  15. Heavy metal stabilization in contaminated soil by treatment with calcined cockle shell.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Taki, Golam; Nguyen, Xuan Phuc; Jo, Young-Tae; Kim, Jun; Park, Jeong-Hun

    2017-03-01

    In several previous studies, the efficacy of various liming waste materials on the immobilization of heavy metals has been tested and it was found that soils contaminated with heavy metals can be stabilized using this technique. Since lime (CaO) has been identified as the main phase of calcined cockle shell (CCS), it was hypothesized that CCS could be used as a soil amendment to immobilize heavy metals in soil. However, to date, no studies have been conducted using CCS. In this study, the effectiveness of CCS powder on the immobilization of Cd, Pb, and Zn in mine tailing soil was evaluated. After 28 days of incubation, the treated soil samples were exposed to weathering (four cycles of freezing-thawing and four cycles of wetting-drying) for 8 days before being subjected to a leaching test. The results of this study revealed that the soil pH increased from 7.5 to 12.2 with the addition of 5% CCS. A similar soil pH was obtained when the soil was amended with 5% pure CaO. By leaching with 0.1 M HCl, extracted Cd, Pb, and Zn were reduced by up to 85, 85, and 91%, respectively. Therefore, CCS is suggested as a low-cost lime-based soil amendment for stabilizing heavy metals in abandoned mining sites.

  16. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination.

    Science.gov (United States)

    Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli

    2017-12-01

    Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Potential and real ecological threat of heavy metals in contaminated soils

    Science.gov (United States)

    Motuzova, Galina; Barsova, Natalia; Makarichev, Ivan; Karpova, Elena

    2013-04-01

    organisms. Within the last 20-40 years a bulk of information has been accumulating to study the impact of technogenic sources on the HM content in soils and the ratio between their compounds. They serve as evidence that in the contaminated soils the total content of HM is several orders (2-3) higher than that in soils of natural landscapes. Based upon a comprehensive analysis of data obtained in field and laboratory it is possible to speak about following differences in soils of natural and technogenic landscapes. (1) The total content of HM in contaminated soils reveals weak connection with their content in soil-forming rocks being depended on technological and landscape-geochemical conditions. (2) A share of mobile forms of HM from their total content increases in comparison to that in natural soils, what is associated with soil contamination and even toxicity, because they can be easily taken up by plants and other living organisms. (3) The surplus of HM in soils leads to degradation of the most important properties so vital for soil fertility (acid base saturation, ion exchange capacity, the humus status, absorbing capacity and others). The enhanced knowledge of soil chemical properties which are subject to contamination by HM, regularities in sorption of heavy metals bond to soil components, the composition of compounds formed by soil with heavy metals allows forecasting the real ecological threat of landscape contamination with HM. The indices of the foregoing soil chemical properties serve as a basis for application of current technologies for soil remediation from HM. Acknowledgments. This work was supported by the Russian Found of Basic Researches (projects no. 06-05-48894, 09-05-00575, 11-05-90351)

  18. Heavy metals contamination characteristics in soil of different mining activity zones

    Institute of Scientific and Technical Information of China (English)

    LIAO Guo-li; LIAO Da-xue; LI Quan-ming

    2008-01-01

    Depending upon the polluted features of various mining activities in a typical nonferrous metal mine, the contaminated soil area was divided into four zones which were polluted by tailings, mine drainage, dust deposition in wind and spreading minerals during vehicle transportation, respectively. In each zone, soil samples were collected. Total 28 soil samples were dug and analyzed by ICP-AES and other relevant methods. The results indicate that the average contents of Zn, Pb, Cd, Cu and As in soils are 508.6, 384.8, 7.53, 356 and 44.6 mg/kg, respectively. But the contents of heavy metals in different zone have distinct differences. The proportion of oxidizing association with organic substance is small. Difference of the association of heavy metals is small in different polluted zones.

  19. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge.

    Science.gov (United States)

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination.

  20. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge

    Science.gov (United States)

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    ABSTRACT Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination. PMID:26368503

  1. Immobilization of metals in contaminated soils using natural polymer-based stabilizers.

    Science.gov (United States)

    Tao, Xue; Li, Aimin; Yang, Hu

    2017-03-01

    Three low-cost natural polymer materials, namely, lignin (Ln), carboxymethyl cellulose, and sodium alginate, were used for soil amendment to immobilize lead and cadmium in two contaminated soil samples collected from a mining area in Nanjing, China. The remediation effects of the aforementioned natural polymers were evaluated by toxicity characteristic leaching procedure (TCLP) and sequential extractions. The stabilizers could lower the bioavailability of Pb and Cd in the contaminated soils, and the amount of the exchangeable forms of the aforementioned two metals were reduced evidently. TCLP results showed that the leaching concentrations of Pb and Cd were decreased by 5.46%-71.1% and 4.25%-49.6%, respectively, in the treated soils. The contents of the organic forms of the two metals both increased with the increase in stabilizer dose on the basis of the redistribution of metal forms by sequential extractions. These findings were due to the fact that the abundant oxygen-containing groups on the polymeric amendments were effective in chelating and immobilizing Pb and Cd, which have been further confirmed from the metal adsorptions in aqueous solutions. Moreover, Ln achieved the greatest effect among the three polymers under study because of the former's distinct three-dimensional molecular structure, showing the preferential immobilization of Pb over Cd in soils also. Thus, the above-mentioned natural polymers hold great application potentials for reducing metal ion entry into the food chain at a field scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Nahmani, Johanne, E-mail: nahmani@univ-metz.f [Laboratoire Interactions Ecotoxicite, Biodiversite, Ecosystemes, CNRS UMR 7146, Universite Paul Verlaine - Metz, Rue du General Delestraint, 57070 Metz (France); Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DW (United Kingdom); Hodson, Mark E. [Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DW (United Kingdom); Devin, Simon [Laboratoire Interactions Ecotoxicite, Biodiversite, Ecosystemes, CNRS UMR 7146, Universite Paul Verlaine - Metz, Rue du General Delestraint, 57070 Metz (France); Vijver, Martina G. [Leiden University, Institute of Environmental Sciences (CML), P.O. Box 9518, 2300 RA Leiden (Netherlands)

    2009-10-15

    It is well known that earthworms can accumulate metals. However, most accumulation studies focus on Cd-, Cu-, Pb- or Zn-amended soils, additionally few studies consider accumulation kinetics. Here we model the accumulation kinetics of 18 elements by Eisenia fetida, exposed to 8 metal-contaminated and 2 uncontaminated soils. Tissue metal concentration was determined after 3, 7, 14, 21, 28 and 42 days. Metal elimination rate was important in determining time to reach steady-state tissue metal concentration. Uptake flux to elimination rate ratios showed less variation and lower values for essential than for non-essential metals. In theory kinetic rate constants are dependent only on species and metal. Therefore it should be possible to predict steady-state tissue metal concentrations on the basis of very few measurements using the rate constants. However, our experiments show that it is difficult to extrapolate the accumulation kinetic constants derived using one soil to another. - Earthworm metal uptake and elimination constants derived from a one-compartment model show little systematic variation with soil properties.

  3. Heavy metals contamination of air and soil in Karak solid waste disposal site, Jordan

    International Nuclear Information System (INIS)

    Jiries, A. G.; Jaradat, Q. M.; Momani, K. A.

    1996-01-01

    The level of air and soil pollution in the municipal solid waste disposal site of Karak(Jordan) were investigated during spring of 1995 by monitoring the amounts of heavy metals. The concentration (mg/kg)of Cu, Pb, and Zn in the upper soil were found to have a range of 15.3-39.3, 21.2-38.0 and 60.0-127.0 respectively. However, for the lower soil, the ranges are 13.4-18.9, 18.5-23.7, and 50.6-90.4, respectively. The soil contamination with heavy metals was almost confined to the upper soil in the locations closely surrounding the burning site, which could be accounted to the arid climate conditions of the area. (authors). 20 refs., 3 tabs., 5 figs

  4. Distribution and Analysis of Heavy Metals Contamination in Soil, Perlis, Malaysia

    Science.gov (United States)

    Nihla Kamarudzaman, Ain; Woo, Yee Shan; Jalil, Mohd Faizal Ab

    2018-03-01

    The concentration of six heavy metals such as Cu, Cr, Ni, Cd, Zn and Mn were studied in the soils around Perlis. The aim of the study is to assess the heavy metals contamination distribution due to industrialisation and agricultural activities. Soil samples were collected at depth of 0 - 15 cm in five stations around Perlis. The soil samples are subjected to soil extraction and the concentration of heavy metals was determined via ICP - OES. Overall concentrations of Cr, Cu, Zn, Ni, Cd and Mn in the soil samples ranged from 0.003 - 0.235 mg/L, 0.08 - 41.187 mg/L, 0.065 - 45.395 mg/L, 0.031 - 2.198 mg/L, 0.01 - 0.174 mg/L and 0.165 - 63.789 mg/L respectively. The concentration of heavy metals in the soil showed the following decreasing trend, Mn > Zn > Cu > Ni > Cr > Cd. From the result, the level of heavy metals in the soil near centralised Chuping industrial areas gives maximum value compared to other locations in Perlis. As a conclusion, increasing anthropogenic activities have influenced the environment, especially in increasing the pollution loading.

  5. Chelating impact assessment of biological ad chemical chelates on metal extraction from contaminated soils

    International Nuclear Information System (INIS)

    Manwar, S.; Iram, S.

    2014-01-01

    Soil contamination is the result of uncontrolled waste dumping and poor practices by humans. Of all the pollutants heavy metals are of particular concern due to their atmospheric deposition, leaching capacity and non-biodegradability. Heavy metal containing effluent is discharged into the agricultural fields and water bodies. This results in the accumulation of heavy metals in soil and the crops grown on that soil. Studies have revealed detrimental impacts on soil fertility and the poor health of animals and humans. Phytoextraction is widely researched for remediation of heavy metal contaminated soil. To enhance the effect of phytoextraction heavy metals have to be available to the plants in soluble form. In this study the potential of different chelating agents was assessed in solubilizing the heavy metals making easy for plants to uptake them. For this purpose efficient chemical and biological chelating agent had to be identified. Along with that an optimum dose and application time for chemical chelating agent was determined. Ethylenediamine tetraacetic acid (EDTA), Diethylene triamine pentaacetic acid (DTPA), Nitriloacetic acid (NTA) were applied to the soil, containing Pb, Cr, Cu and Cd, at different concentrations and application time. Aspergillus niger and Aspergillus flavus were incubated in soil for different time periods. In correspondence with findings of the study, Pb and Cr were best solubilized by 5mM EDTA. For Cd and Cu 5mM DTPA carried out efficient chelation. NTA showed relatively inadequate solubilisation, although for Cr it performed equal to EDTA. A. niger and A. flavus instead of solubilizing adsorbed the metals in their biomass. Adsorption was mainly carried out by A. niger. (author)

  6. Soil contamination by heavy metals in the city: a case study of Petach-Tikva, Israel

    Science.gov (United States)

    Sarah, Pariente; Zhevelev, Helena; Ido-Lichtman, Orna

    2017-04-01

    Heavy metals are among the most important pollutants which are affected by human activities. These pollutants impact both the natural and urban ecosystems. In the latter they are associated with the human health of the residents. The general aim of the study is to investigate the spatial variability of soil heavy metals in the city of Petach-Tikva. We asked if and to what extent the urban structure determines the spatial pattern of soil contamination. Urban structure in this study refers to the morphology of neighborhoods (density and height of buildings), the industrial area location and the roads system. It includes three main and industrial areas in the margins of the city. The city is also subjected to heavy traffic and contains different types of neighborhood morphology. To promote the above aim a preliminary study was conducted in 2016. Soil sampling was carried out along a strip, running from the Northwest industrial region of the city to the residential region in the center. Soil samples were randomly taken, from 0-5 cm, from industrial, near high traffic roads and between buildings areas. Each was analyzed for three heavy metals (Pb, Zn, Cu) commonly associated with industry and traffic emissions. Primary results show that for all the city studied areas the range values of Cu Zn and Pb concentrations were 1800, 1270 and 150 ppm, respectively, meaning high spatial variability of the heavy metals. In the soil of the industrial area the averages and the maximum values of Pb, Zn, and Cu concentrations were 76, 353 and 500 ppm and 153, 1286 and 1847 ppm, respectively. In the soil between buildings the averages were 20, 78 and 13 ppm and the maximum values reached 38, 165 and 37 ppm for Pb, Zn, and Cu, respectively. In the soil near roads the averages were 39, 120 and 214 ppm, and the maximum values were 153, 477 and 74 ppm for Pb, Zn, and Cu, respectively. These results indicate that the city industry has the greatest effect on soil pollution. Within the city

  7. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    International Nuclear Information System (INIS)

    Shi Guitao; Chen Zhenlou; Xu Shiyuan; Zhang Ju; Wang Li; Bi Chunjuan; Teng Jiyan

    2008-01-01

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai

  8. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Shi Guitao [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Chen Zhenlou [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China)], E-mail: gt_shi@163.com; Xu Shiyuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Zhang Ju [School of Environment and Planning, Liaocheng University, Liaocheng 252059 (China); Wang Li; Bi Chunjuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Teng Jiyan [Shanghai Chongming Dongtan National Nature Reserve, Shanghai 202183 (China)

    2008-11-15

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai.

  9. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites.

    Science.gov (United States)

    Moreira, Fátima M S; Lange, Anderson; Klauberg-Filho, Osmar; Siqueira, José O; Nóbrega, Rafaela S A; Lima, Adriana S

    2008-12-01

    This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles) and genotypically (16S rDNA sequencing), as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22), some (1R, S34 and S22) were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L(-1) NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.

  10. Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil

    Directory of Open Access Journals (Sweden)

    Maria Lígia de Souza Silva

    2014-04-01

    Full Text Available Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different responses to the high concentrations of heavy metals in the soil. Rice plants accumulated higher Cu, Mn, Pb and Zn concentrations and were more sensitive to high concentrations of these elements in the soil, absorbing them more easily compared to the soybean plants. However, high available Zn concentrations in the soil caused phytotoxicity symptoms in rice and soybean, mainly chlorosis and inhibited plant growth. Further, high Zn concentrations in the soil reduced the Fe concentration in the shoots of soybean and rice plants to levels considered deficient.

  11. Estimation of Heavy Metals Contamination in the Soil of Zaafaraniya City Using the Neural Network

    Science.gov (United States)

    Ghazi, Farah F.

    2018-05-01

    The aim of this paper is to estimate the heavy metals Contamination in soils which can be used to determine the rate of environmental contamination by using new technique depend on design feedback neural network as an alternative accurate technique. The network simulates to estimate the concentration of Cadmium (Cd), Nickel (Ni), Lead (Pb), Zinc (Zn) and Copper (Cu). Then to show the accuracy and efficiency of suggested design we applied the technique in Al- Zafaraniyah in Baghdad city. The results of this paper show that the suggested networks can be successfully applied to the rapid and accuracy estimation of concentration of heavy metals.

  12. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil

    International Nuclear Information System (INIS)

    Du Laing, G.; Vanthuyne, D.R.J.; Vandecasteele, B.; Tack, F.M.G.; Verloo, M.G.

    2007-01-01

    Options for wetland creation or restoration might be limited because of the presence of contaminants in the soil. The influence of hydrological management on the pore water concentrations of Cd, Cr, Cu, Fe, Mn, Ni and Zn in the upper soil layer of a contaminated overbank sedimentation zone was investigated in a greenhouse experiment. Flooding conditions led to increased Fe, Mn, Ni and Cr concentrations and decreased Cd, Cu and Zn concentrations in the pore water of the upper soil layer. Keeping the soil at field capacity resulted in a low pore water concentration of Fe, Mn and Ni while the Cd, Cu, Cr and Zn concentrations increased. Alternating hydrological conditions caused metal concentrations in the pore water to fluctuate. Formation and re-oxidation of small amounts of sulphides appeared dominant in determining the mobility of Cd, Cu, and to a lesser extent Zn, while Ni behaviour was consistent with Fe/Mn oxidation and reduction. These effects were strongly dependent on the duration of the flooded periods. The shorter the flooded periods, the better the metal concentrations could be linked to the mobility of Ca in the pore water, which is attributed to a fluctuating CO 2 pressure. - The hydrological regime is a key factor in determining the metal concentration in the pore water of a contaminated sediment-derived soil

  13. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhang, Guilong; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  14. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China)

    2015-03-21

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  15. In situ phytoremediation of a soil historically contaminated by metals, hydrocarbons and polychlorobiphenyls.

    Science.gov (United States)

    Doni, S; Macci, C; Peruzzi, E; Arenella, M; Ceccanti, B; Masciandaro, G

    2012-05-01

    In the past several years, industrial and agricultural activities have led to serious environmental pollution, resulting in a large number of contaminated sites. As a result, much recent research activity has focused on the application of bioremediation technologies as an environmentally friendly and economically feasible means for decontamination of polluted soil. In this study horse manure and Populus nigra (var. italica) (HM + P treatment) have been used, at real scale level, as an approach for bioremediation of a soil historically contaminated by metals (Pb, Cr, Cd, Zn, Cu and Ni) and organic contaminants, such as polychlorobiphenyls and petroleum hydrocarbon. After one year, the HM + P phytotreatment was effective in the reclamation of the polluted soil from both organic and inorganic contaminants. A reduction of about 80% in total petroleum hydrocarbon (TPH), and 60% in polychlorobiphenyls (PCBs) and total metals was observed in the HM + P treatment. In contrast, in the horse manure (HM) treatment, used as control, a reduction of only about 30% of TPH was obtained. In order to assess both effectiveness and evolution of the remediation system to a biologically active soil ecosystem, together with the pollution parameters, the parameters describing the evolution of the soil functionality (enzymatic activities and protein SDS-PAGE pattern) were investigated. A stimulation of the metabolic soil processes (increase in dehydrogenase activity) was observed in the HM + P compared to the HM treatment. Finally, preliminary protein SDS-PAGE results have permitted the identification of proteins that have been recovered in the HM + P soil with respect to the HM; this may become a basic tool for improving the biogeochemical status of soil during the decontamination through the identification of microbial populations that are active in soil decontamination.

  16. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    Science.gov (United States)

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  17. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review

    International Nuclear Information System (INIS)

    Lebeau, Thierry; Braud, Armelle; Jezequel, Karine

    2008-01-01

    Bioaugmentation-assisted phytoextraction is a promising method for the cleaning-up of soils contaminated by metals. Bacteria mainly Plant Growth Promoting Rhizobacteria (PGPR) and fungi mainly Arbuscular Mycorrhizal Fungi (AMF) associated with hyperaccumulating or non-hyperaccumulating plants were analyzed on the basis of a bioprocess engineering approach (concentration and amount of metals extracted by plants, translocation and bioconcentration factor, and plant biomass). In average bioaugmentation increased metals accumulated by shoots by a factor of about 2 (metal concentration) and 5 (amount) without any obvious differences between bacteria and fungi. To optimize this process, new relevant microorganism-plant associations and field scale experiments are needed along with a common methodology for the comparison of all experiments on the same basis. Recommendations were suggested concerning both the microbial-plant selection and the implementation of bioaugmentation to enhance the microbial survival. The use of microbial consortia associated with plant was discussed notably for multi-contaminated soils. - Bioaugmentation-assisted plant improves the phytoextraction performances for soils contaminated by metals

  18. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lebeau, Thierry [Equipe Depollution Biologique des Sols (EDBS), University of Haute-Alsace, 28, rue de Herrlisheim, BP 50 568, 68 008 Colmar Cedex (France)], E-mail: thierry.lebeau@uha.fr; Braud, Armelle; Jezequel, Karine [Equipe Depollution Biologique des Sols (EDBS), University of Haute-Alsace, 28, rue de Herrlisheim, BP 50 568, 68 008 Colmar Cedex (France)

    2008-06-15

    Bioaugmentation-assisted phytoextraction is a promising method for the cleaning-up of soils contaminated by metals. Bacteria mainly Plant Growth Promoting Rhizobacteria (PGPR) and fungi mainly Arbuscular Mycorrhizal Fungi (AMF) associated with hyperaccumulating or non-hyperaccumulating plants were analyzed on the basis of a bioprocess engineering approach (concentration and amount of metals extracted by plants, translocation and bioconcentration factor, and plant biomass). In average bioaugmentation increased metals accumulated by shoots by a factor of about 2 (metal concentration) and 5 (amount) without any obvious differences between bacteria and fungi. To optimize this process, new relevant microorganism-plant associations and field scale experiments are needed along with a common methodology for the comparison of all experiments on the same basis. Recommendations were suggested concerning both the microbial-plant selection and the implementation of bioaugmentation to enhance the microbial survival. The use of microbial consortia associated with plant was discussed notably for multi-contaminated soils. - Bioaugmentation-assisted plant improves the phytoextraction performances for soils contaminated by metals.

  19. Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species.

    Science.gov (United States)

    Lee, Insook; Baek, Kyunghwa; Kim, Hyunhee; Kim, Sunghyun; Kim, Jaisoo; Kwon, Youngseok; Chang, Yoontoung; Bae, Bumhan

    2007-11-01

    We investigated the germination, growth rates and uptake of contaminants of four plant species, barnyard grass (Echinochloa crusgalli), sunflower (Helianthus annuus), Indian mallow (Abutilon avicennae) and Indian jointvetch (Aeschynomene indica), grown in soil contaminated with cadmium (Cd), lead (Pb) and 2,4,6-trinitrotoluene (TNT). These contaminants are typically found at shooting ranges. Experiments were carried out over 180 days using both single plant cultures and cultures containing an equal mix of the 4 plant species. Germination rates differed among the species in single culture (92% for H. annuus, 84% for E. crusgalli, 48% for A. avicennae and 38% Ae. indica). In the 4-plant mix culture, phytoremediation for the removal of heavy metals and TNT from contaminated soils should use a single plant species rather than a mixture of several plants.

  20. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic.

    Science.gov (United States)

    García-Carmona, M; Romero-Freire, A; Sierra Aragón, M; Martínez Garzón, F J; Martín Peinado, F J

    2017-04-15

    Residual soil pollution from the Aznalcóllar mine spill is still a problem in some parts of the affected area, today converted in the Guadiamar Green Corridor. Dispersed spots of polluted soils, identified by the absence of vegetation, are characterized by soil acid pH and high concentrations of As, Pb, Cu and Zn. Ex situ remediation techniques were performed with unrecovered soil samples. Landfarming, Composting and Biopiles techniques were tested in order to immobilize pollutants, to improve soil properties and to promote vegetation recovery. The effectiveness of these techniques was assessed by toxicity bioassays: Lactuca sativa L. root elongation test, Vibrio fischeri bioluminescence reduction test, soil induced respiration test, and Eisenia andrei survival and metal bioaccumulation tests. Landfarming and Composting were not effective techniques, mainly due to the poor improvement of soil properties which maintained high soluble concentrations of Zn and Cu after treatments. Biopile technique, using adjacent recovered soils in the area, was the most effective action in the reduction of soil toxicity; the improvement of soil properties and the reduction in pollutants solubility were key to improve the response of the tested organisms. Therefore, the mixture of recovered soils with polluted soils in the areas affected by residual contamination is considered a more suitable technique to reduce the residual pollution and to promote the complete soil recovery in the Guadiamar Green Corridor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Risks to humans and wildlife from metal contamination in soils/sediments at CERCLA sites

    International Nuclear Information System (INIS)

    Hitch, J.P.; Hovatter, P.S.; Opresko, D.M.; Sample, B.; Young, R.A.

    1994-01-01

    A common problem that occurs at DOD and DOE CERCLA sites is metal contamination in soils and aquatic sediments and the protection of humans and wildlife from potential exposure to this contamination. Consequently, the authors have developed a site-specific reference dose for mercury in sediments at the Oak Ridge Reservation and site-specific cleanup levels for certain metals, including arsenic and nickel, in soils at an Army ammunition plant. Another concern during remediation of these sites is that limited data are available to determine the direct risks to indigenous wildlife. Therefore, the authors have developed toxicological benchmarks for certain metals and metal compounds to be used as screening tools to determine the potential hazard of a contaminant to representative mammalian and avian wildlife species. These values should enable the Army and DOE to more accurately determine the risks to humans and wildlife associated with exposure to these contaminated media at their sites in order to achieve a more effective remediation. This effort is ongoing at ORNL with toxicological benchmarks also being developed for metal compounds and other chemicals of concern to DOD and DOE in order to address the potential hazard to

  2. Investigation on reusing water treatment residuals to remedy soil contaminated with multiple metals in Baiyin, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhui; Zhao, Yuanyuan [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875 (China); Pei, Yuansheng, E-mail: yspei@bnu.edu.cn [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Fe/Al water treatment residuals (FARs) can stabilize As, Pb, Ni, Zn, Cr and Cu. Black-Right-Pointing-Pointer FARs cannot stabilize Ba and Cd. Black-Right-Pointing-Pointer The properties of FARs and soil affect the FARs' ability of stabilizing metals. - Abstract: In this work, the remediation of soils contaminated with multiple metals using ferric and alum water treatment residuals (FARs) in Baiyin, China, was investigated. The results of metals fractionation indicated that after the soil was treated with FARs, arsenic (As), lead (Pb), nickel (Ni), zinc (Zn) and copper (Cu) could be transformed into more stable forms, i.e., As bound in crystalline Fe/Al oxides and other metals in the oxidable and residual forms. However, the forms of chromium (Cr) and cadmium (Cd) were unaffected. Interestingly, due to the effect of FARs, barium (Ba) was predominantly transformed into more mobile forms. The bioaccessibility extraction test demonstrated that the FARs reduced the bioaccessibility of As by 25%, followed by Cu, Cr, Zn, Ni and Pb. The bioaccessibility of Cd and Ba were increased; in particular, there was an increase of 41% for Ba at the end of the test. In conclusion, the FARs can be used to remedy soil contaminated with multiple metals, but comprehensive studies are needed before practical applications of this work.

  3. Investigation on reusing water treatment residuals to remedy soil contaminated with multiple metals in Baiyin, China

    International Nuclear Information System (INIS)

    Wang, Changhui; Zhao, Yuanyuan; Pei, Yuansheng

    2012-01-01

    Highlights: ► Fe/Al water treatment residuals (FARs) can stabilize As, Pb, Ni, Zn, Cr and Cu. ► FARs cannot stabilize Ba and Cd. ► The properties of FARs and soil affect the FARs’ ability of stabilizing metals. - Abstract: In this work, the remediation of soils contaminated with multiple metals using ferric and alum water treatment residuals (FARs) in Baiyin, China, was investigated. The results of metals fractionation indicated that after the soil was treated with FARs, arsenic (As), lead (Pb), nickel (Ni), zinc (Zn) and copper (Cu) could be transformed into more stable forms, i.e., As bound in crystalline Fe/Al oxides and other metals in the oxidable and residual forms. However, the forms of chromium (Cr) and cadmium (Cd) were unaffected. Interestingly, due to the effect of FARs, barium (Ba) was predominantly transformed into more mobile forms. The bioaccessibility extraction test demonstrated that the FARs reduced the bioaccessibility of As by 25%, followed by Cu, Cr, Zn, Ni and Pb. The bioaccessibility of Cd and Ba were increased; in particular, there was an increase of 41% for Ba at the end of the test. In conclusion, the FARs can be used to remedy soil contaminated with multiple metals, but comprehensive studies are needed before practical applications of this work.

  4. Lead (Pb) and other metals in New York City community garden soils: Factors influencing contaminant distributions

    International Nuclear Information System (INIS)

    Mitchell, Rebecca G.; Spliethoff, Henry M.; Ribaudo, Lisa N.; Lopp, Donna M.; Shayler, Hannah A.; Marquez-Bravo, Lydia G.; Lambert, Veronique T.; Ferenz, Gretchen S.; Russell-Anelli, Jonathan M.; Stone, Edie B.; McBride, Murray B.

    2014-01-01

    Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures. - Highlights: • We measured metals concentrations in soil from 54 New York City community gardens. • Pb and Ba exceeded health-based guidance values in 9%–12% of garden beds. • Pb concentrations were similar to those in other studies of urban garden soils. • Pb and Ba were associated with Zn, with visible debris, and with non-raised beds. • Observable details can help gardeners focus testing and exposure reduction efforts. - Pb and Ba, which exceeded health-based guidance values in 10–14% of NYC community garden soil samples, are associated with non-raised beds, visible debris, higher pH and Zn

  5. Effects of selected soil properties on phytoremediation applicability for heavy-metal-contaminated soils in the Apulia region, Southern Italy.

    Science.gov (United States)

    Farrag, K; Senesi, N; Rovira, P Soler; Brunetti, G

    2012-11-01

    Phytoremediation is a well-known promising alternative to conventional approaches used for the remediation of diffused and moderated contaminated soils. The evaluation of the accumulation, availability, and interactions of heavy metals in soil is a priority objective for the possible use of phytoremediation techniques such as phytoextraction and phytostabilization. The soils used in this work were collected from a number of sites inside a protected area in the Apulia region (Southern Italy), which were contaminated by various heavy metals originated from the disposal of wastes of different sources of origin. Soils examined contained Cd, Cr, Cu, Ni, Pb, and Zn in amounts exceeding the critical limits imposed by EU and Italian laws. However, the alkaline conditions, high organic matter content, and silty to silty loamy texture of soils examined would suggest a reduced availability of heavy metals to plants. Due to the high total content but the low available fraction of heavy metals analyzed, especially Cr, phytoextraction appears not to be a promising remediation approach in the sites examined, whereas phytostabilization appears to be the best technique for metal decontamination in the studied areas.

  6. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil.

    Science.gov (United States)

    Abdelhafez, Ahmed A; Li, Jianhua; Abbas, Mohamed H H

    2014-12-01

    The main objectives of the current study were to evaluate the potential effects of biochar derived from sugar cane bagasse (SC-BC) and orange peel (OP-BC) on improving the physicochemical properties of a metal smelter contaminated soil, and determining its potentiality for stabilizing Pb and As in soil. To achieve these goals, biochar was produced in a small-scale biochar producing plant, and an incubation experiment was conducted using a silt loam metal-contaminated soil treated with different application rates of biochar (0-10% w/w). The obtained results showed that, the addition of SC-BC and OP-BC increased significantly the soil aggregate stability, water-holding capacity, cation exchange capacity, organic matter and N-status in soil. SC-BC considerably decreased the solubility of Pb to values lower than the toxic regulatory level of the toxicity characteristics leaching procedure extraction (5 mg L(-1)). The rise in soil pH caused by biochar application, and the increase of soil organic matter transformed the labile Pb into less available fractions i.e. "Fe-Mn oxides" and "organic" bound fractions. On the other hand, As was desorbed from Fe-Mn oxides, which resulted in greater mobility of As in the treated soil. We concluded that SC-BC and OP-BC could be used successfully for remediating soils highly contaminated with Pb. However, considerable attention should be paid when using it in soil contaminated with As. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Geochemical cartography as a tool for assessing the degree of soil contamination with heavy metals in Poland

    Science.gov (United States)

    Szymon Borkowski, Andrzej; Kwiatkowska-Malina, Jolanta

    2016-04-01

    Spatial disposition of chemical elements including heavy metals in the soil environment is a very important information during preparation of the thematic maps for the environmental protection and/or spatial planning. This knowledge is also essential for the earth's surface and soil's monitoring, designation of areas requiring improvement including remediation. The main source of anthropogenic pollution of soil with heavy metals are industry related to the mining coal and liquid fuels, mining and metallurgy, chemical industry, energy production, waste management, agriculture and transport. The geochemical maps as a kind of specific thematic maps made on the basis of datasets obtained from the Polish Geological Institute's resources allow to get to know the spatial distribution of different chemical elements including heavy metals in soil. The results of the research carried out by the Polish Geological Institute showed strong contamination in some regions in Poland mainly with arsenic, cadmium, lead and nickel. For this reason it was the point to prepare geochemical maps showing contamination of soil with heavy metals, and determine main sources of contamination and zones where heavy metals concentration was higher than acceptable contents. It was also presented a summary map of soil contamination with heavy metals. Additionally, location of highly contaminated zones was compiled with predominant in those areas types of arable soils and then results were thoroughly analyzed. This information can provide a base for further detailed studies on the soil contamination with heavy metals.

  8. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils

    International Nuclear Information System (INIS)

    Chapman, E.Emily V.; Dave, Göran; Murimboh, John D.

    2013-01-01

    To improve risk estimates at the screening stage of Ecological Risk Assessment (ERA), short duration bioassays tailored to undisturbed soil cores from the contaminated site could be useful. However, existing standardized bioassays use disturbed soil samples and often pH sensitive organisms. This is a problem as naturally acidic soils are widespread. Changing soil properties to suit the test organism may change metal bioavailability, leading to erroneous risk estimates. For bioassays in undisturbed soil cores to be effective, species able to withstand natural soil properties must be identified. This review presents a critical examination of bioassay species' tolerance of acidic soils and sensitivity to metal contaminants such as Pb and Zn. Promising organisms include; Dendrobaena octaedra, Folsomia candida, Caenorhabditis elegans, Oppia nitens, Brassica rapa, Trifolium pratense, Allium cepa, Quercus rubra and Acer rubrum. The MetSTICK test and the Bait lamina test were also identified as suitable microorganism tests. -- Highlights: •Risk screening of metal contaminated soils should consider metal bioavailability. •Metal bioavailability is dependent on soil properties such as pH. •Many standardized bioassay organisms are sensitive to acidic soils. •This review identifies acid tolerant and metal sensitive bioassays and species. •The identified tests can improve risk screening of acidic metal contaminated soil. -- This review identifies bioassay species able to withstand naturally acidic soils while being sensitive to metal contaminants

  9. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.

    Science.gov (United States)

    Habibul, Nuzahat; Hu, Yi; Sheng, Guo-Ping

    2016-11-15

    An investigation of the feasibility of in-situ electrokinetic remediation for toxic metal contaminated soil driven by microbial fuel cell (MFC) is presented. Results revealed that the weak electricity generated from MFC could power the electrokinetic remediation effectively. The metal removal efficiency and its influence on soil physiological properties were also investigated. With the electricity generated through the oxidation of organics in soils by microorganisms, the metals in the soils would mitigate from the anode to the cathode. The concentrations of Cd and Pb in the soils increased gradually through the anode to the cathode regions after remediation. After about 143days and 108 days' operation, the removal efficiencies of 31.0% and 44.1% for Cd and Pb at the anode region could be achieved, respectively. Soil properties such as pH and soil conductivity were also significantly redistributed from the anode to the cathode regions. The study shows that the MFC driving electrokinetic remediation technology is cost-effective and environmental friendly, with a promising application in soil remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent.

    Science.gov (United States)

    Sainger, Poonam Ahlawat; Dhankhar, Rajesh; Sainger, Manish; Kaushik, Anubha; Singh, Rana Pratap

    2011-11-01

    Heavy metals concentrations of (Cr, Zn, Fe, Cu and Ni) were determined in plants and soils contaminated with electroplating industrial effluent. The ranges of total soil Cr, Zn, Fe, Cu and Ni concentrations were found to be 1443-3240, 1376-3112, 683-2228, 263-374 and 234-335 mg kg⁻¹, respectively. Metal accumulation, along with hyperaccumulative characteristics of the screened plants was investigated. Present study highlighted that metal accumulation in different plants varied with species, tissues and metals. Only one plant (Amaranthus viridis) accumulated Fe concentrations over 1000 mg kg⁻¹. On the basis of TF, eight plant species for Zn and Fe, three plant species for Cu and two plant species for Ni, could be used in phytoextraction technology. Although BAF of all plant species was lesser than one, these species exhibited high metal adaptability and could be considered as potential hyperaccumulators. Phytoremediation potential of these plants can be used to remediate metal contaminated soils, though further investigation is still needed. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Kim, Gibaek; Kwak, Jihyun; Kim, Ki-Rak; Lee, Heesung; Kim, Kyoung-Woong; Yang, Hyeon; Park, Kihong

    2013-12-15

    A laser induced breakdown spectroscopy (LIBS) coupled with the chemometric method was applied to rapidly discriminate between soils contaminated with heavy metals or oils and clean soils. The effects of the water contents and grain sizes of soil samples on LIBS emissions were also investigated. The LIBS emission lines decreased by 59-75% when the water content increased from 1.2% to 7.8%, and soil samples with a grain size of 75 μm displayed higher LIBS emission lines with lower relative standard deviations than those with a 2mm grain size. The water content was found to have a more pronounced effect on the LIBS emission lines than the grain size. Pelletizing and sieving were conducted for all samples collected from abandoned mining areas and military camp to have similar water contents and grain sizes before being analyzed by the LIBS with the chemometric analysis. The data show that three types of soil samples were clearly discerned by using the first three principal components from the spectral data of soil samples. A blind test was conducted with a 100% correction rate for soil samples contaminated with heavy metals and oil residues. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Impact of Saw Dust Application on the Distribution of Potentially Toxic Metals in Contaminated Soil.

    Science.gov (United States)

    Awokunmi, Emmmanuel E

    2017-12-01

    The need to develop an approach for the reclamation of contaminated site using locally available agricultural waste has been considered. The present study investigated the application of sawdust as an effective amendment in the immobilization of potentially toxic metals (PTMs) by conducting a greenhouse experiment on soil collected from an automobile dumpsite. The amended and non-amended soil samples were analyzed for their physicochemical parameters and sequential extraction of PTMs. The results revealed that application of amendment had positive impact on the physicochemical parameters as organic matter content and cation exchange capacity increased from 12.1% to 12.8% and 16.4 to 16.8 meq/100 g respectively. However, the mobility and bioavalability of these metals was reduced as they were found to be distributed mostly in the non-exchangeable phase of soil. Therefore, application of sawdust successfully immobilized PTMs and could be applied for future studies in agricultural soil reclamation.

  13. [Enhanced Phytoextraction of Heavy Metals from Contaminated Soils Using Sedum alfredii Hance with Biodegradable Chelate GLDA].

    Science.gov (United States)

    Wei, Ze-bin; Chen, Xiao-hong; Wu, Qi-tang; Tan, Meng

    2015-05-01

    Chemically enhanced phytoextraction by hyperaccumulator has been proposed as an effective approach to remove heavy metals from contaminated soil. Pot experiment was conducted to investigate the effect of application of the biodegradable chelate GLDA (L glutamic acid N,N-diacetic acid) at different doses or the combination of GLDA with EDTA (ethylenediamine tetraacetic acid) or CIT (citric acid) on the uptake of Cd, Zn and Pb by Sedum alfredii Hance (a Zn and Cd hyperaccumulator). Experimental results showed that GLDA addition to soil significantly increased the concentrations of Cd and Zn in Sedum alfredii Hance and its Cd and Zn phytoextraction compared to the control. Additionally, GLDA at 2.5 mmol · kg(-1) resulted in the highest phytoextraction, being 2.5 and 2.6 folds of the control for Cd and Zn, respectively. However, the combined application of GLDA + EDTA (1:1) and GLDA + CIT (1 :1 and 1:3) at a total dose of 5 mmol · kg(-1) did not increase the phytoextraction of Zn and Cd, compared to the GLDA only treatment. Therefore, the biodegradable chelate GLDA could be regarded as a good chelate candidate for the phytoextraction of heavy metals of heavy metals from contaminated soils, particularly for Cd and Zn contaminated soils.

  14. Heavy Metal Contamination of Soils and Vegetation around Solid ...

    African Journals Online (AJOL)

    MICHAEL

    1.61ppm respectively at the East – West road dumpsite and 2.42 ± 1.87ppm, 1.40 ± 0.61ppm, 1.39 ± 0.67ppm ... The differences in the levels of copper, zinc and lead in soils and ... waste management (Ademola, 1993: Osibanjo, 1995;.

  15. Spectroscopic analysis of soil metal contamination around a derelict mine site in the Blue Mountains, Australia

    Science.gov (United States)

    Shamsoddini, A.; Raval, S.; Taplin, R.

    2014-09-01

    Abandoned mine sites pose the potential threat of the heavy metal pollution spread through streams and via runoff leading to contamination of soil and water in their surrounding areas. Regular monitoring of these areas is critical to minimise impacts on water resources, flora and fauna. Conventional ground based monitoring is expensive and sometimes impractical; spectroscopic methods have been emerged as a reliable alternative for this purpose. In this study, the capabilities of the spectroscopy method were examined for modelling soil contamination from around the abandoned silver-zinc mine located at Yerranderie, NSW Australia. The diagnostic characteristics of the original reflectance data were compared with models derived from first and second derivatives of the reflectance data. The results indicate that the models derived from the first derivative of the reflectance data estimate heavy metals significantly more accurately than model derived from the original reflectance. It was also found in this study that there is no need to use second derivative for modelling heavy metal soil contamination. Finally, the results indicate that estimates were of greater accuracy for arsenic and lead compared to other heavy metals, while the estimation for silver was found to be the most erroneous.

  16. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites

    International Nuclear Information System (INIS)

    1989-03-01

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites

  17. Use of composts in the remediation of heavy metal contaminated soil.

    Science.gov (United States)

    Farrell, Mark; Jones, Davey L

    2010-03-15

    High levels of heavy metals in soil can ultimately lead to pollution of drinking water and contamination of food. Consequently, sustainable remediation strategies for treating soil are required. The potential ameliorative effect of several composts derived from source-separated and mixed municipal wastes were evaluated in a highly acidic heavily contaminated soil (As, Cu, Pb, Zn) in the presence and absence of lime. Overall, PTE (potentially toxic element) amelioration was enhanced by compost whilst lime had little effect and even exacerbated PTE mobilization (e.g. As). All composts reduced soil solution PTE levels and raised soil pH and nutrient levels and are well suited to revegetation of contaminated sites. However, care must be taken to ensure correct pH management (pH 5-6) to optimize plant growth whilst minimizing PTE solubilization, particularly at high pH. In addition, 'metal excluder' species should be sown to minimize PTE entry into the food chain. (c) 2009 Elsevier B.V. All rights reserved.

  18. Bioleaching of arsenic in contaminated soil using metal-reducing bacteria

    Science.gov (United States)

    Lee, So-Ra; Lee, Jong-Un; Chon, Hyo-Taek

    2014-05-01

    A study on the extraction of arsenic in the contaminated soil collected from an old smelting site in Korea was carried out using metal-reducing bacteria. Two types of batch-type experiments, biostimulation and bioaugmentation, were conducted for 28 days under anaerobic conditions. The biostimulation experiments were performed through activation of indigenous bacteria by supply with glucose or lactate as a carbon source. The contaminated, autoclaved soil was inoculated with metal-reducing bacteria, Shewanella oneidensis MR-1 and S. algae BrY, in the bioaugmentation experiments. The results indicated that the maximum concentration of the extracted As was 11.2 mg/L at 4 days from the onset of the experiment when 20 mM glucose was supplied and the extraction efficiency of As ranged 60~63% in the biostimulation experiments. In the case of bioaugmentation, the highest dissolved As concentration was 24.4 mg/L at 2 days, though it dramatically decreased over time through re-adsorption onto soil particles. After both treatments, mode of As occurrence in the soil appeared to be changed to readily extractable fractions. This novel technique of bioleaching may be practically applied for remediation of As-contaminated soil after determination of optimum operational conditions such as operation time and proper carbon source and its concentration.

  19. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production.

    Science.gov (United States)

    Kim, Kwon-Rae; Kim, Jeong-Gyu; Park, Jeong-Sik; Kim, Min-Suk; Owens, Gary; Youn, Gyu-Hoon; Lee, Jin-Su

    2012-07-15

    Production of food crops on metal contaminated agricultural soils is of concern because consumers are potentially exposed to hazardous metals via dietary intake of such crops or crop derived products. Therefore, the current study was conducted to develop management protocols for crop cultivation to allow safer food production. Metal uptake, as influenced by pH change-induced immobilizing agents (dolomite, steel slag, and agricultural lime) and sorption agents (zeolite and compost), was monitored in three common plants representative of leafy (Chinese cabbage), root (spring onion) and fruit (red pepper) vegetables, in a field experiment. The efficiency of the immobilizing agents was assessed by their ability to decrease the phytoavailability of metals (Cd, Pb, and Zn). The fruit vegetable (red pepper) showed the least accumulation of Cd (0.16-0.29 mgkg(-1) DW) and Pb (0.2-0.9 mgkg(-1) DW) in edible parts regardless of treatment, indicating selection of low metal accumulating crops was a reasonable strategy for safer food production. However, safer food production was more likely to be achievable by combining crop selection with immobilizing agent amendment of soils. Among the immobilizing agents, pH change-induced immobilizers were more effective than sorption agents, showing decreases in Cd and Pb concentrations in each plant well below standard limits. The efficiency of pH change-induced immobilizers was also comparable to reductions obtained by 'clean soil cover' where the total metal concentrations of the plow layer was reduced via capping the surface with uncontaminated soil, implying that pH change-induced immobilizers can be practically applied to metal contaminated agricultural soils for safer food production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. [Heavy metals: soil characteristics and methods of evaluating parameters for defining "contaminated soils"].

    Science.gov (United States)

    Gagliano-Candela, R; Cammarota, R

    2000-01-01

    The excessive content of toxic elements in the human environment is associated with the etiology of a number of diseases. Soils' pollutants decontamination regards the main industrialised countries. Heavy metals represent the main problem for soil pollution characterisation. The first approach for pollution evaluation is the determination of total metal concentration; the evaluation of their bioavailability is required for a correct knowledge of the environmental risk. In the present work is shown the procedure to evaluate the sites, which require decontamination and which need the following data: knowledge of the threshold for each metal in the soil and its range, chemical analysis of the components, determination of bioavailability and soil destination. The bioavailability is easily calculated by the procedure of aimed extractions.

  1. Heating treatment schemes for enhancing chelant-assisted phytoextraction of heavy metals from contaminated soils.

    Science.gov (United States)

    Chen, Yahua; Wang, Chunchun; Wang, Guiping; Luo, Chunling; Mao, Ying; Shen, Zhenguo; Li, Xiangdong

    2008-04-01

    Recent research has shown that chelant-assisted phytoextraction approaches often require a high dosage of chelant applied to soil. The present study focused on optimization of phytoremediation processes to increase the phytoextraction efficiency of metals at reduced chelant applications. Pot experiments were carried out to investigate the effects of increased soil temperature on shoot uptake of heavy metals by corn (Zea mays L.) and mung bean (Vigna radiat L. Wilczek) from heavy metal-contaminated soils. After the application of S,S-ethylenediaminedisuccinic acid or ethylenediaminetetra-acetic acid, soils were exposed to high temperatures (50 or 80 degrees C) for 3 h, which significantly increased the concentration of heavy metals in shoots. The heating treatment 2 d after the chelant addition resulted in higher concentrations of metals compared with those treatments 2 d before or simultaneously with the chelant application. Irrigation with 100 degrees C water 2 d after the chelant addition, or irrigation with 100 degrees C chelant solutions directly, also resulted in significantly higher phytoextraction of metals in the two crops compared with 25 degrees C chelant solutions. In addition, a novel application method to increase soil temperature using underground polyvinyl chloride tubes would increase the chelant-assisted extraction efficiency of Cu approximately 10- to 14-fold in corn and fivefold in mung bean compared with those nonheating treatments. In a field experiment, increasing soil temperature 2 d after chelant addition also increased the shoot Cu uptake approximately fivefold compared with those nonheating treatments. This new technique may represent a potential, engineering-oriented approach for phytoremediation of metal-polluted soils.

  2. Optimal selection of biochars for remediating metals contaminated mine soils

    Science.gov (United States)

    Approximately 500,000 abandoned mines across the U.S. pose a considerable, pervasive risk to human health and the environment due to possible exposure to the residuals of heavy metal extraction. Historically, a variety of chemical and biological methods have been used to reduce ...

  3. Directed Selection of Biochars for Amending Metal Contaminated Mine Soils

    Science.gov (United States)

    Approximately 500,000 abandoned mines across the U.S. pose a considerable, pervasive risk to human health and the environment. World-wide the problem is even larger. Lime, organic matter, biosolids and other amendments have been used to decrease metal bioavailability in contami...

  4. Relationships between metal compartmentalization and biomarkers in earthworms exposed to field-contaminated soils.

    Science.gov (United States)

    Beaumelle, Léa; Hedde, Mickaël; Vandenbulcke, Franck; Lamy, Isabelle

    2017-05-01

    Partitioning tissue metal concentration into subcellular compartments reflecting toxicologically available pools may provide good descriptors of the toxicological effects of metals on organisms. Here we investigated the relationships between internal compartmentalization of Cd, Pb and Zn and biomarker responses in a model soil organism: the earthworm. The aim of this study was to identify metal fractions reflecting the toxic pressure in an endogeic, naturally occurring earthworm species (Aporrectodea caliginosa) exposed to realistic field-contaminated soils. After a 21 days exposure experiment to 31 field-contaminated soils, Cd, Pb and Zn concentrations in earthworms and in three subcellular fractions (cytosol, debris and granules) were quantified. Different biomarkers were measured: the expression of a metallothionein gene (mt), the activity of catalase (CAT) and of glutathione-s-transferase (GST), and the protein, lipid and glycogen reserves. Biomarkers were further combined into an integrated biomarker index (IBR). The subcellular fractionation provided better predictors of biomarkers than the total internal contents hence supporting its use when assessing toxicological bioavailability of metals to earthworms. The most soluble internal pools of metals were not always the best predictors of biomarker responses. metallothionein expression responded to increasing concentrations of Cd in the insoluble fraction (debris + granules). Protein and glycogen contents were also mainly related to Cd and Pb in the insoluble fraction. On the other hand, GST activity was better explained by Pb in the cytosolic fraction. CAT activity and lipid contents variations were not related to metal subcellular distribution. The IBR was best explained by both soluble and insoluble fractions of Pb and Cd. This study further extends the scope of mt expression as a robust and specific biomarker in an ecologically representative earthworm species exposed to field-contaminated soils. The

  5. Metals Accumulation and Leaf Surface Anatomy of Murdannia spectabilis Growing in Zn/Cd Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Ladawan Rattanapolsan

    2013-07-01

    Full Text Available Murdannia spectabilis (Kurz Faden was identified as a Zn/Cd hyperaccumulative plant. Leaf surface anatomy of the plant growing in non-contaminated soil (control and Zn/Cd contaminated soil,was studied and compared by a light microscopy and scanning electron microscopy combined with Energy-dispersive X-ray spectroscopy(SEM/EDS. The similarities were reticulate cuticle on epidermises, uniform polygonal cell, stomatal arrangement in six surrounding subsidiary cells, and submarginal sclerenchyma. The dissimilarities were uniserate trichomes spreading on both adaxial and abaxial epidermis of the plants growing in non-contaminated soil, whereas the uniserate trichomes were only on the submarginal-adaxial epidermis of the control plants. The trichomes on leaves of the plants growing in non-contaminated soil were found to have both uniseriate non-glandular and uniseriate glandular trichomes;whereas, leaves of the plants growing in the contaminated soil were merely non-glandular trichomes. The different shape and location of trichomes, the number of stomata and trichome indicated the effect of Zn and Cd on M. spectabilis. The higher percentages of Zn and Cd in the vascular bundle than in the cross section and epidermis areas showed both solutes could move along each route, with diffusion through the symplast and apoplast. The increase of Ca in M. spectabilis growing in Zn/Cd contaminated soil corresponded to the Zn and Cd distributed in the leaves. Zn K-edge and S K-edge XANES spectra proposed that Zn2+ ions were accumulated and/or adsorbed on the epidermis of the tuber, and then absorbed into the root and transport to the xylem. The double peaks of Zn-cysteine in the leaf samples proposed the metal sequestration was by sulphur proteins.

  6. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil.

    Science.gov (United States)

    Zhang, Guixiang; Guo, Xiaofang; Zhao, Zhihua; He, Qiusheng; Wang, Shuifeng; Zhu, Yuen; Yan, Yulong; Liu, Xitao; Sun, Ke; Zhao, Ye; Qian, Tianwei

    2016-11-01

    A pot experiment was conducted to investigate the effects of biochars on the availability of heavy metals (Cd, Cu, Mn, Ni, Pb, and Zn) to ryegrass in an alkaline contaminated soil. Biochars only slightly decreased or even increased the availability of heavy metals assesses by chemical extractant (a mixture of 0.05 mol L -1 ethylenediaminetetraacetic acid disodium, 0.01 mol L -1 CaCl 2 , and 0.1 mol L -1 triethanolamine). The significantly positive correlation between most chemical-extractable heavy metals and the ash content in biochars indicated the positive role of ash in this extraction. Biochars significantly reduced the plant uptake of heavy metals, excluding Mn. The absence of a positive correlation between the chemical-extractable heavy metals and the plant uptake counterparts (except for Mn) indicates that chemical extractability is probably not a reliable indicator to predict the phytoavailability of most heavy metals in alkaline soils treated with biochars. The obviously negative correlation between the plant uptake of heavy metals (except for Mn) and the (O + N)/C and H/C indicates that biochars with more polar groups, which were produced at lower temperatures, had higher efficiency for reducing the phytoavailability of heavy metals. The significantly negative correlations between the plant uptake of Mn and ryegrass biomass indicated the "dilution effect" caused by the improvement of biomass. These observations will be helpful for designing biochars as soil amendments to reduce the availability of heavy metals to plants in soils, especially in alkaline soils. Copyright © 2016. Published by Elsevier Ltd.

  7. MINE WASTE TECHNOLOGY PROGRAM; PHOSPHATE STABILIZATION OF HEAVY METALS CONTAMINATED MINE WASTE YARD SOILS, JOPLIN, MISSOURI NPL SITE

    Science.gov (United States)

    This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...

  8. Assessment Of Heavy Metal Contamination Of Arable Soils In Central Bekaa Plain, Lebanon

    International Nuclear Information System (INIS)

    Darwish, T.; Jomaa, I.; Khawlie, M.; Mýýuller, H. W.; Moller, A.

    2004-01-01

    The study area is located in the Bekaa plain of Lebanon totaling about 12753 ha. It lies between the eastern foothills of Mount Lebanon chain and expands across the Litani River towards the foothills of the eastern Anti-Lebanon Mountains. Its characteristics, i.e. natural terrain, climate and socio-economy, make it vulnerable especially due to soil pollution. This paper tries to identify the nature and level of soil pollution by heavy metals. Valley slopes represent a complex landform and lithology that contributed to the formation of different soil. Agriculture in the plain is being practiced mainly with cash, field crops and vegetables. Throughout the central part of the plain, groundwater table is abundant and relatively high (<1.0 m. locally) that multiplies the vulnerability of the soil-groundwater system. There are different sources of pollution, such as industrial (tanneries, batteries, leather manufacturing), solid and liquid wastes, and agricultural due to uncontrolled application of fertilizers, pesticides and insecticides. Meanwhile, no local criteria for land contamination with heavy metals are adapted yet. A total of 131 soil samples from 41 soil profiles were collected from sites representing different soil types and cropping systems. Additionally, five water samples were collected to get tentative idea about the extent of water contamination from surface and groundwater bodies. Soil samples were analyzed for physical and chemical properties and wet digested in aqua regia for the determination of the heavy metal content on the atomic absorption. Results of the total heavy metal content in the soils of the Central Bekaa showed normal values for main metals except Cr and Ni, which showed a relatively high level reaching, according to Eckamn Kloke, 1993-2000 criteria the tolerance level II. This is hazardous in an area of intensive vegetable production designed for fresh consumption. Point sources of pollution are equally found for Pb and Cd. The level

  9. Environmental hazards related to Miscanthus x giganteus cultivation on heavy metal contaminated soil

    Directory of Open Access Journals (Sweden)

    Pogrzeba M.

    2013-04-01

    Full Text Available According to recent estimates reaching the target of a 20% share of renewable energy sources (RES in the final energy balance in Poland by 2020 will result in the demand for more than 8 million tons of biomass, which, in turn, will entail the necessity of creating large-scale energy crop plantations. According to EU assumptions the most effective way to produce biomass for energy purposes is cultivation of energy crops in agricultural areas. It is particularly vital for Poland, because these areas constitute a relatively large part of the country (59%, 76% of them being used as farmlands. In Silesia, the most industrialized region of the country, 5-10% of agricultural soils are contaminated with cadmium, lead and zinc. The main objective of the presented study was to estimate the accumulation of heavy metals in the tissues of Miscanthus x giganteus grown on contaminated soils and calculate concentrations of Pb, Cd and Zn in crops. It was shown that the large intake of heavy metals by that species could cause high emissions of pollutants into the atmosphere during its improper combustion. As a side effect, winter harvesting led to the loss of even 30% of biomass. Plant residues (leaves can be the source of pollution after decomposing and releasing metals back into the soil. Moreover, miscanthus leaves can be transferred by wind to the surrounding areas. It is very likely that ash coming from the combustion of contaminated biomass cannot be used as a fertilizer.

  10. Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals.

    Science.gov (United States)

    Korzeniowska, Jolanta; Stanislawska-Glubiak, Ewa

    2015-08-01

    The aim of this work was to assess the suitability of Miscanthus × giganteus and Spartina pectinata link to Cu, Ni, and Zn phytoremediation. A 2-year microplot experiment with the tested grasses growing on metal-contaminated soil was carried out. Microplots with cement borders, measuring 1 × 1 × 1m, were filled with Haplic Luvisols soil. Simulated soil contamination with Cu, Ni, and Zn was introduced in the following doses in mg kg(-1): 0-no metals, Cu1-100, Cu2-200, Cu3-400, Ni1-60, Ni2-100, Ni3-240, Zn1-300, Zn2-600, and Zn3-1200. The phytoremediation potential of grasses was evaluated using a tolerance index (TI), bioaccumulation factor (BF), bioconcentration factor (BCF), and translocation factor (TF). S. pectinata showed a higher tolerance to soil contamination with Cu, Ni, and Zn compared to M. × giganteus. S. pectinata was found to have a high suitability for phytostabilization of Zn and lower suitability of Cu and Ni. M. × giganteus had a lower phytostabilization potential than S. pectinata. The suitability of both grasses for Zn phytoextraction depended on the age of the plants. Both grasses were not suitable for Cu and Ni phytoextraction. The research showed that one-season studies were not valuable for fully assessing the phytoremediation potential of perennial plants.

  11. Effects of petroleum and metal contaminated soil on plants and earthworms: Survival and bioaccumulation

    International Nuclear Information System (INIS)

    Tatem, H.E.; Simmers, J.W.; Skogerboe, J.G.; Lee, C.R.

    1993-01-01

    Earthworms, Eisenia foetida, and bermudagrass, Cynodon dactylon, were used in the laboratory to test the toxicity of contaminated sediment taken from a small fresh water lake in North Carolina. This work was part of an investigation to determine the potential effects of upland disposal of this sediment. The contaminated sediment contained As, Cr, Cu, Pb, Hg, Ni, Zn and petroleum hydrocarbons at concentrations much greater than nearby soils. Test cylinders were planted with bermudagrass; earthworms were added 30 days later. Both species were harvested at 60 days, weighed and submitted for chemical analyses. Cynodon was affected by the contaminated sediment but grew well in the mixtures of sediment and upland soil. Similar results were obtained with the Eisenia. These species did not accumulate hydrocarbons from the sediment with the possible exception of pyrene. The metals Cd, Pb, and Zn were elevated in plants exposed to the contaminated sediment. Earthworms exposed to this sediment accumulated Pb to concentrations greater than animals exposed to the manure control. This work demonstrated that a contaminated freshwater sediment was not toxic to plants or earthworms and that most petroleum hydrocarbons were not accumulated. The only metal that may be of some concern was Pb

  12. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-03-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  13. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-01-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  14. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils.

    Science.gov (United States)

    Senthilkumar, P; Prince, W S P M; Sivakumar, S; Subbhuraam, C V

    2005-09-01

    Soil and plant samples (root and shoot) of Prosopis juliflora were collected in the vicinity of metal based foundry units in Coimbatore and assessed for their heavy metal content (Cu and Cd) to ascertain the use of P. juliflora as a green solution to decontaminate soils contaminated with Cu and Cd. The results showed that Cu and Cd content was much higher in plant components compared to their extractable level in the soil. Furthermore, there exist a strong correlation between the distance of the sources of industrial units and accumulation of heavy metals in plants. Accumulation of Cd in roots is comparatively higher than that of shoots. However, in case of Cu no such clear trend is seen. Considering the accumulation efficiency and tolerance of P. juliflora to Cd and Cu, this plant can be explored further for the decontamination of metal polluted soils. On the other hand, in view of heavy metal accumulate the practice of providing foliage and pods as fodder for live stock should be avoided.

  15. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach

    International Nuclear Information System (INIS)

    Li Xiangdong; Lee Siulan; Wong Szechung; Shi Wenzhong; Thornton, Iain

    2004-01-01

    The study of regional variations and the anthropogenic contamination by metals of soils is very important for environmental planning and monitoring in urban areas. An extensive survey was conducted in the highly urbanized Kowloon area (46.9 km 2 ) of Hong Kong, using a systematic sampling strategy with a sampling density of 3-5 composite soil samples (0-15 cm) per km 2 . Geochemical maps of 'total' metals (Cd, Cr, Cu, Ni, Pb and Zn) from strong acid extraction in the surface soils were produced based on geographical information system (GIS) technology. A significant spatial relationship was found for Ni, Cu, Pb and Zn in the soils using a GIS-based analysis, suggesting that these metal contaminants in the soils of the Kowloon area had common sources. Several hot-spot areas of metal contamination were identified from the composite metal geochemical map, mainly in the old industrial and residential areas. A further GIS analysis revealed that road junctions, major roads and industrial buildings were possible sources of heavy metals in the urban soils. The Pb isotope composition of the contaminated soils showed clear anthropogenic origins. - GIS can be used to identify soil contamination hot-spot areas and to assess potential pollutant sources in an urban community

  16. Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals

    Institute of Scientific and Technical Information of China (English)

    Soyoung Park; Ki Seob Kim; Jeong-Tae Kim; Daeseok Kang; Kijune Sung

    2011-01-01

    The use of humic acid (HA) to enhance the efficiency of phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel was evaluated in this study.A sample of soil was artificially contaminated with commercially available diesel fuel to an initial total petroleum hydrocarbons (TPH) concentration of 2300 mg/kg and four heavy metals with concentrations of 400 mg/kg for Pb,200 mg/kg for Cu,12 mg/kg for Cd,and 160 mg/kg for Ni.Three plant species,Brassica campestris,Festuca arundinacea,and Helianthus annuus,were selected for the phytodegradation experiment.Percentage degradation of TPH in the soil in a control pot supplemented with HA increased to 45% from 30% without HA.The addition of HA resulted in an increases in the removal of TPH from the soil in pots planted with B.campestris,F.arundinacea,and H.annuus,enhancing percentage degradation to 86%,64%,and 85% from 45%,54%,and 66%,respectively.The effect of HA was also observed in the degradation of n-alkanes within 30 days.The rates of removal of n-alkanes in soil planted with B.campestris and H.annuus were high for n-alkanes in the range of C11-C28.A dynamic increase in dehydrogenase activity was observed during the last 15 days of a 30-day experimental period in all the pots amended with HA.The enhanced biodegradation performance for TPHs observed might be due to an increase in microbial activities and bioavailable TPH in soils caused by combined effects of plants and HA.The results suggested that HA could act as an enhancing agent for phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel and heavy metals.

  17. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Dane T.; Ming Hui; Megharaj, Mallavarapu [Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), P.O. Box 486, Salisbury, SA 5106 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), P.O. Box 486, Salisbury, SA 5106 (Australia)

    2009-11-15

    We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl{sub 2}) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg{sup -1}, 10.3 to 95 mg kg{sup -1} Zn, 0.1 to 1.8 mg Cd kg{sup -1} and 5.2 to 183 mg kg{sup -1} Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg{sup -1}, 312 to 39,000 mg kg{sup -1} Zn, 6 to 302 mg Cd kg{sup -1} and 609 to 12,000 mg kg{sup -1} Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K{sub d}) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.

  18. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils

    International Nuclear Information System (INIS)

    Lamb, Dane T.; Ming Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2009-01-01

    We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl 2 ) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg -1 , 10.3 to 95 mg kg -1 Zn, 0.1 to 1.8 mg Cd kg -1 and 5.2 to 183 mg kg -1 Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg -1 , 312 to 39,000 mg kg -1 Zn, 6 to 302 mg Cd kg -1 and 609 to 12,000 mg kg -1 Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K d ) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.

  19. [Effect of inorganic amendments on the stabilization of heavy metals in contaminated soils].

    Science.gov (United States)

    Cao, Meng-hua; Zhu, Xi; Liu, Huang-cheng; Wang, Lin-ling; Chen, Jing

    2013-09-01

    Effects of single and mixed inorganic amendments on the stabilization of heavy metals in contaminated soils were investigated. Significant synergistic effects on the stabilization of Zn and Cu were observed with the mixed inorganic amendments of KH2PO4 and Ca(OH)2 in the laboratory test. In the field test, the stabilization ratios of Zn, Cu and Cd were 41.8%, 28.2% and 48.4%, respectively, with the dosage of 0.5 kg x m(-2). The growth of peanut was inhibited by the addition of the inorganic amendments. Meanwhile, the uptake of heavy metals was reduced in peanut.

  20. [Continuous remediation of heavy metal contaminated soil by co-cropping system enhanced with chelator].

    Science.gov (United States)

    Wei, Ze-Bin; Guo, Xiao-Fang; Wu, Qi-Tang; Long, Xin-Xian

    2014-11-01

    In order to elucidate the continuous effectiveness of co-cropping system coupling with chelator enhancement in remediating heavy metal contaminated soils and its environmental risk towards underground water, soil lysimeter (0.9 m x 0.9 m x 0.9 m) experiments were conducted using a paddy soil affected by Pb and Zn mining in Lechang district of Guangdong Province, 7 successive crops were conducted for about 2.5 years. The treatments included mono-crop of Sedum alfredii Hance (Zn and Cd hyperaccumulator), mono-crop of corn (Zea mays, cv. Yunshi-5, a low-accumulating cultivar), co-crop of S. alfredii and corn, and co-crop + MC (Mixture of Chelators, comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCI with molar ratio of 10: 1:2:3 at the concentration of 5 mmol x kg(-1) soil). The changes of heavy metal concentrations in plants, soil and underground water were monitored. Results showed that the co-cropping system was suitable only in spring-summer seasons and significantly increased Zn and Cd phytoextraction. In autumn-winter seasons, the growth of S. alfredii and its phytoextraction of Zn and Cd were reduced by co-cropping and MC application. In total, the mono-crops of S. alfredii recorded a highest phytoextraction of Zn and Cd. However, the greatest reduction of soil Zn, Cd and Pb was observed with the co-crop + MC treatment, the reduction rates were 28%, 50%, and 22%, respectively, relative to the initial soil metal content. The reduction of this treatment was mainly attributed to the downwards leaching of metals to the subsoil caused by MC application. The continuous monitoring of leachates during 2. 5 year's experiment also revealed that the addition of MC increased heavy metal concentrations in the leaching water, but they did not significantly exceed the III grade limits of the underground water standard of China.

  1. Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil.

    Science.gov (United States)

    Korzeniowska, Jolanta; Stanislawska-Glubiak, Ewa

    2017-06-01

    The aim of the study was to compare the usefulness of 1 M HCl with aqua regia, EDTA, and CaCl 2 for the extraction of phytoavailable forms of Cu, Ni, and Zn on coarse-textured soils contaminated with these metals. Two microplot experiments were used for the studies. Reed canary grass (Phalaris arundinacea), maize (Zea mays), willow (Salix viminalis), spartina (Spartina pectinata), and miscanthus (Miscanthus × giganteus) were used as test plants. They were grown on soil artificially spiked with Cu, Ni, and Zn. The experimental design included a control and three increasing doses of metals. Microplots (1 m 2  × 1 m deep) were filled with sandy soil (clay-6%, pH 5.5, Corg-0.8%). Metals in the form of sulfates were dissolved in water and applied to the plot using a hand liquid sprayer. During the harvest, samples were collected from aboveground parts, roots, and the soil and then tested for their Cu, Zn, and Ni contents. The metal content of the soil was determined using four tested extractants. It was found that Cu and Ni were accumulated in roots in bigger amounts than Zn. The usefulness of the extractants was evaluated based on the correlation between the content of metals in the soil and the plant (n = 32). This study demonstrated that 1 M HCl, aqua regia, and EDTA were more efficient or equally useful for the assessment of the phytoavailability of Cu, Ni, and Zn as CaCl 2 . Due to the ease of performing determinations and their low cost, 1 M HCl can be recommended to assess the excess of Cu, Ni, and Zn in the coarse-textured soils.

  2. Pollution assessment and source apportionment of heavy metals in contaminated site soils

    Science.gov (United States)

    Zheng, Hongbo; Ma, Yan

    2018-03-01

    Pollution characteristics of heavy metals in soil were analyzed with a typical contaminated site as the case area. The pollution degree of the element was evaluated by indexes of geoaccumulation (Igeo). The potential ecological risk of heavy metals was assessed with potential ecological risk index model. Principal component analysis (PCA) model was simultaneously carried out to identify the main sources of heavy metals in topsoils. The results indicated that: 1. Mean values of 11 kinds of metals in topsoils were greater than respective soil background values, following the order: Zn>Pb>V>Cr>Cu>Ni>Co>As>Sb>Cd>Hg. Heavy metals with a certain accumulation in the research area were significantly affected by external factors. 2. Igeo results showed that Cd and Zn reached strongly polluted degree, while Pb with moderately to strongly polluted, Sb and Hg with moderately polluted, Cu, Co, Ni and Cr with unpolluted to moderately polluted, V and As with un-polluted. 3. Potential ecological risk assessment showed the degree of ecological risk with Cd at very high risk, Hg at high risk, Pb at moderate risk and others at low risk. The comprehensive risk of all the metals was very high. 4. PCA got three main sources with contributions, including industrial activities (44.18%), traffic and burning dust (26.68%) and soil parent materials (12.20%).

  3. A feasibility study of perennial/annual plant species to restore soils contaminated with heavy metals

    Science.gov (United States)

    Zacarías, Montserrat; Beltrán, Margarita; Gilberto Torres, Luis; González, Abelardo

    A feasibility study was carried out to evaluate the application of perennial/annual plant species in a phytoextraction process of a previously washed industrial urban soil contaminated by nickel, arsenic and cupper. The plant species selected for this study were Ipomea (Ipomea variada); grass (Poa pratensis); grass mixture (Festuca rubra, Cynodon dactylon, Lolium multiforum, Pennisetum sp.); Monks Cress (Tropaeolum majus); ficus (Ficus benajamina) and fern (Pteris cretica). Soil was characterized and it presented the following heavy metals concentrations (dry weight): 80 mg of Ni/kg, 456-656 mg of As/kg and 1684-3166 mg of Cu/kg. Germination and survival in contaminated soil tests were conducted, from these, P. pratensis was discarded and the rest of plant species tested were used for the phytoextraction selection test. After 4 months of growth, biomass production was determined, and content of Ni, As and Cu was analyzed in plant’s tissue. Metal biological absorption coefficient (BAC), bio-concentration factor (BCF) and translocation factor (TF), were calculated. Regarding to biomass generation it was observed, in every case, an inhibition of the plant growth compared with blanks sown in a non contaminated soil; inhibition ranged from 22.5% for the Monk cress to 98% for Ipomea. Even though the later presented high BAC, BCF and TF, its growth was severely inhibited, and therefore, due its low biomass generation, it is not recommended for phytoextraction under conditions for this study. Heavy metals concentrations in plant’s tissue (dry weight) were as high as 866 mg Cu/kg and 602 mg As/kg for grass mixture; and 825 mg As/kg was observed for Monks cress. Grass mixture and monks cress had high BAC, BCF and TF, also they had high metal concentrations in its plants tissues and the lowest growth inhibition rates; hence the application in phytoextraction processes of these plants is advisable.

  4. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Dermatas, D.; Meng, X. [Stevens Inst. of Technology, Hoboken, NJ (United States)

    1995-12-01

    Pozzolanic-based stabilization/solidification (S/S) is an effective, yet economic technological alternative to immobilize heavy metals in contaminated soils and sludges. Fly ash waste materials were used along with quicklime (CaO) to immobilize lead, trivalent and hexavalent chromium present in contaminated clayey sand soils. The degree of heavy metal immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as controlled extraction experiments. These leaching test results along with X-ray diffraction (XRD), scanning electron microscope and energy dispersive x-ray (SEM-EDX) analyses were also implemented to elucidate the mechanisms responsible for immobilization of the heavy metals under study. Finally, the reusability of the stabilized waste forms in construction applications was also investigated by performing unconfined compressive strength and swell tests. Results suggest that the controlling mechanism for both lead and hexavalent chromium immobilization is surface adsorption, whereas for trivalent chromium it is hydroxide precipitation. Addition of fly ash to the contaminated soils effectively reduced heavy metal leachability well below the non-hazardous regulatory limits. However, quicklime addition was necessary in order to attain satisfactory immobilization levels. Overall, fly ash addition increases the immobilization pH region for all heavy metals tested, and significantly improves the stress-strain properties of the treated solids, thus allowing their reuse as readily available construction materials. The only potential problem associated with this quicklime/fly ash treatment is the excessive formation of the pozzolanic product ettringite in the presence of sulfates. Ettringite, when brought in contact with water, may cause significant swelling and subsequent deterioration of the stabilized matrix. Addition of minimum amounts of barium hydroxide was shown to effectively eliminate ettringite formation.

  5. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Directory of Open Access Journals (Sweden)

    M. Adama

    2016-01-01

    Full Text Available Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo and pollution load indices (PLI were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69, Pb (143.80, Cr (99.30, and Cd (7.54 in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  6. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site.

    Science.gov (United States)

    Adama, M; Esena, R; Fosu-Mensah, B; Yirenya-Tawiah, D

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  7. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Science.gov (United States)

    Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D.

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685

  8. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species

    Directory of Open Access Journals (Sweden)

    Saadia R. Tariq

    2016-11-01

    Full Text Available The phytoremediation potential of Helianthus annuus, Zea maize, Brassica campestris and Pisum sativum was studied for the soil of firing range contaminated with selected metals i.e. Cd, Cu, Co, Ni, Cr and Pb. The seedlings of the selected plants germinated in a mixture of sand and alluvial soil were transferred to the pots containing the soil of firing ranges and allowed to grow to the stage of reproductive growth. Subsequently they were harvested and then analyzed for selected metals by using AAS. Among the studied plants, P. sativum exhibited highest removal efficiency (i.e. 96.23% and bioconcentration factor for Pb thereby evidencing it to be Pb hyperaccumulator from the soil of firing ranges. Z. maize appreciably reduced the levels of all the selected metals in the soil but the highest phytoextraction capacity was shown for Pb i.e. 66.36%, which was enhanced to approximately 74% on EDTA application. H. annuus represented the highest removal potential for Cd i.e. 56.03% which was further increased on EDTA application. Thus it proved to be an accumulator of Cd after EDTA application. It was therefore concluded that different plants possess different phytoremediation potentials under given set of conditions.

  9. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    Science.gov (United States)

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  10. Bioaccessibility of metals in soils and dusts contaminated by marine antifouling paint particles

    International Nuclear Information System (INIS)

    Turner, Andrew; Singh, Nimisha; Richards, Jonathan P.

    2009-01-01

    Fragments of antifouling paint and environmental geosolids have been sampled from the island of Malta and analysed for total and bioaccessible metals. Total concentrations of Ba, Cd, Cu, Pb, Sn and Zn were two to three orders of magnitude higher in spent antifouling composites relative to respective values in background soils and road dusts. Paint fragments were visible in geosolids taken from the immediate vicinity of boat maintenance facilities and mass balance calculations, based on Ba as a paint tracer, suggested that the most contaminated soils, road dusts and boatyard dusts contained about 1%, 7% and 9%, respectively, of antifouling particles. Human bioaccessibilities of metals were evaluated in selected samples using a physiologically based extraction technique. Accessibilities of Cd, Cu, Pb and Zn in the most contaminated solids were sufficient to be cause for concern for individuals working in the boat repair industry and to the wider, local community. - Geosolids near boat maintenance facilities are contaminated by antifouling paint particles containing high concentrations of bioaccessible metals.

  11. Bioaccessibility of metals in soils and dusts contaminated by marine antifouling paint particles

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew, E-mail: aturner@plymouth.ac.u [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Singh, Nimisha; Richards, Jonathan P. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-05-15

    Fragments of antifouling paint and environmental geosolids have been sampled from the island of Malta and analysed for total and bioaccessible metals. Total concentrations of Ba, Cd, Cu, Pb, Sn and Zn were two to three orders of magnitude higher in spent antifouling composites relative to respective values in background soils and road dusts. Paint fragments were visible in geosolids taken from the immediate vicinity of boat maintenance facilities and mass balance calculations, based on Ba as a paint tracer, suggested that the most contaminated soils, road dusts and boatyard dusts contained about 1%, 7% and 9%, respectively, of antifouling particles. Human bioaccessibilities of metals were evaluated in selected samples using a physiologically based extraction technique. Accessibilities of Cd, Cu, Pb and Zn in the most contaminated solids were sufficient to be cause for concern for individuals working in the boat repair industry and to the wider, local community. - Geosolids near boat maintenance facilities are contaminated by antifouling paint particles containing high concentrations of bioaccessible metals.

  12. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiaoming; Lei, Mei, E-mail: leim@igsnrr.ac.cn; Chen, Tongbin

    2016-09-01

    Heavy-metal pollution of soil is a serious issue worldwide, particularly in China. Soil remediation is one of the most difficult management issues for municipal and state agencies because of its high cost. A two-year phytoremediation project for soil contaminated with arsenic, cadmium, and lead was implemented to determine the essential parameters for soil remediation. Results showed highly efficient heavy metal removal. Costs and benefits of this project were calculated. The total cost of phytoremediation was US$75,375.2/hm{sup 2} or US$37.7/m{sup 3}, with initial capital and operational costs accounting for 46.02% and 53.98%, respectively. The costs of infrastructures (i.e., roads, bridges, and culverts) and fertilizer were the highest, mainly because of slow economic development and serious contamination. The cost of phytoremediation was lower than the reported values of other remediation technologies. Improving the mechanization level of phytoremediation and accurately predicting or preventing unforeseen situations were suggested for further cost reduction. Considering the loss caused by environmental pollution, the benefits of phytoremediation will offset the project costs in less than seven years. - Highlights: • A two-year phytoremediation project was introduced. • Costs and benefits of a phytoremediation project were calculated. • Costs of phytoremediation project can be offset by benefits in 7 years.

  13. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil

    International Nuclear Information System (INIS)

    Wan, Xiaoming; Lei, Mei; Chen, Tongbin

    2016-01-01

    Heavy-metal pollution of soil is a serious issue worldwide, particularly in China. Soil remediation is one of the most difficult management issues for municipal and state agencies because of its high cost. A two-year phytoremediation project for soil contaminated with arsenic, cadmium, and lead was implemented to determine the essential parameters for soil remediation. Results showed highly efficient heavy metal removal. Costs and benefits of this project were calculated. The total cost of phytoremediation was US$75,375.2/hm"2 or US$37.7/m"3, with initial capital and operational costs accounting for 46.02% and 53.98%, respectively. The costs of infrastructures (i.e., roads, bridges, and culverts) and fertilizer were the highest, mainly because of slow economic development and serious contamination. The cost of phytoremediation was lower than the reported values of other remediation technologies. Improving the mechanization level of phytoremediation and accurately predicting or preventing unforeseen situations were suggested for further cost reduction. Considering the loss caused by environmental pollution, the benefits of phytoremediation will offset the project costs in less than seven years. - Highlights: • A two-year phytoremediation project was introduced. • Costs and benefits of a phytoremediation project were calculated. • Costs of phytoremediation project can be offset by benefits in 7 years.

  14. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil.

    Science.gov (United States)

    Wan, Xiaoming; Lei, Mei; Chen, Tongbin

    2016-09-01

    Heavy-metal pollution of soil is a serious issue worldwide, particularly in China. Soil remediation is one of the most difficult management issues for municipal and state agencies because of its high cost. A two-year phytoremediation project for soil contaminated with arsenic, cadmium, and lead was implemented to determine the essential parameters for soil remediation. Results showed highly efficient heavy metal removal. Costs and benefits of this project were calculated. The total cost of phytoremediation was US$75,375.2/hm(2) or US$37.7/m(3), with initial capital and operational costs accounting for 46.02% and 53.98%, respectively. The costs of infrastructures (i.e., roads, bridges, and culverts) and fertilizer were the highest, mainly because of slow economic development and serious contamination. The cost of phytoremediation was lower than the reported values of other remediation technologies. Improving the mechanization level of phytoremediation and accurately predicting or preventing unforeseen situations were suggested for further cost reduction. Considering the loss caused by environmental pollution, the benefits of phytoremediation will offset the project costs in less than seven years. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effect of amendments on chemical immobilization of heavy metals in sugar mill contaminated soils

    Directory of Open Access Journals (Sweden)

    Mohammad Jamal Khan, Muhammad Tahir Azeem and Sajida Perveen1

    2012-05-01

    Full Text Available A bulk soil sample collected from the vicinity of PSM (Premier Sugar Mill Mardan was amended with diammonium phosphate (DAP, triple super phosphate (TSP, Farm Yard Manure (FYM and poultry manure (PM in 1.5 kg soil in a 2 L plastic pot. Both DAP and TSP were added at 230 mg kg 1 (460 kg ha 1 soil whereas the organic amendments (FYM and PM were added at the rate of 10% by weight of soil. The air dried samples in pots were brought to field moisture content (0.33 bar water content by the addition of either HIE (Hayatabad Industrial Estate or PSM in two separate sets of experiments. The experimental pots were arranged in randomized complete design with three replicates under laboratory conditions during March to May (Temperature varying between 25 to 30 °C. Treated and control pots were incubated for 90 days al 0.33 bar ca 25% moisture and the moisture deficit during the incubation time was adjusted by adding PSM and HIE effluents in their respective set of experimental pots. Soil samples were collected after 15, 30, 45 and 90 d to determine the effect of amendments on AB-DTPA extractable metals. The results showed that AB-DTPA extractable Cd, Or, Cu, Ni and Cd increased significantly with lime and the maximum values were noted after 90 days incubation whereas the Fe, Mn and Zn content in soil increased with time but the increase was not significant. It was further noted that the increase over time in metal was not pronounced when supplied with amendments indicating their ability to chemically stabilize it compared to unamended soils. Higher values of all the heavy metals were noted in unamended soil. By comparing the different amendments, it was observed that FYM was effective in reducing the extractability/phytoavailability of all the metals under study except Pb whereby DAP was most effective as a stabilizing agent in the soil. It was concluded that in calcareous soil, FYM and DAP can be used to reduce the risk of phytotoxicity of heavy metals in

  16. Removal of heavy metals from contaminated soil by electrodialytic remediation enhanced with organic acids.

    Science.gov (United States)

    Merdoud, Ouarda; Cameselle, Claudio; Boulakradeche, Mohamed Oualid; Akretche, Djamal Eddine

    2016-11-09

    The soil from an industrial area in Algeria was contaminated with Cr (8370 mg kg -1 ), Ni (1135 mg kg -1 ) and zinc (1200 mg kg -1 ). The electrodialytic remediation of this soil was studied using citric acid and EDTA as facilitating agents. 0.1 M citric acid or EDTA was added directly to the soil before it was introduced in an electrodialytic cell in an attempt to enhance the heavy metal solubility in the interstitial fluid. The more acidic pH in the soil when citric acid was used as the facilitating agent was not enough to mobilize and remove the metals from the soil. Only 7.2% of Ni and 6.7% of Zn were removed from the soil in the test with citric acid. The best results were found with EDTA, which was able to solubilize and complex Zn and Ni forming negatively charged complexes that were transported and accumulated in the anolyte. Complete removal was observed for Ni and Zn in the electrodialytic treatment with EDTA. Minor amounts of Cr were removed with both EDTA and citric acid.

  17. Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils

    International Nuclear Information System (INIS)

    Nahmani, Johanne; Hodson, Mark E.; Black, Stuart

    2007-01-01

    Two control and eight field-contaminated, metal-polluted soils were inoculated with Eisenia fetida (Savigny, 1826). Three, 7, 14, 21, 28 and 42 days after inoculation, earthworm survival, body weight, cocoon production and hatching rate were measured. Seventeen metals were analysed in E. fetida tissue, bulk soil and soil solution. Soil organic carbon content, texture, pH and cation exchange capacity were also measured. Cocoon production and hatching rate were more sensitive to adverse conditions than survival or weight change. Soil properties other than metal concentration impacted toxicity. The most toxic soils were organic-poor (1-10 g C kg -1 ), sandy soils (c. 74% sand), with intermediate metal concentrations (e.g. 7150-13,100 mg Pb kg -1 , 2970-53,400 mg Zn kg -1 ). Significant relationships between soil properties and the life cycle parameters were determined. The best coefficients of correlation were generally found for texture, pH, Ag, Cd, Mg, Pb, Tl, and Zn both singularly and in multivariate regressions. Studies that use metal-amended artificial soils are not useful to predict toxicity of field multi-contaminated soils. - Soil pH, organic carbon content and texture can exert a greater influence on earthworm life cycle parameters than soil metal concentrations at metal-contaminated sites

  18. Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Nahmani, Johanne [Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DW (United Kingdom)]. E-mail: nahmani@univ-metz.fr; Hodson, Mark E. [Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DW (United Kingdom)]. E-mail: m.e.hodson@reading.ac.uk; Black, Stuart [Department of Archaeology, School of Human and Environmental Sciences, Whiteknights, University of Reading, Reading RG6 6DW (United Kingdom)

    2007-09-15

    Two control and eight field-contaminated, metal-polluted soils were inoculated with Eisenia fetida (Savigny, 1826). Three, 7, 14, 21, 28 and 42 days after inoculation, earthworm survival, body weight, cocoon production and hatching rate were measured. Seventeen metals were analysed in E. fetida tissue, bulk soil and soil solution. Soil organic carbon content, texture, pH and cation exchange capacity were also measured. Cocoon production and hatching rate were more sensitive to adverse conditions than survival or weight change. Soil properties other than metal concentration impacted toxicity. The most toxic soils were organic-poor (1-10 g C kg{sup -1}), sandy soils (c. 74% sand), with intermediate metal concentrations (e.g. 7150-13,100 mg Pb kg{sup -1}, 2970-53,400 mg Zn kg{sup -1}). Significant relationships between soil properties and the life cycle parameters were determined. The best coefficients of correlation were generally found for texture, pH, Ag, Cd, Mg, Pb, Tl, and Zn both singularly and in multivariate regressions. Studies that use metal-amended artificial soils are not useful to predict toxicity of field multi-contaminated soils. - Soil pH, organic carbon content and texture can exert a greater influence on earthworm life cycle parameters than soil metal concentrations at metal-contaminated sites.

  19. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    Science.gov (United States)

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Impact of heavy metal contamination on oxidative stress of Eisenia andrei and bacterial community structure in Tunisian mine soil.

    Science.gov (United States)

    Boughattas, Iteb; Hattab, Sabrine; Boussetta, Hamadi; Banni, Mohamed; Navarro, Elisabeth

    2017-08-01

    The aims of this work were firstly to study the effect of heavy metal-polluted soils from Tunisian mine on earthworm biochemical biomarkers and on bacterial communities and therefore to analyze the interaction between earth worms and bacterial communities in these contaminated soils. For this purpose, we had introduced earthworm Eisenia andrei in six soils: one from mine spoils and five from agricultural soils, establishing a gradient of contamination. The response of worms to the presence of heavy metal was analyzed at the biochemical and transcriptional levels. In a second time, the impact of worm on bacterial community structure was investigated using automated ribosomal intergenic spacer analysis (ARISA) fingerprinting. An impact of heavy metal-contaminated soils on the oxidative status of E. andrei was observed, but this effect was dependent of the level of heavy metal contamination. Moreover, our results demonstrate that the introduction of earthworms E. andrei has an impact on bacterial community; however, the major change was observed in the less contaminated site. Furthermore, a significant correlation between earthworm oxidative status biomarkers and bacterial community structure was observed, mainly in the mine spoils. Therefore, we contribute to a better understanding of the relationships between epigenic earthworms and bacterial communities in heavy metal-contaminated soils.

  1. Soil and groundwater contamination with heavy metals at two scrap iron and metal recycling facilities

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Holm, P. E.; Christensen, Thomas Højlund

    2000-01-01

    Field studies were performed at two actual scrap iron and metal recycling facilities in order to evaluate the extent of heavy metal migration into subsoil and groundwater caused by more than 25 years of handling scrap directly on the ground without any measures to prevent leaching. Surface soil...... samples, called `scrap dirt', representing the different activities on the two recycling facilities, all showed very high concentrations of lead (Pb), copper (Cu) and zinc (Zn), high concentrations of cadmium (Cd) , chromium (Cr) and nickel (Ni) and somewhat elevated concentrations of many other metals....... In particular high concentrations were found for Pb at the car-battery salvage locations (13 to 26 g Pb kg±1) and Cu at the cable burning location (22 g Cu kg±1) at one site. The migration of metals below the surface in general (except at the car-battery salvage locations) was very limited even after...

  2. Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China

    OpenAIRE

    Fan, Yu; Zhu, Tingping; Li, Mengtong; He, Jieyi; Huang, Ruixue

    2017-01-01

    Background. Metal mining and waste discharge lead to regional heavy metal contamination and attract major concern because of the potential risk to local residents. Methods. This research was conducted to determine lead (Pb), cadmium (Cd), arsenic (As), manganese (Mn), and antimony (Sb) concentrations in soil and brown rice samples from three heavy metal mining areas in Hunan Province, central China, and to assess the potential health risks to local inhabitants. Results. Local soil contaminati...

  3. Vulnerability of soil resources to heavy metals contamination in Central Bekaa-Lebanon

    International Nuclear Information System (INIS)

    Darwish, T.; Jomaa, I.; Sukarieh, W.; Chihny, R.

    2000-01-01

    Full text.Changes in land use and urbanization yield more pressure put on limited soil and water resources, including the risk of pollution with toxic heavy metals. The study area lies in the Bekaa valley totaling about 12753 ha. The valley receives from the west torrential fan deposits and a mixture of colluvial and alluvial material. The principal soil classes are Fluvisols, Cambisols, Regosols, Vertisols and Luvisols. The area is populated and also the most important agricultural part of the plain. Agriculture in the plain is being practiced mainly with cash, field crops and vegetables. The western surrounding area is being used mainly for terraced fruit trees. This Arab-German Technical Cooperation Project (ACSAD-BGR) aimed, following the ISO standards and Eikman-Klocke recommendations, at investigating the nature of the extends of soil pollution by heavy metals in two pilot areas: The central Bekaa-Lebanon and Ghouta-Damascus. Different institutions cooperate in the implementation of this project to assess soil and groundwater vulnerability within the context of possible rehabilitation and land use. In the investigation area, possible soil contamination results from human activities such as agriculture, industry, dumping of municipal wastes etc..fertilization and pesticide applications are considered a source of Ni and Cr in the soil. Each kind of activities represents hazard of toxic heavy metals input to the upper, most active part of the soil, where plant roots remove nutrients. For example, the spatial distribution of As and Pb could be associated with leather factory and traffic. However, the higher values of As and Pb distribution, though remaining within the range of the soil multifunctional use, could be linked to the transfer by surface water. In addition, water storage made farmers use non-conventional sources of irrigation water with hazards of contamination of both soil and groundwater resources. Our analyses of water samples taken downstream in

  4. Chemical stabilization of metals and arsenic in contaminated soils using oxides--a review.

    Science.gov (United States)

    Komárek, Michael; Vaněk, Aleš; Ettler, Vojtěch

    2013-01-01

    Oxides and their precursors have been extensively studied, either singly or in combination with other amendments promoting sorption, for in situ stabilization of metals and As in contaminated soils. This remediation option aims at reducing the available fraction of metal(loid)s, notably in the root zone, and thus lowering the risks associated with their leaching, ecotoxicity, plant uptake and human exposure. This review summarizes literature data on mechanisms involved in the immobilization process and presents results from laboratory and field experiments, including the subsequent influence on higher plants and aided phytostabilization. Despite the partial successes in the field, recent knowledge highlights the importance of long-term and large-scale field studies evaluating the stability of the oxide-based amendments in the treated soils and their efficiency in the long-term. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Phytoremediation of metal-contaminated soil in temperate humid regions of British Columbia, Canada.

    Science.gov (United States)

    Padmavathiamma, Prabha K; Li, Loretta Y

    2009-08-01

    The suitability of five plant species was studied for phytoextraction and phytostabilisation in a region with temperate maritime climate of coastal British Columbia, Canada. Pot experiments were conducted using Lolium perenne L (perennial rye grass), Festuca rubra L (creeping red fescue), Helianthus annuus L (sunflower), Poa pratensis L (Kentucky bluegrass) and Brassica napus L (rape) in soils treated with three different metal (Cu, Pb, Mn, and Zn) concentrations. The bio-metric characters of plants in soils with multiple-metal contaminations, their metal accumulation characteristics, translocation properties and metal removal were assessed at different stages of plant growth, 90 and 120 DAS (days after sowing). Lolium was found to be suitable for the phytostabilisation of Cu and Pb, Festuca for Mn and Poa for Zn. Metal removal was higher at 120 than at 90 days after sowing, and metals concentrated more in the underground tissues with less translocation to the aboveground parts. Bioconcentration factors indicate that Festuca had the highest accumulation for Cu, Helianthus for Pb and Zn and Poa for Mn.

  6. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination

    International Nuclear Information System (INIS)

    Zarei, Mehdi; Hempel, Stefan; Wubet, Tesfaye; Schaefer, Tina; Savaghebi, Gholamreza; Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam; Buscot, Francois

    2010-01-01

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. - The molecular diversity of AMF was found to be influenced by a combination of soil heavy metal and other soil chemical parameters.

  7. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, Mehdi [Department of Soil Science, College of Agriculture, University of Shiraz, Shiraz (Iran, Islamic Republic of); Hempel, Stefan, E-mail: hempel.stefan@googlemail.co [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Freie Universitaet Berlin, Institut fuer Biologie, Okologie der Pflanzen, Altensteinstrasse 6, 14195 Berlin (Germany); Wubet, Tesfaye; Schaefer, Tina [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Savaghebi, Gholamreza [Department of Soil Science Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj (Iran, Islamic Republic of); Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam [Agricultural Biotechnology Research Institute of Iran (ABRII), P.O. Box 31535-1897, Karaj (Iran, Islamic Republic of); Buscot, Francois [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany)

    2010-08-15

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. - The molecular diversity of AMF was found to be influenced by a combination of soil heavy metal and other soil chemical parameters.

  8. Transfer of heavy metals to biota after remediation of contaminated soils with calcareous residues.

    Science.gov (United States)

    Pérez-Sirvent, Carmen; Martínez-Sánchez, Maria Jose; Agudo, Ines; Gonzalez, Eva; Perez-Espinosa, Victor; Belen Martínez, Lucia; Hernández, Carmen; García-Fernandez, Antonio Juan; Bech, Jaime

    2013-04-01

    A study was carried out to evaluate the assimilation of heavy metals by three types of horticultural plants (broccoli, lettuce and leek), different parts of which are destined for human and farm animals consumption (leaves, roots, fruits). Five consecutive crops of each vegetable were obtained in greenhouse. In a second stage, experiments were carried out with rabbits fed with such vegetables. The plants were cultivated in four types of soil. The first one was contaminated by heavy metals (S1), the second was a uncontaminated soil (blank soil) (S2), the third was the material obtained by mixing S1 with residues coming from demolition and construction activities (S3); while the fourth was the result of remediating S1 with lime residues coming from quarries (S4). The total metal content (As, Pb, Cd and Zn) of the soil samples, rizosphere, leached water and vegetable samples, were measured, and both the translocation and bioconcentration factors (TF and BCF, respectively) were calculated. In the second stage, the effect caused in rabbits fed with the vegetables was monitorized using both external observation and the analysis of blood, urine, and the levels of metals in muscles, liver and kidney. The statistical analysis of the results obtained showed that there were no significant differences in the heavy metal levels for the vegetables cultivated in S2, S3 and S4. The results for soil sample S1 did not have a normal distribution since the growing of the vegetables were not homogeneous and also strongly dependent on the type of vegetal. As regards the effect caused in rabbits, significant differences were observed for the animals fed with plants cultivated in S1 compared with the others.

  9. Slow pyrolyzed biochars from crop residues for soil metal(loid) immobilization and microbial community abundance in contaminated agricultural soils.

    Science.gov (United States)

    Igalavithana, Avanthi Deshani; Park, Jinje; Ryu, Changkook; Lee, Young Han; Hashimoto, Yohey; Huang, Longbin; Kwon, Eilhann E; Ok, Yong Sik; Lee, Sang Soo

    2017-06-01

    This study evaluated the feasibility of using biochars produced from three types of crop residues for immobilizing Pb and As and their effects on the abundance of microbial community in contaminated lowland paddy (P-soil) and upland (U-soil) agricultural soils. Biochars were produced from umbrella tree [Maesopsis eminii] wood bark [WB], cocopeat [CP], and palm kernel shell [PKS] at 500 °C by slow pyrolysis at a heating rate of 10 °C min -1 . Soils were incubated with 5% (w w -1 ) biochars at 25 °C and 70% water holding capacity for 45 d. The biochar effects on metal immobilization were evaluated by sequential extraction of the treated soil, and the microbial community was determined by microbial fatty acid profiles and dehydrogenase activity. The addition of WB caused the largest decrease in Pb in the exchangeable fraction (P-soil: 77.7%, U-soil: 91.5%), followed by CP (P-soil: 67.1%, U-soil: 81.1%) and PKS (P-soil: 9.1%, U-soil: 20.0%) compared to that by the control. In contrast, the additions of WB and CP increased the exchangeable As in U-soil by 84.6% and 14.8%, respectively. Alkalinity and high phosphorous content of biochars might be attributed to the Pb immobilization and As mobilization, respectively. The silicon content in biochars is also an influencing factor in increasing the As mobility. However, no considerable effects of biochars on the microbial community abundance and dehydrogenase activity were found in both soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ecological investigations on plant associations in differently disturbed heavy-metal contaminated soils of Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, W

    1968-01-01

    In different areas of Great Britain comparing ecological studies have been made on disturbed and undisturbed heavy metal contaminated soils. In Grizedale (Pennine), sampling of an undisturbed transect having high levels of major nutrients showed marked differentiation within a small area, only related to the plant available levels of zinc, copper, and lead. However, studies on disturbed heavy metal soils and spoil-heaps revealed a low water capacity and a low supply of major nutrients, particularly of N and P. These suggest that here both the enrichment of heavy metals and the considerable decrease of other nutrients are important in determining the heavy metal vegetation, and in maintaining it against other species. The quantity of zinc in plants is not related to the total or plant-available amount of zinc in soil, but confirmed physiological experiments on the influence of phosphorus and different zinc compounds (complexed or inorganic) on the uptake and distribution of zinc in Thlaspi alpestre and Minnartia rerum. Also an antagonism between lead and copper was revealed. 24 references.

  11. Environmental hazard of cadmium, copper, lead and zinc in metal-contaminated soils remediated by sulfosuccinamate formulation.

    Science.gov (United States)

    del Carmen Hernández-Soriano, Maria; Peña, Aránzazu; Mingorance, M Dolores

    2011-10-01

    Accumulation of metals in soil at elevated concentrations causes risks to the environmental quality and human health for more than one hundred million people globally. The rate of metal release and the alteration of metal distribution in soil phases after soil washing with a sulfosuccinamate surfactant solution (Aerosol 22) were evaluated for four contaminated soils. Furthermore, a sequential extraction scheme was carried out using selective extractants (HAcO, NH(2)OH·HCl, H(2)O(2) + NH(4)AcO) to evaluate which metal species are extracted by A22 and the alteration in metal distribution upon surfactant-washing. Efficiency of A22 to remove metals varied among soils. The washing treatment released up to 50% of Cd, 40% of Cu, 20% of Pb and 12% of Zn, mainly from the soluble and reducible soil fractions, therefore, greatly reducing the fraction of metals readily available in soil. Metal speciation analysis for the solutions collected upon soil washing with Aerosol 22 further confirmed these results. Copper and lead in solution were mostly present as soluble complexes, while Cd and Zn were present as free ions. Besides, redistribution of metals in soil was observed upon washing. The ratios of Zn strongly retained in the soil matrix and Cd complexed with organic ligands increased. Lead was mobilized to more weakly retained forms, which indicates a high bioavailability of the remaining Pb in soil after washing. Comprehensive knowledge on chemical forms of metals present in soil allows a feasible assessment of the environmental impact of metals for a given scenario, as well as possible alteration of environmental conditions, and a valuable prediction for potential leaching and groundwater contamination.

  12. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).

    Science.gov (United States)

    Lai, Hung-Yu; Chen, Zueng-Sang

    2005-08-01

    Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from metal-contaminated soils. The soils used in this study were artificially added with different metals including (1) CK: original soil, (2) Cd-treated soil: 10 mg Cd kg(-1), (3) Zn-treated soil: 100 mg Zn kg(-1), (4) Pb-treated soil: 1000 mg Pb kg(-1), (5) Cd-Zn-treated soil: 10 mg Cd kg(-1) and 100 mg Zn kg(-1), (6) Cd-Pb-treated soil: 10 mg Cd kg(-1) and 1000 mg Pb kg(-1), (7) Zn-Pb-treated soil: 100 mg Zn kg(-1) and 1000 mg Pb kg(-1), and (8) Cd-Zn-Pb-treated soil: 10 mg Cd kg(-1), 100 mg Zn kg(-1), and 1000 mg Pb kg(-1). Three concentrations of 2Na-EDTA solutions (0 (control), 2, and 5 mmol kg(-1) soil) were added to the different metals-treated soils to study the influence of applied EDTA on single and combined metals-contaminated soils phytoextraction using rainbow pink. The results showed that the Cd, Zn, Pb, Fe, or Mn concentrations in different metals-treated soil solutions significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). The metal concentrations in different metals-treated soils extracted by deionized water also significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). Because of the high extraction capacity of both 0.005 M DTPA (pH 5.3) and 0.05 M EDTA (pH 7.0), applying EDTA did not significantly increase the Cd, Zn, or Pb concentration in both extracts for most of the treatments. Applying EDTA solutions can significantly increase the Cd and Pb concentrations in the shoots of rainbow pink (p<0.05). However, this was not statistically significant for Zn because of the low Zn concentration added into the contaminated soils. The results from this study indicate that applying 5 mmol EDTA kg(-1) can significantly increase the Cd, Zn, or Pb concentrations both in the soil solution or extracted using deionized water in single or combined metals-contaminated soils, thus increasing the accumulated metals concentrations in

  13. The Use of Plants for Remediation of Metal-Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Andon Vassilev

    2004-01-01

    Full Text Available The use of green plants to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation is an emerging technology. In this paper, an overview is given of existing information concerning the use of plants for the remediation of metal-contaminated soils. Both site decontamination (phytoextraction and stabilization techniques (phytostabilization are described. In addition to the plant itself, the use of soil amendments for mobilization (in case of phytoextraction and immobilization (in case of phytostabilization is discussed. Also, the economical impacts of changed land-use, eventual valorization of biomass, and cost-benefit aspects of phytoremediation are treated. In spite of the growing public and commercial interest and success, more fundamental research is needed still to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between metals, soil, plant roots, and micro-organisms (bacteria and mycorrhiza in the rhizosphere. Further, more demonstration experiments are needed to measure the underlying economics, for publicacceptance and last but not least, to convince policy makers.

  14. [Evaluation of compounding EDTA and citric acid on remediation of heavy metals contaminated soil].

    Science.gov (United States)

    Yin, Xue; Chen, Jia-Jun; Cai, Wen-Min

    2014-08-01

    As commonly used eluents, Na2EDTA (EDTA) and citric acid (CA) have been widely applied in remediation of soil contaminated by heavy metals. In order to evaluate the removal of arsenic, cadmium, copper, and lead in the contaminated soil collected in a chemical plant by compounding EDTA and CA, a series of stirring experiments were conducted. Furthermore, the changes in speciation distribution of heavy metals before and after washing were studied. The results showed that, adopting the optimal molar ratio of EDTA/CA (1:1), when the pH of the solution was 3, the stirring time was 30 min, the stirring rate was 150 r x min(-1) and the L/S was 5:1, the removal rates of arsenic, cadmium, copper and lead could reach 11.72%, 43.39%, 24.36% and 27.17%, respectively. And it was found that after washing, for arsenic and copper, the content of acid dissolved fraction rose which increased the percentage of available contents. Fe-Mn oxide fraction mainly contributed to the removal of copper. As for cadmium, the percentages of acid dissolved fraction, Fe-Mn oxide fraction and organic fraction also decreased. In practical projects, speciation changes would pose certain environmental risk after soil washing, which should be taken into consideration.

  15. Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei

    Energy Technology Data Exchange (ETDEWEB)

    Grumiaux, F.; Demuynck, S.; Schikorski, D.; Lemiere, S.; Lepretre, A. [Universite Lille Nord de France, Villeneuve Dascq (France)

    2010-03-15

    Earthworms (Eisenia andrei) were exposed, in controlled conditions, to metal-contaminated soils previously treated in situ with two types of fluidized bed combustion ashes. Effects on this species were determined by life history traits analysis. Metal immobilizing efficiency of ashes was indicated by metal bioaccumulation. Ashes-treated soils reduced worm mortality compared to the untreated soil. However, these ashes reduced both cocoon hatching success and hatchlings numbers compared to the untreated soil. In addition, sulfo-calcical ashes reduced or delayed worm maturity and lowered cocoon production compared to silico-alumineous ones. Metal immobilizing efficiency of ashes was demonstrated for Zn, Cu and to a lesser extent Pb. Only silico-alumineous ashes reduced Cd bioaccumulation, although Cd was still bioconcentrated. Thus, although ash additions to metal-contaminated soils may help in immobilizing metals, their use might result, depending on the chemical nature of ashes, to severe detrimental effects on earthworm reproduction with possible long term consequences to populations.

  16. Heavy metal contamination in arable soils and vegetables around a sulfuric acid factory, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Department of Earth Sciences, National Taiwan University, Taipei (China); Wang, Jin; Li, Xiangping; Chen, Yongheng; Wu, Yingjuan [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Qi, Jianying [South China Institute of Environmental Science, Ministry of Environmental Protection (SCIES-MEP), Guangzhou (China); Wang, Chunlin [Research Center for Environmental Science, Guangdong Provincial Academy of Environmental Science, Guangzhou (China)

    2012-07-15

    This study was designed to investigate heavy metal (Tl, Pb, Cu, Zn, and Ni) contamination levels of arable soils and vegetables grown in the vicinity of a sulfuric acid factory in the Western Guangdong Province, China. Health risks associated with these metals by consumption of vegetables were assessed based on the hazard quotient (HQ). The soils show a most significant contamination of Tl, followed by Pb, Cu, Zn, and Ni. The heavy metal contents ({mu}g/g, dry weight basis) in the edible parts of vegetables range from 5.60 to 105 for Tl, below detection limit to 227 for Pb, 5.0-30.0 for Cu, 10.0-82.9 for Zn, and 0.50-26.0 for Ni, mostly exceeding the proposed maximum permissible level in Germany or China. For the studied vegetables, the subterranean part generally bears higher contents of Tl and Zn than the aerial part, while the former has lower contents of Cu and Ni than the latter. In addition, the results reveal that Tl is the major risk contributor for the local people since its HQ values are mostly much higher than 1.0. The potential health risk of Tl pollution in the food chain and the issue of food safety should be highly concerned and kept under continued surveillance and control. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  18. Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation.

    Science.gov (United States)

    Dong, Zhi-Yong; Huang, Wen-Hui; Xing, Ding-Feng; Zhang, Hong-Feng

    2013-09-15

    Successful remediation of soil co-contaminated with high levels of organics and heavy metals is a challenging task, because that metal pollutants in soil can partially or completely suppress normal heterotrophic microbial activity and thus hamper biodegradation of organics. In this study, the benefits of integrating electrokinetic (EK) remediation with biodegradation for decontaminating soil co-contaminated with crude oil and Pb were evaluated in laboratory-scale experiments lasting for 30 days. The treated soil contained 12,500 mg/kg of total petroleum hydrocarbons (TPH) and 450 mg/kg Pb. The amendments of EDTA and Tween 80, together with a regular refreshing of electrolyte showed the best performance to remediate this contaminated soil. An important function of EDTA-enhanced EK treatment was to eliminate heavy metal toxicity from the soil, thus activating microbial degradation of oil. Although Tween 80 reduced current, it could serve as a second substrate for enhancing microbial growth and biodegradation. It was found that oil biodegradation degree and microbial numbers increased toward the anode and cathode. Microbial metabolism was found to be beneficial to metal release from the soil matrix. Under the optimum conditions, the soil Pb and TPH removal percentages after 30 days of running reached 81.7% and 88.3%, respectively. After treatment, both the residual soil Pb and TPH concentrations met the requirement of the Chinese soil environmental quality standards. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Perspectives of humic substances application in remediation of highly heavy metals contaminated soils in Kola Subarctic

    Science.gov (United States)

    Tregubova, Polina; Turbaevskaya, Valeria; Zakharenko, Andrey; Kadulin, Maksim; Smirnova, Irina; Stepanov, Andrey; Koptsik, Galina

    2016-04-01

    Northwestern part of Russia, the Kola Peninsula, is one of the most heavy metals (HM) contaminated areas in the northern hemisphere. The main polluters, mining-and-metallurgical integrated works "Pechenganikel" and "Severonikel", are surrounded by heavily damaged barren lands that require remediation. The main contaminating metals are Ni and Cu. Using of exogenous humic substances could be possible effective and cost-efficient solution of HM contamination problem. Rational application of humates (Na-K salts of humic acids) can result in improvement of soil properties, localization of contamination and decreasing bioavailability through binding HM in relatively immobile organic complexes. Our research aim was to evaluate the influence of increasing doses of different origin humates on i) basic properties of contaminated soils; ii) mobility and bioavailability of HMs; iii) vegetation state and chemistry. In summer 2013 a model field experiment was provided in natural conditions of the Kola Peninsula. We investigated the Al-Fe-humus abrazem, soil type that dominates in technogenic barren lands around the "Severonikel" work. These soils are strongly acid: pHH2O was 3.7-4.1; pHKCl was 3.4-4.0. The exchangeable acidity is low (0.8-1.6 cmol(+)/kg) due to the depletion of fine particles and organic matter, being the carriers of exchange positions. The abrazems of barrens had lost organic horizon. 12 sites were created in 1 km from the work. In those sites, except 2 controls, various amendments were added: i) two different by it's origin types of humates: peat-humates and coal-humates, the last were in concentrations 0.5% and 1%; ii) lime; iii) NPK-fertilizer; iv) biomates (organic degradable cover for saving warm and erosion protection). As a test-culture a grass mixture with predominance of Festuca rubra and Festuca ovina was sowed. As a result we concluded that humates of different origin have unequal influence on soil properties and cause decreasing as well as

  20. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Fasani, Elisa; Manara, Anna; Martini, Flavio; Furini, Antonella; DalCorso, Giovanni

    2018-05-01

    The genetic engineering of plants to facilitate the reclamation of soils and waters contaminated with inorganic pollutants is a relatively new and evolving field, benefiting from the heterologous expression of genes that increase the capacity of plants to mobilize, stabilize and/or accumulate metals. The efficiency of phytoremediation relies on the mechanisms underlying metal accumulation and tolerance, such as metal uptake, translocation and detoxification. The transfer of genes involved in any of these processes into fast-growing, high-biomass crops may improve their reclamation potential. The successful phytoextraction of metals/metalloids and their accumulation in aerial organs have been achieved by expressing metal ligands or transporters, enzymes involved in sulfur metabolism, enzymes that alter the chemical form or redox state of metals/metalloids and even the components of primary metabolism. This review article considers the potential of genetic engineering as a strategy to improve the phytoremediation capacity of plants in the context of heavy metals and metalloids, using recent case studies to demonstrate the practical application of this approach in the field. © 2017 John Wiley & Sons Ltd.

  1. Heavy Metals Contaminated Soil Project, Resource Recovery Project, and Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November, 1989. OTD has begun to search out, develop, test and demonstrate technologies that can now or in the future be applied to the enormous remediation problem now facing the DOE and the United States public in general. Technology demonstration projects have been designed to attack a separate problem as defined by DOE. The Heavy Metals Contaminated Soil Project was conceived to test and demonstrate off-the-shelf technologies (dominantly from the mining industry) that can be brought to bear on the problem of radionuclide and heavy metal contamination in soils and sediments. The Resource Recovery Project is tasked with identifying, developing, testing, and evaluating new and innovative technologies for the remediation of metal contaminated surface and groundwater. An innovative twist on this project is the stated goal of recovering the metals, formerly disposed of as a waste, for reuse and resale, thereby transforming them into a usable resource. Finally, the Dynamic Underground Stripping Project was developed to demonstrate and remediate underground spills of hydrocarbons from formations that are (1) too deep for excavation, and/or (2) require in-situ remediation efforts of long duration. This project has already been shown effective in reducing the time for remediation by conventional methods from an estimated 200 years at the Lawrence Livermore National Laboratory (LLNL) to less than one year. The savings in time and dollars from this technology alone can be immeasurable

  2. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils

    International Nuclear Information System (INIS)

    Juang, Kai-Wei; Chen, Yue-Shin; Lee, Dar-Yuan

    2004-01-01

    Mapping the spatial distribution of soil pollutants is essential for delineating contaminated areas. Currently, geostatistical interpolation, kriging, is increasingly used to estimate pollutant concentrations in soils. The kriging-based approach, indicator kriging (IK), may be used to model the uncertainty of mapping. However, a smoothing effect is usually produced when using kriging in pollutant mapping. The detailed spatial patterns of pollutants could, therefore, be lost. The local uncertainty of mapping pollutants derived by the IK technique is referred to as the conditional cumulative distribution function (ccdf) for one specific location (i.e. single-location uncertainty). The local uncertainty information obtained by IK is not sufficient as the uncertainty of mapping at several locations simultaneously (i.e. multi-location uncertainty or spatial uncertainty) is required to assess the reliability of the delineation of contaminated areas. The simulation approach, sequential indicator simulation (SIS), which has the ability to model not only single, but also multi-location uncertainties, was used, in this study, to assess the uncertainty of the delineation of heavy metal contaminated soils. To illustrate this, a data set of Cu concentrations in soil from Taiwan was used. The results show that contour maps of Cu concentrations generated by the SIS realizations exhausted all the spatial patterns of Cu concentrations without the smoothing effect found when using the kriging method. Based on the SIS realizations, the local uncertainty of Cu concentrations at a specific location of x', refers to the probability of the Cu concentration z(x') being higher than the defined threshold level of contamination (z c ). This can be written as Prob SIS [z(x')>z c ], representing the probability of contamination. The probability map of Prob SIS [z(x')>z c ] can then be used for delineating contaminated areas. In addition, the multi-location uncertainty of an area A

  3. Metal immobilization and phosphorus leaching after stabilization of pyrite ash contaminated soil by phosphate amendments.

    Science.gov (United States)

    Zupančič, Marija; Lavrič, Simona; Bukovec, Peter

    2012-02-01

    In this study we would like to show the importance of a holistic approach to evaluation of chemical stabilization using phosphate amendments. An extensive evaluation of metal stabilization in contaminated soil and an evaluation of the leaching of phosphorus induced after treatment were performed. The soil was highly contaminated with Cu (2894 mg kg(-1)), Zn (3884 mg kg(-1)), As (247 mg kg(-1)), Cd (12.6 mg kg(-1)) and Pb (3154 mg kg(-1)). To immobilize the metals, mixtures of soil with phosphate (from H(3)PO(4) and hydroxyapatite (HA) with varying ratios) were prepared with a constant Pb : P molar ratio of 1: 10. The acetic acid extractable concentration of Pb in the mixture with the highest amount of added phosphoric acid (n(H(3)PO(4)) : n(HA) = 3 : 1) was reduced to 1.9% (0.62 mg L(-1)) of the extractable Pb concentration in the untreated soil, but the content of water extractable phosphorus in the samples increased from 0.04 mg L(-1) in the untreated soil sample up to 14.3 mg L(-1) in the same n(H(3)PO(4)) : n(HA) = 3 : 1 mixture. The high increase in arsenic mobility was also observed after phosphate addition. The PBET test showed phosphate induced reduction in Pb bioavailability. In attempting to stabilize Pb in the soil with the minimum treatment-induced leaching of phosphorus, it was found that a mixture of soil with phosphate addition in the molar ratio of H(3)PO(4) : HA of 0.75 : 1 showed the most promising results, with an acetic acid extractable Pb concentration of 1.35 mg L(-1) and a water extractable phosphorus concentration of 1.76 mg L(-1). The time-dependent leaching characteristics of metals and phosphorus for this mixture were evaluated by a column experiment, where irrigation of the soil mixture with the average annual amount of precipitation in Slovenia (1000 mm) was simulated. The phosphorus concentration in the leachates decreased from 2.60 mg L(-1) at the beginning of irrigation to 1.00 mg L(-1) at the end.

  4. Spatial variance of POPs and heavy metals in transformer oil-contaminated soil around Tamil Nadu.

    Science.gov (United States)

    Murugan, Karuvelan; Vasudevan, Namasivayam

    2017-09-05

    The persistent organic pollutants in the environment are one of the global issues to their unregulated disposal and informal recycling. This study investigates the contamination of soil with polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), phenolic compounds and heavy metals via spillage of transformer oil (TO). Fresh TO (FTO), used TO (UTO) and soil samples were analysed using GC-MS to confirm the presence of 8 PCB congeners, 16 PAHs and 24 types of phenolic compounds and using inductively coupled plasma optical emission spectrometry to confirm the presence of 7 heavy metals. The chromatographic analysis revealed the levels of mono-, di-, tri-, tetra-, penta-, hexa-, hepta- and octachlorobiphenyls in FTO to be 5.63, 25.24, 0.195, 0.185, 2.169, 1.023 and 5.28 mg/L and the level of mono-, di-, tri-, tetra-, penta- and hexachlorobiphenyls in UTO to be 0.27, 1.21, 1.31, 0.80, 1.77 and 3.90 mg/L. Analysis of soil from 10 different TO-contaminated sites showed the presence of PCBs, PAHs, phenolic compounds and heavy metals in the concentration range of 0.53-42.87 mg/kg, 3.19-246.6 μg/kg, 0.01-4086.45 μg/kg and 1.0-401.3 mg/kg, respectively. The variation in the concentration of these compounds and heavy metals among different sampling sites was determined using principal component analysis (PCA), metric multi-dimensional scaling (MDS) and Bray-Curtis cluster analysis (Bu-CA). The toxicity equivalence factor and the mechanism involved in the disruption of endocrine system are discussed. Thus, this study exemplifies the need for complete ban of PCB-containing TOs in developing countries and urges the need for technology for the disposal of TO.

  5. Continuous treatment of heavy metal contaminated clay soils by extraction in stirred tanks and in a countercurrent column

    NARCIS (Netherlands)

    Tuin, B.J.W.; Tels, M.

    1991-01-01

    Extn. of metals from 2 contaminated waste site clay soils by 0.1-0.3 N HCl solns. was tested in 3 lab. scale, continuous processes: 2 stirred tank reactors (CSTR' s) in series; a countercurrent sieve-plate column fed with flocculated clay soil materials; and a combination of tank reactor and column.

  6. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils.

    Science.gov (United States)

    Davari, Masoud; Rahnemaie, Rasoul; Homaee, Mehdi

    2015-09-01

    Investigating the interactions of heavy metals is imperative for sustaining environment and human health. Among those, Cd is toxic for organisms at any concentration. While Ni acts as a micronutrient at very low concentration but is hazardous toxic above certain threshold value. In this study, the chemical adsorption and desorption reactions of Ni and Cd in contaminated soils were investigated in both single and binary ion systems. Both Ni and Cd experimental data demonstrated Langmuir type adsorption. In the competitive systems, an antagonistic effect was observed, implying that both ions compete for same type of adsorption sites. Adverse effect of Cd on Ni adsorption was slightly stronger than that of opposite system, consistent with adsorption isotherms in single ion systems. Variation in ionic strength indicated that Ca, a much weaker adsorbate, could also compete with Cd and Ni for adsorption on soil particles. Desorption data indicated that Cd and Ni are adsorbed very tightly such that after four successive desorption steps, less than 0.5 % of initially adsorbed ions released into the soil solution. This implies that Ca, at concentration in equilibrium with calcite mineral, cannot adequately compete with and replace adsorbed Ni and Cd ions. This adsorption behavior was led to considerable hysteresis between adsorption and desorption in both single and binary ion systems. In the binary ion systems, desorption of Cd and Ni was increased by increase in both equilibrium concentration of adsorbed ion and concentration of competitor ion. The overall results obtained in this research indicate that Cd and Ni are strongly adsorbed in calcareous soil and Ca, the major dissolved ion, insignificantly influences metal ions adsorption. Consequently, the contaminated soils by Ni and Cd can simultaneously be remediated by environmentally oriented technologies such as phytoremediation.

  7. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine.

    Science.gov (United States)

    Epelde, Lur; Lanzén, Anders; Blanco, Fernando; Urich, Tim; Garbisu, Carlos

    2015-01-01

    Toxicity of metals released from mine tailings may cause severe damage to ecosystems. A diversity of microorganisms, however, have successfully adapted to such sites. In this study, our objective was to advance the understanding of the indigenous microbial communities of mining-impacted soils. To this end, a metatranscriptomic approach was used to study a heavily metal-contaminated site along a metal concentration gradient (up to 3220 000 and 97 000 mg kg(-1) of Cd, Pb and Zn, respectively) resulting from previous mining. Metal concentration, soil pH and amount of clay were the most important factors determining the structure of soil microbial communities. Interestingly, evenness of the microbial communities, but not its richness, increased with contamination level. Taxa with high metabolic plasticity like Ktedonobacteria and Chloroflexi were found with higher relative abundance in more contaminated samples. However, several taxa belonging to the phyla Actinobacteria and Acidobacteria followed opposite trends in relation to metal pollution. Besides, functional transcripts related to transposition or transfer of genetic material and membrane transport, potentially involved in metal resistance mechanisms, had a higher expression in more contaminated samples. Our results provide an insight into microbial communities in long-term metal-contaminated environments and how they contrast to nearby sites with lower contamination. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae.

    Science.gov (United States)

    Ekperusi, Ogheneruemu Abraham; Aigbodion, Iruobe Felix

    2015-01-01

    A laboratory study on the bioremediation of diesel contaminated soil with the earthworm Eudrilus eugeniae (Kingberg) was conducted. 5 ml of diesel was contaminated into soils in replicates and inoculated with E. eugeniae for 90 days. Physicochemical parameters, heavy metals and total petroleum hydrocarbons were analyzed using AAS. BTEX in contaminated soil and tissues of earthworms were determined with GC-FID. The activities of earthworms resulted in a decrease in pH (3.0 %), electrical conductivity (60.66 %), total nitrogen (47.37 %), chloride (60.66 %), total organic carbon (49.22 %), sulphate (60.59 %), nitrate (60.65 %), phosphate (60.80 %), sodium (60.65 %), potassium (60.67 %), calcium (60.67 %), magnesium (60.68 %), zinc (60.59 %), manganese (60.72 %), copper (60.68 %), nickel (60.58 %), cadmium (60.44 %), vanadium (61.19 %), chromium (53.60 %), lead (60.38 %), mercury (61.11 %), arsenic (80.85 %), TPH (84.99 %). Among the BTEX constituents, only benzene (8.35 %) was detected in soil at the end of the study. Earthworm tissue analysis showed varying levels of TPH (57.35 %), benzene (38.91 %), toluene (27.76 %), ethylbenzene (42.16 %) and xylene (09.62 %) in E. eugeniae at the end of the study. The study has shown that E. eugeniae could be applied as a possible bioremediator in diesel polluted soil.

  9. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar.

    Science.gov (United States)

    Fang, Shen'en; Tsang, Daniel C W; Zhou, Fengsha; Zhang, Weihua; Qiu, Rongliang

    2016-04-01

    Currently, sludge pyrolysis has been considered as a promising technology to solve disposal problem of municipal sewage sludge, recover sludge heating value, sequester carbon and replenish nutrients in farmland soils. The resultant sludge-derived biochar (SDBC) is potentially an excellent stabilizing agent for metal species. This study applied the SDBC into four soils that had been contaminated in field with cationic Pb(II) and Cd(II)/Ni(II), and anionic Cr(VI) and As(III), respectively. The performance of metal stabilization under various operational and environmental conditions was evaluated with acid batch extraction and column leaching tests. Results indicated the SDBC could effectively stabilize these metals, which was favored by elevated temperature and longer aging. Periodic temperature decrease from 45 to 4 °C resulted in the release of immobilized Cr(VI) and As(III) but not Pb(II). However, a longer aging time offset such metal remobilization. This was possibly because more Pb was strongly bound and even formed stable precipitates, as shown by XRD and sequential extraction results. With increasing time, Cr(VI) was sorbed and partly reduced to Cr(III), while immobilized As(III) was co-oxidized to As(V) as indicated by XPS spectra. Column tests revealed that adding SDBC as a separate layer was unfavorable because the concentrated Cd(II) and Ni(II) in localized positions increased the peak levels of metal release under continuous acid leaching. In contrast, uniformly mixed SDBC could effectively delay the metal breakthrough and reduce their released amounts. Yet, a long-term monitoring may be required for evaluating the potential leaching risks and bioavailability/toxicity of these immobilized and transformed species in the SDBC-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China

    Science.gov (United States)

    Zhao, Keli; Fu, Weijun; Ye, Zhengqian; Zhang, Chaosheng

    2015-01-01

    There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%). The spatial distribution of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd) in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones. PMID:25635917

  11. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China

    Directory of Open Access Journals (Sweden)

    Keli Zhao

    2015-01-01

    Full Text Available There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%. The spatial distribution of copper (Cu, nickel (Ni, lead (Pb and zinc (Zn in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones.

  12. Contamination and spatial variation of heavy metals in the soil-rice system in Nanxun County, Southeastern China.

    Science.gov (United States)

    Zhao, Keli; Fu, Weijun; Ye, Zhengqian; Zhang, Chaosheng

    2015-01-28

    There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%). The spatial distribution of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd) in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones.

  13. Availability of heavy metals in contaminated soil evidenced by chemical extractants

    Directory of Open Access Journals (Sweden)

    Maria Ligia de Souza Silva

    2012-06-01

    Full Text Available Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.

  14. Effect of mycorrhizal inoculation on the growth and phytoextraction of heavy metals by maize grown in oil contaminated soil

    International Nuclear Information System (INIS)

    Achakzai, A.K.K.; Liasu, M.O.; Popoola, O.J.

    2011-01-01

    Pot experiments were conducted to investigate the effect of AM (Glomus mosseae ) fungi inoculation (M) on the growth of maize and phyto extraction of selected heavy metals from a soil contaminated with crude oil (C). Four soil treatments, each with three replicates i.e., C/sup +/M/sup +/, M/sup +/, C/sup +/ and control (without oil and inoculum) were conducted. Half of the pots with the soil treatments were planted with singly sown (SS) and the other half with densely sown i.e., four maize seedlings (DS). Various plant growth attributes were measured at weekly intervals Cu/sup 2+/, Ni/sup 2+/, Pb/sup 2+/ and Cd/sup 2+/ in the soil, root and shoot of maize plants were determined separately. Inoculation by AM promoted the vegetative growth attributes in both treatments viz., C/sup +/M/sup +/ and M/+. AM inoculation also promoted the hyper extraction of heavy metals from C/sup +/M/sup +/ soils, but inhibited by soils treated with M/sup +/. High planting density i.e., DS also promoted phyto extraction of heavy metals from uncontaminated (M/sup +/) soils, but had minimal effect on phyto extraction from oil contaminated soils (C/sup +/). Planting density complemented the promotive effect of AM inoculation on phyto extraction of heavy metals from C/sup +/ soils. The hyper extraction of selected metals from soil is more favored by planting density in C/sup +/ soils, whereas AM inoculation tends to exclude heavy metals from potted plants. However, in case of C/sup +/M/sup +/ soils, AM inoculation promotes the hyper extraction of metals more than planting density. While the combination of the two phenomena act synergistically to promote metal hyper extraction from C/sup +/M/sup +/ as well as M/sup +/ soils. (author)

  15. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    Science.gov (United States)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures

  16. Solubility of Heavy Metals/Metalloid on Multi-Metal Contaminated Soil Samples from a Gold Ore Processing Area: Effects of Humic Substances

    Directory of Open Access Journals (Sweden)

    Cácio Luiz Boechat

    2016-01-01

    Full Text Available ABSTRACT Bioavailability of heavy metals at contaminated sites is largely controlled by the physicochemical properties of the environmental media such as dissolved organic matter, hydroxides and clay colloids, pH, soil cation exchange capacity and oxidation-reduction potential. The aim of this study was to investigate soil pH and heavy metal solubility effect by levels of humic and fulvic acids applied in soil samples with different levels of contamination by heavy metals. The soil samples used in this study were collected in a known metal-contaminated site. Humic acid (HA and fulvic acid (FA were purchased as a commercially available liquid material extracted from Leonardite. The experiment was carried out in a factorial scheme of 4 × (4 + 1, with four contaminated soil samples and four treatments, comprised of two levels of HA, two levels of FA and a control. The HA treatments increased the solubility of Cu, Zn, Ni, Cr, Cd, Pb, As and Ba from soils, while FA treatments decreased, thus raising or not their availability and mobility in soil. Humic acid concentration did not influence soil pH and FA decreased soil pH until 0.7 units. The initial heavy metal concentration in soil affects the magnitude of the processes involving humic substances. The lower releases of heavy metals by FA verified the importance of the complexation properties of organic compounds. These results appear to encourage the use of HA for increased plant-availability of heavy metals in remediation projects and the use of FA for decreased plant-availability of heavy metals at contaminated sites with a risk of introducing metals into the food chain.

  17. Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds.

    Science.gov (United States)

    Gosavi, K; Sammut, J; Gifford, S; Jankowski, J

    2004-05-25

    Earthen shrimp aquaculture ponds are often impacted by acid sulfate soils (ASS), typically resulting in increased disease and mortality of cultured organisms. Production losses have been attributed to either low pH or to elevated concentrations of toxic metals, both direct products of pyrite oxidation in ASS. The standard farm management practice to minimise effects of pyrite oxidation is to maintain pH of pond waters above 5, based on the assumption that dissolved metal bioavailability is negligible at this pH. This study aimed to test the validity of this assumption, and therefore elucidate a possible role of toxic heavy metals in observed decreases in farm productivity. Metal bioaccumulation in four genera of macroalgae, Ulva sp., Enteromorpha sp., Cladophora sp. and Chaetomorpha sp., sampled from ASS-affected shrimp aquaculture ponds were measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to assess the relative bioavailability of dissolved metals within the system. Results showed that all four genera of macroalgae accumulated appreciable quantities of Fe, Al, Zn, Cd, Cu, As and Pb. Iron and Al, the most common metals mobilised from ASS, were both accumulated in all algal genera to concentrations three orders of magnitude greater than all other metals analysed. These findings indicate that dissolved heavy metals are indeed bioavailable within the aquaculture pond system. A literature search of heavy metal bioaccumulation by these algal genera revealed concentrations recorded in this study are comparable to highly contaminated environments, such as those exposed to urban, industrial and mining pollution. The results of this study indicate that dissolved metal bioavailability in many earthen shrimp aquaculture ponds may be higher than previously thought.

  18. Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lourenco, Joana I., E-mail: joanalourenco@ua.pt [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Pereira, Ruth O., E-mail: ruthp@ua.pt [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Silva, Ana C., E-mail: ana.cmj@ua.pt [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Morgado, Jose M., E-mail: jmtmorgado@gmail.com [Centro de Histocompatibilidade do Centro, Praceta Prof. Mota Pinto, Edificio S. Jeronimo, 4o piso, Apartado 9041, 3001-301 Coimbra (Portugal); Carvalho, Fernando P., E-mail: fernando.carvalho@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Oliveira, Joao M., E-mail: joaomota@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Malta, Margarida P., E-mail: margm@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Paiva, Artur A., E-mail: apaiva@histocentro.min-saude.pt [Centro de Histocompatibilidade do Centro, Praceta Prof. Mota Pinto, Edificio S. Jeronimo, 4o piso, Apartado 9041, 3001-301 Coimbra (Portugal); Mendo, Sonia A., E-mail: smendo@ua.pt [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Goncalves, Fernando J., E-mail: fjmg@ua.pt [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2011-02-15

    Eisenia andrei was exposed, for 56 days, to a contaminated soil from an abandoned uranium mine and to the natural reference soil LUFA 2.2. The organisms were sampled after 0, 1, 2, 7, 14 and 56 days of exposure, to assess metals bioaccumulation, coelomocytes DNA integrity and cytotoxicity. Radionuclides bioaccumulation and growth were also determined at 0 h, 14 and 56 days of exposure. Results have shown the bioaccumulation of metals and radionuclides, as well as, growth reduction, DNA damages and cytotoxicity in earthworms exposed to contaminated soil. The usefulness of the comet assay and flow cytometry, to evaluate the toxicity of contaminants such as metals and radionuclides in earthworms are herein reported. We also demonstrated that DNA strand breakage and immune cells frequency are important endpoints to be employed in the earthworm reproduction assay, for the evaluation of soil geno and cytotoxicity, as part of the risk assessment of contaminated areas. This is the first study that integrates DNA damage and cytotoxicity evaluation, growth and bioaccumulation of metals and radionuclides in a sub lethal assay, for earthworms exposed to soil contaminated with metals and radionuclides.

  19. Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides

    International Nuclear Information System (INIS)

    Lourenco, Joana I.; Pereira, Ruth O.; Silva, Ana C.; Morgado, Jose M.; Carvalho, Fernando P.; Oliveira, Joao M.; Malta, Margarida P.; Paiva, Artur A.; Mendo, Sonia A.; Goncalves, Fernando J.

    2011-01-01

    Eisenia andrei was exposed, for 56 days, to a contaminated soil from an abandoned uranium mine and to the natural reference soil LUFA 2.2. The organisms were sampled after 0, 1, 2, 7, 14 and 56 days of exposure, to assess metals bioaccumulation, coelomocytes DNA integrity and cytotoxicity. Radionuclides bioaccumulation and growth were also determined at 0 h, 14 and 56 days of exposure. Results have shown the bioaccumulation of metals and radionuclides, as well as, growth reduction, DNA damages and cytotoxicity in earthworms exposed to contaminated soil. The usefulness of the comet assay and flow cytometry, to evaluate the toxicity of contaminants such as metals and radionuclides in earthworms are herein reported. We also demonstrated that DNA strand breakage and immune cells frequency are important endpoints to be employed in the earthworm reproduction assay, for the evaluation of soil geno and cytotoxicity, as part of the risk assessment of contaminated areas. This is the first study that integrates DNA damage and cytotoxicity evaluation, growth and bioaccumulation of metals and radionuclides in a sub lethal assay, for earthworms exposed to soil contaminated with metals and radionuclides.

  20. Activity and functional diversity of microbial communities in long-term hydrocarbon and heavy metal contaminated soils

    Directory of Open Access Journals (Sweden)

    Markowicz Anna

    2016-12-01

    Full Text Available The impacts of long-term polycyclic aromatic hydrocarbons (PAHs and heavy metal pollution on soil microbial communities functioning were studied in soils taken from an old coke plant. The concentrations of PAHs in the tested soils ranged from 171 to 2137 mg kg-1. From the group of tested heavy metals, concentrations of lead were found to be the highest, ranging from 57 to 3478 mg kg-1, while zinc concentrations varied from 247 to 704 mg kg-1 and nickel from 10 to 666 mg kg-1. High dehydrogenase, acid and alkaline phosphatase activities were observed in the most contaminated soil. This may indicate bacterial adaptation to long-term heavy metal and hydrocarbon contamination. However, the Community Level Physiological Profiles (CLPPs analysis showed that the microbial functional diversity was reduced and influenced to a higher extent by some metals (Pb, Ni, moisture and conductivity than by PAHs.

  1. Assessment of Heavy Metals Contamination in Reclaimed Mine Soil and their Accumulation and Distribution in Eucalyptus Hybrid.

    Science.gov (United States)

    Maiti, Subodh Kumar; Rana, Vivek

    2017-01-01

    The metal contamination in reclaimed mine soil (RMS) of Jharia coal field, Dhanbad (India) using various contamination indices and their accumulation in tissues of Eucalyptus hybrid were assessed. In RMS, metal concentrations were found higher (202%-533%) than control soil (CS) with major contribution of Co and Mn followed by Zn, Cu and Pb. Principal component analysis (PCA) of metals present in RMS was carried out to assess their origin in RMS. The contamination factor (CF) values in RMS indicated moderate to very high level of pollution (ranged between 2.02 and 5.33). Higher accumulation of Pb in barks (three times), Zn in leaves (4.5 times), Mn in leaves (19 times), and Cu in roots (1.4 times) was found in trees growing on RMS than CS. The study concluded that different tree tissues accumulate varied concentration of heavy metals in RMS and thus for biomonitoring of metals, specific tissues has to be selected.

  2. Comparison of soil solution sampling techniques to assess metal fluxes from contaminated soil to groundwater.

    Science.gov (United States)

    Coutelot, F; Sappin-Didier, V; Keller, C; Atteia, O

    2014-12-01

    The unsaturated zone plays a major role in elemental fluxes in terrestrial ecosystems. A representative chemical analysis of soil pore water is required for the interpretation of soil chemical phenomena and particularly to assess Trace Elements (TEs) mobility. This requires an optimal sampling system to avoid modification of the extracted soil water chemistry and allow for an accurate estimation of solute fluxes. In this paper, the chemical composition of soil solutions sampled by Rhizon® samplers connected to a standard syringe was compared to two other types of suction probes (Rhizon® + vacuum tube and Rhizon® + diverted flow system). We investigated the effects of different vacuum application procedures on concentrations of spiked elements (Cr, As, Zn) mixed as powder into the first 20 cm of 100-cm columns and non-spiked elements (Ca, Na, Mg) concentrations in two types of columns (SiO2 sand and a mixture of kaolinite + SiO2 sand substrates). Rhizon® was installed at different depths. The metals concentrations showed that (i) in sand, peak concentrations cannot be correctly sampled, thus the flux cannot be estimated, and the errors can easily reach a factor 2; (ii) in sand + clay columns, peak concentrations were larger, indicating that they could be sampled but, due to sorption on clay, it was not possible to compare fluxes at different depths. The different samplers tested were not able to reflect the elemental flux to groundwater and, although the Rhizon® + syringe device was more accurate, the best solution remains to be the use of a lysimeter, whose bottom is kept continuously at a suction close to the one existing in the soil.

  3. Phytoextraction with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils

    International Nuclear Information System (INIS)

    Grispen, Veerle M.J.; Nelissen, Hans J.M.; Verkleij, Jos A.C.

    2006-01-01

    Phytoextraction is a promising tool to extract metals from contaminated soils and Brassica napus L. seems to be a possible candidate species for this purpose. To select accessions with the ability to accumulate cadmium, hydroponically grown 21 day old seedlings of 77 B. napus L. accessions were exposed to 0.2 μM CdSO 4 for an additional 10 days. The effects of Cd on several parameters were quantified i.e.; shoot Cd concentration ([Cd] shoot ), total amount of Cd in shoots (Total Cd) and the shoot to root Cd concentration ratio (S/R ratio). Though generally natural variation was low for [Cd] shoot , Total Cd and S/R ratio, a number of accessions could be selected. Our results indicated that Total Cd and S/R ratio are independent parameters for Cd accumulation and translocation. The selected varieties were then tested in field experiments on two locations nearby metal smelters. The two locations differed in extractable soil Cd, Zn, Ca concentration and pH levels. On both locations B. napus L. accessions showed significant differences in [Cd] shoot and Total Cd. Furthermore we found significant correlations between Cd and Zn accumulation in shoots. There were site-specific effects with respect to Cd accumulation in the B. napus L. accessions, however, two accessions seem to perform equally well on both sites. The results of the field experiment suggest that certain B. napus L. accessions are suitable for phytoextraction of moderately heavy metal contaminated soils. - A screening for natural variation in Cd accumulated by 77 Brassica napus L. yielded candidate phytoextraction accessions for agricultural practice

  4. Phytoextraction with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Grispen, Veerle M.J. [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands); Nelissen, Hans J.M. [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands); Verkleij, Jos A.C. [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands)]. E-mail: jos.verkleij@falw.vu.nl

    2006-11-15

    Phytoextraction is a promising tool to extract metals from contaminated soils and Brassica napus L. seems to be a possible candidate species for this purpose. To select accessions with the ability to accumulate cadmium, hydroponically grown 21 day old seedlings of 77 B. napus L. accessions were exposed to 0.2 {mu}M CdSO{sub 4} for an additional 10 days. The effects of Cd on several parameters were quantified i.e.; shoot Cd concentration ([Cd]{sub shoot}), total amount of Cd in shoots (Total Cd) and the shoot to root Cd concentration ratio (S/R ratio). Though generally natural variation was low for [Cd]{sub shoot}, Total Cd and S/R ratio, a number of accessions could be selected. Our results indicated that Total Cd and S/R ratio are independent parameters for Cd accumulation and translocation. The selected varieties were then tested in field experiments on two locations nearby metal smelters. The two locations differed in extractable soil Cd, Zn, Ca concentration and pH levels. On both locations B. napus L. accessions showed significant differences in [Cd]{sub shoot} and Total Cd. Furthermore we found significant correlations between Cd and Zn accumulation in shoots. There were site-specific effects with respect to Cd accumulation in the B. napus L. accessions, however, two accessions seem to perform equally well on both sites. The results of the field experiment suggest that certain B. napus L. accessions are suitable for phytoextraction of moderately heavy metal contaminated soils. - A screening for natural variation in Cd accumulated by 77 Brassica napus L. yielded candidate phytoextraction accessions for agricultural practice.

  5. Leachability and heavy metal speciation of 17-year old stabilised/solidified contaminated site soils

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei, E-mail: fwtiffany@gmail.com [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Wang, Hailing, E-mail: wanghailing@njtech.edu.cn [College of Environment, Nanjing Tech University, Nanjing 210009 (China); Al-Tabbaa, Abir, E-mail: aa22@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2014-08-15

    Highlights: • The effectiveness of the cement-based S/S at 17 years in West Drayton site is still satisfactory. • Major leaching of Cu, Zn, Ni, Cd and Pb in all mixes took place in the Fe/Mn oxides phase. • The hydration process has been fully completed and further carbonation took place at 17 years. • Microstructure analyses show that unreacted PFA exists. - Abstract: The long-term leachability, heavy metal speciation transformation and binding mechanisms in a field stabilised/solidified contaminated soil (made ground) from West Drayton site were recently investigated following in situ auger mixing treatment with a number of cement-based binders back in 1996. Two batch leaching tests (TCLP and BS EN 12457) and a modified five step sequential extraction procedure along with X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were employed for the testing of the 17-year-old field soil. The results of batch leaching tests show that the treatment employed remained effective at 17 years of service time, with all BS EN 12457 test samples and most of TCLP test samples satisfied drinking water standards. Sequential extraction results illustrate that the leaching of Cu, Ni, Zn, Pb and Cd in all mixes mainly occurred at the Fe/Mn phase, ranging from 43% to 83%. Amongst the five metals tested, Ni was the most stable with around 40% remained in the residual phase for all the different cement-based binder stabilised/solidified samples. XRD and SEM analyses show that the hydration process has been fully completed and further carbonation took place. In summary, this study confirms that such cement-based stabilisation/solidification (S/S) treatment can achieve satisfactory durability and thus is a reliable technique for long-term remediation of heavy metal contaminated soil.

  6. Effect of Bioremediation on Growth of Wheat Plant Cultivated In Contaminated Soil with Heavy Metals

    International Nuclear Information System (INIS)

    Abdel-Azis, O.A.; El-Ghandour, I.A.; Galal, Y.G.M.; El-Sheikh, H.H.

    2008-01-01

    Pot experiment was carried out under greenhouse conditions to evaluate the impact of BYFA (bacterial, fungal, yeast, and actinomycetes isolates), and bio fertilizers (mycorrhizas and N 2 fixers) in remedy the heavy metals -polluted soil and its effect on wheat growth. Basal recommended doses of P and N were applied; the treatments were arranged in completely randomized block design. The results showed a positive effect on growth and N uptake by wheat cultivated in polluted soil with (Zn, Cu, Pb, Co, Ni and Cd). The data cleared that, the lowest content of Pb in the soil was occurred with composite inoculants plus BFYA (274.57μ g/gm) as compared to the other treatments. Reduction in zinc content in soil was recorded with control + BFYA (272.0 μg/g) compared to other one. Similarly, inoculation with (Azo) + (BFYA) induced a reduction in Cu content in soil, Data of 15 N revealed that both the mechanisms of BNF have been occurred. In this respect, it is worthy to mention that, symbiotic bacteria has a considerable role with such cereal crop via BNF or enhancement of plant growth, The inoculation with Rh + AM resulted in the highest percentage of N uptake from fertilizer (29%), followed by AM, then Azo (23.9%, 22.7%, respectively) without BFYA. Another picture was noticed with BFYA whereas the best percentage was recorded with Azospirillum (19.3 %). This treatment is the only one that increased the portion of N derived from fertilizer over those recorded with the control (11.13%). BFYA have the ability to reduce the content of heavy metal in both the contaminated soil and wheat plant. Similar function was detected with bio fertilizers, besides to their effects on enhancement of plant growth via plant growth promotion substances and BNF mechanisms

  7. Extraction of heavy metals from contaminated soils using EDTA and HCl

    Directory of Open Access Journals (Sweden)

    Hatem Asel Gzar

    2015-01-01

    Full Text Available The present study examines the extraction of lead (Pb, cadmium (Cd and nickel (Ni from a contaminated soil by washing process. Ethylenediaminetetraacetic acid disodium salt (Na2EDTA and hydrochloric acid (HCl solution were used as extractants. Soil washing is one of the most suitable in-situ/ ex-situ remediation method in removing heavy metals. Soil was artificially contaminated with 500 mg/kg (Pb , Cd and Ni . A set of batch experiments were carried out at different conditions of extractant concentration , contact time, pH and agitation speed. The results showed that the maximum removal efficiencies of (Cd, Pb and Ni were (97, 88 and 24 % respectively using ( 0.1 M Na2EDTA. While the maximum removal efficiencies using (1M HCl were (98, 94 and 55% respectively. The experimental data of batch extraction were applied in four kinetic models; first order, parabolic diffusion, two constant and Elovich model. The parabolic diffusion was the most fitted to the experimental data.

  8. Heavy-metal contamination of soils in Saxony/Germany by foundry fumes and low-cost rapid analyses of contaminated soils by XRF

    Science.gov (United States)

    Mucke, D.

    2012-04-01

    Heavy-metal contamination of soils in Saxony/Germany by foundry fumes and low-cost rapid analysis of contaminated soils by XRF Dieter Mucke, Rolf Kumann, Sebastian Baldauf GEOMONTAN Gesellschaft für Geologie und Bergbau mbH&Co.KG, Muldentalstrasse 56, 09603 Rothenfurth, Saxony/Germany For hundreds of years in the Ore Mountains between Bohemia and Saxony silver and other ores are produced and smelted. Sulphide- and sulpharsenide-ores needed to be roasted first. In doing so the sulphide sulphur was oxidised under formation of sulphur dioxide SO2 and arsenide conversed into elemental arsenic and arsenide trioxide As2O3 respectively. Also the metals lead, cadmium and zinc are components of hut smokes, in the field of nickel foundries also nickel. The contents of soils basically reflect the geogenic conditions, which are caused by decomposition- and relocation-effects of the mineralisations, in the area of foundries also with influences by with the hut smokes anthropogenic mobilised elements. The Saxonian Agency for Environment and Geology drafted in 1992 a Soil Investigation Program with the aim of investigation of the contamination of Saxonian soils with arsenic and toxic heavy metals. In order of this Agency GEOMONTAN investigated 1164 measuring points in the grid 4 * 4 km.soil profiles and extracted soil samples for analysis. In the result of the laboratory examinations the Agency edited the "Soil atlas of the Free State of Saxony". 27 elements, pH and PAK are shown in detailed maps and allow in whole Saxony the first assessment of the contamination of soils with arsenic and toxic heavy metals. Each of the investigated soil profiles represent an area of 16 km2. Already by the different use of the districts (agricultural, industrial, urban) restricts representative values. GEOMONTAN in the meantime used at the exploration of a copper deposit in Brandenburg/Germany with approx. 50,000 single tests at drill cores a very fast low-cost method: the X Ray fluorescence

  9. VegeSafe: A community science program measuring soil-metal contamination, evaluating risk and providing advice for safe gardening.

    Science.gov (United States)

    Rouillon, Marek; Harvey, Paul J; Kristensen, Louise J; George, Steven G; Taylor, Mark P

    2017-03-01

    The extent of metal contamination in Sydney residential garden soils was evaluated using data collected during a three-year Macquarie University community science program called VegeSafe. Despite knowledge of industrial and urban contamination amongst scientists, the general public remains under-informed about the potential risks of exposure from legacy contaminants in their home garden environment. The community was offered free soil metal screening, allowing access to soil samples for research purposes. Participants followed specific soil sampling instructions and posted samples to the University for analysis with a field portable X-ray Fluorescence (pXRF) spectrometer. Over the three-year study period, >5200 soil samples, primarily from vegetable gardens, were collected from >1200 Australian homes. As anticipated, the primary soil metal of concern was lead; mean concentrations were 413 mg/kg (front yard), 707 mg/kg (drip line), 226 mg/kg (back yard) and 301 mg/kg (vegetable garden). The Australian soil lead guideline of 300 mg/kg for residential gardens was exceeded at 40% of Sydney homes, while concentrations >1000 mg/kg were identified at 15% of homes. The incidence of highest soil lead contamination was greatest in the inner city area with concentrations declining towards background values of 20-30 mg/kg at 30-40 km distance from the city. Community engagement with VegeSafe participants has resulted in useful outcomes: dissemination of knowledge related to contamination legacies and health risks; owners building raised beds containing uncontaminated soil and in numerous cases, owners replacing all of their contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals

    Directory of Open Access Journals (Sweden)

    Izabel de Oliveira da Mota

    2015-04-01

    Full Text Available Electroflotation method (EFM for treatment of synthetic solutions simulating wastewater from washing soil contaminated by drilling fluids from oil wells was investigated in this paper. Experiments were carried out to examine the effects of the operating conditions on the removal of lead, barium and zinc from solutions containing 15 mg dm−3 for each metal representing a typical concentration of wastewater generated in the washing soil in this treatment. The experimental results showed that it is possible to remove these heavy metals by electrocoagulation/electroflotation (ECF attaining 97% of removal using stainless steel mesh electrodes with a power consumption of 14 kWh m−3. The optimal conditions of treatment were sodium dodecyl sulfate (SDS in a molar ratio 3:1, current density around 350 A m−2, ionic strength 3.2 × 10−3 M, pH = 10.0 and 20 min of ECF. This study newly indicated that the proposed method is adequate to simultaneously treat the common heavy metals found in the drilling fluids oil wells.

  11. The Effect of Heavy Metal Contaminated Soil on Growth and Development of Perennial Grasses

    Directory of Open Access Journals (Sweden)

    Żurek G.

    2013-04-01

    Full Text Available Contamination of agricultural land in Poland by heavy metals is not a general problem but is limited to industrial areas. In regions of long history of industrial emission, of elevated levels of lead, cadmium, zinc and other ions during coal and ore mining and processing, as for example in Silesia, about 10 % of agricultural land may be characterized by exceeded maximum residue limits for Cd, Pb, Cu, Ni and Zn ions. Since the maintenance of agricultural areas in those regions is important from an ecological standpoint, the alternative farming activities are needed. Perennial grass biomass production for energy purposes is currently the best solution for majority of agricultural areas not suitable for food production in Poland. Along with increasing knowledge on separation and utilization of heavy metals (HM during and after biomass processing, phytoremediation of polluted soils will become important and valuable. To detect the effect of soil HM ions concentration on growth and development of selected, tall growing and high biomass yielding perennial grass cultivars, the chlorophyll fluorescence parameters were registered. The elevated content of Pb, Cd and Zn ions in soil influenced on decrease of: minimal (Fo, maximal (Fm and variable (Fv fluorescence level as well as on total complementary area on a diagram of chlorophyll a fluorescence induction curve (Area. Based on detected parameters it was concluded, that the high level of HM ions in soils negatively affected the efficiency of photosynthesis. Therefore, plant growth, as well as development of generative shoots and finally the biomass yield were reduced in some cultivars. Among tested cultivars different reaction for HM ions in polluted soil were noted: from only slightly modified parameters of photosynthesis and unreduced yield (Elytrigia elongata cv. Bamar and Arrhenatherum elatius cv. Wiwena to significantly reduced Fo, Fv, Fm and biomass yield (Bromus carinathus cv. Broma and Bromus

  12. Evaluation of biochars from different stock materials as carriers of bacterial strain for remediation of heavy metal-contaminated soil

    OpenAIRE

    Wang, Ting; Sun, Hongwen; Ren, Xinhao; Li, Bing; Mao, Hongjun

    2017-01-01

    Two kinds of biochars, one derived from corn straw and one from pig manure, were studied as carriers of a mutant genotype from Bacillus subtilis (B38) for heavy metal contaminated soil remediation. After amendment with biochar, the heavy metal bioavailability decreased. Moreover, the heavy metal immobilization ability of the biochar was enhanced by combining it with B38. The simultaneous application of B38 and pig manure-derived biochar exhibited a superior effect on the promotion of plant gr...

  13. Isolation and characterization of a biosurfactant-producing heavy metal resistant Rahnella sp. RM isolated from chromium-contaminated soil

    OpenAIRE

    GOVARTHANAN, Muthusamy; MYTHILI, R.; SELVANKUMAR, Thangasamy; KAMALA-KANNAN, S.; CHOI, DuBok; CHANG, Young-Cheol

    2017-01-01

    Objective of the study was to isolate heavy metal resistant bacteria from chromium-contaminated subsurface soil and investigate biosurfactant production and heavy metal bioremediation. Based on 16S rRNA gene sequence and phylogenetic analysis, the isolate was identified as Rahnella sp. RM. The biosurfactant production by heavy metal resistant Rahnella sp. RM was optimized using Box- Behnken design (BBD). The maximum emulsification activity was obtained 66% at 6% soybean meal in pH 7.0 and 33....

  14. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam.

    Science.gov (United States)

    Nguyen Van, Thinh; Ozaki, Akinori; Nguyen Tho, Hoang; Nguyen Duc, Anh; Tran Thi, Yen; Kurosawa, Kiyoshi

    2016-11-05

    Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As), chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg -1 . Manganese and iron concentrations averaged 811 µg·g -1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  15. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Thinh Nguyen Van

    2016-11-01

    Full Text Available Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As, chromium (Cr, cadmium (Cd, copper (Cu, lead (Pb, and zinc (Zn concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg−1. Manganese and iron concentrations averaged 811 µg·g−1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  16. Aging and temperature effects on DOC and elemental release from a metal contaminated soil

    International Nuclear Information System (INIS)

    Martinez, C.E.; Jacobson, A.R.; McBride, M.B.

    2003-01-01

    Increased aging and temperatures may affect DOC element complexes and their release. - The combined effect of time and temperature on elemental release and speciation from a metal contaminated soil (Master Old Site, MOS) was investigated. The soil was equilibrated at 10, 28, 45, 70 and 90 deg. C for 2 days, 2 weeks, and 2 months in the laboratory. Dissolved organic carbon (DOC), total soluble elements (by ICP), and labile metals (by DPASV) were determined in the filtered (0.22 μm) supernatants. For the samples equilibrated at 90 deg. C, DOC fractions were size fractionated by filtration and centrifugation; a subsample was only centrifuged while another was also filtered through a 0.45 μm filter. Analyses of the supernatants (ICP, DPASV, DOC) were performed on all size fraction subsamples. Dissolved organic carbon (DOC) increased both with temperature and incubation time; however, metal behavior was not as uniform. In general, total soluble metal release (ICP) paralleled the behavior of DOC, increasing with both time and temperature, and confirming the importance of soil organic matter (SOM) in metal retention. Voltammetric analysis (dpasv) of Cu and Zn showed that very little of these metals remains labile in solution due, presumably, to complexation with dissolved organic matter. Labile concentrations of Cd, on the other hand, constituted a significant portion (50%) of total soluble Cd. Copper and Al increased in solution with time (up to 2 months) and temperature up to 70 deg. C; however, at 90 deg. C the soluble concentration declined sharply. The same behavior was observed after equilibration for longer periods of time (550 days) at lower temperatures (23 and 70 deg. C). While concentrations of labile Cu and total soluble Cu and Al increased in the unfiltered samples, the trend remained the same. DPASV analysis showing shifts in labile Cu complexes with temperature and time, together with the results from the unfiltered samples, lead to the hypothesis that Cu

  17. Monitoring of Soil Contamination by Heavy Metals in the Impact Zone of Copper-Nickel Smelter on the Kola Peninsula

    Science.gov (United States)

    Kashulina, G. M.

    2018-04-01

    The results of landscape monitoring of the concentrations of acid-extractable Ni, Cu, Co, Mn, and Zn in soils of the local impact zone of the Severonikel industrial complex on the Kola Peninsula are discussed. The aim of monitoring studies was to reveal the spatial and temporal regularities of variation in the degree of soil contamination by heavy metals. In 2001-2011, the concentrations of acid-extractable compounds of the elements in the upper part of organic soil horizons around this plant exceeded their background concentrations by two orders of magnitude for Cu and Co and by three orders of magnitude for Ni. The degree of topsoil contamination with Ni, Cu, and Co generally corresponded to the distance of the plots from the contamination source and to the modern technogenic load. However, because of the long period of the emissions, their extreme amounts, and complex composition, indirect factors—the degree of technogenic soil degradation, the loss of soil organic matter, saturation of the surface soil layers by the contaminating metals, and competitive relationships between the elements—also affect soil contamination level. The concentrations of all the studied metals in the topsoil are characterized by considerable (1.5 to 7 times) variability in their long-term dynamics. The most important factors of this variability for Ni, Cu, and Co are the organic matter content of the samples and the amount of atmospheric precipitation in the year preceding the sampling. An inverse relationship between element concentrations in the soils and the amount of atmospheric precipitation attests to the dynamic nature and reversible character of the accumulation of heavy metals in the soils.

  18. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China

    International Nuclear Information System (INIS)

    Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G.

    2008-01-01

    Consumption of food crops contaminated with heavy metals is a major food chain route for human exposure. We studied the health risks of heavy metals in contaminated food crops irrigated with wastewater. Results indicate that there is a substantial buildup of heavy metals in wastewater-irrigated soils, collected from Beijing, China. Heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher (P ≤ 0.001) than in plants grown in the reference soil, and exceeded the permissible limits set by the State Environmental Protection Administration (SEPA) in China and the World Health Organization (WHO). Furthermore, this study highlights that both adults and children consuming food crops grown in wastewater-irrigated soils ingest significant amount of the metals studied. However, health risk index values of less than 1 indicate a relative absence of health risks associated with the ingestion of contaminated vegetables. - Long-term wastewater irrigation leads to buildup of heavy metals in soils and food crops

  19. Phytoremediation potential of wild plants growing on soil contaminated with heavy metals.

    Science.gov (United States)

    Čudić, Vladica; Stojiljković, Dragoslava; Jovović, Aleksandar

    2016-09-01

    Phytoremediation is an emerging technology that employs higher plants to cleanup contaminated environments, including metal-polluted soils. Because it produces a biomass rich in extracted toxic metals, further treatment of this biomass is necessary. The aim of our study was to assess the five-year potential of the following native wild plants to produce biomass and remove heavy metals from a polluted site: poplar (Populus ssp.), ailanthus (Ailanthus glandulosa L.), false acacia (Robinia pseudoacacia L.), ragweed (Artemisia artemisiifolia L.), and mullein (Verbascum thapsus L). Average soil contamination with Pb, Cd, Zn, Cu, Ni, Cr, and As in the root zone was 22,948.6 mg kg-1, 865.4 mg kg-1, 85,301.7 mg kg-1, 3,193.3 mg kg-1, 50.7 mg kg-1, 41.7 mg kg-1,and 617.9 mg kg-1, respectively. We measured moisture and ash content, concentrations of Pb, Cd, Zn, Cu, Ni, Cr, and As in the above-ground parts of the plants and in ash produced by combustion of the plants, plus gross calorific values. The plants' phytoextraction and phytostabilisation potential was evaluated based on their bioconcentration factor (BCF) and translocation factor (TF). Mullein was identified as a hyperaccumulator for Cd. It also showed a higher gross calorific value (19,735 kJ kg-1) than ragweed (16,469 kJ kg-1).The results of this study suggest that mullein has a great potential for phytoextraction and for biomass generation, and that ragweed could be an effective tool of phytostabilisation.

  20. Heavy metal accumulation in earthworms exposed to spatially variable soil contamination

    NARCIS (Netherlands)

    Marinussen, M.

    1997-01-01

    Ecotoxicity of contaminated soil is commonly tested in standard laboratory tests. Extrapolation of these data to the field scale is complicated due to considerable differences between conditions in laboratory tests and conditions in situ in contaminated soils. In this

  1. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China

    International Nuclear Information System (INIS)

    Zhao, Huarong; Xia, Beicheng; Fan, Chen; Zhao, Peng; Shen, Shili

    2012-01-01

    Soil heavy metal contamination is a major environmental concern, and the ecological risk associated with heavy metals is increasing. In this paper, we investigated heavy metal contamination near Dabaoshan Mine by: using sequential indicator simulation to delineate the spatial patterns of soil data; fitting multiple linear regression models for heavy metal uptake by crops; interpreting land uses from remote sensing images and integrating the spatial patterns, uptake models and land uses into a dose–response model for human health risks from heavy metals. The areas with elevated soil heavy metal concentrations are mainly located at the Dabaoshan Mine site and in the watershed basins of the Hengshi, Tielong and Chuandu rivers. The average concentrations of Cu, Zn, Cd and Pb in soil in the study area are all above the natural soil background levels, but Cd is the major contributor to human health risk in the area. Areas of low soil pH are also found throughout the watershed basins of the Hengshi, Tielong and Chuandu rivers. Of the different land use types in the study area, agricultural and residential land uses have the highest human health risk because ingestion is the dominant exposure pathway for heavy metals. The spatial patterns of the heavy metal concentrations and soil pH indicate that the areas with the highest human health risk regions do not directly coincide with the areas of highest heavy metal concentrations, but do coincide with the areas of lower soil pH. The contamination with high concentrations of heavy metals provides the risk source, but the combination of high heavy metal concentrations, low pH and agricultural or residential land use is required for human health risks to be present. The spatial pattern of the hazard quotients indicates that Cd is the most important pollutant contributing to the human health risk. - Highlights: ►The distribution of Cu, Zn, Cd, Pb and pH in soil were analyzed near Dabaoshan Mine. ►Heavy metal uptake models in

  2. Is there a relationship between earthworm energy reserves and metal availability after exposure to field-contaminated soils?

    International Nuclear Information System (INIS)

    Beaumelle, Léa; Lamy, Isabelle; Cheviron, Nathalie; Hedde, Mickaël

    2014-01-01

    Generic biomarkers are needed to assess environmental risks in metal polluted soils. We assessed the strength of the relationship between earthworm energy reserves and metal availability under conditions of cocktail of metals at low doses and large range of soil parameters. Aporrectodea caliginosa was exposed in laboratory to a panel of soils differing in Cd, Pb and Zn total and available (CaCl 2 and EDTA-extractable) concentrations, and in soil texture, pH, CEC and organic-C. Glycogen, protein and lipid contents were recorded in exposed worms. Glycogen contents were not linked to the explaining variables considered. Variable selection identified CaCl 2 extractable metals concentrations and soil texture as the main factors affecting protein and lipid contents. The results showed opposite effects of Pb and Zn, high inter-individual variability of biomarkers and weak relationships with easily extractable metals. Our results support the lack of genericity of energy reserves in earthworms exposed to field-contaminated soils. - Highlights: • Energy reserves were quantified in earthworms exposed to a wide panel of field soils. • Protein and lipid contents were related to CaCl 2 extractable metals. • Soil texture affected protein and lipid contents. • Energy reserves were highly variable inter-individually. - Earthworm energy reserves response to low doses of available metals is not generic

  3. Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) F.K. Mey in field-contaminated soils.

    Science.gov (United States)

    Rosenfeld, Carla E; Chaney, Rufus L; Martínez, Carmen E

    2018-03-01

    Cadmium contamination in soil is a substantial global problem, and of significant concern due to high food-chain transfer. Cadmium hyperaccumulators are of particular interest because of their ability to tolerate and take up significant amounts of heavy metal pollution from soils. One particular plant, Noccaea caerulescens (formerly, Thlaspi caerulescens), has been extensively studied in terms of its capacity to accumulate heavy metals (specifically Zn and Cd), though these studies have primarily utilized hydroponic and metal-spiked model soil systems. We studied Cd and nutrient uptake by two N. caerulescens ecotypes, Prayon (Zn-only hyperaccumulator) and Ganges (Zn- and Cd-hyperaccumulator) in four long-term field-contaminated soils. Our data suggest that individual soil properties such as total soil Cd, Zn:Cd molar ratio, or soil pH do not accurately predict Cd uptake by hyperaccumulating plants. Additionally, total Cd uptake by the hyperaccumulating Ganges ecotype was substantially less than its physiological capacity, which is likely due to Cd-containing solid phases (primarily iron oxides) and pH that play an important role in regulating and limiting Cd solubility. Increased P accumulation in the Ganges leaves, and greater plant Fe accumulation from Cd-containing soils suggests that rhizosphere alterations via proton, and potentially organic acid, secretion may also play a role in nutrient and Cd acquisition by the plant roots. The current study highlights the role that soil geochemical factors play in influencing Cd uptake by hyperaccumulating plants. While these plants may have high physiological potential to accumulate metals from contaminated soils, individual soil geochemical factors and the plant-soil interactions in that soil will dictate the actual amount of phytoextractable metal. This underlines the need for site-specific understanding of metal-containing solid phases and geochemical properties of soils before undertaking phytoextraction efforts

  4. CONTENT OF SELECTED HEAVY METALS IN NI-CONTAMINATED SOIL FOLLOWING THE APPLICATION OF HALLOYSITE AND ZEOLITE

    Directory of Open Access Journals (Sweden)

    Maja Radziemska

    2016-07-01

    Full Text Available Nickel has been listed as a priory control pollutant by the United States Environmental Protection Agency (US EPA. Compared with other methods, the combination of vegetation and the addition of mineral sorbents to heavy metal-contaminated soils can be readily applied on a large scale because of the simplicity of technology and low cost. Halloysite and zeolite, among others, can be used for this purpose. A greenhouse study was performed to evaluate the feasibility of using natural zeolite, as well as raw and modified halloysite for the remediation of simulated Ni-contaminated soil. The soil was spiked with five doses of nickel, i.e. 0 (control, 80, 160, 240 and 320 mg Ni kg-1 soil. The average accumulation of heavy metals in nickel-contaminated soil was found to follow the decreasing order of Ni>Zn>Cr>Cu>Pb. The highest reduction of Pb content was observed in soil samples taken from pots containing 80 and 160 mg.kg-1 of Ni along with the addition of modified halloysite. The strongest effects were caused by natural zeolite, which significantly reduced the average content of chromium. Contamination at 320 mg Ni.kg-1 of soil led to the highest increases in the Ni, Pb and Cr contents of soil.

  5. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Komarek, Michael [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: komarek@af.czu.cz; Tlustos, Pavel [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: tlustos@af.czu.cz; Szakova, Jirina [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: szakova@af.czu.cz; Chrastny, Vladislav [Department of Applied Chemistry and Chemistry Teaching, University of South Bohemia, Studentska 13, 370 05, Ceske Budejovice (Czech Republic)], E-mail: vladislavchrastny@seznam.cz

    2008-01-15

    The efficiency of poplar (Populus nigra L. x Populus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH{sub 4}Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils. - Application of mobilizing agents is not optimal during a two-year phytoextraction of metals from severely contaminated soils using poplars.

  6. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils

    International Nuclear Information System (INIS)

    Komarek, Michael; Tlustos, Pavel; Szakova, Jirina; Chrastny, Vladislav

    2008-01-01

    The efficiency of poplar (Populus nigra L. x Populus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH 4 Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils. - Application of mobilizing agents is not optimal during a two-year phytoextraction of metals from severely contaminated soils using poplars

  7. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.

    Science.gov (United States)

    Lu, Mingmei; Jiao, Shuo; Gao, Enting; Song, Xiuyong; Li, Zhefei; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2017-10-15

    metal-contaminated soils. Considering the plant-growth-promoting traits and survival advantage of metal-resistant rhizobia in contaminated environments, more heavy metal-resistant rhizobia and genetically manipulated strains were investigated. In view of the genetic diversity of metal resistance determinants in rhizobia, their effects on phytoremediation by the rhizobium-legume symbiosis must be different and depend on their specific assigned functions. Our work provides a better understanding of the mechanism of heavy metal resistance determinants involved in the rhizobium-legume symbiosis, and in further studies, genetically modified rhizobia harboring effective heavy metal resistance determinants may be engineered for the practical application of rhizobium-legume symbiosis for bioremediation in metal-contaminated soils. Copyright © 2017 American Society for Microbiology.

  8. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: implications for phytoextraction and phytostabilization.

    Science.gov (United States)

    Hu, Yahu; Nan, Zhongren; Su, Jieqiong; Wang, Ning

    2013-10-01

    The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg(-1)), Cu (8.21 mg kg(-1)), Pb (41.62 mg kg(-1)), and Zn (696 mg kg(-1)) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg(-1), respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.

  9. [Heavy Metal Contamination in Farmland Soils at an E-waste Disassembling Site in Qingyuan, Guangdong, South China].

    Science.gov (United States)

    Zhang, Jin-lian; Ding, Jiang-feng; Lu, Gui-ning; Dang, Zhi; Yi, Xiao-yun

    2015-07-01

    Crude e-waste dismantling activities have caused a series of environmental pollution problems, and the pollutants released from the dismantling activities would finally pose high risks to human health by means of the accumulation through food chains. To explore the contamination status of heavy metals to the surrounding farmland soils in Longtang and Shijiao Town, Qingyuan, Guangdong, China, 22 farmland soil samples were collected and analyzed for the contents, spatial distributions and chemical forms of 6 heavy metals (Pb, Cu, Cd, Zn, Cr and Ni). The results showed that the 6 heavy metals exhibited obvious accumulations when compared to the corresponding background values in Guangdong Province. According to farmland environmental quality evaluation standard for edible agricultural products HJ 332-2006, the pollution severity of heavy metals was evaluated by monomial pollution index and Nemerow synthetic pollution index methods, the results indicated that 72. 7% of the soil samples contained one or more kinds of heavy metals with higher concentrations than the corresponding standard values, Cd, Cu, Pb and Zn were the main metals in the polluted soils, and for the proportion of contaminated soil samples in all the 22 samples, Cd was the highest, followed by Cu, and finally Pb and Zn. Nemerow synthetic pollution index further revealed that 68. 2% of soil samples were contaminated, and among them 53. 3% of samples were heavily contaminated. Most of the heavy metals were well correlated with each other at the 0. 05 or 0. 01 level, which indicated that primitive e-waste recycling activities were an important source of the heavy metal contamination in Longtang and Shijiao Town. The contents of Cd, Pb, Cu and Zn in surface soils were higher than those of other soil layers, and the contents of these 4 metals in deep soils (20- 100 cm) did not show significant decreases with the increasing depths. The contents of Cr and Ni maintained constant, and exhibited no statistical

  10. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process.

    Science.gov (United States)

    Liao, Xiaoyong; Li, You; Yan, Xiulan

    2016-03-01

    Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing. Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: 2mm. With increased contact time, the concentration of heavy metals in the leachate was significantly decreased for small particles, probably because of adsorption by the clay soil component. For the different particle sizes, the removal efficiencies for Pb and Cd were 75%-87%, and 61%-77% for Zn and Cu, although the extent of removal was decreased for As and Cr at 2mm, although good metal removal efficiencies were also achieved in the small particle size fractions. Through SEM-EDS observations and correlation analysis, the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe, Mn, and Ca contents of the soil fractions. The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient, and practical remediation parameters were also recommended. Copyright © 2015. Published by Elsevier B.V.

  11. Acid leaching of heavy metals from contaminated soil collected from Jeddah, Saudi Arabia: kinetic and thermodynamics studies

    Directory of Open Access Journals (Sweden)

    Shorouq I. Alghanmi

    2015-09-01

    Full Text Available Urban soils polluted with heavy metals are of increasing concern because it is greatly affecting human health and the ecological systems. Hence, it is mandatory to understand the reasons behind this pollution and remediate the contaminated solid. The removal of heavy metals from contaminated soil samples collected from the vicinity of the sewage lake in Jeddah, Saudi Arabia, was explored. The leaching process was studied kinetically and thermodynamically for better understanding of the remediation process. The results showed that the soil samples were slightly basic in nature, and tend to be more neutral away from the main contaminated sewage lake area. The total metal content in the soil samples was measured using the aqua regia extractions by ICP-OES and the results showed that many of the heavy metals present have significant concentrations above the tolerable limits. In general, the metal concentrations at different sites indicated that the heavy metal pollution is mainly due to the sewage discharge to the lake. The results showed excellent correlation between the concentrations of Co, As, and Hg with the distance from the main contaminated area. The leaching of Co, As, and Hg using 1.0 M hydrochloric acid from the soil was studied kinetically at different temperatures and the experimental results were fitted using different kinetics models. The experimental data were best described with two-constant rate and Elovich equation kinetic models. Also, the thermodynamic study showed that the leaching process was spontaneous, endothermic and accompanied with increase in the entropy. In general, the polluted soil could be remediated successfully from the heavy metals using the acid leaching procedure in a short period of time.

  12. Environmental risk of heavy metal pollution and contamination sources using multivariate analysis in the soils of Varanasi environs, India.

    Science.gov (United States)

    Singh, Shubhra; Raju, N Janardhana; Nazneen, Sadaf

    2015-06-01

    This study assessed soil pollution in the Varanasi environs of Uttar Pradesh in India. Assessing the concentration of potentially harmful heavy metals in the soils is imperative in order to evaluate the potential risks to human. To identify the concentration and sources of heavy metals and assess the soil environmental quality, 23 samples were collected from different locations covering dumping, road and agricultural area. The average concentrations of the heavy metals were all below the permissible limits according to soil quality guidelines except Cu (copper) and Pb (lead) in dumping and road soils. Soil heavy metal contamination was assessed on the basis of geoaccumulation index (Igeo), pollution index (PI) and integrated pollution index (IPI). The IPI of the metals ranged from 0.59 to 9.94, with the highest IPI observed in the dumping and road soils. A very significant correlation was found between Pb and Cu. The result of principal component analysis suggested that PC1 was mainly affected by the use of agrochemicals, PC2 was affected by vehicular emission and PC3 was affected by dumping waste. Meanwhile, PC4 was mainly controlled by parent material along with anthropogenic activities. Appropriate measures should be taken to minimize the heavy metal levels in soils and thus protect human health.

  13. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil.

    Science.gov (United States)

    Kim, Sung-Hyun; Lee, In-Sook

    2010-02-01

    Chelates have been shown to enhance the phytoextraction of metal from contaminated soil. In this study, we evaluated the ability of chelates to enhance the phytoextraction of metals by barnyard grass (Echinochloa crus-galli) from soils contaminated with multiple metals. The results revealed that EDTA increased the ability of barnyard grass to take up Cd, Cu and Pb, but that it resulted in increased soil leaching. Conversely, citric acid induced the removal of Cd, Cu and Pb from soil without increasing the risk of leaching. Furthermore, E.crus-galli showed no signs of phytotoxicity in response to treatment with citric acid, whereas its shoot growth decreased in response to treatment with EDTA (p acid is a good agent for the enhancement of the phytoextraction of metals.

  14. State of the Science Review: Potential for Beneficial Use of Waste By-Products for In-situ Remediation of Metal-Contaminated Soil and Sediment

    Science.gov (United States)

    Metal and metalloid contamination of soil and sediment is a widespread problem both in urban and rural areas throughout the United States (U.S. EPA, 2014). Beneficial use of waste by-products as amendments to remediate metal-contaminated soils and sediments can provide major eco...

  15. Application of humic compounds for remediation of soils contaminated with heavy metals: the benefits and risks

    Science.gov (United States)

    Motuzova, Galina; Barsova, Natalia; Stepanov, Andrey; Kiseleva, Violetta; Kolchanova, Ksenia; Starkova, Irina; Karpukhin, Mikhail

    2015-04-01

    found to contain only 3-9% of copper. The content of free Cu2+ ions in the sample extract was negligible. The samples used for field experiments were tested in laboratory to estimate their sorption capacity for Cu. For this purpose, 300 g of substrate (loam and mixed organic substrate) with addition of water (control) and humic preparation (same dose as in the field experiment) were kept in the laboratory for 1 week. Soil samples were then dried and brought into equilibrium with the solution of copper sulfate at concentration of 50 mg/l. The concentration of copper in the solution in equilibrium with HC was 2.5-4 times higher than in the control variant; absorption of copper by solid phase decreased by 5-6%. Results of the laboratory study were in good agreement with the results of the field experiment. Addition of HC increased the content of soluble organic matter and copper complexation by an order of magnitude and thus reduced the activity of copper ions in the liquid phase that was treated as a possible remediation effect of the humic compound for plants and biota. However the increased total metal content mainly in a migration-capable form (negatively charged complexes with organic matter) may increase the risk of contaminating ground waters with heavy metals. Therefore, application of the artificial humic compounds for remediation of soils contaminated with heavy metals requires monitoring and further development of means to prevent their migration.

  16. Heavy Metal Contamination in Urban Soils II Comparison of Urban Park Soils Between Two Cities with Different City and Industrial Activities

    OpenAIRE

    KOMAI, Yutaka

    1981-01-01

    A comparative investigation on the state of heavy metal contamination in park soils of two cities with different city and industrial activities was carried out. Sakai and Kishiwada, both situated in southern Osaka Prefecture, were chosen as the investigated cities which had similar natural conditions but different human activities. Park soils were regarded as suitable sites for the investigation of heavy metal problem in urban environments. Samples were taken at 34 parks distributed widely in...

  17. The use of vetiver for remediation of heavy metal soil contamination

    Energy Technology Data Exchange (ETDEWEB)

    Antiochia, Riccarda [Universita di Padova, Dipartimento di Scienze Chimiche, Padua (Italy); Campanella, Luigi; Ghezzi, Paola [Universita ' ' La Sapienza' ' , Dipartimento di Chimica, Rome (Italy); Movassaghi, K. [University of Isfahan, Department of Chemistry, Isfahan (Iran)

    2007-06-15

    The use of Vetiveria zizanioides (vetiver) was studied to evaluate its efficiency for the remediation of soils contaminated by heavy metals. Vetiver plants were tested for Cr, Cu, Pb and Zn. Phytoextraction and bioremediation experiments were carried out by irrigating the vetiver plants and the dry plants with solutions containing suitable amounts of Cr, Cu, Pd and Zn. The concentrations of the heavy metals were determined in both experiments in shoot and root parts of vetiver plants using inductively coupled plasma atomic emission spectroscopy after a mineralization step. Phytoextraction experiments showed a poor efficiency of vetiver for Cr and Cu uptake (both less than 0.1% in shoots and roots after 30 days), but a quite high capability of Pb and Zn uptake (0.4% in shoots and 1% in roots for Pb and 1% both in shoots and in roots for Zn, after 30 days). For these reasons the vetiver plant can be considered a quite good ''hyperaccumulator'' only for Pb and Zn. As for bioremediation experiments, the vetiver plant showed heavy metal uptake values significantly lower than those obtained with other biological substrates. (orig.)

  18. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals.

    Science.gov (United States)

    Cheraghi, M; Lorestani, B; Khorasani, N; Yousefi, N; Karami, M

    2011-12-01

    As a result of human activities such as mining, metal pollution has become one of the most serious environmental problems today. Phytoremediation, an emerging cost-effective, non-intrusive, and aesthetically pleasing technology that uses the remarkable ability of plants to concentrate elements can be potentially used to remediate metal-contaminated sites. The aim of this work was to assess the extent of metal accumulation by plants found in a mining area in Hamedan province with the ultimate goal of finding suitable plants for phytoextraction and phytostabilization (two processes of phytoremediation). To this purpose, shoots and roots of the 12 plant species and the associated soil samples were collected and analyzed by measurement of total concentrations of some elements (Fe, Mn, Zn, and Cu) using atomic absorption spectrophotometer and then biological absorption coefficient, bioconcentration factor, and translocation factor parameters calculated for each element. Our results showed that none of the plants were suitable for phytoextraction and phytostabilization of Fe, Zn, and Cu, while Chenopodium botrys, Stipa barbata, Cousinia bijarensis, Scariola orientalis, Chondrila juncea, and Verbascum speciosum, with a high biological absorption coefficient for Mn, were suitable for phytoextraction of Mn, and C. bijarensis, C. juncea, V. speciosum, S. orientalis, C. botrys, and S. barbata, with a high bioconcentration factor and low translocation factor for Mn, had the potential for the phytostabilization of this element.

  19. Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soils.

    Science.gov (United States)

    Yang, Zhihui; Shi, Wei; Yang, Weichun; Liang, Lifen; Yao, Wenbin; Chai, Liyuan; Gao, Shikang; Liao, Qi

    2018-09-01

    Combining bioleaching by the gross biosurfactants of Burkholderia sp. Z-90 and flocculation by poly aluminium chloride (PAC) was proposed to develop a potential environment-friendly and cost-effective technique to remediate the severely contaminated soils by heavy metals. The factors affecting soil bioleaching by the gross biosurfactants of Burkholderia sp. Z-90 were optimized. The results showed the optimal removing efficiencies of Zn, Pb, Mn, Cd, Cu, and As by the Burkholderia sp. Z-90 leachate were 44.0, 32.5, 52.2, 37.7, 24.1 and 31.6%, respectively at soil liquid ratio of 1:20 (w/v) for 5 d, which were more efficient than that by 0.1% of rhamnolipid. The amounts of the bioleached heavy metals by the Burkholderia sp. Z-90 leachate were higher than that by other biosurfactants in the previous studies, although the removal efficiencies of the metals by the leachate were relatively lower. It was suggested that more heavy metals caused more competitive to chelate with function groups of the gross biosurfactants and the metal removal efficiencies by biosurfactants in natural soils were lower than in the artificially contaminated soils. Moreover, the Burkholderia sp. Z-90 leachate facilitated the metals to be transformed to the easily migrating speciation fractions. Additional, the results showed that PAC was efficient in the following flocculation to remove heavy metals in the waste bio-leachates. Our study will provide support for developing a bioleaching technique model to remediate the soils extremely contaminated by heavy metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Purification of oil-contaminated soils from heavy metals using plants

    International Nuclear Information System (INIS)

    Zamanova, A.

    2014-01-01

    Full text : Purification of local areas of oil-contaminated soils with contamination degree of 5-8 percent using plant resistant to salinity and high temperature and rehabilitation of these soils is the most urgent task for Apsheron Peninsula which is the main territory of oil onshore in Azerbaijan. This method is environmentally compatible and economically viable against other methods. Despite the fact that in this area it has been carried out numerous scientific researches, for each level of contamination, for each specific soil type, for each specific climatic conditions and the group of plants requires more and more researches

  1. Uptake of heavy metals by Brachiaria Decumbens and its mutant as a remediation agent for soil contaminated with oil sludge

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Latiffah Noordin; Abdul Razak Ruslan; Hazlina Abdullah; Khairuddin Abdul Rahim

    2006-01-01

    The Malaysian petroleum industry produces thousands of tonnes of oil sludge per year. Oil sludge is the residue accumulated during processing of petroleum at petroleum processing plants. Besides soil, mud and sand, oil sludge is often rich in radioactive substances, heavy metals and other toxic materials from hydrocarbon group which could contaminate and environment. In the present study the pasture grass Brachiaria decumbens and its mutant B. decumbens Kluang Comel were evaluated on their effectiveness as remediation agents for contaminated soils. The contaminating agent tested was the oil sludge with its hydrocarbons vaporised, obtained from the Waste Management Centre, MINT. Amongst the indicators for an effective remediation agent is the ability to accumulate heavy metals in their tissues without affecting their growth. This trial was conducted at MINT glasshouse, whereby the test plants were planted in pots in soil added with vaporised oil sludge. Analysis of heavy metals was through Inductive Coupled Plasma Mass Spectrometry (ICPMS) and Neutron Activation Analysis (NAA). This paper discusses the accumulation of heavy metals by B. decumbens and its mutant Kluang Comel and their growth performance, hence assessing their suitability as remediation agent in soil contaminated with oil sludge. (Author)

  2. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Fátima M.S. Moreira

    2008-12-01

    Full Text Available This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles and genotypically (16S rDNA sequencing, as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22, some (1R, S34 and S22 were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L-1 NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.Objetivou-se avaliar a densidade de populações de bactérias diazotróficas associativas em amostras de solos e de raízes de gramíneas oriundas de sítios contaminados com metais pesados, e caracterizar isolados destas populações através da análise fenotípica (tolerância aos metais pesados zinco e cádmio e à NaCl in vitro, perfis protéicos, e genotípica (seqüenciamento de 16S rDNA, comparados às estirpes tipo das mesmas espécies. As densidades foram avaliadas nos meios NFb, Fam e LGI, comumente utilizados para culturas de enriquecimento de populações de bactérias diazotróficas associativas. As densidades

  3. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation

    OpenAIRE

    Wuana, Raymond A.; Okieimen, Felix E.

    2011-01-01

    Scattered literature is harnessed to critically review the possible sources, chemistry, potential biohazards and best available remedial strategies for a number of heavy metals (lead, chromium, arsenic, zinc, cadmium, copper, mercury and nickel) commonly found in contaminated soils. The principles, advantages and disadvantages of immobilization, soil washing and phytoremediation techniques which are frequently listed among the best demonstrated available technologies for cleaning up heavy met...

  4. Heavy Metal Contamination in Urban Soils I Zinc Accumulation Phenomenon in Urban Environments as Clues of Study

    OpenAIRE

    KOMAI, Yutaka

    1981-01-01

    As an introduction of the continuing study on the heavy metal contamination in urban soils, zinc accumulation phenomenon observed in urban areas in south Osaka was reported. The survey of zinc concentration in soybean leaves taken in urban and suburban arable lands indicated its accumulation in a wide area. And a correlation between easy soluble zinc level in soils and leaf zinc content were shown. Zinc concentrations in suspended particles in air, falling dust and some water samples were che...

  5. Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels.

    Science.gov (United States)

    Zheng, S; Wang, C; Shen, Z; Quan, Y; Liu, X

    2015-01-01

    This study presents an efficient heavy metal (HM) control method in HM-contaminated wetlands with varied soil moisture levels through the introduction of extrinsic arbuscular mycorrhizal fungi (AMF) into natural wetland soil containing indigenous AMF species. A pot culture experiment was designed to determine the effect of two soil water contents (5-8% and 25-30%), five extrinsic AMF inoculants (Glomus mosseae, G. clarum, G. claroideum, G. etunicatum, and G. intraradices), and HM contamination on root colonization, plant growth, and element uptake of common reed (Phragmites australis (Cav.) Trin. ex Steudel) plantlets in wetland soils. This study showed the prevalence of mycorrhizae in the roots of all P. australis plantlets, regardless of extrinsic AMF inoculations, varied soil moisture or HM levels. It seems that different extrinsic AMF inoculations effectively lowered HM concentrations in the aboveground tissues of P. australis at two soil moisture levels. However, metal species, metal concentrations, and soil moisture should also be very important factors influencing the elemental uptake performance of plants in wetland ecosystems. Besides, the soil moisture level significantly influenced plant growth (including height, and shoot and root dry weight (DW)), and extrinsic AMF inoculations differently affected shoot DW.

  6. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution.

    Science.gov (United States)

    Mazurek, Ryszard; Kowalska, Joanna; Gąsiorek, Michał; Zadrożny, Paweł; Józefowska, Agnieszka; Zaleski, Tomasz; Kępka, Wojciech; Tymczuk, Maryla; Orłowska, Kalina

    2017-02-01

    In most cases, in soils exposed to heavy metals accumulation, the highest content of heavy metals was noted in the surface layers of the soil profile. Accumulation of heavy metals may occur both as a result of natural processes as well as anthropogenic activities. The quality of the soil exposed to heavy metal contamination can be evaluated by indices of pollution. On the basis of determined heavy metals (Pb, Zn, Cu, Mn, Ni and Cr) in the soils of Roztocze National Park the following indices of pollution were calculated: Enrichment Factor (EF), Geoaccumulation Index (I geo ), Nemerow Pollution Index (PI Nemerow ) and Potential Ecological Risk (RI). Additionally, we introduced and calculated the Biogeochemical Index (BGI), which supports determination of the ability of the organic horizon to accumulate heavy metals. A tens of times higher content of Pb, Zn, Cu and Mn was found in the surface layers compared to their content in the parent material. This distribution of heavy metals in the studied soils was related to the influence of anthropogenic pollution (both local and distant sources of emission), as well as soil properties such as pH, organic carbon and total nitrogen content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. COMPARATIVE ANALYSIS OF APPROACHES TO ECOLOGICAL ASSESSMENT OF POLYELEMENT CONTAMINATION SOIL OF URBAN ECOSYSTEM BY HEAVY METALS

    Directory of Open Access Journals (Sweden)

    YAKOVYSHYNA T. F.

    2016-06-01

    Full Text Available Raising of problem. In modern conditions, anthropogenic impact to the soil urban ecosystems is fairly stable over time and space, is manifested in various forms, as the transformation of the soil profile, the change in direction of the soil-forming processes, contamination of the various pollutants, and, above all, heavy metals (HM – elements of the first class of the danger. Their sources of the income to the urban environment are industrial enterprises, transport, housing and communal services. Determination of the anthropogenic pressure to the urban soil is carried out by the environmental assessment of the HM polyelement contamination, which allows to establish not only the fact of pollution, but also limits of the possible load with considering regional background or sanitary standards – MPC. However, until now discussions arise regarding the index which will be carried out the valuation – the cornerstone of any methodological approach to the environmental assessment of the soil polyelement contamination by the HM of the urban ecosystems, which allows to establish not only the fact of contamination, but also limits the possible load, taking into account the regional background or sanitary norm – MPC. Purpose. Lies in the grounded selection of the environmental assessment indexes of the soil contamination by the HM of the urban ecosystems through a comparative analysis of the existing approaches, such as the determination of the summary contamination index (SCI, the index of the soil contamination (ISC, factor imbalance (Sd, taking into account environmental safety standards and binding to the specific conditions territory. Conclusion. In summary it should be noted that it is necessary to use a set of integrated indexes, including the SCI to determine the violation of the metals content with respect to the geochemical background of zonal soil, ISC – link the contamination level with health indexes of the environmental safety

  8. Heavy metal phytoextraction-natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat.

    Science.gov (United States)

    Mahmood-Ul-Hassan, Muhammad; Suthar, Vishandas; Ahmad, Rizwan; Yousra, Munazza

    2017-10-30

    The abilities of sorghum (Sorghum bicolor L.) and oat (Avena sativa L.) to take up heavy metals from soils amended with ethylenediaminetetraacetic acid (EDTA) were assessed under greenhouse conditions. Both plants were grown in two soils contaminated with heavy metals (Gujranwala-silty loam and Pacca-clay loam). The soils were treated with 0, 0.625, 1.25, and 2.5 mM EDTA kg -1 soil applied at both 45 and 60 days after sowing (DAS); the experiment was terminated at 75 DAS. Addition of EDTA significantly increased concentrations of Cd, Cr, and Pb in roots and shoots, and bio-concentration factors and phytoextraction rates were also increased. Post-harvest soil analysis showed that soluble fractions of metals were also increased significantly. The increase in Cd was ≈ 3-fold and Pb was ≈ 15-fold at the highest addition of EDTA in Gujranwala soil; in the Pacca soil, the increase was less. Similarly, other phytoremediation factors, such as metal translocation, bio-concentration factor, and phytoextraction, efficiency were also maximum when soils were treated with 2.5 mM EDTA kg -1 soil. The study demonstrated that sorghum was better than oat for phytoremediation.

  9. Evaluation of silkworm excrement and mushroom dreg for the remediation of multiple heavy metal/metalloid contaminated soil using pakchoi.

    Science.gov (United States)

    Wang, Ruigang; Guo, Junkang; Xu, Yingming; Ding, Yongzhen; Shen, Yue; Zheng, Xiangqun; Feng, Renwei

    2016-02-01

    The economical, environmental friendly and efficient materials to remediate the pollution with multiple heavy metals and metalloids are scarce. Silkworm excrement (SE) and mushroom dregs (MD) are two types of agricultural wastes, and they are widely used to improve the soil fertility in many regions of China. A pot experiment with sixteen treatments was set up to assess the possibility of using SE and MD to stabilize heavy metals and metalloids and reduce their uptake in pakchoi cultivated in slightly contaminated soils with arsenic (As), cadmium (Cd), lead (Pb) and zinc (Zn). The results showed that the single addition of SE obviously stimulated the growth of pakchoi, reduced the contents of all tested heavy metals and metalloids in the edible part of pakchoi and availability of Zn and Cd in soil. The single MD treatment showed an inferior ability to enhance the growth and reduce the contents of heavy metals and metalloids in the edible part of pakchoi. The combined utilization of SE and MD appeared not to show better effects than their individual treatment when using them to remediate this contaminated soil. Some potential mechanisms on the stimulation on pakchoi growth and decreasing the accumulation of heavy metals and metalloids in pakchoi subjected to SE were suggested, including: (1) enhancing soil pH to impact the availability of heavy metals and metalloids; (2) improve the fertility of soil; (3) sulfhydryl groups of organic materials in SE play a role in conjugating heavy metals and metalloids to affect their availability in soil; and (4) stimulating the growth of pakchoi so as to show a "dilution effect" of heavy metals and metalloids. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Optimizing the molarity of a EDTA washing solution for saturated-soil remediation of trace metal contaminated soils

    International Nuclear Information System (INIS)

    Andrade, M.D.; Prasher, S.O.; Hendershot, W.H.

    2007-01-01

    Three experiments were conducted to optimize the use of ethylenediaminetetraacetic acid (EDTA) for reclaiming urban soils contaminated with trace metals. As compared to Na 2 EDTA (NH 4 ) 2 EDTA extracted 60% more Zn and equivalent amounts of Cd, Cu and Pb from a sandy loam. When successively saturating and draining loamy sand columns during a washing cycle, which submerged it once with a (NH 4 ) 2 EDTA wash and four times with deionised water, the post-wash rinses largely contributed to the total cumulative extraction of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn. Both the washing solution and the deionised water rinses were added in a 2:5 liquid to soil (L:S) weight ratio. For equal amounts of EDTA, concentrating the washing solution and applying it and the ensuing rinses in a smaller 1:5 L:S weight ratio, instead of a 2:5 L:S weight ratio, increased the extraction of targeted Cr, Cu, Ni, Pb and Zn. - A single EDTA addition is best utilised in a highly concentrated washing solution given in a small liquid to soil weight ratio

  11. Contamination assessment of heavy metals in the soils around Khouzestan Steel Company (KSC (Ni, Mn, Pb, Fe, Zn, Cr

    Directory of Open Access Journals (Sweden)

    Fatemeh hormozi Nejad

    2017-02-01

    Full Text Available Introduction Soil plays a vital role in human life as the very survival of mankind is tied to the preservation of soil productivity (Kabata- Pendies and Mukherjee, 2007. The purpose of this study is the assessment of heavy metal contamination (Zn, Mn, Pb, Fe, Ni, Cr of the soil around the Khuzestan Steel Complex. Materials and methods For this purpose, 13 surface soil samples (0-10 cm were taken. Also a control sample was taken from an area away from the steel complex. The coordinates of each point were recorded by Global Positioning System (GPS. The samples were transferred to the laboratory and then were air dried at room temperature for 72 hours. Then they were sieved through a 2mm sieve for determining physical and chemical parameters (soil texture, pH, OC, and a 63-micron sieve for measurement of heavy metal concentration. pH was measured using a calibrated pH meter at a 2: 1 mixture (soil: water, and soil texture was determined using a hydrometer. The amount of organic matter was measured using the Valkey black method (Chopin and Alloway, 2007. After preparation of the samples in the laboratory, the samples were analyzed using the ICP-OES method to assess concentration of heavy metals. Measurement of heavy metals concentration was carried out at the Zar azma laboratory in Tehran. To ensure the accuracy of the analysis of soil samples, replicate samples were also sent to the laboratory. In order to assess the heavy metal pollution in the soil samples, different indices including contamination factor (CF, contamination degree (Cd, anthropogenic enrichment percent (An%, and saturation degree of metals (SDM were calculated. Discussion In addition, the mean concentrations of heavy metals in soil samples were compared to the concentration of these metals in Control Sample and unpolluted soil standard. Measurement of soil pH showed that the soil has a tendency to alkalinity. Also, soil texture is sandy loam (Moyes, 2011. The results showed that

  12. Sustainability likelihood of remediation options for metal-contaminated soil/sediment.

    Science.gov (United States)

    Chen, Season S; Taylor, Jessica S; Baek, Kitae; Khan, Eakalak; Tsang, Daniel C W; Ok, Yong Sik

    2017-05-01

    Multi-criteria analysis and detailed impact analysis were carried out to assess the sustainability of four remedial alternatives for metal-contaminated soil/sediment at former timber treatment sites and harbour sediment with different scales. The sustainability was evaluated in the aspects of human health and safety, environment, stakeholder concern, and land use, under four different scenarios with varying weighting factors. The Monte Carlo simulation was performed to reveal the likelihood of accomplishing sustainable remediation with different treatment options at different sites. The results showed that in-situ remedial technologies were more sustainable than ex-situ ones, where in-situ containment demonstrated both the most sustainable result and the highest probability to achieve sustainability amongst the four remedial alternatives in this study, reflecting the lesser extent of off-site and on-site impacts. Concerns associated with ex-situ options were adverse impacts tied to all four aspects and caused by excavation, extraction, and off-site disposal. The results of this study suggested the importance of considering the uncertainties resulting from the remedial options (i.e., stochastic analysis) in addition to the overall sustainability scores (i.e., deterministic analysis). The developed framework and model simulation could serve as an assessment for the sustainability likelihood of remedial options to ensure sustainable remediation of contaminated sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Muhlbachova, G. [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Sagova-Mareckova, M., E-mail: sagova@vurv.cz [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Omelka, M. [Charles University, Faculty of Mathematics and Physics, Dept. of Probability and Mathematical Statistics, Prague 8, Karlin (Czech Republic); Szakova, J.; Tlustos, P. [Czech University of Life Sciences, Department of Agroenvironmental Chemistry and Plant Nutrition, Prague 6, Suchdol (Czech Republic)

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals.

  14. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    International Nuclear Information System (INIS)

    Muhlbachova, G.; Sagova-Mareckova, M.; Omelka, M.; Szakova, J.; Tlustos, P.

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals

  15. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil.

    Science.gov (United States)

    Gu, Hai-Hong; Qiu, Hao; Tian, Tian; Zhan, Shu-Shun; Deng, Teng-Hao-Bo; Chaney, Rufus L; Wang, Shi-Zhong; Tang, Ye-Tao; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-05-01

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40gkg(-1)) and steel slag (3 and 6gkg(-1)) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Restoration of contaminated soils

    International Nuclear Information System (INIS)

    Miranda J, Jose Eduardo

    2009-01-01

    A great variety of techniques are used for the restoration of contaminated soils. The contamination is present by both organic and inorganic pollutants. Environmental conditions and soil characteristics should take into account in order to implement a remedial technique. The bioremediation technologies are showed as help to remove a variety of soil contaminants. (author) [es

  17. Metal-contaminated soil remediation by means of paper mill sludges addition: chemical and ecotoxicological evaluation

    International Nuclear Information System (INIS)

    Calace, N.; Campisi, T.; Iacondini, A.; Leoni, M.; Petronio, B.M.; Pietroletti, M.

    2005-01-01

    Metal pollution of soils is a great environmental problem. The major risks due to metal pollution of soil consist of leaching to groundwater and potential toxicity to plants and/or animals. The objective of this study is to evaluate by means of chemical and ecotoxicological approach the effects of paper mill sludge addition on the mobile metal fraction of polluted metal soils. The study was carried out on acidic soil derived from mining activities and thus polluted with heavy metals, and on two paper mill sludges having different chemical features. The results obtained by leaching experiments showed that the addition of a paper mill sludge, consisting mainly of carbonates, silicates and organic matter, to a heavy-metal polluted soil produces a decrease of available metal forms. The carbonate content seems to play a key role in the chemical stabilisation of metals and consequently in a decrease of toxicity of soil. The leached solutions have a non-toxic effect. The mild remediation by addition of sludge has moreover a lasting effect. - Paper mill sludge decreased available metals

  18. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.

    Science.gov (United States)

    Lum, A Fontem; Ngwa, E S A; Chikoye, D; Suh, C E

    2014-01-01

    Phytoremediation is a promising option for reclaiming soils contaminated with toxic metals, using plants with high potentials for extraction, stabilization and hyperaccumulation. This study was conducted in Cameroon, at the Bassa Industrial Zone of Douala in 2011, to assess the total content of 19 heavy metals and 5 other elements in soils and phytoremediation potential of 12 weeds. Partial extraction was carried out in soil, plant root and shoot samples. Phytoremediation potential was evaluated in terms of the Biological Concentration Factor, Translocation Factor and Biological Accumulation Coefficient. The detectable content of the heavy metals in soils was Cu:70-179, Pb:8-130, Zn:200-971, Ni:74-296, Co:31-90, Mn:1983-4139, V:165-383, Cr:42-1054, Ba:26-239, Sc:21-56, Al:6.11-9.84, Th:7-22, Sr:30-190, La:52-115, Zr:111-341, Y:10-49, Nb:90-172 in mg kg(-1), and Ti:2.73-4.09 and Fe:12-16.24 in wt%. The contamination index revealed that the soils were slightly to heavily contaminated while the geoaccumulation index showed that the soils ranged from unpolluted to highly polluted. The concentration of heavy metals was ranked as Zn > Ni > Cu > V > Mn > Sc > Co > Pb and Cr in the roots and Mn > Zn > Ni > Cu > Sc > Co > V > Pb > Cr > Fe in the shoots. Dissotis rotundifolia and Kyllinga erecta had phytoextraction potentials for Pb and Paspalum orbicularefor Fe. Eleusine indica and K. erecta had phytostabilisation potential for soils contaminated with Cu and Pb, respectively.

  19. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost.

    Science.gov (United States)

    Liang, Jie; Yang, Zhaoxue; Tang, Lin; Zeng, Guangming; Yu, Man; Li, Xiaodong; Wu, Haipeng; Qian, Yingying; Li, Xuemei; Luo, Yuan

    2017-08-01

    The combination of biochar and compost has been proven to be effective in heavy metals contaminated wetland soil restoration. However, the influence of different proportions between biochar and compost on immobilization of heavy metals in soil has been less studied up to date. Therefore, we investigated the effect of different ratios of biochar-compost mixtures on availability and speciation distribution of heavy metals (Cd, Zn and Cu) in wetland soil. The results showed that applying all amendment combinations into wetland soil increased gradually the total organic carbon (TOC) and water-extract organic carbon (WEOC) as the compost percentage rose in biochar-composts. The higher pH was obtained in a certain biochar addition (20% and 40%) in combinations due to efficient interaction of biochar with compost. All amendments could significantly decrease availability of Cd and Zn mainly from pH change, but increase available Cu concentration as the result of increased water-extract organic carbon and high total Cu content in compost. Moreover, amendments can decrease easily exchangeable fraction and increase reducible of Cd and Zn greatly with increase of compost content in combinations, while amendments containing compost promote transformation of Cu from Fe/Mn oxide and residual fractions to organic bindings. These results demonstrate that different ratios of biochar and compost have a significant effect on availability and speciation of heavy metals in multi-metal-contaminated wetland soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Contamination of the soil along the river Zletovska by metals as by products of economic production of Pb-Zn

    OpenAIRE

    Boev, Blazo; Lepitkova, Sonja

    1996-01-01

    This paper shows the results constraining the degree of contamination of soil along the course of the River Zletovska by some mewls. These are by- products of economic production of lead-zinc ores which are common in this area. Contamination of soils by some metals, first of all by Pb, Zn, Cu, Cd, As, Fe, Al, Mn, Na, K is an important issue for the quality of the environment in which we live from several aspects: accumulation of waters under river alluvions; agricultural produ...

  1. Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China.

    Science.gov (United States)

    Tang, Zhenwu; Zhang, Lianzhen; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao

    2015-12-01

    Plastic wastes are increasingly being recycled in many countries. However, available information on the metals released into the environment during recycling processes is rare. In this study, the contamination features and risks of eight heavy metals in soils and sediments were investigated in Wen'an, a typical plastic recycling area in North China. The surface soils and sediments have suffered from moderate to high metal pollution and in particular, high Cd and Hg pollution. The mean concentrations of Cd and Hg were 0.355 and 0.408 mg kg(-1), respectively, in the soils and 1.53 and 2.10 mg kg(-1), respectively, in the sediments. The findings suggested that there is considerable to high potential ecological risks in more than half of the soils and high potential ecological risk in almost all sediments. Although the health risk levels from exposure to soil metals were acceptable for adults, the non-carcinogenic risks to local children exceeded the acceptable level. Source assessment indicated that heavy metals in soils and sediments were mainly derived from inputs from poorly controlled plastic waste recycling operations in this area. The results suggested that the risks associated with heavy metal pollution from plastic waste recycling should be of great concern. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Distribution and contamination of metals in the soil of Guandu Watershed

    Directory of Open Access Journals (Sweden)

    Aldo Pacheco Ferreira

    2015-11-01

    Full Text Available Coastal areas provide important benefits to humans in terms of food resources and ecosystem services. At the same time, human activities can have significant negative impacts on ecosystem health. Thus, control of watershed pollution is both necessary and essential in order to reduce and systematically eliminate the detrimental consequences that are evident in marine and estuarine ecosystems. The present study investigated the distribution of metals at the Guandu Watershed. Five sampling sites were selected for the soil analysis. Samples were collected from February 2013 to December 2014 and analysed for concentrations of As, Cd, Zn, Cu, Pb, Cr, Ni, and Co, using ICP. For control, some samples were used in uncontaminated areas outside the direct effect of chemical industries. The data indicate the presence of metals at the research sites. While the levels of contamination are still slightly below the peak concentrations established by Brazilian legislation, they are approaching levels of concern, particularly with regard to As, Cd, Pb and Cr. The results indicate that the use of water from the Guandu Watershed for recreational purposes and fishing is harmful to both human health and the environment.

  3. Stabilization of metal(loid)s in two contaminated agricultural soils: Comparing biochar to its non-pyrolysed source material.

    Science.gov (United States)

    Trakal, Lukáš; Raya-Moreno, Irene; Mitchell, Kerry; Beesley, Luke

    2017-08-01

    Two metal(loid) contaminated agricultural soils were amended with grape stalk (wine production by-product)-derived biochar as well as its pre-pyrolysed origin material, to investigate their geochemical impacts on As, Cr, Cu and Zn. Detailed physico-chemical evaluation combined with a column leaching test determined the retention of metal(loid)s from soil solution by each amendments. A pot experiment measured metal(loid)s in soil pore water and their uptake to ryegrass when the amendments were mixed into soils at 1 and 5% (w/w). Total Cr and Zn concentrations were reduced furthest in column leachates by the addition of raw material and biochar respectively, compared to the untreated soil; Cr(III) was the predominant specie initially due to rapid acidification of leachates and organic complexation resulting from raw material addition. Loadings of metal(loid)s to the amendments recovered from the post-leached columns were in the order Cu » Zn > Cr ≈ As. In the pot test ryegrass Cr uptake was initiated by the addition of both amendments, compared to the untreated soil, whereas only biochar addition resulted in significant increases in Zn uptake, explained by its significant enhancement of ryegrass biomass yield, especially at 5% dosage; raw material addition significantly decreased biomass yields. Inconsistent relationships between pore water parameters and ryegrass uptake were common to both soils investigated. Therefore, whilst both amendments modified soil metal(loid) geochemistry, their effects differed fundamentally; in environmental risk management terms these results highlight the need to investigate the detailed geochemical response of contaminated soils to diverse organic amendment additions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process

    International Nuclear Information System (INIS)

    Wang, J.-Y.; Huang, X.-J.; Kao, Jimmy C.M.; Stabnikova, Olena

    2007-01-01

    Kaolins contaminated with heavy metals, Cu and Pb, and organic compounds, p-xylene and phenanthrene, were treated with an upward electrokinetic soil remediation (UESR) process. The effects of current density, cathode chamber flushing fluid, treatment duration, reactor size, and the type of contaminants under the vertical non-uniform electric field of UESR on the simultaneous removal of the heavy metals and organic contaminants were studied. The removal efficiencies of p-xylene and phenanthrene were higher in the experiments with cells of smaller diameter or larger height, and with distilled water flow in the cathode chamber. The removal efficiency of Cu and Pb were higher in the experiments with smaller diameter or shorter height cells and 0.01 M HNO 3 solution as cathode chamber flow. In spite of different conditions for removal of heavy metals and organics, it is possible to use the upward electrokinetic soil remediation process for their simultaneous removal. Thus, in the experiments with duration of 6 days removal efficiencies of phenanthrene, p-xylene, Cu and Pb were 67%, 93%, 62% and 35%, respectively. The experiment demonstrated the feasibility of simultaneous removal of organic contaminants and heavy metals from kaolin using the upward electrokinetic soil remediation process

  5. New phosphate-based binder for stabilization of soils contaminated with heavy metals: leaching, strength and microstructure characterization.

    Science.gov (United States)

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Jin, Fei; Wu, Hao-Liang; Liu, Zhi-Bin

    2014-12-15

    Cement stabilization is used extensively to remediate soils contaminated with heavy metals. However, previous studies suggest that the elevated zinc (Zn) and lead (Pb) concentrations in the contaminated soils would substantially retard the cement hydration, leading to the deterioration of the performance of cement stabilized soils. This study presents a new binder, KMP, composed of oxalic acid-activated phosphate rock, monopotassium phosphate and reactive magnesia. The effectiveness of stabilization using this binder is investigated on soils spiked with Zn and Pb, individually and together. Several series of tests are conducted including toxicity characteristic leaching (TCLP), ecotoxicity in terms of luminescent bacteria test and unconfined compressive strength. The leachability of a field Zn- and Pb- contaminated soil stabilized with KMP is also evaluated by TCLP leaching test. The results show that the leached Zn concentrations are lower than the China MEP regulatory limit except when Zn and Pb coexist and for the curing time of 7 days. On the other hand, the leached Pb concentrations for stabilized soils with Pb alone or mixed Zn and Pb contamination are much lower than the China MEP or USEPA regulatory limit, irrespective of the curing time. The luminescent bacteria test results show that the toxicity of the stabilized soils has been reduced considerably and is classified as slightly toxic class. The unconfined compressive strength of the soils decrease with the increase in the Zn concentration. The stabilized soils with mixed Zn and Pb contaminants exhibit notably higher leached Zn concentration, while there is lower unconfined compressive strength relative to the soils when contaminated with Zn alone. The X-ray diffraction and scanning electron microscope analyses reveal the presence of bobierrite (Mg3(PO4)2·8H2O) and K-struvite (MgKPO4·6H2O) as the main products formed in the KMP stabilized uncontaminated soils; the formation of hopeite (Zn3(PO4)2·4H2O

  6. Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement.

    Science.gov (United States)

    Song, Ningning; Wang, Fangli; Zhang, Changbo; Tang, Shirong; Guo, Junkang; Ju, Xuehai; Smith, Donald L

    2013-01-01

    Fungal inoculation and elevated CO2 may mediate plant growth and uptake of heavy metals, but little evidence from Diffusive Gradients in Thin-films (DGT) measurement has been obtained to characterize the process. Lolium mutiforum and Phytolacca americana were grown at ambient and elevated CO2 on naturally Cd and Pb contaminated soils inoculated with and without Trichoderma asperellum strain C3 or Penicillium chrysogenum strain D4, to investigate plant growth, metal uptake, and metal bioavailability responses. Fungal inoculation increased plant biomass and shoot/root Cd and Pb concentrations. Elevated CO2 significantly increased plants biomass, but decreased Cd and Pb concentrations in shoot/root to various extents, leading to a metal dilution phenomenon. Total Cd and Pb uptake by plants, and DGT-measured Cd and Pb concentrations in rhizosphere soils, were higher in all fungal inoculation and elevated CO2 treatments than control treatments, with the combined treatments having more influence than either treatment alone. Metal dilution phenomenon occurred because the increase in DGT-measured bioavailable metal pools in plant rhizosphere due to elevated CO2 was unable to match the increase in requirement for plant uptake of metals due to plant biomass increase.

  7. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.

    Science.gov (United States)

    Muhammad, Dawood; Chen, Fei; Zhao, Jing; Zhang, Guoping; Wu, Feibo

    2009-08-01

    A pot experiment was conducted to study the performance of EDTA and citric acid (CA) addition in improving phytoextraction of Cd, Cu, Pb, and Cr from artificially contaminated soil by T. angustifolia. T. angustifolia showed the remarkable resistance to heavy metal toxicity with no visual toxic symptom including chlorosis and necrosis when exposed to metal stress. EDTA-addition significantly reduced plant height and biomass, compared with the control, and stunted plant growth, while 2.5 and 5 mM CA addition induced significant increases in root dry weight. EDTA, and 5 and 10 mM CA significantly increased shoot Cd, Pb, and Cr concentrations compared with the control, with EDTA being more effective. At final harvest, the highest shoot Cd, Cr, and Pb concentrations were recorded in the treatment of 5 mM EDTA addition, while maximal root Pb concentration was found at the 2.5 mM CA treatment. However, shoot Cd accumulation in the 10 mM CA treatment was 36.9% higher than that in 2.5 mM EDTA, and similar with that in 10 mM EDTA. Shoot Pb accumulation was lower in 10 mM CA than that in EDTA treatments. Further, root Cd, Cu, and Pb accumulation of CA treatments and shoot Cr accumulation in 5 or 10 mM CA treatments were markedly higher than that of control and EDTA treatments. The results also showed that EDTA dramatically increased the dissolution of Cu, Cr, Pb, and Cd in soil, while CA addition had less effect on water-soluble Cu, Cr, and Cd, and no effect on Pb levels. It is suggested that CA can be a good chelator candidate for T. angustifolia used for environmentally safe phytoextraction of Cd and Cr in soils.

  8. Contamination of soil by heavy metals in the mining Sierra of Cartegena La Union and its environment (Southeast Spain)

    International Nuclear Information System (INIS)

    Belmonte Serrato, F.; Rojo Lopez, S.; Romero Diaz, A.; Moreno Brotons, J.; Alonso Sarria, F.

    2009-01-01

    This paper analyzes the metal pollution in natural, agricultural and mineral-industrial soils in the Sierra of Cartagena La Union and its adjacent area. The analysis was conducted on 52 soil samples randomly selected and 23 samples form the bed of the channels draining to the Mar Menor and the Mediterranean sea. The results indicate high concentrations of metals that exceed, in many cases, the maximum allowable by the relevant laws of various countries, including Spain. Of note is the excessive contamination by lead (Pb) and Cinz (Zn) that doubles or even triples the maximum of the most permissive laws. (Author) 9 refs.

  9. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review

    International Nuclear Information System (INIS)

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-01-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0–0.10 m, or 0–0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component

  10. Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis.

    Science.gov (United States)

    Jinhui Li; Huabo Duan; Pixing Shi

    2011-07-01

    The dismantling and disposal of electronic waste (e-waste) in developing countries is causing increasing concern because of its impacts on the environment and risks to human health. Heavy-metal concentrations in the surface soils of Guiyu (Guangdong Province, China) were monitored to determine the status of heavy-metal contamination on e-waste dismantling area with a more than 20 years history. Two metalloids and nine metals were selected for investigation. This paper also attempts to compare the data among a variety of e-waste dismantling areas, after reviewing a number of heavy-metal contamination-related studies in such areas in China over the past decade. In addition, source apportionment of heavy metal in the surface soil of these areas has been analysed. Both the MSW open-burning sites probably contained invaluable e-waste and abandoned sites formerly involved in informal recycling activities are the new sources of soil-based environmental pollution in Guiyu. Although printed circuit board waste is thought to be the main source of heavy-metal emissions during e-waste processing, requirement is necessary to soundly manage the plastic separated from e-waste, which mostly contains heavy metals and other toxic substances.

  11. PLANT CONTAMINATION AND PHYTOTOXICITY DUE TO HEAVY METALS FROM SOIL AND WATER

    Directory of Open Access Journals (Sweden)

    Judith Prieto Mendez

    2008-12-01

    Full Text Available High levels of heavy metals, such as: lead, nickel, cadmium and manganese, which are present in soil and wastewater used for agricultural irrigation, are due to the fact that these metals can be accumulated into these systems, of main importance for agriculture. Because of its non-biodegradability features, toxicity effects onto several crops and consequences on their bio-availability, this may result hazardous. This literature survey highlights and remarks relative sensitivity of some plants before heavy metals presence and crops trend to accumulate them, emphasizing aspects related to some soil physicochemical characteristics and heavy metals phyto-toxicity.

  12. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil.

    Science.gov (United States)

    Seshadri, B; Bolan, N S; Choppala, G; Kunhikrishnan, A; Sanderson, P; Wang, H; Currie, L D; Tsang, Daniel C W; Ok, Y S; Kim, G

    2017-10-01

    Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A novel approach for soil contamination assessment from heavy metal pollution: a linkage between discharge and adsorption.

    Science.gov (United States)

    Dong, Xiaoqing; Li, Chaolin; Li, Ji; Wang, Jiaxin; Liu, Suting; Ye, Bin

    2010-03-15

    Soil protection from heavy metal contamination requires scientific assessment on the linkage between site-specific pollutant discharge and environmental effects. However, this kind of linkage is usually disregarded due to the lack of assessment tools in environmental policies, e.g., some developed coastal cities in China have forced their highly polluting industries out to less developed interior areas without consideration of the impacts from pollution transfer. This paper developed a soil adsorption fraction (SAF) model to characterize the emissions-to-adsorption relationship between heavy metal emission and the adsorption by soil. Case studies were carried out for two adjacent southern cities in China, i.e., Guangzhou and Shaoguan. The results indicated that the average SAF of cadmium was 5.38 x 10(-3) for Shaoguan and 1.28 x 10(-3) for Guangzhou, i.e., cadmium released from Shaoguan threatened the soil environment 4.2 times of that from Guangzhou. Further analysis showed the polluting pathway and abundance of water resources were the main influencing factors on SAF. Soil contamination will be exaggerated by relocating heavy metal polluting industries from coastal areas to interior areas. The results should be useful to prompt site-specific policies on heavy metal pollution control. (c) 2009 Elsevier B.V. All rights reserved.

  14. A novel approach for soil contamination assessment from heavy metal pollution: A linkage between discharge and adsorption

    International Nuclear Information System (INIS)

    Dong Xiaoqing; Li Chaolin; Li Ji; Wang Jiaxin; Liu Suting; Ye Bin

    2010-01-01

    Soil protection from heavy metal contamination requires scientific assessment on the linkage between site-specific pollutant discharge and environmental effects. However, this kind of linkage is usually disregarded due to the lack of assessment tools in environmental policies, e.g., some developed coastal cities in China have forced their highly polluting industries out to less developed interior areas without consideration of the impacts from pollution transfer. This paper developed a soil adsorption fraction (SAF) model to characterize the emissions-to-adsorption relationship between heavy metal emission and the adsorption by soil. Case studies were carried out for two adjacent southern cities in China, i.e., Guangzhou and Shaoguan. The results indicated that the average SAF of cadmium was 5.38 x 10 -3 for Shaoguan and 1.28 x 10 -3 for Guangzhou, i.e., cadmium released from Shaoguan threatened the soil environment 4.2 times of that from Guangzhou. Further analysis showed the polluting pathway and abundance of water resources were the main influencing factors on SAF. Soil contamination will be exaggerated by relocating heavy metal polluting industries from coastal areas to interior areas. The results should be useful to prompt site-specific policies on heavy metal pollution control.

  15. Effect of soil metal contamination on glyphosate mineralization: role of zinc in the mineralization rates of two copper-spiked mineral soils.

    Science.gov (United States)

    Kim, Bojeong; Kim, Young Sik; Kim, Bo Min; Hay, Anthony G; McBride, Murray B

    2011-03-01

    A systematic investigation into lowered degradation rates of glyphosate in metal-contaminated soils was performed by measuring mineralization of [(14)C]glyphosate to (14)CO(2) in two mineral soils that had been spiked with Cu and/or Zn at various loadings. Cumulative (14)CO(2) release was estimated to be approximately 6% or less of the amount of [(14)C]glyphosate originally added in both soils over an 80-d incubation. For all but the highest Cu treatments (400 mg kg(-1)) in the coarse-textured Arkport soil, mineralization began without a lag phase and declined over time. No inhibition of mineralization was observed for Zn up to 400 mg kg(-1) in either soil, suggesting differential sensitivity of glyphosate mineralization to the types of metal and soil. Interestingly, Zn appeared to alleviate high-Cu inhibition of mineralization in the Arkport soil. The protective role of Zn against Cu toxicity was also observed in the pure culture study with Pseudomonas aeruginosa, suggesting that increased mineralization rates in high Cu soil with Zn additions might have been due to alleviation of cellular toxicity by Zn rather than a mineralization specific mechanism. Extensive use of glyphosate combined with its reduced degradation in Cu-contaminated, coarse-textured soils may increase glyphosate persistence in soil and consequently facilitate Cu and glyphosate mobilization in the soil environment. Copyright © 2010 SETAC.

  16. The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil.

    Science.gov (United States)

    Maric, Miroslava; Antonijevic, Milan; Alagic, Sladjana

    2013-02-01

    The copper production in Bor (East Serbia) during the last 100 years presents an important source of the pollution of environment. Dust, waste waters, tailing, and air pollutants influence the quality of soil, water, and air. Over 2,000 ha of fertile soil have been damaged by the flotation tailing from Bor's facilities. The goal of the present work has been to determine the content of Pb, Cu, and Fe in wild plants (17 species) naturally growing in the damaged soil and in fodder crops (nine species) planted at the same place. The content of Pb, Cu, and Fe has been analyzed in damaged soil as well. This study has also searched for native (wild) and cultivated plants which are able to grow in contaminated soil in the area of the intense industrial activity of copper production in Bor, which means that they can accumulate and tolerate heavy metals in their above-ground tissues. It has been found out that the content of all metals in contaminated soil decreases considerably at the end of the experiment. As it has been expected, all plant species could accumulate investigated metals. All tested plants, both wild-growing and cultivated plants, seem to be quite healthy on the substrate which contained extremely high concentrations of copper.

  17. In situ stabilization of trace metals in a copper-contaminated soil using P-spiked Linz-Donawitz slag.

    Science.gov (United States)

    Negim, Osama; Mench, Michel; Bes, Clémence; Motelica-Heino, Mikael; Amin, Fouad; Huneau, Frédéric; Le Coustumer, Philippe

    2012-03-01

    A former wood exploitation revealing high Cu and As concentration of the soils served as a case study for assisted phytoextraction. P-spiked Linz-Donawitz (LD) slag was used as a soil additive to improve physico-chemical soil properties and in situ stabilize Cu and other trace metals in a sandy Cu-contaminated soil (630 mg kg⁻¹ soil). The LD slag was incorporated into the contaminated soil to consist four treatments: 0% (T1), 1% (T2), 2% (T3), and 4% (T4). A similar uncontaminated soil was used as a control (CTRL). After a 1-month reaction period, potted soils were used for a 2-week growth experiment with dwarf beans. Soil pH increased with the incorporation rate of LD slag. Similarly the soil electrical conductivity (EC, in millisiemens per centimetre) is ameliorated. Bean plants grown on the untreated soil (T1) showed a high phytotoxicity. All incorporation rates of LD slag increased the root and shoot dry weight yields compared to the T1. The foliar Ca concentration of beans was enhanced for all LD slag-amended soil, while the foliar Mg, K, and P concentrations were not increased. Foliar Cu, Zn, and Cr concentrations of beans decreased with the LD slag incorporation rate. P-spiked LD slag incorporation into polluted soil allow the bean growth and foliar Ca concentration, but also to reduce foliar Cu concentration below its upper critical value avoiding an excessive soil EC and Zn deficiency. This dual effect can be of interest for soil remediation at larger scale.

  18. Biaccumulation and tolerance of heavy metals on the tropical earthworm, Allobophora sp. after exposed to contaminated soil from oil mine waste

    Science.gov (United States)

    Suhendrayatna; Darusman; Raihannah; Nurmala, D.

    2018-04-01

    In this study, the impact of contaminated soil from oil mine waste on survival, behavior, tolerance, and bioaccumulation of heavy metals by the tropical earthworm, Allobophora sp. has been quantified. Earthworm was isolated from heavy metals-contaminated soil, cultured in laboratory condition, and exposed to contaminated soil from oil mine waste for a couple of months. The behavior and response of earthworms to contaminated soil was monitored for 28 days and evaluated by the response criteria was expressed in scale index (SI) referred to Langdon method. Resistance test of the earthworm (LC50) to heavy metals also conducted with variation soil concentrations of 100%, 50%, 25%, 12.5%, and 6.25%, and 0% (Control). Results showed that contaminated soil extremely affected to the earthworm live, especially length and their body weight. The Lethal Concentration 50% (LC50) of earthworm against contaminated soil was 19.05% (w/w). When exposed to contaminated soil, earthworm accumulated chromium, barium, and manganese at the concentration of 88; 92.2; and 280 mg/kg-DW, respectively. Based on these results, earthworm Allobophora sp. has potential to reduce heavy metals from contaminated soil in the field of bioremediation process.

  19. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    Science.gov (United States)

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis

  20. Mobility and toxicity of heavy metal(loid)s arising from contaminated wood ash application to a pasture grassland soil.

    Science.gov (United States)

    Mollon, L C; Norton, G J; Trakal, L; Moreno-Jimenez, E; Elouali, F Z; Hough, R L; Beesley, L

    2016-11-01

    Heavy metal(loid) rich ash (≤10,000 mg kg -1 total As, Cr, Cu and Zn) originating from the combustion of contaminated wood was subjected to several experimental procedures involving its incorporation into an upland pasture soil. Ash was added to soil that had been prior amended with local cattle manure, replicating practices employed at the farm scale. Metal(loid) concentrations were measured in soil pore water and ryegrass grown on soil/manure plus ash mixtures (0.1-3.0% vol. ash) in a pot experiment; toxicity evaluation was performed on the same pore water samples by means of a bacterial luminescence biosensor assay. Thereafter a sequential extraction procedure was carried out on selected soil, manure and ash mixtures to elucidate the geochemical association of ash derived metal(loid)s with soil constituents. Predictive modelling was applied to selected data from the pot experiment to determine the risk of transfer of As to meat and milk products in cattle grazing pasture amended with ash. The inclusion of manure to soils receiving ash reduced phyto-toxicity and increased ryegrass biomass yields, compared to soil with ash, but without manure. Elevated As and Cu concentrations in pore water and ryegrass tissue resulting from ash additions were reduced furthest by the inclusion of manure due to an increase in their geochemical association with organic matter. Zinc was the only measured metal(loid) to remain uniformly soluble and bioavailable regardless of the addition of ash and manure. Risk modelling on pot experimental data highlighted that an ash addition of >1% (vol.) to this pasture soil could result in As concentrations in milk and meat products exceeding acceptable limits. The results of this study therefore suggest that even singular low doses of ash applied to soil increase the risk of leaching of metal(loid)s and intensify the risk of As transfer in the food chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evaluation of biochars from different stock materials as carriers of bacterial strain for remediation of heavy metal-contaminated soil.

    Science.gov (United States)

    Wang, Ting; Sun, Hongwen; Ren, Xinhao; Li, Bing; Mao, Hongjun

    2017-09-21

    Two kinds of biochars, one derived from corn straw and one from pig manure, were studied as carriers of a mutant genotype from Bacillus subtilis (B38) for heavy metal contaminated soil remediation. After amendment with biochar, the heavy metal bioavailability decreased. Moreover, the heavy metal immobilization ability of the biochar was enhanced by combining it with B38. The simultaneous application of B38 and pig manure-derived biochar exhibited a superior effect on the promotion of plant growth and the immobilization of heavy metals in soil. The plant biomass increased by 37.9% and heavy metal concentrations in the edible part of lettuce decreased by 69.9-96.1%. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles revealed that pig manure-derived biochar could enhance the proliferation of both exotic B38 and native microbes. These results suggest that B38 carried by pig manure-derived biochar may be a promising candidate for the remediation of soils contaminated by multiple heavy metals.

  2. Heavy metals contamination of soil and fodder: a possible risk to livestock

    International Nuclear Information System (INIS)

    Ahmad, K.; Shaheen, M.; Khan, Z.I.

    2013-01-01

    Heavy metals are significant ecological pollutant, principally in areas with sky-scraping anthropogenic stress. Their existence in the environment, soil and water, still in traces can cause severe tribulations to all organisms; heavy metal bioaccumulation in the food chain particularly can be extremely hazardous to animal and human health. Heavy metals generally come into the body by breathing and eating, ingestion being the most important route of contact to these elements in animals. The current study was conducted to examine lead (Pb), cadmium (Cd) and chromium (Cr) in the soil and fodders. Representative samples of soil were collected during two different seasons from two different sites, known as feeding sites for ruminants and analysed for heavy metals after wet digestion, using Atomic Absorption Spectrophotometer. The results showed that location and season had a significant effect (P>0.001) on soil and heavy metal concentrations. Soil and forage Pb, Cd, and Cr concentrations were higher in summer than in winter. From the results of the current study, it was determined that all the metals in soil were lower than deadly levels, posing no probable threat to both plant and animal life. There is an incessant need for monitoring the bioavailability of these heavy metals to grazing livestock, principally in summer season when these metals were found in relatively elevated concentrations, so that their possible toxic consequence to the grazing livestock can not be permitted. Agronomic practices, such as, manure and water managements as well as crop alternation system, can affect bioavailability and crop accretion of heavy metals, thus influencing the thresholds for assessing nutritional toxicity of heavy metals in the foodstuff. This study would be important for livestock owners and scientists working in extension services in Pakistan and other countries with same ecological condition. (author)

  3. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-02-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Enhanced desorption of PCB and trace metal elements (Pb and Cu) from contaminated soils by saponin and EDDS mixed solution

    International Nuclear Information System (INIS)

    Cao, Menghua; Hu, Yuan; Sun, Qian; Wang, Linling; Chen, Jing; Lu, Xiaohua

    2013-01-01

    This study investigated the simultaneous desorption of trace metal elements and polychlorinated biphenyl (PCB) from mixed contaminated soil with a novel combination of biosurfactant saponin and biodegradable chelant S,S-ethylenediaminedisuccinic acid (EDDS). Results showed significant promotion and synergy on Pb, Cu and PCB desorption with the mixed solution of saponin and EDDS. The maximal desorption of Pb, Cu and PCB were achieved 99.8%, 85.7% and 45.7%, respectively, by addition of 10 mM EDDS and 3000 mg L −1 saponin. The marked interaction between EDDS and saponin contributed to the synergy performance. The sorption of EDDS and saponin on soil was inhibited by each other. EDDS could enhance the complexation of metals with the saponin micelles and the solubilization capabilities of saponin micelles for PCB. Our study suggests the combination of saponin and EDDS would be a promising alternative for remediation of co-contaminated soils caused by hydrophobic organic compounds (HOCs) and metals. -- Highlights: ► A novel combination of biosurfactant saponin and EDDS was used to simultaneously remove mixed contaminations from soil. ► Significant synergy on Pb, Cu and PCB desorption were achieved with EDDS/saponin. ► The marked interaction between EDDS and saponin contributed to the synergy performance. -- Significant synergistic effect on Pb, Cu and PCB desorption were achieved with the mixed solution of saponin and EDDS

  5. Effects of long-term radionuclide and heavy metal contamination on the activity of microbial communities, inhabiting uranium mining impacted soils.

    Science.gov (United States)

    Boteva, Silvena; Radeva, Galina; Traykov, Ivan; Kenarova, Anelia

    2016-03-01

    Ore mining and processing have greatly altered ecosystems, often limiting their capacity to provide ecosystem services critical to our survival. The soil environments of two abandoned uranium mines were chosen to analyze the effects of long-term uranium and heavy metal contamination on soil microbial communities using dehydrogenase and phosphatase activities as indicators of metal stress. The levels of soil contamination were low, ranging from 'precaution' to 'moderate', calculated as Nemerow index. Multivariate analyses of enzyme activities revealed the following: (i) spatial pattern of microbial endpoints where the more contaminated soils had higher dehydrogenase and phosphatase activities, (ii) biological grouping of soils depended on both the level of soil contamination and management practice, (iii) significant correlations between both dehydrogenase and alkaline phosphatase activities and soil organic matter and metals (Cd, Co, Cr, and Zn, but not U), and (iv) multiple relationships between the alkaline than the acid phosphatase and the environmental factors. The results showed an evidence of microbial tolerance and adaptation to the soil contamination established during the long-term metal exposure and the key role of soil organic matter in maintaining high microbial enzyme activities and mitigating the metal toxicity. Additionally, the results suggested that the soil microbial communities are able to reduce the metal stress by intensive phosphatase synthesis, benefiting a passive environmental remediation and provision of vital ecosystem services.

  6. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium.

    Science.gov (United States)

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-11-01

    Bioremediation of polyaromatic hydrocarbons (PAH) contaminated soils in the presence of heavy metals have proved to be difficult and often challenging due to the ability of toxic metals to inhibit PAH degradation by bacteria. In this study, a mixed bacterial culture designated as consortium-5 was isolated from a former manufactured gas plant (MGP) site. The ability of this consortium to utilise HMW PAHs such as pyrene and BaP as a sole carbon source in the presence of toxic metal Cd was demonstrated. Furthermore, this consortium has proven to be effective in degradation of HMW PAHs even from the real long term contaminated MGP soil. Thus, the results of this study demonstrate the great potential of this consortium for field scale bioremediation of PAHs in long term mix contaminated soils such as MGP sites. To our knowledge this is the first study to isolate and characterize metal tolerant HMW PAH degrading bacterial consortium which shows great potential in bioremediation of mixed contaminated soils such as MGP.

  7. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides.

    Science.gov (United States)

    Anning, Alexander Kofi; Akoto, Ruth

    2018-02-01

    Chemically assisted phytoremediation is fast gaining attention as a biotechnology to accelerate heavy metal removal from contaminated substrates, but how different chemical amendments affect the process remains an important research question. Here, bioaccumulation factor (BAF), translocation factor (TF), removal efficiency (RE) and uptake of Hg, As, Pb, Cu and Zn by cattail (Typha latifolia) and vetiver (Chrysopogon zizanioides) were quantified in a potted experiment to determine the effects of amendments on the phytoremediation success. Baseline concentrations of heavy metals within the studied mined site were determined. The experiment involved three soil treatments (each comprising 16 samples amended with 0.05mol/L ethylene di-aminetetraacetic acid (EDTA), 3g of aluminum sulfate [Al 2 (SO 4 ) 3 ], and unamended control) transplanted with equal numbers of vetiver and cattail. Growth performance (height) of plant species was monitored every two weeks. Sixteen weeks after transplanting, heavy metal levels in plant and soil samples were quantified following standard protocols, and the biomass and root length measured for each plant species. Results indicated strong negative impact of mining activities on heavy metal levels of soil in the study area. Soil amendment considerably enhanced the BAF, TF, RE and uptake but the effect varied with plant species and heavy metal in question. The amendment also stimulated strong positive correlation between RE and BAF, TF and metal uptake, and generally did not show any negative effects on plant growth performance. In general, soil amendment aided the accumulation and translocation of heavy metals in the plant species studied, and could be explored for cleaning up contaminated sites. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ultrasonic and mechanical soil washing processes for the remediation of heavy-metal-contaminated soil

    Science.gov (United States)

    Kim, Seulgi; Lee, Wontae; Son, Younggyu

    2016-07-01

    Ultrasonic/mechanical soil washing process was investigated and compared with ultrasonic process and mechanical process using a relatively large lab-scale sonoreactor. It was found that higher removal efficiencies were observed in the combined processes for 0.1 and 0.3 M HCl washing liquids. It was due to the combination effects of macroscale removal for the overall range of slurry by mechanical mixing and microscale removal for the limited zone of slurry by cavitational actions.

  9. Heavy metals and organic compounds contamination in soil from an e-waste region in South China.

    Science.gov (United States)

    Liu, Ming; Huang, Bo; Bi, Xinhui; Ren, Zhaofang; Sheng, Guoying; Fu, Jiamo

    2013-05-01

    Heavy metals and persistent organic pollutants polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were analyzed in 34 surface soil samples collected from farmland and 7 soil or dust samples collected from the workshops in South China, where e-waste was dismantled using primitive techniques. The results show that Cd, Cu and Hg were the most abundant metals, in particular Cd pollution was serious in farmland soils, and the median concentrations in farmland soils were beyond the environmental quality standard for soils (China Grade II). A correlation between Cd, Cu, Zn, Pb and PCBs or PBDEs was significant indicating similar sources. Among the PCB congeners, high relative similarity was observed between the e-waste dump site soil (EW1) and Aroclor 1254, implying that the technical product Aroclor 1254 was one of the major sources of PCB contamination. High concentrations of PCBs in workshop dusts (D2 and D3) (1958 and 1675 μg kg(-1)) demonstrated that the workshops dismantling electrical wires and cables, electrical motors, compressors and aluminum apparatus containing PCBs in lubricants represent strong PCB emission sources to this area. Principal component analysis (PCA) and PBDE homologue patterns verify that farmland soils surrounding the e-waste recycling sites were enriched with lower brominated congeners, and the major source of PBDEs in dust samples might potentially be associated with the extensive use of deca-mix technical products as a flame retardant. The difference between e-waste soils, dusts and farmland soils can be observed in the PCA score plot of PCBs and PBDEs, and E-waste soils and dusts exhibited more diversity than farmland soils. Furthermore, a prediction of the particular kinds of pollution from different recycling activities through the analysis of each contamination and the connections between them was investigated.

  10. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China.

    Science.gov (United States)

    Li, Peizhong; Lin, Chunye; Cheng, Hongguang; Duan, Xiaoli; Lei, Kai

    2015-03-01

    Anthropogenic emissions of toxic metals from smelters are a global problem. The objective of this study was to investigate the distribution of toxic metals in soils around a 60 year-old Pb/Zn smelter in a town in Yunnan Province of China. Topsoil and soil core samples were collected and analyzed to determine the concentrations of various forms of toxic metals. The results indicated that approximately 60 years of Pb/Zn smelting has led to significant contamination of the local soil by Zn, Pb, Cd, As, Sb, and Hg, which exhibited maximum concentrations of 8078, 2485, 75.4, 71.7, 25.3, and 2.58mgkg(-1), dry wet, respectively. Other metals, including Co, Cr, Cu, Mn, Ni, Sc, and V, were found to originate from geogenic sources. The concentrations of smelter driven metals in topsoil decreased with increasing distance from the smelter. The main contamination by Pb, Zn, and Cd was found in the upper 40cm of soil around the Pb/Zn smelter, but traces of Pb, Zn, and Cd contamination were found below 100cm. Geogenic Ni in the topsoil was mostly bound in the residual fraction (RES), whereas anthropogenic Cd, Pb, and Zn were mostly associated with non-RES fractions. Therefore, the smelting emissions increased not only the concentrations of Cd, Pb, and Zn in the topsoil but also their mobility and bioavailability. The hazard quotient and hazard index showed that the topsoil may pose a health risk to children, primarily due to the high Pb and As contents of the soil. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The effect of portland cement for solidification of soils contaminated by mine tailings containing heavy metals

    Science.gov (United States)

    Jian-Jun, Chen; Zheng-Miao, Xie

    2010-05-01

    Portland cement(PC) was used to solidify the lead-zinc mine tailings contaminated soils(CS) in this work. The soils were heavily polluted by heavy metals with lead(up to 19592 mg/kg), zinc(up to 647mg/kg), Cd(up to 14.65mg.kg) and Cu(up to 287mg/kg). Solidified/stabilized(s/s)forms with a range of cement contents, 40-90 wt%, were evaluated to determine the optimal binder content. Unconfined compression strength test(UCS), Chinese solid waste-extraction procedure for leaching toxicity - Horizontal vibration method, toxicity characteristic leaching procedures(TCLP) were used for physical and chemical characterization of the s/s forms. The procedure of Tessier et al.(1979) was used to separate S/S forms Pb, Zn, Cd, Cu into different fractions. The results show that addition of 50% cement was enough for the s/s forms to satisfy the MU10 requirements (0.10 MPa). Under the 50% addition, the content of the water-exchangeable fraction of Pb reduced from 2.25% to 0.2%, the carbonate-bound fraction and organic-bound fraction reduced by about half, while the Fe-Mn oxide-bound fraction was more than doubled. The residual fraction decreased 8% on the contrary. For Zn, except for the carbonate-bound fraction increased slightly, the features of other items were same as that of Pb. For Cd, the water-exchangeable fraction was reduced largely, the residual fraction and Fe-Mn oxide-bound fraction increased 2-3%. For Cu, A distinct feature is the organic-bound fraction reduced with the reduction in consumption of cement, at the same time, the residual fraction increased corresponding. Leaching test results indicate that the leaching contents of Pb2+ of the six specimens are quite different at low pH value(

  12. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.

    Science.gov (United States)

    Ok, Yong Sik; Usman, Adel R A; Lee, Sang Soo; Abd El-Azeem, Samy A M; Choi, Bongsu; Hashimoto, Yohey; Yang, Jae E

    2011-10-01

    Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer+rapeseed residue (N70+R), 30% mineral N fertilizer+rapeseed residue (N30+R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70+R and N30+R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors

    International Nuclear Information System (INIS)

    Liao, V.H.-C.; Chien, M.-T.; Tseng, Y.-Y.; Ou, K.-L.

    2006-01-01

    A green fluorescent protein (GFP)-based bacterial biosensor Escherichia coli DH5α (pVLCD1) was developed based on the expression of gfp under the control of the cad promoter and the cadC gene of Staphylococcus aureus plasmid pI258. DH5α (pVLCD1) mainly responded to Cd(II), Pb(II), and Sb(III), the lowest detectable concentrations being 0.1 nmol L -1 , 10 nmol L -1 , and 0.1 nmol L -1 , respectively, with 2 h exposure. The biosensor was field-tested to measure the relative bioavailability of the heavy metals in contaminated sediments and soil samples. The results showed that the majority of heavy metals remained adsorbed to soil particles: Cd(II)/Pb(II) was only partially available to the biosensor in soil-water extracts. Our results demonstrate that the GFP-based bacterial biosensor is useful and applicable in determining the bioavailability of heavy metals with high sensitivity in contaminated sediment and soil samples and suggests a potential for its inexpensive application in environmentally relevant sample tests. - Nonpathogenic GFP-based bacterial biosensor is applicable in determining the bioavailability of heavy metals in environmental samples

  14. Effect of chromium contaminated soil on arbuscular mycorrhizal colonisation of roots and metal uptake by Plantago lanceolata

    International Nuclear Information System (INIS)

    Estaun, V.; Cortes, A.; Velianos, K.; Camprubi, A.; Calvet, C.

    2010-01-01

    Industrial practices are the primary causes for the accumulation of chromium in the environment, an element considered as a toxic heavy metal when present in high concentrations. The beneficial contribution of arbuscular mycorrhizal fungi (AMF) to plant nutrition and growth has been acknowledged, however, results of heavy metal uptake by plants under mycorrhizal symbiosis vary. The AMF Glomus intraradices (BEG 72) was used with Plantago lanceolata as a host plant in three experiments. In the first one, devised to assess the plant tolerance to Cr(III) in the soil, four levels of chromium concentration were applied in a sterile soil mix, placed in pots with inoculated and non inoculated plant treatments. Plant survival, shoot weight and AMF root colonisation were measured. In the second experiment which was designed in order to determine the effect of the symbiosis on the chromium uptake, similar treatments were used, and in addition, the heavy metal plant tissue content was measured and the bioconcentration factors calculated. In the third experiment the chromium uptake from an industrial chromium waste contaminated soil was assessed using treatments with and without the AMF. Results showed that chromium has a severe impact on the survival of non inoculated plants, however, plants inoculated with AMF in moderately contaminated soil, perform in terms of growth and survival rate, as well as the non inoculated plants in soil with no chromium added, suggesting a buffering effect of the AMF by decreased intake of the toxic element in the roots and its translocation to the shoot. (Author) 28 refs.

  15. Effect of chromium contaminated soil on arbuscular mycorrhizal colonisation of roots and metal uptake by Plantago lanceolata

    Energy Technology Data Exchange (ETDEWEB)

    Estaun, V.; Cortes, A.; Velianos, K.; Camprubi, A.; Calvet, C.

    2010-07-01

    Industrial practices are the primary causes for the accumulation of chromium in the environment, an element considered as a toxic heavy metal when present in high concentrations. The beneficial contribution of arbuscular mycorrhizal fungi (AMF) to plant nutrition and growth has been acknowledged, however, results of heavy metal uptake by plants under mycorrhizal symbiosis vary. The AMF Glomus intraradices (BEG 72) was used with Plantago lanceolata as a host plant in three experiments. In the first one, devised to assess the plant tolerance to Cr(III) in the soil, four levels of chromium concentration were applied in a sterile soil mix, placed in pots with inoculated and non inoculated plant treatments. Plant survival, shoot weight and AMF root colonisation were measured. In the second experiment which was designed in order to determine the effect of the symbiosis on the chromium uptake, similar treatments were used, and in addition, the heavy metal plant tissue content was measured and the bioconcentration factors calculated. In the third experiment the chromium uptake from an industrial chromium waste contaminated soil was assessed using treatments with and without the AMF. Results showed that chromium has a severe impact on the survival of non inoculated plants, however, plants inoculated with AMF in moderately contaminated soil, perform in terms of growth and survival rate, as well as the non inoculated plants in soil with no chromium added, suggesting a buffering effect of the AMF by decreased intake of the toxic element in the roots and its translocation to the shoot. (Author) 28 refs.

  16. Application of Microbial Products to Promote Electrodialytic Remediation of Heavy Metal Contaminated Soil

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland

    2006-01-01

    remediation (EDR) method for efficient treatment of Pb-contaminated soil by application of microbial products. Mobilization of Pb in soil by complexation with exopolymers and whole or disintegrated cells was investigated in column studies. Although exopolymers were previously shown to mobilize Pb in soil...... as potential methods for promotion of EDR of Pb contaminated soil. By these methods mobilization of Pb would occur due to complexation with much smaller substances than the previously examined and rejected exopolymers, why they were considered more efficient for mobilization of Pb in an electric current field...... also rejected, primarily due to the insufficient concentrations produced by microorganisms in general and the unrealistic high costs of industrially produced siderophores in relation to the low value of the product to be treated. Furthermore no detection of siderophore production was possible during...

  17. Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation.

    Science.gov (United States)

    Roach, Nicole; Reddy, Krishna R; Al-Hamdan, Ashraf Z

    2009-06-15

    This study aims to characterize the physical distribution of heavy metals in kaolin soil and the chemical and structural changes in kaolinite minerals that result from electrokinetic remediation. Three bench-scale electrokinetic experiments were conducted on kaolin that was spiked with Cr(VI) alone, Ni (II) alone, and a combination of Cr(VI), Ni(II) and Cd(II) under a constant electric potential of 1VDC/cm for a total duration of 4 days. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses were performed on the soil samples before and after electrokinetic remediation. Results showed that the heavy metal contaminant distribution in the soil samples was not observable using TEM and EDX. EDX detected nickel and chromium on some kaolinite particles and titanium-rich, high-contrast particles, but no separate phases containing the metal contaminants were detected. Small amounts of heavy metal contaminants that were detected by EDX in the absence of a visible phase suggest that ions are adsorbed to kaolinite particle surfaces as a thin coating. There was also no clear correlation between semiquantitative analysis of EDX spectra and measured total metal concentrations, which may be attributed to low heavy metal concentrations and small size of samples used. X-ray diffraction analyses were aimed to detect any structural changes in kaolinite minerals resulting from EK. The diffraction patterns showed a decrease in peak height with decreasing soil pH value, which indicates possible dissolution of kaolinite minerals during electrokinetic remediation. Overall this study showed that the changes in particle morphology were found to be insignificant, but a relationship was found between the crystallinity of kaolin and the pH changes induced by the applied electric potential.

  18. Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation

    International Nuclear Information System (INIS)

    Roach, Nicole; Reddy, Krishna R.; Al-Hamdan, Ashraf Z.

    2009-01-01

    This study aims to characterize the physical distribution of heavy metals in kaolin soil and the chemical and structural changes in kaolinite minerals that result from electrokinetic remediation. Three bench-scale electrokinetic experiments were conducted on kaolin that was spiked with Cr(VI) alone, Ni (II) alone, and a combination of Cr(VI), Ni(II) and Cd(II) under a constant electric potential of 1 VDC/cm for a total duration of 4 days. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses were performed on the soil samples before and after electrokinetic remediation. Results showed that the heavy metal contaminant distribution in the soil samples was not observable using TEM and EDX. EDX detected nickel and chromium on some kaolinite particles and titanium-rich, high-contrast particles, but no separate phases containing the metal contaminants were detected. Small amounts of heavy metal contaminants that were detected by EDX in the absence of a visible phase suggest that ions are adsorbed to kaolinite particle surfaces as a thin coating. There was also no clear correlation between semiquantitative analysis of EDX spectra and measured total metal concentrations, which may be attributed to low heavy metal concentrations and small size of samples used. X-ray diffraction analyses were aimed to detect any structural changes in kaolinite minerals resulting from EK. The diffraction patterns showed a decrease in peak height with decreasing soil pH value, which indicates possible dissolution of kaolinite minerals during electrokinetic remediation. Overall this study showed that the changes in particle morphology were found to be insignificant, but a relationship was found between the crystallinity of kaolin and the pH changes induced by the applied electric potential.

  19. Phytoextraction and phytostabilisation of metal-contaminated soil in temperate maritime climate of coastal British Columbia, Canada

    Science.gov (United States)

    Padmavathiamma, P. K.; Li, L. Y.

    2009-04-01

    This research addressed the phytoremediation of roadside soils subjected to multi-component metal solutions. A typical right of way for roads in Canada is around 30 m, and at least 33% of that land in the right of way is unpaved and can support animal life. Thus, land associated with 12,000 km of roads in the province of British Columbia and millions of kilometres around the world represent a substantial quantity of wildlife habitat where metal contamination needs to be remediated. Phytostabilisation, requires least maintenance among different phytoremediation techniques, and it could be a feasible and practical method of remediating in roadside soils along highways and for improving highway runoff drainage. The suitability of five plant species was studied for phytoextraction and phytostabilisation in a region with temperate maritime climate of coastal British Columbia, Canada. Pot experiments were conducted using Lolium perenne L (perennial rye grass), Festuca rubra L (creeping red fescue), Helianthus annuus L (sunflower), Poa pratensis L (Kentucky bluegrass) and Brassica napus L (rape) in soils treated with three different metal (Cu, Pb, Mn and Zn) concentrations. The bio-metric characters of plants in soils with multiple-metal contaminations, their metal accumulation characteristics, translocation properties and metal removal were assessed at different stages of plant growth, 90 and 120 DAS (days after sowing). Lolium was found to be suitable for the phytostabilisation of Cu and Pb, Festuca for Mn and Poa for Zn. Metal removal was higher at 120 than at 90 days after sowing, and metals concentrated more in the underground tissues with less translocation to the above-ground parts. Bioconcentration factors indicate that Festuca had the highest accumulation for Cu, Helianthus for Pb and Zn and Poa for Mn.

  20. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals.

    Science.gov (United States)

    Song, Biao; Zeng, Guangming; Gong, Jilai; Liang, Jie; Xu, Piao; Liu, Zhifeng; Zhang, Yi; Zhang, Chen; Cheng, Min; Liu, Yang; Ye, Shujing; Yi, Huan; Ren, Xiaoya

    2017-08-01

    Soil and sediment contamination has become a critical issue worldwide due to its great harm to the ecological environment and public health. In recent years, many remediation technologies including physical, chemical, biological, and combined methods have been proposed and adopted for the purpose of solving the problems of soil and sediment contamination. However, current research on evaluation methods for assessing these remediation technologies is scattered and lacks valid and integrated evaluation methods for assessing the remediation effectiveness. This paper provides a comprehensive review with an environmental perspective on the evaluation methods for assessing the effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. The review systematically summarizes recent exploration and attempts of the remediation effectiveness assessment based on the content of pollutants, soil and sediment characteristics, and ecological risks. Moreover, limitations and future research needs of the practical assessment are discussed. These limitations are not conducive to the implementation of the abatement and control programs for soil and sediment contamination. Therefore, more attention should be paid to the evaluation methods for assessing the remediation effectiveness while developing new in situ remediation technologies in future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Adaptive sampling based on the cumulative distribution function of order statistics to delineate heavy-metal contaminated soils using kriging

    International Nuclear Information System (INIS)

    Juang, K.-W.; Lee, D.-Y.; Teng, Y.-L.

    2005-01-01

    Correctly classifying 'contaminated' areas in soils, based on the threshold for a contaminated site, is important for determining effective clean-up actions. Pollutant mapping by means of kriging is increasingly being used for the delineation of contaminated soils. However, those areas where the kriged pollutant concentrations are close to the threshold have a high possibility for being misclassified. In order to reduce the misclassification due to the over- or under-estimation from kriging, an adaptive sampling using the cumulative distribution function of order statistics (CDFOS) was developed to draw additional samples for delineating contaminated soils, while kriging. A heavy-metal contaminated site in Hsinchu, Taiwan was used to illustrate this approach. The results showed that compared with random sampling, adaptive sampling using CDFOS reduced the kriging estimation errors and misclassification rates, and thus would appear to be a better choice than random sampling, as additional sampling is required for delineating the 'contaminated' areas. - A sampling approach was derived for drawing additional samples while kriging

  2. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China.

    Science.gov (United States)

    Kang, Wei; Bao, Jianguo; Zheng, Jin; Xu, Fen; Wang, Liuming

    2018-01-02

    Fast-growing metal-accumulating woody plants are considered potential candidates for phytoremediation of metals. Tonglushan mining, one of the biggest Cu production bases in China, presents an important source of the pollution of environment. The sample was collected at Tonglushan ancient copper spoil heap. The aims were to measure the content of heavy metal in the soil and woody plants and to elucidate the phytoremediation potential of the plants. The result showed that soil Cu, Cd and Pb were the main contamination, the mean contents of which were 3166.73 mg/kg, 3.66 mg/kg and 137.06 mg/kg respectively, which belonged to severe contamination. Fourteen species from 14 genera of 13 families were collected and investigated; except for Ligutrum lucidum, the other 13 woody plants species were newly recorded in this area. In addition, to assess the ability of metal accumulation of these trees, we proposed accumulation index. Data suggested that Platanus × acerilolia, Broussonetia papyrifera, Ligutrum lucidum, Viburnum awabuki, Firmiana simplex, Robina pseudoacacia, Melia azedarach and Osmanthus fragrans exhibited high accumulated capacity and strong tolerance to heavy metals. Therefore, Platanus × acerilolia and Broussonetia papyrifera can be planted in Pb contaminated areas; Viburnum awabuki, Firmiana simplex, Robina pseudoacacia and Melia azedarach are the suitable trees for Cd contaminated areas; Viburnum awabuki, Melia azedarach, Ligutrum lucidum, Firmiana simplex, Osmanthus fragrans and Robina pseudoacacia are appropriate to Cu, Pb and Cd multi-metal contaminated areas.

  3. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-01-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl_2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl_2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. - Highlights: • Metal availability, desorption, and speciation were tested during phytoextraction. • Metal availability showed an initial sharp decline then a slight change in acid soils. • Metal availability changed little during

  4. The removal of heavy metals from contaminated soil by a combination of sulfidisation and flotation.

    Science.gov (United States)

    Vanthuyne, Mathias; Maes, André

    2002-05-06

    The possibility of removing cadmium, copper, lead and zinc from Belgian loamy soil by a combination of sulfidisation pre-treatment and Denver flotation was investigated. The potentially available--sulfide convertible--metal content of the metal polluted soil was estimated by EDTA (0.1 M, pH 4.65) extraction and BCR sequential extraction. EDTA extraction is better at approximating the metal percentage that is expected to be convertible into a metal sulfide phase, in contrast to the sequential extraction procedure of 'Int. J. Environ. Anal. Chem. 51 (1993) pp. 135-151' in which transition metals present as iron oxide co-precipitates are dissolved by hydroxylammoniumchloride in the second extraction step. To compare the surface characteristics of metal sulfides formed by sulfidisation with those of crystalline metal sulfides, two types of synthetic sediments were prepared and extracted with 0.1 M EDTA (pH 4.65) in anoxic conditions. Separate metal sulfides or co-precipitates with iron sulfide were formed by sulfide conditioning. The Denver flotation of both types of synthetic sediments (kerosene as collector at high background electrolyte concentrations) resulted in similar concentrating factors for freshly formed metal sulfides as for fine-grained crystalline metal sulfides. The selective flotation of metal sulfides after sulfide conditioning of a polluted soil, using kerosene or potassium ethyl xanthate as collectors and MIBC as frother, was studied at high background electrolyte concentrations. The sulfidisations were made in ambient air and inside an anoxic glove box. The concentrating factors corrected by the potentially available metal percentage, determined by 0.1 M EDTA extraction, lie between 2 and 3. The selective flotation of these finely dispersed, amorphous, metal sulfides can possibly be improved by optimising the bubble-particle interaction.

  5. Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content.

    Science.gov (United States)

    González-Alcaraz, M Nazaret; Loureiro, Susana; van Gestel, Cornelis A M

    2018-04-01

    This study evaluated how different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC), reflecting realistic climate change scenarios, affect the bioaccumulation kinetics of Zn and Cd in the earthworm Eisenia andrei. Earthworms were exposed for 21 d to two metal-contaminated soils (uptake phase), followed by 21 d incubation in non-contaminated soil (elimination phase). Body Zn and Cd concentrations were checked in time and metal uptake (k 1 ) and elimination (k 2 ) rate constants determined; metal bioaccumulation factor (BAF) was calculated as k 1 /k 2 . Earthworms showed extremely fast uptake and elimination of Zn, regardless of the exposure level. Climate conditions had no major impacts on the bioaccumulation kinetics of Zn, although a tendency towards lower k 1 and k 2 values was observed at 25 °C + 30% WHC. Earthworm Cd concentrations gradually increased with time upon exposure to metal-contaminated soils, especially at 50% WHC, and remained constant or slowly decreased following transfer to non-contaminated soil. Different combinations of air temperature and soil moisture content changed the bioaccumulation kinetics of Cd, leading to higher k 1 and k 2 values for earthworms incubated at 25 °C + 50% WHC and slower Cd kinetics at 25 °C + 30% WHC. This resulted in greater BAFs for Cd at warmer and drier environments which could imply higher toxicity risks but also of transfer of Cd within the food chain under the current global warming perspective. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Metal-resistant rhizobacteria isolates improve Mucuna deeringiana phytoextraction capacity in multi-metal contaminated soils from a gold mining area.

    Science.gov (United States)

    Boechat, Cácio Luiz; Giovanella, Patricia; Amorim, Magno Batista; de Sá, Enilson Luiz Saccol; de Oliveira Camargo, Flávio Anastácio

    2017-01-01

    Phytoremediation consists of biological techniques for heavy metal remediation, which include exploring the genetic package of vegetable species to remove heavy metals from the environment. The goals of this study were to investigate heavy metal and bioaugmentation effects on growth and nutrient uptake by Mucuna deeringiana; to determine the metal translocation factor and bioconcentration factor and provide insight for using native bacteria to enhance heavy metal accumulation. The experiment was conducted under greenhouse conditions using a 2 × 4 factorial scheme with highly and slightly contaminated soil samples and inoculating M. deeringiana with three highly lead (Pb +2 )-resistant bacteria Kluyvera intermedia (Ki), Klebsiella oxytoca (Ko), and Citrobacter murliniae (Cm) isolated from the rhizosphere of native plants identified as Senecio brasiliensis (Spreng.) Less., Senecio leptolobus DC., and Baccharis trimera (Less) DC., respectively. The increased heavy metal concentrations in soil samples do not decrease the root dry mass of M. deeringiana, concerning the number and dry weight of nodules. The shoot dry mass is reduced by the increasing concentration of heavy metals in soil associated with Kluyvera intermedia and Klebsiella oxytoca bacteria. The number of nodules is affected by heavy metals associated with Citrobacter murliniae bacteria. The bacteria K. intermedia, C. murliniae, and K. oxytoca increase the lead and cadmium available in the soil and enhanced metal uptake by Mucuna deeringiana. The M. deeringiana specie has characteristics that make it hyperaccumulate copper and zinc. The translocation and bioconcentration factors for M. deeringiana characterize it as a promising candidate to phytostabilize multi-metal contaminated soils.

  7. Comparisons of Soil Properties, Enzyme Activities and Microbial Communities in Heavy Metal Contaminated Bulk and Rhizosphere Soils of Robinia pseudoacacia L. in the Northern Foot of Qinling Mountain

    Directory of Open Access Journals (Sweden)

    Yurong Yang

    2017-11-01

    Full Text Available The toxic effects of heavy metal (HM contamination on plant metabolism and soil microorganisms have been emphasized recently; however, little is known about the differences in soil physical, chemical, and biological properties between bulk and rhizosphere soils contaminated with HMs in forest ecosystem. The present study was conducted to evaluate the rhizosphere effect on soil properties, enzyme activities and bacterial communities associated with Robinia pseudoacacia L. along a HM contamination gradient. Soil organic matter (SOM, available nitrogen (AN and phosphorus (AP contents were significantly higher in rhizosphere soil than those in bulk soil at HM contaminated sites (p < 0.05. Compared to bulk soil, activities of four soil enzymes indicative of C cycle (β-glucosidase, N cycle (protease, urease and P cycle (alkaline phosphatase in rhizosphere soil across all study sites increased by 47.5%, 64.1%, 52.9% and 103.8%, respectively. Quantitative PCR (qPCR and restriction fragment length polymorphism (RFLP were used to determine the relative abundance, composition and diversity of bacteria in both bulk and rhizosphere soils, respectively. The copy number of bacterial 16S rRNA gene in bulk soil was significantly lower than that in rhizosphere soil (p < 0.05, and it had significantly negative correlations with total/DTPA-extractable Pb concentrations (p < 0.01. Alphaproteobacteria, Gammaproteobacteria and Firmicutes were the most dominant groups of bacteria at different study sites. The bacterial diversity index of Species richness (S and Margalef (dMa were significantly higher in rhizosphere soil compared with those in bulk soil, although no difference could be found in Simpson index (D between bulk and rhizosphere soils (p > 0.05. Redundancy analysis (RDA results showed that soil pH, EC, SOM and total/DTPA-extractable Pb concentrations were the most important variables affecting relative abundance, composition and diversity of bacteria (p < 0

  8. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): The effect of soil amendments

    International Nuclear Information System (INIS)

    Clemente, Rafael; Walker, David J.; Bernal, M. Pilar

    2005-01-01

    Two crops of Brassica juncea (L.) Czern. were grown in a field experiment, at the site affected by the toxic spillage of acidic, metal-rich waste in Aznalcollar (Seville, Spain), to study its metal accumulation and the feasibility of its use for metal phytoextraction. The effects of organic soil amendments (cow manure and mature compost) and lime on biomass production and plant survival were also assessed; plots without organic amendment and without lime were used as controls. Plots, with or without organic amendment, having pH -1 , respectively). The total uptake of heavy metals in the plants was relatively low, emphasising the problems faced when attempting to employ phytoextraction for clean-up of pluri-contaminated sites. - Although organic amendments improved soil conditions and plant growth, the phytoextraction capacity of Brassica juncea (cv. Z1) is too low for efficient soil remediation

  9. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics

    International Nuclear Information System (INIS)

    Lee, Celine Siu-lan; Li Xiangdong; Shi Wenzhong; Cheung, Sharon Ching-nga; Thornton, Iain

    2006-01-01

    The urban environment quality is of vital importance as the majority of people now live in cities. Due to the continuous urbanisation and industrialisation in many parts of the world, metals are continuously emitted into the terrestrial environment and pose a great threat on human health. An extensive survey was conducted in the highly urbanised and commercialised Hong Kong Island area (80.3 km 2 ) of Hong Kong using a systematic sampling strategy of five soil samples per km 2 in urban areas and two samples per km 2 in the suburban and country park sites (0-15 cm). The analytical results indicated that the surface soils in urban and suburban areas are enriched with metals, such as Cu, Pb, and Zn. The Pb concentration in the urban soils was found to exceed the Dutch target value. The statistical analyses using principal component analysis (PCA) and cluster analysis (CA) showed distinctly different associations among trace metals and the major elements (Al, Ca, Fe, Mg, Mn) in the urban, suburban, and country park soils. Soil pollution maps of trace metals (Cd, Co, Cr, Cu, Ni, Pb, and Zn) in the surface soils were produced based on geographical information system (GIS) technology. The hot-spot areas of metal contamination were mainly concentrated in the northern and western parts of Hong Kong Island, and closely related to high traffic conditions. The Pb isotopic composition of the urban, suburban, and country park soils showed that vehicular emissions were the major anthropogenic sources for Pb. The 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios in soils decreased as Pb concentrations increased in a polynomial line (degree = 2)

  10. Electro-migration of heavy metals in an aged electroplating contaminated soil affected by the coexisting hexavalent chromium.

    Science.gov (United States)

    Zhang, Weihua; Zhuang, Luwen; Tong, Lizhi; Lo, Irene M C; Qiu, Rongliang

    2012-02-01

    Cr(VI) was often reported to oxidize soil organic matter at acidic environments due to its high ORP, probably thus changing cationic metal species bound to soil organic matter, and influencing their electro-migration patterns. However, such an effect on the electro-migration was not confirmed in most previous studies. Therefore, this study applied a fixed voltage direct current field on an aged electroplating contaminated clayed soil, with a special interest in the direct or indirect influence of Cr(VI) on the electro-migration of other coexisting metals. After 353 h electrokinetic process, 81% of Zn, 53% of Ni and 22% of Cu in the original soil were electro-migrated into the electrolyte, and most of the remaining concentrated near the cathode. The Cr(VI) oxidized some soil organic matter along its migration pathway, with a pronounced reaction occurred near the anode at low pHs. The resulting Cr(III) reversed its original movement, and migrated towards the cathode, leading to the occurrence of a second Cr concentration peak in the soil. Metal species analyses showed that the amount of metals bound to soil organic matter significantly decreased, while a substantial increase in the Cr species bound to Fe/Mn (hydro-)oxides was observed, suggesting an enhancement of cationic metal electro-migration by the reduction of Cr(VI) into Cr(III). However, the Cr(VI) may form some stable lead chromate precipitates, and in turn demobilize Pb in the soil, as the results showed a low Pb removal and an increase in its acid-extractable and residual fractions after electrokinetic remediation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Electrokinetic remediation of contaminated soil from heavy metals and cobalt radioactive isotope

    International Nuclear Information System (INIS)

    Abdel Raouf, M.W.; Abdel Aziz, M.M.

    2005-01-01

    The present work presents a simple and inexpensive method for the in situ electrokinetic remediation of simulated contamined soil samples. Soil samples were collcted at inshas site (Egypt) at different depths 2-4, 4-6, and 6-8 m, purified from large and hard lumps, and characterized. To improve their hydraulic mobility, equal weights from the simulated soil and sand (0.5kg) were throughly mixed. The soil mixtures were dried under an infrared lamp, ground to a fine powder using a hand mortar. In this study, the soil samples were loaded separately by 250 ml CuSo 4 (1M) for Cu 2+ or CdCl 2 (1M) for Cd 2+ ,/or with simulated aqueous radioactive solution of 60 Co. Contaminated soil samples were left in contact with contaminant solutions for 48 hours in a closed container. Oven dried loaded soils samples were wasted five times by water to remove the free cations; then intial contaminant concentration of copper, calmium, and cobalt in soil samples was measured. To permit for the passage of electric current, loaded soil samples were wet with synthetic ground water (100 ml). A bench scale cell (13.0 cm x 6.0 cm x 6.5 cm) made from plexiglas was packed with 0.2 kg soil sample. A platinum sheet (4 cm x 0.5 cm x 0.05 cm) represented the anode; a graphite bar (iameter 0.5 cm and height 4 cm) represented the cathode, 6.0 cm apart from the anode. In the cell, the applied electric current and potential difference was kept constant at 60 mA and 10V, respectively for three hours treatment duration. The used electrodes were immersed into fired clay pottery bodies (net internal volume 15 ml) full with synthetic ground water. Percent of removal (P r ) of Cu 2+ , Cd 2+ , and 60 Co obtained after three hours waslarger than 97% at current density 2.2mA.cm -2 , and energy consumption 0.12 W.h.kg -1 . The advantages of the applied technique included the close control over the direction of movement of water and dissolved contsminants, retention of the contaminants within a confined zone

  12. Heavy Metal Contamination and Ecological Risk Assessment of Swine Manure Irrigated Vegetable Soils in Jiangxi Province, China.

    Science.gov (United States)

    Wang, Maolan; Liu, Ronghao; Lu, Xiuying; Zhu, Ziyi; Wang, Hailin; Jiang, Lei; Liu, Jingjing; Wu, Zhihua

    2018-05-01

    Heavy metal are often added to animal fodder and accumulate in the soils with swine manure. In this study, heavy metal (Cu, Pb, Cd, Zn, As and Cr) concentrations were determined in agricultural soils irrigated with swine manure in Jiangxi Province, China. Results showed that the average concentrations of Cu, Zn, As and Cr (32.8, 93.7, 21.3 and 75.8 mg/kg, respectively) were higher than the background values, while Pb and Cd (15.2 and 0.090 mg/kg, respectively) were lower than the background values. Contamination factors [Formula: see text] indicated that they were generally moderate for Cu, Zn, As and Cr and generally low for Pb and Cd. The contamination degree (C d ) was calculated to be 7.5-10.0 indicating a moderate degree of contamination. The geoaccumulation index (I geo ) indicated that the soils were unpolluted with Zn, Cd and Pb, while unpolluted to moderately pollute with Cr, Cu and As. The single ecological risk factor [Formula: see text] revealed that the six heavy metals all belonged to low ecological risk. The ecological risk indices suggested that all the sampling sites were at low risk level.

  13. The use of chromolaena odorata (L) King and H.E. Robins for the treatment of soil contaminated with metals and crude oil under green house conditions

    Energy Technology Data Exchange (ETDEWEB)

    Atagana, H.I. [South Africa Univ., Unisa (South Africa)

    2009-07-01

    Many researchers and commercial operators around the world have conducted phytoremediation of soil containing various environmental contaminants with various results. For over two decades, crude oil contamination has been a significant environmental concern with few solutions due to the increased dependence on petroleum products around the world. Because of their low cost and the lack of toxic by-products that are commonly associated with many other treatments, biological processes are gaining interest as a method for remediating crude oil-contaminated soil. Chromolaena odorata (L) King and Robinson is an invasive wasteland weed that is known to grow in harsh environments, including soils contaminated with oil. The weed has also been reported to accumulate metals from the soil. This paper reported on a study that investigated the capability of chromolaena odorata to grow in soil contaminated with crude oil and metals and to remove the oil and metals from the soil under greenhouse conditions for the purpose of determining its phytoremediation potentials in such soil. The paper described the materials and methods, with particular reference to soil; plants; experimental design; measurement of total petroleum hydrocarbons (TPH) in soil; measurement of TPH in plant tissues; measurement of concentrations of metals in contaminated-soil and plant tissues; and statistical analysis. Results were also presented. The ability of the weed to survive such high concentrations of crude oil and metals indicates that it is a possible candidate for phytoremediation of soil contaminated with either crude oil, metals or a co-contamination of both pollutants. 17 refs., 5 figs.

  14. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    Science.gov (United States)

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas

  15. Stabilization of the As-contaminated soil from the metal mining areas in Korea.

    Science.gov (United States)

    Ko, Myoung-Soo; Kim, Ju-Yong; Bang, Sunbeak; Lee, Jin-Soo; Ko, Ju-In; Kim, Kyoung-Woong

    2012-01-01

    The stabilization efficiencies of arsenic (As) in contaminated soil were evaluated using various additives such as limestone, steel mill slag, granular ferric hydroxide (GFH), and mine sludge collected from an acid mine drainage treatment system. The soil samples were collected from the Chungyang area, where abandoned Au-Ag mines are located. Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure, sequential extraction analysis, aqua regia digestion, cation exchange capacity, loss on ignition, and particle size distribution were conducted to assess the physical and chemical characteristics of highly arsenic-contaminated soils. The total concentrations of arsenic in the Chungyang area soil ranged up to 145 mg/kg. After the stabilization tests, the removal percentages of dissolved As(III) and As(V) were found to differ from the additives employed. Approximately 80 and 40% of the As(V) and As(III), respectively, were removed with the use of steel mill slag. The addition of limestone had a lesser effect on the removal of arsenic from solution. However, more than 99% of arsenic was removed from solution within 24 h when using GFH and mine sludge, with similar results observed when the contaminated soils were stabilized using GFH and mine sludge. These results suggested that GFH and mine sludge may play a significant role on the arsenic stabilization. Moreover, this result showed that mine sludge can be used as a suitable additive for the stabilization of arsenic.

  16. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination.

    Science.gov (United States)

    Zarei, Mehdi; Hempel, Stefan; Wubet, Tesfaye; Schäfer, Tina; Savaghebi, Gholamreza; Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam; Buscot, François

    2010-08-01

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Remediation and reclamation of soils heavily contaminated with toxic metals as a substrate for greening with ornamental plants and grasses.

    Science.gov (United States)

    Jelusic, Masa; Lestan, Domen

    2015-11-01

    Soils highly contaminated with toxic metals are currently treated as waste despite their potential inherent fertility. We applied EDTA washing technology featuring chelant and process water recovery for remediation of soil with 4037, 2527, and 26 mg kg(-1) of Pb, Zn and Cd, respectively in a pilot scale. A high EDTA dose (120 mmol kg(-1) of soil) removed 70%, 15%, and 58% of Pb, Zn, and Cd, respectively, and reduced human oral bioaccessibility of Pb below the limit of quantification and that of Zn and Cd 3.4 and 3.2 times. In a lysimeters experiment, the contaminated and remediated soils were laid into two garden beds (4×1×0.15 m) equipped with lysimeters, and subjected to cultivation of ornamental plants: Impatiens walleriana, Tagetes erecta, Pelargonium×peltatum, and Verbena×hybrida and grasses: Dactylis glomerata, Lolium multiflorum, and Festuca pratensis. Plants grown on remediated soil demonstrated the same or greater biomass yield and reduced the uptake of Pb, Zn and Cd up to 10, 2.5 and 9.5 times, respectively, compared to plants cultivated on the original soil. The results suggest that EDTA remediation produced soil suitable for greening. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Heavy metal contamination and ecological risk of farmland soils adjoining steel plants in Tangshan, Hebei, China.

    Science.gov (United States)

    Yang, Liyun; Yang, Maomao; Wang, Liping; Peng, Fei; Li, Yuan; Bai, Hao

    2018-01-01

    The purpose of this study was to determine the heavy metal concentrations and ecological risks to farmland soils caused by atmospheric deposition adjoining five industrial steel districts in Tangshan, Hebei, China. A total of 39 topsoil samples from adjoining these plants were collected and analyzed for Pb, Zn, Cu, Cr, and As. The geo-accumulation index (Igeo) and potential ecological risk index (PERI) were calculated to assess the heavy metal pollution level in soils. The results showed that the levels of Pb and As in farmland soils adjoining all steel plants were more than the background value, with the As content being excessively high. The Cr and Cu contents of some samples were over the background values, but the Zn content was not. In all the research areas, the largest Igeo value of the heavy metals was for As, followed by Pb, and the largest monomial PERI ([Formula: see text]) was As, which showed that the pollution of As in farmland soils was significant and had considerable ecological risk. Additionally, the heavy metal sequential extraction experiments showed that Pb and Cr, which exceeded the background value, were present in about 20% of the exchangeable and carbonate-bound fractions in the soils surrounding some steel plants. This would imply the risk of these heavy metals being absorbed and accumulated by the crops. Therefore, the local government needs to control the pollution of heavy metals in the farmland soils adjoining the steel plant as soon as possible, in order to avoid possible ecological and food safety risks.

  19. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud

    International Nuclear Information System (INIS)

    Gray, C.W.; Dunham, S.J.; Dennis, P.G.; Zhao, F.J.; McGrath, S.P.

    2006-01-01

    We evaluated the effectiveness of lime and red mud (by-product of aluminium manufacturing) to reduce metal availability to Festuca rubra and to allow re-vegetation on a highly contaminated brown-field site. Application of both lime and red mud (at 3 or 5%) increased soil pH and decreased metal availability. Festuca rubra failed to establish in the control plots, but grew to a near complete vegetative cover on the amended plots. The most effective treatment in decreasing grass metal concentrations in the first year was 5% red mud, but by year two all amendments were equally effective. In an additional pot experiment, P application in combination with red mud or lime decreased the Pb concentration, but not total uptake of Pb in Festuca rubra compared to red mud alone. The results show that both red mud and lime can be used to remediate a heavily contaminated acid soil to allow re-vegetation. - Red mud was effective in immobilising heavy metals in soil

  20. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud

    Energy Technology Data Exchange (ETDEWEB)

    Gray, C.W. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Dunham, S.J. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Dennis, P.G. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Zhao, F.J. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); McGrath, S.P. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom)]. E-mail: steve.mcgrath@bbsrc.ac.uk

    2006-08-15

    We evaluated the effectiveness of lime and red mud (by-product of aluminium manufacturing) to reduce metal availability to Festuca rubra and to allow re-vegetation on a highly contaminated brown-field site. Application of both lime and red mud (at 3 or 5%) increased soil pH and decreased metal availability. Festuca rubra failed to establish in the control plots, but grew to a near complete vegetative cover on the amended plots. The most effective treatment in decreasing grass metal concentrations in the first year was 5% red mud, but by year two all amendments were equally effective. In an additional pot experiment, P application in combination with red mud or lime decreased the Pb concentration, but not total uptake of Pb in Festuca rubra compared to red mud alone. The results show that both red mud and lime can be used to remediate a heavily contaminated acid soil to allow re-vegetation. - Red mud was effective in immobilising heavy metals in soil.

  1. Identification of Calotropis procera L. as a potential phytoaccumulator of heavy metals from contaminated soils in Urban North Central India

    International Nuclear Information System (INIS)

    D'Souza, Rohan J.; Varun, Mayank; Masih, Jamson; Paul, Manoj S.

    2010-01-01

    Lead and cadmium levels were monitored in soil at fifteen urban (riverbank, roadside, industrial and residential) sites in the north central part of India. Calotropis procera, a hardy xerophytic plant was identified and selected for remedial potential as it was seen growing well at all sites. Root and leaf samples were collected simultaneously with soil samples to assess the characteristics of accumulation and tolerance of Pb and Cd in C. procera. Chlorophyll and phenological studies were undertaken to investigate the health of plants. The overall trend of Pb and Cd content in soil and plant samples was in the order Industrial > Roadside > Riverbank > Residential. The highest uptake of both the metals was observed in plants from industrial sites. Sites with more anthropogenic disturbance like vehicular and machinery exhausts exhibited reduced chlorophyll levels, stunted growth as well as a delayed, shortened reproductive phase. The ratios of Pb in leaves to Pb in soil were in the range of 0.60-1.37; while similar ratios of Cd were in the range of 1.25-1.83. Highly significant correlation coefficients were determined between concentrations of Pb and Cd in the samples with R 2 values 0.839 for soil, 0.802 for leaf and 0.819 for root samples. The strong correlation between the degree of contamination and concentrations of Pb and Cd in plant samples identifies C. procera as an effective heavy metal remediator of contaminated lands coupled with environmental stress.

  2. Effects of heavy metals/metalloids contamination of soils on micronucleus induction in Tradescantia pallida

    Directory of Open Access Journals (Sweden)

    Neelima Meravi

    2013-06-01

    Full Text Available The present study was conducted in GGV campus, Bilaspur in which heavy metals/metalloids speciation of soil (for Cr, Fe, Ni, Cd and Pb was performed for assessing the genotoxicity of these metals. The metals concentrations were measured with the help of AAS 7000 (Shimadzu and the standard solution was prepared using standard metal solution of Inorganic Ventures. The concentrations of Cr, Fe, Ni, Cd and Pb (in ug/100 g soil were 12.4, 33.9, 3.1, 0.07 and 2.4 respectively. The flowers of Tradescantia pallida plants growing in this soil were taken and their micronucleus (Trad-MCN bioassay was performed. Trad-MCN bioassay was performed using the protocols established by Ma (1981. The study revealed that at these concentrations of metals micronuclei (stained objects that were smaller than the nuclei and not connected to the nuclei are classified as MCN were formed. Therefore it can be inferred from the present study that soil of GGV campus is genotoxic for the Tradescantia pallida.

  3. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization.

    Science.gov (United States)

    Kim, Han Sik; Jung, Myung Chae

    2012-01-01

    This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment.

  4. heavy metal fixation in contaminated soil using non-toxic agents

    African Journals Online (AJOL)

    USER

    2013-05-08

    May 8, 2013 ... agricultural ecosystems (Chukwuka and Omotayo,. 2008), as well as remediation of former industrial sites which have been exposed to diffuse pollution by toxic heavy metals (Finžgar et al., 2006; Belviso et al., 2010). Among the remediation technologies available for contaminated sites, in situ (in place) ...

  5. Assessment of toxicity of heavy metal contaminated soils for Collembola in the field and laboratory

    DEFF Research Database (Denmark)

    Xu, Jie; Krogh, Paul Henning; Luo, Yongming

    2008-01-01

    We present a field and laboratory investigation of effects of increasing levels of heavy metal contamination on the biodiversity and performance of collembolans. A 40 year old pollution with Cu, Zn, Pb and Cd pollution due to Cu smelting over 40 years was investigated in a paddy field area of Zhe...

  6. ROLE OF SOME CHEMICAL MATERIALS ON THE PHYTO-EXTRACTION OF HEAVY METALS FROM CONTAMINATED SOILS WITH SUNFLOWER PLANTS (HELIANTHUS ANNUUS)

    International Nuclear Information System (INIS)

    ABD EL-BARY, S.A.; EL-NAKA, E.A.; RIZK, M.A.; LOTFY, S.M.

    2009-01-01

    Chelation and complexation of heavy metals were evaluated as practical ways to solubilize, detoxify and enhance heavy metals accumulation by plants. Sunflower (Helianthus annuus) was selected as potential heavy metals accumulator for metals phyto-extraction in two selected soils (clayey and sandy). To enhance metals phyto-extraction, ammonium nitrate and organic chelates such as EDTA and citric acid were added to soils at the rates from 0 to 20 mmol/kg soil as extracting solutions and applied to the soil by mixing thoroughly before planting. Dry matter production and metals concentrations in shoots and roots and soil pH were measured after 60 days.Plant dry matter production and metals accumulation were varied with soil contamination, chelate / organic acid form and rate, and soil type. The highest metals concentration was obtained in plants grown on clayey soil, however, the lowest content was observed in case of sandy soil. Addition of citric acid increased metals accumulation and translocation to the shoots significantly. Addition of 20 mmol/kg of citric acid to clayey soils increased metals concentration in shoots several folds of magnitude, but addition of ammonium nitrate had little effect on metal translocation to shoots. Citric acid was the most effective chelate in plant accumulation of tested metals.

  7. Heavy-metal contamination of agricultural soils irrigated with industrial effluents

    International Nuclear Information System (INIS)

    Nabi, G.; Ashraf, M.; Aslam, M. R.

    2001-01-01

    Pakistan is facing a thread of degradation of water and land-resources by industrial effluents. To evaluated the suitability of these effluents as a source of irrigation for agriculture and the study their effects on soil chemical properties, experiments were conducted in the industrial area of Sheikhupura, where effluent from Paper and Board Mill (PBM), Leather Industry (LI) and Fertilizer Industry (FI) were being used for irrigation. At each site, two fields were selected, one irrigated with industrial effluents and the other with tube-well/canal water. The soil samples were collected and analyzed for pH, ECe, SAR and for heavy metals, such as Cu, Cd, Cr, Zn, Pb, Mn, Fe, Al and Ni. Soil receiving effluent from LI showed higher ECe and SAR values, as compared to the soils receiving other effluents. The concentration of Al was high in the soil irrigated with LI effluent. The Mn and Fe contents were higher in soils irrigated with PBM effluent. Effluent from LI is not fit for irrigation, since its recipient soil showed high concentration of Cr and also high sodicity values. Except Cr, the heavy metals were not of environmental concern. (author)

  8. Heavy Metals (Mg, Mn, Ni and Sn contamination in Soil Samples of Ahvaz II Industrial Estate of Iran in 2013

    Directory of Open Access Journals (Sweden)

    Soheil l Sobhanardakani

    2016-04-01

    Full Text Available Background & Aims of the Study: Due to the rapid industrial development in Khuzestan province of Iran during recent years, this study was performed to analyze the variation of metals concentrations (Mg, Mn, Ni, and Sn in soil samples of Ahvaz II Industrial estate during the spring season of 2013. Materials & Methods: In this experimental study, 27 topsoil samples were collected from nine stations. The intensity of the soil contamination was evaluated, using a contamination factor (Cf and geo-accumulation index (I-geo. Results:  The mean soil concentrations (in mg kg-1 (dry weight were in ranged within 870-1144 (Mg, 188-300 (Mn, 93-199 (Ni and 9-15 (Sn. The data indicated that the I-geo value for all metals falls in class ‘1’. Also the Cf value for Mg and Mn falls in class ‘0’, the Cf value for Sn falls in class ‘1’ and the Cf value for Ni falls in the classes of ‘1’ and ‘2’. The result of the Pearson correlation showed that there were significant positive associations between all metals. Conclusions: According to the results which were achieved by a cluster analysis, there were significant positive associations among all metals based on Pearson correlation coefficient, especially between Ni and Sn; also both of them with Mn. Because the Ni originates from oil sources it can be resulted that Mn and Sn originate from oil sources, too. Therefore, industrial activities and exploitation of oil reservoirs are the main cause of pollution in that area. Also, it can be concluded that, with increasing the distance from the source of pollution, the accumulation of contaminants in the soil samples decreased.

  9. Helichrysum italicum growing on metalliferous areas as a potential tool in phytostabilization of metal-contaminated soils.

    Science.gov (United States)

    Bini, Claudio; Maleci, Laura; Giuliani, Claudia

    2015-04-01

    Plants that colonize metalliferous soils have developed physiological mechanisms that allow to tolerate high metal concentrations. Generally, metal uptake by these plants is not suppressed, but a detoxification process occurs, as a response to different strategies: some plants (accumulators) concentrate metals in the aerial parts, while others (excluders) present low metal concentrations in the aerial parts, since metals are arrested in their roots. In several regions of Italy (e.g. Veneto, Sardinia, Tuscany), numerous abandoned mine sites are present; On these metal-contaminated soils grow both metalliferous (e.g. Silene paradoxa) and non-metalliferous plants (e.g. Taraxacum officinale). Among them, Helichrysum italicum deserved attention since it is known as essential oil producer and is also used as a medicinal plant for its anti-inflammatory properties; for this reason, it must undergo the Drug Master File certifying the absence of chemical impurities and heavy metals. Samples of the whole plant (roots, leaves and flowers) of H. italicum have been collected at various sites, both mined and not mined, in order to ascertain its ability to uptake and translocate metals from roots to the aerial parts. Fresh and embedded material was examined by Light microscopy and Electron Microscopy (Scanning and Transmission) to ascertain possible damages in plant morphology. Dried samples were crushed, digested with HNO3 and analysed by ICP-OE technique for heavy metal (Cu, Fe, Mn, Zn) concentrations. Preliminary observations on the morphology of the different samples do not show significant differences in the leaf structure. The inorganic chemical composition of H. italicum was characterized by high metal content. Preliminary results of our analyses show that H. italicum accumulate metals (Mn, Zn) in roots, but do not translocate metals to the aerial parts; therefore, it may be considered an excluder plant. On the basis of our results, the aerial parts (leaves, flowers) of

  10. Heavy metals contamination of soils in response to wastewater irrigation in Rawalpindi region

    International Nuclear Information System (INIS)

    Mushtaq, N.; Khan, K.S.

    2010-01-01

    The study was conducted to evaluate the quality of effluents/ waste water samples from Rawalpindi region for irrigation purpose and to elucidate effects of their application on heavy metal contents in soils of area. Results indicated that the EC, SAR, RSC and TDS of most effluent/ waste water samples were above the critical limits. Cadmium and Cr were above the critical limits in almost all the effluent samples, whereas Ni was high in 14, Pb was high in 10, Cu was high in 5 and the Fe was high in 3 effluent samples as compared to critical limits. Regarding heavy metals contents of soils irrigated by these effluents/ waste water, total Fe, total Cd and total Ni were higher in almost all the sampled sites, whereas total Cr was high at 7 sampled sites. AB-DTPA extractable Fe and Zn were higher at all the sampled sites, while the extractable Cd was higher at 2 sampled sites. Overall, the effluent samples collected from Adiala showed high concentrations of heavy metals, whereas soils of Wah factory and Islamabad area had higher heavy metal contents (total and AB-DTPA extractable). On the basis of results it is concluded that quality of effluents/ waste water samples collected from different locations of Rawalpindi is not good for irrigation and the long term use of these effluents for crop production caused accumulation of some toxic metals in soils above critical limits which is harmful for soil health and may lead to elevated levels of heavy metals in crop plants. (author)

  11. Spatially explicit analysis of metal transfer to biota: influence of soil contamination and landscape.

    Directory of Open Access Journals (Sweden)

    Clémentine Fritsch

    Full Text Available Concepts and developments for a new field in ecotoxicology, referred to as "landscape ecotoxicology," were proposed in the 1990s; however, to date, few studies have been developed in this emergent field. In fact, there is a strong interest in developing this area, both for renewing the concepts and tools used in ecotoxicology as well as for responding to practical issues, such as risk assessment. The aim of this study was to investigate the spatial heterogeneity of metal bioaccumulation in animals in order to identify the role of spatially explicit factors, such as landscape as well as total and extractable metal concentrations in soils. Over a smelter-impacted area, we studied the accumulation of trace metals (TMs: Cd, Pb and Zn in invertebrates (the grove snail Cepaea sp and the glass snail Oxychilus draparnaudi and vertebrates (the bank vole Myodes glareolus and the greater white-toothed shrew Crocidura russula. Total and CaCl(2-extractable concentrations of TMs were measured in soils from woody patches where the animals were captured. TM concentrations in animals exhibited a high spatial heterogeneity. They increased with soil pollution and were better explained by total rather than CaCl(2-extractable TM concentrations, except in Cepaea sp. TM levels in animals and their variations along the pollution gradient were modulated by the landscape, and this influence was species and metal specific. Median soil metal concentrations (predicted by universal kriging were calculated in buffers of increasing size and were related to bioaccumulation. The spatial scale at which TM concentrations in animals and soils showed the strongest correlations varied between metals, species and landscapes. The potential underlying mechanisms of landscape influence (community functioning, behaviour, etc. are discussed. Present results highlight the need for the further development of landscape ecotoxicology and multi-scale approaches, which would enhance our

  12. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water.

    Science.gov (United States)

    Sharma, Sunita; Singh, Bikram; Manchanda, V K

    2015-01-01

    Nuclear power reactors are operating in 31 countries around the world. Along with reactor operations, activities like mining, fuel fabrication, fuel reprocessing and military operations are the major contributors to the nuclear waste. The presence of a large number of fission products along with multiple oxidation state long-lived radionuclides such as neptunium ((237)Np), plutonium ((239)Pu), americium ((241/243)Am) and curium ((245)Cm) make the waste streams a potential radiological threat to the environment. Commonly high concentrations of cesium ((137)Cs) and strontium ((90)Sr) are found in a nuclear waste. These radionuclides are capable enough to produce potential health threat due to their long half-lives and effortless translocation into the human body. Besides the radionuclides, heavy metal contamination is also a serious issue. Heavy metals occur naturally in the earth crust and in low concentration, are also essential for the metabolism of living beings. Bioaccumulation of these heavy metals causes hazardous effects. These pollutants enter the human body directly via contaminated drinking water or through the food chain. This issue has drawn the attention of scientists throughout the world to device eco-friendly treatments to remediate the soil and water resources. Various physical and chemical treatments are being applied to clean the waste, but these techniques are quite expensive, complicated and comprise various side effects. One of the promising techniques, which has been pursued vigorously to overcome these demerits, is phytoremediation. The process is very effective, eco-friendly, easy and affordable. This technique utilizes the plants and its associated microbes to decontaminate the low and moderately contaminated sites efficiently. Many plant species are successfully used for remediation of contaminated soil and water systems. Remediation of these systems turns into a serious problem due to various anthropogenic activities that have

  13. Assessment of potentially toxic metal contamination in the soils of a legacy mine site in Central Victoria, Australia.

    Science.gov (United States)

    Abraham, Joji; Dowling, Kim; Florentine, Singarayer

    2018-02-01

    The environmental impact of toxic metal contamination from legacy mining activities, many of which had operated and were closed prior to the enforcement of robust environmental legislation, is of growing concern to modern society. We have carried out analysis of As and potentially toxic metals (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the surface soil of a legacy gold mining site in Maldon, Victoria, Australia, to reveal the status of the current metal concentration. The results revealed the median concentrations of metals from highest to lowest, in the order: Mn > Zn > As > Cr > Cu > Pb > Ni > Co > Hg > Cd. The status of site was assessed directly by comparing the metal concentrations in the study area with known Australian and Victorian average top soil levels and the health investigation levels set by the National Environmental Protection Measures (NEPM) and the Department of Environment and Conservation (DEC) of the State of Western Australia. Although, median concentrations of As, Hg, Pb, Cu and Zn exceeded the average Australian and Victorian top soil concentrations, only As and Hg exceeded the ecological investigation levels (EIL) set by DEC and thus these metals are considered as risk to the human and aquatic ecosystems health due to their increase in concentration and toxicity. In an environment of climate fluctuation with increased storm events and forest fires may mobilize these toxic metals contaminants, pose a real threat to the environment and the community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In

  15. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    International Nuclear Information System (INIS)

    Voglar, Grega E.; Lestan, Domen

    2011-01-01

    Highlights: → We assess the feasibility of using soil S/S for industrial land reclamation. → Retarders, accelerators, plasticizers were used in S/S cementitious formulation. → We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg -1 of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm -2 achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  16. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    Energy Technology Data Exchange (ETDEWEB)

    Voglar, Grega E. [RDA - Regional Development Agency Celje, Kidriceva ulica 25, 3000 Celje (Slovenia); Lestan, Domen, E-mail: domen.lestan@bf.uni-lj.si [Agronomy Department, Centre for Soil and Environmental Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia)

    2011-08-30

    Highlights: {yields} We assess the feasibility of using soil S/S for industrial land reclamation. {yields} Retarders, accelerators, plasticizers were used in S/S cementitious formulation. {yields} We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) we