WorldWideScience

Sample records for metal compound catalyst

  1. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  2. First-row transition metal hydrogenation and hydrosilylation catalysts

    Science.gov (United States)

    Trovitch, Ryan J.; Mukhopadhyay, Tufan K.; Pal, Raja; Levin, Hagit Ben-Daat; Porter, Tyler M.; Ghosh, Chandrani

    2017-07-18

    Transition metal compounds, and specifically transition metal compounds having a tetradentate and/or pentadentate supporting ligand are described, together with methods for the preparation thereof and the use of such compounds as hydrogenation and/or hydrosilylation catalysts.

  3. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  4. Studies of Metal-Metal Bonded Compounds in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Berry, John F. [Univ. of Wisconsin, Madison, WI (United States)

    2018-01-19

    The overall goals of this research are (1) to define the fundamental coordination chemistry underlying successful catalytic transformations promoted by metal-metal bonded compounds, and (2) to explore new chemical transformations that occur at metal-metal bonded sites that could lead to the discovery of new catalytic processes. Transformations of interest include metal-promoted reactions of carbene, nitrene, or nitrido species to yield products with new C–C and C–N bonds, respectively. The most promising suite of transition metal catalysts for these transformations is the set of metal-metal bonded coordination compounds of Ru and Rh of the general formula M2(ligand)4, where M = Ru or Rh and ligand = a monoanionic, bridging ligand such as acetate. Development of new catalysts and improvement of catalytic conditions have been stymied by a general lack of knowledge about the nature of highly reactive intermediates in these reactions, the knowledge that is to be supplied by this work. Our three specific objectives for this year have been (A) to trap, isolate, and characterize new reactive intermediates of general relevance to catalysis, (B) to explore the electronic structure and reactivity of these unusual species, and how these two properties are interrelated, and (C) to use our obtained mechanistic knowledge to design new catalysts with a focus on Earth-abundant first-row transition metal compounds.

  5. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-04

    The main objective of our research has been to elucidate fundamental concepts associated with controlling the activity, selectivity, and stability of bifunctional, metal-based heterogeneous catalysts for tandem reactions, such as liquid-phase conversion of oxygenated hydrocarbons derived from biomass. We have shown that bimetallic catalysts that combine a highly-reducible metal (e.g., platinum) with an oxygen-containing metal promoter (e.g., molybdenum) are promising materials for conversion of oxygenated hydrocarbons because of their high activity for selective cleavage for carbon-oxygen bonds. We have developed methods to stabilize metal nanoparticles against leaching and sintering under liquid-phase reaction conditions by using atomic layer deposition (ALD) to apply oxide overcoat layers. We have used controlled surface reactions to produce bimetallic catalysts with controlled particle size and controlled composition, with an important application being the selective conversion of biomass-derived molecules. The synthesis of catalysts by traditional methods may produce a wide distribution of metal particle sizes and compositions; and thus, results from spectroscopic and reactions kinetics measurements have contributions from a distribution of active sites, making it difficult to assess how the size and composition of the metal particles affect the nature of the surface, the active sites, and the catalytic behavior. Thus, we have developed methods to synthesize bimetallic nanoparticles with controlled particle size and controlled composition to achieve an effective link between characterization and reactivity, and between theory and experiment. We have also used ALD to modify supported metal catalysts by addition of promoters with atomic-level precision, to produce new bifunctional sites for selective catalytic transformations. We have used a variety of techniques to characterize the metal nanoparticles in our catalysts, including scanning transmission electron

  6. Spray pyrolysis synthesis of γ-Al_2O_3 supported metal and metal phosphide catalysts and their activity in the hydrodeoxygenation of a bio-oil model compound

    International Nuclear Information System (INIS)

    Ly, Hoang Vu; Im, Kyungmin; Go, Youngchae; Galiwango, Emmanuel; Kim, Seung-Soo; Kim, Jinsoo; Choi, Jae Hyung; Woo, Hee Chul

    2016-01-01

    Highlights: • Spherical γ-Al_2O_3 supported metal and metal phosphide catalysts were synthesized by spray pyrolysis method. • Hydrodeoxygenation (HDO) of 2-furyl methyl ketone (FMK) was conducted using metal/metal phosphide catalysts. • FMK was converted into 2-allyl furan and methyl cyclohexane. • The highest FMK conversion of 83% was achieved over 10 wt% Ni/γ-Al_2O_3 catalysts at reaction temperature of 400 °C. - Abstract: In this study, spherical γ-Al_2O_3 supported metal and metal phosphide (Ni, Co, Ni_2P and CoP) catalysts were successfully prepared by combining sol-gel and spray pyrolysis methods. First boehmite sol was prepared based on the Yoldas process and then the corresponding metal salts were added to the sol at the desired concentration, followed by spray pyrolysis of the mixed solution. As the well-mixed solution was transformed to spherical γ-Al_2O_3 supported metal and metal phosphide catalysts during spray pyrolysis process, the metal species were uniformly distributed in the mesoporous γ-Al_2O_3 supports. The product catalysts were investigated under different conditions for hydrodeoxygenation of bio-oil model compound, 2-furyl methyl ketone (FMK), which is the main component of the bio-oil product from pyrolysis of Saccharina japonica. Among the investigated catalysts, the 10 wt% Ni/γ-Al_2O_3 catalyst after calcination at 800 °C showed the highest FMK conversion of 83.02% at the reaction temperature of 400 °C. The gas and liquid products were analyzed by gas chromatography (GC) with TCD/FID detectors and GC–MS, respectively, to determine the product compositions.

  7. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    Science.gov (United States)

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  8. Screening of Catalysts for Hydrodeoxygenation of Phenol as Model Compound for Bio-oil

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Grunwaldt, Jan-Dierk; Jensen, Peter Arendt

    2013-01-01

    Four groups of catalysts have been tested for hydrodeoxygenation (HDO) of phenol as a model compound of bio-oil, including: oxide catalysts, methanol synthesis catalysts, reduced noble metal catalysts, and reduced non-noble metal catalysts. In total 23 different catalysts were tested at 100 bar H2...... and 275 °C in a batch reactor. The experiments showed that none of the tested oxides and methanol synthesis catalysts had any significant activity for phenol HDO at the given conditions, which were linked to their inability to hydrogenate the phenol. HDO of phenol over reduced metal catalysts could...... on a carbon support, but more active than the carbon supported noble metal catalysts when supported on ZrO2. This observation indicates that the nickel based catalysts require a metal oxide as carrier on which the activation of the phenol for the hydrogenation can take place through heterolytic dissociation...

  9. New catalysts for coal processing: Metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox

    1999-12-03

    The subject of this research project was to investigate the catalytic properties of a new class of materials, transition metal carbides and nitrides, for treatment of coal liquid and petroleum feedstocks. The main objectives were: (1) preparation of catalysts in unsupported and supported form; (2) characterization of the materials; (3) evaluation of their catalytic properties in HDS and HDN; (4) measurement of the surface properties; and (5) observation of adsorbed species. All of the objectives were substantially carried out and the results will be described in detail below. The catalysts were transition metal carbides and nitrides spanning Groups 4--6 in the Periodic Table. They were chosen for study because initial work had shown they were promising materials for hydrotreating. The basic strategy was first to prepare the materials in unsupported form to identify the most promising catalyst, and then to synthesize a supported form of the material. Already work had been carried out on the synthesis of the Group VI compounds Mo{sub 2}C, Mo{sub 2}N, and WC, and new methods were developed for the Group V compounds VC and NbC. All the catalysts were then evaluated in a hydrotreating test at realistic conditions. It was found that the most active catalyst was Mo{sub 2}C, and further investigations of the material were carried out in supported form. A new technique was employed for the study of the bulk and surface properties of the catalysts, near edge x-ray absorption spectroscopy (NEXAFS), that fingerprinted the electronic structure of the materials. Finally, two new research direction were explored. Bimetallic alloys formed between two transition metals were prepared, resulting in catalysts having even higher activity than Mo{sub 2}C. The performance of the catalysts in hydrodechloration was also investigated.

  10. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which...... the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  11. Metal leaching from refinery waste hydroprocessing catalyst.

    Science.gov (United States)

    Marafi, Meena; Rana, Mohan S

    2018-05-18

    The present study aims to develop an eco-friendly methodology for the recovery of nickel (Ni), molybdenum (Mo), and vanadium (V) from the refinery waste spent hydroprocessing catalyst. The proposed process has two stages: the first stage is to separate alumina, while the second stage involves the separation of metal compounds. The effectiveness of leaching agents, such as NH 4 OH, (NH 4 ) 2 CO 3 , and (NH 4 ) 2 S 2 O 8 , for the extraction of Mo, V, Ni, and Al from the refinery spent catalyst has been reported as a function of reagent concentration (0.5 to 2.0 molar), leaching time (1 to 6 h), and temperature (35 to 60°C). The optimal leaching conditions were achieved to obtain the maximum recovery of Mo, Ni, and V metals. The effect of the mixture of multi-ammonium salts on the metal extraction was also studied, which showed an adverse effect for Ni and V, while marginal improvement was observed for Mo leaching. The ammonium salts can form soluble metal complexes, in which stability or solubility depends on the nature of ammonium salt and the reaction conditions. The extracted metals and support can be reused to synthesize a fresh hydroprocessing catalyst. The process will reduce the refinery waste and recover the expensive metals. Therefore, the process is not only important from an environmental point of view but also vital from an economic perspective.

  12. COATING OF POLYMERIC SUBSTRATE CATALYSTS ON METALLIC SURFACES

    Directory of Open Access Journals (Sweden)

    H. HOSSEINI

    2010-12-01

    Full Text Available This article presents results of a study on coating of a polymeric substrate ca-talyst on metallic surface. Stability of coating on metallic surfaces is a proper specification. Sol-gel technology was used to synthesize adhesion promoters of polysilane compounds that act as a mediator. The intermediate layer was coated by synthesized sulfonated polystyrene-divinylbenzene as a catalyst for production of MTBE in catalytic distillation process. Swelling of catalyst and its separation from the metal surface was improved by i increasing the quantity of divinylbenzene in the resin’s production process and ii applying adhesion pro¬moters based on the sol-gel process. The rate of ethyl silicate hydrolysis was intensified by increasing the concentration of utilized acid while the conden¬sation polymerization was enhanced in the presence of OH–. Sol was formed at pH 2, while the pH should be 8 for the formation of gel. By setting the ratio of the initial concentrations of water to ethyl silicate to 8, the gel formation time was minimized.

  13. Application of a mixed metal oxide catalyst to a metallic substrate

    Science.gov (United States)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  14. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  15. Noble metal catalysts in the production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.

    2013-11-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the desired fuel. Hydrogen and hydrogen-rich mixtures (synthesis gas) are promising energy sources as they are more efficient and cleaner than existing fuels, especially when they are used in fuel cells. Hydrotreatment is a catalytic process that can be used in the conversion of biomass or biomass-derived liquids into fuels. In autothermal reforming (ATR), catalysts are used in the production of hydrogen-rich mixtures from conventional fuels or bio-fuels. The different nature of biomass and biomass-derived liquids and mineral oil makes the use of catalysts developed for the petroleum industry challenging. This requires the improvement of available catalysts and the development of new ones. To overcome the limitations of conventional hydrotreatment and ATR catalysts, zirconia-supported mono- and bimetallic rhodium, palladium, and platinum catalysts were developed and tested in the upgrading of model compounds for wood-based pyrolysis oil and in the production of hydrogen, using model compounds for gasoline and diesel. Catalysts were also tested in the ATR of ethanol. For comparative purposes commercial catalysts were tested and the results obtained with model compounds were compared with those obtained with real feedstocks (hydrotreatmet tests with wood-based pyrolysis oil and ATR tests with NExBTL renewable diesel). Noble metal catalysts were active and selective in the hydrotreatment of guaiacol used as the model compound for the lignin fraction of wood-based pyrolysis oil and wood

  16. Hydrodeoxygenation of mono- and dimeric lignin model compounds on noble metal catalysts

    NARCIS (Netherlands)

    Guvenatam, Burcu; Kursun, Osman; Heeres, Hero; Pidko, Evgeny A.; Hensen, Emiel J. M.

    2014-01-01

    The influence of reaction conditions (temperature, acidity) on the catalytic performance of supported Pt, Pd and Ru catalysts for the aqueous phase hydrodeoxygenation (HDO) of lignin model compounds was systematically investigated. Phenol conversion proceeds via hydrogenation of the aromatic ring

  17. Metal complex catalysis in the synthesis of organoaluminium compounds

    International Nuclear Information System (INIS)

    Dzhemilev, Usein M; Ibragimov, Askhat G

    2000-01-01

    The published data on the synthesis of organoaluminium compounds involving metal complex catalysts are generalised and systematised. Hydro-, carbo- and cycloalumination reactions of alkenes, conjugated dienes and alkynes catalysed by Ti and Zr complexes are considered in detail. The use of organoaluminium reagents in organic synthesis and novel reactions involving these compounds are discussed. The bibliography includes 240 references.

  18. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie

    2017-01-19

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  19. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie; Samantaray, Manoja K.; Dey, Raju; Abou-Hamad, Edy; Kavitake, Santosh

    2017-01-01

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  20. Heterogeneous hydrogenation of unsaturated compounds with catalyst P-2-Ni with turnover numbers up to 90,000

    Energy Technology Data Exchange (ETDEWEB)

    Strohmeier, W; Pfoehler, M; Steigerwald, H [Wuerzburg Univ. (Germany, F.R.). Inst. fuer Physikalische Chemie

    1977-12-01

    Unsaturated compounds are very rapidly hydrogenated with nickel-boride catalyst P-2-Ni without solvent under mild conditions (70-85/sup 0/C and 10 bar). Turnover numbers UZ up to 90,000 and space-time-yields of 7.440 mmol product per l and 1 mgA Nickel in one hour with a mean catalyst activity a = 124 were observed. This hydrogenation catalyst has a power, which is in the same magnitude of very active noble metal catalysts.

  1. EXAFS characterization of supported metal catalysts in chemically dynamic environments

    International Nuclear Information System (INIS)

    Robota, H.J.

    1991-01-01

    Characterization of catalysts focuses on the identification of an active site responsible for accelerating desirable chemical reactions. The identification, characterization, and selective modification of such sites is fundamental to the development of structure-function relationships. Unfortunately, this goal is far from realized in nearly all catalysts, and particularly in catalysts comprised of small supported metal particles. X-ray absorption spectroscopy (XAS) has had a dramatic effect on our understanding of supported metal particles in their resting state. However, the performance of a catalyst can not be assessed from such simple resting state measurements. Among the factors which influence catalyst performance are the exact catalyst composition, including the support and any modifiers; particle size; catalyst finishing and pretreatment conditions; pressure, composition, and temperature of the operating environment; time. Gaining an understanding of how the structure of a catalytic site can change with such an array of variables requires that we begin to develop measurement methods which are effective under chemically dynamic conditions. Ideally, it should be possible to obtain a full X-ray absorption spectrum of each element thought to have a causal relationship with observed catalyst properties. From these spectra, we can optimally extract only a relatively limited amount of information which we must then piece together with information derived from other characterization methods and intuition to arrive at a hypothetical structure of the operating catalyst. Information about crystallinity, homogeneity, and general disorder can be obtained from the Debye-Waller factor. Finally, through analogy with known compounds, the electronic structure of the active atoms can be inferred from near edge absorption features

  2. Acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts for hydrodeoxygenation process

    Science.gov (United States)

    Lup, A. Ng K.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    Hydrodeoxygenation is an oxygen removal process that occurs in the presence of hydrogen and catalysts. This study has shown the importance of acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts in having high hydrodeoxygenation activity and selectivity. These properties are required to ensure the catalyst has high affinity for C-O or C=O bonds and the capability for the adsorption and activation of H2 and O-containing compounds. A theoretical framework of temperature programmed desorption technique was also discussed for the quantitative understanding of these properties. By using NH3-TPD, the nature and abundance of acid sites of catalyst can be determined. By using H2-TPD, the nature and abundance of metallic sites can also be determined. The desorption activation energy could also be determined based on the Redhead analysis of TPD spectra with different heating rates.

  3. Combinatorial computational chemistry approach to the design of metal catalysts for deNOx

    International Nuclear Information System (INIS)

    Endou, Akira; Jung, Changho; Kusagaya, Tomonori; Kubo, Momoji; Selvam, Parasuraman; Miyamoto, Akira

    2004-01-01

    Combinatorial chemistry is an efficient technique for the synthesis and screening of a large number of compounds. Recently, we introduced the combinatorial approach to computational chemistry for catalyst design and proposed a new method called ''combinatorial computational chemistry''. In the present study, we have applied this combinatorial computational chemistry approach to the design of precious metal catalysts for deNO x . As the first step of the screening of the metal catalysts, we studied Rh, Pd, Ag, Ir, Pt, and Au clusters regarding the adsorption properties towards NO molecule. It was demonstrated that the energetically most stable adsorption state of NO on Ir model cluster, which was irrespective of both the shape and number of atoms including the model clusters

  4. Recent Development of Catalysts for Removal of Volatile Organic Compounds in Flue Gas by Combustion: A Review

    Directory of Open Access Journals (Sweden)

    Marco Tomatis

    2016-01-01

    Full Text Available Volatile organic compounds (VOCs emitted from anthropogenic sources pose direct and indirect hazards to both atmospheric environment and human health due to their contribution to the formation of photochemical smog and potential toxicity including carcinogenicity. Therefore, to abate VOCs emission, the catalytic oxidation process has been extensively studied in laboratories and widely applied in various industries. This report is mainly focused on the benzene, toluene, ethylbenzene, and xylene (BTEX with additional discussion about chlorinated VOCs. This review covers the recent developments in catalytic combustion of VOCs over noble metal catalysts, nonnoble metal catalysts, perovskite catalysts, spinel catalysts, and dual functional adsorbent-catalysts. In addition, the effects of supports, coke formation, and water effects have also been discussed. To develop efficient and cost-effective catalysts for VOCs removal, further research in catalytic oxidation might need to be carried out to strengthen the understanding of catalytic mechanisms involved.

  5. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang

    2018-04-04

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  6. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang; Guan, Erjia; Zhang, Jian; Yang, Junhao; Zhu, Yihan; Han, Yu; Yang, Ming; Cen, Cheng; Fu, Gang; Gates, Bruce C.; Xiao, Feng-Shou

    2018-01-01

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  7. Group 11 Metal Compounds with Tripodal Bis(imidazole Thioether Ligands. Applications as Catalysts in the Oxidation of Alkenes and as Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Armando Varela-Ramírez

    2011-08-01

    Full Text Available New group 11 metal complexes have been prepared using the previously described tripodal bis(imidazole thioether ligand (N-methyl-4,5-diphenyl-2-imidazolyl2C(OMeC(CH32S(tert-Bu ({BITOMe,StBu}, 2. The pincer ligand offers a N2S donor atom set that can be used to coordinate the group 11 metals in different oxidation states [AuI, AuIII, AgI, CuI and CuII]. Thus the new compounds [Au{BITOMe,StBu}Cl][AuCl4]2 (3, [Au{BITOMe,StBu}Cl] (4, [Ag{BITOMe,StBu}X] (X = OSO2CF3- 5, PF6- 6 and [Cu{BITOMe,StBu}Cl2] (7 have been synthesized from reaction of 2 with the appropriate metal precursors, and characterized in solution. While attempting characterization in the solid state of 3, single crystals of the neutral dinuclear mixed AuIII-AuI species [Au2{BITOMe,S}Cl3] (8 were obtained and its crystal structure was determined by X-ray diffraction studies. The structure shows a AuIII center coordinated to the pincer ligand through one N and the S atom. The soft AuI center coordinates to the ligand through the same S atom that has lost the tert-butyl group, thus becoming a thiolate ligand. The short distance between the AuI-AuIII atoms (3.383 Å may indicate a weak metal-metal interaction. Complexes 2-7 and the previously described CuI compound [Cu{BITOMe,StBu}]PF6 (9 have been evaluated in the oxidation of biphenyl ethylene with tert-butyl hydrogen peroxide (TBHP as the oxidant. Results have shown that the AuI and AgI complexes 4 and 6 (at 10 mol % loading are the more active catalysts in this oxidative cleavage. The antimicrobial activity of compounds 2-5, 7 and 9 against Gram-positive and Gram-negative bacteria and yeast has also been evaluated. The new gold and silver compounds display moderate to high antibacterial activity, while the copper derivatives are mostly inactive. The gold and silver complexes were also potent against fungi. Their cytotoxic properties have been analyzed in vitro utilizing HeLa human cervical carcinoma cells. The compounds displayed a

  8. Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst

    International Nuclear Information System (INIS)

    Kim, Han-Gyu; Yang, Yoon-Cheol; Jeong, Kwang-Eun; Kim, Tae-Wan; Jeong, Soon-Yong; Kim, Chul-Ung; Jhung, Sung Hwa; Lee, Kwan-Young

    2013-01-01

    The catalytic conversion of ethanol to aromatic compounds ETA was studied over ZSM-5 heterogeneous catalysts. The effect of reaction temperature, weight hourly space velocity (WHSV), and addition of water and methanol, which are the potential impurities of bio-ethanol, on the catalytic performance was investigated in a fixed bed reactor. Commercial ZSM-5 catalysts having different Si/Al 2 ratios of 23 to 280 and modified ZSM-5 catalysts by addition of metal (Zn, La, Cu, and Ga) were used for the activity and stability tests in ETA reaction. The catalysts were characterized with ammonia temperature programmed desorption (NH3-TPD) and nitrogen adsorption-desorption techniques. The results of catalytic performance revealed that the optimal Si/Al 2 ratio of ZSM-5 is about 50-80 and the selectivity to aromatic compounds decreases in the order of Zn/La > Zn > La > Cu > Ga for the modified ZSM-5 catalysts. Among these catalysts from the ETA reaction, Zn-La/ZSM-5 showed the best catalytic performance for the ETA reaction. The selectivity to aromatic compounds was 72% initially and 56% after 30 h over the catalysts at reaction temperature of 437 .deg. C and WHSV of 0.8 h −1

  9. Dissolution of Metal Supported Spent Auto Catalysts in Acids

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-03-01

    Full Text Available Metal supported auto catalysts, have been used in sports and racing cars initially, but nowadays their application systematically increases. In Metal Substrate (supported Converters (MSC, catalytic functions are performed by the Platinum Group Metals (PGM: Pt, Pd, Rh, similarly to the catalysts on ceramic carriers. The contents of these metals make that spent catalytic converters are valuable source of precious metals. All over the world there are many methods for the metals recovery from the ceramic carriers, however, the issue of platinum recovery from metal supported catalysts has not been studied sufficiently yet. The paper presents preliminary results of dissolution of spent automotive catalyst on a metal carrier by means of acids: H2SO4, HCl, HNO3, H3PO4. The main assumption of the research was the dissolution of base metals (Fe, Cr, Al from metallic carrier of catalyst, avoiding dissolution of PGMs. Dissolution was the most effective when concentrated hydrochloric acid, and 2M sulfuric acid (VI was used. It was observed that the dust, remaining after leaching, contained platinum in the level of 0.8% and 0.7%, respectively.

  10. Oxidation of methyl heterocyclic compounds on vanadium oxide catalysts

    International Nuclear Information System (INIS)

    Shimanskaya, M.V.; Lejtis, L.A.; Iovel', I.G.; Gol'dberg, Yu.Sh.; Skolmejstere, R.A.; Golender, L.O.

    1985-01-01

    Data on vapor-phase oxidation of methyl derivatives of thiophene, Δ 2 - thiazo line, pyridine, pyrazine and pyramidine on oxide vanadium-molybdenum catalysts to corresponding heterylaldehydes are generalized. The dependence of catalytic properties of oxide vanadium-molybdenum systems in oxidation reactions of methylheterocyclic compounds on V:Mo ratio in the catalyst is revealed. It is shown that heterocyclic compounds are coordinated by a heteroatom on Lewis centres of V-Mo-O-catalyst primarily with partially reduced vanadium ions

  11. Gasification of carbon deposits on catalysts and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, J L

    1986-10-01

    'Coke' deposited on catalysts and reactor surfaces includes a variety of carbons of different structures and origins, their reactivities being conveniently assessed by Temperature Programmed Reaction (TPR). The gasification of carbon deposits obtained in the laboratory under well controlled conditions, and the regeneration of coked catalysts from petroleum refining processes are reviewed and discussed. Filamentary carbon deposits, containing dispersed metal particles, behave as supported metal catalysts during gasification, and show high reactivities. Pyrolytic and acid catalysis carbons are less reactive on their own, as the gasification is not catalysed; however, metal components of the catalyst or metal impurities deposited on the surface may enhance gasification. 26 refs., 8 figs., 2 tabs.

  12. Recycling of platinum group metals from the automotive catalysts

    International Nuclear Information System (INIS)

    Benevit, Mariana; Petter, Patricia Melo Halmenschlager; Veit, Hugo Marcelo

    2014-01-01

    Currently it is very important to use alternative sources of raw material for obtaining metals, avoiding the traditional mining. This work aims to characterize and evaluate the recoverability of platinum group metals present in automotive catalysts. Thus, the catalysts were divided into two groups: the first was catalysts used in 1.0 cars and the second was catalyst used in 2.0 cars. DRX and FRX techniques and chemical analysis performed by ICP/OES was used to characterized these materials. The results showed that there is a significant amount of platinum group elements in catalyst waste, which can be separated and reused. In the next step, hydro and pyrometallurgical routes, for metals extraction from catalyst waste, will be studied. (author)

  13. Complexes of metal chlorides with proton donors — promising polyfunctional catalysts for electrophilic processes

    Science.gov (United States)

    Minsker, Karl S.; Ivanova, S. R.; Biglova, Raisa Z.

    1995-05-01

    The Bronsted acids formed as a result of the interaction of aluminium chlorides with Group I and II metal chlorides in the presence of proton-donating compounds are promising polyfunctional catalysts for electrophilic processes (polymerisation, depolymerisation and degradation of macromolecules, alkylation, desulfurisation, and hydrogenation). The factor determing the electrophilic activity and selectivity of the action of the catalysts is their acidity. This makes it possible to predict the direction of the changes in the activity and selectivity of the catalyst in specific chemical processes in conformity with the opposite variation rule: with increase in the acidity of the electrophilic catalyst, their activity increases but the selectivity of their action diminishes. The bibliography includes 72 references.

  14. New uranium compounds preparation and use as catalyst for hydrogenation of non-saturated organic compounds

    International Nuclear Information System (INIS)

    Arnaudet, L.; Folcher, G.

    1985-01-01

    Preparation of new organic uranium compounds and their use as catalysts for hydrogenation of non-saturated organic compounds are described. These compounds include Uranium III, a cyclopentadienic group, an alkyl group and an acetylenic derivative C 6 H 5 C triple bonds CR fixed by a π bond. Catalysts can be prepared with depleted uanium for hydrogenation of olefins for example [fr

  15. Use of ionic liquids as coordination ligands for organometallic catalysts

    Science.gov (United States)

    Li, Zaiwei [Moreno Valley, CA; Tang, Yongchun [Walnut, CA; Cheng,; Jihong, [Arcadia, CA

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  16. Catalysis of metal-clay intercalation compound in the low temperature coal hydrogasification

    Energy Technology Data Exchange (ETDEWEB)

    Fuda, Kiyoshi; Kimura, Mitsuhiko; Miyamoto, Norimitsu; Matsunaga, Toshiaki

    1986-10-23

    Focusing the hydrogenating methanation by gaseous phase catalytic reactions of low temperature volatile components, the catalytic effects of Ni metal and the effects of carriers having sensitive effects on the catalytic activities of Ni metal were studied. Sample coals were prepared from Shin-Yubari coal, and Ni hydride-montmorillonite complex catalysts and the catalysts produced by carring Ni nitrate on alumina and burning in hydrogen gas flows were prepared. The hydrogasification were carried out in a reaction tube. As a result, the montmorillonite-Ni compounds catalysts had high catalitic effects and high conversion ratio of 90% or more in the low temperature coal gasification. The catalitic effects of carried Ni metal strongly depended on the carrier substances, and the rank of effects for the carriers was montmorillonite>zeorite>TiO/sub 2/>alpha-Al/sub 2/O/sub 3/>MgO>SiO/sub 2/=gamma-Al/sub 2/O/sub 3/. (3 figs, 3 tabs, 3 refs)

  17. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    International Nuclear Information System (INIS)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; Tucker, Melvin P.; Yang, Bin

    2017-01-01

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4 , Ln(OTf) 3 , In(OTf) 3 , Al(OTf) 3 ] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3 ) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.

  18. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongliang [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Current address: Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193 PR China; Wang, Huamin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Kuhn, Eric [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Tucker, Melvin P. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Yang, Bin [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA

    2017-11-14

    Super Lewis acids containing the triflate anion (e.g. Hf(OTf)4, Ln(OTf)3, Al(OTf)3) and noble metal catalysts (e.g. Ru/C, Ru/Al2O3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage via selective bonding to etheric oxygens while the noble metal catalysed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt% of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates via protonating hydroxyls and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalysed by super Lewis acids.

  19. Solvent-free Hydrodeoxygenation of Bio-oil Model Compounds Cyclopentanone and Acetophenone over Flame-made Bimetallic Pt-Pd/ZrO2 Catalysts

    Science.gov (United States)

    Jiang, Yijiao; Büchel, Robert; Huang, Jun; Krumeich, Frank; Pratsinis, Sotiris E.; Baiker, Alfons

    2013-01-01

    Bimetallic Pt-Pd/ZrO2 catalysts with different Pt/Pd atomic ratio and homogeneous dispersion of the metal nanoparticles were prepared in a single step by flame-spray pyrolysis. The catalysts show high activity and tuneable product selectivity for the solvent-free hydrodeoxygenation of the bio-oil model compounds cyclopentanone and acetophenone. PMID:22674738

  20. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  1. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  2. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts.

    Science.gov (United States)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; Tucker, Melvin P; Yang, Bin

    2018-01-10

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4 , Ln(OTf) 3 , In(OTf) 3 , Al(OTf) 3 ] and noble metal catalysts (e.g., Ru/C, Ru/Al 2 O 3 ) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf) 4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote deoxygenation reactions catalyzed by super Lewis acids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Niobium, catalyst repair kit

    International Nuclear Information System (INIS)

    Tanabe, K.

    1991-01-01

    This paper reports that niobium oxides, when small amounts are added to known catalysts, enhance catalytic activity and selectivity and prolong catalyst life. Moreover, niobium oxides exhibit a pronounced effect as supports of metal or metal oxide catalysts. Recently we found that the surface acidity of hydrated niobium pentoxide, niobic acid (Nb 2 O 5 · nH 2 O), corresponds to the acidity of 70% sulfuric acid and exhibits high catalytic activity, selectivity, and stability for acid-catalyzed reactions in which water molecules participate. Although there are few differences in electronegativity and ionic radius between niobium and its neighbors in the periodic table, it is interesting that the promoter effect, support effect, and acidic nature of niobium compounds are quite different from those of compounds of the surrounding elements. Here we review what's known of niobium compounds from the viewpoint of their pronounced catalytic behavior

  4. Metal Phosphate-Supported Pt Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Qian

    2014-12-01

    Full Text Available Oxides (such as SiO2, TiO2, ZrO2, Al2O3, Fe2O3, CeO2 have often been used to prepare supported Pt catalysts for CO oxidation and other reactions, whereas metal phosphate-supported Pt catalysts for CO oxidation were rarely reported. Metal phosphates are a family of metal salts with high thermal stability and acid-base properties. Hydroxyapatite (Ca10(PO46(OH2, denoted as Ca-P-O here also has rich hydroxyls. Here we report a series of metal phosphate-supported Pt (Pt/M-P-O, M = Mg, Al, Ca, Fe, Co, Zn, La catalysts for CO oxidation. Pt/Ca-P-O shows the highest activity. Relevant characterization was conducted using N2 adsorption-desorption, inductively coupled plasma (ICP atomic emission spectroscopy, X-ray diffraction (XRD, transmission electron microscopy (TEM, CO2 temperature-programmed desorption (CO2-TPD, X-ray photoelectron spectroscopy (XPS, and H2 temperature-programmed reduction (H2-TPR. This work furnishes a new catalyst system for CO oxidation and other possible reactions.

  5. Metal nanoparticles as a conductive catalyst

    Science.gov (United States)

    Coker, Eric N [Albuquerque, NM

    2010-08-03

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  6. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support.

    Science.gov (United States)

    Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye

    2017-12-01

    Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. An XPS study on ruthenium compounds and catalysts

    International Nuclear Information System (INIS)

    Bianchi, C.L.; Ragaini, V.; Cattania, M.G.

    1991-01-01

    The binding energy (BE) of the relevant peaks of several ruthenium compounds have been measured with a monochromatic small spot XPS. The BE of the 3d 5/2 level of ruthenium is in the range 279.91-282.88 eV. The variation of BE is due either to the variation of the oxidation state or to the different counter-ion. A series of catalysts with varying amounts of ruthenium supported on alumina and prepared using different precursors was also analyzed. The presence of more ruthenium species other than the metal was observed. On the basis of the values previously obtained on unsupported compounds, the species with higher BE were assigned to oxides. On all the samples prepared from RuCl 3 , an additional peak at a very high BE (283.79 eV) has been observed. This peak is related to the presence of chlorine on the surface: it is suggested that it is related to a charge transfer interaction. The influence of this species on the CO reactivity in the Fischer-Tropsch reaction is discussed. (orig.)

  8. Antipollution processing of a used refining catalyst and metal recovery

    Energy Technology Data Exchange (ETDEWEB)

    Trinh Dinh Chan; Llido, E.

    1992-04-30

    The used catalyst, containing metals such as vanadium, nickel and iron, is unloaded from the plant and is first processed by stripping; it is then calcined in critical conditions, and the catalyst metals are leached with a sodium hydroxide or sodium carbonate aqueous solution. The antipollution process can be applied to oil fraction hydroconversion or hydroprocessing catalysts.

  9. Recycling of spent noble metal catalysts with emphasis on pyrometallurgical processing

    Energy Technology Data Exchange (ETDEWEB)

    Hagelueken, C. [Degussa Huels AG, Hanau (Germany)

    1999-09-01

    Precious metal catalysts for catalytic Naphta Reforming, Isomerization, Hydrogenation and other chemical and petrochemical processes are valuable assets for oil refineries and chemical companies. At the end of the service life of a reactor load of catalyst, the efficient and reliable recovery of the precious metals contained in the catalyst is of paramount importance. More than 150 years of technological advances at Degussa-Huels have resulted in refining methods for all kinds of precious metal containing materials which guarantee an optimum technical yield of the precious metals included. The refining of catalysts today is one of the important activities in the precious metals business unit. In the state-of-the-art precious metal refinery at Hanau in the centre of Germany, a wide variety of processes for the recovery of all precious metals is offered. These processes include accurate preparation, sampling and analysis as well as both wet-chemical and pyrometallurgical recovery techniques. Special emphasis in this presentation is laid on the advantages of pyrometallurgical processes for certain kinds of catalysts. To avoid any risks during transport, sampling and treatment of the spent catalyst, all parties involved in the recycling chain strictly have to follow the relevant safety regulations. Under its commitment to 'Responsible Care' standard procedures have been developed which include pre-shipment samples, safety data sheets/questionnaires and inspection of spent catalysts. These measures not only support a safe and environmentally sound catalyst recycling but also enable to determine the most suitable and economic recovery process - for the benefit of the customer. (orig.)

  10. Calcium and lanthanum solid base catalysts for transesterification

    Science.gov (United States)

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  11. 4,6-Dimethyl-dibenzothiophene conversion over Al{sub 2}O{sub 3}-TiO{sub 2}-supported noble metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Sara [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Escobar, Jose, E-mail: jeaguila@imp.mx [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico); Vazquez, Armando; Reyes, Jose Antonio de los [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Hernandez-Barrera, Melissa [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico)

    2011-03-15

    Research highlights: {yields} Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were pore-filling impregnated to obtain Pd, Pt and Pd-Pt catalysts with {approx}1 wt% nominal metal loading. {yields} Reduced catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS). {yields} In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts. {yields} Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide. {yields} Yield to different products over various catalysts seemed to be strongly influenced by metallic particles dispersion. - Abstract: Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were synthesized using a low-temperature sol-gel method and were further pore-filling impregnated to obtain Pd and Pt catalysts with {approx}1 wt% nominal metal loading. Simultaneous impregnation was used to prepare bimetallic materials at Pd:Pt = 80:20. Solids characterization was carried out by N{sub 2}-physisorption, high-resolution transmission electron microscopy (HR-TEM and E-FTEM), X-ray diffraction, temperature-programmed reduction and CO-chemisorption. Reduced (350 deg. C, H{sub 2} flow) catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS) (in n-dodecane, at 300 deg. C and 5.5 MPa, batch reactor). In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts, where bimetallic Pd-Pt with AT2 carrier had the highest organo-S compound conversion. Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide (as compared to alumina-supported ones). Yield to different products over various catalysts seemed to be strongly influenced by

  12. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds

    International Nuclear Information System (INIS)

    Hutchings, G.; Heneghan, C.S.; Taylor, S.H.

    1996-01-01

    The industrial release of hydrocarbons and chlorine-containing organic molecules into the environment continues to attract considerable public concern, which in turn has led to governmental attempts to control such emissions. The challenge is to reduce pollution without stifling economic growth. Chlorine-containing pollutants are known to be particularly stable, and at present the main industrial process for their destruction involves thermal oxidation at 1,000 o C, an expensive process that can lead to the formation of highly toxic by-products such as dioxins and dibenzofurans. Catalytic combustion at lower temperatures could potentially destroy pollutants more efficiently (in terms of energy requirements) and without forming toxic by-products. Current industrial catalysts are based on precious metals that are deactivated rapidly by organochlorine compounds. Here we report that catalysts based on uranium oxide efficiently destroy a range of hydrocarbon and chlorine-containing pollutants, and that these catalysts are resistant to deactivation. We show that benzene, toluene, chlorobutane and chlorobenzene can be destroyed at moderate temperatures ( o C) and industrially relevant flow rates. (Author)

  13. Polymerization catalysts containing electron-withdrawing amide ligands

    Science.gov (United States)

    Watkin, John G.; Click, Damon R.

    2002-01-01

    The present invention describes methods of making a series of amine-containing organic compounds which are used as ligands for group 3-10 and lanthanide metal compounds. The ligands have electron-withdrawing groups bonded to them. The metal compounds, when combined with a cocatalyst, are catalysts for the polymerization of olefins.

  14. A method for hydrogenating and carbonylizing unsaturated compounds in the presence of catalysts based on phosphine and metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, J C; Dyer, G

    1982-12-22

    The hydrogenation of unsaturated organic compounds or the attachment to them of CO is accomplished with contact with a synthesis gas in the presence of a stereospecific catalyst (Kt), a compound of a metal of the platinum group (preferably Rhodium, but also Platinum, Palladium, Ruthenium or Iridium) and an asymmetrical bis-phosphine of the formula A-(CH2)n-B, where A and B are phosphine groups. R2P and R'2P or RRhP, where R is an aryl radical, R' is aralkyl, alcarylic or alkyl radical, n = 1 to 10, or an asymmetrical monophosphine of the formula R2-R'P. The complex compound also includes Hydrogen, CO and (or) halogen (preferably Chlorine) as ligands. The physical properties of the obtained complex compounds of the carbonylchlorbisphosphines or Rh are presented: trans-(RhC1-(CO)(Ph2P(CH2)6PPh2))2; trans-(RhC1(CO)(C2H5PhP-(CH2)6PPh2))2; trans-(RhC1(CO)(cycloC6H11PhP(CH2)6-PPh2))2; trans-(RhC1(CO)(C2H5PhP(CH2)4PPh2)2; trans-(RhC1(CO)(C2H5PhP(Ch2))2 and PhC1(CO)4(p-C6H4CH2)2P(Ch2)6PPh2). The isolated complexes are light yellow crystalline substances.

  15. An improved method of preparation of nanoparticular metal oxide catalysts

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns an improved method of preparation of nanoparticular vanadium oxide/anatase titania catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular vanadium oxide/anatase titania catalyst precursors comprising...... combustible crystallization seeds upon which the catalyst metal oxide is coprecipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step....

  16. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    Science.gov (United States)

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal

  17. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  18. Two new POMOF compounds constructed from polyoxoanions, metals and organic ligands

    Science.gov (United States)

    Xiao, Li-Na; Zhang, Hao; Zhang, Ting-Ting; Zhang, Xiao; Cui, Xiao-Bing

    2018-03-01

    Two new POMOF compounds, namely [PMo12V2O42][Cu3(4,4'-bpy)3]·(DABCO) (1) and [PMo10V4O42][Cu2(4,4'-bpy)2][Cu(phen)2]2 (2) (DABCO = triethylenediamine, bpy = bipyridine, phen = 1,10-phenanthroline)), have been synthesized and characterized by IR, UV-Vis, XRD, elemental analysis and X-ray diffraction analysis. Crystal structure analyses reveal that compounds 1 and 2 exhibit novel 2-D layered framework structures constructed from bi-capped Keggin molybdenum-vanadium polyoxoanions, metals and organic ligands, respectively. The main difference of the two compounds is that compound 2 contains both Cu2+ and Cu+ complexes. In addition, we also investigate the catalytic properties of the two compounds, both compound 1 and 2 are excellent catalysts for the epoxidation of styrene.

  19. Supported chromium-molybdenum and tungsten sulfide catalysts

    International Nuclear Information System (INIS)

    Chianelli, R.R.; Jacobson, A.J.; Young, A.R.

    1988-01-01

    This patent describes the process for preparing a supported hydroprocessing catalyst. The process comprising compositing a quantity of a particulate, porous catalyst support material comprising one or more refactory oxides with one or more catalyst precursor salts and heating the composite at elevated temperature of at least about 200/sup 0/C up to about 600/sup 0/, in the presence of a sulfur-bearing compound in an amount whereby sulfur in the form of the sulfur-bearing compound in an amount whereby sulfur in the form of the sulfur bearing compound is present in excess of that contained in the catalyst precursor and under oxygen-free conditions for a time sufficient to form the catalyst. The catalyst precursor salt contains a tetrathiometallate anion of Mo, W or mixture therof and a cation comprising trivalent chromium or a mixture of trivalent chromium with one or more divalent promoter metals selected from the group consisting of Fe, Ni, Co, Mn, Cu and a mixture thereof wherein the trivalent chromium and divalent promoter metals are chelated by at least one neutral, nitrogen-containing polydentate ligand, L

  20. Metal Oxide Supported Vanadium Substituted Keggin Type Polyoxometalates as Catalyst For Oxidation of Dibenzothiophene

    Science.gov (United States)

    Lesbani, Aldes; Novri Meilyana, Sarah; Karim, Nofi; Hidayati, Nurlisa; Said, Muhammad; Mohadi, Risfidian; Miksusanti

    2018-01-01

    Supported polyoxometalatate H4[γ-H2SiV2W10O40]·nH2O with metal oxide i.e. silica, titanium, and tantalum was successfully synthesized via wet impregnation method to form H4[γ-H2SiV2W10O40]·nH2O-Si, H4[γ-H2SiV2W10O40]·nH2O-Ti, and H4[γ-H2SiV2W10O40]·nH2O-Ta. Characterization was performed using FTIR spectroscopy, X-Ray analyses, and morphology analyses using SEM. All compounds were used as the catalyst for desulfurization of dibenzothiophene (DBT). Silica and titanium supported polyoxometalate H4[γ-H2SiV2W10O40]·nH2O better than tantalum due to retaining crystallinity after impregnation process. On the other hand, compound H H4[γ-H2SiV2W10O40]·nH2O-Ta showed high catalytic activity than other supported metal oxides for desulfurization of DBT. Optimization desulfurization process resulted in 99% conversion of DBT under a mild condition at 70 °C, 0.1 g catalyst, and reaction for 3 hours. Regeneration studies showed catalyst H4[γ-H2SiV2W10O40]·nH2O-Ti was remaining catalytic activity for desulfurization of DBT.

  1. Properties and application of noble metal catalysts for heterogeneous catalytic hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Horn, G; Frohning, C D; Cornils, B [Ruhrchemie A.G., Oberhausen (Germany, F.R.)

    1976-07-01

    The special properties of the six platinum group elements - ruthenium, rhodium, palladium, osmium, iridium, platinum - make them useful as active metals for catalytic reactions. Especially valuable is their property of favouring a single reaction even when the possibility of a number of parallel reactions exists under certain reaction conditions. This selectivity of the noble metal catalyst may be directed or enhanced through appropriate choise of the metal, the reaction conditions, the duration of the reaction, the amount of hydrogen etc. Even the physical state of the catalyst - supported or unsupported - is of influence when using noble metal catalysts as described in this report.

  2. Catalytic Pyrolysis of Tar Model Compound with Various Bio-Char Catalysts to Recycle Char from Biomass Pyrolysis

    Directory of Open Access Journals (Sweden)

    Jinmiao Liu

    2016-03-01

    Full Text Available Tar and char can be regarded as unwanted byproducts during the gasification process. In this study, three types of catalyst, i.e., biomass char (bio-char, nickel supported on biomass (Ni+bio-char, and nickel supported on bio-char (bio-char+Ni, were studied to compare the catalytic effects of different preparation methods on tar model compound removal. The structural characteristics of the three catalysts were also investigated by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Brunauer-Emmett-Teller (BET methods. The results revealed that Ni+bio-char catalyst showed much higher activity for the reformation of toluene (C7H8 as a tar model compound than the other two catalysts. Toluene could be completely converted to small gas molecules at a conversion rate of 99.92% at 800 °C, and the maximum yield of gas was 432 mL/(mL C7H8. In particular, the H2 and CH4 yields were 339 and 85 mL/(mL C7H8 at 850 °C, respectively. An N2 absorption-desorption experiment demonstrated that the specific surface area of Ni+bio-char was 32.87 times that of bio-char and 8.39 times that of bio-char+Ni. Moreover, metallic nickel (Ni0 particles could be generated in the carbon matrix of Ni+bio-char catalyst. SEM analysis confirmed that the Ni+bio-char catalyst had a more porous structure. Nickel supported on biomass might be a promising catalyst for tar reformation because of its excellent catalytic activities.

  3. Pyrolysis of marine biomass to produce bio-oil and its upgrading using a novel multi-metal catalyst prepared from the spent car catalytic converter.

    Science.gov (United States)

    Sabegh, Mahzad Yaghmaei; Norouzi, Omid; Jafarian, Sajedeh; Khosh, Akram Ghanbari; Tavasoli, Ahmad

    2018-02-01

    In order to reduce the economic and environmental consequences caused by spent car catalyst, we herein report for the first time a novel promising multi-metal catalyst prepared from spent car catalytic converters to upgrade the pyrolysis bio-oils. The physico-chemical properties of prepared catalyst were characterized by XRD, EDS, FESEM, and FT-IR analyses. The thermal stability of the multi-metal catalyst was studied with TGA. To investigate the activity of the catalyst, Conversion of Cladophora glomerata (C. glomerata) into bio-products was carried out via a fixed bed reactor with and without catalyst at the temperature of 500°C. Although the catalyst didn't catalyze the gasification reaction, bio-oil was upgraded over the catalyst. The main effect of the catalyst on the bio-oil components is deoxygenating of nitrogen compounds and promotion the ketonization reaction, which converts acid to ketone and declines the corrosive nature of bio-oil. Copyright © 2017. Published by Elsevier Ltd.

  4. Hydrodeoxygenation of O-containing polycyclic model compounds using a novel organometallic catalyst-precursor

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, S.R.; Song, C.S.; Schobert, H.H. [Pennsylvania State University, University Park, PA (United States). Dept. of Materials Science and Engineering

    1996-09-05

    Compounds containing oxygen functional groups, especially phenols, are undesirable components of coal-derived liquids. Removal of these compounds from the products of coal liquefaction is required. A beneficial alternative would be the removal of these compounds, or the prevention of their formation, during the liquefaction reaction itself, rather than as a separate processing step. A novel organometallic catalyst precursor containing Co and Mo has been studied as a potential hydrogenation catalyst for coal liquefaction. To ascertain the hydrodeoxygenation activity of this catalyst under liquefaction conditions, model compounds were investigated. Anthrone, 2,6-di-r-btuyl-4-methyl-phenol, dinaphthyl ether and xanthene were reacted in the presence of the Co-Mo catalyst precursor and a precursor containing only Mo over a range of temperatures, providing a comparison of conversions to deoxygenated products. These conversions give an indication of the hydrodeoxygenating abilities of organometallic catalyst precursors within a coal liquefaction system. For example, at 400{degree}C dinaphthyl ether was converted 100% (4.5% O-containing products) in the presence of the Co-Mo organometallic precursor, compared to 76.5% conversion (7.4% O-products) in the presence of the Mo catalyst.

  5. Transition metal sulfide promoted molybdenum or tungsten sulfide catalysts and their uses for hydroprocessing

    International Nuclear Information System (INIS)

    Jacobson, A.J.; Chianelli, R.R.; Pecoraro, T.A.

    1987-01-01

    A process is described for hydrorefining a hydrocarbon feed which comprises contacting the feed at a temperature of at least about 150 0 C and in the presence of hydrogen with a catalyst obtained by heating one or more precursor salts at elevated temperature of at least about 150 0 C, in the presence of sulfur or one or more sulfur-bearing compounds and under oxygen-free conditions for a time sufficient to form the catalyst. The precursor salt contains a tetrathiometallate anion of Mo, W or mixture thereof and a cation comprising one or more divalent promoter metals which are chelated by at least one neutral, nitrogen-containing polydentate ligand. The divalent promoter metal is selected from the group consisting of Ni, Co, Zn, Cu and mixture thereof. The contacting occurs for a time sufficient to hydrorefine at least a portion of the feed

  6. Allotropic Carbon Nanoforms as Advanced Metal-Free Catalysts or as Supports

    Directory of Open Access Journals (Sweden)

    Hermenegildo Garcia

    2014-01-01

    Full Text Available This perspective paper summarizes the use of three nanostructured carbon allotropes as metal-free catalysts (“carbocatalysts” or as supports of metal nanoparticles. After an introductory section commenting the interest of developing metal-free catalysts and main features of carbon nanoforms, the main body of this paper is focused on exemplifying the opportunities that carbon nanotubes, graphene, and diamond nanoparticles offer to develop advanced catalysts having active sites based on carbon in the absence of transition metals or as large area supports with special morphology and unique properties. The final section provides my personal view on future developments in this field.

  7. Resin catalysts and method of preparation

    Science.gov (United States)

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  8. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Al-ShaikhAli, Anaam H.

    2016-11-30

    Liquid organic chemical hydride is a promising candidate for hydrogen storage and transport. Methylcyclohexane (MCH) to toluene (TOL) cycle has been considered as one of the feasible hydrogen carrier systems, but selective dehydrogenation of MCH to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based catalysts. Mono-metallic Ni based catalyst is a well-known dehydrogenation catalyst, but the major drawback with Ni is its hydrogenolysis activity to cleave C-C bonds, which leads to inferior selectivity towards dehydrogenation of MCH to TOL. This study elucidate addition of the second metal to Ni based catalyst to improve the TOL selectivity. Herein, ubiquitous bi-metallic nanoparticles catalysts were investigated including (Ni–M, M: Ag, Zn, Sn or In) based catalysts. Among the catalysts investigated, the high TOL selectivity (> 99%) at low conversions was achieved effectively using the supported NiZn catalyst under flow of excess H2. In this work, a combined study of experimental and computational approaches was conducted to determine the main role of Zn over Ni based catalyst in promoting the TOL selectivity. A kinetic study using mono- and bimetallic Ni based catalysts was conducted to elucidate reaction mechanism and site requirement for MCH dehydrogenation reaction. The impact of different reaction conditions (feed compositions, temperature, space velocity and stability) and catalyst properties were evaluated. This study elucidates a distinctive mechanism of MCH dehydrogenation to TOL reaction over the Ni-based catalysts. Distinctive from Pt catalyst, a nearly positive half order with respect to H2 pressure was obtained for mono- and bi-metallic Ni based catalysts. This kinetic data was consistent with rate determining step as (somewhat paradoxically) hydrogenation

  9. Polymer Catalysts Imprinted with Metal Ions as Biomimics of Metalloenzymes

    Directory of Open Access Journals (Sweden)

    Joanna Czulak

    2013-01-01

    Full Text Available This work presents the preparation and properties of molecularly imprinted polymers (MIPs with catalytic centers that mimic the active sites of metalloenzymes. The MIP synthesis was based on suspension polymerization of functional monomers (4-vinylpyridine and acrylonitrile with trimethylolpropane trimethacrylate as a crosslinker in the presence of transition metal ions and 4-methoxybenzyl alcohol as a template. Four metal ions have been chosen for imprinting from among the microelements that are the most essential in the native enzymes: Cu2+, Co2+, Mn2+, and Zn2+. To prepare catalysts, the required loading of metal ions was obtained during sorption process. The catalysts imprinted with Cu2+, Co2+, and Zn2+ were successfully used for hydroquinone oxidation in the presence of hydrogen peroxide. The Mn2+-imprinted catalyst showed no activity due to the insufficient metal loading. Cu2+ MIP showed the highest efficiency. In case of Cu- and Co-MIP catalysts, their activity was additionally increased by the use of surface imprinting technique.

  10. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.

    Science.gov (United States)

    Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin

    2014-12-01

    Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Low temperature incineration of mixed wastes using bulk metal oxide catalysts

    International Nuclear Information System (INIS)

    Gordon, M.J.; Gaur, S.; Kelkar, S.; Baldwin, R.M.

    1996-01-01

    Volume reduction of low-level mixed wastes from former nuclear weapons facilities is a significant environmental problem. Processing of these materials presents unique scientific and engineering problems due to the presence of minute quantities of radionuclides which must be contained and concentrated for later safe disposal. Low-temperature catalytic incineration is one option that has been utilized at the Rocky Flats facility for this purpose. This paper presents results of research regarding evaluation of bulk metal oxides as catalysts for low-temperature incineration of carbonaceous residues which are typical by-products of fluidized bed combustion of mixed wastes under oxygen-lean conditions. A series of 14 metal oxides were screened in a thermogravimetric analyzer, using on-line mass spectrometry for speciation of reaction product gases. Catalyst evaluation criteria focused on the thermal-redox activity of the metals using both carbon black and PVC char as surrogate waste materials. Results indicated that metal oxides which were P-type semiconductor materials were suitable as catalysts for this application. Oxides of cobalt, molybdenum, vanadium, and manganese were found to be particularly stable and active catalysts under conditions specific to this process (T<650C, low oxygen partial pressures). Bench-scale evaluation of these metal oxides with respect to stability to chlorine (HCl) attack was carried out at 550C using a TG/MS system. Cobalt oxide was found to be resistant to metal loss in a HCl/He gaseous environment while metal loss from Mo, Mn, and V-based catalysts was moderate to severe. XRD and SEM/EDX analysis of spent Co catalysts indicated the formation of non-stoichiometric cobalt chlorides. Regeneration of chlorinated cobalt was found to successfully restore the low-temperature combustion activity to that of the fresh metal oxide

  12. Solid, double-metal cyanide catalysts for synthesis of ...

    Indian Academy of Sciences (India)

    Sci. Vol. 126, No. 2, March 2014, pp. 499–509. c Indian Academy of Sciences. Solid, double-metal cyanide catalysts for ... drimers, HPs have a highly branched structural design ... geneous catalysts and corrosion of the reactor lin- ... Carbon dioxide is a greenhouse gas. .... polymer product was reprecipitated from the liquid.

  13. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Ilke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Univ. of Alabama, Tuscaloosa, AL (United States); Gates, Bruce C. [Univ. of California, Davis, CA (United States); Katz, Alexander [Univ. of California, Berkeley, CA (United States)

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify

  14. Interaction between Nafion ionomer and noble metal catalyst for PEMFCs

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    The implement of polymer impregnation in electrode structure (catalyst layer) decreasing the noble metal catalyst loading by a factor of ten , , is one of the essential mile stones in the evolution of Proton Exchange Membrane Fuel Cells’ development among the application of catalyst support and e...

  15. Application of Metal Catalysts for High Selectivity of Glycerol Conversion to Alcohols

    Science.gov (United States)

    2010-11-01

    The objective of this project is to determine the applicability of metal-based catalysts and optimize the process conditions for thermochemically producing primary alcohols. Metal catalysts were evaluated for their selectivities for producing alcohol...

  16. Development of Ni-Based Catalysts Derived from Hydrotalcite-Like Compounds Precursors for Synthesis Gas Production via Methane or Ethanol Reforming

    Directory of Open Access Journals (Sweden)

    Ya-Li Du

    2017-02-01

    Full Text Available As a favorably clean fuel, syngas (synthesis gas production has been the focus of concern in past decades. Substantial literatures reported the syngas production by various catalytic reforming reactions particularly in methane or ethanol reforming. Among the developed catalysts in these reforming processes, Ni-based catalysts from hydrotalcite-like compounds (HTLcs precursors have drawn considerable attention for their preferable structural traits. This review covers the recent literature reporting syngas production with Ni-based catalysts from HTLc precursors via methane or ethanol reforming. The discussion was initiated with catalyst preparation (including conventional and novel means, followed by subsequent thermal treatment processes, then composition design and the addition of promoters in these catalysts. As Ni-based catalysts have thermodynamic potential to deactivate because of carbon deposition or metal sintering, measures for dealing with these problems were finally summarized. To obtain optimal catalytic performances and resultantly better syngas production, based on analyzing the achievements of the references, some perspectives were finally proposed.

  17. Reactions of synthesis gas on silica supported transition metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Niemelae, M. [VTT Chemical Technology, Espoo (Finland). Lab. of Industrial Chemistry

    1997-12-31

    The effect of catalyst precursor and composition on the activation of CO was investigated using CO hydrogenation as a test reaction. The interrelations of preparation, pretreatment, characteristics and activity were clarified. For Co/SiO{sub 2} catalyst, MgO promotion increased the CO adsorption capacity and the hydrogen uptake, although the extent of reduction for cobalt remained the same or decreased. The conversion per active metallic cobalt site consequently increased in conjunction with MgO promotion, while the effect on overall performance per 1 g of catalyst remained moderate. The precursor affected the performance of Co/SiO{sub 2} considerably. CO was more strongly adsorbed on catalysts of carbonyl origin than on those derived from cobalt nitrate, the activity thus being higher. Although the nitrate derived Co/SiO{sub 2} appeared both to retain its activity and to regain its adsorption capacity better than the catalysts of carbonyl origin, the performance of the latter was superior with time on stream. For tetranuclear cluster based Co-Ru and Co-Rh catalysts, rhodium or ruthenium was in contact with the support and cobalt was enriched on top. On Co-Ru/SiO{sub 2} ruthenium enhanced deactivation, and no benefits in activity or oxygenate selectivity were achieved relative to the monometallic catalysts of cluster origin. The Co-Rh/SiO{sub 2} catalysts were also less active than those derived from monometallic clusters, but they exhibited higher selectivities to oxygenated compounds due to the presence of active sites on the perimeter of the cobalt particles located on rhodium. The highest selectivity to oxygenates was achieved by changing the decomposition atmosphere of Rh{sub 4}(CO){sub 12}/SiO{sub 2} from hydrogen to carbon monoxide. The results also showed two types of active sites to be operative in the formation of oxygenates - one for ethanol and another for aldehydes. (orig.) 69 refs.

  18. Development of Coke-tolerant Transition Metal Catalysts for Dry Reforming of Methane

    KAUST Repository

    Al-Sabban, Bedour E.

    2016-11-07

    Dry reforming of methane (DRM) is an attractive and promising process for the conversion of methane and carbon dioxide which are the most abundant carbon sources into valuable syngas. The produced syngas, which is a mixture of hydrogen and carbon monoxide, can be used as intermediates in the manufacture of numerous chemicals. To achieve high conversion, DRM reaction is operated at high temperatures (700-900 °C) that can cause major drawbacks of catalyst deactivation by carbon deposition, metal sintering or metal oxidation. Therefore, the primary goal is to develop a metal based catalyst for DRM that can completely suppress carbon formation by designing the catalyst composition. The strategy of this work was to synthesize Ni-based catalysts all of which prepared by homogeneous deposition precipitation method (HDP) to produce nanoparticles with narrow size distribution. In addition, control the reactivity of the metal by finely tuning the bimetallic composition and the reaction conditions in terms of reaction temperature and pressure. The highly endothermic dry reforming of methane proceeds via CH4 decomposition to leave surface carbon species, followed by removal of C with CO2-derived species to give CO. Tuning the reactivity of the active metal towards these reactions during DRM allows in principle the catalyst surface to remain active and clean without carbon deposition for a long-term. The initial attempt was to improve the resistance of Ni catalyst towards carbon deposition, therefore, a series of 5 wt.% bimetallic Ni9Pt1 were supported on various metal oxides (Al2O3, CeO2, and ZrO2). The addition of small amount of noble metal improved the stability of the catalyst compared to their monometallic Ni and Pt catalysts, but still high amount of carbon (> 0.1 wt.%) was formed after 24 h of the reaction. The obtained results showed that the catalytic performance, particle size and amount of deposited carbon depends on the nature of support. Among the tested

  19. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  20. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin (UC)

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  1. Process for hydroprocessing heavy oils utilizing sepiolite-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Auden, C.A.; Yan, T.-Y.

    1986-04-15

    A process is described for demetallizing and desulfurizing a hydrocarbon oil comprising contacting the hydrocarbon oil in the presence of hydrogen and a sepiolite-based catalyst composition under conditions of pressure and temperature sufficient to effect demetallization and desulfurization. The sepiolite-based catalyst composition has been prepared by first contacting the sepiolite with an aqueous solution of a first metal salt, then contacting the resultant metal ion-exchanged sepiolite with an aqueous solution of a compound of a second metal selected from the group consisting of molybdenum, tungsten and vanadium, and finally contacting the resultant metal-exchanged sepiolite product with an aqueous solution of a magnesium compound, thereby effecting a magnesium ion-exchange with the metal-exchanged sepiolite product and neutralizing acid sites on the sepiolite product.

  2. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    DEFF Research Database (Denmark)

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...... to various reaction parameters such as the type of the support, the size of the metal particles, and the acid/base properties of the reaction medium which were illustrated to largely influence the activity of the nanocatalyst and selectivity to the target product. - See more at: http...

  3. Process for Making a Noble Metal on Tin Oxide Catalyst

    Science.gov (United States)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  4. Process for the regeneration of metallic catalysts

    Science.gov (United States)

    Katzer, James R.; Windawi, Hassan

    1981-01-01

    A method for the regeneration of metallic hydrogenation catalysts from the class consisting of Ni, Rh, Pd, Ir, Pt and Ru poisoned with sulfur, with or without accompanying carbon deposition, comprising subjecting the catalyst to exposure to oxygen gas in a concentration of about 1-10 ppm. intermixed with an inert gas of the group consisting of He, A, Xe, Kr, N.sub.2 and air substantially free of oxygen to an extent such that the total oxygen molecule throughout is in the range of about 10 to 20 times that of the hydrogen sulfide molecular exposure producing the catalyst poisoning while maintaining the temperature in the range of about 300.degree. to 500.degree. C.

  5. Rejuvenation of residual oil hydrotreating catalysts by leaching of foulant metals. Modelling of the metal leaching process

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Kam, E.K.T.; Stanislaus, A.; Absi-Halabi, M. [Petroleum Technology Department, Petroleum, Petrochemicals and Materials Division, Kuwait Institute for Scientific Research, Safat (Kuwait)

    1996-11-19

    Increasing emphasis has been paid in recent years on the development of processes for the rejuvenation of spent residual oil hydroprocessing catalysts, which are deactivated by deposition of metals (e.g. vanadium) and coke. As part of a research program on this subject, we have investigated selective removal of the major metal foulant from the spent catalyst by chemical leaching. In the present paper, we report the development of a model for foulant metals leaching from the spent catalyst. The leaching process is considered to involve two consecutive operations: (1) removal of metal foulants along the main mass transfer channels connected to the narrow pores until the pore structure begins to develop and (2) removal of metal foulants from the pore structure. Both kinetic and mass transfer aspects were considered in the model development, and a good agreement was noticed between experimental and simulated results

  6. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    Science.gov (United States)

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  7. Nature of the metal-support interface in supported metal catalysts: results from x-ray absorption spectroscopy

    NARCIS (Netherlands)

    Koningsberger, D.C.; Gates, B.C.

    1992-01-01

    X-ray absorption spectra characterizing the metal-support interface in supported metal complexes and supported metal catalysts are summarized and evaluated with 29 refs. Mononuclear transition metal complexes on non-reducible metal oxide supports are bonded with metal-oxygen bonds of .apprx.2.15

  8. Soft X-ray spectroscopy of transition metal compounds: a theoretical perspective

    International Nuclear Information System (INIS)

    Bokarev, S.I.; Hilal, R.; Aziz, S.G.; Kühn, O.

    2017-01-01

    To date, X-ray spectroscopy has become a routine tool that can reveal highly local and element-specific information on the electronic structure of atoms in complex environments. Here, we report on the development of an efficient and versatile theoretical methodology for the treatment of soft X-ray spectra of transition metal compounds based on the multi-configurational self-consistent field electronic structure theory. A special focus is put on the L-edge photon-in/photon-out and photon-in/electron-out processes, i.e. X-ray absorption, resonant inelastic scattering, partial fluorescence yield, and photoelectron spectroscopy, all treated on the same theoretical footing. The investigated systems range from small prototypical coordination compounds and catalysts to aggregates of biomolecules.

  9. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  10. Vapor phase carbonylation of dimethyl ether and methyl acetate with supported transition metal catalysts

    International Nuclear Information System (INIS)

    Shikada, T.; Fujimoto, K.; Tominaga, H.O.

    1986-01-01

    The synthesis of acetic acid (AcOH) from methanol (MeOH) and carbon monoxide has been performed industrially in the liquid phase using a rhodium complex catalyst and an iodide promoter. The selectivity to AcOH is more than 99% under mild conditions (175 0 C, 28 atm). The homogeneous rhodium catalyst has been also effective for the synthesis of acetic anhydride (Ac 2 O) by carbonylation of dimethyl ether (DME) or methyl acetate (AcOMe). However, rhodium is one of the most expensive metals and its proved reserves are quite limited. It is highly desired, therefore, to develop a new catalyst as a substitute for rhodium. The authors have already reported that nickel supported on active carbon exhibits an excellent activity for the vapor phase carbonylation of MeOh in the presence of iodide promoter and under moderately pressurized conditions. In addition, corrosive attack on reactors by iodide compounds is expected to be negligible in the vapor phase system. In the present work, vapor phase carbonylation of DME and AcOMe on nickel-active carbon (Ni/A.C.) and molybdenum-active carbon (Mo/A.C.) catalysts was studied

  11. Development of supported noble metal catalyst for U(VI) to U(IV) reduction

    International Nuclear Information System (INIS)

    Tyagi, Deepak; Varma, Salil; Bhattacharyya, K.; Tripathi, A.K.; Bharadwaj, S.R.; Jain, V.K.; Sahu, Avinash; Vincent, Tessy; Jagatap, B.N.; Wattal, P.K.

    2015-01-01

    Uranium-plutonium separation is an essential step in the PUREX process employed in spent nuclear fuel reprocessing. This partitioning in the PUREX process is achieved by selective reduction of Pu(IV) to Pu(III) using uranous nitrate as reductant and hydrazine as stabilizer. Currently in our Indian reprocessing plants, the requirement of uranous nitrate is met by electrolytic reduction of uranyl nitrate. This process, however, suffers from a major drawback of incomplete reduction with a maximum conversion of ~ 60%. Catalytic reduction of U(VI) to U(IV) is being considered as one of the promising alternatives to the electro-reduction process due to fast kinetics and near total conversion. Various catalysts involving noble metals like platinum (Adams catalyst, Pt/Al 2 O 3 , Pt/SiO 2 etc.) have been reported for the reduction. Sustained activity and stability of the catalyst under harsh reaction conditions are still the issues that need to be resolved. We present here the results on zirconia supported noble metal catalyst that is developed in BARC for reduction of uranyl nitrate to uranous nitrate. Supported noble metal catalysts with varying metal loadings (0.5 - 2 wt%) were prepared via support precipitation and noble metal impregnation. The green catalysts were reduced either by chemical reduction using hydrazine hydrate or by heating in hydrogen flow or combination of both the steps. These catalysts were characterized by various techniques such as, XRD, SEM, TEM, N 2 adsorption and H 2 chemisorption. Performance of these catalysts was evaluated for U(VI) to U(IV) reduction with uranyl nitrate feed using hydrazine as reductant. The results with the most active catalyst are named as 'BARC-CAT', which was developed in our lab. (author)

  12. THE THEORY OF DEVELOPMENT OF SUPPORTED METAL-COMPLEX CATALYSTS

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-06-01

    Full Text Available Some results of the investigations for the purpose of development of supported metal-complex catalysts for phosphine and carbon monoxide oxidation as well as for ozone decomposition are summarized. The activity of such catalysts has been found to depend not only on a nature of a central atom and ligands but also on a nature of supports. The theoretical model explaining mechanisms of surface complex formation taking into account the influence of physicochemical and structural-adsorption properties of the supports (SiO2, Al2O3, carbon materials, zeolites, dispersed silicas, lamellar aluminosilicates, etc. has been proposed. For quantitative description of the support effect, such a thermodynamic parameter as the adsorbed water activity assignable with the help of water vapor adsorption isotherms has been introduced. Successive stability constants of the surface metal complexes have been calculated by the kinetic method and, hence, compositions and partial catalytic activity of the latter have been determined. Taking into account the competitive adsorption of metal ions on the supports, some schemes of formation of surface bimetallic complexes have been suggested. The compositions of the supported metal-complex catalysts have been optimized to meet requirements of their use in respirators and plants for air purification from foregoing gaseous toxicants.

  13. Graphene layer encapsulated metal nanoparticles as a new type of non-precious metal catalysts for oxygen reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhong, Lijie; Jensen, Jens Oluf

    2016-01-01

    Cheap and efficient non-precious metal catalysts for oxygen reduction have been a focus of research in the field of low-temperature fuel cells. This review is devoted to a brief summary of the recent work on a new type of catalysts, i.e., the graphene layer encapsulated metal nanoparticles....... The discussion is focused on the synthesis, structure, mechanism, performance, and further research....

  14. Development of super thin foil metal supported catalyst; Chousuhaku metal tantai shokubai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sanji, F; Takada, T [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    In order to improve warm-up performance, high heat resistance and long life durability of catalysts, the reduction of the metal support heat capacity has been focused. The effects of both reducing foil thickness and lowering cell density on low heat capacity have been investigated. As a result of engine bench and vehicle test, it was apparent that the reduction of foil thickness has greater effects. Newly developed 30 {mu} m foil thickness metal supported catalyst has quicker warm-up performance, and its structural durability up to 950degC is confirmed. 3 refs., 11 figs., 1 tab.

  15. Rhodium trichloride as a homogeneous catalyst for isotopic hydrogen exchange. Comparison with heterogeneous rhodium in the deuteriation of aromatic compounds and alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Blake, M R; Garnett, J L; Gregor, I K; Hannan, W; Hoa, K; Long, M A [New South Wales Univ., Kensington (Australia)

    1975-12-03

    The use of rhodium trichloride as a homogeneous catalyst for the exchange of aromatic compounds and alkanes is described; comparison of the results with corresponding data from heterogeneous rhodium metal and other homogeneous systems, e.g., platinum and iridium, supports the proposal that specific type of ..pi..-complex mechanisms are common to all such exchange systems.

  16. New antipollution processing of a used refining catalyst and complete recovery of the catalyst metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Trinh Dinh Chan; Llido, E.

    1992-05-15

    The used refining catalyst, containing metals such as vanadium, nickel and iron, is first processed by stripping; it is then calcined in critical conditions and heat processed in the presence of a melted alkaline base; the resulting solid matter is then water processed. The antipollution process can be applied to oil fraction hydroconversion or hydroprocessing catalysts.

  17. Identification of nitrogen compounds and amides from spent hydroprocessing catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H.K.; Gray, M.R. (University of Alberta, Edmonton, AB (Canada). Dept. of Chemical Engineering)

    1991-06-01

    A spent commercial naphtha hydrotreating catalyst was analyzed to identify compounds which had accumulated on the catalyst surface during its active life. The catalyst was extracted with methylene chloride, methanol and pyridine to remove adsorbed organic material, which was rich in nitrogen and oxygen. A series of quinolones were identified in the methanol extract after enrichment with HCl-modified silica gel adsorption and subsequent silica gel chromatography. Tetra- and hexahydroquinolones with alkyl substituents up to C{sub 3} were identified. Similar amides have been identified in asphaltenes, and are very resistant to hydrogenation. Tetrahydroquinolines and piperidines were detected in the pyridine extract. 36 refs., 8 figs., 2 tabs.

  18. Crystallochemistry of rhenium compounds with metal-metal bonds

    International Nuclear Information System (INIS)

    Koz'min, P.A.; Surazhskaya, M.D.

    1980-01-01

    A review is presented including a brief description of atomic structure of 59 coordination rhenium compounds with metal-metal bond. The most important bond lengths and valent angles are presented for each compound. The dependence of rhenium-rhenium bond length on its multiplicity is discussed and possible causes of deviations from this dependence (namely, axial ligand presence, steric repulsion of ligands) are considered. On the basis of qualitative comparison of electronegativity of ligands in dimer compounds with quarternary bond of rhenium-rhenium a supposition is made on the influence of formal charge of atomic group and summary electro-negativity of ligands on the possibility of the metal-metal bond formation

  19. Controlled metal nitrate decomposition for the preparation of supported metal Catalysts

    NARCIS (Netherlands)

    Wolters, M.

    2010-01-01

    High surface area supported metal (oxide) catalysts are essential for the production of fuels, chemicals, pharmaceuticals and the abatement of environmental pollution. Impregnation of high surface area supports, often silica or alumina, followed by drying, calcination and reduction is one of the

  20. Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Adeniyi [Stevens Inst. of Technology, Hoboken, NJ (United States); Manganaro, James [Anasyn LLC, Princeton, NJ (United States); Goodall, Brian [Valicor Renewables LLC, Dexter, MI (United States); Farrauto, Robert [Columbia Univ., New York, NY (United States)

    2015-03-24

    Valicor’s proprietary wet extraction process in conjunction with thermochemical pre-treatment was performed on algal biomass from two different algae strains, Nannochloropsis Salina (N.S.) and Chlorella to produce algae oils. Polar lipids such as phospholipids were hydrolyzed, and metals and metalloids, known catalyst poisons, were separated into the aqueous phase, creating an attractive “pre-refined” oil for hydrodeoxygenation (HDO) upgrading by Stevens. Oil content and oil extraction efficiency of approximately 30 and 90% respectively were achieved. At Stevens, we formulated a Pt-based bi-metallic catalyst which was demonstrated to be effective in the hydro-treating of the algae oils to produce ‘green’ diesel. The bi-metallic catalyst was wash-coated on a monolith, and in conjunction with a high throughput high pressure (pilot plant) reactor system, was used in hydrotreating algae oils from N.S. and Chlorella. Mixtures of these algae oils and refinery light atmospheric gas oil (LAGO) supplied by our petroleum refiner partner, Marathon Petroleum Corporation, were co-processed in the pilot plant reactor system using the Pt-based bi-metallic monolith catalyst. A 26 wt% N.S. algae oil/74 wt % LAGO mixture hydrotreated in the reactor system was subjected to the ASTM D975 Diesel Fuel Specification Test and it met all the important requirements, including a cetane index of 50.5. An elemental oxygen analysis performed by an independent and reputable lab reported an oxygen content of trace to none found. The successful co-processing of a mixture of algae oil and LAGO will enable integration of algae oil as a refinery feedstock which is one of the goals of DOE-BETO. We have presented experimental data that show that our precious metal-based catalysts consume less hydrogen than the conventional hydrotreating catalyst NiMo Precious metal catalysts favor the hydrodecarbonylation/hydrodecarboxylation route of HDO over the dehydration route preferred by base metal

  1. Design of Embedded Metal Catalysts via Reverser Micro-Emulsion System: a Way to Suppress Catalyst Deactivation by Metal Sintering

    KAUST Repository

    AlMana, Noor

    2016-06-19

    The development of highly selective and active, long-lasting, robust, low-cost and environmentally benign catalytic materials is the greatest challenge in the area of catalysis study. In this context, core-shell structures where the active sites are embedded inside the protecting shell have attracted a lot of researchers working in the field of catalysis owing to their enhanced physical and chemical properties suppress catalyst deactivation. Also, a new active site generated at the interface between the core and shell may increases the activity and efficiency of the catalyst in catalytic reactions especially for oxide shells that exhibit redox properties such as TiO2 and CeO2. Moreover, coating oxide layer over metal nanoparticles (NPs) can be designed to provide porosity (micropore/mesopore) that gives selectivity of the various reactants by the different gas diffusion rates. In this thesis, we will discuss the concept of catalyst stabilization against metal sintering by a core-shell system. In particular we will study the mechanistic of forming core-shell particles and the key parameters that can influence the properties and morphology of the Pt metal particle core and SiO2 shell (Pt@SiO2) using the reverse micro-emulsion method. The Pt@SiO2 core-shell catalysts were investigated for low-temperature CO oxidation reaction. The study was further extended to other catalytic applications by varying the composition of the core as well as the chemical nature of the shell material. The Pt NPs were embedded within another oxide matrix such as ZrO2 and TiO2 for CO oxidation reaction. These materials were studied in details to identify the factors governing the coating of the oxide around the metal NPs. Next, a more challenging system, namely, bimetallic Ni9Pt NPs embedded in TiO2 and ZrO2 matrix were investigated for dry reforming of methane reaction at high temperatures. The challenges of designing Ni9Pt@oxide core-shell structure with TiO2 and ZrO2 and their tolerance

  2. Activity Tests of Macro-Meso Porous Catalysts over Metal Foam Plate for Steam Reforming of Bio-Ethanol.

    Science.gov (United States)

    Park, No-Kuk; Jeong, Yong Han; Kang, Misook; Lee, Tae Jin

    2018-09-01

    The catalytic activity of a macro-mesoporous catalyst coated on a metal foam plate in the reforming of bio-ethanol to synthesis gas was investigated. The catalysts were prepared by coating a support with a noble metal and transition metal. The catalytic activity for the production of synthetic gas by the reforming of bio-ethanol was compared according to the support material, reaction temperature, and steam/carbon ratio. The catalysts coated on the metal foams were prepared using a template method, in which macro-pores and meso-pores were formed by mixing polymer beads. In particular, the thermodynamic equilibrium composition of bio-ethanol reforming with the reaction temperature and steam/carbon ratio to produce synthetic gas was examined using the HSC (Enthalpy-Entropy-Heat capacity) chemistry program in this study. The composition of hydrogen and carbon monoxide in the reformate gas produced by steam reforming over the Rh/Ni-Ce-Zr/Al2O3-based pellet type catalysts and metal foam catalysts that had been coated with the Rh/Al-Ce-Zr-based catalysts was investigated by experimental activity tests. The activity of the metal foam catalyst was higher than that of the pellet type catalyst.

  3. Oxygen-assisted conversion of propane over metal and metal oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Laate, Leiv

    2002-07-01

    An experimental set-up has been build and applied in activity/selectivity studies of the oxygen-assisted conversion of propane over metals and metal oxide catalysts. The apparatus has been used in order to achieve an improved understanding of the reactions between alkanes/alkenes and oxygen. Processes that have been studied arc the oxidative dehydrogenation of propane over a VMgO catalyst and the selective combustion of hydrogen in the presence of hydrocarbons over Pt-based catalysts and metal oxide catalysts. From the experiments, the following conclusions are drawn: A study of the oxidative dehydrogenation of propane over a vanadium-magnesium-oxide catalyst confirmed that the main problem with this system is the lack of selectivity due to complete combustion. Selectivity to propene up to about 60% was obtained at 10% conversion at 500{sup o}C, but the selectivity decreased with increasing conversion. No oxygenates were detected, the only by- products were CO and CO{sub 2}. The selectivity to propene is a strong function of the conversion of propane. The reaction rate of propane was found to be 1.0 {+-} 0.1 order in propane and 0.07 {+-} 0.02 order in oxygen. The kinetic results are in agreement with a Mars van Krevelen mechanism with the activation of the hydrocarbons as the slow step. The rate of propene oxidation to CO{sub 2} was studied and found to be significantly higher than that of propane. Another possible process involves the simultaneous equilibrium dehydrogenation of alkanes to alkenes and combustion of the hydrogen formed to shift the equilibrium dehydrogenation reaction further to the product alkenes. A study of the selective combustion of hydrogen in the presence of propane/propene was found to be possible under certain reaction conditions over some metal oxide catalysts. In{sub 2}O{sub 3}/SiO{sub 2}, unsupported Bi{sub 2}O{sub 3} and ZSM-5 show the ability to combust hydrogen in a gas mixture with propane and oxygen with good selectivity. Bi{sub 2

  4. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    Science.gov (United States)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  5. Highly aligned vertical GaN nanowires using submonolayer metal catalysts

    Science.gov (United States)

    Wang, George T [Albuquerque, NM; Li, Qiming [Albuquerque, NM; Creighton, J Randall [Albuquerque, NM

    2010-06-29

    A method for forming vertically oriented, crystallographically aligned nanowires (nanocolumns) using monolayer or submonolayer quantities of metal atoms to form uniformly sized metal islands that serve as catalysts for MOCVD growth of Group III nitride nanowires.

  6. Process for production of a borohydride compound

    Science.gov (United States)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-19

    A process for production of a borohydride compound M(BH.sub.4).sub.y. The process has three steps. The first step combines a compound of formula (R.sup.1O).sub.yM with aluminum, hydrogen and a metallic catalyst containing at least one metal selected from the group consisting of titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group; M is an alkali metal, Be or Mg; and y is one or two; wherein the catalyst is present at a level of at least 200 ppm based on weight of aluminum. The second step combines the compound of formula M(AlH.sub.3OR.sup.1).sub.y with a borate, boroxine or borazine compound to produce M(BH.sub.4).sub.y and a byproduct mixture containing alkali metal and aluminum aryloxides. The third step separates M(BH.sub.4).sub.y from the byproduct mixture.

  7. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal-organic frameworks.

    Science.gov (United States)

    Chambers, Matthew B; Wang, Xia; Elgrishi, Noémie; Hendon, Christopher H; Walsh, Aron; Bonnefoy, Jonathan; Canivet, Jérôme; Quadrelli, Elsje Alessandra; Farrusseng, David; Mellot-Draznieks, Caroline; Fontecave, Marc

    2015-02-01

    The first photosensitization of a rhodium-based catalytic system for CO2 reduction is reported, with formate as the sole carbon-containing product. Formate has wide industrial applications and is seen as valuable within fuel cell technologies as well as an interesting H2 -storage compound. Heterogenization of molecular rhodium catalysts is accomplished via the synthesis, post-synthetic linker exchange, and characterization of a new metal-organic framework (MOF) Cp*Rh@UiO-67. While the catalytic activities of the homogeneous and heterogeneous systems are found to be comparable, the MOF-based system is more stable and selective. Furthermore it can be recycled without loss of activity. For formate production, an optimal catalyst loading of ∼10 % molar Rh incorporation is determined. Increased incorporation of rhodium catalyst favors thermal decomposition of formate into H2 . There is no precedent for a MOF catalyzing the latter reaction so far. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Metal Nanoparticle Catalysts for Carbon Nanotube Growth

    Science.gov (United States)

    Pierce, Benjamin F.

    2003-01-01

    Work this summer involved and new and unique process for producing the metal nanoparticle catalysts needed for carbon nanotube (CNT) growth. There are many applications attributed to CNT's, and their properties have deemed them to be a hot spot in research today. Many groups have demonstrated the versatility in CNT's by exploring a wide spectrum of roles that these nanotubes are able to fill. A short list of such promising applications are: nanoscaled electronic circuitry, storage media, chemical sensors, microscope enhancement, and coating reinforcement. Different methods have been used to grow these CNT's. Some examples are laser ablation, flame synthesis, or furnace synthesis. Every single approach requires the presence of a metal catalyst (Fe, Co, and Ni are among the best) that is small enough to produce a CNT. Herein lies the uniqueness of this work. Microemulsions (containing inverse micelles) were used to generate these metal particles for subsequent CNT growth. The goal of this summer work was basically to accomplish as much preliminary work as possible. I strived to pinpoint which variable (experimental process, metal product, substrate, method of application, CVD conditions, etc.) was the determining factor in the results. The resulting SEM images were sufficient for the appropriate comparisons to be made. The future work of this project consists of the optimization of the more promising experimental procedures and further exploration onto what exactly dictated the results.

  9. PYROLYSIS OF ISOCHRYSIS MICROALGAE WITH METAL OXIDE CATALYSTS FOR BIO-OIL PRODUCTION

    Directory of Open Access Journals (Sweden)

    TEVFİK AYSU

    2016-12-01

    Full Text Available Pyrolysis of Isochrysis microalgae was carried out in a fixed-bed reactor without and with metal oxide catalysts (CeO2, TiO2, Al2O3 at the temperatures of 450, 500 and 550 oC with a constant heating rate of 40 oC/min. The pyrolysis conditions including catalyst and temperature were studied in terms of their effects on the yields of pyrolysis products and quality. The amount of bio-char, bio-oil and gas products was calculated. The composition of the produced bio-oils was determined by Elemental analysis (EA, Fourier transform infrared spectroscopy (FT-IR, proton nuclear magnetic resonance (1H NMR and Gas chromatography/mass spectrometry (GC–MS techniques. As a result of the pyrolysis experiments, it is shown that there have been significant effects of both catalyst and temperature on the conversion of Isochrysis microalgae into solid, liquid (bio-oil and gas products. The highest bio-oil yield (24.30 % including aqueous phase was obtained in the presence of TiO2 (50% as catalyst at 500 °C. 98 different compounds were identified by GC-MS in bio-oils obtained at 500 oC. According to 1H NMR analysis, bio-oils contained ∼60-64 % aliphatic and ∼17-19 % aromatic structural units. EA showed that the bio-oils contained ∼66-69 % C and having 31-34 MJ/kg higher heating values.

  10. Thin films of mixed metal compounds

    Science.gov (United States)

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  11. Fluxionally chiral DMAP catalysts: kinetic resolution of axially chiral biaryl compounds.

    Science.gov (United States)

    Ma, Gaoyuan; Deng, Jun; Sibi, Mukund P

    2014-10-27

    Can organocatalysts that incorporate fluxional groups provide enhanced selectivity in asymmetric transformations? To address this issue, we have designed chiral 4-dimethylaminopyridine (DMAP) catalysts with fluxional chirality. These catalysts were found to be efficient in promoting the acylative kinetic resolution of secondary alcohols and axially chiral biaryl compounds with selectivity factors of up to 37 and 51, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Water Splitting by Thin Film Metal-Oxo Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nocera, Daniel [Harvard Univ., Cambridge, MA (United States)

    2013-03-15

    OER with differential electrochemical mass spectrometry (DEMS) of Co-OEC. The OER mechanism of M-OECs was examined with complementary studies of model dicobalt compounds that captured the critical steps of the OER reaction. Additionally, the role of activating M-OECS with metal ion dopants was defined by developing structure–function relationships, guided by the principles of inorganic chemistry. We found that the M(IV) oxidation state in oxidic OER frameworks was correlated to the presence of the dopant metal, as assessed by coulometric titration and ICP-MS analysis. To investigate why greater M(IV) valence is beneficial to greater catalytic OER activity, we probed the influence of formal M valence on the electronic structure of oxygen ions in M-OECs by undertaking O and Ni K-edge spectroscopy, which revealed greater M-O covalency and hence M-oxyl radical character with M(IV) formation. Such oxyl radical character is consistent with increasing evidence for the role of oxygen radicals in O–O bond formation by a proton-coupled electron transfer mechanism involving water, to generate a hydroperoxide intermediate from which oxygen is generate. In accomplishing this science, the DOE program leveraged its expertise in spectroscopy and structural methods, inorganic and materials synthesis, and electrochemical characterization. The knowledge garnered from this proposed program enables the design of next generation catalysts with improved OER kinetics that operate over a wide range of conditions and environments.

  13. Precious metal assay analysis of fresh reforming catalyst by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    McElroy, F.C.; Mulhall, J.M.

    1991-01-01

    This paper reports that precious metal analysis of fresh reforming catalysts are typically performed by both the catalyst manufacturer and buyer to arrive at a financial settlement on the quantity of metal in each lot of commercial catalyst. Traditional assay methods involve a variety of fire assay or wet chemical acid digestion schemes coupled with gravimetric, colorimetic, or titrimetric measurement for precious metals. Methods must have sufficient precision and accuracy to afford interlaboratory agreement of within one half of one percent relative between the catalyst supplier and purchaser. To meet this requirement many laboratories rely on classical methods. Unfortunately these proceeders are labor intensive and time consuming. X-ray fluorescence has the inherent instrument precision to achieve typical intralaboratory precision of 0.5% RSD on a wide variety of elements and numerous sample types. We have developed an X-ray fluorescence method for the assay quality analysis of fresh reforming catalyst containing platinum, rhenium, and iridium. This method was applied to numerous samples over the past five years

  14. Catalysts prepared by interaction of transition metal organometallic compounds with the surface of supporters

    International Nuclear Information System (INIS)

    Ryndin, Yu.A.; Kuznetsov, B.N.; Moroz, Eh.M.; Tripol'skij, A.A.; Ermakov, Yu.I.

    1977-01-01

    The phase composition and dispersion of the catalyst (W + Pt)/SiO 2 , subjected to oxidation and reduction at an elevated temperature was investigated by roentgenographic methods (radial distribution of atoms and broadening of X-ray lines). The X-ray data are compared with the results of chemisorption measurements of platinum dispersion in the specimens and their activity in reactions of benzene hydration and ethane hydrogenolysis. It has been established that catalysts reduced at 600 deg C and not subjected to oxidation, as well as catalysts oxidized at 200 deg C and then reduced at 600 deg C are characterized by a high platinum dispersion. The dispersion catalysts are noted for their activity in the reaction of benzene hydration and ethane hydrogenolysis. On the other hand, the activity of catalysts oxidized and reduced in rigid conditions (600 deg C, air) is much lower and is close to the activity of the coarsely dispersed PtSiO 2 catalyst

  15. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  16. Metal recovery from spent refinery catalysts by means of biotechnological strategies

    International Nuclear Information System (INIS)

    Beolchini, F.; Fonti, V.; Ferella, F.; Veglio, F.

    2010-01-01

    A bioleaching study aimed at recovering metals from hazardous spent hydroprocessing catalysts was carried out. The exhaust catalyst was rich in nickel (4.5 mg/g), vanadium (9.4 mg/g) and molybdenum (4.4 mg/g). Involved microorganisms were iron/sulphur oxidizing bacteria. Investigated factors were elemental sulphur addition, ferrous iron addition and actions contrasting a possible metal toxicity (either adding powdered activated charcoal or simulating a cross current process by means of periodical filtration). Ferrous iron resulted to be essential for metal extraction: nickel and vanadium extraction yields were 83% and 90%, respectively, while about 50% with no iron. The observed values for molybdenum extraction yields were not as high as Ni and V ones (the highest values were around 30-40%). The investigated actions aimed at contrasting a possible metal toxicity resulted not to be effective; in contrast, sequential filtration of the liquor leach had a significant negative effect on metals extraction. Nickel and vanadium dissolution kinetics resulted to be significantly faster than molybdenum dissolution ones. Furthermore, a simple first order kinetic model was successfully fitted to experimental data. All the observed results supported the important role of the indirect mechanism in bioleaching of LC-Finer catalysts.

  17. Metal recovery from spent refinery catalysts by means of biotechnological strategies

    Energy Technology Data Exchange (ETDEWEB)

    Beolchini, F., E-mail: f.beolchini@univpm.it [Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona (Italy); Fonti, V. [Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona (Italy); Ferella, F.; Veglio, F. [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio, 67040 L' Aquila (Italy)

    2010-06-15

    A bioleaching study aimed at recovering metals from hazardous spent hydroprocessing catalysts was carried out. The exhaust catalyst was rich in nickel (4.5 mg/g), vanadium (9.4 mg/g) and molybdenum (4.4 mg/g). Involved microorganisms were iron/sulphur oxidizing bacteria. Investigated factors were elemental sulphur addition, ferrous iron addition and actions contrasting a possible metal toxicity (either adding powdered activated charcoal or simulating a cross current process by means of periodical filtration). Ferrous iron resulted to be essential for metal extraction: nickel and vanadium extraction yields were 83% and 90%, respectively, while about 50% with no iron. The observed values for molybdenum extraction yields were not as high as Ni and V ones (the highest values were around 30-40%). The investigated actions aimed at contrasting a possible metal toxicity resulted not to be effective; in contrast, sequential filtration of the liquor leach had a significant negative effect on metals extraction. Nickel and vanadium dissolution kinetics resulted to be significantly faster than molybdenum dissolution ones. Furthermore, a simple first order kinetic model was successfully fitted to experimental data. All the observed results supported the important role of the indirect mechanism in bioleaching of LC-Finer catalysts.

  18. Second row transition metal sulfides for the hydrotreatment of coal-derived naphtha. 1. Catalyst preparation, characterization and comparison of rate of simultaneous removal of total sulfur, nitrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Raje, A.P.; Liaw, S.-J.; Srinivasan, R.; Davis, B.H. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-03-13

    Naphtha derived from an Illinois No. 6 coal contains appreciable quantities of sulfur-, nitrogen- and oxygen-containing compounds. The hydrotreatment of this naphtha was evaluated over unsupported transition metal sulfide catalysts (Ru, Rh, Mo, Pd, Zr, Mb). The catalysts were prepared by a room temperature precipitation reaction. Surface areas, crystalline phase and particle size distributions were determined by Brunauer-Emmet-Teller (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. A comparison of average particle sizes calculated from these three techniques has enable the understanding of the morphology of the transition metal sulfides. The catalysts exhibit a so-called volcano plot for the HDS of dibenzothiophene. Similar so-called volcano plots are also exhibited for the simultaneous hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and the hydrodeoxygenation (HDO) of the coal-derived naphtha containing a mixture of heteroatoms. The order of reactivity of the transition metal catalysts is the same for all three of the processes. Ruthenium sulfide is the most active catalyst for HDS, HDN and HDO of the coal-derived naphtha. 22 refs., 3 figs., 4 tabs.

  19. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications.

    Science.gov (United States)

    Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin

    2017-12-01

    In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Metal Fluorides, Metal Chlorides and Halogenated Metal Oxides as Lewis Acidic Heterogeneous Catalysts. Providing Some Context for Nanostructured Metal Fluorides.

    Science.gov (United States)

    Lennon, David; Winfield, John M

    2017-01-28

    Aspects of the chemistry of selected metal fluorides, which are pertinent to their real or potential use as Lewis acidic, heterogeneous catalysts, are reviewed. Particular attention is paid to β-aluminum trifluoride, aluminum chlorofluoride and aluminas γ and η, whose surfaces become partially fluorinated or chlorinated, through pre-treatment with halogenating reagents or during a catalytic reaction. In these cases, direct comparisons with nanostructured metal fluorides are possible. In the second part of the review, attention is directed to iron(III) and copper(II) metal chlorides, whose Lewis acidity and potential redox function have had important catalytic implications in large-scale chlorohydrocarbons chemistry. Recent work, which highlights the complexity of reactions that can occur in the presence of supported copper(II) chloride as an oxychlorination catalyst, is featured. Although direct comparisons with nanostructured fluorides are not currently possible, the work could be relevant to possible future catalytic developments in nanostructured materials.

  1. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    Science.gov (United States)

    Liu, Wei; Flytzani-Stephanopoulos, Maria

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  2. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  3. Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene

    KAUST Repository

    Zhu, Haibo

    2014-06-01

    The sol-gel method was applied to the synthesis of Zr, Ti, Mo, W, and V modified NiO based catalysts for the ethane oxidative dehydrogenation reaction. The synthesized catalysts were characterized by XRD, N2 adsorption, SEM and TPR techniques. The results showed that the doping metals could be highly dispersed into NiO domains without the formation of large amount of other bulk metal oxide. The modified NiO materials have small particle size, larger surface area, and higher reduction temperature in contrast to pure NiO. The introduction of group IV, V and VI transition metals into NiO decreases the catalytic activity in ethane ODH. However, the ethylene selectivity is enhanced with the highest level for the Ni-W-O and Ni-Ti-O catalysts. As a result, these two catalysts show improved efficiency of ethylene production in the ethane ODH reaction. © 2014 Elsevier B.V. All rights reserved.

  4. Metal-Carbon-CNF Composites Obtained by Catalytic Pyrolysis of Urban Plastic Residues as Electro-Catalysts for the Reduction of CO2

    Directory of Open Access Journals (Sweden)

    Jesica Castelo-Quibén

    2018-05-01

    Full Text Available Metal–carbon–carbon nanofibers composites obtained by catalytic pyrolysis of urban plastic residues have been prepared using Fe, Co or Ni as pyrolitic catalysts. The composite materials have been fully characterized from a textural and chemical point of view. The proportion of carbon nanofibers and the final content of carbon phases depend on the used pyrolitic metal with Ni being the most active pyrolitic catalysts. The composites show the electro-catalyst activity in the CO2 reduction to hydrocarbons, favoring all the formation of C1 to C4 hydrocarbons. The tendency of this activity is in accordance with the apparent faradaic efficiencies and the linear sweep voltammetries. The cobalt-based composite shows high selectivity to C3 hydrocarbons within this group of compounds.

  5. Synthesis of Single-Walled Carbon Nanotubes: Effects of Active Metals, Catalyst Supports, and Metal Loading Percentage

    Directory of Open Access Journals (Sweden)

    Wei-Wen Liu

    2013-01-01

    Full Text Available The effects of active metals, catalyst supports, and metal loading percentage on the formation of single-walled carbon nanotubes (SWNTs were studied. In particular, iron, cobalt, and nickel were investigated for SWNTs synthesis. Iron was found to grow better-quality SWNTs compared to cobalt and nickel. To study the effect of catalyst supports, magnesium oxide, silicon oxide, and aluminium oxide were chosen for iron. Among the studied supports, MgO was identified to be a suitable support for iron as it produced SWNTs with better graphitisation determined by Raman analysis. Increasing the iron loading decreased the quality of SWNTs due to extensive agglomeration of the iron particles. Thus, lower metal loading percentage is preferred to grow better-quality SWNTs with uniform diameters.

  6. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Shaikh Ali, Anaam

    2016-01-01

    to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based

  7. Mesoporous metal catalysts formed by ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Schaeferhans, Jana; Pazos Perez, Nicolas; Andreeva, Daria [Physikalische Chemie II, Universitaet Bayreuth (Germany)

    2010-07-01

    We study the ultrasound-driven formation of mesoporous metal sponges. The collapse of acoustic cavitations leads to very high temperatures and pressures on very short scales. Therefore, structures may be formed and quenched far from equilibrium. Mechanism of metal modification by ultrasound is complex and involves a variety of aspects. We propose that modification of metal particles and formation of mesoporous inner structures can be achieved due to thermal etching of metals by ultrasound stimulated high speed jets of liquid. Simultaneously, oxidation of metal surfaces by free radicals produced in water during cavitation stabilizes developed metal structures. Duration and intensity of the ultrasonication treatment is able to control the structure and morphology of metal sponges. We expect that this approach to the formation of nanoscale composite sponges is universal and opens perspective for a whole new class of catalytic materials that can be prepared in a one-step process. The developed method makes it possible to control the sponge morphology and can be used for formation of modern types of catalysts. For example, the sonication technique allows to combine the fabrication of mesoporous support and distribution of metal (Cu, Pd, Au, Pt etc.) nanoparticles in its pores into a single step.

  8. Computational and Physical Analysis of Catalytic Compounds

    Science.gov (United States)

    Wu, Richard; Sohn, Jung Jae; Kyung, Richard

    2015-03-01

    Nanoparticles exhibit unique physical and chemical properties depending on their geometrical properties. For this reason, synthesis of nanoparticles with controlled shape and size is important to use their unique properties. Catalyst supports are usually made of high-surface-area porous oxides or carbon nanomaterials. These support materials stabilize metal catalysts against sintering at high reaction temperatures. Many studies have demonstrated large enhancements of catalytic behavior due to the role of the oxide-metal interface. In this paper, the catalyzing ability of supported nano metal oxides, such as silicon oxide and titanium oxide compounds as catalysts have been analyzed using computational chemistry method. Computational programs such as Gamess and Chemcraft has been used in an effort to compute the efficiencies of catalytic compounds, and bonding energy changes during the optimization convergence. The result illustrates how the metal oxides stabilize and the steps that it takes. The graph of the energy computation step(N) versus energy(kcal/mol) curve shows that the energy of the titania converges faster at the 7th iteration calculation, whereas the silica converges at the 9th iteration calculation.

  9. Surface/structure functionalization of copper-based catalysts by metal-support and/or metal–metal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Konsolakis, Michalis, E-mail: mkonsol@science.tuc.gr [School of Production Engineering and Management, Technical University of Crete, GR-73100 Chania, Crete (Greece); Ioakeimidis, Zisis [Department of Mechanical Engineering, University of Western Macedonia, Bakola and Sialvera, GR-50100 Kozani (Greece)

    2014-11-30

    Highlights: • The surface chemistry of Cu-based catalysts is adjusted by metal-support or metal–metal interactions. • Three series of catalysts, i.e., Cu/REOs, Cu/Ce{sub 1−x}Sm{sub x}O{sub δ} and Cu–Co/CeO{sub 2} were prepared. • The local structure of Cu sites is remarkably affected by support or active phase modification. • Useful insights toward the fundamental understanding of Cu-catalyzed reactions are provided. - Abstract: Cu-based catalysts have recently attracted great attention both in catalysis and electro-catalysis fields due to their excellent catalytic performance and low cost. Given that their performance is determined, to a great extent, by Cu sites local environment, considerable efforts have been devoted on the strategic modifications of the electronic and structural properties of Cu sites. In this regard, the feasibility of tuning the local structure of Cu entities by means of metal-support or metal–metal interactions is investigated. More specifically, the physicochemical properties of Cu entities are modified by employing: (i) different oxides (CeO{sub 2}, La{sub 2}O{sub 3}, Sm{sub 2}O{sub 3}), or (ii) ceria-based mixed oxides (Ce{sub 1−x}Sm{sub x}O{sub δ}) as supporting carriers, and (iii) a second metal (Cobalt) adjacent to Cu (bimetallic Cu–Co/CeO{sub 2}). A characterization study, involving BET, XRD, TPR, and XPS, reveal that significant modifications on structural, redox and electronic properties of Cu sites can be induced by adopting either different oxide carriers or bimetallic complexes. Fundamental insights into the tuning of Cu local environment by metal-support or metal–metal interactions are provided, paving the way for real-life industrial applications.

  10. Plasma-chemical production of metal-polypyrrole-catalysts for the reduction of oxygen in fuel cells. Precious-metal-free catalysts for fuel cells.; Plasmachemische Erzeugung von Metall-Polypyrrol-Katalysatoren fuer die Sauerstoffreduktion in Brennstoffzellen. Edelmetallfreie Katalysatoren fuer Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Christian

    2013-07-01

    This thesis is about the production of non noble metal catalysts for the oxygen reduction reaction in fuel cells. Therefore, a novel dual plasma process is developed, constructed and the so-produced films are analysed by various electrochemical (CV, RDE and RRDE) and structural methods (SEM, EDX, IR, XPS, conductivity, XRD, NEXAFS, EXAFS and TEM). It is shown, that by doing this, non noble metal catalysts could be produced without the need of a high temperature treatment. Furthermore, the catalytic activity obtained is superior to that of chemically produced metal-polypyrrole films.

  11. Pd nanoparticles Supported on Cellulose as a catalyst for vanillin conversion in aqueous media.

    Science.gov (United States)

    Li, Dan-Dan; Zhang, Jia-Wei; Cai, Chun

    2018-05-17

    Palladium nanoparticles were firstly anchored on modified biopolymer as an efficient catalyst for biofuel upgradation. Fluorinated compounds was grafted onto cellulose to obtain amphiphilic supports for on water reactions. Pd catalyst was prepared by straightforward deposition of metal nanoparticles on modified cellulose. The catalyst exhibited excellent catalytic activity and selectivity in hydrodeoxygenation of vanillin (a typical model compound of lignin) to 2-methoxy-4-methylphenol under atmospheric hydrogen pressure in neat water without any other additives under mild conditions.

  12. Catalytic incineration of CO and VOC emissions over supported metal oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Per-Olof

    1999-05-01

    Catalytic incineration is one of the methods to reduce the emissions of CO and VOCs. Low operation temperature and low catalyst cost are essential parameters for catalytic incinerators. Pt/Al{sub 2}O{sub 3} catalysts are frequently used today, but the cheaper metal oxide catalysts can be very competitive if comparable overall activity is obtained. This thesis concerns how it is possible to decrease the operation temperature for supported metal oxide catalysts by using different supports, active metal oxides and additives. In the thesis it is demonstrated that different copper oxide based catalysts have the best activity and durability for complete oxidation among several tested metal oxide catalysts. CuO{sub x} supported on TiO{sub 2} and Al{sub 2}O{sub 3} showed increased activity with the CuO{sub x} loading up to the threshold coverage for formation of crystalline CuO particles, which is 12 {mu}mol/m{sup 2} on TiO{sub 2} and 6 {mu}mol/m{sup 2} on Al{sub 2}O{sub 3}. Up to the threshold coverage for CuO formation, well dispersed copper oxide species were formed on TiO{sub 2}, and a dispersed copper aluminate surface phase was formed on Al{sub 2}O{sub 3}. Durability tests showed accelerated sintering of TiO{sub 2} by copper, but stabilisation was possible by modification of the TiO{sub 2} with CeO{sub x} before the deposition of CuO{sub x}. The stabilisation was obtained by formation of a Ce-O-Ti surface phase. Addition of CeO{sub x} also enhanced the activity of the copper oxide species thanks to favourable interaction between the active copper oxide species and the CeO{sub x} on the support, which could be seen as increased reducibility in TPR experiments. The increased activity and reducibility was also observed for CuO{sub x} supported on ceria modified Al{sub 2}O{sub 3}. In this regard it was shown that CuO{sub x} deposited on CeO{sub 2}(001) surfaces was substantially more active for CO oxidation than copper oxide deposited on CeO{sub 2}(111) Surfaces. This

  13. Preparation of Cyclic Urethanes from Amino Alcohols and Carbon Dioxide Using Ionic Liquid Catalysts with Alkali Metal Promoters

    OpenAIRE

    Masahiko Arai; Hisanori Senboku; Hiroshi Kanamaru; Shin-ichiro Fujita

    2006-01-01

    Several ionic liquids were applied as catalysts for the synthesis of cyclic urethanes from amino alcohols and pressurized CO2 in the presence of alkali metal compounds as promoters. A comparative study was made for the catalytic performance using different ionic liquids, substrates, promoters, and pressures. The optimum catalytic system was BMIM-Br promoted by K2CO3, which, for 1-amino-2-propanol, produced cyclic urethane in 40% yield with a smaller yield of substituted cyclic ...

  14. Application of Two Cobalt-Based Metal-Organic Frameworks as Oxidative Desulfurization Catalysts.

    Science.gov (United States)

    Masoomi, Mohammad Yaser; Bagheri, Minoo; Morsali, Ali

    2015-12-07

    Two new porous cobalt-based metal-organic frameworks, [Co6(oba)5(OH)2(H2O)2(DMF)4]n · 5DMF (TMU-10) and [Co3(oba)3(O) (Py)0.5] n · 4DMF · Py (TMU-12) have been synthesized by solvothermal method using a nonlinear dicarboxylate ligand. Under mild reaction conditions, these compounds exhibited good catalytic activity and reusability in oxidative desulfurization (ODS) reaction of model oil which was prepared by dissolving dibenzothiophene (DBT) in n-hexane. FT-IR and Mass analysis showed that the main product of DBT oxidation is its corresponding sulfone, which was adsorbed on the surfaces of catalysts. The activation energy was obtained as 13.4 kJ/mol.

  15. A review of metal recovery from spent petroleum catalysts and ash.

    Science.gov (United States)

    Akcil, Ata; Vegliò, Francesco; Ferella, Francesco; Okudan, Mediha Demet; Tuncuk, Aysenur

    2015-11-01

    With the increase in environmental awareness, the disposal of any form of hazardous waste has become a great concern for the industrial sector. Spent catalysts contribute to a significant amount of the solid waste generated by the petrochemical and petroleum refining industry. Hydro-cracking and hydrodesulfurization (HDS) catalysts are extensively used in the petroleum refining and petrochemical industries. The catalysts used in the refining processes lose their effectiveness over time. When the activity of catalysts decline below the acceptable level, they are usually regenerated and reused but regeneration is not possible every time. Recycling of some industrial waste containing base metals (such as V, Ni, Co, Mo) is estimated as an economical opportunity in the exploitation of these wastes. Alkali roasted catalysts can be leached in water to get the Mo and V in solution (in which temperature plays an important role during leaching). Several techniques are possible to separate the different metals, among those selective precipitation and solvent extraction are the most used. Pyrometallurgical treatment and bio-hydrometallurgical leaching were also proposed in the scientific literature but up to now they did not have any industrial application. An overview on patented and commercial processes was also presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Selective propene oxidation on mixed metal oxide catalysts

    International Nuclear Information System (INIS)

    James, David William

    2002-01-01

    Selective catalytic oxidation processes represent a large segment of the modern chemical industry and a major application of these is the selective partial oxidation of propene to produce acrolein. Mixed metal oxide catalysts are particularly effective in promoting this reaction, and the two primary candidates for the industrial process are based on iron antimonate and bismuth molybdate. Some debate exists in the literature regarding the operation of these materials and the roles of their catalytic components. In particular, iron antimonate catalysts containing excess antimony are known to be highly selective towards acrolein, and a variety of proposals for the enhanced selectivity of such materials have been given. The aim of this work was to provide a direct comparison between the behaviour of bismuth molybdate and iron antimonate catalysts, with additional emphasis being placed on the component single oxide phases of the latter. Studies were also extended to other antimonate-based catalysts, including cobalt antimonate and vanadium antimonate. Reactivity measurements were made using a continuous flow microreactor, which was used in conjunction with a variety of characterisation techniques to determine relationships between the catalytic behaviour and the properties of the materials. The ratio of Fe/Sb in the iron antimonate catalyst affects the reactivity of the system under steady state conditions, with additional iron beyond the stoichiometric value being detrimental to the acrolein selectivity, while extra antimony provides a means of enhancing the selectivity by decreasing acrolein combustion. Studies on the single antimony oxides of iron antimonate have shown a similarity between the reactivity of 'Sb 2 O 5 ' and FeSbO 4 , and a significant difference between these and the Sb 2 O 3 and Sb 2 O 4 phases, implying that the mixed oxide catalyst has a surface mainly comprised of Sb 5+ . The lack of reactivity of Sb 2 O 4 implies a similarity of the surface with

  17. Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts

    International Nuclear Information System (INIS)

    Lim, Steven S.; Haller, Gary L.

    2013-01-01

    Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion-typically V 5+ , Co 2+ , and Ni 2+ -incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated

  18. Industrial uses of boron compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, H [Eurotungstene; Thevenot, F

    1978-06-01

    A review includes a section on the use in the chemical industry of some transition-metal borides as heterogeneous catalysts in the hydrogenation and dehydrogenation of organic compounds and in fuel cells.

  19. Fischer-Tropsch Catalyst for Aviation Fuel Production

    Science.gov (United States)

    DeLaRee, Ana B.; Best, Lauren M.; Bradford, Robyn L.; Gonzalez-Arroyo, Richard; Hepp, Aloysius F.

    2012-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to nonpetroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  20. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  1. Development of radioactive platinum group metal catalysts

    International Nuclear Information System (INIS)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E.

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m 2 /g. The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs

  2. Development of radioactive platinum group metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E. [and others

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m{sup 2}/g.The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs.

  3. Lanthanide alkyl and silyl compounds: Synthesis, reactivity and catalysts for green

    Energy Technology Data Exchange (ETDEWEB)

    Pindwal, Aradhana [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The last few decades have witnessed enormous research in the field of organometallic lanthanide chemistry. Our research group has developed a few rare earth alkyl compounds containing tris(dimethylsilyl)methyl ligand and explored their reactivity. This thesis focusses on extending the study of lanthanide alkyl and silyl compounds to develop strategies for their synthesis and explore their reactivity and role as catalysts in processes such as hydrosilylation and cross-dehydrocoupling.

  4. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    International Nuclear Information System (INIS)

    Liu, Ying; Zhang, Kun; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-01-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol–gel method, and subsequently with surface modifying with amino in the purpose to form SiO_2–NH_2 shell. Thus, metal particles were easily adsorbed into the SiO_2–NH_2 shell and in-situ reduced by NaBH_4 solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu_2(OH)_3Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water. - Graphical abstract: Surface loaded metal particles magnetic catalyst microspheres MCM-MPs for rapid decolorizing dye-contaminated water: Synthesis, characterization and possible mechanisms. - Highlights: • A simple and high yield synthetic method for fabricate multi MCM-MPs is proposed with adequately optimize. • The highest reusability of MCM-Cu is attribute to the coordination compounds Cu_2(OH)_3Br. • MCM-MPs show excellent catalytic properties under different situations for various dyes • The catalytic mechanism of MCM-MPs is presented.

  5. Nano Transition Metal Sulfide Catalyst for Solvolysis Liquefaction of Soda Lignin

    International Nuclear Information System (INIS)

    Fei-Ling, P.; Chin-Hua, C.; Sarani Zakaria; Soon-Keong, N.; Tze-Khong, L.

    2011-01-01

    Solvolysis liquefaction of soda lignin in the presence of various transition metal sulfide catalysts was studied to investigate the catalyst effects on the oil and gas yields, conversion rate and higher heating value (HHV) of oil. Nano sized copper sulfide, iron sulfide and molybdenum sulfide were successfully synthesized via a simple hydrothermal method under reaction temperature 200 degree Celsius for 90 min. The addition of transition metal sulfide based catalysts (CuS, MoS 2 and FeS 2 ) enhanced both production of the oils and gas and the higher heating value (HHV) of oil products. A high oil and gas yields of 82.1 % and 2890 cm 3 was obtained with MoS 2 at 250 degree Celsius for 60 min. Elemental analyses for the oils revealed that the liquid products have much higher heating values than the crude soda lignin powder. (author)

  6. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia; El Eter, Mohamad; Caps, Valerie; Basset, Jean-Marie

    2014-01-01

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  7. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  8. Designing Multifunctionality into Single Phase and Multiphase Metal-Oxide-Selective Propylene Ammoxidation Catalysts

    Directory of Open Access Journals (Sweden)

    James F. Brazdil

    2018-03-01

    Full Text Available Multifunctionality is the hallmark of most modern commercial heterogeneous catalyst systems in use today, including those used for the selective ammoxidation of propylene to acrylonitrile. It is the quintessential principle underlying commercial catalyst design efforts since petrochemical process development is invariably driven by the need to reduce manufacturing costs. This is in large part achieved through new and improved catalysts that increase selectivity and productivity. In addition, the future feedstocks for chemical processes will be invariably more refractory than those currently in use (e.g., replacing alkenes with alkanes or using CO2, thus requiring a disparate combination of chemical functions in order to effect multiple chemical transformations with the fewest separate process steps. This review summarizes the key chemical phenomena behind achieving the successful integration of multiple functions into a mixed-metal-oxide-selective ammoxidation catalyst. An experiential and functional catalyst design model is presented that consists of one or both of the following components: (1 a mixed-metal-oxide–solid solution where the individual metal components serve separate and necessary functions in the reaction mechanism through their atomic level interaction in the context of a single crystallographic structure; (2 the required elemental components and their catalytic function existing in separate phases, where these phases are able to interact for the purposes of electron and lattice oxygen transfer through the formation of a structurally coherent interface (i.e., epitaxy between the separate crystal structures. Examples are provided from the literature and explained in the context of this catalyst design model. The extension of the model concepts to the design of heterogeneous catalysts in general is also discussed.

  9. Understanding of catalysis on early transition metal oxide-based catalysts through exploration of surface structure and chemistry during catalysis using in-situ approaches

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Franklin [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering. Dept. of Chemistry

    2015-09-14

    Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co3O4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with different binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few

  10. Chromium-based metal-organic framework MIL-101 as a highly effective catalyst in plasma for toluene removal

    Science.gov (United States)

    Wu, Junliang; Xia, Qibin; Xiao, Jing; Li, Zhong

    2017-11-01

    Catalytic performance of MIL-101—a type of chromium-based metal-organic frameworks (MOFs)—in a plasma catalysis system for toluene removal was experimentally studied. The MIL-101 was synthesized using a hydrothermal method, and its catalytic performance was compared to two other catalysts, Cr2O3/γ-Al2O3 and γ-Al2O3, in a dielectric barrier discharge (DBD) reactor. Results showed that the presence of a catalyst in plasma changed the voltage and current characteristic substantially, and promoted the performance of the plasma reactor. Among the catalysts, the MIL-101 exhibited a significantly high toluene conversion, which was 20% and 35% higher than Cr2O3/γ-Al2O3 and γ-Al2O3, respectively, under the same testing conditions, as well as higher carbon balance and CO2 selectivity. The analysis of by-products on the surfaces of the catalysts before and after reaction demonstrated that MIL-101 had better resistance towards by-products accumulation compared to Cr2O3/γ-Al2O3 and γ-Al2O3. The loading of MnO x on MIL-101 further promoted its catalytic performance. MIL-101 exhibits attractive catalytic properties as a catalyst in a plasma catalysis system for the decomposition of volatile organic compounds.

  11. Chromium-based metal-organic framework MIL-101 as a highly effective catalyst in plasma for toluene removal

    International Nuclear Information System (INIS)

    Wu, Junliang; Xia, Qibin; Xiao, Jing; Li, Zhong

    2017-01-01

    Catalytic performance of MIL-101—a type of chromium-based metal-organic frameworks (MOFs)—in a plasma catalysis system for toluene removal was experimentally studied. The MIL-101 was synthesized using a hydrothermal method, and its catalytic performance was compared to two other catalysts, Cr 2 O 3 / γ -Al 2 O 3 and γ -Al 2 O 3 , in a dielectric barrier discharge (DBD) reactor. Results showed that the presence of a catalyst in plasma changed the voltage and current characteristic substantially, and promoted the performance of the plasma reactor. Among the catalysts, the MIL-101 exhibited a significantly high toluene conversion, which was 20% and 35% higher than Cr 2 O 3 / γ -Al 2 O 3 and γ -Al 2 O 3 , respectively, under the same testing conditions, as well as higher carbon balance and CO 2 selectivity. The analysis of by-products on the surfaces of the catalysts before and after reaction demonstrated that MIL-101 had better resistance towards by-products accumulation compared to Cr 2 O 3 / γ -Al 2 O 3 and γ -Al 2 O 3 . The loading of MnO x on MIL-101 further promoted its catalytic performance. MIL-101 exhibits attractive catalytic properties as a catalyst in a plasma catalysis system for the decomposition of volatile organic compounds. (paper)

  12. Method for hydrogen production and metal winning, and a catalyst/cocatalyst composition useful therefor

    Science.gov (United States)

    Dhooge, Patrick M.

    1987-10-13

    A catalyst/cocatalyst/organics composition of matter is useful in electrolytically producing hydrogen or electrowinning metals. Use of the catalyst/cocatalyst/organics composition causes the anode potential and the energy required for the reaction to decrease. An electrolyte, including the catalyst/cocatalyst composition, and a reaction medium composition further including organic material are also described.

  13. Ternary catalyst-olefin-hydroperoxide complexes and their contribution to epoxidation

    International Nuclear Information System (INIS)

    Svitych, R.B.; Rzhevskaya, N.N.; Buchachenko, A.L.; Yablonskij, O.P.; Petukhov, A.A.; Belyaev, V.A.

    1976-01-01

    Electron and NMR spectroscopy have been used for studying the complex formation of catalysts (Mo 5+ , Mn 2+ , Co 2+ ) in double and triple systems: metal-olefin and metal-olefin-hydroperoxide. It has been established that ions of metals form complexes with olefins in the first sphere. The formation has been proved of ternary complexes metal-olefin-hydroperoxide. The structure of the complexes has been proposed with olefins in the first and hydroperoxide in the second sphere of the metal ion. The structure explains known kinetic regularities of epoxydation and the mechanism of the formation of final products, oxide and alcohol. It has been shown that the best catalysts for epoxydation of olefins with hydroperoxides must be the compounds of the metals with an electron state of ion d 0 [ru

  14. Ultrahigh figure-of-merit for hydrogen generation from sodium borohydride using ternary metal catalysts

    Science.gov (United States)

    Hu, Lunghao; Ceccato, R.; Raj, R.

    We report further increase in the figure-of-merit (FOM) for hydrogen generation from NaBH 4 than reported in an earlier paper [1], where a sub-nanometer layer of metal catalysts are deposited on carbon nanotube paper (CNT paper) that has been functionalized with polymer-derived silicon carbonitride (SiCN) ceramic film. Ternary, Ru-Pd-Pt, instead of the binary Pd-Pt catalyst used earlier, together with a thinner CNT paper is shown to increase the figure-of-merit by up to a factor of six, putting is above any other known catalyst for hydrogen generation from NaBH 4. The catalysts are prepared by first impregnating the functionalized CNT-paper with solutions of the metal salts, followed by reduction in a sodium borohydride solution. The reaction mechanism and the catalyst efficiency are described in terms of an electric charge transfer, whereby the negative charge on the BH 4 - ion is exchanged with hydrogen via the electronically conducting SiCN/CNT substrate [1].

  15. Hydroformylation catalyst comprising a complex with ligands having a structure derived from bisphenol A

    NARCIS (Netherlands)

    2002-01-01

    Ethylenically unsaturated compounds are hydroformylated in the presence of a hydroformylation catalyst comprising at least one complex of a metal of transition group VIII with at least one phosphorus-containing compound as ligand, where this compound contains two groups which contain P atoms and are

  16. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.; Kirby, S.; Song, Chunshan; Schobert, H.H.

    1994-04-01

    Development of new catalysts is a promising approach to more, efficient coal liquefaction. It has been recognized that dispersed catalysts can be superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires infinite contact between the catalyst and coal. The primary objective of this research is to explore the potential of bimetallic dispersed catalysts from heterometallic molecular precursors in their use in model compound liquefaction reactions. This quarterly report describes the use of three precursors in model compound reactions. The first catalyst is a heterometallic complex consisting of two transition metals, Mo and Ni, and sulfur in a single molecule. The second is a thiocubane type complex consisting of cobalt, molybdenum and sulfur. The third is a thiocubane type cluster consisting of iron and sulfur and the fourth, the pure inorganic salt ammonium tetrathiomolybdate (ATM). It was found that the structure and the ligands in the model complexes affect the activity of the resulting catalyst significantly. The optimum reaction at a pressure of 6.9 MPa hydrogen gas varied for different catalysts. The bimetallic catalysts generated in situ from the organometallic precursor are more active than monometallic catalysts like ATTM and the thiocubane type cluster Fe{sub 4}. Main products are hydrogenated phenanthrene derivatives, like DBP, THP, sym-OHP, cis- and trans-unsym-OHP with minor isomerization products such as sym-OHA. Our results indicate that other transition metal and ligand combinations in the organometallic precursors and the use of another model compound could result in substantially higher conversion activity.

  17. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.

    Science.gov (United States)

    Srichandan, Haragobinda; Singh, Sradhanjali; Pathak, Ashish; Kim, Dong-Jin; Lee, Seoung-Won; Heyes, Graeme

    2014-01-01

    The present work investigated the leaching potential of moderately thermophilic bacteria in the recovery of metals from spent petroleum catalyst of varying particle sizes. The batch bioleaching experiments were conducted by employing a mixed consortium of moderate thermophilic bacteria at 45°C and by using five different particle sizes (from 45 to >2000 μm) of acetone-washed spent catalyst. The elemental mapping by FESEM confirmed the presence of Al, Ni, V and Mo along with sulfur in the spent catalyst. During bioleaching, Ni (92-97%) and V (81-91%) were leached in higher concentrations, whereas leaching yields of Al (23-38%) were found to be lowest in all particle sizes investigated. Decreasing the particle size from >2000 μm to 45-106 μm caused an increase in leaching yields of metals during initial hours. However, the final metals leaching yields were almost independent of particle sizes of catalyst. Leaching kinetics was observed to follow the diffusion-controlled model showing the linearity more close than the chemical control. The results of the present study suggested that bioleaching using moderate thermophilic bacteria was highly effective in removing the metals from spent catalyst. Moreover, bioleaching can be conducted using spent catalyst of higher particle size (>2000 μm), thus saving the grinding cost and making process attractive for larger scale application.

  18. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  19. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhang, Kun, E-mail: kun4219@njtech.edu.cn; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-04-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol–gel method, and subsequently with surface modifying with amino in the purpose to form SiO{sub 2}–NH{sub 2} shell. Thus, metal particles were easily adsorbed into the SiO{sub 2}–NH{sub 2} shell and in-situ reduced by NaBH{sub 4} solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu{sub 2}(OH){sub 3}Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water. - Graphical abstract: Surface loaded metal particles magnetic catalyst microspheres MCM-MPs for rapid decolorizing dye-contaminated water: Synthesis, characterization and possible mechanisms. - Highlights: • A simple and high yield synthetic method for fabricate multi MCM-MPs is proposed with adequately optimize. • The highest reusability of MCM-Cu is attribute to the coordination compounds Cu{sub 2}(OH){sub 3}Br. • MCM-MPs show excellent catalytic properties under different situations for various dyes • The catalytic mechanism of MCM-MPs is presented.

  20. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    Energy Technology Data Exchange (ETDEWEB)

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosing the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).

  1. Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method.

    Science.gov (United States)

    Lazdovica, K; Liepina, L; Kampars, V

    2016-05-01

    Pyrolysis of wheat bran with or without catalysts was investigated using TGA-FTIR method in order to determine the influence of zeolite and noble metal catalysts on the evolution profile and relative yield of the volatile compounds. The addition of all catalysts decreased the volatile matter of wheat bran from 76.3% to 75.9%, 73.9%, 73.5%, 69.7% and increased the solid residue from 18.0% to 18.4%, 20.4%, 20.8%, 24.6% under the catalyst of ZSM-5, 5% Pd/C, MCM-41, and 5% Pt/C. Noble-metal catalysts had higher activity for deoxygenation of compounds containing carbonyl, carboxyl, and hydroxyl groups than zeolites. Degradation of nitrogen containing compounds atom proceeded better in presence of zeolites. Noble-metal catalysts promoted formation of aromatics and changed the profiles of evolved compounds whereas zeolites advanced formation of aliphatics and olefins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Highly Active Non-PGM Catalysts Prepared from Metal Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Heather M. Barkholtz

    2015-06-01

    Full Text Available Finding inexpensive alternatives to platinum group metals (PGMs is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs. Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/Nx/C prepared from iron doped zeolitic imidazolate frameworks (ZIFs are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/Nx/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR electrocatalytic activity must be demonstrated in membrane-electrode assemblies (MEAs of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.

  3. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  4. Theoretical studies of homogeneous catalysts mimicking nitrogenase.

    Science.gov (United States)

    Sgrignani, Jacopo; Franco, Duvan; Magistrato, Alessandra

    2011-01-10

    The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen 'fixation' via an iron molybdenum cofactor (FeMo-co) under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N₂ to various degrees. However, to date Mo(N₂)(HIPTN)₃N with (HIPTN)₃N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N₂. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  5. Magnesium oxide prepared via metal-chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies

    Science.gov (United States)

    Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.

    2011-10-01

    A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.

  6. Electrocatalytic Production of C3-C4 Compounds by Conversion of CO2 on a Chloride-Induced Bi-Phasic Cu2O-Cu Catalyst.

    Science.gov (United States)

    Lee, Seunghwa; Kim, Dahee; Lee, Jaeyoung

    2015-12-01

    Electrocatalytic conversion of carbon dioxide (CO2) has recently received considerable attention as one of the most feasible CO2 utilization techniques. In particular, copper and copper-derived catalysts have exhibited the ability to produce a number of organic molecules from CO2. Herein, we report a chloride (Cl)-induced bi-phasic cuprous oxide (Cu2O) and metallic copper (Cu) electrode (Cu2OCl) as an efficient catalyst for the formation of high-carbon organic molecules by CO2 conversion, and identify the origin of electroselectivity toward the formation of high-carbon organic compounds. The Cu2OCl electrocatalyst results in the preferential formation of multi-carbon fuels, including n-propanol and n-butane C3-C4 compounds. We propose that the remarkable electrocatalytic conversion behavior is due to the favorable affinity between the reaction intermediates and the catalytic surface. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. New Approach for Fractioning Metal Compounds Studies in Soils

    Science.gov (United States)

    Minkina, Tatiana; Motuzova, Galina; Mandzhieva, Saglara; Bauer, Tatiana; Burachevskaya, Marina; Sushkova, Svetlana; Nevidomskaya, Dina; Kalinitchenko, Valeriy

    2016-04-01

    A combined approach for fractioning metal compounds in soils on the basis of sequential (Tessier, 1979) and parallel extractions (1 N NH4Ac, pH 8; 1% EDTA in NH4Ac; and 1N HCl) is proposed. Metal compounds in sequential and parallel extracts are grouped according to the strength of their bonds with soil components. A given group includes metal compounds with similar strengths of bonds and, hence, with similar migration capacities. The groups of firmly and loosely bound metal compounds can be distinguished. This approach has been used to assess the group composition of Zn, Cu, and Pb compounds in an ordinary chernozem and its changes upon the soil contamination with metals. Contamination of an ordinary chernozem from Rostov oblast with heavy metals caused a disturbance of the natural ratios between the metal compounds. In the natural soil, firmly bound metals predominate (88-95%of the total content), which is mainly caused by the fixation of metals in lattices of silicate minerals (56-83%of the total content). The mobility of the metals in the natural soil is low (5-12%) and is mainly related to metal compounds loosely bound with the soil carbonates. Upon the soil contamination with metals (application rates of 100-300 mg/kg), the content of all the metal compounds increases, but the ratio between them shifts towards a higher portion of the potentially mobile metal compounds (up to 30-40% of the bulk contents of the metals). Organic substances and non-silicate Fe, Al, and Mn minerals become the main carriers of the firmly and loosely bound metals. The strengths of their bonds with Cu, Pb, and Zn differ. Lead in the studied chernozems is mainly fixed in a loosely bound form with organic matter, whereas copper and zinc are fixed both by the organic matter and by the non-silicate Fe, Al, and Mn compounds. Firm fixation of the applied Cu and Pb is mainly ensured by the soil organic matter and non-silicate minerals, whereas firm fixation of Zn is mainly due to non

  8. Effects of preparation method and active metal content on of Ni/kieselguhr catalyst activity

    International Nuclear Information System (INIS)

    Galuh Widiyarti; Wuryaningsih Sri Rahayu

    2010-01-01

    The preparation and the active metal content influence the activity of catalyst. Study has been conducted to see the activity of Ni/kieselguhr based on preparation method and Nickel (Ni) contents in the catalyst in the laboratory scale. The Ni/kieselguhr catalyst were prepared by impregnation and precipitation methods, with Ni active contents of 10, 20, and 30 % by weight. The catalysts characterization was analyzed using X-Ray Diffraction (XRD). Catalysts activities were analyzed based on decreasing of iodine number from hydrogenation of crude palm oil for 2 hours. The activity tests results show that precipitation catalysts are more active than impregnation catalysts. The decreasing in iodine number of fatty acid after 2 hours of hydrogenation process using precipitation catalysts and impregnation catalysts are 51.53 and 21.85 %, respectively. In addition, the catalysts are more active with increasing Ni contents. (author)

  9. Chromium as a potential catalyst in the thermal formation of chlorinated aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, T. [T. Oeberg Konsult AB, Lyckeby (Sweden); Bergstroem, J. [Bergstroem und Oehrstroem, Nykoeping (Sweden)

    2004-09-15

    Chlorinated aromatic compounds were detected in fly ash from municipal solid waste incinerators in the late 1970s. It was later shown that this fly ash possess catalytic properties enhancing the formation of PCDD/PCDF also at moderate temperatures. Copper is a well-known active oxychlorination catalyst in the Deacon process and is postulated to be responsible for this the lowtemperature formation of chlorinated aromatics. The catalytic activity of copper has also been demonstrated in both laboratory experiments and full-scale trials. However, copper is not the only metal that is an active oxychlorination catalyst. A substantial number of other transition elements also possess similar activity and interactions are well known. It is therefore of interest to widen the scope to include the fly ash metal composition as a whole. The number of studies with other elements than copper is limited. The element composition of municipal waste is not constant, but changing both between sources and over time. These variations could provide the means to study the influence from fuel composition on the thermal formation of chlorinated aromatics, and such studies have been attempted. Unfortunately process related factors will hide correlations in the observation data, making this approach difficult. An experimental study can be more successful in providing information about the effect from fuel and fly ash composition. Previous investigations in Sweden of the influence from different separation schemes on waste fuel composition can provide data suitable for evaluating the link between element composition in the fly ash, catalytic activity and the formation of polychlorinated benzenes, phenols, dibenzo-pdioxins and dibensofurans. Here we will attempt to re-evaluate the analytical results from a series of 16 trials with different waste fuels in the same combustion plant.

  10. Basic study of catalyst aging in the H-coal process

    Energy Technology Data Exchange (ETDEWEB)

    Cable, T.L.; Massoth, F.E.; Thomas, M.G.

    1985-04-01

    Samples of CoMo/Al/sub 2/O/sub 3/ catalysts used in an H-coal process demonstration run were studied to determine causes of catalyst deactivation. Physical and surface properties of the aged and regenerated catalysts were examined. Model compounds were used to assess four catalyst activity functions, viz., hydrodesulfurization (HDS), hydrogenation, cracking and hydrodeoxygenation (HDO). Other tests were performed to study the effects of coke and metals separately on the four catalyst activity functions. Catalyst coke content and metal deposits first increased rapidly, then more gradually with exposure time in the process run. Surface area and pore volume markedly decreased with exposure time. Catalyst activities of aged catalysts showed a rapid decline with exposure time. One-day exposure to coal resulted in significant losses in HDS and hydrogenation activities and nearly complete loss in cracking and HDO activities. Although metal deposits caused some permanent catalyst deactivation, coke had a much greater effect. Regenerated catalysts showed less recovery of catalytic activity as processing time increased. These results agreed well with product inspections from the process run. Oxygen chemisorption on aged-regenerated catalysts decreased with catalyst exposure time, indicating a significant loss of active sites. However, ESCA results showed no evidence of extensive sintering of the active MoS/sub 2/ phase. Permanent deactivation of the longer-time exposed catalysts can be ascribed, at least partly, to lateral growth of the active molybdenum sulfide phase. In addition, some loss in cobalt promotion occurred early in the process, which may account for the rapid loss in HDS and HDO activity in regenerated catalysts. 24 references.

  11. Study on supported binary sulfide catalysts for secondary hydrogenation of coal-derived liquids; Sekitan ekikayu niji suisoka shokubai no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, H.; Matsubayashi, N.; Sato, T.; Imamura, M.; Yoshimura, Y.; Nishijima, A. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1995-07-28

    To utilize the high performance of supported catalysts in coal liquefaction processes, one of the promising ways is to apply hydroprocessing sulfide catalysts to the secondary hydrogenation of coal-derived liquids which have undergone the solid separation unit. However, when the product yield from the first-stage liquefaction is maximized, the feed stocks in the secondary hydrogenation contain large amounts of residual fractions with preasphaltenes and metallic components. In this case, the development of a long-life catalyst is essential to establish the two-stage process as a practical one. From this viewpoint, the authors have investigated the deactivation causes of supported Ni-Mo sulfide catalysts through the analysis of the used catalysts in the secondary hydrogenation of coal-derived liquids for long periods. The major cause of the catalyst deactivation has been found to be metallic and carbonaceous deposition on the catalyst, which results thin layer which covers the catalyst particles. The catalysts located at the reactor inlet are more rapidly deactivated than those at the rector exit because of larger amounts of metallic foul ants and the above described shell-like layer. Hydrocracking active sites are much heavily deactivated compared with hydrogenation active sites. It is inferred that the basic or polar compounds contained in coal liquids are permanency adsorbed on the hydrocracking active sites. Spectroscopic analysis of the used catalysts clarified the destruction of the active phase of the binary sulfides, through the segregation and crystal growth. The structural changes of the catalysts are very likely caused by heteroatom compounds in the preasphaltenes. Thus, the primary cause of the catalyst deactivation is the preasphaltenes in the coal liquids. Hydroaromatic compounds in the coal liquids suppress the change of the deposited carbonaceous materials into inert coke which permanently deactivate the catalyst.

  12. Catalyst compositions useful for olefin isomerization and disproportionation

    International Nuclear Information System (INIS)

    Drake, C.A.

    1987-01-01

    A process is described for the double bond isomerization of an aliphatic olefinic hydrocarbon feed which comprises contacting the feed under isomerization conditions with a catalyst prepared by: (a) impregnating an alumina support having a surface area of at least 200 m/sup 2//g and a pore volume of at least 0.45 cm/sup 3//g with: 1 up to 20 wt. % of at least one magnesium compound convertible to the oxide, based on the weight of support and calculated as the metal; 0 up to 5 wt. % of at least one alkali metal compound convertible to the oxide, based on the weight of support and calculated as the metal; and 0 up to 5 wt. % of at least one zirconium compound convertible to the oxide, based on the weight of support and calculated as the metal; and (b) heating the alumina support impregnated in accordance with step (a) in an oxygen-containing atmosphere under conditions suitable to convert at least a portion of the magnesium, alkali metal, and zirconium compounds to the oxide form

  13. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  14. Recycling of platinum group metals from the automotive catalysts; Reciclagem de metais do grupo da platina proveniente de catalisadores automotivos

    Energy Technology Data Exchange (ETDEWEB)

    Benevit, Mariana; Petter, Patricia Melo Halmenschlager; Veit, Hugo Marcelo, E-mail: patymhp@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Faculdade de Engenharia. Departamento de Materiais

    2014-07-01

    Currently it is very important to use alternative sources of raw material for obtaining metals, avoiding the traditional mining. This work aims to characterize and evaluate the recoverability of platinum group metals present in automotive catalysts. Thus, the catalysts were divided into two groups: the first was catalysts used in 1.0 cars and the second was catalyst used in 2.0 cars. DRX and FRX techniques and chemical analysis performed by ICP/OES was used to characterized these materials. The results showed that there is a significant amount of platinum group elements in catalyst waste, which can be separated and reused. In the next step, hydro and pyrometallurgical routes, for metals extraction from catalyst waste, will be studied. (author)

  15. Platinum group metal recovery and catalyst manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. S.; Kim, Y. S.; Yoo, J. H.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Lee, S. H.; Paek, S. W.; Kang, H. S.

    1998-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metal such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solution was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400 m{sup 2}/g. The content of palladium impregnated on the support was 10 wt.%. Hydrogen isotope exchange efficiency of 93 % to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its actively is unimportant as in nuclear industries. (author). 63 refs., 38 tabs., 36 figs.

  16. Selective conversion of synthesis gas into C2-oxygenated products using mixed-metal homogeneous catalysts

    International Nuclear Information System (INIS)

    Whyman, R.

    1986-01-01

    A feature which is a key to any wider utilization of chemistry based on synthesis gas is an understanding of, and more particularly, an ability to control, those factors which determine the selectivity of the C 1 to C 2 transformation during the hydrogenation of carbon monoxide. With the exception of the rhodium-catalyzed conversion of carbon monoxide and hydrogen into ethylene glycol and methanol, in which molar ethylene glycol/methanol selectivities of ca 2/1 may be achieved, other catalyst systems containing metals such as cobalt or ruthenium exhibit only poor selectivities to ethylene glycol. The initial studies in this area were based on the reasoning that, since the reduction of carbon monoxide to C 2 products is a complex, multi-step process, the use of appropriate combinations of metals could generate synergistic effects which might prove more effective (in terms of both catalytic activity and selectivity) than simply the sum of the individual metal components. In particular, the concept of the combination of a good hydrogenation catalyst with a good carbonylation, or ''CO insertion'', catalyst seemed particularly germane. As a result of this approach the authors discovered an unprecedented example of the effect of catalyst promoters, particularly in the enhancement of C 2 /C 1 selectivity, and one which has led to the development of composite mixed-metal homogeneous catalyst systems for the conversion of CO/H 2 into C 2 -oxygenate esters

  17. Some problems of manufacturing and industrial application of CoMo-Al2O3 catalyst

    International Nuclear Information System (INIS)

    Walendziewski, J.

    1991-01-01

    The monograph presents results of studies of some selected problems relating to CoMo-Al 2 O 3 catalyst: method of production alumina support and catalyst; application of catalyst in the selected hydro refining processes; physicochemical properties of the used catalyst; reclamation of metal compounds from the spent catalyst. Results of investigations of catalyst preparation illustrate how the physicochemical properties of alumina support and catalyst, mainly porous structure could be controlled by the selection of raw materials and parameters of aluminum hydroxide precipitation, method of forming and calcination temperature of support. Application of the catalyst of modified porous structure has shown its high activity in hydro refining process of light cracking catalytic oil (over 95% hydrodesulphurization) and mild hydro cracking process of vacuum gas oil (sulphur content in product below 0.03% wt.). As an effect of studying of hydro refining process of aromatic hydrocarbon fraction it has been found that H 2 S concentration in reaction mixture is the main factor influencing process selectivity. Some effect on the selectivity exerts also other process parameters and chemical composition of the catalyst - cobalt molybdenum content ratio and promoters content. Long term exploitation of the domestic CoMo-Al 2 O 3 catalyst in hydrodesulphurization process indicates its satisfied thermal stability although results in deteriorating of mechanical resistance, lowering of specific surface area, increase in mean pore radius and decrease in acidity of catalyst. In the last chapter of the monograph the results of investigations of reclamation of metal compounds (molybdic acid, aluminum hydroxide, cobalt carbonate) from the spent catalyst as well as an original technology of manufacture of the fresh one using these compounds have been presented. (author). 338 refs, 31 figs, 32 tabs

  18. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  19. Core-shell composite metal catalysts incased into natural ceramic nanotubes

    International Nuclear Information System (INIS)

    Vinokurov, V; Berberov, A; Afonin, D; Borzaev, H; Ivanov, E; Gushchin, P; Lvov, Y

    2014-01-01

    The bimetallic halloysite nanotubes were prepared by the injection of halloysite- containing aerosols into the microwave plasma reactor. Nanotubes contain metal nanoparticles formed from the metal salt solution in the lumen of nanotubes and the iron oxide nanoparticles at the outer surface of nanotubes. Such halloysite composites may be sputtered onto the surface of the porous carrier forming the nanostructured catalyst, as was shown by the pure halloysite sputtering onto the model porous ceramic surface

  20. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K; Kumar, N; Lindfors, L E [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1997-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  1. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K.; Kumar, N.; Lindfors, L.E. [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1996-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  2. Exposure of metallic copper surface on Cu-Al2O3-carbon catalysts

    NARCIS (Netherlands)

    Menon, P.G.; Prasad, J.

    1970-01-01

    The bifunctional nature of Cu---Al2O3-on-carbon catalysts, used in the direct catalytic conversion of ethanol to ethyl acetate, prompted an examination of the dispersion of Cu on the composite catalyst. For this, the N2O-method of Osinga et al. for estimation of bare metallic copper surface on

  3. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek; Elkjær, Christian Fink; de Carvalho, Hudson Wallace Pereira

    2014-01-01

    In this work, we present a detailed study of the formation of supported intermetallic Ni–Ga catalysts for CO2 hydrogenation to methanol. The bimetallic phase is formed during a temperature-programmed reduction of the metal nitrates. By utilizing a combination of characterization techniques......, in particular in situ and ex situ X-ray diffraction, in situ X-ray absorption spectroscopy, transmission electron microscopy combined with electron energy loss spectroscopy and X-ray fluorescence, we have studied the formation of intermetallic Ni–Ga catalysts of two compositions: NiGa and Ni5Ga3. These methods...... demonstrate that the catalysts with the desired intermetallic phase and composition are formed upon reduction in hydrogen and enable us to propose a mechanism of the Ni–Ga nanoparticles formation. By studying the effect of calcination prior to catalyst reduction, we show that the reactivity depends...

  4. Surface/structure functionalization of copper-based catalysts by metal-support and/or metal-metal interactions

    Science.gov (United States)

    Konsolakis, Michalis; Ioakeimidis, Zisis

    2014-11-01

    Cu-based catalysts have recently attracted great attention both in catalysis and electro-catalysis fields due to their excellent catalytic performance and low cost. Given that their performance is determined, to a great extent, by Cu sites local environment, considerable efforts have been devoted on the strategic modifications of the electronic and structural properties of Cu sites. In this regard, the feasibility of tuning the local structure of Cu entities by means of metal-support or metal-metal interactions is investigated. More specifically, the physicochemical properties of Cu entities are modified by employing: (i) different oxides (CeO2, La2O3, Sm2O3), or (ii) ceria-based mixed oxides (Ce1-xSmxOδ) as supporting carriers, and (iii) a second metal (Cobalt) adjacent to Cu (bimetallic Cu-Co/CeO2). A characterization study, involving BET, XRD, TPR, and XPS, reveal that significant modifications on structural, redox and electronic properties of Cu sites can be induced by adopting either different oxide carriers or bimetallic complexes. Fundamental insights into the tuning of Cu local environment by metal-support or metal-metal interactions are provided, paving the way for real-life industrial applications.

  5. Hydrogen charging/discharging system with liquid organic compounds: a lacunar oxide catalyst to hydrogenate the unsaturated organic compound

    International Nuclear Information System (INIS)

    Jalowiecki-Duhamel, L.; Carpentier, J.; Payen, E.; Heurtaux, F.

    2006-01-01

    Lacunar mixed oxides based on cerium nickel and aluminium or zirconium CeM 0.5 Ni x O y s (M = Zr or Al), able to store high quantities of hydrogen, have been analysed in the hydrogenation of toluene into methyl-cyclohexane (MCH). When these solids present very good toluene hydrogenation activity and selectivity towards MCH in presence of H 2 , in absence of gaseous hydrogen, the reactive hydrogen species stored in the solid can hydrogenate toluene into MCH. The hydrogenation activity under helium + toluene flow decreases as a function of time and becomes nil. The integration of the curve obtained allows to determine the extractable hydrogen content of the solid used, and a value of 1.2 wt % is obtained at 80 C on a CeAl 0.5 Ni 3 O y compound pre-treated in H 2 at 300 C. To optimise the system, different parameters have been analysed, such as the catalyst formulation, the metal content, the pre-reducing conditions as well as the reaction conditions under helium + toluene. (authors)

  6. Catalytic olefin polymerization with early transition metal compounds

    OpenAIRE

    Eshuis, Johan Jan Willem

    1991-01-01

    The catalysis of organic reactions by soluble metal complexes has become a major tool in synthesis, both in the laboratory and in the chemical industry. Processes catalyzed by transition metal complexes include carbonylation, olefin polymerization, olefin addition, olefin oxidation and alkane and arene oxidation. Traditionally, heterogeneous catalysts have been used for the production of large-scale commodity chemicals such as methanol and ammonia and in the production of high octane gasoline...

  7. Biomimetic Catalysts for Oxidation of Veratryl Alcohol, a Lignin Model Compound

    Directory of Open Access Journals (Sweden)

    Marcelino Maneiro

    2013-03-01

    Full Text Available Kraft pulp has to be bleached to eliminate the chromophoric structures, which cause a darkening of the pulp. In Nature, an equivalent role is assumed by ligninolytic enzymes such as lignin peroxidases, manganese peroxidases and laccases. The development of low molecular weight manganese peroxidase mimics may achieve environmentally-safe bleaching catalysts for the industry. Herein we report the synthesis and characterization of six manganese(III complexes 1–6, incorporating dianionic hexadentate Schiff base ligands (H2L1-H2L4 and different anions. Complex 4, Mn2L22(H2O2(DCA2 was crystallographically characterized. Complexes 1–4 behave as more efficient mimics of peroxidase in contrast to 5–6. We have studied the use of these complexes as catalysts for the degradation of the lignin model compound veratryl alcohol. The biomimetic catalysts were used in conjunction with chlorine-free inexpensive co-oxidants as dioxygen or hydrogen peroxide. Yields up to 30% of veratryl alcohol conversion to veratraldehyde have been achieved at room temperature in presence of air flow using 0.5% of catalyst.

  8. Biodiesel production using alkali earth metal oxides catalysts synthesized by sol-gel method

    Directory of Open Access Journals (Sweden)

    Majid Mohadesi

    2014-03-01

    Full Text Available Biodiesel fuel is considered as an alternative to diesel fuel. This fuel is produced through transesterification reactions of vegetable oils or animal fat by alcohols in the presence of different catalysts. Recent studies on this process have shown that, basic heterogeneous catalysts have a higher performance than other catalysts. In this study different alkali earth metal oxides (CaO, MgO and BaO doped SiO2 were used as catalyst for the biodiesel production process. These catalysts were synthesis by using the sol-gel method. A transesterification reaction was studied after 8h by mixing corn oil, methanol (methanol to oil molar ratio of 16:1, and 6 wt. % catalyst (based on oil at 60oC and 600rpm. Catalyst loading was studied for different catalysts ranging in amounts from 40, 60 to 80%. The purity and yield of the produced biodiesel for 60% CaO/SiO2 was higher than other catalysts and at 97.3% and 82.1%, respectively.

  9. Theoretical Studies of Homogeneous Catalysts Mimicking Nitrogenase

    Directory of Open Access Journals (Sweden)

    Alessandra Magistrato

    2011-01-01

    Full Text Available The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen ‘fixation’ via an iron molybdenum cofactor (FeMo-co under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N2 to various degrees. However, to date Mo(N2(HIPTN3N with (HIPTN3N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N2. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  10. Diazo compounds and N-tosylhydrazones: novel cross-coupling partners in transition-metal-catalyzed reactions.

    Science.gov (United States)

    Xiao, Qing; Zhang, Yan; Wang, Jianbo

    2013-02-19

    Transition-metal-catalyzed carbene transformations and cross-couplings represent two major reaction types in organometallic chemistry and organic synthesis. However, for a long period of time, these two important areas have evolved separately, with essentially no overlap or integration. Thus, an intriguing question has emerged: can cross-coupling and metal carbene transformations be merged into a single reaction cycle? Such a combination could facilitate the development of novel carbon-carbon bond-forming methodologies. Although this concept was first explored about 10 years ago, rapid developments inthis area have been achieved recently. Palladium catalysts can be used to couple diazo compounds with a wide variety of organic halides. Under oxidative coupling conditions, diazo compounds can also react with arylboronic acids and terminal alkynes. Both of these coupling reactions form carbon-carbon double bonds. As the key step in these catalytic processes, Pd carbene migratory insertion plays a vital role in merging the elementary steps of Pd intermediates, leading to novel carbon-carbon bond formations. Because the diazo substrates can be generated in situ from N-tosylhydrazones in the presence of base, the N-tosylhydrazones can be used as reaction partners, making this type of cross-coupling reaction practical in organic synthesis. N-Tosylhydrazones are easily derived from the corresponding aldehydes or ketones. The Pd-catalyzed cross-coupling of N-tosylhydrazones is considered a complementary reaction to the classic Shapiro reaction for converting carbonyl functionalities into carbon-carbon double bonds. It can also serve as an alternative approach for the Pd-catalyzed cross-coupling of carbonyl compounds, which is usually achieved via triflates. The combination of carbene formation and cross-coupling in a single catalytic cycle is not limited to Pd-catalyzed reactions. Recent studies of Cu-, Rh-, Ni-, and Co-catalyzed cross-coupling reactions with diazo

  11. Hydroprocessing catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.

    1992-08-01

    Co-Mo and Ni-Mo hydroprocessing catalysts were examined for their activity in removal of sulfur from thiophene in model compounds, and in the cracking and hydrocracking of cumene. Three types of support materials were examined: carbon, modified carbon, and carbon covered alumina. The objective of the study was to examine the correlation between catalyst activity in the hydrodenitrogenation of model compounds, and the resistance of the catalyst to nitrogen poisoning during use in the hydroprocessing of gas oils. The use of model compound testing provided information on the individual catalytic reactions promoted by those materials. Infrared spectroscopy was used to study surface species on the catalysts and to explain many of the trends in activity observed, revealing the role of fluoride and phosphorus as a secondary promoter. Testing of the catalysts in hydrotreating of gas oils allowed comparison of model compound results with those from a real feedstock. The gas oil was also spiked with a model nitrogen compound and the results from catalytic hydrotreating of this material were compared with those from unspiked material. A key finding was that the carbon supported catalysts were the most effective in treating high-nitrogen feeds. The very favorable deactivation properties of carbon and carbon-covered alumina supported catalysts make these promising from an industrial point of view where catalyst deactivation is a limiting factor. 171 refs., 25 figs., 43 tabs.

  12. Merging Metallic Catalysts and Sonication: A Periodic Table Overview

    Directory of Open Access Journals (Sweden)

    Claudia E. Domini

    2017-04-01

    Full Text Available This account summarizes and discusses recent examples in which the combination of ultrasonic waves and metal-based reagents, including metal nanoparticles, has proven to be a useful choice in synthetic planning. Not only does sonication often enhance the activity of the metal catalyst/reagent, but it also greatly enhances the synthetic transformation that can be conducted under milder conditions relative to conventional protocols. For the sake of clarity, we have adopted a structure according to the periodic-table elements or families, distinguishing between bulk metal reagents and nanoparticles, as well as the supported variations, thus illustrating the characteristics of the method under consideration in target synthesis. The coverage focuses essentially on the last decade, although the discussion also strikes a comparative balance between the more recent advancements and past literature.

  13. Metal Chlorides Supported Solid Catalysts for F-C Acylations of Arenes

    Institute of Scientific and Technical Information of China (English)

    李阳; 刘云龙; 穆曼曼; 陈立功

    2015-01-01

    A series of metal chlorides supported solid catalysts were prepared by simple wet impregnation method. Their catalytic performances for Friedel-Crafts acylation of toluene with benzoyl chloride were evaluated and the excellent results were obtained over FeCl3/SiO2. These catalysts were characterized by BET, NH3-TPD and FT-IR of pyridine adsorption to clarify the structure-activity relationship. It was found that FeCl3/SiO2 has larger pore size and pore volume than other catalysts, which increased the accessibility of the catalyst. In addition, FeCl3/SiO2 ex-hibited higher molar ratio of Lewis acid sites and Brφnsted acid sites, which might be another reason for the in-crease of toluene conversion. Furthermore, the reaction parameters, including temperature, time and molar ratio, were optimized. Under the optimized conditions, 91.2%, conversion and 82.0%, selectivity were obtained. Mean-while, the generality of the catalyst was demonstrated by the acylations of alkyl substituted aromatics. Finally, the catalyst was reused for four runs with slight loss in catalytic activity, which attributed to the drain of the active component.

  14. Ultrafast Transient Absorption Spectroscopy of Polymer-Based Organophotoredox Catalysts Mimicking Transition-Metal Complexes

    Science.gov (United States)

    Jamhawi, Abdelqader; Paul, Anam C.; Smith, Justin D.; Handa, Sachin; Liu, Jinjun

    2017-06-01

    Transition-metal complexes of rare earth metals including ruthenium and iridium are most commonly employed as visible-light photocatalysts. Despite their highly important and broad applications, they have many disadvantages including high cost associated with low abundance in earth crust, potential toxicity, requirement of specialized ligands for desired activity, and difficulty in recycling of metal contents as well as associated ligands. Polymer-based organophotoredox catalysts are promising alternatives and possess unique advantages such as easier synthesis from inexpensive starting material, longer excited state life time, broad range of activity, sustainability, and recyclability. In this research talk, time-resolved photoluminescence and femtosecond transient absorption (TA) spectroscopy measurements of three novel polymer-based organophotoredox catalysts will be presented. By our synthetic team, their catalytic activity has been proven in some highly valuable chemical transformations, that otherwise require transition metal complexes. Time-resolved spectroscopic investigations have demonstrated that photoinduced processes in these catalysts are similar to the transition metal complexes. Especially, intramolecular vibrational relaxation, internal conversion, and intersystem crossing from the S1 state to the T1 state all occur on a sub-picosecond timescale. The long lifetime of the T1 state ( 2-3 microsecond) renders these polymers potent oxidizing and reducing agents. A spectroscopic and kinetic model has been developed for global fitting of TA spectra in both the frequency and time domains. Implication of the current ultrafast spectroscopy studies of these novel molecules to their roles in photocatalysis will be discussed.

  15. Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts

    DEFF Research Database (Denmark)

    Peterson, Andrew; Nørskov, Jens K.

    2012-01-01

    The electrochemical reduction of CO2 into hydrocarbons and alcohols would allow renewable energy sources to be converted into fuels and chemicals. However, no electrode catalysts have been developed that can perform this transformation with a low overpotential at reasonable current densities....... In this work, we compare trends in binding energies for the intermediates in CO2 electrochemical reduction and present an activity “volcano” based on this analysis. This analysis describes the experimentally observed variations in transition-metal catalysts, including why copper is the best-known metal...

  16. Co-Zn-Al based hydrotalcites as catalysts for Fischer-Tropsch process

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, C.L.; Pirola, C.; Boffito, D.C.; Di Fronzo, A. [Univ. degli Studi di Milano (Italy). Dipt. di Chimica Fisica ed Elettrochimica; Di Michele, A. [Univ. degli Studi di Perugia (Italy). Dipt. di Fisica; Vivani, R.; Nocchetti, M.; Bastianini, M.; Gatto, S. [Univ. degli Studi di Perugia (Italy). Dipt. di Chimica

    2011-07-01

    Co-Zn-Al based hydrotalcites have been investigated as catalysts for the well-known Fischer- Tropsch synthesis. A series of ternary hydrotalcites in nitrate form was prepared with the urea method in order to obtain active catalysts for the above mentioned process. The thermal activation at 350 C gives raise to finely dispersed metallic Co on the mixed oxides, so resulting in retaining the metal distribution of the parent compounds. An optimization study concerning the amount of cobalt of the prepared catalysts (range 15-70% mol, metal based) and the reaction temperature (220-260 C) is reported. All the samples have been fully characterized (BET, ICP-OES, XRPD, TG-DTA, FT-IR, SEM and TEM) and tested in a laboratory pilot plant. Tests to evaluate the stability of these materials were carried out in stressed conditions concerning both the activation and the operating temperatures and pressures (up to 350 C and 2.0 MPa). The obtained results suggest the possibility of using synthetic hydrotalcites as suitable Co-based catalysts for the Fischer-Tropsch synthesis. (orig.)

  17. Mono-, bi-, and tri-metallic Ni-based catalysts for the catalytic hydrotreatment of pyrolysis liquids

    NARCIS (Netherlands)

    Yin, Wang; Venderbosch, Robbie H.; He, Songbo; Bykova, Maria V.; Khromova, Sofia A.; Yakovlev, Vadim A.; Heeres, Hero J.

    Catalytic hydrotreatment is a promising technology to convert pyrolysis liquids into intermediates with improved properties. Here, we report a catalyst screening study on the catalytic hydrotreatment of pyrolysis liquids using bi- and tri-metallic nickel-based catalysts in a batch autoclave (initial

  18. Analysis of noble metal on automotive exhaust catalysts by radioisotope-induce x-ray fluorescence

    International Nuclear Information System (INIS)

    Elgart, M.F.

    1976-01-01

    A technique was developed for the in-situ analysis of noble metals deposited on monolithic automotive exhaust catalysts. This technique is based on radioisotope-induced x-ray fluorescence, and provides a detailed picture of the distribution of palladium and platinum on catalyst samples. The experimental results for the cross section of a monolithic exhaust catalyst, analyzed in increments of 0.2 cm 3 , are compared with analyses for palladium and platinum obtained by instrumental neutron activation analysis

  19. Minimizing Isolate Catalyst Motion in Metal-Assisted Chemical Etching for Deep Trenching of Silicon Nanohole Array.

    Science.gov (United States)

    Kong, Lingyu; Zhao, Yunshan; Dasgupta, Binayak; Ren, Yi; Hippalgaonkar, Kedar; Li, Xiuling; Chim, Wai Kin; Chiam, Sing Yang

    2017-06-21

    The instability of isolate catalysts during metal-assisted chemical etching is a major hindrance to achieve high aspect ratio structures in the vertical and directional etching of silicon (Si). In this work, we discussed and showed how isolate catalyst motion can be influenced and controlled by the semiconductor doping type and the oxidant concentration ratio. We propose that the triggering event in deviating isolate catalyst motion is brought about by unequal etch rates across the isolate catalyst. This triggering event is indirectly affected by the oxidant concentration ratio through the etching rates. While the triggering events are stochastic, the doping concentration of silicon offers a good control in minimizing isolate catalyst motion. The doping concentration affects the porosity at the etching front, and this directly affects the van der Waals (vdWs) forces between the metal catalyst and Si during etching. A reduction in the vdWs forces resulted in a lower bending torque that can prevent the straying of the isolate catalyst from its directional etching, in the event of unequal etch rates. The key understandings in isolate catalyst motion derived from this work allowed us to demonstrate the fabrication of large area and uniformly ordered sub-500 nm nanoholes array with an unprecedented high aspect ratio of ∼12.

  20. Mechanochemical synthesis of graphene oxide-supported transition metal catalysts for the oxidation of isoeugenol to vanillin.

    Science.gov (United States)

    Franco, Ana; De, Sudipta; Balu, Alina M; Garcia, Araceli; Luque, Rafael

    2017-01-01

    Vanillin is one of the most commonly used natural products, which can also be produced from lignin-derived feedstocks. The chemical synthesis of vanillin is well-established in large-scale production from petrochemical-based starting materials. To overcome this problem, lignin-derived monomers (such as eugenol, isoeugenol, ferulic acid etc.) have been effectively used in the past few years. However, selective and efficient production of vanillin from these feedstocks still remains an issue to replace the existing process. In this work, new transition metal-based catalysts were proposed to investigate their efficiency in vanillin production. Reduced graphene oxide supported Fe and Co catalysts showed high conversion of isoeugenol under mild reaction conditions using H 2 O 2 as oxidizing agent. Fe catalysts were more selective as compared to Co catalysts, providing a 63% vanillin selectivity at 61% conversion in 2 h. The mechanochemical process was demonstrated as an effective approach to prepare supported metal catalysts that exhibited high activity for the production of vanillin from isoeugenol.

  1. Supported catalyst systems and method of making biodiesel products using such catalysts

    Science.gov (United States)

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  2. Hydrogen-water deuterium exchange over metal oxide promoted nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sagert, N H; Shaw-Wood, P E; Pouteau, R M.L. [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1975-11-01

    Specific rates have been measured for hydrogen-water deuterium isotope exchange over unsupported nickel promoted with about 20% of various metal oxides. The oxides used were Cr/sub 2/O/sub 3/, MoO/sub 2/, MnO, WO/sub 2/-WO/sub 3/, and UO/sub 2/. Nickel surface areas, which are required to measure the specific rates, were determined by hydrogen chemisorption. Specific rates were measured as a function of temperature in the range 353 to 573 K and as a function of the partial pressure of hydrogen and water over a 10-fold range of partial pressure. The molybdenum and tungsten oxides gave the highest specific rates, and manganese and uranium oxides the lowest. Chromium oxide was intermediate, although it gave the highest rate per gram of catalyst. The orders with respect to hydrogen and water over molybdenum oxide and tungsten oxide promoted nickel were consistent with a mechanism in which nickel oxide is formed from the reaction of water with the catalyst, and then is reduced by hydrogen. Over manganese and uranium oxide promoted catalysts, these orders are consistent with a mechanism in which adsorbed water exchanges with chemisorbed hydrogen atoms on the nickel surface. Chromium oxide is intermediate. It was noted that those oxides which favored the nickel oxide route had electronic work functions closest to those of metallic nickel and nickel oxide.

  3. A surface science study of model catalysts : II metal-support interactions in Cu/SiO2 model catalysts

    NARCIS (Netherlands)

    Oetelaar, van den L.C.A.; Partridge, A.; Toussaint, S.L.G.; Flipse, C.F.J.; Brongersma, H.H.

    1998-01-01

    The thermal stability of wet-chemically prepared Cu/SiO2 model catalysts containing nanometer-sized Cu particles on silica model supports was studied upon heating in hydrogen and ultrahigh vacuum. The surface and interface phenomena that occur are determined by the metal-support interactions.

  4. [Exposure to metal compounds in occupational galvanic processes].

    Science.gov (United States)

    Surgiewicz, Jolanta; Domański, Wojciech

    2006-01-01

    Occupational galvanic processes are provided in more than 600 small and medium enterprises in Poland. Workers who deal with galvanic coating are exposed to heavy metal compounds: tin, silver, copper and zinc. Some of them are carcinogenic, for example, hexavalent chromium compounds, nickel and cadmium compounds. Research covered several tens of workstations involved in chrome, nickel, zinc, tin, silver, copper and cadmium plating. Compounds of metals present in the air were determined: Cr, Ni, Cd, Sn, Ag--by atomic absorption spectrometry with electrothermal atomization (ET-AAS) and Zn--by atomic absorption spectrometry with flame atomization (F-AAS). The biggest metal concentrations--of silver and copper--were found at workstations of copper, brass, cadmium, nickel and chrome plating, conducted at the same time. Significant concentrations of copper were found at workstations of maintenance bathing and neutralizing of sewage. The concentrations of metals did not exceed Polish MAC values. MAC values were not exceeded for carcinogenic chromium(VI), nickel or cadmium, either. In galvanic processes there was no hazard related to single metals or their compounds, even carcinogenic ones. Combined exposure indicators for metals at each workstation did not exceed 1, either. However, if there are even small quantities of carcinogenic agents, health results should always be taken into consideration.

  5. Esterification of phenyl acetic acid with p-cresol using metal cation exchanged montmorillonite nanoclay catalysts.

    Science.gov (United States)

    Bhaskar, M; Surekha, M; Suma, N

    2018-02-01

    The liquid phase esterification of phenyl acetic acid with p -cresol over different metal cation exchanged montmorillonite nanoclays yields p -cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (M n +  = Al 3+ , Zn 2+ , Mn 2+ , Fe 3+ , Cu 2+ ) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants, reaction time and catalyst amount on the yield of the ester. Among the different metal cation exchanged catalysts used, Al 3+ -montmorillonite nanoclay was found to be more active. The characterization of the material used was studied under different techniques, namely X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The product obtained, p -cresyl phenyl acetate, was identified by thin-layer chromotography and confirmed by Fourier transform infrared, 1 H NMR and 13 C NMR. The regeneration activity of used catalyst was also investigated up to fourth generation.

  6. Oxidation of tritium in packed bed of noble metal catalyst for detritiation from system gases

    International Nuclear Information System (INIS)

    Nishikawa, Masabumi; Takeishi, Toshiharu; Munakata, Kenzo; Kotoh, Kenji; Enoeda, Mikio

    1985-01-01

    Catalytic oxidation rates of tritium in the bed of the noble metal catalysts are obtained and compared with the oxidation rates observed for the packed bed of spongy copper oxide or hopcalites. Use of Pt- or Pd-aluminia catalysts is recommended in this study because they give effective oxidation rates of tritium in the ambient temperature range. The adsorption performance of tritiated water in the catalyst bed is also discussed. (orig.)

  7. Metal catalysts fight back

    OpenAIRE

    George Marsh

    1998-01-01

    In recent years organometallic catalysts, especially metallocenes, have been a major focus of attention in terms of polymerisation chemistry. But the news earlier this year of a family of iron-based catalysts able to rival the effectiveness of both conventional and metallocene catalysts in the polymerisation of ethylene has excited the plastics industry. Because of the impact of this discovery and its potential as a route to lower-priced commodity plastics in the future, it may be useful at t...

  8. Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air

    DEFF Research Database (Denmark)

    Poreddy, Raju; Engelbrekt, Christian; Riisager, Anders

    2015-01-01

    The oxidative dehydrogenation of alcohols to carbonyl compounds was studied using CuO nanoparticle catalysts prepared by solution synthesis in buffered media. CuO nanoparticles synthesized in N-cyclohexyl- 3-aminopropanesulfonic acid buffer showed high catalytic activity for the oxidation...... of benzylic, alicyclic and unsaturated alcohols to their corresponding carbonyl compounds with excellent selectivities. The observed trend in activity for conversion of substituted alcohols suggested a β-H elimination step to be involved, thus enabling a possible reaction mechanism for oxidative...... dehydrogenation of benzyl alcohols to be proposed. The use of CuO as an inexpensive and efficient heterogeneous catalyst under aerobic conditions provides a new noble metal-free and green reaction protocol for carbonyl compound synthesis....

  9. Optimization of fuel cell membrane electrode assemblies for transition metal ion-chelating ordered mesoporous carbon cathode catalysts

    Directory of Open Access Journals (Sweden)

    Johanna K. Dombrovskis

    2014-12-01

    Full Text Available Transition metal ion-chelating ordered mesoporous carbon (TM-OMC materials were recently shown to be efficient polymer electrolyte membrane fuel cell (PEMFC catalysts. The structure and properties of these catalysts are largely different from conventional catalyst materials, thus rendering membrane electrode assembly (MEA preparation parameters developed for conventional catalysts not useful for applications of TM-OMC catalysts. This necessitates development of a methodology to incorporate TM-OMC catalysts in the MEA. Here, an efficient method for MEA preparation using TM-OMC catalyst materials for PEMFC is developed including effects of catalyst/ionomer loading and catalyst/ionomer-mixing and application procedures. An optimized protocol for MEA preparation using TM-OMC catalysts is described.

  10. Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework

    KAUST Repository

    Sun, Xiaohui; Suarez, Alma I. Olivos; Meijerink, Mark; van Deelen, Tom; Ould-Chikh, Samy; Zečević, Jovana; de Jong, Krijn P.; Kapteijn, Freek; Gascon, Jorge

    2017-01-01

    The development of synthetic protocols for the preparation of highly loaded metal nanoparticle-supported catalysts has received a great deal of attention over the last few decades. Independently controlling metal loading, nanoparticle size

  11. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.

    Science.gov (United States)

    Yuan, Heyang; He, Zhen

    2017-07-01

    Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS 2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of Gas Flowrate on Nucleation Mechanism of MWCNTs for a Compound Catalyst

    Directory of Open Access Journals (Sweden)

    S. Shukrullah

    2017-01-01

    Full Text Available Activation of the catalyst particles during a CVD process can be anticipated from the carbon feeding rate. In this study, Fe2O3/Al2O3 catalyst was synthesized with uniformly dispersed iron over alumina support for onward production of multiwalled carbon nanotubes (MWCNTs in a fluidized bed chemical CVD reactor. The effect of the ethylene flowrate on catalytic activity of the compound catalyst and morphology of the as-grown MWCNTs was also investigated in this study. The dispersed active phases of the catalyst and optimized gas flowrate helped in improving the tube morphology and prevented the aggregation of the as-grown MWCNTs. The flowrates, below 100 sccm, did not provide sufficient reactants to interact with the catalyst for production of defect-free CNT structures. Above 100 sccm, concentration of the carbon precursor did not show notable influence on decomposition rate of the gas molecules. The most promising results on growth and structural properties of MWCNTs were gained at ethylene flowrate of 100 sccm. At this flowrate, the ratio of G and D intensity peaks (IG/ID was deliberated about 1.40, which indicates the growth of graphitic structures of MWCNTs.

  13. Task-specific ionic liquids for solubilizing metal compounds

    OpenAIRE

    Thijs, Ben

    2007-01-01

    The main goal of this PhD thesis was to design new task-specific ionic liquids with the ability to dissolve metal compounds. Despite the large quantity of papers published on ionic liquids, not much is known about the mechanisms of dissolving metals in ionic liquids or about metal-containing ionic liquids. Additionally, many of the commercially available ionic liquids exhibit a very limited solubilizing power for metal compounds, although this is for many applications like electrodeposition a...

  14. Superconductivity of ternary metal compounds prepared at high pressures

    CERN Document Server

    Shirotani, I

    2003-01-01

    Various ternary metal phosphides, arsenides, antimonides, silicides and germanides have been prepared at high temperatures and high pressures. These ternary metal compounds can be classified into four groups: [1] metal-rich compounds MM' sub 4 X sub 2 and [2] MM'X, [3] non-metal-rich compounds MXX' and [4] MM' sub 4 X sub 1 sub 2 (M and M' = metal element; X and X' = non-metal element). We have studied the electrical and magnetic properties of these materials at low temperatures, and found many new superconductors with the superconducting transition temperature (T sub c) of above 10 K. The metal-rich compound ZrRu sub 4 P sub 2 with a tetragonal structure showed the superconducting transition at around 11 K, and had an upper critical field (H sub c sub 2) of 12.2 tesla (T) at 0 K. Ternary equiatomic compounds ZrRuP and ZrRuSi crystallize in two modifications, a hexagonal Fe sub 2 P-type structure [h-ZrRuP(Si)] and an orthorhombic Co sub 2 P-type structure [o-ZrRuP(Si)]. Both h-ZrRuP and h-ZrRuSi have rather h...

  15. A Novel Synthesis of Gold Nanoparticles Supported on Hybrid Polymer/Metal Oxide as Catalysts for p-Chloronitrobenzene Hydrogenation

    Directory of Open Access Journals (Sweden)

    Cristian H. Campos

    2017-01-01

    Full Text Available This contribution reports a novel preparation of gold nanoparticles on polymer/metal oxide hybrid materials (Au/P[VBTACl]-M metal: Al, Ti or Zr and their use as heterogeneous catalysts in liquid phase hydrogenation of p-chloronitrobenzene. The support was prepared by in situ radical polymerization/sol gel process of (4-vinyl-benzyltrimethylammonium chloride and 3-(trimethoxysilylpropyl methacrylate in conjunction with metal-alkoxides as metal oxide precursors. The supported catalyst was prepared by an ion exchange process using chloroauric acid (HAuCl4 as gold precursor. The support provided the appropriate environment to induce the spontaneous reduction and deposition of gold nanoparticles. The hybrid material was characterized. TEM and DRUV-vis results indicated that the gold forms spherical metallic nanoparticles and that their mean diameter increases in the sequence, Au/P[VBTACl]-Zr > Au/P[VBTACl]-Al > Au/P[VBTACl]-Ti. The reactivity of the Au catalysts toward the p-CNB hydrogenation reaction is attributed to the different particle size distributions of gold nanoparticles in the hybrid supports. The kinetic pseudo-first-order constant values for the catalysts in the hydrogenation reaction increases in the order, Au/P[VBTACl]-Al > Au/P[VBTACl]-Zr > Au/P[VBTACl]-Ti. The selectivity for all the catalytic systems was greater than 99% toward the chloroaniline target product. Finally the catalyst supported on the hybrid with Al as metal oxide could be reused at least four times without loss in activity or selectivity for the hydrogenation of p-CNB in ethanol as solvent.

  16. Catalyst-Dependent Chemoselective Formal Insertion of Diazo Compounds into C-C or C-H Bonds of 1,3-Dicarbonyl Compounds.

    Science.gov (United States)

    Liu, Zhaohong; Sivaguru, Paramasivam; Zanoni, Giuseppe; Anderson, Edward A; Bi, Xihe

    2018-05-08

    A catalyst-dependent chemoselective one-carbon insertion of diazo compounds into the C-C or C-H bonds of 1,3-dicarbonyl species is reported. In the presence of silver(I) triflate, diazo insertion into the C(=O)-C bond of the 1,3-dicarbonyl substrate leads to a 1,4-dicarbonyl product containing an all-carbon α-quaternary center. This reaction constitutes the first example of an insertion of diazo-derived carbenoids into acyclic C-C bonds. When instead scandium(III) triflate was applied as the catalyst, the reaction pathway switched to formal C-H insertion, affording 2-alkylated 1,3-dicarbonyl products. Different reaction pathways are proposed to account for this powerful catalyst-dependent chemoselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Secondary promoters in alumina-supported nickel-molybdenum hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J.M.

    1992-01-01

    Two secondary promoters, phosphorus and fluoride, have been investigated for their influences on the physicochemical properties of alumina-supported nickel-molybdenum hydroprocessing catalysts. Model compound reactions and infrared spectroscopy were used to probe the functionalities of the different catalysts, and the catalysts were tested in the hydroprocessing of a low-nitrogen and a high-nitrogen (quinoline-spiked) gas oil feed to assess the utility of the model compound reaction studies. Fluoride-promoted catalysts with high cumene hydrocracking activity and with comparable thiophene hydrodesulphurization (HDS) activity to Ni-Mo/Al[sub 2]O[sub 3] can be prepared by coimpregnation of the F, Ni and Mo additives. Fluoride promotes the hydrogenation (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of a low-nitrogen feed. Fluoride promotes the quinoline hydrodenitrogenation (HDN) activity of Ni-Mo/Al[sub 2]O[sub 3] catalysts. Impregnation of phosphorus prior to the metal additives results in catalysts which are more active in HDS. Phosphorus increases indirectly the Broensted acidity of the catalyst by increasing the activity of the MoS[sub 2]-associated acid sites. Phosphorus promotes the HDSW and HYD activities of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of the low-N feed. A promotional effect of phosphorus is seen in quinoline HDN. P- and F-promoted Ni-MO/Al[sub 2]O[sub 3] catalysts are very active in quinoline HDN and maintain good activity in HDS and HYD of the high-N feed. Thiophene HDS was a good reaction for probing the activity of catalysts in the HDS of sterically-unhindered molecules, but an inaccurate probe for the HDS of hindered compounds.

  18. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.

    Science.gov (United States)

    Ling, Chongyi; Shi, Li; Ouyang, Yixin; Zeng, Xiao Cheng; Wang, Jinlan

    2017-08-09

    Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on β 12 boron monolayer (Ni 1 /β 12 -BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni 1 /β 12 -BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.

  19. KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production.

    Science.gov (United States)

    Tao, Guiju; Hua, Zile; Gao, Zhe; Zhu, Yan; Zhu, Yan; Chen, Yu; Shu, Zhu; Zhang, Lingxia; Shi, Jianlin

    2013-09-21

    Using newly developed mesoporous Mg-Fe bi-metal oxides as supports, a novel kind of high performance transesterification catalysts for biodiesel production has been synthesized. More importantly, the impregnation solvent was for the first time found to substantially affect the structures and catalytic performances of the resultant transesterification catalysts.

  20. Moessbauer spectroscopy and nuclear inelastic scattering studies on polynuclear oxo-bridged iron catalyst-first results

    International Nuclear Information System (INIS)

    Rajagopalan, S.; Asthalter, T.; Rabe, V.; Buerck, U. van; Wagner, F. E.; Laschat, S.

    2008-01-01

    Polynuclear iron catalysts are interesting materials because of their novel properties. In the future they may help to replace high cost and hazardous heavy metal catalysts by efficient, non toxic and economic iron compounds. In this work, we present some preliminary results on a novel polynuclear oxo-bridged iron catalyst. The chemical environment of the metal species (Fe) was studied under Gif-type conditions (Fe catalyst/Zn/O 2 in pyridine/acetic acid) with cyclohexene as substrate. Such Gif-type catalysts are able to catalyse the selective oxidation of alkanes and alkenes. The characterization was done by Moessbauer spectroscopy and nuclear inelastic scattering. In order to identify the intermediate species during the reaction (selective oxidation using molecular O 2 ), a freeze-quench technique was used. This also helps to understand the kinetics of the chemical reaction.

  1. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction.

    Science.gov (United States)

    Huo, Shengjuan; Weng, Zhe; Wu, Zishan; Zhong, Yiren; Wu, Yueshen; Fang, Jianhui; Wang, Hailiang

    2017-08-30

    One major challenge to the electrochemical conversion of CO 2 to useful fuels and chemical products is the lack of efficient catalysts that can selectively direct the reaction to one desirable product and avoid the other possible side products. Making use of strong metal/oxide interactions has recently been demonstrated to be effective in enhancing electrocatalysis in the liquid phase. Here, we report one of the first systematic studies on composition-dependent influences of metal/oxide interactions on electrocatalytic CO 2 reduction, utilizing Cu/SnO x heterostructured nanoparticles supported on carbon nanotubes (CNTs) as a model catalyst system. By adjusting the Cu/Sn ratio in the catalyst material structure, we can tune the products of the CO 2 electrocatalytic reduction reaction from hydrocarbon-favorable to CO-selective to formic acid-dominant. In the Cu-rich regime, SnO x dramatically alters the catalytic behavior of Cu. The Cu/SnO x -CNT catalyst containing 6.2% of SnO x converts CO 2 to CO with a high faradaic efficiency (FE) of 89% and a j CO of 11.3 mA·cm -2 at -0.99 V versus reversible hydrogen electrode, in stark contrast to the Cu-CNT catalyst on which ethylene and methane are the main products for CO 2 reduction. In the Sn-rich regime, Cu modifies the catalytic properties of SnO x . The Cu/SnO x -CNT catalyst containing 30.2% of SnO x reduces CO 2 to formic acid with an FE of 77% and a j HCOOH of 4.0 mA·cm -2 at -0.99 V, outperforming the SnO x -CNT catalyst which only converts CO 2 to formic acid in an FE of 48%.

  2. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Science.gov (United States)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-04-01

    In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.

  3. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    Science.gov (United States)

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity

  4. Raman scattering in transition metal compounds: Titanium and compounds of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Ederer, D.L.; Shu, T. [Tulane Univ., New Orleans, LA (United States)] [and others

    1997-04-01

    The transition metal compounds form a very interesting and important set of materials. The diversity arises from the many states of ionization the transition elements may take when forming compounds. This variety provides ample opportunity for a large class of materials to have a vast range of electronic and magnetic properties. The x-ray spectroscopy of the transition elements is especially interesting because they have unfilled d bands that are at the bottom of the conduction band with atomic like structure. This group embarked on the systematic study of transition metal sulfides and oxides. As an example of the type of spectra observed in some of these compounds they have chosen to showcase the L{sub II, III} emission and Raman scattering in some titanium compounds obtained by photon excitation.

  5. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs.

    Science.gov (United States)

    Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen

    2018-02-28

    Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e - transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm -2 and 10 mgcm -2 . Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm -2 and 262 ± 4 μWcm -2 with catalyst loading of 0.1 mgcm -2 and 10 mgcm -2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.

  6. Determination of the stability constants for cobalt, nickel and palladium homogeneous catalyst complexes containing triphenylphosphine ligands

    NARCIS (Netherlands)

    Djekic, T.; Zivkovic, Z.; van der Ham, Aloysius G.J.; de Haan, A.B.

    2006-01-01

    Homogeneous catalysts are complex compounds that are always in equilibrium with their free metal, free ligand and other forms of complexes. The ratios between different species are defined by the stability constants, which are influenced by different parameters such as the type of metal, ligand,

  7. Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts

    Science.gov (United States)

    Junfeng Feng; Chung-yun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The objective of this study was to find an effective method for converting renewable biomass-derived phenolic compounds into hydrocarbons bio-fuel via in situ catalytic hydrodeoxygenation. The in situ hydrodeoxygenation of biomass-derived phenolic compounds was carried out in methanol-water solvent over bifunctional catalysts of Raney Ni and HZSM-5 or H-Beta. In the in...

  8. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry” since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH3 and NH2NH2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH3- and NH2NH2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require

  9. Process and catalysts for hydrocarbon conversion. [high antiknock motor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1940-02-14

    High anti-knock motor fuel is produced from hydrocarbons by subjecting it at an elevated temperature to contact with a calcined mixture of hydrated silica, hydrated alumina, and hydrated zirconia, substantially free from alkali metal compounds. The catalyst may be prepared by precipitating silica gel by the acidification of an aqueous solution of an alkali metal silicate, intimately mixing hydrated alumina and hydrated zirconia therewith, drying, purifying the composite to substantially remove alkali metal compounds, again drying, forming the dried material into particles, and finally calcining. The resultant conversion products may be fractionated to produce gasoline, hydrocarbon oil above gasoling boiling point range, and a gaseous fraction of olefins which are polymerized into gasoline boiling range polymers.

  10. Naphthenic acid removal from HVGO by alkaline earth metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.; Rahimi, P.; Hawkins, R.; Bhatt, S.; Shi, Y. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    This poster highlighted a study that investigated naphthenic acid removal from bitumen-derived heavy vacuum gas oil (HVGO) by thermal cracking and catalytic decarboxylation over alkaline earth-metal oxides and ZnO catalysts in a batch reactor and a continuous fixed-bed reactor. X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA) temperature-programmed desorption (TPD) of carbon dioxide (CO{sub 2}-TPD), and scanning electron microscopy were used to characterize the fresh and spent catalysts. With MgO and ZnO, naphthenic acid removal proceeded via catalytic decarboxylation. No crystalline phase changes were observed after reaction. With CaO, multiple pathways such as catalytic decarboxylation, neutralization, and thermal cracking were responsible for naphthenic acid conversion. The spent catalysts contained Ca(OH){sub 2} and CaCO{sub 3}. With BaO, naphthenic acid conversion occurred through neutralization. All BaO was converted to Ba(OH){sub 2} during the reaction. tabs., figs.

  11. Preparation and characterization of bi-metallic nanoparticle catalyst having better anti-coking properties using reverse micelle technique

    Science.gov (United States)

    Zacharia, Thomas

    Energy needs are rising on an exponential basis. The mammoth energy sources like coal, natural gas and petroleum are the cause of pollution. The large outcry for an alternate energy source which is environmentally friendly and energy efficient is heard during the past few years. This is where “Clean-Fuel” like hydrogen gained its ground. Hydrogen is mainly produced by steam methane reforming (SMR). An alternate sustainable process which can reduce the cost as well as eliminate the waste products is Tri-reforming. In both these reforming processes nickel is used as catalyst. However as the process goes on the catalyst gets deactivated due to coking on the catalytic surface. This goal of this thesis work was to develop a bi-metallic catalyst which has better anti-coking properties compared to the conventional nickel catalyst. Tin was used to dope nickel. It was found that Ni3Sn complex around a core of Ni is coking resistant compared to pure nickel catalyst. Reverse micelle synthesis of catalyst preparation was used to control the size and shape of catalytic particles. These studies will benefit researches on hydrogen production and catalyst manufactures who work on different bi-metallic combinations.

  12. Wire gauze and cordierite supported noble metal catalysts for passive autocatalytic recombiner

    International Nuclear Information System (INIS)

    Sanap, Kiran K.; Varma, S.; Waghmode, S.B.; Bharadwaj, S.R.

    2015-01-01

    Highlights: • Synthesis by electroless deposition method and chemical reduction route. • Particle size of 0.1–0.5 μm & 3.5–5 nm for Pt–Pd/Wg & Pt–Pd/Cord catalysts. • Active for H_2 and O_2 reaction with initial H_2 concentration of 1.5 to 7% in air. • Active in presence of different contaminants like CO_2, CH_4, CO & relative humidity. • Enhanced resistance of Pt–Pd/Cord catalyst towards the poisoning of CO. - Abstract: Hydrogen released in nuclear reactor containment under severe accident scenario poses a threat to containment and hence needs to be regulated by catalytic recombination. Mixed noble metal catalysts with platinum–palladium supported on stainless steel wire gauze and cordierite support have been developed for this purpose. The developed catalysts have been found to be highly efficient for removal of hydrogen concentration in the range of 1.5 to 7.0% v/v in air. Though both the catalysts exhibit similar kinetics for lower hydrogen concentration, cordierite supported catalysts exhibits better kinetic rate at higher hydrogen concentration. The performances of these catalysts in presence of various probable catalytic poison like carbon monoxide and catalytic inhibitors like moisture, carbon dioxide, and hydrocarbons provide data for use of these catalysts under the actual scenario. Compared to stainless steel wire gauze supported catalyst, the cordierite based catalyst are found to exhibit enhanced resistance towards carbon monoxide and limited temperature rise for safer application at higher hydrogen concentrations.

  13. Mechanochemical synthesis of graphene oxide-supported transition metal catalysts for the oxidation of isoeugenol to vanillin

    Directory of Open Access Journals (Sweden)

    Ana Franco

    2017-07-01

    Full Text Available Vanillin is one of the most commonly used natural products, which can also be produced from lignin-derived feedstocks. The chemical synthesis of vanillin is well-established in large-scale production from petrochemical-based starting materials. To overcome this problem, lignin-derived monomers (such as eugenol, isoeugenol, ferulic acid etc. have been effectively used in the past few years. However, selective and efficient production of vanillin from these feedstocks still remains an issue to replace the existing process. In this work, new transition metal-based catalysts were proposed to investigate their efficiency in vanillin production. Reduced graphene oxide supported Fe and Co catalysts showed high conversion of isoeugenol under mild reaction conditions using H2O2 as oxidizing agent. Fe catalysts were more selective as compared to Co catalysts, providing a 63% vanillin selectivity at 61% conversion in 2 h. The mechanochemical process was demonstrated as an effective approach to prepare supported metal catalysts that exhibited high activity for the production of vanillin from isoeugenol.

  14. Oxidation of ethoxylated fatty alcohols to alkylpolyglycol carboxylic acids using noble metals as catalysts

    Directory of Open Access Journals (Sweden)

    Sagredos, Angelos

    2009-09-01

    Full Text Available The conversion of ethoxylated fatty alcohols to the corresponding carboxylic acids through dehydrogenation/ oxidation using noble-metal catalysts has been studied. Ethoxylated primary aliphatic alcohols, ethoxylated random secondary aliphatic alcohols and ethoxylated alkylphenols have been converted to the corresponding acids in the presence of a base. The noble metal catalysts Palladium and Platinum were used without significant degradation of the ethoxyl chain in yields that exceeded 90%. On the other hand, the catalysts Rhodium and Ruthenium gave yields of about 80% and 60% respectively.La conversión de alcoholes grasos etoxilados a los correspondientes ácidos carboxílicos por deshidrogenación/ oxidación con metales nobles como catalizador ha sido estudiada. Alcoholes primarios alifáticos etoxilados, alcoholes alifáticos secundarios etoxilados al azar y alquilfenoles etoxilados han sido convertidos a los correspondientes ácidos en presencia de base. Los catalizadores paladio y platino fueron usados sin degradación significativa de las cadenas etoxiladas con un rendimiento que excedió del 90%. Por otra parte catalizadores de rodio y rutenio produjeron rendimientos del 80 y 60%, respectivamente.

  15. Iodination of Alcohols over Keggin-type Heteropoly Compounds: A ...

    African Journals Online (AJOL)

    NICO

    compared in the iodination of benzyl alcohol with KI under mild reaction ... Keggin-type heteropoly compounds, supported catalyst, alcohols, alkyl iodides, potassium iodide. 1. .... water), the chloride salt of the corresponding metal was added.

  16. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  17. Oxide-supported metal clusters: models for heterogeneous catalysts

    International Nuclear Information System (INIS)

    Santra, A K; Goodman, D W

    2003-01-01

    Understanding the size-dependent electronic, structural and chemical properties of metal clusters on oxide supports is an important aspect of heterogeneous catalysis. Recently model oxide-supported metal catalysts have been prepared by vapour deposition of catalytically relevant metals onto ultra-thin oxide films grown on a refractory metal substrate. Reactivity and spectroscopic/microscopic studies have shown that these ultra-thin oxide films are excellent models for the corresponding bulk oxides, yet are sufficiently electrically conductive for use with various modern surface probes including scanning tunnelling microscopy (STM). Measurements on metal clusters have revealed a metal to nonmetal transition as well as changes in the crystal and electronic structures (including lattice parameters, band width, band splitting and core-level binding energy shifts) as a function of cluster size. Size-dependent catalytic reactivity studies have been carried out for several important reactions, and time-dependent catalytic deactivation has been shown to arise from sintering of metal particles under elevated gas pressures and/or reactor temperatures. In situ STM methodologies have been developed to follow the growth and sintering kinetics on a cluster-by-cluster basis. Although several critical issues have been addressed by several groups worldwide, much more remains to be done. This article highlights some of these accomplishments and summarizes the challenges that lie ahead. (topical review)

  18. Effect of catalysts on heterogeneous oxidation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Glazkova, A P; Kazarova, Yu A; Suslov, A V

    1978-01-01

    Analyzes the effects of catalysts on the heterogeneous oxidation of coal in deflagration processes of stoichiometric mixtures. The following substances are studied as catalysts: alkali and alkaline-earth metals, and compounds of copper, lead, chromium, iron, and sulfur. In the first case the catalysts are used in the form of nitrates and the nitrate simultaneously plays the role of an oxidizer. In the second case the catalysts are added to stoichiometric mixtures of ammonium nitrate with carbon. It is shown that during carbon oxidation by nitrates the catalytic efficiency of the metals studied forms the following order: sodium > lead > potassium > barium > aluminium > calcium > magnesium > copper. The calculated and experimental parameters of combustion are given. The problem of dependence of combustion rate on combustion heat, the mechanism of the combustion reaction and the catalytic effects of the additives are discussed. Features of heterogeneous catalysis in the oxidation process of carbon by various oxidizers are analyzed. The investigations on the combustion process are important as the process takes place during explosion of coal dust in underground coal mines and during burning of coal in industrial furnaces. (34 refs.) (In Russian)

  19. Surface noble metal modified PdM/C (M = Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Mao, Han; Huang, Tao; Yu, Aishui

    2016-01-01

    In this article, we studied the surface noble metal modification on Pd nanoparticles, other than the homogeneous or core-shell structure. The surface modification will lead to the uneven constitution within the nanoparticles and thus more obvious optimization effect toward the catalyst brought by the lattice deformation. The surface of the as-prepared Pd nanoparticles was modified with Ru, Pt or Au by a moderate and green approach, respectively. XPS results confirm the interactive electron effects between Pd and the modified noble metal. Electrochemical measurements show that the surface noble metal modified catalysts not only show higher catalytic activity, but also better stability and durability. The PdM/C catalysts all exhibit good dispersion and very little agglomeration after long-term potential cycles toward ethanol oxidation. With only 10% metallic atomic ratio of Au, PdAu/C catalyst shows extraordinary catalytic activity and stability, the peak current reaches 1700 mA mg"−"1 Pd, about 2.5 times that of Pd/C. Moreover, the PdAu/C maintains 40% of the catalytic activity after 4500 potential cycles. - Highlights: • Pd-based catalysts with complicated exposed facets. • Much enhanced electrocatalytic activity and stability with about 10% noble metal M (M = Ru, Pt, Au) on Pd nanoparticles. • The outstanding electrocatalytic performance of PdAu/C towards ethanol oxidation after the Au modification.

  20. Surface noble metal modified PdM/C (M = Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Han; Huang, Tao, E-mail: huangt@fudan.edu.cn; Yu, Aishui, E-mail: asyu@fudan.edu.cn

    2016-08-15

    In this article, we studied the surface noble metal modification on Pd nanoparticles, other than the homogeneous or core-shell structure. The surface modification will lead to the uneven constitution within the nanoparticles and thus more obvious optimization effect toward the catalyst brought by the lattice deformation. The surface of the as-prepared Pd nanoparticles was modified with Ru, Pt or Au by a moderate and green approach, respectively. XPS results confirm the interactive electron effects between Pd and the modified noble metal. Electrochemical measurements show that the surface noble metal modified catalysts not only show higher catalytic activity, but also better stability and durability. The PdM/C catalysts all exhibit good dispersion and very little agglomeration after long-term potential cycles toward ethanol oxidation. With only 10% metallic atomic ratio of Au, PdAu/C catalyst shows extraordinary catalytic activity and stability, the peak current reaches 1700 mA mg{sup −1} Pd, about 2.5 times that of Pd/C. Moreover, the PdAu/C maintains 40% of the catalytic activity after 4500 potential cycles. - Highlights: • Pd-based catalysts with complicated exposed facets. • Much enhanced electrocatalytic activity and stability with about 10% noble metal M (M = Ru, Pt, Au) on Pd nanoparticles. • The outstanding electrocatalytic performance of PdAu/C towards ethanol oxidation after the Au modification.

  1. Palladium Loaded on Magnetic Nanoparticles as Efficient and Recyclable Catalyst for the Suzuki- Miyaura Reaction

    Directory of Open Access Journals (Sweden)

    H. Khojasteh

    2015-07-01

    Full Text Available Palladium is the best metal catalyst for Suzuki cross coupling reaction for synthesize of unsymmetrical biaryl compounds. But its high cost limits its application in wide scale. Using of nanoscale particles as active catalytic cites is a good approach for reducing needed noble metal. By loading precious nanoparticles on magnetic nanocores as a support, recycling and reusing of catalyst will be possible. Magnetic nanoparticles have super paramagnetic feature and applying an external magnetic field can collect the supported catalyst from reaction milieu simply. In this work new palladium catalyst immobilized on modified magnetic nanoparticles containing NNO donor atoms were synthesized. Then the catalyst characterized by FT-IR spectroscopy, thermogravimetric analysis, X-ray diffraction and ICP. Prepared catalyst showed high activity in the Suzuki– Miyaura cross-coupling reaction of phenylboronic acid with aryl halides. Activity, Pd loading, reusability and Pd leaching of catalyst were studied. Results showed that the supported catalyst has the advantage to be completely recoverable with the simple application of an external magnetic field.

  2. Mitigation of hydrogen by oxidation using nitrous oxide and noble metal catalysts

    International Nuclear Information System (INIS)

    Britton, M.D.

    1995-01-01

    This test studied the ability of a blend of nuclear-grade, noble-metal catalysts to catalyze a hydrogen/nitrous oxide reaction in an effort to mitigate a potential hydrogen (H 2 ) gas buildup in the Hanford Site Grout Disposal Facility. For gases having H 2 and a stoichiometric excess of either nitrous oxide or oxygen, the catalyst blend can effectively catalyze the H 2 oxidation reaction at a rate exceeding 380 μmoles of H 2 per hour per gram of catalyst (μmol/h/g) and leave the gas with less than a 0.15 residual H 2 Concentration. This holds true in gases with up to 2.25% water vapor and 0.1% methane. This should also hold true for gases with up to 0.1% carbon monoxide (CO) but only until the catalyst is exposed to enough CO to block the catalytic sites and stop the reaction. Gases with ammonia up to 1% may be slightly inhibited but can have reaction rates greater than 250 μmol/h/g with less than a 0.20% residual H 2 concentration. The mechanism for CO poisoning of the catalyst is the chemisorption of CO to the active catalyst sites. The CO sorption capacity (SC) of the catalyst is the total amount of CO that the catalyst will chemisorb. The average SC for virgin catalyst was determined to be 19.3 ± 2.0 μmoles of CO chemisorbed to each gram of catalyst (μmol/g). The average SC for catalyst regenerated with air was 17.3 ± 1.9 μmol/g

  3. Hydroprocessing catalysts utilization and regeneration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off-site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed.

  4. Permanganate oxidation of sulfur compounds to prevent poisoning of Pd catalysts in water treatment processes.

    Science.gov (United States)

    Angeles-Wedler, Dalia; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2008-08-01

    The practical application of Pd-catalyzed water treatment processes is impeded by catalyst poisoning by reduced sulfur compounds (RSCs). In this study, the potential of permanganate as a selective oxidant for the removal of microbially generated RSCs in water and as a regeneration agent for S-poisoned catalysts was evaluated. Hydrodechlorination using Pd/Al2O3 was carried out as a probe reaction in permanganate-pretreated water. The activity of the Pd catalysts in the successfully pretreated reaction medium was similar to that in deionized water. The catalyst showed no deactivation behavior in the presence of permanganate at a concentration level or = 0.08 mM, a significant but temporary inhibition of the catalytic dechlorination was observed. Unprotected Pd/Al2O3, which had been completely poisoned by sulfide, was reactivated by a combined treatment with permanganate and hydrazine. However, the anthropogenic water pollutants thiophene and carbon disulfide were resistant against permanganate. Together with the preoxidation of catalyst poisons, hydrophobic protection of the catalysts was studied. Pd/zeolite and various hydrophobically coated catalysts showed a higher stability against ionic poisons and permanganate than the uncoated catalyst. By means of a combination of oxidative water pretreatment and hydrophobic catalyst protection, we provide a new tool to harness the potential of Pd-catalyzed hydrodehalogenation for the treatment of real waters.

  5. Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems

    Directory of Open Access Journals (Sweden)

    Anna M. Venezia

    2013-06-01

    Full Text Available Steam reforming of light hydrocarbons provides a promising method for hydrogen production. Ni-based catalysts are so far the best and the most commonly used catalysts for steam reforming because of their acceptably high activity and significantly lower cost in comparison with alternative precious metal-based catalysts. However, nickel catalysts are susceptible to deactivation from the deposition of carbon, even when operating at steam-to-carbon ratios predicted to be thermodynamically outside of the carbon-forming regime. Reactivity and deactivation by carbon formation can be tuned by modifying Ni surfaces with a second metal, such as Au through alloy formation. In the present review, we summarize the very recent progress in the design, synthesis, and characterization of supported bimetallic Ni-based catalysts for steam reforming. The progress in the modification of Ni with noble metals (such as Au and Ag is discussed in terms of preparation, characterization and pretreatment methods. Moreover, the comparison with the effects of other metals (such as Sn, Cu, Co, Mo, Fe, Gd and B is addressed. The differences of catalytic activity, thermal stability and carbon species between bimetallic and monometallic Ni-based catalysts are also briefly shown.

  6. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-02-20

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  7. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-03-03

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  8. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst

    International Nuclear Information System (INIS)

    Yan, Kai; Chen, Aicheng

    2013-01-01

    Biomass-derived platform intermediate furfural and levulinic acid were efficiently hydrogenated to the value-added furfuryl alcohol and promising biofuel γ-valerolactone, respectively, using a noble-metal-free Cu–Cr catalyst, which was facilely and successfully synthesized by a modified co-precipitation method using the cheap metal nitrates. In the first hydrogenation of furfural, 95% yield of furfuryl alcohol was highly selectively produced at 99% conversion of furfural under the mild conditions. For the hydrogenation of levulinic acid, 90% yield of γ-valerolactone was highly selectively produced at 97.8% conversion. Besides, the physical properties of the resulting Cu–Cr catalysts were studied by XRD (X-ray diffraction), EDX (Energy-dispersive X-ray), TEM (Transmission electron microscopy) and XPS (X-ray photoelectron spectroscopy) to reveal their influence on the catalytic performance. Subsequently, different reaction parameters were studied and it was found that Cu 2+ /Cr 3+ ratios (0.5, 1 and 2), reaction temperature (120–220 °C) and hydrogen pressure (35–70 bar) presented important influence on the catalytic activities. In the end, the stability of the Cu–Cr catalysts was also studied. - Highlights: • A noble-metal-free Cu–Cr catalyst was successfully synthesized using metal nitrates. • Cu–Cr catalysts were highly selective hydrogenation of biomass-derived furfural to FA. • Cu–Cr catalysts were efficient for hydrogenation of biomass-derived LA to biofuel GVL. • The physical properties of the resulting Cu–Cr catalysts were systematically studied. • Reaction parameters and stability in the hydrogenation of furfural were studied in details

  9. Catalyst and processing effects on metal-assisted chemical etching for the production of highly porous GaN

    International Nuclear Information System (INIS)

    Geng, Xuewen; Grismer, Dane A; Bohn, Paul W; Duan, Barrett K; Zhao, Liancheng

    2013-01-01

    Metal-assisted chemical etching is a facile method to produce micro-/nanostructures in the near-surface region of gallium nitride (GaN) and other semiconductors. Detailed studies of the production of porous GaN (PGaN) using different metal catalysts and GaN doping conditions have been performed in order to understand the mechanism by which metal-assisted chemical etching is accomplished in GaN. Patterned catalysts show increasing metal-assisted chemical etching activity to n-GaN in the order Ag < Au < Ir < Pt. In addition, the catalytic behavior of continuous films is compared to discontinuous island films. Continuous metal films strongly shield the surface, hindering metal-assisted chemical etching, an effect which can be overcome by using discontinuous films or increasing the irradiance of the light source. With increasing etch time or irradiance, PGaN morphologies change from uniform porous structures to ridge and valley structures. The doping type plays an important role, with metal-assisted chemical etching activity increasing in the order p-GaN < intrinsic GaN < n-GaN. Both the catalyst identity and the doping type effects are explained by the work functions and the related band offsets that affect the metal-assisted chemical etching process through a combination of different barriers to hole injection and the formation of hole accumulation/depletion layers at the metal–semiconductor interface. (paper)

  10. Survey on synthesis and reaction of environmentally benign water-soluble metal complex catalysts; Kankyo chowagata suiyosei sakutai shokubai no gosei hanno no chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the research trend survey results on the synthesis and reaction of water-soluble metal complexes which are regarded as environmentally benign catalysts. For the synthesis and catalysis of water-soluble complexes, synthetic methods of water-soluble phosphines, such as sulfonated TPPMS and TPPTS, are described in detail. Synthesis and reactivity of hydroxymethylphosphines are introduced, and the application of electrospray mass spectroscopy is elucidated as a tool for the analysis of them. Changes of the application of transition metal complexes with water-soluble phosphines to catalysis are described. Dual catalysts which have both functions of phase transfer catalysts and homogeneous catalysts are introduced. Concept of counter phase transfer catalysts is also introduced, and some catalytic reactions are described. In addition, this report introduces catalysis of water-soluble polymer-supported metal complexes, immobilization of metal colloids with water-soluble ligands and their analysis, and water-soluble complexes as hybrid catalysts. 144 refs., 94 figs., 10 tabs.

  11. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    Science.gov (United States)

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from refinery and perhaps other modern refineries during the timeframe examined. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C-S Bond Activation and Consequences of Bifunctional Synergies

    Science.gov (United States)

    Yik, Edwin Shyn-Lo

    The presence of heteroatoms (e.g. S, N) in crude oil poses formidable challenges in petroleum refining processes as a result of their irreversible binding on catalytically active sites at industrially relevant conditions. With increasing pressures from legislation that continues to lower the permissible levels of sulfur content in fuels, hydrodesulfurization (HDS), the aptly named reaction for removing heteroatoms from organosulfur compounds, has become an essential feedstock pretreatment step to remove deleterious species from affecting downstream processing. Extensive research in the area has identified the paradigm catalysts for desulfurization; MoSx or WSx, promoted with Co or Ni metal; however, despite the vast library of both empirical and fundamental studies, a clear understanding of site requirements, the elementary steps of C-S hydrogenolysis, and the properties that govern HDS reactivity and selectivity have been elusive. While such a lack of rigorous assessments has not prevented technological advancements in the field of HDS catalysis, fundamental interpretations can inform rational catalyst and process design, particularly in light of new requirements for "deep" desulfurization and in the absence of significant hydrotreatment catalyst developments in recent decades. We report HDS rates of thiophene, which belongs to a class of compounds that are most resistant to sulfur removal (i.e. substituted alkyldibenzothiophenes), over a range of industrially relevant temperatures and pressures, measured at differential conditions and therefore revealing their true kinetic origins. These rates, normalized by the number of exposed metal atoms, on various SiO 2-supported, monometallic transition metals (Re, Ru, Pt), range several orders of magnitude. Under relevant HDS conditions, Pt and Ru catalysts form a layer of chemisorbed sulfur on surfaces of a metallic bulk, challenging reports that assume the latter exists as its pyrite sulfide phase during reaction. While

  13. Amberlyst-15: An Efficient and reusable heterogeneous catalyst for the synthesis of β-amino carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Pathakota Venkata Ramana

    2015-12-01

    Full Text Available A simple and efficient method has been developed for the synthesis of β-amino carbonyl compounds from aromatic ketones, aldehydes and amines by Mannich reaction in the presence of amberlyst-15 as a reusable heterogeneous catalyst at room temperature under solvent-free conditions. The noteworthy advantages of the present method are short reaction times, good product yields, simple procedures and use of non-toxic catalyst.

  14. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Science.gov (United States)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O3 catalytic decomposition and utilization. Benzene and O3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O3 was catalytically decomposed, generating highly reactive oxidants such as rad OH and rad O for benzene oxidation.

  15. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    Science.gov (United States)

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  16. Polystyrene Supported Al(OTf)3: an Environmentally Friendly Heterogeneous Catalyst for Friedel-Crafts Acylation of Aromatic Compounds

    International Nuclear Information System (INIS)

    Boroujeni, Kaveh Parvanak

    2010-01-01

    Stable and non-hygroscopic polystyrene supported aluminium triflate (Ps-Al(OTf) 3 ), which is prepared easily from cheap and commercially available compounds was found to be an environmentally friendly heterogeneous catalyst for Friedel-Crafts acylation of arenes using acid chlorides in the absence of solvent under mild reaction conditions. The catalyst can be reused up to five times after simple washing with dichloromethane

  17. Catalyst design for clean and efficient fuels

    DEFF Research Database (Denmark)

    Šaric, Manuel

    cobalt promoted MoS2 catalyst. Reactivity of a series of model molecules, found in oil prior to desulfurization, is studied on cobalt promoted MoS2. Such an approach has the potential to explain the underlying processes involved in the removal of sulfur at each specific site of the catalyst. The goal...... is to identify which sites are active towards specific molecules and in getting insight to what the ideal catalyst should look like in terms of morphology. Dimethyl carbonate is an environmentally benign compound that can be used as a solvent and precursor in chemical synthesis or as a fuel and fuel additive...... processes currently used. It is found that noble metals can be used as electrocatalysts for the synthesis of dimethyl carbonate, significantly lowering the potential when using copper instead of gold. Besides being active, copper was found to be selective towards dimethyl carbonate. A non-selective catalyst...

  18. Influence of Multi-Valency, Electrostatics and Molecular Recognition on the Adsorption of Transition Metal Complexes on Metal Oxides: A Molecular Approach to Catalyst Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Pennsylvania State Univ., University Park, PA (United States)

    2017-03-31

    In this work, we have primarily utilized isothermal titration calorimetry (ITC) and complimentary catalyst characterization techniques to study and assess the impact of solution conditions (i.e., solid-liquid) interface on the synthesis of heterogeneous and electro-catalysts. Isothermal titration calorimetry is well-known technique from biochemistry/physics, but has been applied to a far lesser extent to characterize buried solid-liquid interfaces in materials science. We demonstrate the utility and unique information provided by ITC for two distinct catalytic systems. We explored the thermodynamics associated catalyst synthesis for two systems: (i) ion-exchange or strong electrostatic adsorption for Pt and Pd salts on silica and alumina materials (ii) adsorption to provide covalent attachment of metal and metal-oxo clusters to Dion-Jacobsen perovskite materials.

  19. Catalytic oxidation of volatile organic compounds (n-hexane, benzene, toluene, o-xylene promoted by cobalt catalysts supported on γ-Al2O3-CeO2

    Directory of Open Access Journals (Sweden)

    R. Balzer

    2014-09-01

    Full Text Available Cobalt catalysts supported on γ-alumina, ceria and γ-alumina-ceria, with 10 or 20%wt of cobalt load, prepared by the wet impregnation method and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, field emission transmission electron microscopy (FETEM, N2 adsorption-desorption isotherms (BET/BJH methods, energy-dispersive X-ray spectroscopy (EDX, X-ray photoemission spectroscopy (XPS, O2-chemisorption and temperature programmed reduction (TPR were used to promote the oxidation of volatile organic compounds (n-hexane, benzene, toluene and o-xylene. For a range of low temperatures (50-350 °C, the activity of the catalysts with a higher cobalt load (20% wt was greater than that of the catalysts with a lower cobalt load (10% wt. The Co/γ-Al2O3-CeO2 catalytic systems presented the best performances. The results obtained in the characterization suggest that the higher catalytic activity of the Co20/γ-Al2O3-CeO2 catalyst may be attributed to the higher metal content and amount of oxygen vacancies, as well as the effects of the interaction between the cobalt and the alumina and cerium oxides.

  20. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun, E-mail: 1044208419@qq.com; Mao, Hui, E-mail: rejoice222@163.com [Sichuan Normal University, College of Chemistry and Materials Science (China)

    2016-10-15

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al{sub 2}O{sub 3} catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  1. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    International Nuclear Information System (INIS)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun; Mao, Hui

    2016-01-01

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al 2 O 3 catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  2. Preparation, Characterization, and Catalytic Activity of MoCo/USY Catalyst on Hydrodeoxygenation Reaction of Anisole

    Science.gov (United States)

    Nugrahaningtyas, K. D.; Suharbiansah, R. S. R.; Rahmawati, F.

    2018-03-01

    This research aims to prepare, characterize, and study the catalytic activity of Molybdenum (Mo) and Cobalt (Co) metal with supporting material Ultra Stable Y-Zeolite (USY), to produce catalysts with activity in hydrotreatment reaction and in order to eliminate impurities compounds that containing unwanted groups heteroatoms. The bimetallic catalysts MoCo/USY were prepared by wet impregnation method with weight variation of Co metal 0%, 2%, 4%, 6%, 8%, and Mo metal 8% (w/w), respectively. Activation method of the catalyst included calcination, oxidation, reduction and the crystallinity was characterized using X-ray diffraction (XRD), the acidity of the catalyst was analyzed using Fourier Transform Infrared Spectroscopy (FT-IR) and gravimetry method, minerals present in the catalyst was analyzed using X-Ray Fluorescence (XRF), and surface of the catalyst was analyzed using Surface Area Analyzer (SAA). Catalytic activity test (benzene yield product) of MoCo/USY on hydrodeoxigenation reaction of anisole aimed to determine the effect of Mo-Co/USY for catalytic activity in the reaction hydrodeoxigenation (HDO) anisole. Based on characterization and test of catalytic activity, it is known that catalytic of MoCo/USY 2% (catalyst B) shows best activities with acidity of 10.209 mmol/g, specific area of catalyst of 426.295 m2/g, pore average of 14.135 Å, total pore volume 0.318 cc/g, and total yield of HDO products 6.06%.

  3. Dendrimer encapsulated Silver nanoparticles as novel catalysts for reduction of aromatic nitro compounds

    Science.gov (United States)

    Asharani, I. V.; Thirumalai, D.; Sivakumar, A.

    2017-11-01

    Polyethylene glycol (PEG) core dendrimer encapsulated silver nanoparticles (AgNPs) were synthesized through normal chemical reduction method, where dendrimer acts as reducing and stabilizing agent. The encapsulated AgNPs were well characterized using TEM, DLS and XPS techniques. The synthesized AgNPs showed excellent catalytic activity towards the reduction of aromatic nitro compounds with sodium borohydride as reducing agent and the results substantiate that dendrimer encapsulated AgNPs can be an effective catalyst for the substituted nitro aromatic reduction reactions. Also the kinetics of different nitro compounds reductions was studied and presented.

  4. Study on the structure of Co/ZrO2-SiO2 catalysts by XAFS

    International Nuclear Information System (INIS)

    Gao Haiyan; Xiang Hongwei; Li Yongwang; Sun Yuhan; Liu Tao; Xie Yaning; Hu Tiandou

    2002-01-01

    The Co-based catalysts have been extensively used in converting CO to longer chain hydrocarbons which can then be hydrocracked to diesel oil with high grade. SiO 2 is one of the most commonly used carriers for Co-based catalysts. It is showed that commercial silica carrier after modification can lead to much high reaction activity and selectivity to heavy hydrocarbons. But the structure of Co-based catalysts supported on the modified carrier has not been clearly understood. XAFS is used to investigate the change of structure of cobalt species in Co-based catalysts supported on modified carriers. The result from XAFS indicate that the structure of Co-based catalysts supported on modified carrier has certain change in comparison with Co-based catalyst supported on commercial silica. The interaction between carrier and metal is woken in the modified catalysts. Especially, the structure of catalysts after reduction have distinct difference. The extent of reduction in modified catalysts is much more than the catalyst supported on commercial silica. Cobalt species of the catalyst supported commercial silica after reduction dose exist mainly in the form of cobalt metal forms and may exist in the form of Co 2 SiO 4 surface compound

  5. Isotope exchange reaction of tritium on precious metal catalyst based on cation-exchanged mordenite for blanket tritium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Precious metal catalyst based on cation-exchanged mordenite was prepared. • Isotope exchange reaction between H{sub 2} and HTO on the catalyst was investigated. • The order of entire reaction is not clear, but it is the first-order reaction as for HTO. • Effect of exchanged cation may appear as the difference of the surface area of catalyst. - Abstract: It is known that the chemical forms of tritium released from a ceramic breeder blanket are hydrogen form and water form. To recover tritiated water vapor, adoption of dryer that is packed column of synthetic zeolite has been proposed. On the other hand, synthetic zeolite is often used as a support of precious metal catalyst. Such catalysts usually have a capability of hydrogen isotope exchange between gas and water vapor. If this catalyst is used to dryer, the dryer may obtain a preferable function for tritium recovery by isotopic exchange reaction. To assess such functions, reaction rate should be estimated. The results of water adsorption experiment on cation-exchanged mordenite-type zeolite suggested the possibility that state of adsorbed water varied by exchanged cation. So, in this work, precious metal catalyst based on cation-exchanged mordenite was prepared, and the reaction rate of chemical exchange between hydrogen and tritiated water was investigated under temperature range between 30 °C and 80 °C by the steady-state approximation. In the case of platinum on Na-mordenite, the reaction between gaseous hydrogen and tritiated water vapor was almost expressed as first-order reaction concerning tritiated water vapor concentration.

  6. Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization

    Directory of Open Access Journals (Sweden)

    Żelechowska Kamila

    2016-12-01

    Full Text Available Synthesis and characterization of the graphene hydrogels with three different metallic nanoparticles, that is Au, Ag and Cu, respectively is presented. Synthesized in a one-pot approach graphene hydrogels with embedded metallic nanoparticles were tested as heterogeneous catalysts in a model reaction of 4-nitrophenol reduction. The highest activity was obtained for graphene hydrogel with Cu nanoparticles and additional reaction of methylene blued degradation was evaluated using this system. The obtained outstanding catalytic activity arises from the synergistic effect of graphene and metallic nanoparticles. The hydrogel form of the catalyst benefits in the easiness in separation from the reaction mixture (for example using tweezers and reusability.

  7. Economy of Catalyst Synthesis-Convenient Access to Libraries of Di- and Tetranaphtho Azepinium Compounds.

    Science.gov (United States)

    Tharamak, Sorachat; Knittl-Frank, Christian; Manaprasertsak, Auraya; Pengsook, Anchulee; Suchy, Lydia; Schuller, Philipp; Happl, Barbara; Roller, Alexander; Widhalm, Michael

    2018-03-24

    Efficient optimization procedures in chiral catalysis are usually linked to a straightforward strategy to access groups of structurally similar catalysts required for fine-tuning. The ease of building up such ligand libraries can be increased when the structure-modifying step (introduction of a substituent) is done at a later stage of the synthesis. This is demonstrated for the extended family of di- and tetranaphtho azepinium compounds, widely used as chiral phase transfer catalysts (PTC). Using 2,6-diiodo-4,5-dihydro-3 H -dinaphtho[2,1-c:1',2'-e]azepine and 4,8-diiodo-6,7-dihydro-5 H -dibenzo[c,e]azepine, respectively, as key intermediates, 18 spiro -azepinium compounds were synthesized in a total yield of 25-42% over 6-7 steps from 1,1'-binaphthyl-2,2'-dicarboxylic acid or diphenic acid, respectively. The replacement of iodo groups with aryl substituents was performed as the last or the penultimate step of the synthesis.

  8. Amino-functionalized metal-organic frameworks as tunable heterogeneous basic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M.; Hartmann, M. [Erlangen-Nuernberg Univ., Erlangen (Germany). Erlangen Catalysis Resource Center

    2011-07-01

    Metal-organic framework (MOF) materials have been explored for applications in heterogeneous catalysis in recent years. In addition to the use of MOFs as supports for the deposition of highly dispersed metal particles, the incorporation of active centers such as coordinatively unsaturated metal sites and the functionalization of the organic linkers with acidic or basic groups seems to be most promising. In our contribution, three different MOFs carrying amino groups at their organic linkers, namely Fe-MIL-101-NH{sub 2} (S{sub BET} = 3438 m{sup 2}g{sup -1}), Al-MIL-101-NH{sub 2} (S{sub BET} = 3099 m{sup 2}g{sup -1}) and CAU-1 (S{sub BET} = 1492 m{sup 2}g{sup -1}), were synthesized and tested in the Knoevenagel condensation of benzaldehyde with malononitrile and with ethyl cyanoacetate, respectively. It is shown that the expected products benzylidenemalononitrile (BzMN) and ethyl a-cyanocinnamate (EtCC) are formed with selectivities of more than 99 % and yields of 90 to 95 % after 3 h (for BzMN). Due to the very small pore windows of CAU-1 (0.3 to 0.4 nm) the reaction proceeds much slower over this catalyst in comparison to the amino-MIL-101 derivatives, which possess open pore windows of up to 1.6 nm. Finally, leaching tests confirm that the reaction is heterogeneously catalyzed. Moreover, the catalysts are recyclable without significant loss of activity. (orig.)

  9. Mechanistic studies related to the metal catalyzed reduction of carbon monoxide to hydrocarbons. Final report, April 1, 1977-June 30, 1985

    International Nuclear Information System (INIS)

    Casey, C.P.

    1985-02-01

    Studies of compounds related to proposed intermediates in the hydrogenation of carbon monoxide over homogeneous and heterogeneous catalysts have been carried out. The synthesis, structure, and reactions of metal formyl compounds have been investigated. The synthesis and desproportionation reactions of hydroxymethyl metal compounds have been explored. Reactions involving interconversion of n 5 - and n'-C 5 H 5 organometallic compounds have been discovered. New synthetic routes to bimetallic compounds with bridging hydrocarbon ligands have been developed. The first bimetallic compound with a budging CH ligand has been prepared. The hydrocarbation reaction in which the CH bond of a bridging methylidyne complex adds across a carbon-carbon double bond has been discovered. New heterobimetallic compounds linked by a heterodifunctional ligand and heterobimetallic compounds with directly bonded early and late transition metals have been synthesized in a search for new CO hydrogenation catalysts. 36 refs

  10. Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports

    Science.gov (United States)

    Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl

    2016-10-01

    Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.

  11. Advances in Base-Free Oxidation of Bio-Based Compounds on Supported Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Robert Wojcieszak

    2017-11-01

    Full Text Available The oxidation of bio-based molecules in general, and of carbohydrates and furanics in particular, is a highly attractive process. The catalytic conversion of renewable compounds is of high importance. Acids and other chemical intermediates issued from oxidation processes have many applications related, especially, to food and detergents, as well as to pharmaceutics, cosmetics, and the chemical industry. Until now, the oxidation of sugars, furfural, or 5-hydroxymethylfurfural has been mainly conducted through biochemical processes or with strong inorganic oxidants. The use of these processes very often presents many disadvantages, especially regarding products separation and selectivity control. Generally, the oxidation is performed in batch conditions using an appropriate catalyst and a basic aqueous solution (pH 7–9, while bubbling oxygen or air through the slurry. However, there is a renewed interest in working in base-free conditions to avoid the production of salts. Actually, this gives direct access to different acids or diacids without laborious product purification steps. This review focuses on processes applying gold-based catalysts, and on the catalytic properties of these systems in the base-free oxidation of important compounds: C5–C6 sugars, furfural, and 5-hydroxymethylfurfural. A better understanding of the chemical and physical properties of the catalysts and of the operating conditions applied in the oxidation reactions is essential. For this reason, in this review we put emphasis on these most impacting factors.

  12. Transition-Metal-Controlled Inorganic Ligand-Supported Non-Precious Metal Catalysts for the Aerobic Oxidation of Amines to Imines.

    Science.gov (United States)

    Yu, Han; Zhai, Yongyan; Dai, Guoyong; Ru, Shi; Han, Sheng; Wei, Yongge

    2017-10-09

    Most state-of-art transition-metal catalysts usually require organic ligands, which are essential for controlling the reactivity and selectivity of reactions catalyzed by transition metals. However, organic ligands often suffer from severe problems including cost, toxicity, air/moisture sensitivity, and being commercially unavailable. Herein, we show a simple, mild, and efficient aerobic oxidation procedure of amines using inorganic ligand-supported non-precious metal catalysts 1, (NH 4 ) n [MMo 6 O 18 (OH) 6 ] (M=Cu 2+ ; Fe 3+ ; Co 3+ ; Ni 2+ ; Zn 2+ , n=3 or 4), synthesized by a simple one-step method in water at 100 °C, demonstrating that the catalytic activity and selectivity can be significantly improved by changing the central metal atom. In the presence of these catalysts, the catalytic oxidation of primary and secondary amines, as well as the coupling of alcohols and amines, can smoothly proceed to afford various imines with O 2 (1 atm) as the sole oxidant. In particular, the catalysts 1 have transition-metal ion core, and the planar arrangement of the six Mo VI centers at their highest oxidation states around the central heterometal can greatly enhance the Lewis acidity of catalytically active sites, and also enable the electrons in the center to delocalize onto the six edge-sharing MO 6 units, in the same way as ligands in traditional organometallic complexes. The versatility of this methodology maybe opens a path to catalytic oxidation through inorganic ligand-coordinated metal catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.

    Science.gov (United States)

    Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo

    2018-01-10

    Single-atom catalysts (SACs), in which metal atoms are dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electrochemical reactions. In this Minireview, recent examples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR) are introduced. Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO 2 reduction to methane or methanol production while suppressing H 2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine frameworks, graphitic carbon nitride, S-doped zeolite-templated carbon, and Sb-doped SnO 2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in situ infrared spectroscopy have been used to detect the single-atom structure and confirm the absence of nanoparticles. SACs have shown high mass activity, minimizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts owing to the absence of ensemble sites. Additional features that SACs should possess for effective electrochemical applications were also suggested. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Light alkane (mixed feed selective dehydrogenation using bi-metallic zeolite supported catalyst

    Directory of Open Access Journals (Sweden)

    Zeeshan Nawaz

    2009-12-01

    Full Text Available Light alkanes are the important intermediates of many refinery processes and their catalytic dehydrogenation gives corresponding alkenes. The aim behind this experimentation is to investigate reaction behavior of mixed alkanes during direct catalytic dehydrogenation and emphasis has been given to enhance propene. Bi-metallic zeolite supported catalyst Pt-Sn/ZSM-5 was prepared by sequentional impregnation method and characterized by BET, EDS and XRD. Direct dehydrogenation reaction is highly endothermic and its conversion is thermodynamically limited. Results showed that the increase in temperature increases the conversion to some extent but there is no overall effect on selectivity of propene. Increase in time-on-stream (TOS remarkably improves propene selectivity at the expense of lower conversion. The performances of bi-metallic zeolite based catalyst largely affected by coke deposition. The presence of butane and ethane adversely affected propane conversion. Optimum propene selectivity is about 48 %, obtained at 600 oC and time-on-stream 10 h.

  15. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction.

    Science.gov (United States)

    Yong, P; Liu, W; Zhang, Z; Beauregard, D; Johns, M L; Macaskie, L E

    2015-11-01

    For reduction of Cr(VI) the Pd-catalyst is excellent but costly. The objectives were to prove the robustness of a Serratia biofilm as a support for biogenic Pd-nanoparticles and to fabricate effective catalyst from precious metal waste. Nanoparticles (NPs) of palladium were immobilized on polyurethane reticulated foam and polypropylene supports via adhesive biofilm of a Serratia sp. The biofilm adhesion and cohesion strength were unaffected by palladization and catalytic biofilm integrity was also shown by magnetic resonance imaging. Biofilm-Pd and mixed precious metals on biofilm (biofilm-PM) reduced 5 mM Cr(VI) to Cr(III) when immobilized in a flow-through column reactor, at respective flow rates of 9 and 6 ml/h. The lower activity of the latter was attributed to fewer, larger, metal deposits on the bacteria. Activity was lost in each case at pH 7 but was restored by washing with 5 mM citrate solution or by exposure of columns to solution at pH 2, suggesting fouling by Cr(III) hydroxide product at neutral pH. A 'one pot' conversion of precious metal waste into new catalyst for waste decontamination was shown in a continuous flow system based on the use of Serratia biofilm to manufacture and support catalytic Pd-nanoparticles.

  16. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    International Nuclear Information System (INIS)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-01-01

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600 degrees F to about 1400 degrees F

  17. Performance of metal compound on thermolysis and electrolysis on sugar industries waste water treatment: COD and color removal with sludge analysis (batch-experiment)

    Science.gov (United States)

    Sahu, Omprakash

    2017-10-01

    The sugar cane industry is one of the most water demanding industries. Sugar industries consume and generate excess amount of water. The generated water contains organic compounds, which would cause pollution. The aim of this research work is to study the effectiveness of metal compound for treatment of sugar industry waste water by thermolysis and electrolysis process. The result shows ferrous metal catalyst shows 80 and 85 % chemical oxygen demand and color removal at pH 6, optimum mass loading 4 kg/m3, treatment temperature 85 °C and treatment time 9 h. When ferrous material was used as electrode, maximum 81 % chemical oxygen demand and 84 % color removal at pH 6, current density 156 Am-2, treatment time 120 min and anode consumption 0.7 g for 1.5 L wastewater were obtained.

  18. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    with compositions 25Fe75Ni and 50Fe50Ni showed significantly better activity and in some cases also a higher selectivity to methane compared with the traditional monometallic Ni and Fe catalysts. A catalyst with composition 25Fe75Ni was found to be the most active in CO hydrogenation for the MgAl2O4 support at low...... metal loadings. At high metal concentrations, the maximum for the methanation activity was found for catalysts with composition 50Ni50Fe both on the MgAl2O4 and Al2O3 supports. This difference can be attributed to a higher reducibility of the constituting metals with increasing metal concentration......DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. Here...

  19. Reuse of Hydrotreating Spent Catalyst

    International Nuclear Information System (INIS)

    Habib, A.M.; Menoufy, M.F.; Amhed, S.H.

    2004-01-01

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  20. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  1. Preparation and characterization of stable copper/zinc oxide/alumina catalysts for methanol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppener, R H; Doesburg, E B; Scholten, J J

    1986-08-15

    A series of Cu/ZnO/Al/sub 2/O/sub 3/ catalysts for the low pressure methanol synthesis has been prepared by coprecipitation with a sodium carbonate solution from solutions of a mixture of the corresponding metal nitrates, followed by drying, calcination and reduction. The catalysts and their precursors were analyzed by techniques like X-ray diffraction, X-ray line broadening, differential thermal analysis, chemical analysis, adsorptive decomposition of N/sub 2/O and B.E.T.-measurements. The catalytic activity for the methanol synthesis was determined in a flow reactor under industrial conditions. Depending on the metal ion ratio in the initial metal nitrate solutions different compounds were formed during coprecipitation, like rosasite, malachite, Cu, Zn-hydrotalcite and a ternary compound which was called roderite. Its structure is unknown and it contains, besides Zn/sup 2+/, up to 28 at% Cu/sup 2+/ and up to 17 at% Al/sup 3+/. Addition of 7 at% Mg/sup 2+/ stabilizes the Cu, Zn-hydrotalcite structure but leads to a drastic decrease in catalytic activity. The rate of methanol production depends on the phase composition of the precursors. Rosasite containing precursors give the highest activity; hydrotalcite proves to be an excellent catalyst stabilizer which evokes the formation of small Cu and ZnO particles. Mg/sup 2+/ inhibits methanol production. 6 figs., 1 tab., 18 refs.

  2. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    Science.gov (United States)

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  3. Steam reforming of different biomass tar model compounds over Ni/Al_2O_3 catalysts

    International Nuclear Information System (INIS)

    Artetxe, Maite; Alvarez, Jon; Nahil, Mohamad A.; Olazar, Martin; Williams, Paul T.

    2017-01-01

    Highlights: • Order of reactivity: anisole > furfural > indene > phenol > toluene > methyl naphthalene. • Higher coke deposition for oxygenates (1.5–2.8%) than for aromatics (0.5–0.8%). • Amorphous coke is deposited for oxygenates and filamentous carbon for aromatics. • Ni content of 20 wt.% shows the higher conversion (90%) and H_2 potential (63%). - Abstract: This work focuses on the removal of the tar derived from biomass gasification by catalytic steam reforming on Ni/Al_2O_3 catalysts. Different tar model compounds (phenol, toluene, methyl naphthalene, indene, anisole and furfural) were individually steam reformed (after dissolving each one in methanol), as well as a mixture of all of them, at 700 °C under a steam/carbon (S/C) ratio of 3 and 60 min on stream. The highest conversions and H_2 potential were attained for anisole and furfural, while methyl naphthalene presented the lowest reactivity. Nevertheless, the higher reactivity of oxygenates compared to aromatic hydrocarbons promoted carbon deposition on the catalyst (in the 1.5–2.8 wt.% range). When the concentration of methanol is decreased in the feedstock and that of toluene or anisole is increased, the selectivity to CO is favoured in the gaseous products, thus increasing coke deposition on the catalyst and decreasing catalyst activity for the steam reforming reaction. Moreover, an increase in Ni loading in the catalyst from 5 to 20% enhances carbon conversion and H_2 formation in the steam reforming of a mixture of all the model compounds studied, but these values decrease for a Ni content of 40%. Coke formation also increased by increasing Ni loading, attaining its maximum value for 40% Ni (6.5 wt.%).

  4. Influences of species of metals and supports on the hydrogenation activity of carbon-supported metal sulfides catalysts; Tanso biryushi tanji shokubai no suisoka kassei ni taisuru kassei kinzoku oyobi tantaishu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Sakanishi, K.; Hasuo, H.; Taniguchi, H.; Nagamatsu, T.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    In order to design catalysts suitable for primary liquefaction stage and secondary upgrading stage respectively in the multi-stage liquefaction process, various carbon-supported catalysts were prepared. Catalytic activities of them were investigated for the hydrogenation of 1-methylnaphthalene, to discuss the influences of metals and carbon species on the catalytic activity. Various water soluble and oil soluble Mo and Ni salts were used for NiMo supported catalysts. Among various carbon supports, Ketjen Black (KB) was effective for preparing the catalyst showing the most excellent hydrogenation activity. The KB and Black Pearl 2000 (BP2000) showing high hydrogenation activity were fine particles having high specific surface area more than 1000 m{sup 2}/g and primary particle diameter around 30 nm. This was inferred to contribute to the high dispersion support of active metals. Since such fine particles of carbon exhibited hydrophobic surface, they were suitable for preparing catalysts from the methanol-soluble metals. Although Ni and Mo added iron-based catalysts provided lower aromatic hydrogenation activity, they exhibited liquefaction activity competing with the NiMo/KB catalyst. 3 refs., 1 fig., 3 tabs.

  5. Production of metals and compounds by radiation chemistry

    Science.gov (United States)

    Marsik, S. J.; Philipp, W. H.

    1969-01-01

    Preparation of metals and compounds by radiation induced chemical reactions involves irradiation of metal salt solutions with high energy electrons. This technique offers a method for the preparation of high purity metals with minimum contamination from the container material or the cover gas.

  6. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst

    Science.gov (United States)

    Lee, Heejin; Kim, Hannah; Yu, Mi Jin; Ko, Chang Hyun; Jeon, Jong-Ki; Jae, Jungho; Park, Sung Hoon; Jung, Sang-Chul; Park, Young-Kwon

    2016-06-01

    The hydrodeoxygenation of a model compound of lignin-derived bio-oil, guaiacol, which can be obtained from the pyrolysis of biomass to bio-oil, has attracted considerable research attention because of its huge potential as a substitute for conventional fuels. In this study, platinum-loaded HY zeolites (Pt/HY) with different Si/Al molar ratios were used as catalysts for the hydrodeoxygenation of guaiacol, anisole, veratrole, and phenol to a range of hydrocarbons, such as cyclohexane. The cyclohexane (major product) yield increased with increasing number of acid sites. To produce bio-oil with the maximum level of cyclohexane and alkylated cyclohexanes, which would be suitable as a substitute for conventional transportation fuels, the Si/Al molar ratio should be optimized to balance the Pt particle-induced hydrogenation with acid site-induced methyl group transfer. The fuel properties of real bio-oil derived from the fast pyrolysis of cork oak was improved using the Pt/HY catalyst.

  7. Transition metal-catalyzed carbocyclization of nitrogen and oxygen-tethered 1,n-enynes and diynes: synthesis of five or six-membered heterocyclic compounds.

    Science.gov (United States)

    Zhang, Di-Han; Zhang, Zhen; Shi, Min

    2012-10-25

    Cycloisomerization of 1,n-enynes and diynes is a powerful method in organic synthesis to access heterocyclic compounds and has drawn increasing attention from organic chemists. In this paper, we attempted to summarize our recent results on the transition metal-catalyzed cycloisomerization to synthesize five or six-membered heterocyclic compounds using 1,n-enynes and diynes having a propargylic ester moiety. First, we will describe the synthesis of 2,3-disubstituted 3-pyrrolines via gold catalyzed cycloisomerization of 1,6-diynes. In addition, we will also disclose a novel silver catalyzed tandem 1,3-acyloxy migration/Mannich-type addition/elimination of the sulfonyl group of N-sulfonylhydrazone-propargylic esters to 5,6-dihydropyridazin-4-one derivatives. Furthermore, we will introduce three interesting examples of the synthesis of bicyclic compounds via titanium or rhodium catalyzed carbocyclization of enynes. In this context, we have presented that 1,n-enynes and diynes containing propargylic esters are highly reactive and useful starting materials for the cycloisomerization catalyzed by a transition metal catalyst.

  8. Evaluation of functionalized silica's for the adsorptive recovery of homogeneous catalysts through interaction with the metal centre

    NARCIS (Netherlands)

    Djekic, T.; Ham, van der A.G.J.; Haan, de A.B.

    2007-01-01

    The goal of this paper is the evaluation of functionalized silica's for the recovery of homogeneous catalysts by adsorption via its metal centre. As model catalysts, we selected bis(triphenylphosphine)cobalt(II)dichloride (CoCl2(PPh3)2), bis(triphenylphosphine)palladium(II)dichloride (PdCl2(PPh3)2)

  9. Semiconductor-metal transition of Se in Ru-Se Catalyst Nanoparticles

    Science.gov (United States)

    Babu, P. K.; Lewera, Adam; Oldfield, Eric; Wieckowski, Andrzej

    2009-03-01

    Ru-Se composite nanoparticles are promising catalysts for the oxygen reduction reaction (ORR) in fuel cells. Though the role of Se in enhancing the chemical stability of Ru nanoparticles is well established, the microscopic nature of Ru-Se interaction was not clearly understood. We carried out a combined investigation of ^77Se NMR and XPS on Ru-Se nanoparticles and our results indicate that Se, a semiconductor in elemental form, becomes metallic when interacting with Ru. ^77Se spin-lattice relaxation rates are found to be proportional to T, the well-known Korringa behavior characteristic of metals. The NMR results are supported by the XPS binding energy shifts which suggest that a possible Ru->Se charge transfer could be responsible for the semiconductor->metal transition of Se which also makes Ru less susceptible to oxidation during ORR.

  10. Low platinum catalyst and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Chong, Lina

    2017-11-21

    A low platinum catalyst and method for making same. The catalyst comprises platinum-transition metal bimetallic alloy microcrystallites over a transition metal-nitrogen-carbon composite. A method of making a catalyst comprises preparation of transition metal organic frameworks, infusion of platinum, thermal treatment, and reduction to form the microcrystallites and composite.

  11. Alkanes from Bioderived Furans by using Metal Triflates and Palladium-Catalyzed Hydrodeoxygenation of Cyclic Ethers.

    Science.gov (United States)

    Song, Hai-Jie; Deng, Jin; Cui, Min-Shu; Li, Xing-Long; Liu, Xin-Xin; Zhu, Rui; Wu, Wei-Peng; Fu, Yao

    2015-12-21

    Using a metal triflate and Pd/C as catalysts, alkanes were prepared from bioderived furans in a one-pot hydrodeoxygenation (HDO) process. During the reaction, the metal triflate plays a crucial role in the ring-opening HDO of furan compounds. The entire reaction process has goes through two major phases: at low temperatures, saturation of the exocyclic double bond and furan ring are catalyzed by Pd/C; at high temperatures, the HDO of saturated furan compounds is catalyzed by the metal triflate. The reaction mechanism was verified by analyzing the changes of the intermediates during the reaction. In addition, different metal triflates, solvents, and catalyst recycling were also investigated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. New Titanium-Based Catalysts for the Synthesis of Poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Yang, Youngkeun; Yoon, Seungwoong; Hwang, Yongtaek; Song, Bogeun

    2012-01-01

    Poly(ethylene terephthalate) (PET) is a polymer with relatively low cost and high performance, which is widely used in various applications such as bottles, textile fibers, films and engineering plastics for automobiles and electric industries. Commercial catalysts used for synthesis of PET are in general antimony (Sb) compounds. Antimony(III) oxide, antimony(III) acetate and antimony(III) glycolate are used as a catalyst in 95% of PET manufacturing industries worldwide. The few organoantimony compounds that have been identified in environmental and biological samples are all in the form of methylated Sb-species. The Sb trace element is extremely toxic to mammals, and interferes with embryonic and fetal development, also, carcinogenic to humans. In addition to being found in drinking water, food packaging and soft-drink bottles. According to the World Health Organization (WHO), Sb species concentration lower than 20 ppb are acceptable for drinking water. According to a recent study, in 14 brands of bottled water from Canada, Sb concentrations increased on average 19% during 6 months storage at room temperature, but 48 brands of water from 11 European countries increased on average 90% under identical conditions. Therefore, a very important challenge for polyester catalysis is to come-up with a new Sb-free catalysts with low environmental impact. Intensive efforts have been made to find other stable and more environmental friendly non-antimony catalysts, such as those based on titanium. Titanium-based catalysts have been known for many years and actually are used for polybutylene terephthalate (PBT) and polypropylene terephthalate (PPT) production, however, polycondensation (PC) of PET manufacture is not well studied in literature. To date, only few esterification processes have been applied for the synthesis of PET by titanium catalysts. Herein, we report an efficient synthesis characterization and polymerization of PET for a series of new nontoxic organotitanium

  13. Mutagenic activities of metal compounds in bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, H

    1975-01-01

    Environmental contaminations by certain metal compounds are bringing about serious problems to human health, including genetic hazards. It has been reported that some compounds of iron, manganese and mercury induce point mutations in microorganisms. Also it has been observed that those of aluminum, antimony, arsenic, cadmium, lead and tellurium cause chromosome aberrations in plants, insects and cultured human cells. The mechanism of mutation induction by these metals remains, however, still obscure. For screening of chemical mutagens, Kada et al, recently developed a simple and efficient method named rec-assay by observing differential growth sensitivities to drugs in wild and recombination-deficient strains of Bacillus subtilis. When a chemical is more inhibitory for Rec/sup -/ than for Rec/sup +/ cells, it is reasonable to suspect mutagenicity based on its DNA-damaging capacity. In the present report, 56 metal compounds were tested by the rec-assay. Compounds showing positive results in the assay such as potassium dichromate (K/sub 2/Cr/sub 2/O/sub 7/), ammonium molybdate ((NH/sub 4/)/sub 6/Mo/sub 7/O/sub 24/) and sodium arsenite (NaAsO/sub 2/) were then examined as to their capacities to induce reversions in E. coli Trp/sup -/ strains possessing different DNA repair pathways. 11 references, 3 tables.

  14. A Copper-Based Metal-Organic Framework as an Efficient and Reusable Heterogeneous Catalyst for Ullmann and Goldberg Type C–N Coupling Reactions

    Directory of Open Access Journals (Sweden)

    Wei Long

    2015-11-01

    Full Text Available A highly porous metal-organic framework (Cu-TDPAT, constructed from a paddle-wheel type dinuclear copper cluster and 2,4,6-tris(3,5-dicarboxylphenylamino-1,3,5-triazine (H6TDPAT, has been tested in Ullmann and Goldberg type C–N coupling reactions of a wide range of primary and secondary amines with halobenzenes, affording the corresponding N-arylation compounds in moderate to excellent yields. The Cu-TDPAT catalyst could be easily separated from the reaction mixtures by simple filtration, and could be reused at least five times without any significant degradation in catalytic activity.

  15. Hydrocracking of Cerbera manghas Oil with Co-Ni/HZSM-5 as Double Promoted Catalyst

    Directory of Open Access Journals (Sweden)

    Lenny Marlinda

    2017-05-01

    Full Text Available The effect of various reaction temperature on the hydrocracking of Cerbera manghas oil to produce a paraffin-rich mixture of hydrocarbons with Co-Ni/HZSM-5 as doubled promoted catalyst were studied. The Co-Ni/HZSM-5 catalyst with various metal loading and metal ratio was prepared by incipient wetness impregnation. The catalysts were characterized by XRD, AAS, and N2 adsorption-desorption. Surface area, pore diameter, and pore volume of catalysts decreased with the increasing of metals loading. The hydrocracking process was conducted under hydrogen initial pressure in batch reactor equipped with a mechanical stirrer. The reaction was carried out at a temperature of 300-375 oC for 2 h.  Depending on the experimental condition, the reaction pressure changed between 10 bar and 15 bar.   Several parameters were used to evaluate biofuel produced, including oxygen removal, hydrocarbon composition and gasoline/kerosene/diesel yields. Biofuel was analyzed by Fourier Transform Infrared Spectroscopic (FTIR and gas chromatography-mass spectrometry (GC-MS. The composition of hydrocarbon compounds in liquid products was similar to the compounds in the gasoil sold in unit of Pertamina Gas Stations, namely pentadecane, hexadecane, heptadecane, octadecane, and nonadecane with different amounts for each biofuel produced at different reaction temperatures. However, isoparaffin compounds were not formed at all operating conditions. Pentadecane (n-C15 and heptadecane (n-C17 were the most abundant composition in gasoil when Co-Ni/HZSM-5 catalyst was used. Cerbera Manghas oil can be recommended as the source of non-edible vegetable oil to produce gasoil as an environmentally friendly transportation fuel. Copyright © 2017 BCREC Group. All rights reserved Received: 20th May 2016; Revised: 30th January 2017; Accepted: 10th February 2017 How to Cite: Marlinda, L., Al-Muttaqii, M., Gunardi, I., Roesyadi, A., Prajitno, D.H. (2017. Hydrocracking of Cerbera manghas Oil

  16. Bulk-surface relationship of an electronic structure for high-throughput screening of metal oxide catalysts

    International Nuclear Information System (INIS)

    Kweun, Joshua Minwoo; Li, Chenzhe; Zheng, Yongping; Cho, Maenghyo; Kim, Yoon Young; Cho, Kyeongjae

    2016-01-01

    Graphical abstract: - Highlights: • Bulk-surface relationship was predicted by the ligand field nature of metal oxides. • Antibonding and bonding d-bands occupancy clarified the bulk-surface relationship. • Different surface relaxations were explained by the bulk electronic structures. • Transition from the bulk to the surface state was simulated by oxygen adsorption. - Abstract: Designing metal-oxides consisting of earth-abundant elements has been a crucial issue to replace precious metal catalysts. To achieve efficient screening of metal-oxide catalysts via bulk descriptors rather than surface descriptors, we investigated the relationship between the electronic structure of bulk and that of the surface for lanthanum-based perovskite oxides, LaMO_3 (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu). Through density functional theory calculations, we examined the d-band occupancy of the bulk and surface transition-metal atoms (n_B_u_l_k and n_S_u_r_f) and the adsorption energy of an oxygen atom (E_a_d_s) on (001), (110), and (111) surfaces. For the (001) surface, we observed strong correlation between the n_B_u_l_k and n_S_u_r_f with an R-squared value over 94%, and the result was interpreted in terms of ligand field splitting and antibonding/bonding level splitting. Moreover, the E_a_d_s on the surfaces was highly correlated with the n_B_u_l_k with an R-squared value of more than 94%, and different surface relaxations could be explained by the bulk electronic structure (e.g., LaMnO_3 vs. LaTiO_3). These results suggest that a bulk-derived descriptor such as n_B_u_l_k can be used to screen metal-oxide catalysts.

  17. On the metal-support synergy for selective gas-phase ethanol oxidation over MgCuCr2O4 supported metal nanoparticle catalysts

    NARCIS (Netherlands)

    Liu, P.; Zhu, X.; Yang, S.; Li, T.; Hensen, E.J.M.

    2015-01-01

    Achieving high yields in the production of bulk chemicals is an important goal for the chemical industry. We investigated the influence of the metal on the catalytic performance of M/MgCuCr2O4 (M = Cu, Ag, Pd, Pt, Au) catalysts to better understand the metal-support synergy for the aerobic oxidation

  18. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  19. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Karamat, S., E-mail: shumailakaramat@gmail.com [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); COMSATS Institute of Information Technology, Islamabad 54000 (Pakistan); Sonuşen, S. [Sabancı Üniversitesi (SUNUM), İstanbul 34956 (Turkey); Çelik, Ü. [Nanomagnetics Instruments, Ankara (Turkey); Uysallı, Y. [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); Oral, A., E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey)

    2016-04-15

    Graphical abstract: - Highlights: • Graphene layers were grown on Pt and Cu foil via ambient pressure chemical vapor deposition method and for the delicate removal of graphene from metal catalysts, electrolysis method was used by using different alkaline (sodium hydroxide, potassium hydroxide, lithium hydroxide and barium hydroxide). • The delamination speed of PMMA/graphene stack was higher during the KOH and LiOH electrolysis as compare to NaOH and Ba(OH){sub 2}. Ba(OH){sub 2} is not advisable because of the residues left on the graphene surface which would further trapped in between graphene and SiO{sub 2}/Si surface after transfer. The average peeling time in case of Pt electrode is ∼6 min for KOH and LiOH and ∼15 min for NaOH and Ba(OH){sub 2}. • Electrolysis method also works for the Cu catalyst. The peeling of graphene was faster in the case of Cu foil due to small size of bubbles which moves faster between the stack and the electrode surface. The average peeling time was ∼3–5 min. • XPS analysis clearly showed that the Pt substrates can be re-used again. Graphene layer was transferred to SiO{sub 2}/Si substrates and to the flexible substrate by using the same peeling method. - Abstract: In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH){sub 2} for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and Li

  20. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    International Nuclear Information System (INIS)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-01-01

    Graphical abstract: - Highlights: • Graphene layers were grown on Pt and Cu foil via ambient pressure chemical vapor deposition method and for the delicate removal of graphene from metal catalysts, electrolysis method was used by using different alkaline (sodium hydroxide, potassium hydroxide, lithium hydroxide and barium hydroxide). • The delamination speed of PMMA/graphene stack was higher during the KOH and LiOH electrolysis as compare to NaOH and Ba(OH)_2. Ba(OH)_2 is not advisable because of the residues left on the graphene surface which would further trapped in between graphene and SiO_2/Si surface after transfer. The average peeling time in case of Pt electrode is ∼6 min for KOH and LiOH and ∼15 min for NaOH and Ba(OH)_2. • Electrolysis method also works for the Cu catalyst. The peeling of graphene was faster in the case of Cu foil due to small size of bubbles which moves faster between the stack and the electrode surface. The average peeling time was ∼3–5 min. • XPS analysis clearly showed that the Pt substrates can be re-used again. Graphene layer was transferred to SiO_2/Si substrates and to the flexible substrate by using the same peeling method. - Abstract: In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)_2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and

  1. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.

    Science.gov (United States)

    Cheng, Fangyi; Chen, Jun

    2012-03-21

    Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).

  2. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  3. Unsupported NiPt alloy metal catalysts prepared by water-in-oil (W/O) microemulsion method for methane cracking

    KAUST Repository

    Zhou, Lu

    2016-05-18

    Unsupported NiPt metal catalyst with Ni/Pt molar ratio of 88/12 is prepared by water-in-oil (W/O) microemulsion method in this study. Compared to monometallic Ni and Pt catalysts, the NiPt catalyst exhibits superior activity and stability for methane cracking. By XRD (X-ray powder diffraction), XPS (X-ray photoelectron spectroscopy) and TEM (Transmission electron microscopy) analyses, the formation of Ni(0)Pt(0) alloy is believed to be the main reason for the reactivity improvement of this catalyst. Carbon nano tube (CNT) with Ni(0)Pt(0) particles anchored on the top of tube are found for the NiPt catalyst. © 2016 Elsevier Ltd.

  4. Growth of vertically aligned single-walled carbon nanotubes with metallic chirality through faceted FePt-Au catalysts

    Science.gov (United States)

    Ohashi, Toshiyuki; Iwama, Hiroki; Shima, Toshiyuki

    2016-02-01

    Direct synthesis of vertically aligned metallic single-walled carbon nanotubes (m-SWCNT forests) is a difficult challenge. We have successfully synthesized m-SWCNT forests using faceted iron platinum-gold catalysts epitaxially grown on a single crystalline magnesium oxide substrate. The metallic content of the forests estimated by Raman spectroscopy reaches 90%. From the standpoint of growth rate of the forests, the growth mechanism is probably based on the catalyst of solid state. It is suggested that preferential growth of m-SWCNTs is achieved when both factors are satisfied, namely, {111} dominant octahedral facet and ideal size (fine particles) of FePt particles.

  5. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  6. Atomic Resolution Imaging of Nanoscale Structural Ordering in a Complex Metal Oxide Catalyst

    KAUST Repository

    Zhu, Yihan

    2012-08-28

    The determination of the atomic structure of a functional material is crucial to understanding its "structure-to-property" relationship (e.g., the active sites in a catalyst), which is however challenging if the structure possesses complex inhomogeneities. Here, we report an atomic structure study of an important MoVTeO complex metal oxide catalyst that is potentially useful for the industrially relevant propane-based BP/SOHIO process. We combined aberration-corrected scanning transmission electron microscopy with synchrotron powder X-ray crystallography to explore the structure at both nanoscopic and macroscopic scales. At the nanoscopic scale, this material exhibits structural and compositional order within nanosized "domains", while the domains show disordered distribution at the macroscopic scale. We proposed that the intradomain compositional ordering and the interdomain electric dipolar interaction synergistically induce the displacement of Te atoms in the Mo-V-O channels, which determines the geometry of the multifunctional metal oxo-active sites.

  7. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Soo [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Nanophotonics Center, Korea Institute of Science and Technology, Seoul 02792 South Korea; Li, Zhanyong [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Zheng, Jian [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Platero-Prats, Ana E. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Mavrandonakis, Andreas [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Pellizzeri, Steven [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Ferrandon, Magali [Chemical Sciences and Engineering Division, Argonne National Lab, 9700 S. Cass Ave. Argonne IL 60439 USA; Vjunov, Aleksei [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Gallington, Leighanne C. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Webber, Thomas E. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Vermeulen, Nicolaas A. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Penn, R. Lee [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Getman, Rachel B. [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Cramer, Christopher J. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Chapman, Karena W. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Fulton, John L. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, Technische Universität München, Lichtenbergstrasse 4 85748 Garching Germany; Farha, Omar K. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Hupp, Joseph T. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Martinson, Alex B. F. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA

    2018-01-02

    Installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 degrees C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and Xray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.

  8. Hydrogen isotope exchange of organic compounds in dilute acid at elevated temperatures

    International Nuclear Information System (INIS)

    Werstiuk, N.H.

    1987-01-01

    Introduction of one or more deuterium (or tritium) atoms into organic molecules can be accomplished in many ways depending on the nature of the substrate and the extent and sterochemistry of deuteriation or tritiation required. Some of the common methods include acid- and base-catalyzed exchange of carbonyl compounds, metal hydride reductions, dissolving metal reductions, catalytic reduction of double bonds, chromatographic exchange, homogeneous and heterogeneous metal-catalyzed exchange, base-catalyzed exchange of carbon acids other than carbonyl compounds and acid-catalyzed exchange via electrophilic substitution. Only the latter three methods have been used for perdeuteriation of organic compounds. A very useful compendium of labeling methods with examples has been available to chemists for some time. Although metal-catalyzed exchange has been used extensively, the method suffers from some deficiencies: irreproducibility of catalyst surfaces, catalyst poisoning, side reactions such as coupling and hydrogenolysis of labile groups and low deuterium incorporation. Usually a number of cycles are required with fresh catalyst and fresh deuterium source to achieve substantial isotope incorporation. Acid-catalyzed exchange of aromatics and alkenes, strongly acidic media such as liquid DBr, concentrated DBr, acetic acid/stannic chloride, concentrated D 3 PO 4 , concentrated DC1, D 3 PO 4 /BF 3 SO 2 , 50-80% D 2 SO 4 and DFSO 4 /SbF 5 at moderate temperatures (<100 degrees) have been used to effect exchange. The methods are not particularly suitable for large scale deuteriations because of the cost and the fact that the recovery and upgrading of the diluted deuterium pool is difficult. This paper describes the hydrogen isotope exchange of a variety of organic compounds in dilute aqueous acid (0.1-0.5 M) at elevated temperatures (150-300 degrees)

  9. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.

  10. Tailoring the synthesis of supported Pd catalysts towards desired structure and size of metal particles.

    Science.gov (United States)

    Suresh, Gatla; Radnik, Jörg; Kalevaru, Venkata Narayana; Pohl, Marga-Martina; Schneider, Matthias; Lücke, Bernhard; Martin, Andreas; Madaan, Neetika; Brückner, Angelika

    2010-05-14

    In a systematic study, the influence of different preparation parameters on phase composition and size of metal crystallites and particles in Pd-Cu/TiO(2) and Pd-Sb/TiO(2) catalyst materials has been explored. Temperature and atmosphere of thermal pretreatment (pure He or 10% H(2)/He), nature of metal precursors (chlorides, nitrates or acetates) as well as of ammonium additives (ammonium sulfate, nitrate, carbonate) and urea were varied with the aim of tailoring the synthesis procedure for the preferential formation of metal particles with similar size and structure as observed recently in active catalysts after long-term equilibration under catalytic reaction conditions in acetoxylation of toluene to benzylacetate. Among the metal precursors and additives, the chloride metal precursors and (NH(4))(2)SO(4) were most suitable. Upon thermal pretreatment of Pd-Sb or Pd-Cu precursors, chloroamine complexes of Pd and Cu are formed, which decompose above 220 degrees C to metallic phases independent of the atmosphere. In He, metallic Pd particles were formed with both the co-components. In H(2)/He flow, Pd-Cu precursors were converted to core-shell particles with a Cu shell and a Pd core, while Sb(1)Pd(1) and Sb(7)Pd(20) alloy phases were formed in the presence of Sb. Metal crystallites of about 40 nm agglomerate to particles of up to 150 nm in He and to even larger size in H(2)/He.

  11. TiO2-Containing Carbon Derived from a Metal-Organic Framework Composite: A Highly Active Catalyst for Oxidative Desulfurization.

    Science.gov (United States)

    Bhadra, Biswa Nath; Song, Ji Yoon; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2017-09-13

    A new metal-organic framework (MOF) composite consisting of Ti- and Zn-based MOFs (ZIF-8(x)@H 2 N-MIL-125; in brief, ZIF(x)@MOF) was designed and synthesized. The pristine MOF [H 2 N-MIL-125 (MOF)]- and an MOF-composite [ZIF(30)@MOF]-derived mesoporous carbons consisting of TiO 2 nanoparticles were prepared by pyrolysis (named MDC-P and MDC-C, respectively). MDC-C showed a higher surface area, larger pore sizes, and larger mesopore volumes than MDC-P. In addition, the TiO 2 nanoparticles on MDC-C have more uniform shapes and sizes and are smaller than those of MDC-P. The obtained MDC-C and MDC-P [together with MOF, ZIF(30)@MOF, pure/nanocrystalline TiO 2 , and activated carbon] were applied in the oxidative desulfurization reaction of dibenzothiophene in a model fuel. The MDC-C, even with a lower TiO 2 content than that of MDC-P, showed an outstanding catalytic performance, especially with a very low catalyst dose (i.e., a very high quantity of dibenzothiophene was converted per unit weight of the catalyst), fast kinetics (∼3 times faster than that for MDC-P), and a low activation energy (lower than that for any reported catalyst) for the oxidation of dibenzothiophene. The large mesopores of MDC-C and the well-dispersed/small TiO 2 might be the dominant factors for the superior catalytic conversions. The oxidative desulfurization of other sulfur-containing organic compounds with various electron densities was also studied with MDC-C to understand the mechanism of catalysis. Moreover, the MDC-C catalyst can be reused many times in the oxidative desulfurization reaction after a simple washing with acetone. Finally, composing MOFs and subsequent pyrolysis is suggested as an effective way to prepare a catalyst with well-dispersed active sites, large pores, and high mesoporosity.

  12. The importance of pre-treatment of spent hydrotreating catalysts on metals recovery

    Directory of Open Access Journals (Sweden)

    Alexandre Luiz de Souza Pereira

    2011-01-01

    Full Text Available This work describes a three-step pre-treatment route for processing spent commercial NiMo/Al2O3 catalysts. Extraction of soluble coke with n-hexane and/or leaching of foulant elements with oxalic acid were performed before burning insoluble coke under air. Oxidized catalysts were leached with 9 mol L-1 sulfuric acid. Iron was the only foulant element partially leached by oxalic acid. The amount of insoluble matter in sulfuric acid was drastically reduced when iron and/or soluble coke were previously removed. Losses of active phase metals (Ni, Mo during leaching with oxalic acid were compensated by the increase of their recovery in the sulfuric acid leachate.

  13. The importance of pre-treatment of spent hydrotreating catalysts on metals recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Alexandre Luiz de Souza; Silva, Cristiano Nunes da; Afonso, Julio Carlos, E-mail: julio@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica; Mantovano, Jose Luiz [Instituto de Engenharia Nuclear (CNEN/IEN-RJ), Rio de Janeiro, RJ (Brazil). Dept. de Quimica e Materiais Nucleares

    2011-07-01

    This work describes a three-step pre-treatment route for processing spent commercial Ni Mo/Al{sub 2}O{sub 3} catalysts. Extraction of soluble coke with n-hexane and/or leaching of foulant elements with oxalic acid were performed before burning insoluble coke under air. Oxidized catalysts were leached with 9 mol L{sup -1} sulfuric acid. Iron was the only foulant element partially leached by oxalic acid. The amount of insoluble matter in sulfuric acid was drastically reduced when iron and/or soluble coke were previously removed. Losses of active phase metals (Ni, Mo) during leaching with oxalic acid were compensated by the increase of their recovery in the sulfuric acid leachate. (author)

  14. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    Science.gov (United States)

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene

    KAUST Repository

    Zhu, Haibo; Dong, Hailin; Laveille, Paco; Saih, Youssef; Caps, Valerie; Basset, Jean-Marie

    2014-01-01

    in contrast to pure NiO. The introduction of group IV, V and VI transition metals into NiO decreases the catalytic activity in ethane ODH. However, the ethylene selectivity is enhanced with the highest level for the Ni-W-O and Ni-Ti-O catalysts. As a result

  17. Process for production of a metal hydride

    Science.gov (United States)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  18. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bercaw, John E. [California Institute of Technology

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  19. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y.

    Science.gov (United States)

    Wang, Hongliang; Ruan, Hao; Feng, Maoqi; Qin, Yuling; Job, Heather; Luo, Langli; Wang, Chongmin; Engelhard, Mark H; Kuhn, Erik; Chen, Xiaowen; Tucker, Melvin P; Yang, Bin

    2017-04-22

    The synthesis of high-efficiency and low-cost catalysts for hydrodeoxygenation (HDO) of waste lignin to advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, and Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth-abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low-molecular-weight gaseous products. Among these catalysts, Ru-Cu/HY showed the best HDO performance, affording the highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably a result of the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, and (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all bifunctional catalysts proved to be superior over the combination catalysts of Ru/Al 2 O 3 and HY zeolite. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Studies of Immobilized Homogeneous Metal Catalysts on Silica Supports

    Energy Technology Data Exchange (ETDEWEB)

    Stanger, Keith James [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The tethered, chiral, chelating diphosphine rhodium complex, which catalyzes the enantioselective hydrogenation of methyl-α-acetamidocinnamate (MAC), has the illustrated structure as established by 31P NMR and IR studies. Spectral and catalytic investigations also suggest that the mechanism of action of the tethered complex is the same as that of the untethered complex in solution. The rhodium complexes, [Rh(COD)H]4, [Rh(COD)2]+BF4-, [Rh(COD)Cl]2, and RhCl3• 3H2O, adsorbed on SiO2 are optimally activated for toluene hydrogenation by pretreatment with H2 at 200 C. The same complexes on Pd-SiO2 are equally active without pretreatments. The active species in all cases is rhodium metal. The catalysts were characterized by XPS, TEM, DRIFTS, and mercury poisoning experiments. Rhodium on silica catalyzes the hydrogenation of fluorobenzene to produce predominantly fluorocyclohexane in heptane and 1,2-dichloroethane solvents. In heptane/methanol and heptane/water solvents, hydrodefluorination to benzene and subsequent hydrogenation to cyclohexane occurs exclusively. Benzene inhibits the hydrodefluorination of fluorobenzene. In DCE or heptane solvents, fluorocyclohexane reacts with hydrogen fluoride to form cyclohexene. Reaction conditions can be chosen to selectively yield fluorocyclohexane, cyclohexene, benzene, or cyclohexane. The oxorhenium(V) dithiolate catalyst [-S(CH2)3s-]Re(O)(Me)(PPh3) was modified by linking it to a tether that could be attached to a silica support. Spectroscopic investigation and catalytic oxidation reactivity showed the heterogenized catalyst's structure and reactivity to be similar to its homogeneous analog. However, the immobilized catalyst offered additional advantages of recyclability, extended stability, and increased resistance to deactivation.

  1. Recovery of Platinum Group Metals from Spent Catalysts Using Iron Chloride Vapor Treatment

    Science.gov (United States)

    Taninouchi, Yu-ki; Okabe, Toru H.

    2018-05-01

    The recovery of platinum group metals (PGMs) from spent automobile catalysts is a difficult process because of their relatively low contents in the scrap. In this study, to improve the efficiency of the existing recycling techniques, a novel physical concentration method involving treatment with FeCl2 vapor has been examined. The reactions occurring between typical catalyst components and FeCl2 vapor are discussed from the thermodynamic point of view, and the validity of the proposed technique was experimentally verified. The obtained results indicate that the vapor treatment at around 1200 K (927 °C) can effectively alloy PGMs (Pt, Pd, and Rh) with Fe, resulting in the formation of a ferromagnetic alloy. It was also confirmed that cordierite and alumina (the major catalyst components) remained unreacted after the vapor treatment, while ceria species were converted into oxychlorides. The samples simulating the automobile catalyst were also subjected to magnetic separation after the treatment with FeCl2 vapor; as a result, PGMs were successfully extracted and concentrated in the form of a magnetic powder. Thus, the FeCl2 vapor treatment followed by magnetic separation can be utilized for recovering PGMs directly from spent catalysts as an effective pretreatment for the currently used recycling methods.

  2. A Comparative Study of Mn/Co Binary Metal Catalysts Supported on Two Commercial Diatomaceous Earths for Oxidation of Benzene

    Directory of Open Access Journals (Sweden)

    Marco Tomatis

    2018-03-01

    Full Text Available Two commercial diatomaceous earths were used as supports for the preparation of Mn/Co binary metal catalysts at different metal loads (5 to 10 wt % Mn and 5 to 15 wt % Co by incipient wetness deposition. The activity of the prepared catalysts towards the complete oxidation of benzene to CO2 and water was investigated between 100 and 400 °C. Raw supports and synthesized catalysts were characterized by XRD, N2 physisorption, SEM-EDS, H2-TPR, and TPD. The purification treatment of food-grade diatomite significantly affected the crystallinity of this support while reducing its specific surface area (SSA. A loss of SSA, associated with the increase in the metal load, was observed on samples prepared on natural diatomite, while the opposite trend occurred with food-grade diatomite-supported catalysts. Metal nanoparticles of around 50 nm diameter were observed on the catalysts’ surface by SEM analysis. EDS analysis confirmed the uniform deposition of the active phases on the support’s surface. A larger H2 consumption was found by TPR analysis of natural diatomite-based samples in comparison to those prepared at the same metal load on food-grade diatomite. During the catalytic oxidation experiment, over 90% conversion of benzene were achieved at a reaction temperature of 225 °C by all of the prepared samples. In addition, the formation of coke during the oxidation tests was demonstrated by TGA analysis and the soluble fraction of the produced coke was characterized by GC-MS.

  3. Biogenic metallic nanoparticles as catalyst for bioelectricity production: A novel approach in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Saravanakumar, Kandasamy, E-mail: saravana732@gmail.com [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai (China); MubarakAli, Davoodbasha [Microbial Genetic Engineering Laboratory, Division of Bioengineering, College of Life Science and Bioengineering, Incheon National University, Songdo 406772, Incheon (Korea, Republic of); Department of Microbiology, School of Lifesciences, Bharathidasan University, Tiruchirappalli 620024 (India); Kathiresan, Kandasamy [Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu (India); Thajuddin, Nooruddin [Department of Microbiology, School of Lifesciences, Bharathidasan University, Tiruchirappalli 620024 (India); Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Alharbi, Naiyf S. [Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Chen, Jie, E-mail: jiechen59@sjtu.edu.cn [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai (China)

    2016-01-15

    Highlights: • Trichoderma sp., showed an abilities to synthesis of AgNPs and AuNPs with an excellent stability. • AuNPs significantly enhanced the bioelectricity production by MFC of anaerobic fermentation as catalyst. • Maximum bioelectricity production was optimized and obtained the voltage of 432.80 mA using RSM. - Abstract: The present work aimed to use the biogenic metallic nanoparticles as catalyst for bioelectricity production in microbial fuel cell (MFC) approach under anaerobic condition. Silver and gold nanoparticles (AuNPs) were synthesized using Trichoderma sp. Particle size and cystallinity were measured by X-ray diffraction revealed the crystalline structure with average size of 36.17 nm. Electron microscopic studies showed spherical shaped silver nanoparticles (AgNPs) and cubical shaped AuNPs with size ranges from 50 to 150 nm. The concentration of biogenic metallic nanoparticles as catalyst for enhanced bioelectricity generations and estimated by response surface methodology (RSM) and found at the greatest of 342.80 mA under optimized conditions are time interval, temperature, nanoparticles used as 63 h, 28 ± 2.0 °C, 22.54 mg l{sup −1} (AgNPs) and 25.62 mg l{sup −1} (AuNPs) in a batch reactor. AuNPs acted as an excellent catalyst to enhance the bioelectricity production. This novel technique could be used for eco-friendly, economically feasible and facile electricity production.

  4. Biogenic metallic nanoparticles as catalyst for bioelectricity production: A novel approach in microbial fuel cells

    International Nuclear Information System (INIS)

    Saravanakumar, Kandasamy; MubarakAli, Davoodbasha; Kathiresan, Kandasamy; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Chen, Jie

    2016-01-01

    Highlights: • Trichoderma sp., showed an abilities to synthesis of AgNPs and AuNPs with an excellent stability. • AuNPs significantly enhanced the bioelectricity production by MFC of anaerobic fermentation as catalyst. • Maximum bioelectricity production was optimized and obtained the voltage of 432.80 mA using RSM. - Abstract: The present work aimed to use the biogenic metallic nanoparticles as catalyst for bioelectricity production in microbial fuel cell (MFC) approach under anaerobic condition. Silver and gold nanoparticles (AuNPs) were synthesized using Trichoderma sp. Particle size and cystallinity were measured by X-ray diffraction revealed the crystalline structure with average size of 36.17 nm. Electron microscopic studies showed spherical shaped silver nanoparticles (AgNPs) and cubical shaped AuNPs with size ranges from 50 to 150 nm. The concentration of biogenic metallic nanoparticles as catalyst for enhanced bioelectricity generations and estimated by response surface methodology (RSM) and found at the greatest of 342.80 mA under optimized conditions are time interval, temperature, nanoparticles used as 63 h, 28 ± 2.0 °C, 22.54 mg l"−"1 (AgNPs) and 25.62 mg l"−"1 (AuNPs) in a batch reactor. AuNPs acted as an excellent catalyst to enhance the bioelectricity production. This novel technique could be used for eco-friendly, economically feasible and facile electricity production.

  5. Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor.

    Science.gov (United States)

    Zhou, Xu; Li, Fei; Li, Xiaona; Li, Hua; Wang, Yong; Sun, Licheng

    2015-01-14

    Photocatalytic oxidation of organic compounds proceeded efficiently in a hybrid system with ruthenium aqua complexes as catalysts, BiVO4 as a light absorber, [Co(NH3)5Cl](2+) as a sacrificial electron acceptor and water as an oxygen source. The photogenerated holes in the semiconductor are used to oxidize molecular catalysts into the high-valent Ru(IV)=O intermediates for 2e(-) oxidation.

  6. Occurrence of tributyltin compounds and characteristics of heavy metals

    International Nuclear Information System (INIS)

    Sheikh, M. A.; Oomori, T.; Noah, N. M.; Tsuha, K.

    2007-01-01

    Surface sediment samples were collected from Tanzanian major commercial ports and studied for the distribution and behavior of tributyltin compounds and heavy metals. The content of tributyltin in sediments ranged from ND-3670 ng (Sn) g 1 dry wt (1 780 ± 1720) (Mean ± SD) at Zanzibar and from ND-16700 ng (Sn)g 1 dry wt (4080 ± 7540) at Dar Es Salaam ports, respectively. Maximum tributyltin levels were detected inside the both ports. Metabolic degradation of butyltin compounds showed that MBT + DBT > TBT %, this may be attributed by the warm ambient water and intense sunlight in the tropical regions. A sequential extraction procedure was undertaken to provide detailed chemical characteristics of heavy metals in the sediments. The procedure revealed that about 50 % of Fe in the both ports is in immobile fraction (residual fraction) while other metals; Cd, Cu, Ni, Co, Zn, Pb. and Mn were mostly found in exchangeable or carbonate fractions and thus can be easily remobilized and enter the aquatic food chain. This paper provides basic information of tributyltin compounds contamination and chemical characteristics of heavy metals in the marine ecosystem in Tanzania. To our knowledge, this is the first documentation of Organotin compounds in marine environments in East Africa and suggests the importance of further detailed Organotin compounds studies in other sub-Saharan Africa regions

  7. Performance evaluation of a biodiesel fuelled transportation engine retrofitted with a non-noble metal catalysed diesel oxidation catalyst for controlling unregulated emissions.

    Science.gov (United States)

    Shukla, Pravesh Chandra; Gupta, Tarun; Agarwal, Avinash Kumar

    2018-02-15

    In present study, engine exhaust was sampled for measurement and analysis of unregulated emissions from a four cylinder transportation diesel engine using a state-of-the-art FTIR (Fourier transform infrared spectroscopy) emission analyzer. Test fuels used were Karanja biodiesel blend (B20) and baseline mineral diesel. Real-time emission measurements were performed for raw exhaust as well as exhaust sampled downstream of the two in-house prepared non-noble metal based diesel oxidation catalysts (DOCs) and a baseline commercial DOC based on noble metals. Two prepared non-noble metal based DOCs were based on Co-Ce mixed oxide and Lanthanum based perovskite catalysts. Perovskite based DOC performed superior compared to Co-Ce mixed oxide catalyst based DOC. Commercial noble metal based DOC was found to be the most effective in reducing unregulated hydrocarbon emissions in the engine exhaust, followed by the two in-house prepared non-noble metal based DOCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Stability and activity of doped transition metal zeolites in the hydrothermal processing

    Directory of Open Access Journals (Sweden)

    Thomas François Robin

    2015-12-01

    Full Text Available This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper and iron in under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered as a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds which have an impact on the physical and chemical propriety of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts but their stability and activity under hydrothermal conditions is not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350 °C. Catalysts have been characterised before and after treatment using XRD, BET physisorption and STEM microscopy. Metal leaching was determined by analysis of the water phase following hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5 for example molybdenum improves the crystallinity of the zeolite. In general, metal doped zeolites were relatively stable under subcritical water. Activity of the catalysts for processing lipids, protein and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella and P. ellipsoidea. The catalysts exhibited greater activity towards converting lipids for example MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  9. Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing

    International Nuclear Information System (INIS)

    Robin, Thomas François; Ross, Andrew B.; Lea-Langton, Amanda R.; Jones, Jenny M.

    2015-01-01

    This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper, and iron under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion-exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds that have an impact on the physical and chemical properties of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts, but their stability and activity under hydrothermal conditions are not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350°C. Catalysts have been characterized before and after treatment using X-ray diffraction, BET physisorption, and scanning transmission electronic microscopy. Metal leaching was determined by the analysis of the water phase following the hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5, for example, molybdenum improves the crystallinity of the zeolite. In general, metal-doped zeolites were relatively stable in subcritical water. The activity of the catalysts for processing lipids, protein, and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella, and Pseudochoricystis ellipsoidea. The catalysts exhibited greater activity toward converting lipids, for example, MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  10. Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Robin, Thomas François, E-mail: thomas.cognac@gmail.com; Ross, Andrew B.; Lea-Langton, Amanda R.; Jones, Jenny M. [School of Chemical and Process Engineering, University of Leeds, Leeds (United Kingdom)

    2015-12-14

    This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper, and iron under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion-exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds that have an impact on the physical and chemical properties of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts, but their stability and activity under hydrothermal conditions are not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350°C. Catalysts have been characterized before and after treatment using X-ray diffraction, BET physisorption, and scanning transmission electronic microscopy. Metal leaching was determined by the analysis of the water phase following the hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5, for example, molybdenum improves the crystallinity of the zeolite. In general, metal-doped zeolites were relatively stable in subcritical water. The activity of the catalysts for processing lipids, protein, and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella, and Pseudochoricystis ellipsoidea. The catalysts exhibited greater activity toward converting lipids, for example, MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  11. Methane oxidation over noble metal catalysts as related to controlling natural gas vehicle exhaust emissions

    International Nuclear Information System (INIS)

    Oh, S.H.; Mitchell, P.J.; Siewert, R.M.

    1992-01-01

    Natural gas has considerable potential as an alternative automotive fuel. This paper reports on methane, the principal hydrocarbon species in natural-gas engine exhaust, which has extremely low photochemical reactivity but is a powerful greenhouse gas. Therefore, exhaust emissions of unburned methane from natural-gas vehicles are of particular concern. This laboratory reactor study evaluates noble metal catalysts for their potential in the catalytic removal of methane from natural-gas vehicle exhaust. Temperature run-up experiments show that the methane oxidation activity decreases in the order Pd/Al 2 O 3 > Rh/Al 2 O 3 > Pt/Al 2 O 3 . Also, for all the noble metal catalysts studied, methane conversion can be maximized by controlling the O 2 concentration of the feedstream at a point somewhat rich (reducing) of stoichiometry

  12. Methods of making textured catalysts

    Science.gov (United States)

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  13. The role of catalysts in the decomposition of phenoxy compounds in coal: A density functional theory study

    Science.gov (United States)

    Liu, Jiang-Tao; Wang, Ming-Fei; Gao, Zhi-Hua; Zuo, Zhi-Jun; Huang, Wei

    2018-01-01

    The pyrolysis mechanisms of anisole (C6H5OCH3), as a coal-based model compound, on CaO, ZnO and γ-Al2O3 catalysts were studied using density functional theory (DFT). In contrast to the products of pyrolysis (C6H6, H2 and CO), the products of catalytic pyrolysis on CaO, ZnO, and γ-Al2O3 are C6H5OH and C2H4; CO, C5H6 and C2H4; and C6H5OH and C2H4, respectively. Our results indicate that CaO, ZnO and γ-Al2O3 catalysts not only decrease the energy barrier of C6H5OCH3 decomposition but also alter the pyrolysis process and the products. It is also found that the pyrolysis gas H2 alters the products on CaO (C6H5OH and CH4), but it does not affect the products on ZnO and γ-Al2O3. In sum, these catalysts are beneficial for phenoxy compound decomposition.

  14. Optimizing the sensitivity and radiological properties of the PRESAGE® dosimeter using metal compounds

    International Nuclear Information System (INIS)

    Alqathami, Mamdooh; Blencowe, Anton; Qiao, Greg; Adamovics, John; Geso, Moshi

    2012-01-01

    The aim of this study is to investigate the radiation-modifying effects of incorporating commercially available bismuth-, tin- and zinc-based compounds in the composition of the PRESAGE ® dosimeter, and the feasibility of employing such compounds for radiation dose enhancement. Furthermore, we demonstrate that metal compounds can be included in the formulation to yield water-equivalent PRESAGE ® dosimeters with enhanced dose response. Various concentrations of the metal compounds were added to a newly developed PRESAGE ® formulation and the resulting dosimeters were irradiated with 100 kV and 6 MV photon beams. A comparison between sensitivity and radiological properties of the PRESAGE ® dosimeters with and without the addition of metal compounds was carried out. Optical density changes of the dosimeters before and after irradiation were measured using a spectrophotometer. In general, when metal compounds were incorporated in the composition of the PRESAGE ® dosimeter, the sensitivity of the dosimeters to radiation dose increased depending on the type and concentration of the metal compound, with the bismuth compound showing the highest dose enhancement factor. In addition, these metal compounds were also shown to improve the retention of the post-response absorption value of the PRESAGE ® dosimeter over a period of 2 weeks. Thus, incorporating 1–3 mM (ca. 0.2 wt%) of any of the three investigated metal compounds in the composition of the PRESAGE ® dosimeter is found to be an efficient way to enhance the sensitivity of the dosimeter to radiation dose and stabilize its post-response for longer times. Furthermore, the addition of small amounts of the metal compounds also accelerates the polymerization of the PRESAGE ® dosimeter precursors, significantly reducing the fabrication time. Finally, a novel water-equivalent PRESAGE ® dosimeter formula optimized with metal compounds is proposed for clinical use in both kilovoltage and megavoltage radiotherapy

  15. Low-temperature conversion of ammonia to nitrogen in water with ozone over composite metal oxide catalyst.

    Science.gov (United States)

    Chen, Yunnen; Wu, Ye; Liu, Chen; Guo, Lin; Nie, Jinxia; Chen, Yu; Qiu, Tingsheng

    2018-04-01

    As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co 3 O 4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia (50mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co 3 O 4 molar ratio 8:2, calcined at 500°C for 3hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of 44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO 4 2- and HCO 3 - could inhibit the catalytic activity while CO 3 2- and Br - could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia. Copyright © 2017. Published by Elsevier B.V.

  16. Selective Synthesis of Gasoline-Ranged Hydrocarbons from Syngas over Hybrid Catalyst Consisting of Metal-Loaded ZSM-5 Coupled with Copper-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2014-04-01

    Full Text Available The conversion of syngas (CO + H2 to gasoline-ranged hydrocarbons was carried out using a hybrid catalyst consisting of metal-loaded ZSM-5 coupled with Cu-ZnO in a near-critical n-hexane solvent. Methanol was synthesized from syngas over Cu-ZnO; subsequently, was converted to hydrocarbons through the formation of dimethyl ether (DME over the metal-loaded ZSM-5. When 0.5 wt% Pd/ZSM-5 and 5 wt% Cu/ZSM-5 among the metal-loaded ZSM-5 catalysts with Pd, Co, Fe or Cu were employed as a portion of the hybrid catalyst, the gasoline-ranged hydrocarbons were selectively produced (the gasoline-ranged hydrocarbons in all hydrocarbons: 59% for the hybrid catalyst with Pd/ZSM-5 and 64% for that with Cu/ZSM-5 with a similar CO conversion during the reaction. An increase in the Cu loading on ZSM-5 resulted in increasing the yield of the gasoline-ranged hydrocarbons, and in decreasing the yield of DME. Furthermore, the hybrid catalyst with Cu/ZSM-5 exhibited no deactivation for 30 h of the reaction. It was revealed that a hybrid catalyst containing Cu/ZSM-5 was efficient in the selective synthesis of gasoline-ranged hydrocarbons from syngas via methanol in the near-critical n-hexane fluid.

  17. Plasma–catalyst coupling for volatile organic compound removal and indoor air treatment: a review

    International Nuclear Information System (INIS)

    Thevenet, F; Sivachandiran, L; Guaitella, O; Barakat, C; Rousseau, A

    2014-01-01

    The first part of the review summarizes the problem of air pollution and related air-cleaning technologies. Volatile organic compounds in particular have various effects on health and their abatement is a key issue. Different ways to couple non-thermal plasmas with catalytic or adsorbing materials are listed. In particular, a comparison between in-plasma and post-plasma coupling is made. Studies dealing with plasma-induced heterogeneous reactivity are analysed, as well as the possible modifications of the catalyst surface under plasma exposure. As an alternative to the conventional and widely studied plasma–catalyst coupling, a sequential approach has been recently proposed whereby pollutants are first adsorbed onto the material, then oxidized by switching on the plasma. Such a sequential approach is reviewed in detail. (paper)

  18. Patterned forests of vertically-aligned multiwalled carbon nanotubes using metal salt catalyst solutions.

    Science.gov (United States)

    Garrett, David J; Flavel, Benjamin S; Baronian, Keith H R; Downard, Alison J

    2013-01-01

    A simple method for producing patterned forests of multiwalled carbon nanotubes (MWCNTs) is described. An aqueous metal salt solution is spin-coated onto a substrate patterned with photoresist by standard methods. The photoresist is removed by acetone washing leaving the acetone-insoluble catalyst pattern on the substrate. Dense forests of vertically aligned (VA) MWCNTs are grown on the patterned catalyst layers by chemical vapour deposition. The procedures have been demonstrated by growing MWCNT forests on two substrates: silicon and conducting graphitic carbon films. The forests adhere strongly to the substrates and when grown directly on carbon film, offer a simple method of preparing MWCNT electrodes.

  19. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  20. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongliang [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Ruan, Hao [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Feng, Maoqi [Chemistry & Chemical Engineering Division, Southwest Research Institute, San Antonio TX 78238 USA; Qin, Yuling [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Job, Heather [Pacific Northwest National Laboratory, 902 Battelle Blvd Richland WA 99354 USA; Luo, Langli [Environmental Molecular Sciences Laboratory, 3335 Q Ave Richland WA 99354 USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, 3335 Q Ave Richland WA 99354 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, 3335 Q Ave Richland WA 99354 USA; Kuhn, Erik [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO. 80401 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO. 80401 USA; Tucker, Melvin P. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO. 80401 USA; Yang, Bin [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA

    2017-03-16

    The synthesis of high-efficiency and low-cost multifunctional catalysts for hydrodeoxygenation (HDO) of waste lignin into advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low molecular weight gaseous side-products. Among all the prepared catalysts, Ru-Cu/HY showed the best HDO performance, giving the highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably due to the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all the bifunctional catalysts were proven to be superior over the combination catalysts of Ru/Al2O3 and HY zeolite, and this could be attributed to the “intimacy criterion”. The practical use of the designed catalysts would be promising in lignin valorization.

  1. A general strategy for the in situ decoration of porous Mn-Co bi-metal oxides on metal mesh/foam for high performance de-NOx monolith catalysts.

    Science.gov (United States)

    Cai, Sixiang; Liu, Jie; Zha, Kaiwen; Li, Hongrui; Shi, Liyi; Zhang, Dengsong

    2017-05-04

    Owing to their advantages of strong mechanical stability, plasticity, thermal conductivity and mass transfer ability, metal foam or meshes are considered promising monolith supports for de-NO x application. In this work, we developed a facile method for the decoration of porous Mn-Co bi-metal oxides on Fe meshes. The block-like structure was derived from in situ coating, and simultaneous nucleation and growth of the Mn-Co hydroxide precursor, while the porous Mn-Co oxides were formed via the calcination process. Moreover, the decoration of the high-purity Co 2 MnO 4 spinel could lead to enhanced reducibility and adsorption behaviors, which are crucial to the catalytic process. Of note is the fact that the Fe mesh used in the synthesis procedure could be substituted by various metal supports including Ti mesh, Cu foam and Ni foam. Driven by the above motivations, metal supports decorated with Mn-Co oxides were evaluated as monolith de-NO x catalysts for the first time. Inspiringly, these catalysts demonstrate outstanding low-temperature catalytic activity, desirable stability and excellent H 2 O resistance. This work might open up a new path for the design and development of high performance de-NO x monolith catalysts.

  2. N, S co-doped carbon spheres with highly dispersed CoO as non-precious metal catalyst for oxygen reduction reaction

    Science.gov (United States)

    Chen, Linlin; Guo, Xingpeng; Zhang, Guoan

    2017-08-01

    It is still a great challenge in preparing non-precious metal catalysts with high activity and long-term stability to substitute for precious metal catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we report a novel and facile catalyst-N, S co-doped carbon spheres with highly dispersed CoO (CoO@NS-CSs), where biomass glucose spheres act as carbon precursor and H2S, NH3 derived from the decomposition of thiourea not only provide N, S sources but also can etch carbon spheres to produce nanoporous structure. CoO@NS-CSs catalyst exhibits excellent ORR activity with a high onset potential of 0.946 V vs. RHE (reversible hydrogen electrode) and a half-wave potential of 0.821 V vs. RHE through a four-electron pathway in alkaline solution, which is comparable to commercial Pt/C catalyst (onset potential: 0.926 V vs. RHE, half-wave potential: 0.827 V vs. RHE). Furthermore, both the long-term stability and methanol-tolerance of CoO@NS-CSs catalyst are superior to those of commercial Pt/C catalyst. The excellent ORR performance of CoO@NS-CSs catalyst can be attributed to its micro-mesopore structure, high specific surface area (667 m2 g-1), and highly dispersed CoO. This work manifests that the obtained CoO@NS-CSs catalyst is promising to be applied to fuel cells.

  3. Study of ammonia synthesis using technetium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mikhajlenko, I.E.; Pokrovskaya, O.V.

    1982-01-01

    A study was made on catalytic properties of technetium in ammonia synthesis reaction. The preparation of technetium catalysts on ν-Al 2 O 3 , BaTiO 3 , BaO-ν-Al 2 O 3 substrates is described. The investigation of catalytic activity of catalysts was carried out at a pressure of 1 atm. in vertical reactor with volume rate of 15000 h - 1 in the temperature range of 350-425 deg. The amount of catalyst was 0.5-1 g, the volume- 0.5 ml, the size of granules- 2-3 mm. Rate constants of ammonia synthesis reaction were calculated. Seeming activation energies of the process have meanings wihtin the limits of 40-50 kcal/mol. It was shown that with increase in concentration of Tc on BaTiO 3 the catalytic activity rises in comparison with pure Tc. The reduction of catalytic activity with increase of metal content on Al 2 O 3 begins in the limits of 3.5-6.7% Tc/ν-Al 2 O 3 . The catalyst of 5.3% Tc/4.1% Ba/ν -Al 2 O 3 compound has the maximum activity. Technetium catalysts possess the stable catalytic activity and don't requre its reduction during several months

  4. Metal cluster compounds - chemistry and importance; clusters containing isolated main group element atoms, large metal cluster compounds, cluster fluxionality

    International Nuclear Information System (INIS)

    Walther, B.

    1988-01-01

    This part of the review on metal cluster compounds deals with clusters containing isolated main group element atoms, with high nuclearity clusters and metal cluster fluxionality. It will be obvious that main group element atoms strongly influence the geometry, stability and reactivity of the clusters. High nuclearity clusters are of interest in there own due to the diversity of the structures adopted, but their intermediate position between molecules and the metallic state makes them a fascinating research object too. These both sites of the metal cluster chemistry as well as the frequently observed ligand and core fluxionality are related to the cluster metal and surface analogy. (author)

  5. Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption

    Science.gov (United States)

    We synthesized hydrothermally stable metal catalysts with controlled particle size and distribution, with the goal of determining which catalyst(s) can selectively catalyze the production of aromatics from bio-oil (from pyrolysis of biomass). Both precious and base transition metal catalysts (Ru, Pt...

  6. A Phenomenological Study on the Synergistic Role of Precious Metals in the Steam Reforming of Logistic Fuels on Bimetal-Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2011-01-01

    Full Text Available Fuel processors are required to convert sulfur-laden logistic fuels into hydrogen-rich reformate and deliver to the fuel cell stack with little or no sulfur. Since sulfur poisons and deactivates the reforming catalyst, robust sulfur-tolerant catalysts ought to be developed. In this paper, the development, characterization and evaluation of a series of reforming catalysts containing two noble metals (with total metal loading not exceeding 1 weight percent supported on nanoscale ceria for the steam-reforming of kerosene is reported. Due to inherent synergy, a bimetallic catalyst is superior to its monometallic analog, for the same level of loading. The choice of noble metal combination in the bimetallic formulations plays a vital and meaningful role in their performance. Presence of ruthenium and/or rhodium in formulations containing palladium showed improved sulfur tolerance and significant enhancement in their catalytic activity and stability. Rhodium was responsible for higher hydrogen yields in the logistic fuel reformate. Duration of steady hydrogen production was higher in the case of RhPd (75 h than for RuPd (68 h; hydrogen generation was stable over the longest period (88 h with RuRh containing no Pd. A mechanistic correlation between the characteristic role of precious metals in the presence of each other is discussed.

  7. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    Science.gov (United States)

    Corradini, Patricia Gon; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete

    2012-09-01

    The effect of the relationship between particle size ( d), inter-particle distance ( x i ), and metal loading ( y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x i / d (>5) values, was evaluated. It was found that for y fuel cell electrode than that using catalysts with y ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i / d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  8. Hydrogen and syngas production by catalytic gasification of algal biomass (Cladophora glomerata L.) using alkali and alkaline-earth metals compounds.

    Science.gov (United States)

    Ebadi, Abdol Ghaffar; Hisoriev, Hikmat; Zarnegar, Mohammad; Ahmadi, Hamed

    2018-01-02

    The steam gasification of algal biomass (Cladophora glomerata L.) in presence of alkali and alkaline-earth metal compounds catalysts was studied to enhance the yield of syngas and reduce its tar content through cracking and reforming of condensable fractions. The commercial catalysts used include NaOH, KHCO 3 , Na 3 PO 4 and MgO. The gasification runs carried out with a research scale, biomass gasification unit, show that the NaOH has a strong potential for production of hydrogen, along with the added advantages of char converting and tar destruction, allowing enhancement of produced syngas caloric value. When the temperature increased from 700°C to 900°C, the tar content in the gas sharply decreased, while the hydrogen yield increased. Increasing steam/biomass ratio significantly increased hydrogen yield and tar destruction; however, the particle size in the range of 0.5-2.5 mm played a minor role in the process.

  9. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  10. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  11. Ethanol tolerant precious metal free cathode catalyst for alkaline direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Grimmer, Ilena; Zorn, Paul; Weinberger, Stephan; Grimmer, Christoph; Pichler, Birgit; Cermenek, Bernd; Gebetsroither, Florian; Schenk, Alexander; Mautner, Franz-Andreas

    2017-01-01

    Highlights: • Selective ORR catalysts are presented for alkaline direct ethanol fuel cells. • Perovskite based cathode catalysts show high tolerance toward ethanol. • A membrane-free alkaline direct ethanol fuel cell is presented. - Abstract: La 0.7 Sr 0.3 (Fe 0.2 Co 0.8 )O 3 and La 0.7 Sr 0.3 MnO 3 −based cathode catalysts are synthesized by the sol-gel method. These perovskite cathode catalysts are tested in half cell configuration and compared to MnO 2 as reference material in alkaline direct ethanol fuel cells (ADEFCs). The best performing cathode is tested in single cell setup using a standard carbon supported Pt 0.4 Ru 0.2 based anode. A backside Luggin capillary is used in order to register the anode potential during all measurements. Characteristic processes of the electrodes are investigated using electrochemical impedance spectroscopy. Physical characterizations of the perovskite based cathode catalysts are performed with a scanning electron microscope (SEM) and by X-ray diffraction showing phase pure materials. In half cell setup, La 0.7 Sr 0.3 MnO 3 shows the highest tolerance toward ethanol with a performance of 614 mA cm −2 at 0.65 V vs. RHE in 6 M KOH and 1 M EtOH at RT. This catalyst outperforms the state-of-the-art precious metal-free MnO 2 catalyst in presence of ethanol. In fuel cell setup, the peak power density is 27.6 mW cm −2 at a cell voltage of 0.345 V and a cathode potential of 0.873 V vs. RHE.

  12. Evaluation of functionalized silica¿s for the adsorptive recovery of homogenous catalysts through interaction with the metal centre

    NARCIS (Netherlands)

    Djekic, T.; van der Ham, Aloysius G.J.; de Haan, A.B.

    2007-01-01

    The goal of this paper is the evaluation of functionalized silica's for the recovery of homogeneous catalysts by adsorption via its metal centre. As model catalysts, we selected bis(triphenylphosphine)cobalt(II)dichloride (CoCl2(PPh3)2), bis(triphenylphosphine)palladium(II)dichloride (PdCl2(PPh3)2)

  13. Insertion compounds of transition-metal and uranium oxides

    International Nuclear Information System (INIS)

    Chippindale, A.M.; Dickens, P.G.; Powell, A.V.

    1991-01-01

    Several transition-metal and actinide oxides, in which the metal occurs in a high oxidation state, have open covalent structures and are capable of incorporating alkali and other electropositive metals under mild conditions to form insertion compounds A x MO n . These are solids which have several features in common: Over a range of compositions, A x MO n exists as one or more stable or metastable phases in which the structure of the parent oxide MO n is largely retained and the insertion element A is accommodated interstitially. Insertion is accompanied by a redox process A=A i . + e - M in which M is reduced and the electronic properties of the parent oxide change to those typical of a mixed-valence compound. The insertion process xA + MO n = A x MO n can be reversed, at least to some extent, by chemical or electrochemical reaction, with retention of structure (topotactic reaction). This review concentrates on methods of synthesis, characterisation, crystal structure and thermochemistry of these insertion compounds. It updates and extends previous work. (author)

  14. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles.

    Science.gov (United States)

    Liu, Lichen; Corma, Avelino

    2018-05-23

    Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal-support interaction, and metal-reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities (single atoms, nanoclusters, and nanoparticles) in a unifying manner.

  15. MORE ACTIVE AND SULFUR RESISTANT BIMETALLIC Pd-Ni CATALYSTS

    OpenAIRE

    Betti, Carolina; Carrara, Nicolás; Badano, Juan; Lederhos, Cecilia; Vera, Carlos; Quiroga, Mónica

    2018-01-01

    The influence of the kind of metal precursor and the sequence of impregnation on the properties of Pd-Ni catalysts was evaluated during the test reaction of selective hydrogenation of styrene to ethylbenzene by means of physicochemical characterization. The focus was put on the final hydrogenating activity and the resistance to deactivation by sulfided compounds (thiophene). The used techniques of characterization were ICP, XPS, XDR, TPR, CO chemisorption and TEM. XPS results indicated the pr...

  16. Large-scale synthesis of coiled-like shaped carbon nanotubes using bi-metal catalyst

    Science.gov (United States)

    Krishna, Vemula Mohana; Somanathan, T.; Manikandan, E.; Umar, Ahmad; Maaza, M.

    2018-02-01

    Carbon nanomaterials (CNMs), especially carbon nanotubes (CNTs) with coiled structure exhibit scientifically fascinating. They may be projected as an innovative preference to future technological materials. Coiled carbon nanotubes (c-CNTs) on a large-scale were successfully synthesized with the help of bi-metal substituted α-alumina nanoparticles catalyst via chemical vapor deposition (CVD) technique. Highly spring-like carbon nanostructures were observed by field emission scanning electron microscope (FESEM) examination. Furthermore, the obtained material has high purity, which correlates the X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) analysis. Raman spectroscopy reveals that the carbon multi layers are well graphitized and crystalline, even if they have defects in its structure due to coiled morphology. High-resolution transmission electron microscope (HRTEM) describes internal structure and dia of the product. Ultimately, results support the activity of bi-metal impregnated α-alumina nanoparticles catalyst to determine the high yield, graphitization and internal structure of the material. We have also studied the purified c-CNTs magnetic properties at room temperature and will be an added advantage in several applications.

  17. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A; Briand, Y

    1997-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  18. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A.; Briand, Y.

    1996-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  19. Synthesis and characterization of group V metal carbide and nitride catalysts

    Science.gov (United States)

    Kwon, Heock-Hoi

    1998-11-01

    Group V transition metal carbides and nitrides were prepared via the temperature programmed reaction (TPR) of corresponding oxides with NHsb3 or a CHsb4/Hsb2 mixture. Except for the tantalum compounds, phase-pure carbides and nitrides were prepared. The vanadium carbides and nitrides were the most active and selective catalysts. Therefore the principal focus of the research was the preparation, characterization, and evaluation of high surface area vanadium nitride catalysts. A series of vanadium nitrides with surface areas up to 60 msp2/g was prepared. Thermal gravimetric analysis coupled with x-ray diffraction and scanning electron microscopy indicated that the solid-state reaction proceeded by the sequential reduction of Vsb2Osb5 to VOsb{0.9} and concluded with the topotactic substitution of nitrogen for oxygen in VOsb{0.9}. The transformation of Vsb2Osb5 to VN was pseudomorphic. An experimental design was executed to determine effects of the heating rates and space velocities on the VN microstructures. The heating rates had minor effects on the surface areas and pore size distributions; however, increasing the space velocity significantly increased the surface area. The materials were mostly mesoporous. Oxygen chemisorption on the vanadium nitrides scaled linearly with the surface area. The corresponding O/Vsbsurface ratio was ≈0.6. The vanadium nitrides were active for butane activation and pyridine hydrodenitrogenation. During butane activation, their selectivities towards dehydrogenation products were as high as 98%. The major product in pyridine hydrodenitrogenation was pentane. The reaction rates increased almost linearly with the surface area suggesting that these reactions were structure insensitive. The vanadium nitrides were not active for crotonaldehyde hydrogenation; however, they catalyzed an interesting ring formation reaction that produced methylbenzaldehyde and xylene from crotonaldehyde. A new method was demonstrated for the production of very

  20. Direct fabrication of metal-free hollow graphene balls with a self-supporting structure as efficient cathode catalysts of fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanqi; Liu, Mingda; Nie, Huagui, E-mail: huaguinie@126.com; Gu, Cancan; Liu, Ming; Yang, Zhi, E-mail: yang201079@126.com; Yang, Keqin; Chen, Xi’an; Huang, Shaoming, E-mail: smhuang@wzu.edu.cn [Wenzhou University, Nanomaterials and Chemistry Key Laboratory (China)

    2016-06-15

    Despite the good progress in developing carbon catalysts for oxygen reduction reaction (ORR), the current metal-free carbon catalysts are still far from satisfactory for large-scale applications of fuel cell. Developing hollow graphene balls with a self-supporting structure is considered to be an ideal method to inhibit graphene stacking and improve their catalytic performance. Herein, we fabricated metal-free hollow graphene balls with a self-supporting structure, through using a new strategy that involves direct metal-free catalytic growth from assembly of SiO{sub 2} spheres. To our knowledge, although much researches involving the synthesis of graphene balls have been reported, investigations into the direct metal-free catalytic growth of hollow graphene balls are rare. Furthermore, the electrocatalytic performance shows that the resulting hollow graphene balls have significantly high catalytic activity. More importantly, such catalysts also possess much improved stability and better methanol tolerance in alkaline media during the ORR compared with commercial Pt/C catalysts. The outstanding performances coupled with an easy and inexpensive preparing method indicated the great potential of the hollow graphene balls with a self-supporting structure in large-scale applications of fuel cell.Graphical AbstractHollow graphene balls with a self-supporting structure have been successfully fabricated, through using a new strategy that involves direct metal-free catalytic growth from 3D assembly of SiO{sub 2} spheres. The hollow graphene balls can exhibit a high catalytic activity, long-term stability, and an excellent methanol tolerance for the oxygen reduction reaction.

  1. Direct fabrication of metal-free hollow graphene balls with a self-supporting structure as efficient cathode catalysts of fuel cell

    International Nuclear Information System (INIS)

    Lu, Yanqi; Liu, Mingda; Nie, Huagui; Gu, Cancan; Liu, Ming; Yang, Zhi; Yang, Keqin; Chen, Xi’an; Huang, Shaoming

    2016-01-01

    Despite the good progress in developing carbon catalysts for oxygen reduction reaction (ORR), the current metal-free carbon catalysts are still far from satisfactory for large-scale applications of fuel cell. Developing hollow graphene balls with a self-supporting structure is considered to be an ideal method to inhibit graphene stacking and improve their catalytic performance. Herein, we fabricated metal-free hollow graphene balls with a self-supporting structure, through using a new strategy that involves direct metal-free catalytic growth from assembly of SiO_2 spheres. To our knowledge, although much researches involving the synthesis of graphene balls have been reported, investigations into the direct metal-free catalytic growth of hollow graphene balls are rare. Furthermore, the electrocatalytic performance shows that the resulting hollow graphene balls have significantly high catalytic activity. More importantly, such catalysts also possess much improved stability and better methanol tolerance in alkaline media during the ORR compared with commercial Pt/C catalysts. The outstanding performances coupled with an easy and inexpensive preparing method indicated the great potential of the hollow graphene balls with a self-supporting structure in large-scale applications of fuel cell.Graphical AbstractHollow graphene balls with a self-supporting structure have been successfully fabricated, through using a new strategy that involves direct metal-free catalytic growth from 3D assembly of SiO_2 spheres. The hollow graphene balls can exhibit a high catalytic activity, long-term stability, and an excellent methanol tolerance for the oxygen reduction reaction

  2. Topotactic Transformation of Metal-Organic Frameworks to Graphene-Encapsulated Transition-Metal Nitrides as Efficient Fenton-like Catalysts.

    Science.gov (United States)

    Li, Xuning; Ao, Zhimin; Liu, Jiayi; Sun, Hongqi; Rykov, Alexandre I; Wang, Junhu

    2016-12-27

    Innovation in transition-metal nitride (TMN) preparation is highly desired for realization of various functionalities. Herein, series of graphene-encapsulated TMNs (Fe x Mn 6-x Co 4 -N@C) with well-controlled morphology have been synthesized through topotactic transformation of metal-organic frameworks in an N 2 atmosphere. The as-synthesized Fe x Mn 6-x Co 4 -N@C nanodices were systematically characterized and functionalized as Fenton-like catalysts for catalytic bisphenol A (BPA) oxidation by activation of peroxymonosulfate (PMS). The catalytic performance of Fe x Mn 6-x Co 4 -N@C was found to be largely enhanced with increasing Mn content. Theoretical calculations illustrated that the dramatically reduced adsorption energy and facilitated electron transfer for PMS activation catalyzed by Mn 4 N are the main factors for the excellent activity. Both sulfate and hydroxyl radicals were identified during the PMS activation, and the BPA degradation pathway mainly through hydroxylation, oxidation, and decarboxylation was investigated. Based on the systematic characterization of the catalyst before and after the reaction, the overall PMS activation mechanism over Fe x Mn 6-x Co 4 -N@C was proposed. This study details the insights into versatile TMNs for sustainable remediation by activation of PMS.

  3. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework.

    Science.gov (United States)

    Kim, In Soo; Li, Zhanyong; Zheng, Jian; Platero-Prats, Ana E; Mavrandonakis, Andreas; Pellizzeri, Steven; Ferrandon, Magali; Vjunov, Aleksei; Gallington, Leighanne C; Webber, Thomas E; Vermeulen, Nicolaas A; Penn, R Lee; Getman, Rachel B; Cramer, Christopher J; Chapman, Karena W; Camaioni, Donald M; Fulton, John L; Lercher, Johannes A; Farha, Omar K; Hupp, Joseph T; Martinson, Alex B F

    2018-01-22

    Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pt-Rh/g Al2O3 Influence of Catalyst Preparation Methods on Metallic Particle Dispersion and Size Distribution

    Directory of Open Access Journals (Sweden)

    N.M. da Fonseca

    1998-06-01

    Full Text Available - Pt-Rh/Al2O3 catalysts were prepared by successive incipient impregnations or coimpregnation. Characterization was achieved by H2 chemisorption and transmission electron microscopy. It was verified that method of preparation, ratio of metal weights and sequence of deposition are factors that result in very distinct catalysts.

  5. Patterned growth of carbon nanotubes on Si substrates without predeposition of metal catalysts

    Science.gov (United States)

    Chen, Y.; Yu, J.

    2005-07-01

    Aligned carbon nanotubes (CNTs) can be readily synthesized on quartz or silicon-oxide-coated Si substrates using a chemical vapor deposition method, but it is difficult to grow them on pure Si substrates without predeposition of metal catalysts. We report that aligned CNTs were grown by pyrolysis of iron phthalocyanine at 1000°C on the templates created on Si substrates with simple mechanical scratching. Scanning electron microscopy and x-ray energy spectroscopy analysis revealed that the trenches and patterns created on the surface of Si substrates were preferred nucleation sites for nanotube growth due to a high surface energy, metastable surface structure, and possible capillarity effect. A two-step pyrolysis process maintained Fe as an active catalyst.

  6. Heterogeneous Metal Catalysts for Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Md. Eaqub Ali

    2014-01-01

    Full Text Available Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna. Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a reference guide for the selection of oxidation catalysts for both industries and academics.

  7. Transesterification of jatropha oil with methanol over Mg–Zn mixed metal oxide catalysts

    International Nuclear Information System (INIS)

    Lee, H.V.; Taufiq-Yap, Y.H.; Hussein, M.Z.; Yunus, R.

    2013-01-01

    A design was developed for the transesterification reaction of non-edible Jatropha Curcas oil using a heterogeneous catalysis system to replace the use of a homogeneous catalytic reaction. Investigations were conducted on solid MgO–ZnO mixed metal oxide catalyst bases with different atomic ratios of magnesium to zinc (Mg/Zn). These catalysts were characterized by BET (Brunauer–Emmer–Teller) surface area analysis, X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), and the alkalinity of the catalysts was studied by Temperature Programmed Desorption of carbon dioxide (TPD-CO 2 ). The physicochemical properties of the MgO–ZnO binary system were superior to those of the individual bulk oxides of MgO and ZnO. In addition, the formation of a binary system between MgO and ZnO established an effective method for transesterification processes. In this study, the effects of stoichiometric composition and surface characteristics on the transesterification activity of MgO–ZnO were investigated. The catalysts exhibited high catalytic activity (∼80%) with reliable reusability for biodiesel production. -- Highlights: ► Transesterification reaction of non-edible jatropha oil using solid base catalyst. ► MgO–ZnO binary system showed superior effect than the individual MgO and ZnO. ► More than 80% of FAME yield was achieved under mild condition. ► MgO–ZnO catalyst showed reliable reusability throughout 5 runs. ► Fuel properties of prepared biodiesel were complying with the biodiesel standards.

  8. Novel low temperature NOx storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds

    International Nuclear Information System (INIS)

    Fornasari, G.; Trifiro, F.; Vaccari, A.; Prinetto, F.; Ghiotti, G.; Centi, G.

    2002-01-01

    A series of Pt and Pt,Cu supported catalysts were prepared by wet impregnation of Mg-Al supports obtained from hydrotalcite-type (HT) precursor compounds. These novel NO x storage-reduction (NO x SR) catalysts show improved performances in NO x storage than Pt,Ba/alumina NO x SR catalysts at reaction temperatures lower than 200C. These catalysts show also improved resistance to deactivation by SO 2 . The effect is attributed to the formation of well dispersed Mg(Al)O particles which show good NO x storage properties. The promoted low temperature activity is explained by the lower basicity of the Mg(Al)O mixed oxide in comparison to BaO, which induces on one hand a lower inhibition on Pt activity (NO to NO 2 oxidation and/or hydrocarbon oxidation) due to electronic effect, and on the other hand a lower thermal stability of the stored NO x . The presence of Cu slightly inhibits activity at low temperature, although improves activity and resistance to deactivation at 300C. On these catalysts FT-IR characterization evidences the formation of a Pt-Cu alloy after reduction

  9. The Emergence of Manganese-Based Carbonyl Hydrosilylation Catalysts.

    Science.gov (United States)

    Trovitch, Ryan J

    2017-11-21

    In recent years, interest in homogeneous manganese catalyst development has intensified because of the earth-abundant and nontoxic nature of this metal. Although compounds of Mn have largely been utilized for epoxidation reactions, recent efforts have revealed that Mn catalysts can mediate a broad range of reductive transformations. Low-valent Mn compounds have proven to be particularly effective for the hydrosilylation of carbonyl- and carboxylate-containing substrates, and this Account aims to highlight my research group's contributions to this field. In our initial 2014 communication, we reported that the bis(imino)pyridine-supported compound ( Ph2PPr PDI)Mn mediates ketone hydrosilylation with exceptional activity under solvent-free conditions. Silanes including Ph 2 SiH 2 , (EtO) 3 SiH, (EtO) 2 MeSiH, and (EtO)Me 2 SiH were found to partially reduce cyclohexanone in the presence of ( Ph2PPr PDI)Mn, while turnover frequencies of up to 1280 min -1 were observed using PhSiH 3 . This led us to evaluate the hydrosilylation of 11 additional ketones and allowed for the atom-efficient preparation of tertiary and quaternary silanes. At that time, it was also discovered that ( Ph2PPr PDI)Mn catalyzes the dihydrosilylation of esters (by way of acyl C-O bond hydrosilylation) to yield a mixture of silyl ethers with modest activity. Earlier this year, the scope of these transformations was extended to aldehydes and formates, and the observed hydrosilylation activities are among the highest obtained for any transition-metal catalyst. The effectiveness of three related catalysts has also been evaluated: ( Ph2PPr PDI)MnH, ( PyEt PDEA)Mn, and [( Ph2PEt PDI)Mn] 2 . To our surprise, ( Ph2PPr PDI)MnH was found to exhibit higher carboxylate dihydrosilylation activity than ( Ph2PPr PDI)Mn, while ( PyEt PDEA)Mn demonstrated remarkable carbonyl hydrosilylation activity considering that it lacks a redox-active supporting ligand. The evaluation of [( Ph2PEt PDI)Mn] 2 revealed

  10. Heterometallic metal-organic framework-templated synthesis of porous Co3O4/ZnO nanocage catalysts for the carbonylation of glycerol

    Science.gov (United States)

    Lü, Yinyun; Jiang, Yating; Zhou, Qi; Li, Yunmei; Chen, Luning; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2017-12-01

    The efficient synthesis of glycerol carbonate (GLC) has recently received great attention due to its significance in reducing excess glycerol in biodiesel production as well as its promising applications in several industrial fields. However, the achievement of high conversion and high selectivity of GLC from glycerol in heterogeneous catalytic processes remains a challenge due to the absence of high-performance solid catalysts. Herein, highly porous nanocage catalysts composed of well-mixed Co3O4 and ZnO nanocrystals were successfully fabricated via a facile heterometallic metal-organic framework (MOF)-templated synthetic route. Benefiting from a high porosity and the synergistic effect between Co3O4 and ZnO, the as-prepared composite catalysts exhibited a significantly enhanced production efficiency of GLC in the carbonylation reaction of glycerol with urea compared to the single-component counterparts. The yield of GLC over the Co50Zn50-350 catalyst reached 85.2%, with 93.3% conversion and near 91% GLC selectivity, and this catalytic performance was superior to that over most heterogeneous catalysts. More importantly, the proposed templated synthetic strategy of heterometallic MOFs facilitates the regulation of catalyst composition and surface structure and can therefore be potentially extended in the tailoring of other metal oxide composite catalysts.

  11. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells.

    Science.gov (United States)

    Huang, Jianjian; Zhu, Nengwu; Yang, Tingting; Zhang, Taiping; Wu, Pingxiao; Dang, Zhi

    2015-10-15

    Comparing with the precious metal catalysts, non-precious metal catalysts were preferred to use in microbial fuel cells (MFCs) due to the low cost and high oxygen reduction reaction (ORR) efficiency. In this study, the transmission electron microscope and X-ray diffraction as well as Raman investigation revealed that the prepared nanoscale NiO was attached on the surface of CNT. Cyclic voltammogram and rotating ring-disk electrode tests showed that the NiO/CNT composite catalyst had an apparent oxygen reduction peak and 3.5 electron transfer pathway was acquired under oxygen atmosphere. The catalyst performance was highly dependent on the percentage of NiO in the CNT nanocomposites. When 77% NiO/CNT nano-sized composite was applied as cathode catalyst in membrane free single-chamber air cathode MFC, a maximum power density of 670 mW/m(2) and 0.772 V of OCV was obtained. Moreover, the MFC with pure NiO (control) could not achieve more than 0.1 V. All findings suggested that NiO/CNT could be a potential cathode catalyst for ORR in MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Preparation and Characterization of Double Metal Cyanide Complex Catalysts

    Directory of Open Access Journals (Sweden)

    Weilin Guo

    2003-01-01

    Full Text Available A series of double metal cyanide (DMC complex catalysts were prepared in two different methods by using ß-cyclodextrin, PEG-1000 and Tween-60 as an additional complex ligands respectively. It was showed that a mixture of crystalline and amorphous DMC was synthesized by using traditional method in which the additional complex ligand was added after the precipitation of DMC. Amorphous and dispersed DMC with higher activity could be obtained when the additional complex ligand was added in the reactant solution before reaction. The effect of additional complex ligand and preparation method on the crystalline state and catalytic property of DMC were also investigated.

  13. Session 6: Synergistic effects in selective hydro dechlorination on bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Srebowata, A.; Legawiec-Jarzyna, M.; Juszczyk, W.; Karpinski, Z. [Institute of Physical Chemistry of PAS, Warszawa (Poland)

    2004-07-01

    Catalytic removal of chlorine from organic compounds has recently attracted increasing interest. A special case of this important environmental issue is the hydro-dechlorination (HDC). HDC of three compounds was investigated: dichloro-difluoro-methane, carbon tetrachloride and 1,2-dichloroethane. Since the most desired products of the mentioned reactions are: CH{sub 2}F{sub 2}, chloroform and ethene (highlighted below), our attention was focused at the rates of formation of these products: CCl{sub 2}F{sub 2} {yields} CH{sub 2}F{sub 2} {yields} CH{sub 4}; CCl{sub 4} {yields} CHCl{sub 3} {yields} CH{sub 4}; ClCH{sub 2}-CH{sub 2}Cl {yields} CH{sub 2}=CH{sub 2} {yields} CH{sub 3}CH{sub 3}. In fact, Selection of the most suitable HDC catalyst depends on the C-Cl bond strength in a molecule subjected to reaction. A relatively weak C-Cl bond in CCl{sub 4} (306 kJ/mol) does not require a high dechlorination potential, which can be directly correlated with the strength of a metal-chlorine bond. Thus Pt is a better catalyst than Pd in CCl{sub 4} reaction. In addition, an improvement of Pt-based catalysts can be achieved by alloying with metals which bind chlorine even less strongly than Pt (i.e. with Au). In contrast, Pd is a better catalyst than Pt for hydro-dechlorination of a stronger C-Cl bond (about 350 kJ/mol), present in CCl{sub 2}F{sub 2} and ClCH{sub 2}-CH{sub 2}Cl. However, a good performance of Pd can still be improved by alloying it with much less active Pt (or Au), as a result of weakening of the metal-chlorine bond. This effect leads to a higher selectivity toward partial dehalogenation, i.e. to formation of a desired CH{sub 2}F{sub 2} (at the expense of CH{sub 4}). In a similar way, combination of Pd with Co and Cu is rationalized. For HDC of ClCH{sub 2}-CH{sub 2}Cl, addition of a metal characterized by a poor hydrogenation strength (like Cu or Ag) to Pd (or Pt) reduces undesired formation of ethane, giving higher yields of ethene. (authors)

  14. Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: A theoretical study

    Science.gov (United States)

    Orellana, Walter

    2012-07-01

    The covalent functionalization of metallic single-walled carbon nanotubes (CNTs) with transition metal phthalocyanines (MPc, with M = Mn, Fe and Co) are addressed by density functional calculations. The CNT-MPc catalytic activity toward the oxygen reduction reaction (ORR) is investigated through the O2 stretching frequency adsorbed on the phthalocyanine metal center. We find better reduction abilities when the CNT functionalization occurs through sp2-like bonds. Multiple stable-spin states for the M-O2 adduct are also found for M = Mn and Fe, suggesting higher ORR rates. The CNT-MPc complexes show metallic characteristics, suggesting favorable conditions to work as ORR cathode catalysts in fuel cells.

  15. Crystal field in rare-earth metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Ray, D.K.

    1978-01-01

    Reasons for the success of the crystal-field model for the rare-earth metals and intermetallic compounds are discussed. A review of some of the available experimental results is made with emphasis on cubic intermetallic compounds. Various sources of the origin of the crystal field in these metals are discussed in the background of the recent APW picture of the conduction electrons. The importance of the non-spherical part of the muffin-tin potential on the single-ion anisotropy is stressed. (author)

  16. Oxidation of Commercial Petronas Diesel with Tert-Butyl Hydroperoxide Over Poly molybdate Alumina Supported Catalyst Modified With Alkaline Earth Metals

    International Nuclear Information System (INIS)

    Wan Nazwanie Wan Abdullah; Rusmidah Ali; Wan Azlee Wan Abu Bakar

    2016-01-01

    Due to strict environmental legislation for ultra-low sulfur diesel fuels, increasing technical and operational challenges are imposed to conventional hydrodesulfurization (HDS) technology. Therefore, catalytic oxidative desulfurization (Cat-ODS) has been suggested to be an alternative method to replace a conventional method which is hydrodesulfurization. In this study, catalytic oxidation of commercial diesel was performed using an oil-soluble oxidant, tert-butyl hydroperoxide (TBHP), over poly molybdate supported on alumina MoO_3-PO_4/ Al_2O_3 catalyst. A commercial Petronas diesel with 440 ppm of total sulfur was employed to evaluate the elimination of sulfur compounds. Besides, the percentage of sulfur removal was measured by (GC-FPD). Alkaline earth metals, such as Calcium (Ca), Barium (Ba) and Strontium (Sr) were introduced on the surface of MoO_3-PO_4/ Al_2O_3. The results showed that the catalytic activity decreased in the order, Ca/ MoO_3-PO_4/ Al_2O_3>Sr/ MoO_3-PO_4/ Al_2O_3> Ba/ MoO_3-PO_4/ Al_2O_3. The Ca/ MoO_3-PO_4/ Al_2O_3 catalyst was characterized by XRD and FESEM. XRD results showed that the best catalyst was highly amorphous while FESEM micrograph illustrated an aggregation and agglomeration of various particle sizes. The catalytic activity of Ca/ MoO_3-PO_4/ Al_2O_3 catalyst with various Ca/ Mo ratios were also studied. When the Ca/ Mo ratio was 15:85, the sulfur removal was the highest (79 %) at 45 degree Celsius, 30 min and O/ S molar ratio 3.0 with solvent = dimethylformamide (DMF), diesel/ solvent ratio = 1.0. (author)

  17. Development of Ni-Based Catalysts Derived from Hydrotalcite-Like Compounds Precursors for Synthesis Gas Production via Methane or Ethanol Reforming

    OpenAIRE

    Ya-Li Du; Xu Wu; Qiang Cheng; Yan-Li Huang; Wei Huang

    2017-01-01

    As a favorably clean fuel, syngas (synthesis gas) production has been the focus of concern in past decades. Substantial literatures reported the syngas production by various catalytic reforming reactions particularly in methane or ethanol reforming. Among the developed catalysts in these reforming processes, Ni-based catalysts from hydrotalcite-like compounds (HTLcs) precursors have drawn considerable attention for their preferable structural traits. This review covers the recent literature r...

  18. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  19. Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.; Zacher, Alan H.

    2016-08-30

    Biomass fast pyrolysis integrated with bio-oil upgrading represents a very attractive approach for converting biomass to hydrocarbon transportation fuels. However, the thermal and chemical instability of bio-oils presents significant problems when they are being upgraded, and development of effective approaches for stabilizing bio-oils is critical to the success of the technology. Catalytic hydrogenation to remove reactive species in bio-oil has been considered as one of the most efficient ways to stabilize bio-oil. This paper provides a fundamental understanding of hydrogenation of actual bio-oils over a Ru/TiO2 catalyst under conditions relevant to practical bio-oil hydrotreating processes. Bio-oil feed stocks, bio-oils hydrogenated to different extents, and catalysts have been characterized to provide insights into the chemical and physical properties of these samples and to understand the correlation of the properties with the composition of the bio-oil and catalysts. The results indicated hydrogenation of various components of the bio-oil, including sugars, aldehydes, ketones, alkenes, aromatics, and carboxylic acids, over the Ru/TiO2 catalyst and 120 to 160oC. Hydrogenation of these species significantly changed the chemical and physical properties of the bio-oil and overall improved its thermal stability, especially by reducing the carbonyl content, which represented the content of the most reactive species (i.e., sugar, aldehydes, and ketones). The change of content of each component in response to increasing hydrogen additions suggests the following bio-oil hydrogenation reaction sequence: sugar conversion to sugar alcohols, followed by ketone and aldehyde conversion to alcohols, followed by alkene and aromatic hydrogenation, and then followed by carboxylic acid hydrogenation to alcohols. Hydrogenation of bio-oil samples with different sulfur contents or inorganic material contents suggested that sulfur poisoning of the reduced Ru metal catalysts was

  20. Characterization and Design of Zeolite Catalysts Solid Acidity, Shape Selectivity and Loading Properties

    CERN Document Server

    Niwa, Miki; Okumura, Kazu

    2010-01-01

    Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. Zeolite-based catalysts are used by industrial chemical companies in the interconversion of hydrocarbons and the alkylation of aromatic compounds. The current book deals with the characterization of specific properties of Zeolites and calculations for the design of catalysts. Measurements and utilization of solid acidity, shape selectivity, and loading properties, that are three prominent properties of a Zeolite catalyst, are treated in detail. These features concern chemical vapor deposition of silica, shape selectivity, loading properties, solid activity, Brønsted or Lewis character, ammonia temperature programmed desorption, control of the pore-opening size by chemical vapor deposition of silica and XAFS analysis of metals being highly dispersed inside and outside a framework.

  1. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    Science.gov (United States)

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  2. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  3. Effects of particulates, heavy metals and acid gas on the removals of NO and PAHs by V2O5-WO3 catalysts in waste incineration system

    International Nuclear Information System (INIS)

    Chang, Feng-Yim; Chen, Jyh-Cherng; Wey, Ming-Yen; Tsai, Shih-An

    2009-01-01

    This study investigated the activities of prepared and commercial V 2 O 5 -WO 3 catalysts for simultaneous removals of NO and polycyclic aromatic hydrocarbons (PAHs) and the influences of particulates, heavy metals, SO 2 , and HCl on the performances of catalysts. The experiments were carried out in a laboratory-scale waste incineration system equipped with a catalyst reactor. The DREs of PAHs by prepared and commercial V 2 O 5 -WO 3 catalysts were 64% and 72%, respectively. Increasing the particulate concentrations in flue gas suppressed the DRE of PAHs, but increasing the carbon content on surface of catalysts promotes the NO conversions. The DRE of PAHs by the catalysts was significantly decreased by the increased concentrations of heavy metal Cd, but was promoted by high concentration of Pb. The influence level of SO 2 was higher than HCl on the performances of V 2 O 5 -WO 3 catalysts for PAHs removal, but was lower than HCl for NO removal. Prepared and commercial V 2 O 5 -WO 3 catalysts have similar trends on the effects of particulates, heavy metals, SO 2 , and HCl. The results of ESCA analysis reveal that the presences of these pollutants on the surface of catalysts did not change the chemical state of V and W.

  4. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.

    2018-04-24

    A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.

  5. Studies about interaction of hydrogen isotopes with metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Vasut, F.; Anisoara, P.; Zamfirache, M.

    2003-01-01

    Hydrogen is a non-toxic but highly inflammable gas. Compared to other inflammable gases, its range of inflammability in air is much broader (4-74.5%) but it also vaporizes much more easily. Handling of hydrogen in form of hydrides enhances safety. The interaction of hydrogen with metals and intermetallic compounds is a major field within physical chemistry. Using hydride-forming metals and intermetallic compounds, for example, recovery, purification and storage of heavy isotopes in tritium containing system can solve many problems arising in the nuclear-fuel cycle. The paper presents the thermodynamics and the kinetics between hydrogen and metal or intermetallic compounds. (author)

  6. Catalyst-free and solvent-free Michael addition of 1,3-dicarbonyl compounds to nitroalkenes by a grinding method

    Science.gov (United States)

    Xie, Zong-Bo; Wu, Ming-Yu; He, Ting; Le, Zhang-Gao

    2012-01-01

    Summary An environmentally benign, fast and convenient protocol has been developed for the Michael addition of 1,3-dicarbonyl compounds to β-nitroalkenes in good to excellent yields by a grinding method under catalyst- and solvent-free conditions. PMID:22563352

  7. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Fortuny, A; Bengoa, C; Font, J; Fabregat, A

    1999-01-29

    Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.

  8. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    Tanabe, K.; Iizuka, T.

    1983-04-01

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author) [pt

  9. Experimental comparison among hydrocarbon and oxygenated compounds for their elimination by three-way automotive catalysts

    International Nuclear Information System (INIS)

    Bart, J.M.; Prigent, M.F.

    1992-01-01

    Many hydrocarbon species are present in automotive exhaust gases, and three-way Pt-Rh catalysts are commonly used for their elimination. However, most published work on individual hydrocarbon conversion concerns their oxidation in simulated exhaust gases with excess oxygen. This paper reports that this study was therefore undertaken to determine the reactivity of saturated alkanes, olefins, acetylene, aromatics, alcohols or various other oxygenated compounds in steady state conditions with synthetic exhaust gases near stoichiometry. In a first series of measurements, conversion rates were determined as a function of temperature at stoichiometry. The partial pressure effect of O 2 , NO and H 2 O was then determined at constant temperature in the region of catalyst light-off. NO and mainly O 2 were shown to have a negative effect on the first terms of saturated alkane conversion under lean conditions. Water vapor has a positive effect in rich conditions (without SO 2 ), but is more pronounced for Pt-Rh than for a Pt catalyst. Finally, the role played by SO 2 in hydrocarbon conversion was evaluated

  10. Metal organic frameworks for removal of compounds from a fluid

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-03

    Embodiments provide a method of compound removal from a fluid. The method includes contacting one or more metal organic framework (MOF) compositions with a fluid and sorbing one or more compounds, such as CO2, H2S and condensable hydrocarbons. One or more of CO2, H2S and condensable hydrocarbons can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF.

  11. Metal organic frameworks for removal of compounds from a fluid

    KAUST Repository

    Eddaoudi, Mohamed; Belmabkhout, Youssef

    2016-01-01

    Embodiments provide a method of compound removal from a fluid. The method includes contacting one or more metal organic framework (MOF) compositions with a fluid and sorbing one or more compounds, such as CO2, H2S and condensable hydrocarbons. One or more of CO2, H2S and condensable hydrocarbons can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF.

  12. NMR evidence of metal-support interaction in syngas conversion catalyst Co-TiO2

    International Nuclear Information System (INIS)

    Murty, A.N.; Seamster, M.; Thorpe, A.N.; Obermyer, R.T.; Rao, V.U.S.

    1990-01-01

    To examine the relation between catalytic and magnetic properties, the zero-field NMR spectra and hysteresis loops of cobalt supported on silica, alumina, magnesia, titania, and ZSM-5 with and without the promoter thoria were investigated. Cobalt was incorporated on the support by simple physical admixture of precipitated cobalt and support, and by aqueous impregnation technique. Our studies indicate that the particle sizes are consistently lower in the presence of thoria. Of all the catalysts examined, the Co/Th/TiO 2 catalyst exhibits a high saturation magnetization value---about 20% higher than pure cobalt. In addition, the NMR spectrum of the aqueous impregnation Co/TiO 2 catalyst is distinctly different from the rest. All the NMR lines are shifted to a higher frequency by about 4 MHz. These two features---enhancement of the magnetic moment of cobalt atoms and increases in the hyperfine field at the Co nucleus---clearly indicate that there occurs strong metal-support interaction between cobalt and titania support. The higher hydrocarbon yields observed by the earlier investigators with Co/TiO 2 catalysts might be related to this phenomenon

  13. Multi-stage catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2009-02-10

    Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).

  14. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    OpenAIRE

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanof...

  15. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts.

    Science.gov (United States)

    Murahashi, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. (Communicated by Ryoji Noyori, M.J.A.).

  16. A comparative study on the quality of bio-oil derived from green macroalga Enteromorpha clathrata over metal modified ZSM-5 catalysts.

    Science.gov (United States)

    Wang, Shuang; Cao, Bin; Liu, Xinlin; Xu, Lujiang; Hu, Yamin; Afonaa-Mensah, Stephen; Abomohra, Abd El-Fatah; He, Zhixia; Wang, Qian; Xu, Shannan

    2018-05-01

    The green macroalga Enteromorpha clathrata was pyrolyzed with or without catalysts at the temperature of 550 °C for producing high-quality bio-oil. The ZSM-5 and 1,2,3 mmol Mg-Ce/ZSM-5 catalysts were introduced to investigate the yields and components distribution of bio-oil. Increase of bio-oil production was obtained with the use of ZSM-5 and 1,2,3 mmol Mg-Ce/ZSM-5 catalysts. The 1 mmol Mg-Ce/ZSM-5 catalyst exhibited more promising property for promoting the relative content of C 5 -C 7 compounds, and decreasing the relative content of acids in bio-oil. The results suggested that E. clathrata had potential as pyrolysis feedstocks for producing the high-quality bio-oil with large amounts of C 5 -C 7 compounds and low relative content of acids when the 1 mmol Mg-Ce/ZSM-5 catalyst was used. Furthermore, the physicochemical properties of ZSM-5 and 1 mmol Mg-Ce/ZSM-5 catalysts were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and temperature-programmed desorption of ammonia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Growth of carbon nanocone arrays on a metal catalyst: The effect of carbon flux ionization

    International Nuclear Information System (INIS)

    Levchenko, I.; Khachan, J.; Vladimirov, S. V.; Ostrikov, K.

    2008-01-01

    The growth of carbon nanocone arrays on metal catalyst particles by deposition from a low-temperature plasma is studied by multiscale Monte Carlo/surface diffusion numerical simulation. It is demonstrated that the variation in the degree of ionization of the carbon flux provides an effective control of the growth kinetics of the carbon nanocones, and leads to the formation of more uniform arrays of nanostructures. In the case of zero degree of ionization (neutral gas process), a width of the distribution of nanocone heights reaches 360 nm with the nanocone mean height of 150 nm. When the carbon flux of 75% ionization is used, the width of the distribution of nanocone heights decreases to 100 nm, i.e., by a factor of 3.6. A higher degree of ionization leads to a better uniformity of the metal catalyst saturation and the nanocone growth, thus contributing to the formation of more height-uniform arrays of carbon nanostructures.

  18. Deactivation and regeneration of refinery catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1979-08-01

    A discussion covers the mechanisms of catalyst aging, poisoning, coke deposition, and metals deposition; feedstock pretreatment to extend catalyst life; the effects of operating conditions; the effects of catalyst composition and structure on its stability; nonchemical deactivation processes; and methods of catalyst regeneration, including coke burn-off and solvent extraction.

  19. Polystyrene-supported aluminum chloride as an efficient and reusable catalyst for condensation of indole with various carbonyl compounds

    Directory of Open Access Journals (Sweden)

    BAHMAN TAMAMI

    2010-04-01

    Full Text Available Crosslinked polystyrene-supported aluminum chloride (PS–AlCl3 is a stable, recyclable and environmental friendly heterogeneous catalyst for the condensation of indole with aldehydes and ketones to afford diindolylmethanes. In addition, PS–AlCl3 shows satisfactory selectivity in the reaction of mixtures of an aldehyde and a ketone with indole. Although AlCl3 is water sensitive, corrosive and environmentally harmful compound, PS–AlCl3 is a stable and water-tolerant species. The mild reaction conditions, short reaction times, easy work-up, high to excellent yields, chemoselectivity, reuse of the catalyst for at least ten times without significant change in its catalytic activity, low cost, and easy preparation and handling of the polymeric catalyst are obvious advan-tages of the present method.

  20. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  1. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  2. Mutagenesis of metal compounds in bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, H

    1974-01-01

    The mutagenic activity of 41 metal compounds was examined by applying the Rec-assay method with Bacillus subtilis H17 (rec/sup +/) and M45 (rec/sup -/) strains. Among these compounds, Na/sub 2/HAsO/sub 4/, CdCl/sub 2/, K/sub 2/CrO/sub 4/, K/sub 2/Cr/sub 2/O/sub 7/, CH/sub 3/HgCl, C/sub 2/H/sub 5/HgCl, CH/sub 3/COOHgC/sub 6/H/sub 5/, MnCl/sub 2/, MnNO/sub 3/, MnSO/sub 4/, Mn(CH/sub 3/COO)/sub 2/, (NH/sub 4/)/sub 2/MoO/sub 4/ and KMoO/sub 4/ showed positive results. The reactions of K/sub 2/Cr/sub 2/O/sub 7/ and (NH/sub 4/)/sub 2/MoO/sub 4/ were especially strong in the assay. Therefore, mutation induction to reversion (try/sup +/) and streptomycin resistance (SM/sup r/) of E. coli B/r WP2 try/sup -/ (hcl/sup +/ and hcr/sup -/) by the two compounds were examined by the following two experimental procedures. Stationary phase bacteria were exposed to the compounds at high concentrations (6.9 x 10/sup -3/ approx. 3.44 x 10/sup -2/M) in M9 buffer for 15 min at 37/sup -/ with shaking. After incubation at 37/sup 0/ for 48 h visible colonies on the plates were scored. Bacteria in M9 buffer were plated in media supplemented with low concentrations (1.7 x 10/sup -5/ approx. 3.4 x 10/sup -5/M) of the compounds. K/sub 2/Cr/sub 2/O/sub 7/ and (NH/sub 4/)/sub 2/MoO/sub 4/ increased the mutation rate of SM/sup r/ and try/sup +/ in both strains treated with either procedure. No marked differences in mutation rate were found between hcr/sup +/ and hcr/sup -/. After treatment with high concentrations of compounds one can imagine that a peroxidation state produced by these peroxides in the media might affect the killing and mutation induction. These results suggest the possibility that the mutagenesis of the metals relate to their atomic values, rather than the peroxidation state as far as these two compounds are concerned.

  3. Revisiting the electrochemical oxidation of ammonia on carbon-supported metal nanoparticle catalysts

    International Nuclear Information System (INIS)

    Li, Zhe-Fei; Wang, Yuxuan; Botte, Gerardine G.

    2017-01-01

    Highlights: • A procedure to pretreat electrocatalysts to study the ammonia oxidation is provided. • N ads and O/OH ads were identified as the major deactivation species that prevent ammonia oxidatoin. • The electrocatalytic activity, thermodynamics, and possible deactivation mechanisms for ammonia oxidation were elucidated. • The onset potential for ammonia oxidation is related to the hydrogen binding energy of the catalyst. • Ammonia electro-oxidation involves a complex decoupled electron and proton transfer process. - Abstract: The ammonia electro-oxidation reaction (AOR) has been studied due to its promising applications in ammonia electrolysis, wastewater remediation, direct ammonia fuel cells, and sensors. However, it is difficult to compare and analyze the reported electrocatalytic activity of AOR reliably, likely due to the variation in catalyst synthesis, electrode composition, electrode morphology, and testing protocol. In this paper, the electro-oxidation of ammonia on different carbon-supported precious metal nanoparticle catalysts was revisited. The effect of experimental conditions, electrochemical test parameters, electrocatalytic activity, thermodynamics, and possible deactivation mechanism of the catalysts were investigated. Pt/C catalyst possesses the highest electrocatalytic activity, while Ir/C and Rh/C show lower overpotential. The onset potential of the AOR is related to the hydrogen binding energy of the catalyst. N ads is one major cause of deactivation accompanied with the formation of surface O/OH ads at high potentials. The coulombic efficiency of N ads formation on Pt is about 1% initially and gradually decreases with reaction time. Increase in ammonia concentration leads to increase in current density, while increase in hydroxyl ions concentration can enhance the current density and reduce the overpotential simultaneously. The slopes of AOR onset potential and hydrogen adsorption/desorption potential of Pt/C as a function of p

  4. Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy

    KAUST Repository

    Zhu, Yihan

    2012-03-19

    On the surface: The surface reconstruction of an MoVTeO complex metal oxide catalyst was observed directly by various electron microscopic techniques and the results explain the puzzling catalytic behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Catalytic hydroprocessing of lignin β-O-4 ether bond model compound phenethyl phenyl ether over ruthenium catalysts

    NARCIS (Netherlands)

    Gomez-Monedero, B.; Faria, J.; Bimbela, F.; Ruiz, M.P.

    2017-01-01

    The catalytic hydroprocessing of phenethyl phenyl ether (PPE), a model compound of one of the most significant ether linkages within lignin structure, β-O-4, has been studied. Reactions were carried out using two ruthenium-based catalysts, supported on different materials: 3.8 wt.% Ru/C and 3.9 wt.%

  6. Nano-catalysts for upgrading bio-oil: Catalytic decarboxylation and hydrodeoxygenation

    Science.gov (United States)

    Uemura, Yoshimitsu; Tran, Nga T. T.; Naqvi, Salman Raza; Nishiyama, Norikazu

    2017-09-01

    Bio-oil is a mixture of oxygenated chemicals produced by fast pyrolysis of lignocellulose, and has attracted much attention recently because the raw material is renewable. Primarily, bio-oil can be used as a replacement of heavy oil. But it is not highly recommended due to bio-oil's inferior properties: high acidity and short shelf life. Upgrading of bio-oil is therefore one of the important technologies nowadays, and is categorized into the two: (A) decrarboxylation/decarbonylation by solid acid catalysts and (B) hydrodeoxygenation (HDO) by metallic catalysts. In our research group, decarboxylation of bio-oil by zeolites and HDO of guaiacol (a model compound of bio-oil) have been investigated. In this paper, recent developments of these upgrading reactions in our research group will be introduced.

  7. More active and sulfur resistant bimetallic Pd-Ni catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Betti, Carolina; Carrara, Nicolás; Badano, Juan; Lederhos, Cecilia; Vera, Carlos; Quiroga, Mónica, E-mail: mquiroga@fiq.unl.edu.ar [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ-UNL, CONICET), Santa Fe (Argentina)

    2018-02-15

    The influence of the kind of metal precursor and the sequence of impregnation on the properties of Pd-Ni catalysts was evaluated during the test reaction of selective hydrogenation of styrene to ethylbenzene by means of physicochemical characterization. The focus was put on the final hydrogenating activity and the resistance to deactivation by sulfide compounds (thiophene). The used techniques of characterization were ICP, XPS, XDR, TPR, CO chemisorption and TEM. XPS results indicated the presence of different Pd species: Pd{sup δ-}, Pd{sup 0} and Pd{sup δ+}. In the case of the Ni containing catalysts, Ni{sup 0} and NiO species were also detected. These palladium and nickel species would be responsible of the variation of activity and sulfur resistance of the catalysts. NiClPd catalysts had a higher resistance to deactivation by sulfur poisoning. This was associated to a higher concentration of Pd{sup η+}Cl{sub x}O{sub y} species that would prevent the adsorption of thiophene by both steric and electronic effects. It could also be due to the lower concentration of Pd{sup 0} and Ni{sup 0} on these catalysts, as compared to those shown by the PdNiCl catalysts. Both the Pd{sup 0} and Ni{sup 0} species are more prone to poisoning because of their higher electronic availability. (author)

  8. Aromatic hydrocarbon production via eucalyptus urophylla pyrolysis over several metal modified ZSM-5 catalysts – an analysis by py-GC/MS

    Science.gov (United States)

    Metal modified HZSM-5 catalysts were prepared by ion exchange of NH4ZSM-5 (SIO2/Al2O3 = 23) using gallium, molybdenum, nickel and zinc, and their combinations thereof. The prepared catalysts were used to evaluate catalytic pyrolysis for the conversion of Eucalyptus urophylla to fuels and chemicals, ...

  9. Electrical enhancement of direct methanol fuel cells by metal-plasma ion implantation Pt-Ru/C multilayer catalysts.

    Science.gov (United States)

    Weng, Ko-Wei; Chen, Yung-Lin; Chen, Ya-Chi; Lin, Tai-Nan

    2009-02-01

    Direct methanol fuel cells (DMFC) have been widely studied owing to their simple cell configuration, high volume energy density, short start-up time, high operational reliability and other favorable characteristics. However, major limitations include high production cost, poisoning of the catalyst and methanol crossover. This study adopts a simple technique for preparing Pt-Ru/C multilayer catalysts, including magnetron sputtering (MS) and metal-plasma ion implantation (MPII). The Pt catalysts were sputtered onto the gas diffusion layer (GDL), followed by the implantation of Ru catalysts using MPII (at an accelerating voltage of 20 kV and an implantation dose of 1 x 10(16) ions/cm2). Pt-Ru is repeatedly processed to prepare Pt-Ru/C multilayer catalysts. The catalyst film structure and microstructure were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electronic microscopy (SEM), respectively. The cell performance was tested using a potential stat/galvano-stat. The results reveal that the membrane electrode assembly (MEA) of four multilayer structures enhances the cell performance of DMFC. The measured power density is 2.2 mW/cm2 at a methanol concentration of 2 M, with an OCV of 0.493 V.

  10. A CATALYST, A PROCESS FOR SELECTIVE HYDROGENATION OF ACETYLENE TO ETHYLENE AND A METHOD FOR THE MANUFACTURE OF THE CATALYST

    DEFF Research Database (Denmark)

    2009-01-01

    A catalyst comprising a mixture of metal A selected from the group of Fe, Co and Ni and metal B selected from the group of Zn and Ga, and a support material, wherein the two metals are present in an intermetallic composition; A method for the manufacture of the catalyst; and the use of above...

  11. Elucidating the Origin of Hydrogen Evolution Reaction Activity in Mono- and Bimetallic Metal- and Nitrogen-Doped Carbon Catalysts (Me-N-C).

    Science.gov (United States)

    Shahraei, Ali; Moradabadi, Ashkan; Martinaiou, Ioanna; Lauterbach, Stefan; Klemenz, Sebastian; Dolique, Stephanie; Kleebe, Hans-Joachim; Kaghazchi, Payam; Kramm, Ulrike I

    2017-08-02

    In this work, we present a comprehensive study on the role of metal species in MOF-based Me-N-C (mono- and bimetallic) catalysts for the hydrogen evolution reaction (HER). The catalysts are investigated with respect to HER activity and stability in alkaline electrolyte. On the basis of the structural analysis by X-ray diffraction, X-ray-induced photoelectron spectroscopy, and transmission electron microscopy, it is concluded that MeN 4 sites seem to dominate the HER activity of these catalysts. There is a strong relation between the amount of MeN 4 sites that are formed and the energy of formation related to these sites integrated at the edge of a graphene layer, as obtained from density functional theory (DFT) calculations. Our results show, for the first time, that the combination of two metals (Co and Mo) in a bimetallic (Co,Mo)-N-C catalyst allows hydrogen production with a significantly improved overpotential in comparison to its monometallic counterparts and other Me-N-C catalysts. By the combination of experimental results with DFT calculations, we show that the origin of the enhanced performance of our (Co,Mo)-N-C catalyst seems to be provided by an improved hydrogen binding energy on one MeN 4 site because of the presence of a second MeN 4 site in its close vicinity, as investigated in detail for our most active (Co,Mo)-N-C catalyst. The outstanding stability and good activity make especially the bimetallic Me-N-C catalysts interesting candidates for solar fuel applications.

  12. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  13. A comparative study of alumina-supported Ni catalysts prepared by photodeposition and impregnation methods on the catalytic ozonation of 2,4-dichlorophenoxyacetic acid

    International Nuclear Information System (INIS)

    Rodríguez, Julia L.; Valenzuela, Miguel A.; Tiznado, Hugo; Poznyak, Tatiana; Chairez, Isaac; Magallanes, Diana

    2017-01-01

    The heterogeneous catalytic ozonation on unsupported and supported oxides has been successfully tested for the removal of several refractory compounds in aqueous solution. In this work, alumina-supported nickel catalysts prepared by photodeposition and impregnation methods were compared in the catalytic ozonation of 2,4-dichlorophenoxyacetic acid (2,4-D). The catalysts were characterized by high-resolution electron microscopy and X-ray photoelectron spectroscopy. The photochemical decomposition of Ni acetylacetonate to produce Ni(OH) 2 , NiO, and traces of Ni° deposited on alumina was achieved in the presence of benzophenone as a sensitizer. A similar surface composition was found with the impregnated catalyst after its reduction with hydrogen at 500 °C and exposed to ambient air. Results indicated a higher initial activity and maleic acid (byproduct) concentration with the photodeposited catalyst (1 wt% Ni) compared to the impregnated catalyst (3 wt% Ni). These findings suggest the use of the photodeposition method as a simple and reliable procedure for the preparation of supported metal oxide/metal catalysts under mild operating conditions.

  14. A comparative study of alumina-supported Ni catalysts prepared by photodeposition and impregnation methods on the catalytic ozonation of 2,4-dichlorophenoxyacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Julia L., E-mail: ozliliana@yahoo.com.mx [Lab. Ing. Química Ambiental. ESIQIE–Instituto Politécnico Nacional (Mexico); Valenzuela, Miguel A. [Lab.Catálisis y Materiales. ESIQIE–Instituto Politécnico Nacional. Zacatenco (Mexico); Tiznado, Hugo [Centro de Nanociencias y Nanotecnología. CNyN Universidad Nacional Autónoma de México (Mexico); Poznyak, Tatiana [Lab. Ing. Química Ambiental. ESIQIE–Instituto Politécnico Nacional (Mexico); Chairez, Isaac [Departamento de Bioprocesos, UPIBI- Instituto Politécnico Nacional (Mexico); Magallanes, Diana [Lab. Ing. Química Ambiental. ESIQIE–Instituto Politécnico Nacional (Mexico)

    2017-02-15

    The heterogeneous catalytic ozonation on unsupported and supported oxides has been successfully tested for the removal of several refractory compounds in aqueous solution. In this work, alumina-supported nickel catalysts prepared by photodeposition and impregnation methods were compared in the catalytic ozonation of 2,4-dichlorophenoxyacetic acid (2,4-D). The catalysts were characterized by high-resolution electron microscopy and X-ray photoelectron spectroscopy. The photochemical decomposition of Ni acetylacetonate to produce Ni(OH){sub 2}, NiO, and traces of Ni° deposited on alumina was achieved in the presence of benzophenone as a sensitizer. A similar surface composition was found with the impregnated catalyst after its reduction with hydrogen at 500 °C and exposed to ambient air. Results indicated a higher initial activity and maleic acid (byproduct) concentration with the photodeposited catalyst (1 wt% Ni) compared to the impregnated catalyst (3 wt% Ni). These findings suggest the use of the photodeposition method as a simple and reliable procedure for the preparation of supported metal oxide/metal catalysts under mild operating conditions.

  15. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jernigan, Glenn Geoffrey [California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu2O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu2O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu2O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N2 and CO2. At the end of each reaction, the catalyst was found to be Cu2O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  16. In situ formation of coal gasification catalysts from low cost alkali metal salts

    Science.gov (United States)

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  17. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants.

    Science.gov (United States)

    Liu, Yangyang; Moon, Su-Young; Hupp, Joseph T; Farha, Omar K

    2015-12-22

    The nanocrystals of a porphyrin-based zirconium(IV) metal-organic framework (MOF) are used as a dual-function catalyst for the simultaneous detoxification of two chemical warfare agent simulants at room temperature. Simulants of nerve agent (such as GD, VX) and mustard gas, dimethyl 4-nitrophenyl phosphate and 2-chloroethyl ethyl sulfide, have been hydrolyzed and oxidized, respectively, to nontoxic products via a pair of pathways catalyzed by the same MOF. Phosphotriesterase-like activity of the Zr6-containing node combined with photoactivity of the porphyrin linker gives rise to a versatile MOF catalyst. In addition, bringing the MOF crystals down to the nanoregime leads to acceleration of the catalysis.

  18. Reaction mechanism of coal liquefaction: hydrogenolysis of model compound using synthetic pyrite as catalysts. 7. Property change of synthetic pyrite catalyst with the time after production; Sekitan ekika hanno kiko (model kagobutsu no hanno). 7. Gosei ryukatetsu shokubai no keiji henka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H.; Meno, H.; Uemaki, O.; Shibata, T.; Tsuji, T. [Hokkaido University, Sapporo (Japan)

    1996-10-28

    Reactions of various model compounds were investigated using synthetic pyrites for coal liquefaction. In this study, successive changes of the catalysts were investigated from the reactions of model compounds by using three different synthetic pyrites with the lapse of time after production. Benzyl phenyl ether, dibenzyl, and n-octylbenzene were used as model compounds. Reactions were conducted in an autoclave, into which sample, catalyst, decalin as solvent, and initial hydrogen pressure 10 MPa were charged. The autoclave was held at 450 or 475{degree}C of reaction temperature for 1 hour. The catalyst with a shorter lapse of time after production acted to hydrogen transfer, and inhibited the formation of condensation products due to the stabilization of decomposed fragment. It also acted to isomerization of materials by cutting alkyl side chains. When adding sulfur to the catalyst with longer lapse of time after production under these reaction conditions, it inhibited the formation of condensation products for the reaction of benzyl phenyl ether. However, it did not provide the effect for the reaction of n-octylbenzene. 5 refs., 3 figs.

  19. Chloro-benquinone Modified on Graphene Oxide as Metal-free Catalyst: Strong Promotion of Hydroxyl Radical and Generation of Ultra-Small Graphene Oxide

    Science.gov (United States)

    Zhao, He; Wang, Juehua; Zhang, Di; Dai, Qin; Han, Qingzhen; Du, Penghui; Liu, Chenming; Xie, Yongbing; Zhang, Yi; Cao, Hongbin; Fan, Zhuangjun

    2017-03-01

    Carbon-based metal-free catalyst has attracted more and more attention. It is a big challenge to improve catalytic activity of metal-free catalyst for decomposition of H2O2 to produce hydroxyl radical (HO•). Here, we report chloro-benquinone (TCBQ) modified on graphene oxide (GO) as metal-free catalyst for strong promotion of HO•. By the incorporation of GO, the HO• production by H2O2 and TCBQ is significantly promoted. Based on density functional theory, TCBQ modified GO (GO-TCBQ) is more prone to be nucleophilic attacked by H2O2 to yield HO• via electron transfer acceleration. Furthermore, the generated HO• can cut GO nanosheets into uniform ultra-small graphene oxide (USGO) through the cleavage of epoxy and C-C bonds. Interestingly, the damaged GO and in situ formed GO fragments can further enhance decomposition of H2O2 to produce HO•. Different from other catalytic processes, the GO-TCBQ metal-free catalysis process can be enhanced by GO itself, producing more HO•, and uniform USGO also can be generated. Thus, the metal free catalysis will be considered a fabrication method for uniform USGO, and may be extended to other fields including detoxifying organic pollutants and the application as disinfectants.

  20. Ethylbenzene dehydrogenation over binary FeOx–MeOy/Mg(Al)O catalysts derived from hydrotalcites

    KAUST Repository

    Balasamy, Rabindran J.; Khurshid, Alam; Al-Ali, Ali A S; Atanda, Luqman A.; Sagata, Kunimasa; Asamoto, Makiko; Yahiro, Hidenori; Nomura, Kiyoshi; Sano, Tsuneji; Takehira, Katsuomi; Al-Khattaf, Sulaiman S.

    2010-01-01

    A series of FeOx-MeOy/Mg(Al)O catalysts were prepared from hydrotalcite-like compounds as precursors and were tested in the ethylbenzene dehydrogenation to styrene in He atmosphere at 550 °C. The hydrotalcite-like precursors of the metal compositions of Mg3Fe 0.25Me0.25Al0.5 (Me = Cu, Zn, Cr, Mn, Fe, Co and Ni) were coprecipitated from the nitrates of metal components and calcined to mixed oxides at 550 °C. After the calcination, the mixed oxides showed high surface area of 150-200 m2 gcat -1, and were mainly composed of (MgMe)(Fe3+Al)O periclase in the bulk, whereas the surface was enriched by (MgMe)(Fe3+Al)2O 4 pinel. Among the Me species tested, Co2+ was the most effective, followed by Ni2+. Co2+ addition increased the activity of original FeOx/Mg(Al)O catalyst, whereas Ni2+ increased the activity at the beginning of reaction, but deactivated the catalyst during the reaction. The other metals formed isolated MeOx species in the catalyst, resulting in a decrease in the activity compared to the original FeOx/Mg(Al)O catalyst. The active Fe species exists as metastable Fe3+ on the FeOx/Mg(Al)O catalyst. By the addition of Co2+, the reduction-oxidation between Fe3+ and Fe2+ was facilitated and, moreover, the active Fe3+ species was stabilized. It is likely that the dehydrogenation proceeds on the active Fe3+ species via its reduction-oxidation assisted by Co 2+. © 2010 Elsevier B.V.

  1. Ethylbenzene dehydrogenation over binary FeOx–MeOy/Mg(Al)O catalysts derived from hydrotalcites

    KAUST Repository

    Balasamy, Rabindran J.

    2010-12-20

    A series of FeOx-MeOy/Mg(Al)O catalysts were prepared from hydrotalcite-like compounds as precursors and were tested in the ethylbenzene dehydrogenation to styrene in He atmosphere at 550 °C. The hydrotalcite-like precursors of the metal compositions of Mg3Fe 0.25Me0.25Al0.5 (Me = Cu, Zn, Cr, Mn, Fe, Co and Ni) were coprecipitated from the nitrates of metal components and calcined to mixed oxides at 550 °C. After the calcination, the mixed oxides showed high surface area of 150-200 m2 gcat -1, and were mainly composed of (MgMe)(Fe3+Al)O periclase in the bulk, whereas the surface was enriched by (MgMe)(Fe3+Al)2O 4 pinel. Among the Me species tested, Co2+ was the most effective, followed by Ni2+. Co2+ addition increased the activity of original FeOx/Mg(Al)O catalyst, whereas Ni2+ increased the activity at the beginning of reaction, but deactivated the catalyst during the reaction. The other metals formed isolated MeOx species in the catalyst, resulting in a decrease in the activity compared to the original FeOx/Mg(Al)O catalyst. The active Fe species exists as metastable Fe3+ on the FeOx/Mg(Al)O catalyst. By the addition of Co2+, the reduction-oxidation between Fe3+ and Fe2+ was facilitated and, moreover, the active Fe3+ species was stabilized. It is likely that the dehydrogenation proceeds on the active Fe3+ species via its reduction-oxidation assisted by Co 2+. © 2010 Elsevier B.V.

  2. Cu(3)(BTC)(2) as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes.

    Science.gov (United States)

    Nagaraj, Anbu; Amarajothi, Dhakshinamoorthy

    2017-05-15

    In the present work, Friedel-Crafts alkylation reaction of indole with β-nitrostyrene is examined using a readily available copper based metal-organic frameworks (MOFs) namely, Cu 3 (BTC) 2 (BTC: 1,3,5-benzenetricarboxylic acid) as solid catalyst under mild reaction conditions. Among the various catalysts screened for this reaction, Cu 3 (BTC) 2 exhibits higher activity under the optimized reaction conditions. Besides the absence of leaching of active sites, it is also observed that the catalyst can be reused for four cycles with a minimal decrease in its activity. Cu 3 (BTC) 2 is used as a catalyst to synthesise a series of heterocyclic compounds with different indole and β-nitrostyrene derivatives in moderate to high yields. The present catalytic system shows comparable activity against to recent reports but the advantage of Cu 3 (BTC) 2 is that it does not require any post-functionalization and above all it can be readily synthesised, thus contributing to the synthesis of heterocyclic compounds with high biological interest. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effect of impregnation protocol in the metallic sites of Pt–Ag/activated carbon catalysts for water denitration

    Energy Technology Data Exchange (ETDEWEB)

    Aristizábal, A. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Campus Sescelades, Av. Països Catalans 26, 43007 Tarragona (Spain); Contreras, S., E-mail: sandra.contreras@urv.cat [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Campus Sescelades, Av. Països Catalans 26, 43007 Tarragona (Spain); Divins, N.J.; Llorca, J. [Institut de Tècniques Energètiques i Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Medina, F. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Campus Sescelades, Av. Països Catalans 26, 43007 Tarragona (Spain)

    2014-04-01

    Highlights: • Mean particle size is tuned by the Pt precursor. H{sub 2}PtCl{sub 6} leads to smaller size. • H{sub 2}PtCl{sub 6} leads to higher extent of Pt–Ag particles with a composition richer in silver. • Pt(NH{sub 3}){sub 4}(NO{sub 3}){sub 2} leads to Ag{sup 0} particles and some Pt–Ag ensembles in less extent. • Nitrate and nitrite rates are linearly related to mean metal particle size. • Physical mixture of catalysts enhances N{sub 2} selectivities. - Abstract: The influence of the Pt precursor and the impregnation protocol in the catalytic behavior of 3%Pt–1.5%Ag supported on activated carbon for water denitration in a continuous reactor was studied. Pt(NH{sub 3}){sub 4}(NO{sub 3}){sub 2} and H{sub 2}PtCl{sub 6} were selected as Pt precursors. Five protocols were investigated: sequential impregnations (both sequences), co-impregnation, physical mixture of monometallic catalysts, and physical mixture of a bimetallic catalyst with a Pt monometallic catalyst. The samples were characterized by XRD, XPS, TPR, HRTEM and physisorption. It was found that the catalytic activity strongly depends on the synthesis protocol and the Pt precursor, which modify the particle size. Higher nitrate rates are achieved using H{sub 2}PtCl{sub 6} than Pt(NH{sub 3}){sub 4}(NO{sub 3}){sub 2}; this is mainly related to the smaller metal particle size of the former, evidenced by HRTEM. Nitrate consumption rate is directly related with the mean particle size. The physical mixture of monometallic catalysts resulted in the highest nitrogen rate.

  4. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    International Nuclear Information System (INIS)

    Gon Corradini, Patricia; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete

    2012-01-01

    The effect of the relationship between particle size (d), inter-particle distance (x i ), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5–3 nm) and x i /d (>5) values, was evaluated. It was found that for y i /d can be always obtained. For y ≥ 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y i /d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x i /d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i /d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  5. Applications of Immobilized Bio-Catalyst in Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2018-04-01

    Full Text Available Immobilization of bio-catalysts in solid porous materials has attracted much attention in the last few decades due to its vast application potential in ex vivo catalysis. Despite the high efficiency and selectivity of enzymatic catalytic processes, enzymes may suffer from denaturation under industrial production conditions, which, in turn, diminish their catalytic performances and long-term recyclability. Metal-organic frameworks (MOFs, as a growing type of hybrid materials, have been identified as promising platforms for enzyme immobilization owing to their enormous structural and functional tunability, and extraordinary porosity. This review mainly focuses on the applications of enzyme@MOFs hybrid materials in catalysis, sensing, and detection. The improvements of catalytic activity and robustness of encapsulated enzymes over the free counterpart are discussed in detail.

  6. Catalyst for hydrogen-amine D exchange

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Johnson, R.E.

    1976-01-01

    A process is claimed for deuterium isotopic enrichment (suitable for use in heavy water production) by amine-hydrogen exchange in which the exchange catalyst comprises a mixture of alkyl amides of two metals selected from the group consisting of the alkali metals. Catalyst mixtures comprising at least one of the alkali amides of lithium and potassium are preferred. At least one of the following benefits are obtained: decreased hydride formation, decreased thermal decomposition of alkyl amide, increased catalyst solubility in the amine phase, and increased exchange efficiency. 11 claims

  7. Effect of metal ratio and calcination temperature of chromium based mixed oxides catalyst on FAME density from palm fatty acid distillate

    Science.gov (United States)

    Wan, Z.; Fatimah, S.; Shahar, S.; Noor, A. C.

    2017-09-01

    Mixed oxides chromium based catalysts were synthesized via sol-gel method for the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). The reactions were conducted in a batch reactor at reaction temperature of 160 °C for 4 h and methanol to PFAD molar ratio of 3:1. The effects of catalyst preparation conditions which are the mixed metal ratio and calcination temperature were studied. The various metal ratio of Cr:Mn (1:0, 0:1, 1:1, 1:2 and 2:1) and Cr:Ti (0:1, 1:1, 1:2 and 2:1) resulted in FAME density ranges from 1.041 g/cm3 to 0.853 g/cm3 and 1.107 g/cm3 to 0.836 g/cm3, respectively. The best condition catalyst was found to be Cr:Ti metal ratio of 1:2 and Cr:Mn metal ratio of 1:1. The calcination temperature of the mixed oxides between 300 °C to 700°C shows effect on the FAME density obtained in the reaction. The calcination at 500°C gave the lowest FAME density of 0.836 g/cm3 and 0.853 g/cm3 for Cr:Ti and Cr:Mn mixed oxides, respectively. The density of FAME is within the value range of the biodiesel fuel property. Thus, mixed oxides of Cr-Ti and Cr-Mn have good potentials as heterogeneous catalyst for FAME synthesis from high acid value oils such as PFAD.

  8. Silica Supported Platinum Catalysts for Total Oxidation of the Polyaromatic Hydrocarbon Naphthalene: An Investigation of Metal Loading and Calcination Temperature

    Directory of Open Access Journals (Sweden)

    David R. Sellick

    2015-04-01

    Full Text Available A range of catalysts comprising of platinum supported on silica, prepared by an impregnation method, have been studied for the total oxidation of naphthalene, which is a representative Polycyclic Aromatic Hydrocarbon. The influence of platinum loading and calcination temperature on oxidation activity was evaluated. Increasing the platinum loading up to 2.5 wt.% increased the catalyst activity, whilst a 5.0 wt.% catalyst was slightly less active. The catalyst containing the optimum 2.5 wt.% loading was most active after calcination in air at 550 °C. Characterisation by carbon monoxide chemisorption and X-ray photoelectron spectroscopy showed that low platinum dispersion to form large platinum particles, in combination with platinum in metallic and oxidised states was important for high catalyst activity. Catalyst performance improved after initial use in repeat cycles, whilst there was slight deactivation after prolonged time-on-stream.

  9. Effect of oxygen on decomposition of nitrous oxide over various metal oxide catalysts

    International Nuclear Information System (INIS)

    Satsuma, Atsushi; Maeshima, Hajime; Watanabe, Kiyoshi; Hattori, Tadashi

    2001-01-01

    The inhibitory effect of oxygen on decomposition of nitrous oxide over various metal oxide catalysts was investigated. The activity of nitrous oxide decomposition significantly decreased over CuO, Co 3 O 4 , NiO, Fe 2 O 3 , SnO 2 , In 2 O 3 and Cr 2 O 3 by reversible adsorption of oxygen onto the active sites. On the contrary to this, there was no or small change in the activity of TiO 2 , Al 2 O 3 , MgO, La 2 O 3 and CaO. A good correlation was observed between the degree of inhibition and the heat of formation of metal oxides. On the basis of kinetic model, the reduction of catalytic activity in the presence of oxygen was rationalized with the strength of oxygen adsorption on the metal oxide surface. (author)

  10. Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance

    Science.gov (United States)

    Santoro, Carlo; Rojas-Carbonell, Santiago; Awais, Roxanne; Gokhale, Rohan; Kodali, Mounika; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2018-01-01

    Platinum group metal-free (PGM-free) ORR catalysts from the Fe-N-C family were synthesized using sacrificial support method (SSM) technique. Six experimental steps were used during the synthesis: 1) mixing the precursor, the metal salt, and the silica template; 2) first pyrolysis in hydrogen rich atmosphere; 3) ball milling; 4) etching the silica template using harsh acids environment; 5) the second pyrolysis in ammonia rich atmosphere; 6) final ball milling. Three independent batches were fabricated following the same procedure. The effect of each synthetic parameters on the surface chemistry and the electrocatalytic performance in neutral media was studied. Rotating ring disk electrode (RRDE) experiment showed an increase in half wave potential and limiting current after the pyrolysis steps. The additional improvement was observed after etching and performing the second pyrolysis. A similar trend was seen in microbial fuel cells (MFCs), in which the power output increased from 167 ± 2 μW cm-2 to 214 ± 5 μW cm-2. X-ray Photoelectron Spectroscopy (XPS) was used to evaluate surface chemistry of catalysts obtained after each synthetic step. The changes in chemical composition were directly correlated with the improvements in performance. We report outstanding reproducibility in both composition and performance among the three different batches.

  11. Formation of hydrocarbon compounds during the hydrocracking of non-edible vegetable oils with cobalt-nickel supported on hierarchical HZSM-5 catalyst

    Science.gov (United States)

    Marlinda, L.; Al-Muttaqii, M.; Roesyadi, A.; Prajitno, D. H.

    2017-05-01

    The hierarchical Co-Ni/HZSM-5 catalyst with hierarchical pore structure was prepared by desilication and incipient wetness impregnation. Hydrocracking of non-edible vegetable oils at temperature of 400 °C, 20±5 bar for 2 h was performed in the presence of this type of catalyst under hydrogen initial pressure in pressured batch reactor. Non-edible vegetable oils, such as Reutealis trisperma (Blanco) airy shaw (sunan candlenut) and Hevea brasiliensis (rubber seed) were chosen to study the effect of the degree of saturation and lateral chain length on hydrocarbon compounds obtained through hydrocracking. Cerbera manghas oil was also tested for comparison because the composition of fatty acid was different with the other oils The hydrocracking test indicated that liquid product produced has a similar hydrocarbon compounds with petroleum diesel. The most abundant hydrocarbon is pentadecane (n-C15) and heptadecane (n-C17). The high aromatic compounds were found in liquid product produced in hydrocracking of Sunan candlenut oil.

  12. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  13. Ionic Liquids in Selective Oxidation: Catalysts and Solvents.

    Science.gov (United States)

    Dai, Chengna; Zhang, Jie; Huang, Chongpin; Lei, Zhigang

    2017-05-24

    Selective oxidation has an important role in environmental and green chemistry (e.g., oxidative desulfurization of fuels and oxidative removal of mercury) as well as chemicals and intermediates chemistry to obtain high-value-added special products (e.g., organic sulfoxides and sulfones, aldehydes, ketones, carboxylic acids, epoxides, esters, and lactones). Due to their unique physical properties such as the nonvolatility, thermal stability, nonexplosion, high polarity, and temperature-dependent miscibility with water, ionic liquids (ILs) have attracted considerable attention as reaction solvents and media for selective oxidations and are considered as green alternatives to volatile organic solvents. Moreover, for easy separation and recyclable utilization, IL catalysts have attracted unprecedented attention as "biphasic catalyst" or "immobilized catalyst" by immobilizing metal- or nonmetal-containing ILs onto mineral or polymer supports to combine the unique properties of ILs (chemical and thermal stability, capacity for extraction of polar substrates and reaction products) with the extended surface of the supports. This review highlights the most recent outcomes on ILs in several important typical oxidation reactions. The contents are arranged in the series of oxidation of sulfides, oxidation of alcohols, epoxidation of alkenes, Baeyer-Villiger oxidation reaction, oxidation of alkanes, and oxidation of other compounds step by step involving ILs as solvents, catalysts, reagents, or their combinations.

  14. Carbon nanotubes and other nanostructures as support material for nanoparticulate noble-metal catalysts in fuel cells

    DEFF Research Database (Denmark)

    Veltzé, Sune; Larsen, Mikkel Juul; Elina, Yli-Rantala

    or platinum-alloy catalysts in the electrodes are required. To maximize the utilization of the noble metal it is frequently deposited as nanoparticles (1–5 nm) on a stabilizing support of carbon black. Carbon black provides good anchoring of the catalyst particles, but is prone to severe destructive oxidation...... at high electrical potentials encountered occasionally in fuel cells. Other nanostructures of carbon are being investigated as alternatives to carbon black as they have several beneficial properties. Multi-walled carbon nanotubes (MW-CNT) are an example of one type of these promising materials. Like...... of the fuel-cell electrodes. However, the low concentration of structural defects also poses challenges with regard to anchoring of the catalyst particles on the CNT surface. Thus, activation treatments introducing surface functional groups may be necessary. Also, the surface properties are responsible...

  15. On the valence state of Yb and Ce in transition metal intermetallic compounds

    International Nuclear Information System (INIS)

    Boer, F.R. de; Dijkman, W.H.; Mattens, W.C.M.

    1979-01-01

    In the pure state Yb is a divalent metal, similar to Ca; in alloys it can become trivalent like the majority of the rare earth metals. Using a value of 38 kJ (mol Yb) -1 for the energy difference between divalent and trivalent Yb metal and using model calculations for the heat of formation of intermetallic compounds, the authors are able to account for the existing information on the valence state of Yb in transition metal compounds. A similar analysis of compounds of Ce with transition metals shows that a model in which the 4f electron is treated as a core electron, i.e. being absent in the tetravalent modification of Ce and present as a fully localized electron in trivalent Ce, does not apply. (Auth.)

  16. Zeolite-based SCR catalysts and their use in diesel engine emission treatment

    Science.gov (United States)

    Narula, Chaitanya K; Yang, Xiaofan

    2015-03-24

    A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al.sup.+3, wherein the catalyst decreases NO.sub.x emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu--Fe-ZSM5, Cu--La-ZSM-5, Fe--Cu--La-ZSM5, Cu--Sc-ZSM-5, and Cu--In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.

  17. CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report

    International Nuclear Information System (INIS)

    Ginosar, Daniel M.

    2009-01-01

    Fiscal Year 2009 work in the Catalysts project focused on advanced catalysts for the decomposition of sulfuric acid, a reaction common to both the Sulfur-Iodine (S-I) cycle and the Hybrid Sulfur cycle. Prior years effort in this project has found that although platinum supported on titanium oxide will be an acceptable catalyst for sulfuric acid decomposition in the integrated laboratory scale (ILS) project, the material has short comings, including significant cost and high deactivation rates due to sintering and platinum evaporation. For pilot and larger scale systems, the catalyst stability needs to be improved significantly. In Fiscal Year 2008 it was found that at atmospheric pressure, deactivation rates of a 1 wt% platinum catalyst could be reduced by 300% by adding either 0.3 wt% iridium (Ir) or 0.3 wt% ruthenium (Ru) to the catalyst. In Fiscal Year 2009, work focused on examining the platinum group metal catalysts activity and stability at elevated pressures. In addition, simple and complex metal oxides are known to catalyze the sulfuric acid decomposition reaction. These metal oxides could offer activities comparable to platinum but at significantly reduced cost. Thus a second focus for Fiscal Year 2009 was to explore metal oxide catalysts for the sulfuric acid decomposition reaction. In Fiscal Year 2007 several commercial activated carbons had been identified for the HI decomposition reaction; a reaction specific to the S-I cycle. Those materials should be acceptable for the pilot scale project. The activated carbon catalysts have some disadvantages including low activity at the lower range of reactor operating temperature (350 to 400 C) and a propensity to generate carbon monoxide in the presence of water that could contaminate the hydrogen product, but due to limited funding, this area had low priority in Fiscal Year 2009. Fiscal Year 2009 catalyst work included five tasks: development, and testing of stabilized platinum based H2SO4 catalysts

  18. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  19. Optimization of catalyst system reaps economic benefits

    International Nuclear Information System (INIS)

    Le Roy, C.F.; Hanshaw, M.J.; Fischer, S.M.; Malik, T.; Kooiman, R.R.

    1991-01-01

    Champlin Refining and Chemicals Inc. is learning to optimize its catalyst systems for hydrotreating Venezuelan gas oils through a program of research, pilot plant testing, and commercial unit operation. The economic results of this project have been evaluated, and the benefits are most evident in improvements in product yields and qualities. The project has involved six commercial test runs, to date (Runs 10-15), with a seventh run planned. A summary of the different types of catalyst systems used in the test runs, and the catalyst philosophy that developed is given. Runs 10 and 11 used standard CoMo and NiMo catalysts for heavy gas oils hydrotreating. These catalysts had small pore sizes and suffered high deactivation rates because of metals contamination. When it was discovered that metals contamination was a problem, catalyst options were reviewed

  20. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  1. Steam dealkylation catalyst and a method for its activation

    International Nuclear Information System (INIS)

    Dorawala, T.; Reinhard, R.

    1980-01-01

    The method of activating a supported catalyst containing oxides of a group viii metal and of a group 1 a metal which comprises heating said catalyst at a rate of 10 0 to 500 0 F/hr to a temperature of 650 0 to 1400 0 F in a hydrogen atmosphere; maintaining said heated catalyst in a hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 30 hours thereby forming a hydrogen-treated catalyst; and maintaining the hydrogen-treated catalyst in a steam-hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 20 hours thereby forming a steamed hydrogen-treated catalyst

  2. Two Catalysts for Selective Oxidation of Contaminant Gases

    Science.gov (United States)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  3. Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework

    KAUST Repository

    Sun, Xiaohui

    2017-11-16

    The development of synthetic protocols for the preparation of highly loaded metal nanoparticle-supported catalysts has received a great deal of attention over the last few decades. Independently controlling metal loading, nanoparticle size, distribution, and accessibility has proven challenging because of the clear interdependence between these crucial performance parameters. Here we present a stepwise methodology that, making use of a cobalt-containing metal organic framework as hard template (ZIF-67), allows addressing this long-standing challenge. Condensation of silica in the Co-metal organic framework pore space followed by pyrolysis and subsequent calcination of these composites renders highly loaded cobalt nanocomposites (~ 50 wt.% Co), with cobalt oxide reducibility in the order of 80% and a good particle dispersion, that exhibit high activity, C5 + selectivity and stability in Fischer-Tropsch synthesis.

  4. Mineralization of volatile organic compounds (VOCs) over the catalyst CuO-Co3O4-CeO2 and its applications in industrial odor control

    KAUST Repository

    Somekawa, Shouichi; Hagiwara, Toshiya; Fujii, Kyoko; Kojima, Masayuki; Shinoda, Tsutomu; Takanabe, Kazuhiro; Domen, Kazunari

    2011-01-01

    Volatile organic compounds (VOCs) present at ppm levels were decomposed over the catalyst CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45 in mol) in an attempt to scale up for industrial odor control. In addition to enhancing the catalytic activity, CuO-Co3O4 and CeO2 helped, respectively, to maintain the strength of the pelleted catalysts and inhibit their sintering. Using toluene as a VOC model compound, kinetic analysis of the total oxidation to carbon dioxide was conducted. The odor emitted from paint-drying processes could be eliminated effectively using CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45) pelleted catalysts (188 ml) in a large-scale system. © 2011 Elsevier B.V. All rights reserved.

  5. Mineralization of volatile organic compounds (VOCs) over the catalyst CuO-Co3O4-CeO2 and its applications in industrial odor control

    KAUST Repository

    Somekawa, Shouichi

    2011-12-01

    Volatile organic compounds (VOCs) present at ppm levels were decomposed over the catalyst CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45 in mol) in an attempt to scale up for industrial odor control. In addition to enhancing the catalytic activity, CuO-Co3O4 and CeO2 helped, respectively, to maintain the strength of the pelleted catalysts and inhibit their sintering. Using toluene as a VOC model compound, kinetic analysis of the total oxidation to carbon dioxide was conducted. The odor emitted from paint-drying processes could be eliminated effectively using CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45) pelleted catalysts (188 ml) in a large-scale system. © 2011 Elsevier B.V. All rights reserved.

  6. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network

    Science.gov (United States)

    Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di-Jia

    2015-01-01

    Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A⋅cm−3 at 0.9 V or 450 A⋅cm−3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed. PMID:26261338

  7. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Gon Corradini, Patricia; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma, E-mail: jperez@iqsc.usp.br [Instituto de Quimica de Sao Carlos, USP (Brazil); Antolini, Ermete [Scuola di Scienza dei Materiali (Italy)

    2012-09-15

    The effect of the relationship between particle size (d), inter-particle distance (x{sub i}), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x{sub i}/d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x{sub i}/d can be always obtained. For y {>=} 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x{sub i}/d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x{sub i}/d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x{sub i}/d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  8. Deep Oxidative Desulfurization of Dibenzothiophene in Simulated Oil and Real Diesel Using Heteropolyanion-Substituted Hydrotalcite-Like Compounds as Catalysts

    OpenAIRE

    Yu, Fengli; Wang, Rui

    2013-01-01

    Three heteropolyanion substituted hydrotalcite-like compounds (HPA-HTLcs) including Mg9Al3(OH)24[PW12O40](MgAl-PW12), Mg9Al3(OH)24[PMo12O40] (MgAl-PMo12) and Mg12Al4(OH)32[SiW12O40] (MgAl-SiW12), were synthesized, characterized and used as catalysts for the oxidative desulfurization of simulated oil (dibenzothiophene, DBT, in n-octane). MgAl-PMo12 was identified as an effective catalyst for the oxidative removal of DBT under very mild conditions of atmospheric pressure and 60 °C in a biphasic...

  9. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction

    Science.gov (United States)

    Vij, Varun; Tiwari, Jitendra N.; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S.

    2016-02-01

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp2 carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm-2 at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production.

  10. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  11. Grafting heterogeneous catalyst with gamma radiation

    International Nuclear Information System (INIS)

    Garnett, J.L.; Long, M.A.; Levot, R.G.

    1984-01-01

    A process for the production of a heterogeneous catalyst comprises the steps of: irradiating an organic macromolecular substrate or a metal substrate with ionising or ultra violet radiation in the presence of a monomer selected from the group consisting of o-, m-, or p- styryl diphenyl phosphine and o-, m- or p- phenyl acrylyl diphenyl phosphine, to graft the monomer to the substrate; and reacting the graft copolymer with a homogeneous catalyst selected from the group consisting of catalytic metal salts and catalytic organometallic complexes such that the graft copolymer conjugate becomes a ligand of the catalyst

  12. Structure-Reactivity Relationships in Multi-Component Transition Metal Oxide Catalysts FINAL Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Eric I. [Yale Univ., New Haven, CT (United States)

    2015-10-06

    The focus of the project was on developing an atomic-level understanding of how transition metal oxide catalysts function. Over the course of several renewals the specific emphases shifted from understanding how local structure and oxidation state affect how molecules adsorb and react on the surfaces of binary oxide crystals to more complex systems where interactions between different transition metal oxide cations in an oxide catalyst can affect reactivity, and finally to the impact of cluster size on oxide stability and reactivity. Hallmarks of the work were the use of epitaxial growth methods to create surfaces relevant to catalysis yet tractable for fundamental surface science approaches, and the use of scanning tunneling microscopy to follow structural changes induced by reactions and to pinpoint adsorption sites. Key early findings included the identification of oxidation and reduction mechanisms on a tungsten oxide catalyst surface that determine the sites available for reaction, identification of C-O bond cleavage as the rate limiting step in alcohol dehydration reactions on the tungsten oxide surface, and demonstration that reduction does not change the favored reaction pathway but rather eases C-O bond cleavage and thus reduces the reaction barrier. Subsequently, a new reconstruction on the anatase phase of TiO2 relevant to catalysis was discovered and shown to create sites with distinct reactivity compared to other TiO2 surfaces. Building on this work on anatase, the mechanism by which TiO2 enhances the reactivity of vanadium oxide layers was characterized and it was found that the TiO2 substrate can force thin vanadia layers to adopt structures they would not ordinarily form in the bulk which in turn creates differences in reactivity between supported layers and bulk samples. From there, the work progressed to studying well-defined ternary oxides where synergistic effects between the two cations can induce

  13. Synthesis of Hydrocarbons from H2-Deficient Syngas in Fischer-Tropsch Synthesis over Co-Based Catalyst Coupled with Fe-Based Catalyst as Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2015-01-01

    Full Text Available The effects of metal species in an Fe-based catalyst on structural properties were investigated through the synthesis of Fe-based catalysts containing various metal species such, as Mn, Zr, and Ce. The addition of the metal species to the Fe-based catalyst resulted in high dispersions of the Fe species and high surface areas due to the formation of mesoporous voids about 2–4 nm surrounded by the catalyst particles. The metal-added Fe-based catalysts were employed together with Co-loaded beta zeolite for the synthesis of hydrocarbons from syngas with a lower H2/CO ratio of 1 than the stoichiometric H2/CO ratio of 2 for the Fischer-Tropsch synthesis (FTS. Among the catalysts, the Mn-added Fe-based catalyst exhibited a high activity for the water-gas shift (WGS reaction with a comparative durability, leading to the enhancement of the CO hydrogenation in the FTS in comparison with Co-loaded beta zeolite alone. Furthermore, the loading of Pd on the Mn-added Fe-based catalyst enhanced the catalytic durability due to the hydrogenation of carbonaceous species by the hydrogen activated over Pd.

  14. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  15. Novel Fischer-Tropsch catalysts. [DOE patent

    Science.gov (United States)

    Vollhardt, K.P.C.; Perkins, P.

    Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  16. Oil removal of spent hydrotreating catalyst CoMo/Al{sub 2}O{sub 3} via a facile method with enhanced metal recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yue [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Xu, Shengming, E-mail: smxu@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China); Li, Zhen [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wang, Jianlong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China); Zhao, Zhongwei [School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan (China); Xu, Zhenghe, E-mail: zhenghe.xu@ualberta.ca [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada)

    2016-11-15

    Highlights: • A novel approach for oil removal from spent hydrotreating catalysts has been developed. • Oil removal possibility is analyzed through surface characteristics. • Oil is successfully removed from spent catalysts via aqueous surfactant solution. • Over 98% Mo can be leached after oil removal and thermal treatment. • The proposed deoiling method helps to avoid detrimental impurity generation (CoMoO{sub 4}) and enhance metal recovery. - Abstract: Deoiling process is a key issue for recovering metal values from spent hydrotreating catalysts. The oils can be removed with organic solvents, but the industrialized application of this method is greatly hampered by the high cost and complex processes. Despite the roasting method is simple and low-cost, it generates hardest-to-recycle impurities (CoMoO{sub 4} or NiMoO{sub 4}) and enormous toxic gases. In this study, a novel and facile approach to remove oils from the spent hydrotreating catalysts is developed. Firstly, surface properties of spent catalysts are characterized to reveal the possibility of oil removal. And then, oils are removed with water solution under the conditions of 90 °C, 0.1 wt% SDS, 2.0 wt% NaOH and 10 ml/g L/S ratio for 4 h. Finally, thermal treatment and leaching tests are carried out to further explore the advantages of oil removal. The results show that no hardest-to-recycle impurity CoMoO{sub 4} is found in XPS spectra of thermally treated samples after deoiling and molybdenum is leached completely with sodium carbonate solution. It means that the proposed deoiling method can not only remove oils simply and without enormous harmful gases generating, but also avoid the generation of detrimental impurity and promote recycling of valuable metals from spent hydrotreating catalysts.

  17. Nano-Engineered Catalysts for Direct Methanol Fuel Cells

    Science.gov (United States)

    Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean

    2008-01-01

    Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions

  18. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    International Nuclear Information System (INIS)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O_3 catalytic oxidation. • O_3 byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O_3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O_3 catalytic decomposition and utilization. Benzene and O_3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O_3 was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  19. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haibao, E-mail: seabao8@gmail.com [School of Environmental Science and Engineering, Sun Yat-Sen University (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University) (China); Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo [School of Environmental Science and Engineering, Sun Yat-Sen University (China)

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O{sub 3} catalytic oxidation. • O{sub 3} byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O{sub 3}, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O{sub 3} catalytic decomposition and utilization. Benzene and O{sub 3} removal efficiency reached as high as 97% and 100% after 360 min, respectively. O{sub 3} was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  20. Sulfur deactivation of fatty ester hydrogenolysis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Brands, D.S.; U-A-Sai, G.; Poels, E.K.; Bliek, A. [Univ. of Amsterdam (Netherlands). Dept. of Chemical Engineering

    1999-08-15

    Trace organosulfur compounds present as natural impurities in oleochemical feedstocks may lead to activation of copper-containing catalysts applied for hydrogenolysis of esters toward fatty alcohols. In this paper, the sulfur deactivation of Cu/SiO{sub 2} and Cu/ZnO/SiO{sub 2} catalysts was studied in the liquid-phase hydrogenolysis of methyl palmitate. The rate of deactivation is fast and increases as a function of the sulfur-containing compound present: octadecanethiol {approx} dihexadecyl disulfide < benzyl isothiocyanate < methyl p-toluene sulfonate < dihexadecyl sulfide < dibenzothiophene. The rapid deactivation is caused by the fact that sulfur is quantitatively removed from the reaction mixture and because mainly surface sulfides are formed under hydrogenolysis conditions. The life time of a zinc-promoted catalyst is up to two times higher than that of the Cu/SiO{sub 2} catalyst, most likely due to zinc surface sulfide formation. The maximum sulfur coverage obtained after full catalyst deactivation with dibenzothiophene and dihexadecyl sulfide--the sulfur compounds that cause the fastest deactivation--may be as low as 0.07. This is due to the fact that decomposition of these compounds as well as the hydrogenolysis reaction itself proceeds on ensembles of copper atoms. Catalyst regeneration studies reveal that activity cannot be regained by reduction or combined oxidation/reduction treatments. XRD, TPR, and TPO results confirm that no distinct bulk copper or zinc sulfide or sulfate phases are present.

  1. Neutron scattering investigation of layer-bending modes in alkali-metal--graphite intercalation compounds

    International Nuclear Information System (INIS)

    Zabel, H.; Kamitakahara, W.A.; Nicklow, R.M.

    1982-01-01

    Phonon dispersion curves for low-frequency transverse modes propagating in the basal plane have been measured in the alkali-metal--graphite intercalation compounds KC 8 , CsC 8 , KC 24 , and RbC 24 by means of neutron spectroscopy. The acoustic branches show an almost quadratic dispersion relation at small q, characteristic of strongly layered materials. The optical branches of stage-1 compounds can be classified as either graphitelike branches showing dispersion, or as almost dispersionless alkali-metal-like modes. Macroscopic shear constants C 44 and layer-bending moduli have been obtained for the intercalation compounds by analyzing the data in terms of a simple semicontinuum model. In stage-2 compounds, a dramatic softening of the shear constant by about a factor of 8 compared with pure graphite has been observed. Low-temperature results on KC 24 indicate the opening of a frequency gap near the alkali-metal Brillouin-zone boundary, possibly due to the formation of the alkali-metal superstructure

  2. Metal-​based catalysts for controlled ring-​opening polymerization of macrolactones : high molecular weight and well-​defined copolymer architectures

    NARCIS (Netherlands)

    Bouyahyi, M.; Duchateau, R.

    2014-01-01

    This contribution describes our recent results regarding the metal-¿catalyzed ring-¿opening polymn. of pentadecalactone and its copolymn. with e-¿caprolactone involving single-¿site metal complexes based on aluminum, zinc, and calcium. Under the right conditions (i.e., monomer concn., catalyst type,

  3. Catalysts for oxidation of mercury in flue gas

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  4. Design of sintering-stable heterogeneous catalysts

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata

    One of the major issues in the use of metal nanoparticles in heterogeneous catalysis is sintering. Sintering occurs at elevated temperatures because of increased mobility of nanoparticles, leading to their agglomeration and, as a consequence, to the deactivation of the catalyst. It is an emerging...... problem especially for the noble metals-based catalysis. These metals being expensive and scarce, it is worth developing catalyst systems which preserve their activity over time. Encapsulation of nanoparticles inside zeolites is one of the ways to prevent sintering. Entrapment of nanoparticles inside...

  5. Potential of Transition Metal Atoms Embedded in Buckled Monolayer g-C3N4 as Single-Atom Catalysts

    KAUST Repository

    Li, Shu-Long; Kan, Xiang; Yin, Hui; Gan, Li-Yong; Schwingenschlö gl, Udo; Zhao, Yong

    2017-01-01

    We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C3N4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C3N4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C3N4 gives rise to promising single-atom catalysts at low temperature.

  6. Potential of Transition Metal Atoms Embedded in Buckled Monolayer g-C3N4 as Single-Atom Catalysts

    KAUST Repository

    Li, Shu-Long

    2017-10-27

    We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C3N4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C3N4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C3N4 gives rise to promising single-atom catalysts at low temperature.

  7. Pseudoliquid behavior of heteropoly compound catalysts. Unusual pressure dependencies of the rate and selectivity for ethanol dehydration

    International Nuclear Information System (INIS)

    Misono, M.; Okuhara, T.; Ichiki, T.; Arai, T.; Kanda, Y.

    1987-01-01

    Heteropoly compounds arenow utilized as industrial catalysts for olefin hydration and aldehyde oxidation and as interesting cluster models of mixed oxide catalysts. Certain heteropoly acids, like H 3 PW 12 O 40 and H 3 PMo 12 O 40 , easily absorb a large amount of water, alchols, and ethers in the solid state, although their surface areas are very low. This is not adsorption in micropores; rather molecules are absorbed between the lattice polyanions, sometimes expanding the lattice. The expansion can be seen visually as well as by x-ray diffraction. The authors showed that in some cases catalytic reactions take place in this novel bulk phase. Presumably due to this behavior, very high catalytic activity and unique selectivity as well as unusual reactivity order have been observed. They called this state the pseudoliquid phase. However, in only one case was the amount of absorbed reactant measured under the working conditions. They report here unusual pressure dependencies of the rate and selectivity of ethanol dehydration over heteropoly compounds. The dependency can only be explained by the formation of a pseudoliquid phase, i.e., a phase where the amount of absorbed ethanol has changed as a function of ethanol pressure

  8. Micelle-derived catalysts for extended Schulz-Flory

    Energy Technology Data Exchange (ETDEWEB)

    Abrevaya, H.

    1986-01-01

    The objective of this program is to develop a synthesis gas conversion catalyst with higher selectivity to liquid fuels, while maintaining catalytic activity and stability at least equivalent relative to state-of-the-art precipitated iron catalysts. During this quarter, the emphasis in the program has been the investigation of the hydrocarbon cutoff hypothesis with supported ruthenium catalysts. An alumina-supported catalyst with smaller than 20[Angstrom] ruthenium particles was tested under conditions of maximal water gas shift activity. During this test more than 90% of the water made in the Fischer-Tropsch synthesis reaction was converted to H[sub 2]. However, the extent of ruthenium metal agglomeration was not reduced. Accordingly, it was not possible to conclude whether hydrocarbon cutoff occurs with smaller than 20[Angstrom] ruthenium particles on [gamma]-alumina. A ruthenium catalyst prepared on Y-type zeolite had 20[Angstrom] or smaller ruthenium particles according to STEM examination and a 15[Angstrom] average ruthenium metal particle size according to EXAFS examination. The ruthenium metal particle size was stable during the test with this catalyst. The hydrocarbon product distribution was Anderson-Schulz-Flory with no cutoff up to a carbon number of 160. A well-dispersed titania-supported ruthenium catalyst is going to be evaluated during the next quarter in order to determine whether hydrocarbon cutoff occurs.

  9. On the role of acidity in amorphous silica-alumina based catalysts

    NARCIS (Netherlands)

    Poduval, D.G.

    2011-01-01

    Amorphous silica-alumina (ASA) is widely used as a solid acid catalyst or as a carrier for well-dispersed metal sulfide or metal catalysts. They are often involved in hydrocracking catalyst formulations, especially so when the aim is to produce middle distillates from heavy oil fractions. With

  10. Chemistry of tin compounds and environment

    International Nuclear Information System (INIS)

    Ali, S.; Mazhar, M.; Mahmood, S.; Bhatti, M.H.; Chaudhary, M.A.

    1997-01-01

    Of the large volume of tin compounds reported in the literature, possible only 100 are commercially important. Tin compounds are a wide variety of purposes such as catalysts, stabilizers for many materials including polymer, biocidal agents, bactericides, insecticides, fungicides, wood preservatives, acaricides and anti fouling agents in paints, anticancer and antitumour agents, ceramic opacifiers, as textile additives, in metal finishing operations, as food additives and in electro conductive coating. All these applications make the environment much exposed to tin contamination. The application of organotin compounds as biocides account for about 30% of total tin consumption suggesting that the main environmental effects are likely to originate from this sector. Diorgano tins and mono-organo tins are used mainly in plastic industry which is the next big source for environmental pollution. In this presentation all environmental aspects of the use of tin compounds and the recommended preventive measures are discussed. (author)

  11. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  12. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), and measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.

  13. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  14. Magnetism for understanding catalyst analysis of purified carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bellouard, Christine; Mercier, Guillaume; Cahen, Sébastien; Ghanbaja, Jaafar; Medjahdi, Ghouti [Institut Jean Lamour, CNRS-Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy (France); Gleize, Jérôme [Laboratoire de Chimie Physique-Approche Multi-échelle de Milieux Complexes-Université de Lorraine, 1 Bd Arago, 57078 Metz (France); Lamura, Gianrico [CNR-SPIN – Dipartimento di Fisica, via Dodecaneso 33, 16146 Genova (Italy); Hérold, Claire [Institut Jean Lamour, CNRS-Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy (France); Vigolo, Brigitte, E-mail: Brigitte.Vigolo@univ-lorraine.fr [Institut Jean Lamour, CNRS-Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy (France)

    2016-08-01

    The precise quantification of catalyst residues in purified carbon nanotubes is often a major issue in view of any fundamental and/or applicative studies. More importantly, since the best CNTs are successfully grown with magnetic catalysts, their quantification becomes strictly necessary to better understand intrinsic properties of CNT. For these reasons, we have deeply analyzed the catalyst content remained in nickel–yttrium arc-discharge single walled carbon nanotubes purified by both a chlorine-gas phase and a standard acid-based treatment. The study focuses on Ni analysis which has been investigated by transmission electron microscopy, X-ray diffraction, thermogravimetry analysis, and magnetic measurements. In the case of the acid-based treatment, all quantifications result in a decrease of the nanocrystallized Ni by a factor of two. In the case of the halogen gas treatment, analysis and quantification of Ni content is less straightforward: a huge difference appears between X-ray diffraction and thermogravimetry results. Thanks to magnetic measurements, this disagreement is explained by the presence of Ni{sup 2+} ions, belonging to NiCl{sub 2} formed during the Cl-based purification process. In particular, NiCl{sub 2} compound appears under different magnetic/crystalline phases: paramagnetic or diamagnetic, or well intercalated in between carbon sheets with an ordered magnetic phase at low temperature. - Highlights: • Cl-gas treatment of Ni catalyst of carbon nanotubes leads to NiCl{sub 2} residue. • Magnetic measurements show the transformation of Ni{sup 0} in Ni{sup 2+}through a purification process. • High temperature Cl treatment removes 75% of metallic impurities. • Cl-purification yields to an amount of metal of 1.5% in arc-discharge CNT samples.

  15. Determination of platinum group metal catalyst residues in active pharmaceutical ingredients by means of total reflection X-ray spectrometry

    International Nuclear Information System (INIS)

    Marguí, Eva; Queralt, Ignasi; Hidalgo, Manuela

    2013-01-01

    The control of metal catalyst residues (i.e., platinum group metals (PGMs)) in different stages of the manufacturing processes of the active pharmaceutical ingredients (APIs) and, especially, in the final product is crucial. For API specimens, there are strict guidelines to limit the levels of metal residues based on their individual levels of safety concern. For PGMs the concentration limit has been established at 10 mg/kg in the API. Therefore great effort is currently being devoted to the development of new and simple procedures to control metals in pharmaceuticals. In the present work, an analytical methodology based on benchtop total reflection X-ray fluorescence spectrometry (TXRF) has been developed for the rapid and simple determination of some PGM catalyst impurities (Rh, Pd, Ir and Pt) in different types of API samples. An evaluation of different sample treatments (dissolution and digestion of the solid pharmaceutical samples) has been carried out and the developed methodologies have been validated according to the analytical parameters to be considered and acceptance criteria for PGM determination according to the United States Pharmacopeia (USP). Limits of quantification obtained for PGM metals were in the range of 2–4 mg/kg which are satisfactory according to current legislation. From the obtained results it is shown that the developed TXRF method can be implemented in the pharmaceutical industries to increase productivity of the laboratory; offering an interesting and complementary analytical tool to other atomic spectroscopic methods. - Highlights: • A TXRF method for PGM catalyst residue determination in API samples is presented. • Analysis can be performed using 10 μL of the internal standardized dissolved API. • The method is rapid, simple and suitable according to the USP requirements

  16. Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen.

    Science.gov (United States)

    Zee, David Z; Chantarojsiri, Teera; Long, Jeffrey R; Chang, Christopher J

    2015-07-21

    Climate change, rising global energy demand, and energy security concerns motivate research into alternative, sustainable energy sources. In principle, solar energy can meet the world's energy needs, but the intermittent nature of solar illumination means that it is temporally and spatially separated from its consumption. Developing systems that promote solar-to-fuel conversion, such as via reduction of protons to hydrogen, could bridge this production-consumption gap, but this effort requires invention of catalysts that are cheap, robust, and efficient and that use earth-abundant elements. In this context, catalysts that utilize water as both an earth-abundant, environmentally benign substrate and a solvent for proton reduction are highly desirable. This Account summarizes our studies of molecular metal-polypyridyl catalysts for electrochemical and photochemical reduction of protons to hydrogen. Inspired by concept transfer from biological and materials catalysts, these scaffolds are remarkably resistant to decomposition in water, with fast and selective electrocatalytic and photocatalytic conversions that are sustainable for several days. Their modular nature offers a broad range of opportunities for tuning reactivity by molecular design, including altering ancillary ligand electronics, denticity, and/or incorporating redox-active elements. Our first-generation complex, [(PY4)Co(CH3CN)2](2+), catalyzes the reduction of protons from a strong organic acid to hydrogen in 50% water. Subsequent investigations with the pentapyridyl ligand PY5Me2 furnished molybdenum and cobalt complexes capable of catalyzing the reduction of water in fully aqueous electrolyte with 100% Faradaic efficiency. Of particular note, the complex [(PY5Me2)MoO](2+) possesses extremely high activity and durability in neutral water, with turnover frequencies at least 8500 mol of H2 per mole of catalyst per hour and turnover numbers over 600 000 mol of H2 per mole of catalyst over 3 days at an

  17. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    Science.gov (United States)

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  18. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    Directory of Open Access Journals (Sweden)

    Matthias Leven

    2013-01-01

    Full Text Available Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components.

  19. Deep oxidative desulfurization of dibenzothiophene in simulated oil and real diesel using heteropolyanion-substituted hydrotalcite-like compounds as catalysts.

    Science.gov (United States)

    Yu, Fengli; Wang, Rui

    2013-11-05

    Three heteropolyanion substituted hydrotalcite-like compounds (HPA-HTLcs) including Mg₉Al₃(OH)₂₄[PW₁₂O₄₀](MgAl-PW₁₂), Mg₉Al₃(OH)₂₄[PMo₁₂O₄₀] (MgAl-PMo₁₂) and Mg₁₂Al₄(OH)₃₂[SiW₁₂O₄₀] (MgAl-SiW₁₂), were synthesized, characterized and used as catalysts for the oxidative desulfurization of simulated oil (dibenzothiophene, DBT, in n-octane). MgAl-PMo₁₂ was identified as an effective catalyst for the oxidative removal of DBT under very mild conditions of atmospheric pressure and 60 °C in a biphasic system using hydrogen peroxide as oxidant and acetonitrile as extractant. The conversion of DBT was nearly 100%. As a result, because of the influence of the electron density and the space steric hindrance, the oxidation reactivity of the different sulfur compounds in simulated oil followed the order DBT > 4,6-dimethyldibenzothiophene (4,6-DMDBT) > benzothiophene (BT) > thiophene (TH). When the reaction is finished, the catalysts can be recovered from the acetonitrile phase by filtration. The recovered MgAl-PMo₁₂ retains nearly the same catalytic activity as the fresh material. Moreover, MgAl-PMo₁₂ was found to exhibit an ideal catalytic activity in the oxidative desulfurization of real diesel resulting in a total remaining sulfur content of 9.12 ppm(w).

  20. Deep Oxidative Desulfurization of Dibenzothiophene in Simulated Oil and Real Diesel Using Heteropolyanion-Substituted Hydrotalcite-Like Compounds as Catalysts

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2013-11-01

    Full Text Available Three heteropolyanion substituted hydrotalcite-like compounds (HPA-HTLcs including Mg9Al3(OH24[PW12O40](MgAl-PW12, Mg9Al3(OH24[PMo12O40] (MgAl-PMo12 and Mg12Al4(OH32[SiW12O40] (MgAl-SiW12, were synthesized, characterized and used as catalysts for the oxidative desulfurization of simulated oil (dibenzothiophene, DBT, in n-octane. MgAl-PMo12 was identified as an effective catalyst for the oxidative removal of DBT under very mild conditions of atmospheric pressure and 60 °C in a biphasic system using hydrogen peroxide as oxidant and acetonitrile as extractant. The conversion of DBT was nearly 100%. As a result, because of the influence of the electron density and the space steric hindrance, the oxidation reactivity of the different sulfur compounds in simulated oil followed the order DBT > 4,6-dimethyldibenzothiophene (4,6-DMDBT > benzothiophene (BT > thiophene (TH. When the reaction is finished, the catalysts can be recovered from the acetonitrile phase by filtration. The recovered MgAl-PMo12 retains nearly the same catalytic activity as the fresh material. Moreover, MgAl-PMo12 was found to exhibit an ideal catalytic activity in the oxidative desulfurization of real diesel resulting in a total remaining sulfur content of 9.12 ppm(w.

  1. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  2. Metal-Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO2 Electroreduction to CO and Hydrocarbons.

    Science.gov (United States)

    Varela, Ana Sofia; Ranjbar Sahraie, Nastaran; Steinberg, Julian; Ju, Wen; Oh, Hyung-Suk; Strasser, Peter

    2015-09-07

    This study explores the kinetics, mechanism, and active sites of the CO2 electroreduction reaction (CO2RR) to syngas and hydrocarbons on a class of functionalized solid carbon-based catalysts. Commercial carbon blacks were functionalized with nitrogen and Fe and/or Mn ions using pyrolysis and acid leaching. The resulting solid powder catalysts were found to be active and highly CO selective electrocatalysts in the electroreduction of CO2 to CO/H2 mixtures outperforming a low-area polycrystalline gold benchmark. Unspecific with respect to the nature of the metal, CO production is believed to occur on nitrogen functionalities in competition with hydrogen evolution. Evidence is provided that sufficiently strong interaction between CO and the metal enables the protonation of CO and the formation of hydrocarbons. Our results highlight a promising new class of low-cost, abundant electrocatalysts for synthetic fuel production from CO2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Designer HF-Based Fluorination Reagent: Highly Regioselective Synthesis of Fluoroalkenes and gem-Difluoromethylene Compounds from Alkynes

    Science.gov (United States)

    2015-01-01

    Hydrogen fluoride (HF) and selected nonbasic and weakly coordinating (toward cationic metal) hydrogen-bond acceptors (e.g., DMPU) can form stable complexes through hydrogen bonding. The DMPU/HF complex is a new nucleophilic fluorination reagent that has high acidity and is compatible with cationic metal catalysts. The gold-catalyzed mono- and dihydrofluorination of alkynes using the DMPU/HF complex yields synthetically important fluoroalkenes and gem-difluoromethlylene compounds regioselectively. PMID:25260170

  4. MAGNETO-CHEMICAL CHARACTER STUDIES OF NOVEL Fe CATALYSTS FOR COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Murty A. Akundi; Jian H. Zhang; A.N. Murty; S.V. Naidu

    2002-04-01

    The objectives of the present study are: (1) To synthesize iron catalysts: Fe/MoO{sub 3}, and Fe/Co/MoO{sub 3} employing two distinct techniques: Pyrolysis with organic precursors and Co-precipitation of metal nitrates; (2) To investigate the magnetic character of the catalysts before and after exposure to CO and CO+H{sub 2} by (a) Mossbauer study of Iron (b) Zerofield Nuclear Magnetic Resonance study of Cobalt, and (c) Magnetic character of the catalyst composite; (3) To study the IR active surface species of the catalyst while stimulating (CO--Metal, (CO+H{sub 2})--Metal) interactions, by FTIR Spectroscopy; and (4) To analyze the catalytic character (conversion efficiency and product distribution) in both direct and indirect liquefaction Process and (5) To examine the correlations between the magnetic and chemical characteristics. This report presents the results of our investigation on (a) the effect of metal loading (b) the effect of intermetallic ratio and (c) the effect of catalyst preparation procedure on (i) the magnetic character of the catalyst composite (ii) the IR active surface species of the catalyst and (iii) the catalytic yields for three different metal loadings: 5%, 15%, and 25% (nominal) for three distinct intermetallic ratios (Fe/Co = 0.3, 1.5, 3.0).

  5. Multi-metallic oxides as catalysts for light alcohols and hydrocarbons from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Miguel [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Diaz, L; Galindo, H de J; Dominguez, J. M; Salmon, Manuel [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    1999-08-01

    A series of Cu-Co-Cr oxides doped with alkaline metals (M), were prepared by the coprecipitation method with metal nitrates (Cu{sup I}I, CO{sup I}I, CR{sup I}II) and (M{sub 2})CO{sub 3} in aqueous solution. The calcined products were used as catalysts for the Fisher-Tropsch synthesis in a stainless-steel fixed bed microreactor. The material was characterized by x-ray diffraction, and the specific surface area, pore size and nitrogen adsorption-desorption properties were also determined. The alkaline metals favored the methanol synthesis and prevent the dehydration reactions whereas the hydrocarbon formation is independent to these metals. [Spanish] Una serie de oxidos Cu-Co-Cr soportados con metales alcalinos (M), fueron preparados por el metodo con nitratos metalicos (Cu{sup I}I, CO{sup I}I, CR{sup I}II) y (M{sub 2})CO{sub 3} en soluciones acuosas. Los productos calcinados fueron usados como catalizadores para la sintesis de Fisher-tropsch en la superficie fija de un microreactor de acero inoxidable. El material fue caracterizado por difraccion de rayos X y el area de superficie especifica, el tamano de poro y propiedades de absorcion-desorcion de nitrogeno fueron determinadas. Los metales alcalinos favorecieron la sintesis de metanol y previnieron las reacciones de deshidratacion, mientras que la formacion de hidrocarburos es independiente de estos metales.

  6. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin; Li, Zhikao; Nourdine, Mohamed; Shahid, Salman; Takanabe, Kazuhiro

    2014-01-01

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH

  7. Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations.

    Science.gov (United States)

    Machuca, A; Pereira, G; Aguiar, A; Milagres, A M F

    2007-01-01

    To investigate the in vitro production of metal-chelating compounds by ectomycorrhizal fungi collected from pine plantations in southern Chile. Scleroderma verrucosum, Suillus luteus and two isolates of Rhizopogon luteolus were grown in solid and liquid modified Melin-Norkans (MMN) media with and without iron addition and the production of iron-chelating compounds was determined by Chrome Azurol S (CAS) assay. The presence of hydroxamate and catecholate-type compounds and organic acids was also investigated in liquid medium. All isolates produced iron-chelating compounds as detected by CAS assay, and catecholates, hydroxamates as well as oxalic, citric and succinic acids were also detected in all fungal cultures. Scleroderma verrucosum produced the greatest amounts of catecholates and hydroxamates whereas the highest amounts of organic acids were detected in S. luteus. Nevertheless, the highest catecholate, hydroxamate and organic acid concentrations did not correlate with the highest CAS reaction which was observed in R. luteolus (Yum isolate). Ectomycorrhizal fungi produced a variety of metal-chelating compounds when grown in liquid MMN medium. However, the addition of iron to all fungi cultures reduced the CAS reaction, hydroxamate and organic acid concentrations. Catecholate production was affected differently by iron, depending on the fungal isolate. The ectomycorrhizal fungi described in this study have never been reported to produce metal-chelating compound production. Moreover, apart from some wood-rotting fungi, this is the first evidence of the presence of catecholates in R. luteolus, S. luteus and S. verrucosum cultures.

  8. Hydrogen Production by Ethanol Steam Reforming (ESR over CeO2 Supported Transition Metal (Fe, Co, Ni, Cu Catalysts: Insight into the Structure-Activity Relationship

    Directory of Open Access Journals (Sweden)

    Michalis Konsolakis

    2016-03-01

    Full Text Available The aim of the present work was to investigate steam reforming of ethanol with regard to H2 production over transition metal catalysts supported on CeO2. Various parameters concerning the effect of temperature (400–800 °C, steam-to-carbon (S/C feed ratio (0.5, 1.5, 3, 6, metal entity (Fe, Co, Ni, Cu and metal loading (15–30 wt.% on the catalytic performance, were thoroughly studied. The optimal performance was obtained for the 20 wt.% Co/CeO2 catalyst, achieving a H2 yield of up to 66% at 400 °C. In addition, the Co/CeO2 catalyst demonstrated excellent stability performance in the whole examined temperature range of 400–800 °C. In contrast, a notable stability degradation, especially at low temperatures, was observed for Ni-, Cu-, and Fe-based catalysts, ascribed mainly to carbon deposition. An extensive characterization study, involving N2 adsorption-desorption (BET, X-ray diffraction (XRD, Scanning Electron Microscopy (SEM/EDS, X-ray Photoelectron Spectroscopy (XPS, and Temperature Programmed Reduction (H2-TPR was undertaken to gain insight into the structure-activity correlation. The excellent reforming performance of Co/CeO2 catalysts could be attributed to their intrinsic reactivity towards ethanol reforming in combination to their high surface oxygen concentration, which hinders the deposition of carbonaceous species.

  9. Catalytic activity of laminated compounds of graphite with transitions metals in decomposition of alcohols and formic acid

    International Nuclear Information System (INIS)

    Novikov, Yu.N.; Lapkina, N.D.; Vol'pin, M.E.

    1976-01-01

    The catalytic activity is studied of laminated graphite compounds with Fe, Co, Ni, Cu, Mo, W and Mn both in the reduced and oxidized forms in gas phase decomposition reactions of isopropyl, n-butyl, cyclohexyl, and 4-tret-butylcyclohexyl alcohols, and also formic acid. All the catalysts are shown to be active in the reactions where isopropyl and n-butyl alcohols undergo decomposition. The laminated compounds of graphite with Co and Ni both in the oxidized and reduction form are the most active catalysts of the selective decomposition of alcohols to aldehydes and ketones, and also formic acid to CO 2 and H 2 . The kinetics of a number of reactions is found to obey the second order equation with allowance made for the system volume

  10. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  11. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  12. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    Directory of Open Access Journals (Sweden)

    Wan Azelee Wan Abu Bakar

    2015-09-01

    Full Text Available Carbon dioxide (CO2 in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4 gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. The prepared catalysts were run catalytic screening process using in-house built micro reactor coupled with Fourier Transform Infra Red (FTIR spectroscopy to study the percentage CO2 conversion and CH4 formation analyzed by GC. Ru/Mn/Ni(5:35:60/Al2O3 calcined at 1000 °C was found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.36% of CH4 formation at 400 °C reaction temperature. XRD diffractogram illustrated that the supported catalyst was in polycrystalline with some amorphous state at 1000 °C calcination temperature with the presence of NiO as active site. According to FESEM micrographs, both fresh and used catalysts displayed spherical shape with small particle sizes in agglomerated and aggregated mixture. Nitrogen Adsorption analysis revealed that both catalysts were in mesoporous structures with BET surface area in the range of 46–60 m2/g. All the impurities have been removed at 1000 °C calcination temperature as presented by FTIR, TGA–DTA and EDX data.

  13. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  14. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Science.gov (United States)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  15. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Albayati, Talib M., E-mail: talib-albyati@yahoo.com [University of Technology, Department of Chemical Engineering (Iraq); Doyle, Aidan M., E-mail: a.m.doyle@mmu.ac.uk [Manchester Metropolitan University, Division of Chemistry and Environmental Science (United Kingdom)

    2015-02-15

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  16. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    International Nuclear Information System (INIS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-01-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction

  17. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    Science.gov (United States)

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.

  18. Sythesis of rare earth metal - GIC graphite intercalation compound in molten chloride system

    International Nuclear Information System (INIS)

    Ito, Masafumi; Hagiwara, Rika; Ito, Yasuhiko

    1994-01-01

    Graphite intercalation compounds of ytterbium and neodymium have been prepared by interacting graphite and metals in molten chlorides. These rare earth metals can be suspended in molten chlorides in the presence of trichlorides via disproportionation reaction RE(0) + RE(III) = 2RE(II) at lower than 300 degC. Carbides-free compounds are obtained in these systems. (author)

  19. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao; Croue, Jean-Philippe

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation

  20. Catalytic Steam Reforming of Toluene as a Model Compound of Biomass Gasification Tar Using Ni-CeO2/SBA-15 Catalysts

    Directory of Open Access Journals (Sweden)

    Erik Dahlquist

    2013-07-01

    Full Text Available Nickel supported on SBA-15 doped with CeO2 catalysts (Ni-CeO2/SBA-15 was prepared, and used for steam reforming of toluene which was selected as a model compound of biomass gasification tar. A fixed-bed lab-scale set was designed and employed to evaluate the catalytic performances of the Ni-CeO2/SBA-15 catalysts. Experiments were performed to reveal the effects of several factors on the toluene conversion and product gas composition, including the reaction temperature, steam/carbon (S/C ratio, and CeO2 loading content. Moreover, the catalysts were subjected to analysis of their carbon contents after the steam reforming experiments, as well as to test the catalytic stability over a long experimental period. The results indicated that the Ni-CeO2/SBA-15 catalysts exhibited promising capabilities on the toluene conversion, anti-coke deposition and catalytic stability. The toluene conversion reached as high as 98.9% at steam reforming temperature of 850 °C and S/C ratio of 3 using the Ni-CeO2(3wt%/SBA-15 catalyst. Negligible coke formation was detected on the used catalyst. The gaseous products mainly consisted of H2 and CO, together with a little CO2 and CH4.