WorldWideScience

Sample records for metal complex evaluation

  1. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    Directory of Open Access Journals (Sweden)

    Enis Nadia Md Yusof

    2015-05-01

    Full Text Available Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC with 2-methoxybenzaldehyde (2MB and 3-methoxybenzaldehyde (3MB. The ligands were reacted separately with acetates of Cu(II, Ni(II and Zn(II yielding 1:2 (metal:ligand complexes. The metal complexes formed were expected to have a general formula of [M(NS2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1 and S2M3MBH (2 were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7 and estrogen receptor-negative (MDA-MB-231 breast cancer cell lines. Only the Cu(II complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II complexes have a strong DNA binding affinity.

  2. Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: Synthesis, structure and biological evaluation

    Science.gov (United States)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-08-01

    Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.

  3. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound......Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  4. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  5. Preparation, structure and microbial evaluation of metal complexes of the second generation quinolone antibacterial drug lomefloxacin

    Science.gov (United States)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-09-01

    Lomefloxacinate of Y(III), Zr(IV) and U(VI) were isolated as solids with the general formula; [Y(LFX) 2Cl 2]Cl·12H 2O, [ZrO(LFX) 2Cl]Cl·15H 2O and [UO 2(LFX) 3](NO 3) 2·4H 2O. The new synthesized complexes were characterized with physicochemical and diverse spectroscopic techniques (IR, UV-Vis. and 1H NMR spectroscopies) as well as thermal analyses. In these complexes lomefloxacin act as bidentate ligand bound to the metal ions through the pyridone oxygen and one carboxylate oxygen. The kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as entropy of activation, activation energy, enthalpy of activation and Gibbs free energy evaluated by using Coats- Redfern and Horowitz- Metzger equations for free lomefloxacin and three complexes were carried out. The bond stretching force constant and length of the U dbnd O bond for the [UO 2(LFX) 3](NO 3) 2·4H 2O complex were calculated. The antimicrobial activity of lomefloxacin and its metal complexes was tested against different bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) as Gram-positive and Gram-negative bacterial species and also against two species of antifungal, penicillium ( P. rotatum) and trichoderma ( T. sp.). The three complexes are of a good action against three bacterial species but the Y(III) complex exhibit excellent activity against Pseudomonas aeruginosa ( P. aeruginosa), when compared to the free lomefloxacin.

  6. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes

    Science.gov (United States)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif

    2016-05-01

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.

  7. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.

    Science.gov (United States)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif

    2016-05-15

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Critical survey of stability constants of EDTA complexes critical evaluation of equilibrium constants in solution stability constants of metal complexes

    CERN Document Server

    Anderegg, G

    2013-01-01

    Critical Survey of Stability Constants of EDTA Complexes focuses on the computations, values, and characteristics of stability constants. The book emphasizes that for a critical discussion of experimentally determined stability constants, it is important to consider the precision of the values that manifests the self-consistency of the constant, taking into consideration the random errors. The publication reviews the stability constants of metal complexes. The numerical calculations affirm the reactions and transformations of metal ions when exposed to varying conditions. The text also present

  9. Evaluation of the chelating performance of biopolyelectrolyte green complexes (NIBPEGCs) for wastewater treatment from the metal finishing industry.

    Science.gov (United States)

    López-Maldonado, Eduardo A; Zavala García, Oscar Gabriel; Escobedo, Kevin Cruz; Oropeza-Guzman, Mercedes T

    2017-08-05

    In this paper nonstoichiometric interbiopolyelectrolyte green complexes (NIBPEGCs) were prepared using chitosan (Ch), alginate (AG) and poly(acrylic acid)(PAA). They are proposed as innovative formulations (polyelectrolytes and chelating agents) suitable for the elimination heavy metals contained in wastewater. This application may represent an integral solution for industries rejecting solid and aqueous metallic materials; however, it has not been previously reported. NIBPEGCs physicochemical performance was evaluated based on pH, particle size, surface charge, isoelectric point, dose, coagulation-flocculation kinetics and chemical affinity with seven metal ions. The experimental results showed that NIBPEGCs composed by AG/Ch and PAA/Chitosan have all the three complementary functions: chemical affinity, electrostatic interaction and particle entrapment anticipating more simple operation units to remove heavy metals. Complexes of AG/Ch (negative) were higher performance in removing heavy metals, with a dose window (150-180mg/L), lower dose of 410mg/L PAA/Ch (negative). Investigation of chelating performances of NIBPEGCs show that the efficiency of metal removal is: Ca˃Cr˃Cu˃Pb˃Ni˃Zn˃Cd. Transmittance vs time profiles, metals and zeta potential analysis showed that chelation capacity is the crucial factor to ensure metallic species removal, followed by physical entrapment of the metallic colloids. Integrating all presented results allow to sustain the development of excellent metals removal formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Structural and biological evaluation of some metal complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2013-12-01

    The synthesis and characterization of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O2 complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone (H2PVT) are reported. Theoretical calculations have been performed to obtain IR spectra of ligand and its complexes using AM1, Zindo/1, MM+ and PM3, methods. The Schiff base and its metal complexes have been screened for antibacterial Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus saprophyticus. H2VPT shows no apparent digestion effect on the egg albumin while Mn(II), Hg(II) and Cu(II) complexes exhibited a considerable digestion effect following the order Cu(II) > Mn(II) > Hg(II). Moreover, Ni(II) and Co(II) complexes revealed strong digestion effect. Fe(II), Mn(II), Cu(II), Zn(II) and Ni(II) acted as metal co- SOD enzyme factors, which are located in different compartments of the cell.

  11. Synthesis, structural characterization and antimicrobial activity evaluation of metal complexes of sparfloxacin

    Science.gov (United States)

    El-Gamel, Nadia E. A.; Zayed, M. A.

    2011-11-01

    The synthesis and characterization of binary Cu(II)- ( 1), Co(II)- ( 2), Ni(II)- ( 3), Mn(II)- ( 4), Cr(III)- ( 5), Fe(III)- ( 6), La(III)- ( 7), UO 2(VI)- ( 8) complexes with sparfloxacin ( HL1) and ternary Cu(II)- ( 9), Co(II)- ( 10), Ni(II)- ( 11), Mn(II)- ( 12), Cr(III)- ( 13), Fe(III)- ( 14), La(III)- ( 15), UO 2(VI)- ( 16) complexes with sparfloxacin ( HL1) and DL-alanine ( H2L2) complexes are reported using elemental analysis, molar conductance, magnetic susceptibility, IR, UV-Vis, thermal analysis and 1H-NMR spectral studies. The molar conductance measurements of all the complexes in DMF solution correspond to non-electrolytic nature. All complexes were of the high-spin type and found to have six-coordinate octahedral geometry except the Cu(II) complexes which were four coordinate, square planar and U- and La-atoms in the uranyl and lanthanide have a pentagonal bipyramidal coordination sphere. The antimicrobial activity of these complexes has been screened against two Gram-positive and two Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with reference drug sparfloxacin. All the binary and ternary complexes showed remarkable potential antimicrobial activity higher than the recommended standard agents. Ni(II)- and Mn(II) complexes exhibited higher potency as compared to the parent drug against Gram-negative bacteria.

  12. Evaluating Complex Mixtures in the Zebrafish Embryo by Reconstituting Field Water Samples: A Metal Pollution Case Study.

    Science.gov (United States)

    Michiels, Ellen D G; Vergauwen, Lucia; Hagenaars, An; Fransen, Erik; Dongen, Stefan Van; Van Cruchten, Steven J; Bervoets, Lieven; Knapen, Dries

    2017-03-02

    Accurately assessing the toxicity of complex, environmentally relevant mixtures remains an important challenge in ecotoxicology. The goal was to identify biological effects after exposure to environmental water samples and to determine whether the observed effects could be explained by the waterborne metal mixture found in the samples. Zebrafish embryos were exposed to water samples of five different sites originating from two Flemish (Mol and Olen, Belgium) metal contaminated streams: "Scheppelijke Nete" (SN) and "Kneutersloop" (K), and a ditch (D), which is the contamination source of SN. Trace metal concentrations, and Na, K, Mg and Ca concentrations were measured using ICP-MS and were used to reconstitute site-specific water samples. We assessed whether the effects that were observed after exposure to environmental samples could be explained by metal mixture toxicity under standardized laboratory conditions. Exposure to "D" or "reconstituted D" water caused 100% mortality. SN and reconstituted SN water caused similar effects on hatching, swim bladder inflation, growth and swimming activity. A canonical discriminant analysis confirmed a high similarity between both exposure scenarios, indicating that the observed toxicity was indeed primarily caused by metals. The applied workflow could be a valuable approach to evaluate mixture toxicity that limits time and costs while maintaining biological relevance.

  13. Evaluating Complex Mixtures in the Zebrafish Embryo by Reconstituting Field Water Samples: A Metal Pollution Case Study

    Directory of Open Access Journals (Sweden)

    Ellen D. G. Michiels

    2017-03-01

    Full Text Available Accurately assessing the toxicity of complex, environmentally relevant mixtures remains an important challenge in ecotoxicology. The goal was to identify biological effects after exposure to environmental water samples and to determine whether the observed effects could be explained by the waterborne metal mixture found in the samples. Zebrafish embryos were exposed to water samples of five different sites originating from two Flemish (Mol and Olen, Belgium metal contaminated streams: “Scheppelijke Nete” (SN and “Kneutersloop” (K, and a ditch (D, which is the contamination source of SN. Trace metal concentrations, and Na, K, Mg and Ca concentrations were measured using ICP-MS and were used to reconstitute site-specific water samples. We assessed whether the effects that were observed after exposure to environmental samples could be explained by metal mixture toxicity under standardized laboratory conditions. Exposure to “D” or “reconstituted D” water caused 100% mortality. SN and reconstituted SN water caused similar effects on hatching, swim bladder inflation, growth and swimming activity. A canonical discriminant analysis confirmed a high similarity between both exposure scenarios, indicating that the observed toxicity was indeed primarily caused by metals. The applied workflow could be a valuable approach to evaluate mixture toxicity that limits time and costs while maintaining biological relevance.

  14. Electrochemical analysis of metal complexes

    NARCIS (Netherlands)

    Jong, de H.G.

    1987-01-01

    The present study is concerned with the electroanalytical chemistry of complexes of metals with large ligands. The main purpose was to develop quantitative descriptions of the voltammetric current-potential relation of metal complex systems with different diffusion coefficients of the

  15. Metal complexes of phosphinic acids

    International Nuclear Information System (INIS)

    Das, P.N.M.; Kuchen, W.; Keck, H.; Haegele, G.

    1977-01-01

    Pr(III), Nd(III) and Eu(III) complexes of dimethyldithiophosphinic acid have been prepared. Their properties and structures have been studied using elemental analysis, molecular weight determination, IR, UV, mass, NMR, magnetic studies, etc. It is found that these metals form neutral complexes of the type ML 3 where L is a deprotonated bidentate dimethyldithiophosphinic acid molecule. The coordination number exhibited by these metals in this case is six. Octahedral structures have been assigned to these complexes. (author)

  16. Complex metal hydrides

    DEFF Research Database (Denmark)

    Ley, Morten Brix

    2014-01-01

    og batterier de to mest lovende energibærere til mobile applikationer. Komplekse metalhydrider er blevet undersøgt i vid udstrækning over de sidste tyve år, siden de gravimetrisk og volumetrisk kan indeholde store mængder brint. Derfor er metal borhydrider velegnet til faststofopbevaring af brint...

  17. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  18. Metal complex of the first-generation quinolone antimicrobial drug nalidixic acid: structure and its biological evaluation.

    Science.gov (United States)

    Debnath, Anamika; Mogha, Navin Kumar; Masram, Dhanraj T

    2015-03-01

    A novel binuclear squire planar complex of nalidixic acid with Ag(I) metal ion with the formula [Ag(Nal)2] has been synthesized. The synthesized metal complex was characterized using CHN analysis, Fourier-transformed infra-red (FT-IR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), ultra violet-visible (Uv-vis) and single-crystal X-ray diffraction (XRD). The newly synthesized complex shows more advanced antifungal activity compared to the parent quinolone against four fungi, namely Pythium aphanidermatum, Sclerotinia rolfsii, Rhizoctonia solani and Rhizoctonia bataticola.

  19. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions.

    Science.gov (United States)

    Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-02-26

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  20. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    Directory of Open Access Journals (Sweden)

    Lorenzo Massimi

    2018-02-01

    Full Text Available Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  1. Evaluation of thermal sprayed metallic coatings for use on the structures at Launch Complex 39

    Science.gov (United States)

    Welch, Peter J.

    1990-01-01

    The current status of the evaluation program is presented. The objective was to evaluate the applicability of Thermal Sprayed Coatings (TSC) to protect the structures in the high temperature acid environment produced by exhaust of the Solid Rocket Boosters during the launches of the Shuttle Transportation System. Only the relatively low cost aluminum TSC which provides some cathodic protection for steel appears to be a practical candidate for further investigation.

  2. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some binuclear transition metal complexes of bicompartmental ONO donor ligands containing benzo[b]thiophene moiety

    Science.gov (United States)

    Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2014-02-01

    A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.

  3. Applications in environmental bioinorganic: Nutritional and ultrastructural evaluation and calculus of thermodynamic and structural properties of metal-oxalate complexes.

    Science.gov (United States)

    Tolentino, Terezinha Alves; Bertoli, Alexandre Carvalho; dos Santos Pires, Maíra; Carvalho, Ruy; Labory, Claudia Regina Gontijo; Nunes, Janaira Santana; Bastos, Ana Rosa Ribeiro; de Freitas, Matheus Puggina

    2015-01-01

    Lead (Pb) is known by its toxicity both for animals and plants. In order to evaluate its toxicity, plants of Brachiaria brizantha were cultivated on nutritive solution of Hoagland during 90 days and submitted to different concentrations of Pb. The content of macro and micronutrients was evaluated and there was a reduction on root content of Ca, besides the lowest dosages of Pb had induced an increase of N, S, Mn, Cu, Zn and Fe. The cell ultrastructure of leaves and roots were analyzed by transmission electronic microscopy (TEM). Among the main alterations occurred there were invaginations on cell walls, the presence of crystals on the root cells, accumulation of material on the interior of cells and vacuolar compartmentalization. On the leaves the degradation of chloroplasts was observed, as well as the increase of vacuoles. Structures for the formation of oxalate crystals were proposed through molecular modeling and thermodynamic stability. Calculi suggest the formation of highly stable metal-oxalate complexes. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Transition Metal Complexes and Catalysis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Transition Metal Complexes and Catalysis. Balaji R Jagirdar. General Article Volume 4 Issue 9 ... Author Affiliations. Balaji R Jagirdar1. Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  5. Dissimilar metals joint evaluation

    Science.gov (United States)

    Wakefield, M. E.; Apodaca, L. E.

    1974-01-01

    Dissimilar metals tubular joints between 2219-T851 aluminum alloy and 304L stainless steel were fabricated and tested to evaluate bonding processes. Joints were fabricated by four processes: (1) inertia (friction) weldings, where the metals are spun and forced together to create the weld; (2) explosive welding, where the metals are impacted together at high velocity; (3) co-extrusion, where the metals are extruded in contact at high temperature to promote diffusion; and (4) swaging, where residual stresses in the metals after a stretching operation maintain forced contact in mutual shear areas. Fifteen joints of each type were prepared and evaluated in a 6.35 cm (2.50 in.) O.D. size, with 0.32 cm (0.13 in.) wall thickness, and 7.6 cm (3.0 in) total length. The joints were tested to evaluate their ability to withstand pressure cycle, thermal cycle, galvanic corrosion and burst tests. Leakage tests and other non-destructive test techniques were used to evaluate the behavior of the joints, and the microstructure of the bond areas was analyzed.

  6. Structural and Magnetic Diversity in Alkali-Metal Manganate Chemistry: Evaluating Donor and Alkali-Metal Effects in Co-complexation Processes.

    Science.gov (United States)

    Uzelac, Marina; Borilovic, Ivana; Amores, Marco; Cadenbach, Thomas; Kennedy, Alan R; Aromí, Guillem; Hevia, Eva

    2016-03-24

    By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkali-metal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2 MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [{KMn(CH2SiMe3)3 ⋅C6 H6}2] (2) and [{NaMn(CH2SiMe3)3}2 (dioxane)7] (5); and to more complex supramolecular networks [{NaMn(CH2SiMe3)3}∞] (1) and [{Na2Mn2 (CH2SiMe3)6 (DABCO)2}∞] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6K2Mn2 (CH2SiMe3)4(O(CH2)2OCH=CH2)2}∞] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Communication: Evaluating non-empirical double hybrid functionals for spin-state energetics in transition-metal complexes

    Science.gov (United States)

    Wilbraham, Liam; Adamo, Carlo; Ciofini, Ilaria

    2018-01-01

    The computationally assisted, accelerated design of inorganic functional materials often relies on the ability of a given electronic structure method to return the correct electronic ground state of the material in question. Outlining difficulties with current density functionals and wave function-based approaches, we highlight why double hybrid density functionals represent promising candidates for this purpose. In turn, we show that PBE0-DH (and PBE-QIDH) offers a significant improvement over its hybrid parent functional PBE0 [as well as B3LYP* and coupled cluster singles and doubles with perturbative triples (CCSD(T))] when computing spin-state splitting energies, using high-level diffusion Monte Carlo calculations as a reference. We refer to the opposing influence of Hartree-Fock (HF) exchange and MP2, which permits higher levels of HF exchange and a concomitant reduction in electronic density error, as the reason for the improved performance of double-hybrid functionals relative to hybrid functionals. Additionally, using 16 transition metal (Fe and Co) complexes, we show that low-spin states are stabilised by increasing contributions from MP2 within the double hybrid formulation. Furthermore, this stabilisation effect is more prominent for high field strength ligands than low field strength ligands.

  8. Physiochemical characterization and antimicrobial evaluation of phenylthiourea-formaldehyde polymer (PTF) based polymeric ligand and its polymer metal complexes

    Science.gov (United States)

    Ahamad, Tansir; Alshehri, Saad M.

    2013-05-01

    Phenylthiourea-formaldehyde polymer (PTF) has been synthesized via polycondensation of phenylthiourea and formaldehyde in basic medium and its corresponding metal complexes [PTF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) ions. The synthesized polymers have been characterized by elemental analysis, magnetic susceptibility, UV-visible, FT-IR, 1H NMR, 13C NMR, ESR spectroscopy and thermogravimetric analysis (TGA). Elemental analysis, electronic spectra and magnetic moment measurement indicate that PTF-Mn(II), PTF-Co(II) and PTF-Ni(II) show octahedral geometry, while PTF-Cu(II) and PTF-Zn(II) show square planar and tetrahedral geometry, respectively. The results of TGA ascribed that all the PTF-M(II) showed better heat-resistance properties than PTF resin. In vitro antimicrobial activities were performed against several bacteria and fungi using agar well diffusion method. The results of microbial activity were compared with Kanamycin and Miconazole as standard antibiotics for antibacterial and antifungal activities respectively.

  9. Polyoxometalate coordinated transition metal complexes as ...

    Indian Academy of Sciences (India)

    Keywords. Heptamolybdate type polyoxometalate cluster anion; transition metal coordination complexes; ... industrial chemistry. This oxidation can be divided into three categories: (i) the cleavage of the C=C bond by using the surface of the metal oxide, e.g., osmium or .... supported cobalt complexes (catalysts 1 and 2) pro-.

  10. metal complexes of copper(ii)

    African Journals Online (AJOL)

    Catalytic activity of polymer metal complexes was studied by Vinodkumar and Mathew [3]. Antimicrobial activities of Cu(II), Co(II), Zn (II) Pb (II) oligomer metal complexes was studied by Kaya et al. [4-6]. Thermal ... tetrahydrofuran, methanol, N,N-dimethylformamide, ethanol, dimethylsulfoxide, nitrobenzene, chloroform, ethyl ...

  11. Investigations on Green Preparation of Heavy Metal Saponin Complexes

    Directory of Open Access Journals (Sweden)

    Maher Abed el Aziz

    2017-04-01

    Full Text Available Green preparation of heavy metal saponin complexes has been successfully optimized by direct combination between crude extract of Olea Europaea and Citrus Aurantium with divalent heavy metals, Pb2+ and Cd2+. The main operating factors affecting preparation process were investigated and evaluated in terms of setting time, heavy metal ion concentration, crude extract concentration, and pH value of the medium. Saponin complexes had been prepared using the optimum concentrations of heavy metal ions (120 ppm and optimum concentration of crude extract (600 ppm in the slightly alkaline medium. The presence of saponin in plants was confirmed by chemical tests and UV/Vis analysis. Amount of prepared saponine complexes has the order: (Pb/Olive > (Cd/Olive > (Pb/Citrus > (Cd/Citrus. In this process, saponins was isolated and heavy metals were eliminated by a simple, faster and without a huge amount of solvents. The process itself seems to be green isolation of saponins from plants, green removal of heavy metal from aqueous waste streams or green preparation of heavy metal saponin complexes. The process exhibits several advantages and hence benefits, among of them are shorter setting time, higher volume reduction factor and no chemical or solvents used. Direct combination between heavy metals solution and plant extract solution to prepare saponin complex could be considered three in one process. During preparation of the complex, saponin isolated or extracted by heavy metals and the heavy metal eliminated or removed by saponin solution.

  12. Metallic complexes with glyphosate: a review

    International Nuclear Information System (INIS)

    Coutinho, Claudia F.B.; Mazo, Luiz Henrique

    2005-01-01

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature. (author)

  13. Complexes of natural carbohydrates with metal cations

    International Nuclear Information System (INIS)

    Alekseev, Yurii E; Garnovskii, Alexander D; Zhdanov, Yu A

    1998-01-01

    Data on the interaction of natural carbohydrates (mono-, oligo-, and poly-saccharides, amino sugars, and natural organic acids of carbohydrate origin) with metal cations are surveyed and described systematically. The structural diversity of carbohydrate metal complexes, caused by some specific features of carbohydrates as ligands, is demonstrated. The influence of complex formation on the chemical properties of carbohydrates is discussed. It is shown that the formation of metal complexes plays an important role in the configurational and conformational analysis of carbohydrates. The practical significance of the coordination interaction in the series of carbohydrate ligands is demonstrated. The bibliography includes 571 references.

  14. Evaluation of DNA cleavage, antimicrobial and anti-tubercular activities of potentially active transition metal complexes derived from 2,6-di(benzofuran-2-carbohydrazono)-4-methylphenol

    Science.gov (United States)

    Kokare, Dhoolesh Gangaram; Kamat, Vinayak; Naik, Krishna; Nevrekar, Anupama; Kotian, Avinash; Revankar, Vidyanand K.

    2017-01-01

    A 2,6-diformyl-4-methyl phenol based multidentate novel symmetric ligand and it is late first-row transition metal complexes have been prepared. The ligand and metal complexes were characterized by different spectroscopic techniques. The ligand shows a symmetric polydentate coordination mode through the phenoxide bimetallic bridge, two azomethine nitrogen atoms and two carbonyl oxygen atoms. All the complexes appear to be binuclear with octahedral geometry and nonelectrolytic nature. Complexes have shown significant growth inhibitory activity against tested bacterial and fungal strains as compared to that of ligand. The cobalt complex exhibited better antifungal potency than the standard used. Copper complex exhibits good antifungal activity whereas cobalt and zinc complexes are found to be good antibacterial agents. Ligand and complexes have shown excellent anti-tubercular activity and Calf Thymus-DNA cleavage property.

  15. Factors governing the metal coordination number in metal complexes from Cambridge Structural Database analyses.

    Science.gov (United States)

    Dudev, Minko; Wang, Jonathan; Dudev, Todor; Lim, Carmay

    2006-02-02

    The metal coordination number (CN) is a key determinant of the structure and properties of metal complexes. It also plays an important role in metal selectivity in certain metalloproteins. Despite its central role, the preferred CN for several metal cations remains ambiguous, and the factors determining the metal CN are not fully understood. Here, we evaluate how the CN depends on (1) the metal's size, charge, and charge-accepting ability for a given set of ligands, and (2) the ligand's size, charge, charge-donating ability, and denticity for a given metal by analyzing the Cambridge Structural Database (CSD) structures of metal ions in the periodic table. The results show that for a given ligand type, the metal's size seems to affect its CN more than its charge, especially if the ligand is neutral, whereas, for a given metal type, the ligand's charge and charge-donating ability appear to affect the metal CN more than the ligand's size. Interestingly, all 98 metal cations surveyed could adopt more than than one CN, and most of them show an apparent preference toward even rather than odd CNs. Furthermore, as compared to the preferred metal CNs observed in the CSD, those in protein binding sites generally remain the same. This implies that the protein matrix (excluding amino acid residues in the metal's first and second coordination shell) does not impose severe geometrical restrictions on the bound metal cation.

  16. Protection of metal artefacts with the formation of metal-oxalates complexes by Beauveria bassiana.

    OpenAIRE

    Edith eJoseph; Edith eJoseph; Sylvie eCario; Anaële eSimon; Marie eWörle; Rocco eMazzeo; Pilar eJunier; Daniel eJob

    2012-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated in vitro. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g.L-1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxal...

  17. Synthesis, Spectral Analysis and Preliminary in Vitro Evaluation of Some Tetrapyrrolic Complexes with 3d Metal Ions

    Directory of Open Access Journals (Sweden)

    Radu Socoteanu

    2015-08-01

    Full Text Available In this paper, two tetrapyrrolic complexes, Zn(II-5-(3-hydroxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin and Cu(II-5-(3-hydroxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin were synthesized, and characterized from a spectral and biological point of view. The study provided data concerning the behavior of identical external substituents vs. two different core insertions. Some of the properties of the proposed tetrapyrrolic structures were highlighted, having photodynamic therapy of cancer as a targeted biomedical application. Elemental analysis, NMR, FTIR and UV-Vis data in various solvents were provided. A preliminary in vitro study on normal and cancer cultured cells was carried out for biocompatibility assessment in dark conditions. The preliminary in vitro study performed on human peripheral mononuclear cells exposed to tetrapyrrolic compounds (2 µM showed that the proposed compounds had a convenient cytotoxic profile on human normal peripheral blood mononuclear cells under dark conditions. Meanwhile, the investigated compounds reduced the number of metabolically active breast tumor MCF-7 cells, with the exception of Zn(II complex-containing a symmetrical ligand. Accordingly, preliminary in vitro data suggest that the proposed tetrapyrrolic compounds are good candidates for PDT, as they limit tumor expansion even under dark conditions, whilst sparing normal cells.

  18. Novel metals and metal complexes as platforms for cancer therapy.

    Science.gov (United States)

    Frezza, Michael; Hindo, Sarmad; Chen, Di; Davenport, Andrew; Schmitt, Sara; Tomco, Dajena; Dou, Q Ping

    2010-06-01

    Metals are essential cellular components selected by nature to function in several indispensable biochemical processes for living organisms. Metals are endowed with unique characteristics that include redox activity, variable coordination modes, and reactivity towards organic substrates. Due to their reactivity, metals are tightly regulated under normal conditions and aberrant metal ion concentrations are associated with various pathological disorders, including cancer. For these reasons, coordination complexes, either as drugs or prodrugs, become very attractive probes as potential anticancer agents. The use of metals and their salts for medicinal purposes, from iatrochemistry to modern day, has been present throughout human history. The discovery of cisplatin, cis-[Pt(II) (NH(3))(2)Cl(2)], was a defining moment which triggered the interest in platinum(II)- and other metal-containing complexes as potential novel anticancer drugs. Other interests in this field address concerns for uptake, toxicity, and resistance to metallodrugs. This review article highlights selected metals that have gained considerable interest in both the development and the treatment of cancer. For example, copper is enriched in various human cancer tissues and is a co-factor essential for tumor angiogenesis processes. However the use of copper-binding ligands to target tumor copper could provide a novel strategy for cancer selective treatment. The use of nonessential metals as probes to target molecular pathways as anticancer agents is also emphasized. Finally, based on the interface between molecular biology and bioinorganic chemistry the design of coordination complexes for cancer treatment is reviewed and design strategies and mechanisms of action are discussed.

  19. Unravelling metal mobility under complex contaminant signatures.

    Science.gov (United States)

    de Souza Machado, Anderson Abel; Spencer, Kate L; Zarfl, Christiane; O'Shea, Francis T

    2018-05-01

    Metals are concerning pollutants in estuaries, where contamination can undergo significant remobilisation driven by physico-chemical forcing. Environmental concentrations of metals in estuarine sediments are often higher than natural backgrounds, but show no contiguity to potential sources. Thus, better understanding the metal mobility in estuaries is essential to improve identification of pollution sources and their accountability for environmental effects. This study aims to identify the key biogeochemical drivers of metal mobilisation on contaminated estuarine sediments through (1) evaluation of the potential mobilisation under controlled conditions, and (2) investigation of the relevance of metal mobilisation for in situ pollution levels in an area with multiple contaminant sources. Sediments from a saltmarsh adjacent to a coastal landfill, a marina, and a shipyard on the Thames Estuary (Essex, UK) were exposed in the laboratory (24h, N=96, 20°C) to water under various salinity, pH, and redox potential. Major cations, Fe(II), and trace metal concentrations were analysed in the leachate and sediment. Salinity, pH and redox had a significant effect on metal mobilisation (pmetal spatial distribution. However, physicochemical parameters explained up to 97% of geochemically normalized metal concentrations in sediments. Organic matter and pH were dominant factors for most of the metal concentrations at the sediment surface. At subsurface, major cations (Ca, Na, Mg and K) were determinant predictors of metal concentrations. Applying the empirical model obtained in the laboratory to geochemical conditions of the studied saltmarsh it was possible to demonstrate that Fe mobilisation regulates the fate of this (and other) metal in that area. Thus, present results highlight the importance of metal mobility to control sediment pollution and estuarine fate of metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Protection of Metal Artifacts with the Formation of Metal?Oxalates Complexes by Beauveria bassiana

    OpenAIRE

    Joseph, Edith; Cario, Sylvie; Simon, Ana?le; W?rle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel

    2012-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal–oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L−1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid a...

  1. TDPAC studies on metal-complex ferrimagnets

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yoshitaka [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Abe, Shizuko; Okada, Takuya [and others

    1997-03-01

    TDPAC spectra of {sup 117}In (left-arrow {sup 117}Cd) and {sup 111}Cd (left-arrow {sup 111m}Cd) in the mixed metal complex N(C{sub 4}H{sub 9}){sub 4}(M(II)Fe(III)(C{sub 2}O{sub 4}){sub 3})(M=Fe,Ni), the related substraces and LiNbO{sub 3} have been studied. In this paper, pure potassium iron (III) oxalate was prepared and mixed metal complexes were synthesized by changing amount of reagents and the order added, then observed by TDPAC. 2 mol%Cd was dispersed throughout potassium iron oxalate and potassium nickel oxalate, formulating M(II){sub 0.98}Cd(II){sub 0.02}C{sub 2}O{sub 4}{center_dot}2H{sub 2}O (M=Fe, Ni) with the same crystal structure. The formation reaction of mixed metal complex-Fe(II) was faster than that of iron oxalate. Its mixed metal complex-Ni(II) was slower than that of iron oxalate. The rate of quadrupole oscillation was obtained by {omega}{sub Q}({sup 117}In)=67.3 Mrad/s and {omega}{sub Q}({sup 111}Cd)=29.7 Mrad/s of which values were determined by TDPAC spectra of {sup 117}In and {sup 111}Cd in LiNbO{sub 3} at 4K. The value showed pure ion bond of oxygen coordinated with {sup 117}In and {sup 111}Cd. 0.08 {eta} was determined by TDPAC spectrum of {sup 111}Cd(left-arrow {sup 111m}Cd). The rate of {omega}{sub Q} of mixed metal oxalate complex was larger than 2.3, indicating 5s and 5p orbital electron took part in bond of oxygen of oxalic acid or approaching oxygen ion to In nucleus depend on the structual relaxation in decaying of {sup 117}In(left-arrow {sup 117}Cd). (S.Y.)

  2. METAL COMPLEXES OF SALICYLHYDROXAMIC ACID AND 1,10 ...

    African Journals Online (AJOL)

    Preferred Customer

    Metal complexes which are formed in biological systems between a ligand and a metal ion are in dynamic equilibrium with the free metal ion in a more or less aqueous environment. All biologically important metal ions can form complexes and the number of different chemical species which can be coordinated with these ...

  3. 40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.

    Science.gov (United States)

    2010-07-01

    ... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting under...

  4. 40 CFR 721.10104 - Halophosphate mixed metal complex (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...

  5. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example......, we show that it can store 9.1% hydrogen by weight in the form of ammonia. The storage is completely reversible, and by combining it with an ammonia decomposition catalyst, hydrogen can be delivered at temperatures below 620 K....

  6. Evaluation of Stability of Complexes of Inner Transition Metal Ions with 2-Oxo-1-pyrrolidine Acetamide and Role of Systematic Errors

    Directory of Open Access Journals (Sweden)

    Sangita Sharma

    2011-01-01

    Full Text Available BEST FIT models were used to study the complexation of inner transition metal ions like Y(III, La(III, Ce(III, Pr(III, Nd(III, Sm(III, Gd(III, Dy(III and Th(IV with 2-oxo-1-pyrrolidine acetamide at 30 °C in 10%, 20, 30, 40, 50% and 60% v/v dioxane-water mixture at 0.2 M ionic strength. Irving Rossotti titration method was used to get titration data. Calculations were carried out with PKAS and BEST Fortran IV computer programs. The expected species like L, LH+, ML, ML2 and ML(OH3, were obtained with SPEPLOT. Stability of complexes has increased with increasing the dioxane content. The observed change in stability can be explained on the basis of electrostatic effects, non electrostatic effects, solvating power of solvent mixture, interaction between ions and interaction of ions with solvents. Effect of systematic errors like effect of dissolved carbon dioxide, concentration of alkali, concentration of acid, concentration of ligand and concentration of metal have also been explained here.

  7. Enhanced Structural Support of Metal Sites as Nodes in Metal-Organic Frameworks Compared to Metal Complexes

    OpenAIRE

    Das, Sanjit

    2013-01-01

    Metal-organic frameworks are a new class of crystalline, porous solid-state materials with metal ions periodically linked by organic linkers. This gives rise to one-, two- or three-dimensional structures. Here, we compare the stability of similar metal sites toward external ligand (solvent) induced disruption of the coordination environment in metal complexes and in metal-organic frameworks. Our experimental results show that a metal site as node of a metal-organic framework retains much high...

  8. synthesis and characterisation of some metal complexes of hybrid

    African Journals Online (AJOL)

    a

    KEY WORDS: Aminophosphines, Metal complexes, Cobalt(II) complex, Crystal structure. INTRODUCTION. Transition metal complexes of tertiary phosphines have been extensively studied owing to the donor-acceptor properties of the phosphorus atom which provides enhanced coordination abilities of the ligands thus ...

  9. Protection of metal artefacts with the formation of metal-oxalates complexes by Beauveria bassiana.

    Directory of Open Access Journals (Sweden)

    Edith eJoseph

    2012-01-01

    Full Text Available Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated in vitro. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g.L-1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal-oxalates can be used in the restoration and conservation of archaeological and modern metal artefacts. The production of copper-oxalates was confirmed directly using metallic pieces (both archaeological and modern. The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal-oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates and probably goethite. However, the formation of a homogeneous layer on the object is not yet optimal. Silver nitrate was extracellularly reduced into nanoparticles of elemental silver by an unknown mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artefacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals.

  10. Protection of Metal Artifacts with the Formation of Metal-Oxalates Complexes by Beauveria bassiana.

    Science.gov (United States)

    Joseph, Edith; Cario, Sylvie; Simon, Anaële; Wörle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel

    2011-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L(-1), and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal-oxalates can be used in the restoration and conservation of archeological and modern metal artifacts. The production of copper oxalates was confirmed directly using metallic pieces (both archeological and modern). The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal-oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates. However, the formation of a homogeneous layer on the object is not yet optimal. On silver, a co-precipitation of copper and silver oxalates occurred. As this greenish patina would not be acceptable on silver objects, silver reduction was explored as a tarnishing remediation. First experiments showed the transformation of silver nitrate into nanoparticles of elemental silver by an unknown extracellular mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artifacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals.

  11. Early Transition Metal Alkyl and Tetrahydroborate Complexes.

    Science.gov (United States)

    Jensen, James Allen

    1988-06-01

    An investigation of early transition metal alkyl and tetrahydroborate complexes as catalytic models and ceramic precursors has been initiated. The compounds MX _2 (dmpe)_2, dmpe = 1,2-bis(dimethylphosphino)ethane, for M = Ti, V, Cr, and X = Br, I, BH_4, have been prepared. These complexes are paramagnetic and have been shown by X-ray crystallography to have trans-octahedral structures. The BH_4^{-} groups in Ti(BH_4)_2(dmpe) _2 bond to the metal in a bidentate manner. This structure is in marked contrast to the structure of the vanadium analogue, V(BH_4)_2 (dmpe)_2, which displays two unidentate BH_4^{-} groups. Alkylation of Ti(BH_4)_2 (dmpe)_2 with LiMe results in the complex TiMe_2(dmpe) _2 which is diamagnetic in both solution and solid state. Single crystal X-ray and neutron diffraction studies show that there may be strong Ti-C pi -bonding. A tetragonal compression along the C -Ti-C bond vector accounts for the observed diamegnetism. A series of complexes of the formula Ti(BH _4)_3(PR_3)_2 has been prepared where PR_3 = PMe_3, PEt_3, PMe_3Ph, and P(OMe)_3 . The X-ray crystal structure of Ti(BH _4)_3(PMe_3)_2 reveals a pseudo trigonal bipyramidal geometry in which two BH_4^{-} groups display an unusual "side-on" bonding mode. The "side-on" ligation mode has been attributed to a Jahn-Teller distortion of the orbitally degenerate d^1 ground state. In contrast, the non-Jahn-Teller susceptible vanadium analogue, V(BH_4)_3 (PMe_3)_2, possesses a nearly ideal D_{rm 3h} >=ometry with three bidentate tetrahydroborate groups. Addition of excess PMe_3 to V(BH_4)_3(PMe _3)_2water forms the vanadium(III) oxo dimer (V(BH_4)_2 (PMe_3)_2]_2 [mu-O) which has been structurally characterized. The compound Ti(CH_2CMe _3)_4 can be prepared by addition of Ti(OEt)_4 to LiCH_2 CMe_3. Sublimation of Ti(CH _2CMe_3)_4 over a substrate heated to 250^ circC results in the chemical vapor deposition of amorphous TiC thin films. This CVD approach has been extended to the Group 4 borides: Ti

  12. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Kasper T. Møller

    2017-10-01

    Full Text Available Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.

  13. Metal complexes as antibacterial agents: Synthesis, characterization and antibacterial activity of some 3d metal complexes of sulphadimidine

    Directory of Open Access Journals (Sweden)

    Adedibu Clement Tella

    2010-06-01

    Full Text Available Metal complexes of Sulphadimidine(SAD were synthesized.The complexes were formulated as [Co(SAD2Cl2], [Cu(SAD2 (H2O2], [Ni (SAD2 Cl2 H2O], [Cd (SAD2 Br2], [Fe (SAD3](H­2O­3 and [Mn (SAD2Cl2] characterized by elemental Analysis, conductivity, IR , UV-Vis, Magnet moment and 1H-NMR and Mass spectroscopies. Co(II, Mn (II,  and Ni(II sulphadimidine complexes consist of metal ion which coordinates through amino nitrogen of the terminal NH2 group and oxygen of sulfonamidic group of the two molecules of sulphadimidine ligand and two halide ions to form octahedral structure while Cd(II coordinates with sulphadimidine through amino nitrogen of the terminal NH2 group with two bromine ions to complete tetrahedral structure. In Cu(II sulphadimidine complex, copper ion coordinates through both pyrimidinic nitrogen (heterocyclic nitrogen and sulfonamidic nitrogen of the two molecules of sulphadimidine. Fe(III coordinates to three molecules of sulphadimidine through heterocyclic nitrogen (pyrimidinic nitrogen and sulfonamidic nitrogen,with three molecules of water outside the coordination sphere. Both Fe(III and Cu(II complexes exhibit octahedral geometry. The antibacterial activity of the complexes and the ligands was investigated against Esherichia coli,  Staphylococcus aureus and Klebsiella pneumonia .  The data obtained revealed that the complexes showed greater activity against the three micro-organisms when compared to parent compound. Stability constant of the complexes were evaluated for the metal salts, the order of stability constant b was found to be Cu (II > Fe (III >Ni(II> Co (II > Cd (II.The values of stability constant (b was found to be log 6.31, 5.93, 5.29, 4.63 and 3.92, respectively. The stability constant data revealed that this ligand may be used as antidote or chelating agent for medical treatment of metals overload or poisoning.

  14. Mixed Metal Complexes of Isoniazid and Ascorbic Acid: Chelation ...

    African Journals Online (AJOL)

    HP

    these ligands and their metal complexes have revealed the bi-dentate coordination of isoniazid ligand to ... of the drugs on coordination with a metal is enhanced ..... James, O.O., Nwinyi, C.O. and. Allensela, M.A. (2008). Cobalt(II) complexes of mixed antibiotics: Synthesis,. Characterization, antimicrobial potential and their.

  15. Synthesis and characterization of some metal complexes of a Schiff ...

    African Journals Online (AJOL)

    dione-2-imine-N-. 2-propionate (IDIP) ... coordination to metals [25, 27], particularly, Schiff bases and their metal complexes have been shown to exhibit ..... The values show that the manganese and cobalt complexes are high spin, the iron ...

  16. DNA interactions and biocidal activity of metal complexes of ...

    Indian Academy of Sciences (India)

    Narendrula Vamsikrishna

    cancer agents, and the binding between DNA and metal complexes were used in understanding the interaction between the drugs and DNA. In general, the tumour cells can be smashed by stopping the replication of the unnatural DNA. Using Schiff base transition metal complex in particular, affected DNA may be dented by.

  17. Higher coordination numbers of metals in isolated complexes

    International Nuclear Information System (INIS)

    Wells, A.F.

    1988-01-01

    The material pertaining to island complexes with polydentate ligands where transition and rare earth metals have coordination numbers from 7 to 10 is generalized. The coordination of different ligands in the complexes of these metals depending on the chemical composition and structure of chelating ligand, as well as characteristics of the central atom, is considered

  18. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses... dye (PMN P-94-499) is subject to reporting under this section for the significant new uses described...

  19. Lability of nanoparticulate metal complexes in electrochemical speciation analysis

    NARCIS (Netherlands)

    Leeuwen, van Herman P.; Town, Raewyn M.

    2016-01-01

    Lability concepts are elaborated for metal complexes with soft (3D) and hard (2D) aqueous nanoparticles. In the presence of a non-equilibrium sensor, e.g. a voltammetric electrode, the notion of lability for nanoparticulate metal complexes, M-NP, reflects the ability of the M-NP to maintain

  20. Dipicolinate complexes of main group metals with hydrazinium cation

    Indian Academy of Sciences (India)

    Unknown

    Some new coordination complexes of hydrazinium main group metal dipicolinate hydrates of formulae ... dipicolinate dianions and non-coordinating hydrazinium cations. Conductance measurements ... group metals, and the ability of dip2– to function as a tridentate ligand, we expect to find anionic complexes of the type ...

  1. Plasmon hybridization in complex metallic nanostructures

    Science.gov (United States)

    Hao, Feng

    With Plasmon Hybridization (PH) and Finite-Difference Time-Domain (FDTD) method, we theoretically investigated the optical properties of some complex metallic nanostructures (coupled nanoparticle/wire, nanostars, nanorings and combined ring/disk nanocavity systems). We applied the analytical formulism of PH studying the plasmonic coupling of a spherical metallic nanoparticle and an infinite long cylindrical nanowire. The plasmon resonance of the coupled system is shown shifted in frequency, which highly depends on the polarization of incident light relative to the geometry of the structure. We also showed the nanoparticle serves as an efficient antenna coupling the electromagnetic radiation into the low-energy propagating wire plasmons. We performed an experimental and theoretical analysis of the optical properties of gold nanorings with different sizes and cross sections. For light polarized parallel to the ring, the optical spectrum sensitively depends on the incident angle. When light incidence is normal to the ring, two dipolar resonance is observed. As the incident light is titled, some previously dark mulipolar plasmon resonances will be excited as a consequence of the retardation. The concept of plasmon hybridization is combined with the power of brute-force numerical methods to understand the plasmonic properties of some very complicated nanostructures. We showed the plasmons of a gold nanostar are a result of hybridization of the plasmons of the core and the tips of the particle. The core serves as a nanoantenna, dramatically enhanced the optical spectrum and the field enhancement of the nanostar. We also applied this method analyzing the plasmonic modes of a nanocavity structure composed of a nanodisk with a surrounding minoring. For the concentric combination, we showed the nature of the plasmon modes can be understood as the plasmon hybrization of an individual ring and disk. The interation results in a blueshifted and broadened superradiant antibonding

  2. Metallacyclopentadienes: structural features and coordination in transition metal complexes

    International Nuclear Information System (INIS)

    Dolgushin, Fedor M; Yanovsky, Aleksandr I; Antipin, Mikhail Yu

    2004-01-01

    Results of structural studies of polynuclear transition metal complexes containing the metallacyclopentadiene fragment are overviewed. The structural features of the complexes in relation to the nature of the substituents in the organic moiety of the metallacycles, the nature of the transition metals and their ligand environment are analysed. The main structural characteristics corresponding to different modes of coordination of metallacyclopentadienes to one or two additional metal centres are revealed.

  3. Toxicity of chlortetracycline and its metal complexes to model microorganisms in wastewater sludge.

    Science.gov (United States)

    Pulicharla, Rama; Das, Ratul Kumar; Brar, Satinder Kaur; Drogui, Patrick; Sarma, Saurabh Jyoti; Verma, Mausam; Surampalli, Rao Y; Valero, Jose R

    2015-11-01

    Complexation of antibiotics with metals is a well-known phenomenon. Wastewater treatment plants contain metals and antibiotics, thus it is essential to know the effect of these complexes on toxicity towards microorganisms, typically present in secondary treatment processes. In this study, stability constants and toxicity of chlortetracycline (CTC) and metal (Ca, Mg, Cu and Cr) complexes were investigated. The calculated stability constants of CTC-metal complexes followed the order: Mg-CTC>Ca-CTC>Cu-CTC>Cr-CTC. Gram positive Bacillus thuringiensis (Bt) and Gram negative Enterobacter aerogenes (Ea) bacteria were used as model microorganisms to evaluate the toxicity of CTC and its metal complexes. CTC-metal complexes were more toxic than the CTC itself for Bt whereas for Ea, CTC and its metal complexes showed similar toxicity. In contrast, CTC spiked wastewater sludge (WWS) did not show any toxic effect compared to synthetic sewage. This study provides evidence that CTC and its metal complexes are toxic to bacteria when they are biologically available. As for WWS, CTC was adsorbed to solid part and was not biologically available to show measurable toxic effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Sorption of heavy metal ions on new metal-ligand complexes chemically derived from Lycopodium clavatum

    Energy Technology Data Exchange (ETDEWEB)

    Pehlivan, E.; Ersoz, M.; Yildiz, S. [Univ. of Selcuk, Konya (Turkey); Duncan, H.J. [Univ. of Glasgow, Scotland (United Kingdom)

    1994-08-01

    Sorption of heavy metal ions from aqueous solution has been investigated as a function of pH using a novel exchanger system whereby Lycopodium clavatum is functionalized with carboxylate and glyoxime metal-ligand complexes. The new ligand exchangers were prepared using a reaction of diaminosporopollenin with various metal-ligand complexes of glyoxime and monocarboxylic acid. The sorptive behavior of these metal-ligand exchangers and the possibilities to remove and to recover selectively heavy metal cations using these systems are discussed on the basis of their chemical natures and their complexing properties.

  5. SYNTHESIS AND CHARACTERIZATION OF SALICYLALDAZINE AND ITS METAL (II) COMPLEXES DERIVED FROM METAL (II) CHLORIDES

    OpenAIRE

    Jamila wazir

    2016-01-01

    The salicylaldazine (ligand) and its metal (II) complexes like copper (II), nickel (II), zinc (II), cobalt (II) and manganese (II) complexes has been synthesized and characterized by different techniques using FTIR, UV-VIS spectroscopy. The ligand (salicylaldazine) is synthesized by the condensation reaction of salicylaldehyde and hydrazine sulfate. The salicylaldazine metal (II) complexes like Cu (II) , Ni(II), Zn (II), Co(II), Mn(II) were prepared by using metal (II) chloride in dioxane. Th...

  6. Metal Complexes for Organic Optoelectronic Applications

    Science.gov (United States)

    Huang, Liang

    Organic optoelectronic devices have drawn extensive attention by over the past two decades. Two major applications for Organic optoelectronic devices are efficient organic photovoltaic devices(OPV) and organic light emitting diodes (OLED). Organic Solar cell has been proven to be compatible with the low cost, large area bulk processing technology and processed high absorption efficiencies compared to inorganic solar cells. Organic light emitting diodes are a promising approach for display and solid state lighting applications. To improve the efficiency, stability, and materials variety for organic optoelectronic devices, several emissive materials, absorber-type materials, and charge transporting materials were developed and employed in various device settings. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. In this thesis, Chapter 1 provides an introduction to the background knowledge of OPV and OLED research fields presented. Chapter 2 discusses new porphyrin derivatives- azatetrabenzylporphyrins for OPV and near infrared OLED applications. A modified synthetic method is utilized to increase the reaction yield of the azatetrabenzylporphyrin materials and their photophysical properties, electrochemical properties are studied. OPV devices are also fabricated using Zinc azatetrabenzylporphyrin as donor materials. Pt(II) azatetrabenzylporphyrin were also synthesized and used in near infra-red OLED to achieve an emission over 800 nm with reasonable external quantum efficiencies. Chapter 3, discusses the synthesis, characterization, and device evaluation of a series of tetradentate platinum and palladium complexesfor single doped white OLED applications and RGB white OLED applications. Devices employing some of the developed emitters demonstrated impressively high external quantum efficiencies within the range of 22%-27% for various emitter concentrations. And the palladium complex, i

  7. Molecular modeling of metal complexation by a fluoroquinolone antibiotic.

    Science.gov (United States)

    Aristilde, Ludmilla; Sposito, Garrison

    2008-11-01

    An understanding of the factors controlling the chemodynamics of fluoroquinolone antibiotics in different environmental matrices is a necessary prerequisite to the assessment of their potential impact on nontarget organisms in soils and receiving waters. Of particular interest are the complexes formed between fluoroquinolones and metal cations, which are believed to be important in the mechanism of sequestration of the antibiotic by minerals and natural organic matter. The structures of these complexes have not been fully resolved by conventional spectroscopy; therefore, molecular simulations may provide useful complementary insights. We present results from apparently the first molecular dynamics simulations of a widely used fluoroquinolone antibiotic, ciprofloxacin (Cipro), in aqueous complexes with five metal cations typically found in soils and surface waters: Ca2+, Mg2+, Fe2+, Na+, and K+. The interatomic potential functions employed in the simulations were validated by comparison with available structural data for solid-phase Cipro-hexahydrate and for the metal cations in aqueous solution. Although no comprehensive structural data on the aqueous complexes appear to be available, properties of the metal complexes predicted by our simulations agree with available data for solid-phase metal-Cipro complexes. Our results indicate that the ionic potential of the metal cation controls the stability of the complex formed and that the hydration number of the metal cation in aqueous solution determines its coordination number with O atoms in the metal-Cipro complex. In respect to environmental chemodynamics, our results imply that Cipro will form two configurations of bidendate chelates with metal centers on exposed surfaces of mineral oxides, water-bridged surface complexes with exchangeable cations in clay mineral interlayers, and cation-bridged complexes with functional groups in natural organic matter.

  8. Metal Ion Selectivity of Kojate Complexes: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Sarita Singh

    2013-01-01

    Full Text Available Density functional calculations have been performed on four-coordinate kojate complexes of selected divalent metal ions in order to determine the affinity of the metal ions for the kojate ion. The complexation reactions are characterized by high energies, showing that they are highly exothermic. It is found that Ni(II exhibits the highest affinity for the kojate ion, and this is attributed to the largest amount of charge transfer from the ligand to the metal ion. The Ni(II complex has distorted square planar structure. The HOMOs and LUMOs of the complexes are also discussed. All complexes display a strong band at ~1500 cm−1 corresponding to the stretching frequency of the weakened carbonyl bond. Comparison of the complexation energies for the two steps shows that most of the complexation energy is realized in the first step. The energy released in the second step is about one-third that of the first step.

  9. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    Science.gov (United States)

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  10. Newly Synthesized Doxorubicin Complexes with Selected Metals-Synthesis, Structure and Anti-Breast Cancer Activity.

    Science.gov (United States)

    Jabłońska-Trypuć, Agata; Świderski, Grzegorz; Krętowski, Rafał; Lewandowski, Włodzimierz

    2017-07-04

    Doxorubicin (DOX) is very effective chemotherapeutic agent, however it has several major drawbacks. Therefore the motivation for developing novel drug complexes as anticancer agents with different mechanism of action has arisen. The aim of the present study was to evaluate the influence of newly synthesized DOX complexes with selected metals (Mg, Mn, Co, Ni, Fe, Cu, Zn) on apoptosis, cell cycle, viability, proliferation and cytotoxicity in the breast cancer cell line MCF-7. Complexation of DOX with metals has likewise been the subject of our research. The current work showed that the tested bivalent metals at a given pH condition formed metal:DOX complexes in a ratio of 2:1, while iron complexes with DOX in a ratio of 3:1. The studies also showed that selected metal-DOX complexes (Mg-DOX, Mn-DOX, Ni-DOX) at 0.5 µM concentration significantly decreased cell viability and proliferation, however they increased caspase 7 activity. Results also indicated that studied metal-DOX complexes showed high cytotoxicity in MCF-7 cells. Therefore they were chosen for cell cycle check-points and apoptosis/necrosis analysis studied by flow cytometry. Obtained results suggest that doxorubicin complexed by specified metals can be considered as a potential anti-breast cancer agent, which is characterized by a higher efficacy than a parent drug.

  11. fusion on metal ion complexation of porphycene

    Indian Academy of Sciences (India)

    Complexation of −′ fused -extended porphycene, namely dinaphthoporphycene was carried out successfully with copper(II) and its solid state structure shows a square-type planar N4-coordination core. The photophysical and electrochemical properties of this complex, along with the nickel(II) complex were also ...

  12. Synthesis and characterization of transition metal complexes ...

    African Journals Online (AJOL)

    Basing on the above data, Fe(II) and Co(II) complexes of HMCFCH and HMPFCH have been assigned a dimeric octahedral geometry. VO(II) complexes of HMCFCH and HMPFCH have been assigned sulfate bridged dimeric square pyramidal geometry. Mn(II) complex of HMCFCH has been assigned a dimeric octahedral ...

  13. N-acyl thioureas - selective ligands for complexing of heavy metals and noble metals

    International Nuclear Information System (INIS)

    Schuster, M.

    1992-01-01

    Acyl thioureas are complexing agents for heavy metals that are easily produced and very stable. Their favourable toxicological data make them particularly suitable for industrial applications, e.g. detoxification of metallic process solutions or solvent extraction of metals. (orig.) [de

  14. Reactivity of monoolefin ligand in transition metal complexes

    International Nuclear Information System (INIS)

    Rybinskaya, M.I.

    1978-01-01

    The main tendencies in the coordinated olefin ligand property changes are discussed in the transition metal complexes in comparison with free olefins. The review includes the papers published from 1951 up to 1976. It has been shown that in complexes with transition metal cations olefin π-base acquires the ability to react with nucleophylic reagents. Olefin π-acids in complexes with zero valent metals are easily subjected to electrophylic reagent action. At coordination with transition metal cations the olefin properties are generally preserved, while in the zero-valent metal complexes the nonsaturated ligand acquires the properties of a saturated compounds. The ability of transition metal cations in complexes to intensify reactions of nucleophylic bimolecular substitution of vinyl halogen is clearly detected in contrast to the zero valent metal complexes. It has been shown that investigations of the coordinated olefin ligand reactivity give large possibilities in the further development of the organic synthesis. Some reactions are taken as the basis of important industrial processes

  15. Kinetics of the reactions of hydrated electrons with metal complexes

    International Nuclear Information System (INIS)

    Korsse, J.

    1983-01-01

    The reactivity of the hydrated electron towards metal complexes is considered. Experiments are described involving metal EDTA and similar complexes. The metal ions studied are mainly Ni 2+ , Co 2+ and Cu 2+ . Rates of the reactions of the complexes with e - (aq) were measured using the pulse radiolysis technique. It is shown that the reactions of e - (aq) with the copper complexes display unusually small kinetic salt effects. The results suggest long-range electron transfer by tunneling. A tunneling model is presented and the experimental results are discussed in terms of this model. Results of approximate molecular orbital calculations of some redox potentials are given, for EDTA chelates as well as for series of hexacyano and hexaquo complexes. Finally, equilibrium constants for the formation of ternary complexes are reported. (Auth./G.J.P.)

  16. Structural and thermal characterization of ternary complexes of piroxicam and alanine with transition metals: Uranyl binary and ternary complexes of piroxicam. Spectroscopic characterization and properties of metal complexes

    Science.gov (United States)

    Mohamed, Gehad G.

    2005-12-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO 2(II) complexes with piroxicam (Pir) drug (H 2L 1) and dl-alanine (Ala) (HL 2) and also the binary UO 2(II) complex with Pir were studied. The structures of the complexes were elucidated using elemental, IR, molar conductance, magnetic moment, diffused reflectance and thermal analyses. The UO 2(II) binary complex was isolated in 1:2 ratio with the formula [UO 2(H 2L) 2](NO 3) 2. The ternary complexes were isolated in 1:1:1 (M:H 2L 1:L 2) ratios. The solid complexes were isolated in the general formulae [M(H 2L)(L 2)(Cl) n(H 2O) m]· yH 2O (M = Fe(III) ( n = 2, m = 0, y = 1), Co(II) ( n = 1, m = 1, y = 2) and Ni(II) ( n = 1, m = 1, y = 0)); [M(H 2L)(L 2)](X) z· yH 2O (M = Cu(II) (X = AcO, z = 1, y = 0), Zn(II) (X = AcO, z = 1, y = 3) and UO 2(II) (X = NO 3, z = 1, y = 2)). Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data show that the complexes have octahedral geometry except Cu(II) and Zn(II) complexes have tetrahedral structures. The thermal decomposition of the complexes was discussed in relation to structure, and the thermodynamic parameters of the decomposition stages were evaluated.

  17. 3d-METAL COMPLEXES WITH BARBITURIC ACID DERIVATIVES

    Directory of Open Access Journals (Sweden)

    T. V. Koksharova

    2015-04-01

    Full Text Available The various aspects of the 3d-metal complexes with barbiturates and uric acid chemistry such as composition, structure, physicochemical properties, possible fields of application – have been illustrated in this review

  18. Thiosemicarbazone complexes of the platinum metals. A story of ...

    Indian Academy of Sciences (India)

    Unknown

    membered chelate rings; molecular modelling; five-membered chelate ring. 1. Introduction. The chemistry of transition metal complexes of thiosemicarbazones has been receiving considerable attention largely because of their pharmacological ...

  19. Mesoporous diphosphine-transition metal complex catalyst for hydroformylation

    NARCIS (Netherlands)

    Reek, J.N.H.; Coppens, M.O.

    2012-01-01

    The invention pertains to a diphosphine-transition metal complex comprising a diphosphine-transition metal ligand that is covalently bonded to an insoluble mesoporous support having an average pore diameter of from 4.5 nm to 50 nm, characterized in that the ligand as attached to the support has the

  20. Stability of complex coacervate core micelles containing metal coordination polymer

    NARCIS (Netherlands)

    Yan, Y.; Keizer, de A.; Cohen Stuart, M.A.; Drechsler, M.; Besseling, N.A.M.

    2008-01-01

    We report on the stability of complex coacervate core micelles, i.e., C3Ms (or PIC, BIC micelles), containing metal coordination polymers. In aqueous solutions these micelles are formed between charged-neutral diblock copolymers and oppositely charged coordination polymers formed from metal ions and

  1. Inkjet Printing of 3D Metallic Silver Complex Microstructures

    NARCIS (Netherlands)

    Wits, Wessel Willems; Sridhar, Ashok; Dimitrov, D.

    2010-01-01

    To broaden the scope of inkjet printing, this paper focuses on printing of an organic silver complex ink on glass substrates towards the fabrication of metallic 3D microstructures. The droplet formation sequence of the inkjet printer is optimised to print continuous layers of metal. A brief

  2. Biological activities of some Fluoroquinolones-metal complexes ...

    African Journals Online (AJOL)

    Background: Metal ions play a vital role in the design of more biologically active drugs. Aim: The paper reviewed the antimicrobial, toxicological and DNA cleavage studies of some synthesized metal complexes of fluoroquinolone antibiotics. Materials and Methods: Literature searches were done using scientific databases.

  3. DINUCLEAR METAL COMPLEXES DERIVED FROM A BIS ...

    African Journals Online (AJOL)

    Preferred Customer

    Electrothermal IA 9200, Digital Melting Point Apparatus and elemental analyses were undertaken using a Flash EA ... the reaction mixture was kept in an ice bath. The stirring was continued for ca. ... of methanol and triethylamine and then 0.58 mmol of metal salt, dissolved in the same solvent, was added to the suspension.

  4. Organometallic complexes of the platinum metals: Synthesis ...

    Indian Academy of Sciences (India)

    R ligands with [Rh(PPh3)3Cl] yields organorhodium complexes (7-R) analogous to 6-R, but without any hydrido intermediate. N-(2 -hydroxyphenyl)benzaldimines (hpbz-R) react with [Rh(PPh3)3Cl] to yield a group of organorhodium complexes (8-R), where the hpbz-R ligands are coordinated in CNO-fashion. Upon interac-.

  5. Synthesis, characterization and biological profile of metal and azo-metal complexes of embelin

    Directory of Open Access Journals (Sweden)

    R. Aravindhan

    2014-12-01

    Full Text Available The present study emphasizes synthesis and bioprofiling of embelin, embelin-metal (EM and embelin-azo-metal (EAM complexes in detail. EM complexes were prepared using pure embelin and d-block transition elements, namely Mn, Fe, Co, Ni, Cu, and Zn. Similarly, EAM complexes were synthesized using phenyl azo-embelin with the said transition metals. Embelin, EM, and EAM complexes were subjected to ultra violet visible spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance, electrospray ionization mass spectrometry, thermogravimetric analysis, carbon hydrogen nitrogen sulfur analysis. With regard to bioprofiling, the test complexes were studied for the antioxidant and antimicrobial activities. Results revealed that the prepared EM and EAM complexes form octahedral complexes with embelin with the yield in the range of 45–75%. All the instrumental analyses authenticate the interaction of metals with bidentate embelin through its enolic and quinonic oxygen atoms as [M(Emb2(H2O2]H2O and [M(Emb-Azo2(H2O2]. The antioxidant profile studies suggested that upon complexation with metals, the free radical scavenging activity of embelin reduced significantly. But, with regard to antimicrobial activity, cobalt and nickel embelin complexes displayed>80% growth inhibition in comparison with embelin alone. The hemolytic activity studies suggested that both embelin and the metal complexes are non-hemolytic. The reason for the reduction in antioxidant and an increase in antimicrobial activities were discussed in detail.

  6. Extraction of complexes of metal ions with pyridine oxyazo compounds

    International Nuclear Information System (INIS)

    Lobanov, F.I.; Nurtaeva, G.K.; Ergozhin, E.E.

    1983-01-01

    Modern state and prospects of the development of investigas tions in the field of extraction of complexes of metal ions (V, In, Cd, Nb, REE, RU, Ta, U, Zr and others) with pyridine oxyazo compoUnds are analyzed. Application of pyridine oxyazo compounds as extraction-photometric reagents is described. Basic methods of oxyazo compounds preparation are considered along with reagent properties and physical-chemical characteristics. Flow diagrams of ion extraction are presented for the above metals. Mechanisms of complexing reactions for metal ions with pyridine oxyazo compounds and stability of forming complexes are considered in detail. Concrete methods of extraction-photometric separation and element determination permitting to find simultaneously several metal ions with similar properties in the case of their joint presence are described

  7. Lability of nanoparticulate metal complexes in electrochemical speciation analysis

    DEFF Research Database (Denmark)

    van Leeuwen, Herman P.; Town, Raewyn M.

    2016-01-01

    equilibrium with the reduced concentration of the electroactive free M2+ in its diffusion layer. Since the metal ion binding sites are confined to the NP body, the conventional reaction layer in the form of a layer adjacent to the electrode surface is immaterial. Instead an intraparticulate reaction zone may...... of the electrochemical technique is crucial in the lability towards the electrode surface. In contrast, for nanoparticulate complexes it is the dynamics of the exchange of the electroactive metal ion with the surrounding medium that governs the effective lability towards the electrode surface.......Lability concepts are elaborated for metal complexes with soft (3D) and hard (2D) aqueous nanoparticles. In the presence of a non-equilibrium sensor, e.g. a voltammetric electrode, the notion of lability for nanoparticulate metal complexes, M-NP, reflects the ability of the M-NP to maintain...

  8. Multiheteromacrocycles that complex metal ions. Third progress report, 1 May 1976--30 April 1977

    International Nuclear Information System (INIS)

    Cram, D.J.

    1977-01-01

    The overall objective of this research is to design, synthesize and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes and clusters. Host organic compounds consist of strategically placed solvating, coordinating and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The specific compounds synthesized and their complexing and lipophilizing properties are summarized

  9. studies on transition metal complexes of herbicidal compounds. ii

    African Journals Online (AJOL)

    a

    donor and it forms binuclear octahedral metal complexes, possessing alkoxide bridging. Cobalt(II) complex exhibits thermochromism. Antimicrobial studies on ..... coordination. N1 or N3 may be involved in this process (Figure 1) [18-20]. (iii) Positive shifts in ν(C-O) and ν(N-H) are strong indications of the participation of the.

  10. Metal Complex Dyes for Dye-Sensitized Solar Cells: Recent ...

    Indian Academy of Sciences (India)

    Compared with organic dyes, inorganic metal complex dyes have high thermal and chemical stability. Among these complexes, polypyridyl ruthenium sensitizers were widely used and investi- gated for their high stability and outstanding redox properties and good response to natural visible sunlight. The sensitizers an-.

  11. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    Science.gov (United States)

    Lyons, James E.; Ellis, Jr., Paul E.; Wagner, Richard W.

    1996-01-01

    Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  12. Mixed metal complexes of isoniazid and ascorbic acid: chelation ...

    African Journals Online (AJOL)

    Novel mixed complexes of isoniazid and ascorbic acid have been synthesized and characterized using infrared, electronic absorption data, elemental analysis, molar conductivity, melting point, thin layer chromatography and solubility. The metal ions involved in the complex formation are Cu2+, Zn2+ and Cd2+. The melting ...

  13. Functionalization of protein crystals with metal ions, complexes and nanoparticles.

    Science.gov (United States)

    Abe, Satoshi; Maity, Basudev; Ueno, Takafumi

    2018-04-01

    Self-assembled proteins have specific functions in biology. With inspiration provided by natural protein systems, several artificial protein assemblies have been constructed via site-specific mutations or metal coordination, which have important applications in catalysis, material and bio-supramolecular chemistry. Similar to natural protein assemblies, protein crystals have been recognized as protein assemblies formed of densely-packed monomeric proteins. Protein crystals can be functionalized with metal ions, metal complexes or nanoparticles via soaking, co-crystallization, creating new metal binding sites by site-specific mutations. The field of protein crystal engineering with metal coordination is relatively new and has gained considerable attention for developing solid biomaterials as well as structural investigations of enzymatic reactions, growth of nanoparticles and catalysis. This review highlights recent and significant research on functionalization of protein crystals with metal coordination and future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Degradation of metal-nitrilotriacetate complexes by Chelatobacter heintzii

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, H. Jr.; Girvin, D.C.; Plymale, A.E.; Harvey, S.D.; Workman, D.J. [Pacific Northwest Lab., Richland, WA (United States)

    1996-03-01

    Nitrilotriacetic acid (NTA) is a synthetic chelating agent that can form strong water-soluble complexes with a wide range of radionuclide and metal ions and has been used to decontaminate nuclear reactors and in the processing of nuclear materials. The codisposal of NTA or other synthetic chelating agents with radionuclides may result in increased dispersal of radionuclides in soil and subsurface environments. Understanding the influence of aqueous geochemistry on NTA degradation is essential to predict the mobility and fate of inorganic contaminant-NTA complexes in the subsurface. Chelatobacter heintzii (ATCC 29600) was shown to degrade {sup 14}C-labeled NTA to {sup 14}CO{sub 2} with first-order kinetics at concentrations ranging from 0.05 to 5.23 {mu}M (0.01-1 {mu}g of NTA mL{sup -1}). The degradation of various metal-NTA complexes was investigated under conditions in which NTA was predominantly present as the metal-NTA complex, and the order for the rates of degradation is given. The degradability of the various metal-NTA complexes was not related to their thermodynamic stability constants, but was related to the lability of the various metal-NTA complexes or the relative rates of formation of HNTA{sup 2-}. 58 refs., 5 figs., 2 tabs.

  15. DFT study on metal-mediated uracil base pair complexes

    Directory of Open Access Journals (Sweden)

    Ayhan Üngördü

    2017-11-01

    Full Text Available The most stable of metal-mediated uracil base pair complexes were determined. Method was used density functional theory, B3LYP. The calculations of systems containing C, H, N, O were described by 6-311++G(d,p and cc-PVTZ basis sets and LANL2DZ and SDD basis sets was used for transition metals. Then Egap values of complexes were calculated and the electrical conductivity of the complexes for single nanowires was studied by band theory. Metal-mediated uracil base pair complexes which will be used as conductive wires in nanotechnology were predicted. In nanoworld, this study is expected to show a way for practical applications.

  16. Pharmacologically significant tetraaza macrocyclic metal complexes ...

    Indian Academy of Sciences (India)

    MOHAMMAD SHAKIR

    2017-11-22

    Nov 22, 2017 ... along with medical sector (up to 60% of the total human infections are provoked by biofilms).24–26 The Candida biofilms formation has an important ..... 784.01 respectively, correspond to the nitrogen isotope. The mass spectra of Schiff base macrocyclic complexes of Co(II), (a) Ni, (b) Cu(II), (c) and Zn(II), ...

  17. Macrocyclic metal complexes for metalloenzyme mimicry and sensor development.

    Science.gov (United States)

    Joshi, Tanmaya; Graham, Bim; Spiccia, Leone

    2015-08-18

    Examples of proteins that incorporate one or more metal ions within their structure are found within a broad range of classes, including oxidases, oxidoreductases, reductases, proteases, proton transport proteins, electron transfer/transport proteins, storage proteins, lyases, rusticyanins, metallochaperones, sporulation proteins, hydrolases, endopeptidases, luminescent proteins, iron transport proteins, oxygen storage/transport proteins, calcium binding proteins, and monooxygenases. The metal coordination environment therein is often generated from residues inherent to the protein, small exogenous molecules (e.g., aqua ligands) and/or macrocyclic porphyrin units found, for example, in hemoglobin, myoglobin, cytochrome C, cytochrome C oxidase, and vitamin B12. Thus, there continues to be considerable interest in employing macrocyclic metal complexes to construct low-molecular weight models for metallobiosites that mirror essential features of the coordination environment of a bound metal ion without inclusion of the surrounding protein framework. Herein, we review and appraise our research exploring the application of the metal complexes formed by two macrocyclic ligands, 1,4,7-triazacyclononane (tacn) and 1,4,7,10-tetraazacyclododecane (cyclen), and their derivatives in biological inorganic chemistry. Taking advantage of the kinetic inertness and thermodynamic stability of their metal complexes, these macrocyclic scaffolds have been employed in the development of models that aid the understanding of metal ion-binding natural systems, and complexes with potential applications in biomolecule sensing, diagnosis, and therapy. In particular, the focus has been on "coordinatively unsaturated" metal complexes that incorporate a kinetically inert and stable metal-ligand moiety, but which also contain one or more weakly bound ligands, allowing for the reversible binding of guest molecules via the formation and dissociation of coordinate bonds. With regards to mimicking

  18. Dinuclear metal complexes derived from a bis-chelating heterocyclic ...

    African Journals Online (AJOL)

    The analytical data indicate that the metal to ligand ratio is 2:1 in all the complexes. The coordination of triethylamine, water and chloride ion are observed in the Co(II), Zn(II) and Ni(II) complexes. The absence of ionizable or coordinated chloride in Cu(II) complex is a notable feature. Octahedral geometry for Co(II), Zn(II) and ...

  19. Preparation and Characterization of Double Metal Cyanide Complex Catalysts

    Directory of Open Access Journals (Sweden)

    Weilin Guo

    2003-01-01

    Full Text Available A series of double metal cyanide (DMC complex catalysts were prepared in two different methods by using ß-cyclodextrin, PEG-1000 and Tween-60 as an additional complex ligands respectively. It was showed that a mixture of crystalline and amorphous DMC was synthesized by using traditional method in which the additional complex ligand was added after the precipitation of DMC. Amorphous and dispersed DMC with higher activity could be obtained when the additional complex ligand was added in the reactant solution before reaction. The effect of additional complex ligand and preparation method on the crystalline state and catalytic property of DMC were also investigated.

  20. Antimicrobial evaluation of new metallic complexes with xylitol active against P. aeruginosa and C. albicans: MIC determination, post-agent effect and Zn-uptake.

    Science.gov (United States)

    Santi, E; Facchin, G; Faccio, R; Barroso, R P; Costa-Filho, A J; Borthagaray, G; Torre, M H

    2016-02-01

    Xylitol (xylH5) is metabolized via the pentose pathway in humans, but it is unsuitable as an energy source for many microorganisms where it produces a xylitol-induced growth inhibition and disturbance in protein synthesis. For this reason, xylitol is used in the prophylaxis of several infections. In the search of better antimicrobial agents, new copper and zinc complexes with xylitol were synthesized and characterized by analytical and spectrosco pic methods: Na2[Cu3(xylH−4)2]·NaCl·4.5H2O (Cu-xyl) and [Zn4(xylH−4)2(H2O)2]·NaCl·3H2O (Zn-xyl). Both copper and zinc complexes presented higher MIC against Pseudomona aeruginosa than the free xylitol while two different behaviors were found against Candida albicans depending on the complex. The growth curves showed that Cu-xyl presented lower activity than the free ligand during all the studied period. In the case of Znxyl the growth curves showed that the inhibition of the microorganism growth in the first stage was equivalent to that of xylitol but in the second stage (after 18 h) Zn-xyl inhibited more. Besides, the PAE (post agent effect)obtained for Zn-xyl and xyl showed that the recovery from the damage of microbial cells had a delay of 14 and 13 h respectively. This behavior could be useful in prophylaxis treatments for infectious diseases where it is important that the antimicrobial effect lasts longer. With the aim to understand the microbiological activities the analysis of the particle size, lipophilicity and Zn uptake was performed.

  1. Magnetite-sulfide-metal complexes in the Allende meteorite

    Science.gov (United States)

    Haggerty, S. E.; Mcmahon, B. M.

    1979-01-01

    A model of liquid immiscibility is presented that seemingly accounts for the sulfide-oxide-metal complexes that are present in olivine-rich chondrules in the Allende meteorite. The four major assemblages that are identified are: (1) magnetite + Ni-Fe metal; (2) magnetite + troilite + Ni-Fe metal; (3) magnetite + troilite + pentlandite + Ni-Fe metal; and (4) troilite + or - pentlandite. Specific attention is focused on oxide-metal associations and experimental data confirm earlier suggestions that magnetite results from the oxidation of an initially high-Fe-content metal alloy. Oxidation decreases the modal abundance of the Fe metal and this is accompanied by substantial increases in Ni contents which reach a maximum of approximately 70 wt % Ni. The proposed oxidation mechanism is entirely consistent with condensation of Fe-metal + olivine (Fa5) that subsequently reequilibrated at lower temperatures. Although the sulfide constituents could also have formed by the reaction of Fe-Ni metal + gaseous H2S, sulfide immiscibility under increased conditions of partial O2 pressure is the preferred process.

  2. Characterization of the anti tumoral activity of the thiosemicarbazones derived from N(4)-methyl-tolyl-2acetylpyridine And 2-pyridinoformamide and its metal complex: evaluation of the radiopharmaceutical potential

    International Nuclear Information System (INIS)

    Silva, Paulo Roberto Ornelas da

    2008-01-01

    Thiosemicarbazones have attracted great pharmacological interest because of their biological properties, such as cytotoxic activity against multiple strains of human tumors. The most studied compounds are pyridine-based because of their resemblance to pyridoxal metabolites that attach to co-enzyme B 6 -dependant enzymes. This work aimed the characterization of the anti tumoral effect of N(4)-methyl-tolyl-2-acetylpyridine and 2-pyridinoformamide-derived thiosemicarbazones and the development of a radiopharmaceutical based on a thiosemicarbazone metal complex for positron emission tomography. In the first phase of this study were synthesized twenty-one thiosemicarbazones, derived from N(4)methyl-2 acetylpyridine and 2-pyridine formamide, as well as their metal complexes (Sn, Ga and Cu). Their cytotoxic potential were evaluated against brain and breast tumor cells in vitro. Our results showed all of them presented powerful cytotoxic and antiproliferative activities against glioblastoma multiform and breast adenocarcinoma at very low concentrations (nanomolar range). Morphological alterations characteristic of apoptosis, such as cell shrinkage, chromatin condensation were observed. Copper chloride was used as control and has presented IC50 at millimolar range suggesting that copper complexation with thiosemicarbazone significantly increases (more than 1 million) the anti tumoral effect of this metal. Due to the potent anti tumoral activity of N(4)-methyl-tolyl-2-acetylpyridine derived thiosemicarbazones and the excellent properties of 64 Cu (T 1/2 = 12.7 hours, β + , β - , and EC decay), at the second part for this work it was developed a new imaging agent (radiopharmaceutical) for tumor detection by positron emission tomography (PET). The radiopharmaceuticals were produced in the nuclear reactor TRIGA-IPR-R1 from CDTN, via neutron capture reaction 63 Cu (n,γ) 64 Cu, of the copper complex N(4)-ortho-toluyl-2-acetylpyridine thiosemicarbazone (Culac). The induced

  3. Metal complexes and solvent extraction properties of isonitrosoacetophenone 2-aminobenzoylhydrazone.

    Science.gov (United States)

    Gup, Ramazan; Giziroğlu, Emrah

    2006-11-01

    Three types of copper complexes as well as an oximate-bridged nickel complex with isonitrosoacetophenone 2-aminobenzoylhydrazone (H(2)L) have been prepared in ethanolic solution and characterized by elemental analyses, IR, (1)H NMR, UV-vis and magnetic susceptibility measurement. IR spectra show the ligand coordinates as a neutral, monoanionic and dianionic O,N,N-tridentate acylhydrazoneoxime ligand depending reaction conditions and metal salts employed. The elemental analyses results, spectroscopic and magnetic data are consistent with the formation of mononuclear copper complexes and binuclear complexes with both copper and nickel. The effects of varying pH and solvent on the absorption behavior of both ligand and complexes have been investigated. The extraction ability of acylhydrazoneoxime ligand has been examined by the liquid-liquid extraction of selected transition metal [Cu(2+), Ni(2+), Co(2+), Cr(3+), Hg(2+), Zn(2+), Cd(2+) and Mn(2+)] cations. The ligand shows strong binding ability toward copper(II) ion.

  4. Studies On Some Acid Divalent-Metal Nitrilotriacetate Complexes

    Directory of Open Access Journals (Sweden)

    N. E. Milad

    2000-10-01

    Full Text Available IR and 1H-NMR studies on nitrilotriacetic acid (H3NTA suggest that the acid exists in the zwitterion form, which allows the existence of intermolecular hydrogen bonding. A tetrahedral structure is established for eleven (1:1 anhydrous acid-metal (II nitrilotriacetates complexes. The ten Dq values for the colored complexes were determined spectrophotometrically. The pKa values for the eleven acid metal complexes [M(HNTA].(OH23] were determined and compared with the corresponding pKa values of the [M(OH2n]+2 ions and also with the log β1 values of the corresponding [M(NTA]- complexes. X-ray diffraction studies on the ligand and on eight of these complexes are described.

  5. DNA interactions and biocidal activity of metal complexes of ...

    Indian Academy of Sciences (India)

    Narendrula Vamsikrishna

    115.3. 2.4 Synthesis of metal complexes. To a hot methanolic solution of the Schiff base [2-(-(benzo. [d]thiazol-6-ylimino)methyl)-4-chlorophenol/2-(-(benzo[d] thiazol-6-ylimino)methyl)-4-nitrophenol] (10 mmol), a solu- tion of metal(II) acetate of copper, nickel or cobalt (10 mmol) in hot methanol was added drop wise and the ...

  6. Homogeneous Catalysis with Metal Complexes Fundamentals and Applications

    CERN Document Server

    Duca, Gheorghe

    2012-01-01

    The book about homogeneous catalysis with metal complexes deals with the description of the reductive-oxidative, metal complexes  in a liquid phase (in polar solvents, mainly in water, and less in nonpolar solvents). The exceptional importance of the redox processes in chemical systems, in the reactions occuring in living organisms, the environmental processes, atmosphere, water, soil, and in industrial technologies (especially in food-processing industries) is discussed. The detailed practical aspects of the established regularities are explained for solving the specific practical tasks in various fields of industrial chemistry, biochemistry, medicine, analytical chemistry and ecological chemistry. The main scope of the book is the survey and systematization of the latest advances in homogeneous catalysis with metal complexes. It gives an overview of the research results and practical experience accumulated by the author during the last decade.

  7. Vacuum filling of complex microchannels with liquid metal.

    Science.gov (United States)

    Lin, Yiliang; Gordon, Olivia; Khan, M Rashed; Vasquez, Neyanel; Genzer, Jan; Dickey, Michael D

    2017-09-12

    This paper describes the utilization of vacuum to fill complex microchannels with liquid metal. Microchannels filled with liquid metal are useful as conductors for soft and stretchable electronics, as well as for microfluidic components such as electrodes, antennas, pumps, or heaters. Liquid metals are often injected manually into the inlet of a microchannel using a syringe. Injection can only occur if displaced air in the channels has a pathway to escape, which is usually accomplished using outlets. The positive pressure (relative to atmosphere) needed to inject fluids can also cause leaks or delamination of the channels during injection. Here we show a simple and hands-free method to fill microchannels with liquid metal that addresses these issues. The process begins by covering a single inlet with liquid metal. Placing the entire structure in a vacuum chamber removes the air from the channels and the surrounding elastomer. Restoring atmospheric pressure in the chamber creates a positive pressure differential that pushes the metal into the channels. Experiments and a simple model of the filling process both suggest that the elastomeric channel walls absorb residual air displaced by the metal as it fills the channels. Thus, the metal can fill dead-ends with features as small as several microns and branched structures within seconds without the need for any outlets. The method can also fill completely serpentine microchannels up to a few meters in length. The ability to fill dense and complex geometries with liquid metal in this manner may enable broader application of liquid metals in electronic and microfluidic applications.

  8. Utility industry evaluation of the metal fuel facility and metal fuel performance for liquid metal reactors

    International Nuclear Information System (INIS)

    Burstein, S.; Gibbons, J.P.; High, M.D.; O'Boyle, D.R.; Pickens, T.A.; Pilmer, D.F.; Tomonto, J.R.; Weinberg, C.J.

    1990-02-01

    A team of utility industry representatives evaluated the liquid metal reactor metal fuel process and facility conceptual design being developed by Argonne National Laboratory (ANL) under Department of Energy sponsorship. The utility team concluded that a highly competent ANL team was making impressive progress in developing high performance advanced metal fuel and an economic processing and fabrication technology. The utility team concluded that the potential benefits of advanced metal fuel justified the development program, but that, at this early stage, there are considerable uncertainties in predicting the net overall economic benefit of metal fuel. Specific comments and recommendations are provided as a contribution towards enhancing the development program. 6 refs

  9. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....

  10. Physicochemical and biological properties of new steroid metal complexes

    International Nuclear Information System (INIS)

    Huber, R.

    1980-04-01

    The aim of this investigation was to prepare stable steroid metal chelates by chemical conversion of the natural steroid hormones testerone, 5α-dihydrotestosterone (5α-DHT) and estradiol and to characterize these by means of their spectroscopic and other physico-chemical properties. In addition, various measuring techniques for the qualitative and quantitative study of complex stabilities and hydrolytic properties were employed. The distribution of some tritiated steroid metal complexes in the tissues of rats was tested using whole animal autoradiography, mainly with a view to identifying whether selective concentration occurs in certain organs. (orig.) [de

  11. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....

  12. Noncontact Surface Roughness Estimation Using 2D Complex Wavelet Enhanced ResNet for Intelligent Evaluation of Milled Metal Surface Quality

    Directory of Open Access Journals (Sweden)

    Weifang Sun

    2018-03-01

    Full Text Available Machined surfaces are rough from a microscopic perspective no matter how finely they are finished. Surface roughness is an important factor to consider during production quality control. Using modern techniques, surface roughness measurements are beneficial for improving machining quality. With optical imaging of machined surfaces as input, a convolutional neural network (CNN can be utilized as an effective way to characterize hierarchical features without prior knowledge. In this paper, a novel method based on CNN is proposed for making intelligent surface roughness identifications. The technical scheme incorporates there elements: texture skew correction, image filtering, and intelligent neural network learning. Firstly, a texture skew correction algorithm, based on an improved Sobel operator and Hough transform, is applied such that surface texture directions can be adjusted. Secondly, two-dimensional (2D dual tree complex wavelet transform (DTCWT is employed to retrieve surface topology information, which is more effective for feature classifications. In addition, residual network (ResNet is utilized to ensure automatic recognition of the filtered texture features. The proposed method has verified its feasibility as well as its effectiveness in actual surface roughness estimation experiments using the material of spheroidal graphite cast iron 500-7 in an agricultural machinery manufacturing company. Testing results demonstrate the proposed method has achieved high-precision surface roughness estimation.

  13. Degradation of metal-nitrilotriacetate complexes by nitrilotriacetate monooxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Xun, L.; Reeder, R.B. [Washington State Univ. at Tri-Cities, Richland, WA (United States)]|[Pacific Northwest National Lab., Richland, WA (United States); Plymale, A.E.; Girvin, D.C.; Bolton, H. Jr. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-05-01

    Studies of metal-NTA complex degradation using NTA monooxygenase (NTA-Mo) can provide a mechanistic understanding of NTA degradatioon and lead to approaches to remediate recalcitrant metal-NTA complexes (e.g., NiNTA{sup -}). NTA can exist in aqueous systems as various species depending upon the pH and types and concentrations of ions present (e.g., HNTA{sup 2-}, CaNTA{sup -}, MgNTA{sup -}). An understanding of the aqueous speciation of NTA is necessary to determine the substrate range of NTA complexes degraded by NTA-Mo. The protonated form of NTA (HNTA{sup 2-}) and CaNTA{sup -} were not degraded by NTA-Mo, while MgNTA{sup -}, MnNTA{sup -}, CoNTA{sup -}, FeNTA{sup -}, NiNTA{sup -}, and ZnNTA{sup -} were degraded with similar K{sub m}`s. This is surprising because these metal-NTA complexes have different rates of biodegradation by whole cells. This suggests that biodegradation of various metal-NTA complexes is limited by the rate of transport into the cell and that NTA-Mo may be useful for degrading metal-NTA complexes recalcitrant to degradation by whole cells. In mixed systems containing both substrate (MgNTA{sup -}) and nonsubstrate (CaNTA{sup -}), aqueous speciation modeling was able to provide the substrate concentration, which correlated well with the rate data (r{sup 2} = 0.95). This demonstrates that aqueous speciation modeling can be used to predict the rate of NTA degradation by NTA-Mo for complex systems containing multiple species. 21 refs., 3 tabs.

  14. Luminescent molecular rods - transition-metal alkynyl complexes.

    Science.gov (United States)

    Yam, Vivian Wing-Wah; Wong, Keith Man-Chung

    2005-01-01

    A number of transition-metal complexes have been reported to exhibit rich luminescence, usually originating from phosphorescence. Such luminescence properties of the triplet excited state with a large Stoke's shift, long lifetime, high luminescence quantum yield as well as lower excitation energy, are envisaged to serve as an ideal candidate in the area of potential applications for chemosensors, dye-sensitized solar cells, flat panel displays, optics, new materials and biological sciences. Organic alkynes (poly-ynes), with extended or conjugatedπ-systems and rigid structure with linear geometry, have become a significant research area due to their novel electronic and physical properties and their potential applications in nanotechnology. Owing to the presence of unsaturated sp-hybridized carbon atoms, the alkynyl unit can serve as a versatile building block in the construction of alkynyl transition-metal complexes, not only throughσ-bonding but also viaπ-bonding interactions. By incorporation of linear alkynyl groups into luminescent transition-metal complexes, the alkynyl moiety with goodσ-donor,π-donor andπ-acceptor abilities is envisaged to tune or perturb the emission behaviors, including emission energy (color), intensity and lifetime by its role as an auxiliary ligand as well as to govern the emission origin from its direct involvement. This review summarizes recent efforts on the synthesis of luminescent rod-like alkynyl complexes with different classes of transition metals and details the effects of the introduction of alkynyl groups on the luminescence properties of the complexes.

  15. Dinuclear transition metal complexes in carbon nanostructured materials synthesis

    Science.gov (United States)

    Ayuso, J. I.; Hernández, E.; Delgado, E.

    2013-06-01

    Carbon nanomaterials (CNMs) were prepared with two similar techniques using organometallic complexes as catalysts precursors. Chemical vapour deposition (CVD) and pyrolysis with chlorine gas approaches were employed in order to explore the effect of dinuclear transition metal compounds [Fe2(CO)6(μ-S2C6H2X2), (X=OH, Cl)] in synthesis of CNMs. Our to-date results have shown these complexes generate different carbonaceous materials when they are used in bulk, it was also observed that their performances in synthesis differ even though these compounds are analogous. With X=OH complex used in CVD process, metal nanoparticles of ca. 20-50 nm in size and embedded in carbon matrix were obtained. X=C1 complex has been used in pyrolysis experiments and showed an entire volatilisation or no reaction, depending on selected temperature. Furthermore, obtaining of a new tetranuclear iron cluster is presented in this work.

  16. Evaluating Metal Probe Meters for Soil Testing.

    Science.gov (United States)

    Hershey, David R.

    1992-01-01

    Inexpensive metal probe meters that are sold by garden stores can be evaluated by students for their accuracy in measuring soil pH, moisture, fertility, and salinity. The author concludes that the meters are inaccurate and cannot be calibrated in standard units. However, the student evaluations are useful in learning the methods of soil analysis…

  17. Synthesis and characterization of some metal complexes derived from azo compound of 4,4‧-methylenedianiline and antipyrine: Evaluation of their biological activity on some land snail species

    Science.gov (United States)

    AbouEl-Enein, Saeyda A.; Emam, Sanaa M.; Polis, Magdy W.; Emara, Esam M.

    2015-11-01

    A novel series of metal complexes of the azo dye; bis-(1,5-dimethyl-4-[(E)-(3-methylphenyl)diazenyl]-2-phenyl-1,2-dihydro-3H-pyrazol-3-one) derived from 4,4‧-methylenedianiline and antipyrine was synthesized and characterized by different spectral, thermal and analytical methods. The tetradentate ligand reacts with the metal ions as a half unit. All complexes display an octahedral geometry, except Pd(II) complex (7) which has a square planar one. The thermal studies reveal that the complexes have higher thermal stability comparable with that of the free ligand. The activation thermodynamic parameters, such as activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*) have been calculated using DTG curves. The ESR spectra of the solid Cu(II) complexes showed an axial symmetry with 2B1g as a ground state and hyperfine structure. The biological activities of the ligand, as well as its metal complexes have been tested in vitro against two land snail species; Eobania vermiculata and Monacha obstructa. The results show that all the tested compounds have significant biological activities against the two tested land snail species with different sensitivity levels.

  18. Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde.

    Science.gov (United States)

    Anitha, C; Sheela, C D; Tharmaraj, P; Sumathi, S

    2012-10-01

    A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, (1)H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber

  19. The role of metal complexes in nuclear reactor decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Prince, A.A.M.; Raghavan, P.S.; Gopalan, R. [Madras Christian College, Tambaram, Chennai (India); Velmurugan, S.; Narasimhan, S.V. [Bhabha Atomic Research Center (BARC) (IN). Water and Steam Chemistry Lab. (WSCL)

    2006-07-15

    Chemical decontamination is the process of removal of radioactivity from corrosion products formed on structural materials in the nuclear reactors. These corrosion products cause problems for the operation and maintenance of the plants. Removal of the radioactive contaminants can be achieved by dissolving the oxide from the system surface using organic complexing agents in low concentrations known as dilute chemical decontamination (DCD) formulations. These organic complexing agents attack the oxide surface and form metal complexes, which further accelerate the dissolution process. The stability of the complexes plays an important role in dissolving the radioactive contaminated oxides. In addition, the DCD process is operated through ion exchange resins for the removal of the dissolved metal ions and radioactive nuclides. In the present study, the kinetics of dissolution of various model corrosion products such as magnetite (Fe{sub 3}O{sub 4}), hematite ({alpha}-Fe{sub 2}O{sub 3}) and maghemite ({gamma}-Fe{sub 2}O{sub 3}) have been studied in the presence of complexing agents such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), hydroxyethylethylenediaminepentaacetic acid (HEEDTA), and 2,6 pyridinedicarboxylic acid (PDCA). The reductive roles of metal complexes and organic reducing agents are discussed. (orig.)

  20. Method for synthesizing metal bis(borano) hypophosphite complexes

    Science.gov (United States)

    Cordaro, Joseph G.

    2013-06-18

    The present invention describes the synthesis of a family of metal bis(borano) hypophosphite complexes. One procedure described in detail is the syntheses of complexes beginning from phosphorus trichloride and sodium borohydride. Temperature, solvent, concentration, and atmosphere are all critical to ensure product formation. In the case of sodium bis(borano) hypophosphite, hydrogen gas was evolved upon heating at temperatures above 150.degree. C. Included in this family of materials are the salts of the alkali metals Li, Na and K, and those of the alkaline earth metals Mg and Ca. Hydrogen storage materials are possible. In particular the lithium salt, Li[PH.sub.2(BH.sub.3).sub.2], theoretically would contain nearly 12 wt % hydrogen. Analytical data for product characterization and thermal properties are given.

  1. Metal-citrate complex transport in Kineococcus radiotolerans.

    Science.gov (United States)

    Huta, Brian P; Miller, Nigel H; Robertson, Eleanor L; Doyle, Robert P

    2018-03-01

    The growth of an organism is highly dependent on the acquisition of carbon and metals, and availability of these nutrients in the environment affects its survival. Organisms can obtain both nutrients simultaneously through proteins of the CitMHS superfamily. Bioinformatic studies suggested a CitMHS gene (Accession number ABS03965.1) in Kineococcus radiotolerans. Radio flux assays following 14-C radiolabelled citrate, either free or complexed to a variety of metal ions, in K. radiotolerans demonstrated internalization of the citrate when bound to select metal ions only, primarily in the form of calcium-citrate. A pH response was also observed, consistent with a permease (ATP independent) mechanism as noted for other CitMHS family members, with greater uptake at pH 7 compared to pH 10. These results confirm the ability of K. radiotolerans to transport complexed citrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electrocatalysis of Hydrogen Evolution by Transition Metal Complexes

    Czech Academy of Sciences Publication Activity Database

    Heyrovský, Michael

    2001-01-01

    Roč. 66, č. 1 (2001), s. 67-80 ISSN 0010-0765 R&D Projects: GA ČR GV204/97/K084 Institutional research plan: CEZ:AV0Z4040901 Keywords : transition metals * thiocyanate complexes * electroreduction Subject RIV: CG - Electrochemistry Impact factor: 0.778, year: 2001

  3. A comprehensive in vitro biological investigation of metal complexes ...

    African Journals Online (AJOL)

    Md. Mahabob Ullah Mazumder

    Objective: The inquisitive objective of the study was to observe the antimicrobial, cytotoxicity, and antioxidant activities of some newly synthesized metal complexes of tolfenamic acid. Methods: While antimicrobial activity was studied by disk diffusion method, cytotoxicity was studied by performing brine shrimp lethality ...

  4. Structural systematics of some metal complexes with 4,5 ...

    Indian Academy of Sciences (India)

    dafone in dimethyl formamide at 402 nm is found to be quenched in these reported dafone complexes (1-4). Keywords. Transition metal ions; imine ligand; crystal structure; fluorescence. 1. Introduction. Design and synthesis of coordination compounds of different nuclearity ... hydroxide (E Merck, India), cobalt(II) perchlorate.

  5. Schiff base transition metal complexes for Suzuki–Miyaura cross ...

    Indian Academy of Sciences (India)

    RASHEEDA M ANSARI

    2017-08-19

    Aug 19, 2017 ... Abstract. Schiff base ligand and its complex with iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) ions were synthesized using 4-aminoacetophenone and salicylaldehyde and characterized. FTIR spectrum shows that bidentate coordination of metal ions with ligand where O, N are electron donating sites of ...

  6. Metathesis synthesis and characterization of complex metal fluoride ...

    Indian Academy of Sciences (India)

    Administrator

    V MANIVANNAN*, P PARHI and JONATHAN W KRAMER. Department of Mechanical Engineering, Campus Delivery 1374, Colorado State University, Fort Collins,. CO 80523, USA. MS received 30 April 2008. Abstract. Metathesis synthesis of complex metal fluorides using mechanochemical activation has been reported.

  7. A new Mannich base and its transition metal (II) complexes ...

    Indian Academy of Sciences (India)

    Unknown

    some metal complexes of this type of Mannich base and investigate its bonding characteristics. We herein report a new Mannich base, N-(1-morpholinoben- zyl) semicarbazide formed by the three-component condensation, containing active hydrogen on nitro- gen (morpholine), benzaldehyde and semicarbazide.

  8. Bovine Serum Albumin Metal Complexes for Mimic of SOD

    Indian Academy of Sciences (India)

    Furthermore, the scavenging superoxide anion free radical (O•−₂ ) activity of biopolymer-metal complexes were determined by nitroblue tetrazolium light reduction assay method. The antioxidant capacity of BSA-M has markedly increased. The conjugated BSA-M (M=Cu, Mn) showed preeminent scavenging activity ...

  9. Metal oxalate complexes as novel inorganic dopants: Studies on ...

    Indian Academy of Sciences (India)

    Unknown

    Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline. R MURUGESAN† and E SUBRAMANIAN*. Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, India. †Deputed on F.I.P. from Department of Chemistry, T.D.M.N.S. College ...

  10. Dimeric Complexes of Tryptophan with M2+ Metal Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.

    2009-01-01

    IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and

  11. Are 90Y metal ligand complexes possible antineoplastics?

    International Nuclear Information System (INIS)

    Schomaecker, K.; Franke, W.G.; Muenze, R.; Medizinische Akademie, Dresden

    1989-01-01

    Treatment of tumor-bearing mice with 90 Y-citrate revealed a significant influence on tumor growth and survival time. The radiotherapeutic effect depended on the kind of tumor as well as on the form of application. Promising results were gained with 90 Y metal ligand complexes both in pelliative treatment of skeletal metastases and in soft tissue tumor therapy

  12. Metal Complex Dyes for Dye-Sensitized Solar Cells: Recent ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 9. Metal Complex Dyes for Dye-Sensitized Solar Cells: ... Author Affiliations. N Sekar1 Vishal Y Gehlot. Dyestuff Technology Department Institute of Chemical Technology (Formerly UDCT) Nathalal Parekh Marg Matunga Mumbai 400 019, India.

  13. Schiff base transition metal complexes for Suzuki–Miyaura cross ...

    Indian Academy of Sciences (India)

    Schiff base ligand and its complex with iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) ions were synthesized using 4-aminoacetophenone and salicylaldehyde and characterized. FTIR spectrum shows that bidentate coordination of metal ions with ligand where O, N are electron donating sites of azomethine group.

  14. Bovine Serum Albumin Metal Complexes for Mimic of SOD

    Indian Academy of Sciences (India)

    consequence, it can be considered as a bio-functional mimic of enzyme SOD and has a promising application prospect in antioxidant drug field. Keywords. Bovine serum albumin; biopolymer metal complexes; superoxide; free radical; scavenging activity. 1. Introduction. Reactive oxygen species (ROS), natural byproducts.

  15. Group 4 Metal Complexes of Chelating Cyclopentadienyl-ketimide Ligands

    Czech Academy of Sciences Publication Activity Database

    Večeřa, M.; Varga, Vojtěch; Císařová, I.; Pinkas, Jiří; Kucharczyk, P.; Sedlařík, V.; Lamač, Martin

    2016-01-01

    Roč. 35, č. 5 (2016), s. 785-798 ISSN 0276-7333 R&D Projects: GA ČR(CZ) GA14-08531S; GA MŠk(CZ) LO1504 Institutional support: RVO:61388955 Keywords : group 4 metal complexes * cyclopentadienyl-ketimide ligands * metallocenes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.862, year: 2016

  16. [Applications of metal ions and their complexes in medicine I].

    Science.gov (United States)

    Nagy, László; Csintalan, Gabriella; Kálmán, Eszter; Sipos, Pál; Szvetnik, Attila

    2003-01-01

    The "inorganic medical chemistry" is a rapidly developing field with enormous potential for applications, which offers new possibilities to the pharmaceutical industry. For example, the titanocene dichloride is already in clinical use, and antimetastatic activity of a range of Ru(III) complexes is also well established. There are ways to minimize the toxicity of Gd(III) complexes and therefore they can be safely injected as MRI contrast agents. The so called "ligand design" allows paramagnetic ions to be targeted to specific organs. Such designed ligands also enable the targeting of radiodiagnostic (99mTc) and radiotherapeutic (186Re) isotopes. There is a significant progress in understanding the coordination chemistry and biochemistry of metal ion(s) containing complexes such as Au antiarthritic and Bi antiulcer drugs. Further, currently developing areas include Mn (SOD mimics), V (insulin mimics), Ru (NO scavengers), Ln-based photosensitizers, metal-targeted organic agents and the Fe overload. The expanding knowledge of the role of metals in biochemistry is expected to provide scope for the design of new drugs in many other areas too, for example neuropharmaceutical and antiaffective agents. Progress in coordination chemistry is strongly dependent on understanding not only the thermodynamics of reactions, but also the kinetics of metal complexes under biologically relevant conditions.

  17. Tridentate Schiff base (ONO) transition metal complexes: Synthesis ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 7. Tridentate Schiff base (ONO) transition metal complexes: Synthesis, crystal structure, spectroscopic and larvicidal studies. SUNDARAMURTHY SANTHA LAKSHMI KANNAPPAN GEETHA P MAHADEVI. Regular Article Volume 128 Issue 7 July 2016 pp ...

  18. Metal oxalate complexes as novel inorganic dopants: Studies on ...

    Indian Academy of Sciences (India)

    Doped polyaniline materials with metal oxalate complexes of Cr, Fe, Mn, Co and Al were synthesized by in situ chemical oxidative polymerization of aniline using potassium perdisulphate as oxidant in aqueous sulphuric acid medium. These polymer materials were characterized by chemical analyses, spectral studies ...

  19. Sub-chronic toxicological studies of transition metal complexes of ...

    African Journals Online (AJOL)

    However, Naproxen metal complexes showed comparatively lower side effects than naproxen. Hematological report suggested that naproxen was in process of initiating inflammation which was justified by decreasing the mean value hemoglobin and hematocrit level and increasing the white blood cells level. There were ...

  20. Thiosemicarbazone complexes of the platinum metals. A story of ...

    Indian Academy of Sciences (India)

    , Os; X = Cl, Br) to afford complexes of type [M(PPh3)2(Hsaltsc)2], in which the salicylaldehyde thiosemicarbazone ligand is coordinated to the metal as a bidentate N,S-donor forming a four-membered chelate ring. Reaction of benzaldehyde ...

  1. Metal-isonitrile adducts for preparing radionuclide complexes

    International Nuclear Information System (INIS)

    Carpenter, A.P.; Linder, K.E.; Maheu, L.J.; Patz, M.A.; Thompson, J.S.; Tulip, T.H.; Subramanyam, V.

    1988-01-01

    An method for preparing a coordination complex of isonitrile ligand and a radioisotope of Te, Ru, Co, Pt, Re, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Nb and Ta from a non-radioactive metal adduct of the isonitrile

  2. Schiff base transition metal complexes for Suzuki–Miyaura cross

    Indian Academy of Sciences (India)

    Schiff base ligand and its complex with iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) ions were synthesized using 4-aminoacetophenone and salicylaldehyde and characterized. FTIR spectrum shows that bidentate coordination of metal ions with ligand where O, N are electron donating sites of azomethine group.

  3. Metal transfer within the Escherichia coli HypB-HypA complex of hydrogenase accessory proteins.

    Science.gov (United States)

    Douglas, Colin D; Ngu, Thanh T; Kaluarachchi, Harini; Zamble, Deborah B

    2013-09-03

    The maturation of [NiFe]-hydrogenase in Escherichia coli is a complex process involving many steps and multiple accessory proteins. The two accessory proteins HypA and HypB interact with each other and are thought to cooperate to insert nickel into the active site of the hydrogenase-3 precursor protein. Both of these accessory proteins bind metal individually, but little is known about the metal-binding activities of the proteins once they assemble together into a functional complex. In this study, we investigate how complex formation modulates metal binding to the E. coli proteins HypA and HypB. This work lead to a re-evaluation of the HypA nickel affinity, revealing a KD on the order of 10(-8) M. HypA can efficiently remove nickel, but not zinc, from the metal-binding site in the GTPase domain of HypB, a process that is less efficient when complex formation between HypA and HypB is disrupted. Furthermore, nickel release from HypB to HypA is specifically accelerated when HypB is loaded with GDP, but not GTP. These results are consistent with the HypA-HypB complex serving as a transfer step in the relay of nickel from membrane transporter to its final destination in the hydrogenase active site and suggest that this complex contributes to the metal fidelity of this pathway.

  4. Formation of difluorosulfane complexes of the third row transition metals by sulfur-to-metal fluorine migration in trifluorosulfane metal complexes: the anomaly of trifluorosulfane iridium tricarbonyl.

    Science.gov (United States)

    Gao, Xiaozhen; Li, Nan; King, R Bruce

    2014-12-01

    The stability of the experimentally known complex (Et3P)2Ir(CO)(Cl)(F)(SF3) of the third row transition metal iridium suggests that SF3 complexes of the third row transition metals might be viable species in contrast to the SF3 complexes of the first row transition metals previously studied by theoretical methods. However, the metal complexes [M](SF3) ([M] = Ta(CO)5, Re(CO)4, CpW(CO)2, CpOs(CO), and CpPt) containing three-electron donor tetrahedral SF3 ligands are thermodynamically disfavored relative to the isomeric [M](SF2)(F) derivatives with predicted energy differences ranging from -19 to -44 kcal/mol. The one exception is an Ir(SF3)(CO)3 isomer containing a one-electron donor pseudo-square-pyramidal SF3 ligand having essentially the same energy as the lowest energy Ir(SF2)(F)(CO)3 isomer. This, as well as the stability of the known (Et3P)2Ir(CO)(Cl)(F)(SF3), suggests that metal complexes containing one-electron donor pseudo-square-pyramidal SF3 ligands might be viable synthetic objectives in contrast to those containing three-electron donor tetrahedral SF3 ligands. The [M](SF2)(F) derivatives formed by sulfur-to-metal fluorine migration from isomeric [M](SF3) complexes are predicted to be viable toward SF2 dissociation to give the corresponding [M](F) derivatives. This suggests the possibility of synthesizing metal complexes of the difluorosulfane (SF2) ligand via the corresponding metal trifluorosulfane complexes with the SF3(+) cation as the ultimate source of the SF2 ligand. Such a synthetic approach bypasses the need for the very unstable SF2 as a synthetic reagent.

  5. N-Heterocyclic carbene metal complexes: photoluminescence and applications.

    Science.gov (United States)

    Visbal, Renso; Gimeno, M Concepción

    2014-05-21

    This review covers the advances made in the synthesis of luminescent transition metal complexes containing N-heterocyclic carbene (NHC) ligands. The presence of a high field strength ligand such as an NHC in the complexes gives rise to high energy emissions, and consequently, to the desired blue colour needed for OLED applications. Furthermore, the great versatility of NHC ligands for structural modifications, together with the use of other ancillary ligands in the complex, provides numerous possibilities for the synthesis of phosphorescent materials, with emission colours over the entire visible spectra and potential future applications in fields such as photochemical water-splitting, chemosensors, dye-sensitised solar cells, oxygen sensors, and medicine.

  6. Targeting triple negative breast cancer cells by N3-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their metal complexes

    Science.gov (United States)

    Afrasiabi, Zahra; Stovall, Preston; Finley, Kristen; Choudhury, Amitava; Barnes, Charles; Ahmad, Aamir; Sarkar, Fazlul; Vyas, Alok; Padhye, Subhash

    2013-10-01

    Novel N3-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their copper, nickel and palladium complexes are structurally characterized and reported along with the single crystal X-ray structures of three ligands and one nickel complex. All compounds were evaluated for their antiproliferative potential against Triple Negative Breast Cancer (TNBC) cells which have poor prognosis and no effective drugs to treat with. All compounds exhibited antiproliferative activity against these cells. Among the metal complexes evaluated, redox active copper complexes were found to be more potent. The possible mechanism for such enhanced activity can be attributed to the generation of oxidative stress, which was amenable for targeting through metal complexation.

  7. Surface Complexation Modelling in Metal-Mineral-Bacteria Systems

    Science.gov (United States)

    Johnson, K. J.; Fein, J. B.

    2002-12-01

    The reactive surfaces of bacteria and minerals can determine the fate, transport, and bioavailability of aqueous heavy metal cations. Geochemical models are instrumental in accurately accounting for the partitioning of the metals between mineral surfaces and bacteria cell walls. Previous research has shown that surface complexation modelling (SCM) is accurate in two-component systems (metal:mineral and metal:bacteria); however, the ability of SCMs to account for metal distribution in mixed metal-mineral-bacteria systems has not been tested. In this study, we measure aqueous Cd distributions in water-bacteria-mineral systems, and compare these observations with predicted distributions based on a surface complexation modelling approach. We measured Cd adsorption in 2- and 3-component batch adsorption experiments. In the 2-component experiments, we measured the extent of adsorption of 10 ppm aqueous Cd onto either a bacterial or hydrous ferric oxide sorbent. The metal:bacteria experiments contained 1 g/L (wet wt.) of B. subtilis, and were conducted as a function of pH; the metal:mineral experiments were conducted as a function of both pH and HFO content. Two types of 3-component Cd adsorption experiments were also conducted in which both mineral powder and bacteria were present as sorbents: 1) one in which the HFO was physically but not chemically isolated from the system using sealed dialysis tubing, and 2) others where the HFO, Cd and B. subtilis were all in physical contact. The dialysis tubing approach enabled the direct determination of the concentration of Cd on each sorbing surface, after separation and acidification of each sorbent. The experiments indicate that both bacteria and mineral surfaces can dominate adsorption in the system, depending on pH and bacteria:mineral ratio. The stability constants, determined using the data from the 2-component systems, along with those for other surface and aqueous species in the systems, were used with FITEQL to

  8. Transition metal complexes of an isatinic quinolyl hydrazone

    Directory of Open Access Journals (Sweden)

    Seleem Hussein S

    2011-06-01

    Full Text Available Abstract Background The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring in the same compound. Quinoline ring has therapeutic and biological activities. On the other hand, isatin (1H-indole-2,3-dione and its derivatives exhibit a wide range of biological activities. Also, the indole ring occurs in Jasmine flowers and Orange blossoms. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have reported to isolate, characterize and study the biological activity of some transition metal complexes of an isatinic quinolyl hydrazone; 3-[2-(4-methyl quinolin-2-ylhydrazono] indolin-2-one. Results Mono- and binuclear as well as dimeric chelates were obtained from the reaction of a new isatinic quinolyl hydrazone with Fe(III, Co(II, Ni(II, Cu(II, VO(II and Pd(II ions. The ligand showed a variety of modes of bonding viz. (NNO2-, (NO- and (NO per each metal ion supporting its ambidentate and flexidentate characters. The mode of bonding and basicity of the ligand depend mainly on the type of the metal cation and its counter anion. All the obtained Pd(II- complexes have the preferable square planar geometry (D4h- symmetry and depend mainly on the mole ratio (M:L. Conclusion The effect of the type of the metal ion for the same anion (Cl- is obvious from either structural diversity of the isolated complexes (Oh, Td and D4h or the various modes of bonding. The isatinic hydrazone uses its lactim form in all complexes (Cl- except complex 5 (SO42- in which it uses its lactam form. The obtained Pd(II- complexes (dimeric, mono- and binuclear are affected by the mole ratio (M:L and have the square planar (D4h geometry. Also, the antimicrobial activity is highly influenced by the nature of the metal ion and the order for S. aureus bacteria is as follows: Nickel(II > Vanadyl(II > Cobalt

  9. THEORETICAL STUDY ON 15-CROWN-5 COMPLEX WITH SOME METAL CATIONS

    Directory of Open Access Journals (Sweden)

    Yahmin Yahmin

    2012-06-01

    Full Text Available The capability of 15-crown-5 ethers to form complexes with some metal cations (Li+, Na+, K+, Zn2+, Cd2+ and Hg2+ was investigated by an ab initio quantum mechanical method. The calculations were performed at the RHF/lanl2mb level of theory. The interaction energies were used to evaluate the metal binding capability of the crown ether. The effect of nature of the metal on the binding properties was also studied. The results of the calculations showed that the interaction energy of the complexes increased in proportion with the ratio of ion charge, electronegativity and ionization potential to the cation diameter. In addition, based on the extraction distribution coefficient in the gas phase, it is found that the 15-crown-5 could not extract metal cations investigated.

  10. Biotransformation of uranium and transition metal citrate complexes by clostridia

    International Nuclear Information System (INIS)

    Francis, A.J.; Joshi-Tope, G.A.; Dodge, C.J.; Gillow, J.B.

    2002-01-01

    Clostridium sphenoides, which uses citric acid as its sole carbon source, metabolized equimolar Fe(III)-citrate with the degradation of citric acid and the reduction of Fe(III) to Fe(II), but not the U(VI)-citrate complex. However, in the presence of excess citric acid or added glucose it was reduced to U(IV)-citrate. In contrast, Clostridium sp., which ferments glucose but not citrate, reduced Fe(III)-citrate to Fe(II)-citrate and U(VI)-citrate to U(IV)-citrate only when supplied with glucose. These results show that complexed uranium is readily accessible as an electron acceptor despite the bacterium's inability to metabolize the organic ligand complexed to the actinide. These results also show that the metabolism of the metal-citrate complex depends upon the type of complex formed between the metal and citric acid. Fe(III) forms a bidentate complex with citric acid and was metabolized, whereas U forms a binuclear complex with citric acid and was recalcitrant. (author)

  11. Multiheteromacrocycles that Complex Metal Ions. Fourth Progress Report, 1 May 1977 -- 30 April 1978

    Science.gov (United States)

    Cram, D. J.

    1978-01-15

    Results are reported in a program to design, synthesize, and evaluate polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions. Work during the reporting period was devoted to synthesis and study of cyclohexametaphenylenes and cyclic phosphine oxides. (JRD)

  12. Characterization of tannin-metal complexes by UV-visible spectrophotometry

    Science.gov (United States)

    Tannins enter soils by plant decay and rain throughfall, but little is known of their effects on soils. Tannins may influence bioavailability and toxicity of metals by forming complexes and by mediating redox reactions. We evaluated the affinity and stoichiometry of Al(III) for a gallotannin, pent...

  13. Understanding M-ligand bonding and mer-/fac-isomerism in tris(8-hydroxyquinolinate) metallic complexes.

    Science.gov (United States)

    Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2016-06-28

    Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals.

  14. Rhodamine spirolactam sensors operated by sulfur-cooperated metal complexation

    Science.gov (United States)

    Heo, Gisuk; Lee, Dahye; Kim, Chi Gwan; Do, Jung Yun

    2018-01-01

    New rhodamine Schiff base sensors were developed to improve selective sensing by introducing sulfide, ester, and dithiocarbonate groups, as well as using ketones coupled to rhodamine-hydrazine. Metal sensing proceeded through the 1:1 complexation of the metal ion for most sensors in the presence of Cu2 + and Hg2 +. A sensor carrying a dithiocarbonate group responded selectively to Hg2 + showing a strong colorimetric change and intense fluorescence. The association constants of the sensors were determined from a linear plot performed at micro-molar concentrations to afford values in the range of 104. Sensing was interrupted at the initial time of Hg2 + exposure due to the isomerization of imine and preferential metal bonding of two dithiocarbonate groups regardless of the main structure of rhodamine. The sensors exhibited the reversible and reproducible performance for Hg2 + sensing.

  15. The impact of metal transport processes on bioavailability of free and complex metal ions in methanogenic granular sludge

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Vergeldt, F.; Gerkema, E.; Maca, J.; As, van H.; Lens, P.N.L.

    2012-01-01

    Bioavailability of metals in anaerobic granular sludge has been extensively studied, because it can have a major effect on metal limitation and metal toxicity to microorganisms present in the sludge. Bioavailability of metals can be manipulated by bonding to complexing molecules such as

  16. The dynamic behavior of the exohedral transition metal complexes ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 7. The dynamic behavior of the exohedral transition metal complexes of B₄₀ : η⁶- and η⁷-B₄₀Cr(CO) ₃ and Cr(CO) ₃η⁷-B₄η₀-Cr(CO) ₃. NAIWRIT KARMODAK ELUVATHINGAL D JEMMIS. REGULAR ARTICLE Volume 129 Issue 7 July 2017 pp ...

  17. mer and fac isomerism in tris chelate diimine metal complexes.

    Science.gov (United States)

    Dabb, Serin L; Fletcher, Nicholas C

    2015-03-14

    In this perspective, we highlight the issue of meridional (mer) and facial (fac) orientation of asymmetrical diimines in tris-chelate transition metal complexes. Diimine ligands have long been the workhorse of coordination chemistry, and whilst there are now good strategies to isolate materials where the inherent metal centered chirality is under almost complete control, and systematic methodologies to isolate heteroleptic complexes, the conceptually simple geometrical isomerism has not been widely investigated. In systems where the two donor atoms are significantly different in terms of the σ-donor and π-accepting ability, the fac isomer is likely to be the thermodynamic product. For the diimine complexes with two trigonal planar nitrogen atoms there is much more subtlety to the system, and external factors such as the solvent, lattice packing and the various steric considerations play a delicate role in determining the observed and isolable product. In this article we discuss the possibilities to control the isomeric ratio in labile systems, consider the opportunities to separate inert complexes and discuss the observed differences in their spectroscopic properties. Finally we report on the ligand orientation in supramolecular systems where facial coordination leads to simple regular structures such as helicates and tetrahedra, but the ability of the ligand system to adopt a mer orientation enables self-assembled structures of considerable beauty and complexity.

  18. Evaluation of radioactive scrap metal recycling

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  19. Evaluation of radioactive scrap metal recycling

    International Nuclear Information System (INIS)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information

  20. Mechanics of metal-catecholate complexes: The roles of coordination state and metal types

    Science.gov (United States)

    Xu, Zhiping

    2013-01-01

    There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799

  1. Metal based SOD mimetic therapeutic agents: Synthesis, characterization and biochemical studies of metal complexes

    Directory of Open Access Journals (Sweden)

    J. Joseph

    2017-05-01

    Full Text Available Coordination compounds of Fe(III, Co(II, Ni(II, Cu(II and Zn(II with the Schiff base obtained through the condensation of L1 and L2 (L1 – obtained through the condensation of 4-aminoantipyrine with furfuraldehyde and L2 – derived from 2-aminobenzothiazole and 3-nitrobenzaldehyde were synthesized under reflux conditions. The newly formed complexes were characterized using elemental analysis, magnetic susceptibility, molar conductance, 1H NMR, UV–Vis., IR and ESR techniques. Cyclic voltammogram of the complexes in DMSO solution at 300 K was recorded and their salient features were summarized. The X-band ESR spectrum of the copper complex in DMSO solution at 300 and 77 K was recorded. The in vitro biological screening of the investigated compounds was tested against the bacterial species, and fungal species by disc diffusion method. The antimicrobial activity of metal complexes was dependent on the microbial species tested, ligand and the metal salts used. A comparative study of inhibition values of Schiff bases and their complexes indicates that the complexes exhibit higher antimicrobial activity than the free ligands. The DNA binding studies were performed for the complexes using cyclic voltammetry and electronic absorption spectra. Superoxide dismutase activity of these complexes has also been examined.

  2. Multiheteromacrocycles that Complex Metal Ions. Ninth Progress Report (includes results of last three years), 1 May 1980 -- 30 April 1983

    Science.gov (United States)

    Cram, D. J.

    1982-09-15

    The overall objective of this research is to design, synthesize, and evaluate cyclic and polycyclic host organic compounds for the abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The hope is to synthesize new classes of compounds useful in the separation of metal ions, their complexes, and their clusters.

  3. Antimicrobial and thermal properties of metal complexes of grafted fabrics with acrylic acid by gamma irradiation

    International Nuclear Information System (INIS)

    Hassan, M.S.; Attia, R.M.; Zohdy, M.H.; Khalil, E.M.

    2009-01-01

    Cotton, cotton/ ET blend and PET fabrics were treated against microbial effect by radiation -induced grafting of acrylic acid followed by metal complexation with some divalent transition metal ions like Co (l l), Ni(l l) and Cu(l l).The microbial resistance was evaluated by testing the mechanical properties of the treated fabrics after burring for one and two weeks in a moist soil reach with microorganisms. Also, the structural damage of the fabrics caused by biodegradation was examined by scanning electron microscope (SEM). Moreover, the effect of this treatment on the thermal decomposition behaviour was investigated by thermogravimetric analysis (TGA). On the basis of microbial studies, it was found that the metal complexation of the grafted fabrics with acrylic acid enhanced the microbial resistance of the fabrics and the microbial resistance could be arranged according to the complexed metal ions as follows: copper> nickel> cobalt. Also, the thermal stability of different fabrics could be arranged as follow: grafted fabrics complexes with Cu (l l) grafted fabrics complexes with Co (l l)

  4. Antimicrobial and Thermal Properties of Metal Complexes of Grafted Fabrics with Acrylic Acid by Gamma Irradiation

    International Nuclear Information System (INIS)

    Hassan, M.S.; Attia, R.M.; Zohdy, M.H.

    2008-01-01

    Cotton, cotton/PET blend and PET fabrics were treated against microbial effect by radiation - induced grafting of acrylic acid followed by metal complexation with some divalent transition metal ions Co (II), Ni (II) and Cu (II). The microbial resistance was evaluated by testing the mechanical properties of the treated fabrics after burring for one and two weeks in a moist soil reach with microorganisms. Also, the growth of microorganisms was examined by scanning electron microscope (SEM). Moreover, the effect of this treatment on the thermal decomposition behavior was investigated by thermogravimetric analysis (TGA). On the basis of microbial studies, it was found that the metal complexation of the grafted fabrics with acrylic acid enhanced the antimicrobial resistance of the fabrics and the antimicrobial resistance could be arranged according to the metal ions as follows: copper> nickel> cobalt. Also, the thermal stability of different fabrics could be arranged as follow: grafted fabrics complexed with Cu (II) > grafted fabrics complexed with Ni (II) > grafted fabrics complexed with Co (II)

  5. Late transition metal m-or chemistry and D6 metal complex photoeliminations

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Paul [Univ. of Missouri, Columbia, MO (United States)

    2015-07-31

    With the goal of understanding and controlling photoreductive elimination reactions from d6 transition metal complexes as part of a solar energy storage cycle we have investigated the photochemistry of Pt(IV) bromo, chloro, hydroxo, and hydroperoxo complexes. Photoreductive elimination reactions occur for all of these complexes and appear to involve initial Pt-Br, Pt-Cl, or Pt-O bond fission. In the case of Pt-OH bond fission, the subsequent chemistry can be controlled through hydrogen bonding to the hydroxo group.

  6. Evaluation of buckling on containment metallic vessels

    International Nuclear Information System (INIS)

    Silveira, Renato Campos da; Mattar Neto, Miguel

    2000-01-01

    The buckling analysis represents one of the most important aspects of the structural projects of nuclear power plants containment metallic vessels and in this work the Case N-284-1 ASME Code is used for evaluation of those structures submitted to this failure mode. From the stress analysis, performed by using finite element method on discrete structures with shell elements, the procedure of the Code Case are applied to the evaluation of the containment metallic vessel of the Angra 2 nuclear power plant submitted to the own weight, seismic loads and uplift in case of accident. A study of pressure vessel reinforced by rings submit ed to the external pressure. Conclusions and commentaries are established based on the obtained results

  7. Protection of metal artifacts with the formation of metal–oxalates complexes by Beauveria bassiana

    OpenAIRE

    Joseph, Edith; Cario, Sylvie; Simon, Anaële; Wörle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel

    2013-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L-1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid a...

  8. Ultraviolet-Visible Spectroscopic Evaluation of Complexation ...

    African Journals Online (AJOL)

    Some complexes of crude methanol extract of Loranthus micranthus Linn parasitic on Kola acuminata were evaluated using ultraviolet-visible absorption spectrophotometry. The crude methanol extract was complexed with ferric chloride solution, borate mixture, methanolic aluminum nitrate and aluminum chloride solutions ...

  9. Metal Complexation with Chitosan and its Grafted Copolymer

    International Nuclear Information System (INIS)

    Abo-Hussen, A.A.; Elkholy, S.S.; Elsabee, M.Z.

    2005-01-01

    The adsorption of M (II); Co (II), Ni (If), Cu (II), Zn (II) and Cd (II) from aqueous solutions by chitosan flakes and beads have been studied. The maximum up-take of M (II) ions on chitosan beads was greater than on flakes. Batch adsorption experiments were carried out as a function of ph, agitation period and initial concentration of the metal ions. A ph of 6.0 was found to be optimum for M (II) adsorption on chitosan flakes and beads. The uptake of the ions was determined from the changes in its concentration, as measured by ultraviolet and visible spectroscopy. The metal ions uptake of chitosan grafted with vinyl pyridine (VP) is higher than that of the chitosan. The experimental data of the adsorption equilibrium from M (II)-solutions correlated well with the Langmuir and Freundlich equations. Several spectroscopic methods have been used to study the formation of the polymer/metal cation complex. The cation coordination is accompanied by proton displacement off the polymer or by fixation of a hydroxide ion in aqueous solutions. The largest ionic displacement is observed with Cu (II) and Zn (II) demonstrating the largest affinity of chitosan for these ions. The FT-IR spectral of the complexes show that both the amino and hydroxyl groups of chitosan participated in the chelation process. The ESR spectra of Cu-complex show an absorption at gi 2.06, g// = 2.23, A// x 10-4 (cm-1) = 160 and G = 3.8 indicating the formation of square planar structure. The adsorption of M (II) ions followed the sequence Cu (II) > Zn (II) > Cd (II) > Ni (II) > Co (II), this order seems to be independent on the size and the physical form of chitosan. SEM shows small membranous structure on the surface of chitosan flakes as compared to Cu (Il)- chitosan complex. EDTA was used for the desorption studies

  10. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation

    Science.gov (United States)

    Duncan, Michael

    2006-03-01

    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  11. Sol-Gel-Synthesis of Nanoscopic Complex Metal Fluorides.

    Science.gov (United States)

    Rehmer, Alexander; Scheurell, Kerstin; Scholz, Gudrun; Kemnitz, Erhard

    2017-11-02

    The fluorolytic sol-gel synthesis for binary metal fluorides (AlF₃, CaF₂, MgF₂) has been extended to ternary and quaternary alkaline earth metal fluorides (CaAlF₅, Ca₂AlF₇, LiMgAlF₆). The formation and crystallization of nanoscopic ternary CaAlF₅ and Ca₂AlF₇ sols in ethanol were studied by 19 F liquid and solid state NMR (nuclear magnetic resonance) spectroscopy, as well as transmission electron microscopy (TEM). The crystalline phases of the annealed CaAlF₅, Ca₂AlF₇, and LiMgAlF₆ xerogels between 500 and 700 °C could be determined by X-ray powder diffraction (XRD) and 19 F solid state NMR spectroscopy. The thermal behavior of un-annealed nanoscopic ternary and quaternary metal fluoride xerogels was ascertained by thermal analysis (TG/DTA). The obtained crystalline phases of CaAlF₅ and Ca₂AlF₇ derived from non-aqueous sol-gel process were compared to crystalline phases from the literature. The corresponding nanoscopic complex metal fluoride could provide a new approach in ceramic and luminescence applications.

  12. Sol-Gel-Synthesis of Nanoscopic Complex Metal Fluorides

    Directory of Open Access Journals (Sweden)

    Alexander Rehmer

    2017-11-01

    Full Text Available The fluorolytic sol-gel synthesis for binary metal fluorides (AlF3, CaF2, MgF2 has been extended to ternary and quaternary alkaline earth metal fluorides (CaAlF5, Ca2AlF7, LiMgAlF6. The formation and crystallization of nanoscopic ternary CaAlF5 and Ca2AlF7 sols in ethanol were studied by 19F liquid and solid state NMR (nuclear magnetic resonance spectroscopy, as well as transmission electron microscopy (TEM. The crystalline phases of the annealed CaAlF5, Ca2AlF7, and LiMgAlF6 xerogels between 500 and 700 °C could be determined by X-ray powder diffraction (XRD and 19F solid state NMR spectroscopy. The thermal behavior of un-annealed nanoscopic ternary and quaternary metal fluoride xerogels was ascertained by thermal analysis (TG/DTA. The obtained crystalline phases of CaAlF5 and Ca2AlF7 derived from non-aqueous sol-gel process were compared to crystalline phases from the literature. The corresponding nanoscopic complex metal fluoride could provide a new approach in ceramic and luminescence applications.

  13. Exposing "Bright" Metals: Promising Advances in Photoactivated Anticancer Transition Metal Complexes.

    Science.gov (United States)

    Bjelosevic, Aleksandra; Pages, Benjamin J; Spare, Lawson K; Deo, Krishant M; Ang, Dale L; Aldrich-Wright, Janice R

    2018-02-12

    Photodynamic therapy (PDT) is an increasingly prominent field in anticancer research. PDT agents are typically nontoxic in the absence of light and can be stimulated with nonionising irradiation to "activate" their cytotoxic effect. Photosensitzers are not classified as chemotherapy drugs although it is advantageous to control the toxicity of a drug through localised irradiation allowing for selective treatment. Transition metals are an extremely versatile class of compounds with various unique properties such as oxidation state, coordination number, redox potential and molecular geometry that can be tailored for specific uses. This makes them excellent PDT candidates as their properties can be manipulated to absorb a specific range of light wavelengths, cross cellular membranes or target specific sites in vitro. This article reviews recent advances in transition metal PDT agents, with a focus on structural scaffolds from which several metal complexes in a series are synthesised, as well as their in vitro cytotoxicity in the presence or absence of irradiation. The success of clinical photoactive agents such as Photofrin® has inspired the development of thousands of potential PDT agents. Transition metal complexes in particular have demonstrated excellent versatility and diversity when it comes to PDT for treatment of invasive cancers. This review has highlighted some of the many recent advances of transition metal PDT agents with high in vitro and in vivo phototoxic activity. Photoactive transition metal complexes have proven their potential due to their inherent physicochemical variety, allowing them to fill a niche in the PDT world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Experimental evaluation of coating delamination in vinyl coated metal forming

    International Nuclear Information System (INIS)

    Son, Young Ki; Lee, Chan Joo; Kim, Byung Min; Lee, Jung Min; Byoen, Sang Doek; Lee, Soen Bong

    2012-01-01

    In this paper, a new evaluation and prediction method for coating delamination during sheet metal forming is presented. On the basis of the forming limit diagram (FLD), the current study evaluates the delamination of PET coating by using a cross cut specimen, dome test, and rectangular cup drawing test. Dome test specimens were subjected to biaxial, plane strain, and uniaxial deformation modes. Rectangular cup drawing test specimens were subjected to the deep drawing deformation mode, and compression deformation mode. A vinyl coated metal (VCM) sheet consists of three layers of polymer on the sheet metals: a protective film, a PET layer and a PVC layer. The areas with coating delamination were identified, and the results of the evaluation were plotted according to major and minor strain values, depicting coating delamination. The constructed delamination limit diagram (DLD) can be used to determine the forming limit of VCM during the complex press forming process. ARGUS (GOM) was employed to identify the strain value and deformation mode of the delaminated surface after the press forming. After identifying the areas of delamination, the DLD of the PET coating can be constructed in a format similar to that of the FLD. The forming limit of the VCM sheet can be evaluated using the superimposition of the delamination limit strain of the coating onto the FLD of VCM sheet. The experimental results showed that the proposed test method will support the sheet metal forming process design for VCM sheets. The assessment method presented in this study can be used to determine the delamination limit strain under plastic deformation of other polymer coated metals. The experimental results suggested that the proposed testing method is effective in evaluating delamination for specific applications

  15. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and P-89-577...

  16. Metal complex modified azo polymers for multilevel organic memories

    Science.gov (United States)

    Ma, Yong; Chen, Hong-Xia; Zhou, Feng; Li, Hua; Dong, Huilong; Li, You-Yong; Hu, Zhi-Jun; Xu, Qing-Feng; Lu, Jian-Mei

    2015-04-01

    Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage.Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00871a

  17. Chemical bonding of hydrogen molecules to transition metal complexes

    International Nuclear Information System (INIS)

    Kubas, G.J.

    1990-01-01

    The complex W(CO) 3 (PR 3 ) 2 (H 2 ) (CO = carbonyl; PR 3 = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H 2 exchanges easily with D 2 . This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H 2 bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H 2 )(R 2 PCH 2 CH 2 PR 2 ) 2 were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig

  18. Chemical bonding of hydrogen molecules to transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kubas, G.J.

    1990-01-01

    The complex W(CO){sub 3}(PR{sub 3}){sub 2}(H{sub 2}) (CO = carbonyl; PR{sub 3} = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H{sub 2} exchanges easily with D{sub 2}. This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H{sub 2} bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H{sub 2})(R{sub 2}PCH{sub 2}CH{sub 2}PR{sub 2}){sub 2} were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig.

  19. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G. [Northwestern Univ., Evanston, IL (United States)

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  20. Extraction of cupferronate complexes of certain metals and their reextraction

    International Nuclear Information System (INIS)

    Nadezhda, A.A.; Ivanova, K.P.; Gorbenko, F.P.

    1980-01-01

    The extraction of Fe, Sn, Bi, Cu, Y, Pb, Al, G, Ni, Zn, Cd, Mn cupferronate complexes with isoaml alcohol and their reextraction with acids are studied. Extraction and reextraction are investigated depending on the acidity from the solutions of sulfuric, hydrochloric, nitric and perchloric acids. Cupferron distribution among isoaml alchol and the aqueous solution with various pH is studied. It is established that cuperronates of the metals studied are extracted quantitatively. An effect of the acid anion nature on the extraction of all cupferronates is observed [ru

  1. Oxidation of limonene catalyzed by Metal(Salen) complexes

    OpenAIRE

    Lima, L. F.; Corraza, M. L.; Cardozo-Filho, L.; Márquez-Alvarez, H.; Antunes, O. A. C.

    2006-01-01

    The compound R-(+)limonene is available and cheap than its oxidized products. Consequently, the selective oxidation of R(+)limonene has attracted attention as a promising process for the production of compounds with a higher market value, such as cis/trans-1,2-limoneneoxide, cis/trans-carveol and/or carvone. One of the these processes, described in the recent literature, is submission of R-(+)limonene to an oxidation reaction catalyzed by neutral or cationic Metal(Salen) complexes, in the pre...

  2. Fixation of metallic sulfosalicylate complexes on an anionic exchange resin

    International Nuclear Information System (INIS)

    Cahuzac, S.

    1969-06-01

    Since sulfosalicylate ions have acid-base properties, sulfosalicylate complexes have an apparent stability which varies with the ph. As a result, the fixation of sulfo-salicylates on an anionic exchange resin depends on the ph of the solution in equilibrium with the resin. This research has been aimed at studying the influence of the ph on the fixation on an anionic exchange resin (Dowex 1 x 4) of sulfosalicylate anions on the one hand, and of metallic sulfosalicylate complexes on the other hand. In the first part of this work, a determination has been made, by frontal analysis of the distribution of sulfosalicylate ions in the resin according to the total sulfosalicylate I concentration in the aqueous solution in equilibrium with the resin. The exchange constants of these ions between the resin and the solution have been calculated. In the second part, a study has been made of the fixation of anionic sulfosalicylate complexes of Fe(III), Al(III), Cr(III), Cu(II), Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Fe(II) and UO 2 2+ . By measuring the partition coefficients of these different elements between the resin and the solution it has been possible to give interpretation for the modes of fixation of the metallic ions, and to calculate their exchange constant between the resin and the solution. The relationship has been established for each metallic element studied, between its partition coefficient, the ph and the total concentration of the complexing agent in solution. Such a relationship makes it possible to predict, for given conditions, the nature of the species in solution and in the resin, as well as the partition coefficient of a metallic, element. Finally, in the third part of the work, use has been made of results obtained previously, to carry out some separations (Ni 2+ - Co 2+ ; Ni 2+ - Co 2+ - Cu 2+ ; UO 2 2+ - Fe 3+ ; UO 2 2+ - Cr 3+ ; UO 2 2+ - Cu 2+ ; UO 2 2+ - Ni 2+ ; UO 2 2+ - Co 2+ ; UO 2 2+ - Mn 2+ and UO 2 2+ - Cd 2+ ), as well as the purification

  3. Metal complex polymer for second harmonic generation and electroluminescence applications

    Science.gov (United States)

    Tao, X. T.; Suzuki, H.; Watanabe, T.; Lee, S. H.; Miyata, S.; Sasabe, H.

    1997-03-01

    We report the second harmonic generation and electroluminescent (EL) properties of a soluble metal complex polyurethane (PU). The PU was prepared by the reaction of a zinc Schiff base with 4,4'-diphenylmethane-diisocyanate. The polymer film has been effectively poled under a corona field and its linear and nonlinear optical (NLO) properties were characterized. The results indicated that the NLO effects of the polymer are mainly originated in the distorted coordination tetragonals formed by the central zinc atoms and coordination atoms. The polymer shows strong photoluminescence under a ultraviolet-lamp illumination and can be used as a luminescent material for EL devices.

  4. Transistor-like behavior of transition metal complexes

    DEFF Research Database (Denmark)

    Albrecht, Tim; Guckian, A; Ulstrup, Jens

    2005-01-01

    Electron transport through semiconductor and metallic nanoscale structures,(1) molecular monolayers,2-6 and single molecules(7-15) connected to external electrodes display rectification, switch, and staircase functionality of potential importance in future miniaturization of electronic devices...... the redox level is brought into the energy window between the Fermi levels of the electrodes by the overpotential ("gate voltage"). The current-voltage characteristics for two Os(II)/(III) complexes have been characterized systematically and supported by theoretical frames based on molecular charge...

  5. Evaluating Software Complexity Based on Decision Coverage

    Directory of Open Access Journals (Sweden)

    Mustafa AL-HAJJAJI

    2012-01-01

    Full Text Available It is becoming increasingly difficult to ignore the complexity of software products. Software metrics are proposed to help show indications for quality, size, complexity, etc. of software products. In this paper, software metrics related to complexity are developed and evaluated. A dataset of many open source projects is built to assess the value of the developed metrics. Comparisons and correlations are conducted among the different tested projects. A classifica-tion is proposed to classify software code into different levels of complexity. The results showed that measuring the complexity of software products based on decision coverage gives a significant indicator of degree of complexity of those software products. However, such in-dicator is not exclusive as there are many other complexity indicators that can be measured in software products. In addition, we conducted a comparison among several available metric tools that can collect software complexity metrics. Results among those different tools were not consistent. Such comparison shows the need to have a unified standard for measuring and collecting complexity attributes.

  6. Four new metal complexes with the amino acid deoxyalliin

    Energy Technology Data Exchange (ETDEWEB)

    Massabni, Antonio C.; Corbi, Pedro P. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica]. E-mail: massabni@iq.unesp.br; Melnikov, Petr [Universidade Federal do Mato Grosso do Sul, Campo Grande, MS (Brazil). Centro de Ciencias Exatas e Tecnologia; Zacharias, Marisa A. [Instituto Nacional de Pesquisas Espaciais (INPE), Cachoeira Paulista, SP (Brazil); Rechenberg, Hercilio R. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    2005-07-15

    The solid complexes [Co(C{sub 6}H{sub 10}NO{sub 2}S){sub 2}], [Ni(C{sub 6}H{sub 10}NO{sub 2}S){sub 2}], [Cu(C{sub 6}H{sub 1})0NO{sub 2}S){sub 2}] and [Fe(C{sub 6}H{sub 10}NO{sub 2}S){sub 2}] were obtained from the reaction of cobalt(II), nickel(II), copper(II) and iron(II) salts with the potassium salt of the amino acid deoxyalliin (S-allyl-L-cysteine). Electronic absorption spectra of the complexes are typical of octahedral structures. Infrared spectroscopy confirms the ligand coordination to the metal ions through (COO{sup -}) and (NH{sub 2}) groups. EPR spectrum of the Cu(II) complex indicates a slight distortion of its octahedral symmetry. Moessbauer parameters permitted to identify the presence of iron(II) and iron(III) species in the same sample, both of octahedral geometry. Thermal decomposition of the complexes lead to the formation of CoO, NiO, CuO and Fe{sub 2}O{sub 3} as final products. The compounds show poor solubility in water and in the common organic solvents. (author)

  7. General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2018-02-09

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both

  9. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes.

    Science.gov (United States)

    Bullock, R Morris; Chambers, Geoffrey M

    2017-08-28

    This perspective examines frustrated Lewis pairs (FLPs) in the context of heterolytic cleavage of H 2 by transition metal complexes, with an emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with main group compounds, yet many reactions of transition metal complexes support a broader classification of FLPs that includes certain types of transition metal complexes with reactivity resembling main group-based FLPs. This article surveys transition metal complexes that heterolytically cleave H 2 , which vary in the degree that the Lewis pairs within these systems interact. Many of the examples include complexes bearing a pendant amine functioning as the base with the metal functioning as the hydride acceptor. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.This article is part of the themed issue 'Frustrated Lewis pair chemistry'. © 2017 The Author(s).

  10. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  11. Safety evaluation of natural flavour complexes

    NARCIS (Netherlands)

    Smith, R.L.; Adams, T.B.; Cohen, S.M.; Doull, J.; Feron, V.J.; Goodman, J.I.; Hall, R.L.; Marnett, L.J.; Portoghese, P.S.; Waddell, W.J.; Wagner, B.M.

    2004-01-01

    Natural flavour complexes (NFCs) are chemical mixtures obtained by applying physical separation methods to botanical sources. Many NFCs are derived from foods. In the present paper, a 12-step procedure for the safety evaluation of NFCs, 'the naturals paradigm', is discussed. This procedure, which is

  12. Neutron diffraction studies of transition metal hydride complexes

    International Nuclear Information System (INIS)

    Koetzle, T.F.; Bau, R.

    1976-01-01

    Investigations of H 3 Ta(C 5 H 5 ) 2 (III), HW 2 (CO) 9 (NO) (IV), and HW 2 (CO) 8 (NO) (P(OCH 3 ) 3 ) (V) have been completed. Preliminary results are available for HFeCo 3 (CO) 9 [P(OCH 3 ) 3 ] 3 (VII). This work, together with studies of HMo 2 (C 5 H 5 ) 2 (CO) 4 (P(CH 3 ) 2 ) (VI) and [(C 2 H 5 ) 4 N] + [HCr 2 (CO) 10 ] - carried out at Argonne has led to some general observations on the geometry and the nature of bonding in these compounds. For example, in the structures of IV and V, both of which have bent W--H--W linkages (less than W--H--W in the range 125-130 0 ), there is conclusive evidence for the existence of a closed three-center W--H--W bond with significant metal-metal interaction. Such is the case, because extensions of the axial W--C and W--N bonds trans to the hydride intersect at a point near the center of the W--H--W triangle. The geometry of VI, which also contains a bent M--H--M bond, is consistent with that of IV and V. Bridging M--H bonds in these second- and third-row hydrides range in length from 1.85 to 1.89 A, compared to 1.75 A in the first-row polynuclear complex VII. For metals of corresponding rows, bridging M--H bonds are about 0.1 A longer than terminal bonds, which are classified as single covalent bonds

  13. Low Loss Advanced Metallic Fuel Casting Evaluation

    International Nuclear Information System (INIS)

    Kim, Kihwan; Ko, Youngmo; Kim, Jonghwan; Song, Hoon; Lee Chanbock

    2014-01-01

    The fabrication process for SFR fuel is composed of fuel slug casting, loading and fabrication of the fuel rods, and the fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycles streams in the fabrication process. Recycle streams include fuel slug reworks, returned scraps, and fuel casting heels, which are a special concern in the counter gravity injection casting process because of the large masses involved. Large recycle and waste streams result in lowering the productivity and the economic efficiency of fuel production. To increase efficiency the fuel losses in the furnace chamber, crucible, and the mold, after casting a considerable amount of fuel alloy in the casting furnace, will be quantitatively evaluated. After evaluation the losses will be identified and minimized. It is expected that this study will contribute to the minimization of fuel losses and the wastes streams in the fabrication process of the fuel slugs. Also through this study the technical readiness level of the metallic fuel fabrication process will be further enhanced. In this study, U-Zr alloy system fuel slugs were fabricated by a gravity casting method. Metallic fuel slugs were successfully fabricated with 19 slugs/batch with diameter of 5mm and length of 300mm. Fuel losses was quantitatively evaluated in casting process for the fuel slugs. Fuel losses of the fuel slugs were so low, 0.1∼1.0%. Injection casting experiments have been performed to reduce the fuel loss and improve the casting method. U-Zr fuel slug having φ5.4-L250mm was soundly fabricated with 0.1% in fuel loss. The fuel losses could be minimized to 0.1%, which showed that casting technology of fuel slugs can be a feasible approach to reach the goal of the fuel losses of 0.1% or less in commercial scale

  14. Energetic Surface Smoothing of Complex Metal-Oxide Thin Films

    International Nuclear Information System (INIS)

    Willmott, P.R.; Herger, R.; Schlepuetz, C.M.; Martoccia, D.; Patterson, B.D.

    2006-01-01

    A novel energetic smoothing mechanism in the growth of complex metal-oxide thin films is reported from in situ kinetic studies of pulsed laser deposition of La 1-x Sr x MnO 3 on SrTiO 3 , using x-ray reflectivity. Below 50% monolayer coverage, prompt insertion of energetic impinging species into small-diameter islands causes them to break up to form daughter islands. This smoothing mechanism therefore inhibits the formation of large-diameter 2D islands and the seeding of 3D growth. Above 50% coverage, islands begin to coalesce and their breakup is thereby suppressed. The energy of the incident flux is instead rechanneled into enhanced surface diffusion, which leads to an increase in the effective surface temperature of ΔT≅500 K. These results have important implications on optimal conditions for nanoscale device fabrication using these materials

  15. Electron spin resonance of radicals and metal complexes

    International Nuclear Information System (INIS)

    1993-01-01

    The materials are a collection of extended synopsis of papers presented at the conference sessions. The broad area of magnetic techniques applications has been described as well as their spectra interpretation methods. The ESR, NMR, ENDOR and spin echo were applied for studying the radiation and UV induced radicals in chemical and biological systems. Also in the study of complexes of metallic ions (having the paramagnetic properties) and their interaction with the matrix, the magnetic techniques has been commonly used. They are also very convenient tool for the study of reaction kinetics and mechanism as well as interaction of paramagnetic species with themselves and crystal lattice or with the surface as for thee catalytic processes

  16. Soil Heavy Metal Concentrations in Green Space of Mobarake Steel Complex

    Directory of Open Access Journals (Sweden)

    vahid Moradinasab

    2017-01-01

    Full Text Available Introduction: Water shortage in arid and semiarid regions of the world is a cause of serious concerns. The severe water scarcity urges the reuse of treated wastewater effluent and marginal water as a resource for irrigation. Mobarake Steel Complex has been using treated industrial wastewater for drip-irrigation of trees in about 1350 ha of its green space. However, wastewater may contain some amounts of toxic heavy metals, which create problems. Excessive accumulation of heavy metals in agricultural soils through wastewater irrigation may not only result in soil contamination, but also affect food quality and safety. Improper irrigation management, however, can lead to the loss of soil quality through such processes as contamination and salination. Soil quality implies its capacity to sustain biological productivity, maintain environmental quality, and enhance plants, human and animal health. Soil quality assessment is a tool that helps managers to evaluate short-term soil problems and appropriate management strategies for maintaining soil quality in the long time. Mobarakeh Steel Complex has been using treated wastewater for irrigation of green space to combat water shortage and prevent environmental pollution. This study was performed to assess the impact of short- middle, and long-term wastewater irrigation on soil heavy metal concentration in green space of Mobarake Steel complex. Materials and Methods: The impacts of wastewater irrigation on bioavailable and total heavy metal concentrations in the soils irrigated with treated wastewater for 2, 6 and 18 years as compared to those in soils irrigated with groundwater and un-irrigated soils. Soils were sampled from the wet bulb produced by under-tree sprinklers in three depths (0-20, 20-40 and 40-60 cm. Soil samples were air-dried, and crushed to pass through a 2-mm sieve. Plant-available metal concentrations were extracted from the soil with diethylenetriaminepentaacetic acid-CaCl2

  17. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    Science.gov (United States)

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  18. Abandoned metal mine stability risk evaluation.

    Science.gov (United States)

    Bétournay, Marc C

    2009-10-01

    The abandoned mine legacy is critical in many countries around the world, where mine cave-ins and surface subsidence disruptions are perpetual risks that can affect the population, infrastructure, historical legacies, land use, and the environment. This article establishes abandoned metal mine failure risk evaluation approaches and quantification techniques based on the Canadian mining experience. These utilize clear geomechanics considerations such as failure mechanisms, which are dependent on well-defined rock mass parameters. Quantified risk is computed using probability of failure (probabilistics using limit-equilibrium factors of safety or applicable numerical modeling factor of safety quantifications) times a consequence impact value. Semi-quantified risk can be based on failure-case-study-based empirical data used in calculating probability of failure, and personal experience can provide qualified hazard and impact consequence assessments. The article provides outlines for land use and selection of remediation measures based on risk.

  19. Stimulated X-Ray Emission Spectroscopy in Transition Metal Complexes

    Science.gov (United States)

    Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Mercadier, Laurent; Majety, Vinay P.; Marinelli, Agostino; Lutman, Alberto; Guetg, Marc W.; Decker, Franz-Josef; Boutet, Sébastien; Aquila, Andy; Koglin, Jason; Koralek, Jake; DePonte, Daniel P.; Kern, Jan; Fuller, Franklin D.; Pastor, Ernest; Fransson, Thomas; Zhang, Yu; Yano, Junko; Yachandra, Vittal K.; Rohringer, Nina; Bergmann, Uwe

    2018-03-01

    We report the observation and analysis of the gain curve of amplified K α x-ray emission from solutions of Mn(II) and Mn(VII) complexes using an x-ray free electron laser to create the 1 s core-hole population inversion. We find spectra at amplification levels extending over 4 orders of magnitude until saturation. We observe bandwidths below the Mn 1 s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ˜1.7 eV FWHM is constant over 3 orders of magnitude, pointing to the buildup of transform limited pulses of ˜1 fs duration. Driving the amplification into saturation leads to broadening and a shift of the line. Importantly, the chemical sensitivity of the stimulated x-ray emission to the Mn oxidation state is preserved at power densities of ˜1020 W /cm2 for the incoming x-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) x-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear x-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis, and materials science.

  20. Targeting triple negative breast cancer cells by N3-substituted 9,10-phenanthrenequinone thiosemicarbazones and their metal complexes.

    Science.gov (United States)

    Afrasiabi, Zahra; Stovall, Preston; Finley, Kristen; Choudhury, Amitava; Barnes, Charles; Ahmad, Aamir; Sarkar, Fazlul; Vyas, Alok; Padhye, Subhash

    2013-10-01

    Novel N(3)-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their copper, nickel and palladium complexes are structurally characterized and reported along with the single crystal X-ray structures of three ligands and one nickel complex. All compounds were evaluated for their antiproliferative potential against Triple Negative Breast Cancer (TNBC) cells which have poor prognosis and no effective drugs to treat with. All compounds exhibited antiproliferative activity against these cells. Among the metal complexes evaluated, redox active copper complexes were found to be more potent. The possible mechanism for such enhanced activity can be attributed to the generation of oxidative stress, which was amenable for targeting through metal complexation. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Metal complex-based electron-transfer mediators in dye-sensitized solar cells

    Science.gov (United States)

    Elliott, C. Michael; Sapp, Shawn A.; Bignozzi, Carlo Alberto; Contado, Cristiano; Caramori, Stefano

    2006-03-28

    This present invention provides a metal-ligand complex and methods for using and preparing the same. In particular, the metal-ligand complex of the present invention is of the formula: L.sub.a-M-X.sub.b where L, M, X, a, and b are those define herein. The metal-ligand complexes of the present invention are useful in a variety of applications including as electron-transfer mediators in dye-sensitized solar cells and related photoelectrochromic devices.

  2. Resonance Raman spectra of metal halide vapor complexes

    International Nuclear Information System (INIS)

    Paptheodorou, G.N.

    1978-01-01

    Resonance Raman spectra of complex vapor phase compounds formed by reacting ''acidic'' gases (A 2 X 6 = Al 2 Cl 6 , Al 2 Br 6 , In 2 Cl 6 ) with metal halides have been measured. Spectra obtained from equilibrium vapor mixtures of A 2 X 6 over solid MX 2 (= PdCl 2 , PdBr 2 , CuCl 2 , CoBr 2 , TiCl 2 , FeCl 2 , NiCl 2 , PtCl 2 ) were a superposition of the A 2 X 6 -AX 3 bands and in few cases of new resonance-enhanced polarized bands due to MA 2 X 8 and/or MAX 5 complexes. At temperatures above 800 0 K, characteristic bands due to MX 2 (g) (M = Fe, Co, Ni, Cu, Zn) and M 2 X 4 (g) (M = Cu) were observed. The predominant features of the PdAl 2 Cl 8 , CuAl 2 Cl 8 , and PdAl 2 Br 6 spectra were three high-intensity, polarized bands which were attributed to the vibrational modes of the complex coupled to the electronic state of the central atom. The spectra of CuAlCl 5 (g), CuInCl 5 (g) and Cu 2 Cl 4 (g) species showed resonance enhancement of selective fundamentals which were attributed to vibrational modes of trigonally coordinated Cu(II). Resonance Raman spectra of U 2 Cl 10 (g) and UCl 5 .AlCl 3 (g) were characterized by the presence of a strong band attributed to the U-Cl/sub t/ stretching frequency. Raman band intensity measurements were carried out for the iron(III) chloride vapors and for the vapor complexes of CuAl 2 Cl 8 , CuInCl 5 and UCl 5 .AlCl 3 using different laser powers and frequencies. The measurements suggested increasing spectroscopic temperatures and decomposition of the vapor complexes. The data are discussed in terms of the distribution of vibrational modes and the structure of the vapor species. 22 figs

  3. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    Science.gov (United States)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  4. Study of distorted octahedral structure in 3d transition metal complexes using XAFS

    Science.gov (United States)

    Gaur, A.; Nitin Nair, N.; Shrivastava, B. D.; Das, B. K.; Chakrabortty, Monideepa; Jha, S. N.; Bhattacharyya, D.

    2018-01-01

    Distortion in octahedral structure of 3d transition metal complexes (Mn, Fe, Co, Ni, Cu, Zn) has been studied using XAFS showing divergent nature of Cu complex. EXAFS analysis showed elongated metal-oxygen bonds for Cu complex leading to more distorted structure. Derivative XANES spectrum at Cu K-edge exhibits splitting of main edge which is correlated to elongated Cu-O bond length. Using these coordination geometry around metal centers, theoretical XANES spectra have been generated and features observed have been correlated to the corresponding metals p-DOS. It has been shown that distorted octahedral field in Cu complex is responsible for splitting of p-DOS.

  5. The role of Glutathione, Cysteine and D-Penicillamine in exchanging Palladium and Vanadium metals from albumin metal complex.

    Science.gov (United States)

    Mukhtiar, Muhammad; Jan, Syed Umer; Ullah, Ihsan; Hussain, Abid; Ullah, Izhar; Gul, Rahman; Ali, Essa; Jabbar, Abdul; Kuthu, Zulfiqar Hussan; Wasim, Muhammad; Khan, Muhammad Farid

    2017-11-01

    Thiol groups are extensively present across biological systems being found in range of small molecules (e.g. Glutathione, Homo-cysteine) and proteins (e.g. albumin, haemo-globin). Albumin is considered to be a major thiol containing protein present in circulating Plasma. Albumin contains a single thiolate group located at cysteine-34(cys-34) at its active site. Albumin also binds a wide variety of metals and metals complexes at various sites around the protein. Usually heavy metals are preferentially attached with the thiol group of albumin. The binding of heavy metals at cys-34 provides a mechanism by which the residence time of potentially toxic species in the body can be increased. In this research we have assessed the oxidative modification of and metal binding capacity of cys-34 with heavy metals Palladium and Vanadium to investigate the ease with which it is possible to effect disulfide-thiol exchange at this sites/or remove a metal bound at this position. Both the metals were treated with albumin and then the albumin metals (Pd and V) complexes were treated with small thoil molecules like Glutathione, Cysteine and D-Penicillamine. Our finding showed that the albumin thiol group retained the metals with itself by forming some strong bonding with the Thiols group, it is concluded from this finding that if by chance both the metals enter the living system; strongly disturb the chemistry and physiological function of this bio-molecule.

  6. Evaluation of pretreatment options for a complex liquid matrix

    International Nuclear Information System (INIS)

    DeFelice, K.A.; Erickson, D.C.; Klein, M.D.; Myers, N.J.

    1992-01-01

    This paper presents an evaluation of selected physical and chemical unit treatment processes for the removal of metals, radionuclides, and other inorganic contaminants from a complex liquid matrix (waste-pit liquid) prior to a biological treatment step. The waste-pit liquid that was used in the bench- and pilot-scale treatability study program was collected from wells installed in a landfill formerly used for co-disposal of municipal and liquid industrial waste. The waste-pit liquid has a high organic content (as quantified by biological oxygen demand and total organic carbon, which were 2500 mg/L and 2800 mg/day, respectively) and a high total dissolved solids content (greater than 15,000 mg/L) and contains metals and low levels of radionuclides. The unit processes evaluated for pretreatment of the waste-pit liquid included centrifugation, membrane filtration, conventional filtration, precoat filtration, dissolved air flotation, and chemical precipitation. Lime-soda softening, which is a chemical precipitation process, provided the best overall removal for metals, radionuclides, and other inorganics and was therefore selected for pretreatment of the waste-pit liquid prior to biological treatment

  7. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Du, Guodong [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    -, bis-alkoxo, and chelating diolato complexes, depending on the identity of diols and the stoichiometry employed. It was also found that tin porphyrin complexes promoted the oxidative cleavage of vicinal diols and the oxidation of α-ketols to α-diketones with dioxygen. In extending the chemistry of metalloporphyrins and analogous complexes, a series of chiral tetraaza macrocyclic ligands and metal complexes were designed and synthesized. Examination of iron(II) complexes showed that they were efficient catalysts for the cyclopropanation of styrene by diazo reagents. Good yields and high diastereoselectivity were obtained with modest enantioselectivity. A rationalization of the stereoselectivity was presented on the basis of structural factors in a carbene intermediate.

  8. A Rh III-N-heterocyclic carbene complex from metal-metal singly ...

    Indian Academy of Sciences (India)

    Metal-metal singly bonded [Rh2(CO)4(acac)2][OTf]2 (1) has been synthesized and characterized by spectroscopic and analytical techniques. A density functional theory ... to each rhodium. This work demonstrates the general utility of the metal-metal bonded compounds for the easy synthesis of metal-NHC compounds.

  9. Chitosan-based Schiff base-metal complexes (Mn, Cu, Co) as ...

    Indian Academy of Sciences (India)

    based Schiff base-metal complexes (Mn, Cu, Co) as heterogeneous, new catalysts for the -isophorone oxidation. C S Thatte ... A new chitosan-based Schiff base was prepared and complexed with manganese, cobalt and copper. These Schiff ...

  10. Spectroscopy of metal-ion complexes with peptide-related ligands.

    Science.gov (United States)

    Dunbar, Robert C

    2015-01-01

    With new experimental tools and techniques developing rapidly, spectroscopic approaches to characterizing gas-phase metal ion complexes have emerged as a lively area of current research, with particular emphasis on structural and conformational information. The present review gives detailed attention to the metal-ion complexes of amino acids (and simple derivatives), much of whose study has focused on the question of charge-solvation vs salt-bridge modes of complexation. Alkali metal ions have been most frequently examined, but work with other metal ions is discussed to the extent to which they have been studied. The majority of work has been with simple cationic metal ion complexes, while recent excursions into deprotonated complexes, anionic complexes, and dimer complexes are also of interest. Interest is growing in complexes of small peptides, which are discussed both in the context of possible zwitterion formation as a charge-solvation alternative, and of the alternative metal-ion bond formation to amide nitrogens in structures involving iminol tautomerization. The small amount of work on complexes of large peptides and proteins is considered, as are the structural consequences of solvation of the gas-phase complexes. Spectroscopy in the visible/UV wavelength region has seen less attention than the IR region for structure determination of gas-phase metal-ion complexes; the state of this field is briefly reviewed.

  11. Oxidation of limonene catalyzed by Metal(Salen complexes

    Directory of Open Access Journals (Sweden)

    L. F. Lima

    2006-03-01

    Full Text Available The compound R-(+limonene is available and cheap than its oxidized products. Consequently, the selective oxidation of R(+limonene has attracted attention as a promising process for the production of compounds with a higher market value, such as cis/trans-1,2-limoneneoxide, cis/trans-carveol and/or carvone. One of the these processes, described in the recent literature, is submission of R-(+limonene to an oxidation reaction catalyzed by neutral or cationic Metal(Salen complexes, in the presence of effective terminal oxidants such as NaOCl or PhIO. These reactions are commonly carried out in organic solvents (dichromethane, ethyl acetate, acetonitrile or acetone. Thus, the main objective of the present work was to study the effect of several factors (type of oxidant, catalyst, solvent and time on reaction selectivity for the high-priced compounds referred to above. For this purposes, experimental statistical multivariate analysis was used in conjunction with a complete experimental design. From the results it was observed that for the three targeted products (1,2-limoneneoxide, carveol or carvone some factors, including the nature of the terminal oxidant and the catalyst, were significant for product selectivity (with a confidence level of 95%. Therefore, this statistical analysis proved to be suitable for choosing of the best reaction conditions for a specific desired product.

  12. Photoluminescent properties of complex metal oxide nanopowders for gas sensing

    Science.gov (United States)

    Bovhyra, R. V.; Mudry, S. I.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.; Venhryn, Yu. I.

    2018-03-01

    This work carried out research on the features of photoluminescence of the mixed and complex metal oxide nanopowders (ZnO/TiO2, ZnO/SnO2, Zn2SiO4) in vacuum and gaseous ambient. The nanopowders were obtained using pulsed laser reactive technology. The synthesized nanoparticles were characterized by X-ray diffractometry, energy-dispersive X-ray analysis, and scanning and transmission electron microscopy analysis for their sizes, shapes and collocation. The influence of gas environment on the photoluminescence intensity was investigated. A change of ambient gas composition leads to a rather significant change in the intensity of the photoluminescence spectrum and its deformation. The most significant changes in the photoluminescent spectrum were observed for mixed ZnO/TiO2 nanopowders. This obviously is the result of a redistribution of existing centers of luminescence and the appearance of new adsorption centers of luminescence on the surface of nanopowders. The investigated nanopowders can be effectively used as sensing materials for the construction of the multi-component photoluminescent sensing matrix.

  13. Metallophore mapping in complex matrices by metal isotope coded profiling of organic ligands.

    Science.gov (United States)

    Deicke, Michael; Mohr, Jan Frieder; Bellenger, Jean-Philippe; Wichard, Thomas

    2014-12-07

    Metal isotope coded profiling (MICP) introduces a universal discovery platform for metal chelating natural products that act as metallophores, ion buffers or sequestering agents. The detection of cation and oxoanion complexing ligands is facilitated by the identification of unique isotopic signatures created by the application of isotopically pure metals.

  14. Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes

    Directory of Open Access Journals (Sweden)

    Poomalai Jayaseelan

    2016-09-01

    Full Text Available A novel Schiff base ligand has been prepared by the condensation between butanedione monoxime with 3,3′-diaminobenzidine. The ligand and metal complexes have been characterized by elemental analysis, UV, IR, 1H NMR, conductivity measurements, EPR and magnetic studies. The molar conductance studies of Cu(II, Ni(II, Co(II and Mn(II complexes showed non-electrolyte in nature. The ligand acts as dibasic with two N4-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The spectroscopic data of metal complexes indicated that the metal ions are complexed with azomethine nitrogen and oxyimino nitrogen atoms. The binuclear metal complexes exhibit octahedral arrangements. DNA binding properties of copper(II metal complex have been investigated by electronic absorption spectroscopy. Results suggest that the copper(II complex bind to DNA via an intercalation binding mode. The nucleolytic cleavage activities of the ligand and their complexes were assayed on CT-DNA using gel electrophoresis in the presence and absence of H2O2. The ligand showed increased nuclease activity when administered as copper complex and copper(II complex behave as efficient chemical nucleases with hydrogen peroxide activation. The anti-microbial activities and thermal studies have also been studied. In anti-microbial activity all complexes showed good anti-microbial activity higher than ligand against gram positive, gram negative bacteria and fungi.

  15. Safety Evaluation of Osun River Water Containing Heavy Metals and ...

    African Journals Online (AJOL)

    olayemitoyin

    Summary: This study evaluated the pH, heavy metals and volatile organic compounds (VOCs) in Osun river water. It also evaluated its safety in rats. Heavy metals were determined by atomic absorption spectrophotometry (AAS) while VOCs were determined by gas chromatography coupled with flame ionization detector ...

  16. Novel Route to Transition Metal Isothiocyanate Complexes Using Metal Powders and Thiourea

    Science.gov (United States)

    Harris, Jerry D.; Eckles, William E.; Hepp, Aloysius F.; Duraj, Stan A.; Hehemann, David G.; Fanwick, Phillip E.; Richardson, John

    2003-01-01

    A new synthetic route to isothiocyanate-containing materials is presented. Eight isothiocyanate- 4-methylpyridine (y-picoline) compounds were prepared by refluxing metal powders (Mn, Fe, Co, Ni, and Cu) with thiourea in y-picoline. With the exception of compound 5,prepared with Co, the isothiocyanate ligand was generated in situ by the isomerization of thiourea to NH4+SCN- at reflux temperatures. The complexes were characterized by x-ray crystallography. Compounds 1,2, and 8 are the first isothiocyanate- 4-methylpyridine anionic compounds ever prepared and structurally characterized. Compounds 1 and 2 are isostructural with four equatorially bound isothiocyanate ligands and two axially bound y-picoline molecules. Compound 8 is a five-coordinate copper(II) molecule with a distorted square-pyramidal geometry. Coordinated picoline and two isothiocyanates form the basal plane and the remaining isothiocyanate is bound at the apex. Structural data are presented for all compounds.

  17. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  18. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, R. Morris; Chambers, Geoffrey M.

    2017-07-24

    This Perspective examines the field of Frustrated Lewis Pairs (FLPs) in the context of transition metal mediated heterolytic cleavage of H2, with a particular emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with group compounds, yet many transition metal reactions support a broader classification of FLPs to include certain types of transition metal complexes with reactivity resembling main group based FLPs. This article surveys transition metal complexes that heterolytically cleave H2, which vary in the degree that the Lewis pairs within these systems interact. Particular attention is focused on complexes bearing a pendant amine function as the base. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.

  19. The introduction to the chemistry of second-sphere complexes of metals in solutions

    International Nuclear Information System (INIS)

    Mironov, V.E.; Isaev, I.D.

    1986-01-01

    Investigation data on the chemistry of second-sphere complexes of metal ions (alkali, alkaline earth, transition, rare earth and other metals) in solutions are generalized. Modern representations about the processes of their formation, investigation methods, thermodynamics, structure, the nature of forces to form them are described. Perspectives of the development of the chemistry of second-sphere complexes in solutions are given

  20. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  1. Novel D–π–A dye sensitizers of polymeric metal complexes with ...

    Indian Academy of Sciences (India)

    Novel D––A dye sensitizers of polymeric metal complexes with triphenylamine derivatives as donor for dye-sensitized solar cells: synthesis, characterization and ... All the four polymeric metal complexes exhibited some photovoltaic performance, the highest photoelectric conversion efficiency of compound P4 reached ...

  2. Reactivity of olefin and allyl ligands in π-complexes of metals

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    The data on reactivity of olefin and allyl ligands in transition metal (Ru, W) π-complexes, published up to 1984 are presented. Metal ion coordination of olefins causes their appreciable reactivity change. Transformations of π-olefin ligands into σ-alkyl ones, interaction of π-complexes with oxygen nucleophilic reagents, amines, halogenides and pseudohalogenides are considered

  3. Synthesis, spectroscopic and biological studies of transition metal complexes of novel schiff bases derived from cephradine and sugars

    International Nuclear Information System (INIS)

    Naz, N.; Iqbal, M.Z.

    2011-01-01

    Fe(II), Co(II) and Ni(II) metal complexes of novel schiff bases derived from Cephradine and sugars (D-Glucose, L. Arabinose and D-Galactose) were synthesized and characterized by elemental analysis, magnetic susceptibility, thermal analysis, electronic absorption and FT-IR spectral studies. It has been found that schiff bases behave as bi-dentate-ligands forming complexes with 1:2 (metal:ligand) stoichiometry. the neutral nature of the complexes was confirmed by their low conductance values. The biological activities of complexes have been evaluated against two gram negative (Escherichia coli and Pseudomonas aeruginosa) and two gram positive (Bacillus subtilis and staphylococcus aureus) bacteria by Agar diffusion disc method. It has been found that the complexes have higher activity as compared to the pure Cephradine against the same bacteria. (author)

  4. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    Energy Technology Data Exchange (ETDEWEB)

    Peresypkina, Eugenia V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Samsonenko, Denis G. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vostrikova, Kira E., E-mail: vosk@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); LMI, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  5. Metallic complexes with glyphosate: a review; Complexos metalicos com o herbicida glifosato: revisao

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, Claudia F.B.; Mazo, Luiz Henrique [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: claudiabreda@iqsc.usp.br

    2005-11-15

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature. (author)

  6. Colour interceptions, thermal stability and surface morphology of polyester metal complexes

    International Nuclear Information System (INIS)

    Zohdy, M.H.

    2005-01-01

    Chelating copolymers via grafting of acrylic acid (AAc) and acrylamide (AAm/AAc) comonomer mixture onto polyester micro fiber fabrics (PETMF) using gamma-radiation technique were prepared. The prepared graft chains (PETMF-g-AAc) and (PETMF-g-PAAc/PAAm) acted as chelating sites for some selected transition metal ions. The prepared graft copolymers and their metal complexes were characterized using thermogravimetric analysis (TGA), colour parameters and surface morphology measurements. The colour interception and strength measurements showed that the metal complexation is homogeneously distributed. The results showed that the thermal stability of PETMF was improved after graft copolymerization and metal complexes. Moreover, the degree of grafting enhanced the thermal stability values of the grafted and complexed copolymers up to 25% of magnitude, on the other hand the activation energy of the grafted-copolymer with acrylic acid increased up to 80%. The SEM observation gives further supports to the homogenous distribution of grafting and metal complexation

  7. Transition Metal d-Orbital Splitting Diagrams: An Updated Educational Resource for Square Planar Transition Metal Complexes

    Science.gov (United States)

    Bo¨rgel, Jonas; Campbell, Michael G.; Ritter, Tobias

    2016-01-01

    The presentation of d-orbital splitting diagrams for square planar transition metal complexes in textbooks and educational materials is often inconsistent and therefore confusing for students. Here we provide a concise summary of the key features of orbital splitting diagrams for square planar complexes, which we propose may be used as an updated…

  8. On the capacity to the complexing of alkaline earth metal and magnesium chromates

    International Nuclear Information System (INIS)

    Orekhov, O.L.

    1978-01-01

    Considered is the capacity to the complexing of magnesium chromates and alkaline earth metal chromates with ammonium chromates in aqueous solutions. It has been established that the complexing of alkaline earth metal and magnesium chromates is effected by a nature of initial salts as well as their solubilities and the presence of crystallization water. Capacity of magnesium ions and alkaline rare earth metals to the complexing decreases in a series of Mg-Ca-Sr-Ba. Ca complexes exceed magnesium derivatives in respect of stability

  9. Speciation Studies of Some Toxic Metal Complexes of Glycylglycine ...

    African Journals Online (AJOL)

    NICO

    mixtures apart from its established utility in understanding ... Chemical speciation of metals is important for an understand- ... Titrations with differ- ent ratios (1:2.5, 1:3.5 and 1:5) of metal-ligand were performed with 0.4 mol L–1 sodium hydroxide solution. The mixtures obtained from PG and water are non-ideal due.

  10. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    Science.gov (United States)

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  11. Design Process Control for Improved Surface Finish of Metal Additive Manufactured Parts of Complex Build Geometry

    Directory of Open Access Journals (Sweden)

    Mikdam Jamal

    2017-12-01

    Full Text Available Metal additive manufacturing (AM is increasingly used to create complex 3D components at near net shape. However, the surface finish (SF of the metal AM part is uneven, with surface roughness being variable over the facets of the design. Standard post-processing methods such as grinding and linishing often meet with major challenges in finishing parts of complex shape. This paper reports on research that demonstrated that mass finishing (MF processes are able to deliver high-quality surface finishes (Ra and Sa on AM-generated parts of a relatively complex geometry (both internal features and external facets under select conditions. Four processes were studied in this work: stream finishing, high-energy (HE centrifuge, drag finishing and disc finishing. Optimisation of the drag finishing process was then studied using a structured design of experiments (DOE. The effects of a range of finishing parameters were evaluated and optimal parameters and conditions were determined. The study established that the proposed method can be successfully applied in drag finishing to optimise the surface roughness in an industrial application and that it is an economical way of obtaining the maximum amount of information in a short period of time with a small number of tests. The study has also provided an important step in helping understand the requirements of MF to deliver AM-generated parts to a target quality finish and cycle time.

  12. Process for the displacement of cyanide ions from metal-cyanide complexes

    Science.gov (United States)

    Smith, Barbara F.; Robinson, Thomas W.

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  13. Metal-isonitrile adducts for preparing radionuclide complexes for labelling and imaging agents

    Science.gov (United States)

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1987-01-01

    A method for preparing a coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta is disclosed. The method comprises preparing a soluble metal adduct of said isonitrile ligand by admixing said ligand with a salt of a displaceable metal having a complete d-electron shell selected from the group consisting of Zn, Ga, Cd, In, Sn, Hg, Tl, Pb and Bi to form a soluble metal-isonitrile salt, and admixing said metal isonitrile salt with a salt comprising said radioactive metal in a suitable solvent to displace said displaceable metal with the radioactive metal thereby forming said coordination. The complex is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.

  14. Structures and energetics of complexation of metal ions with ammonia, water, and benzene: A computational study.

    Science.gov (United States)

    Sharma, Bhaskar; Neela, Y Indra; Narahari Sastry, G

    2016-04-30

    Quantum chemical calculations have been performed at CCSD(T)/def2-TZVP level to investigate the strength and nature of interactions of ammonia (NH3 ), water (H2 O), and benzene (C6 H6 ) with various metal ions and validated with the available experimental results. For all the considered metal ions, a preference for C6 H6 is observed for dicationic ions whereas the monocationic ions prefer to bind with NH3 . Density Functional Theory-Symmetry Adapted Perturbation Theory (DFT-SAPT) analysis has been employed at PBE0AC/def2-TZVP level on these complexes (closed shell), to understand the various energy terms contributing to binding energy (BE). The DFT-SAPT result shows that for the metal ion complexes with H2 O electrostatic component is the major contributor to the BE whereas, for C6 H6 complexes polarization component is dominant, except in the case of alkali metal ion complexes. However, in case of NH3 complexes, electrostatic component is dominant for s-block metal ions, whereas, for the d and p-block metal ion complexes both electrostatic and polarization components are important. The geometry (M(+) -N and M(+) -O distance for NH3 and H2 O complexes respectively, and cation-π distance for C6 H6 complexes) for the alkali and alkaline earth metal ion complexes increases down the group. Natural population analysis performed on NH3 , H2 O, and C6 H6 complexes shows that the charge transfer to metal ions is higher in case of C6 H6 complexes. © 2015 Wiley Periodicals, Inc.

  15. Determination of metal-ligand stoichiometries for inorganic complexes using total reflection X-ray fluorescence.

    Science.gov (United States)

    Greaves, E D; Bennun, L; Gomez, J; Nemeth, P; Sajo-Bohus, L

    The methods usually used to determine the ratio metal-ligand in inorganic complexes require a set of solutions with different concentrations for both the ligand and metal. We propose a new method using the total reflection X-ray fluorescence technique, in which the ratio between metal and ligand is determined precisely, easily, and quickly. Experimental results provide evidence that for different chemical complexes, the ligand-metal ratio determined by this technique deviates at most from stoichiometric values by 6%. The technique is restricted usually to elements with Z above 14, and its detection limit is on the order of 10(-8) g/g.

  16. Evaluation of some heavy metals concentration in municipal waste ...

    African Journals Online (AJOL)

    A study was conducted in Delta State, a major Niger Delta region of Nigeria. The aim was to evaluate some heavy metals concentration in municipal wastes dumpsites that are presently used for intensive horticultural crops production. The heavy metals studied were; Iron (Fe); Lead (Pb); Mercury (Hg); Cromium (Cr); Nickel ...

  17. Preparation and characterisation of some transition metal complexes of niacinamide (vitamin b3)

    International Nuclear Information System (INIS)

    Hasan, M.M.; Hossain, M.E.; Halim, M.E.

    2015-01-01

    Niacinamide forms metal complexes of general formula (M(C/sub 6/H/sub 6/N/sub 2/O)2)Cl/sub 2/; where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) in the aqueous medium. The complexes were formulated by comparing the experimental and calculated data for C, H, N and metal. The prepared complexes were characterized by different physicochemical methods. The UV-vis, FTIR spectral analysis and thermo gravimetric analysis (TGA). TGA of these complexes have been discussed. Magnetic susceptibility values indicate that all complexes except Zn complex are paramagnetic in nature. The redox properties of the metal ions in the Mn, Cu and Zn complexes have been discussed from the cyclic voltammetric studies. In all cases the systems are quasi reversible. (author)

  18. Transition metal complexes supported on metal-organic frameworks for heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Farha, Omar K.; Hupp, Joseph T.; Delferro, Massimiliano; Klet, Rachel C.

    2017-02-07

    A robust mesoporous metal-organic framework comprising a hafnium-based metal-organic framework and a single-site zirconium-benzyl species is provided. The hafnium, zirconium-benzyl metal-organic framework is useful as a catalyst for the polymerization of an alkene.

  19. Calculation of formation constants of single-charged complex ions of bivalent metals in solutions

    International Nuclear Information System (INIS)

    Allakhverdov, G.R.

    1985-01-01

    A new method for calculating formation constants of complexes of bivalent metals in solutions is suggested. The method is based on using relations characterizing concentration dependence of activity factors and theis interrelation with osmotic coefficients. It is shown that the results of formation constant calculations of complexes MX + (M-Mg, Ca, Sr, Ba, Cd, Co, Zn, Ni, Fe, Mn, Cu; X-Cl, Br, I, NOΛ3) performed with a computer using experimental data in the 0.1-0.5 m(m-molality) concentration range, are in satisfactory agreement with literature data obtained by various research methods. It is established that for all metals the stability of halide complexes drops in the MCl + >MBr + >MI + series. In the series of complexes formed by alkaline earth metals, the complexes stability grows with increase of metal atomic number

  20. Transition metal complexes with oxygen donor ligands: a synthesis, spectral, thermal and antimicrobial study

    Directory of Open Access Journals (Sweden)

    VAIBHAV N. PATANGE

    2008-10-01

    Full Text Available Transition metal complexes of chalcones derived from the conden¬sation of 3-acetyl-6-methyl-2H-pyran-2,4(3H-dione (dehydroacetic acid and p-methoxybenzaldehyde (HL1 or p-nitrobenzaldehyde (HL2 were synthesized and characterized by elemental analysis, conductometry, thermal analysis, magnetic measurements, IR, 1H-NMR, UV–Vis spectroscopy and a microbial study. From the analytical and thermal data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand. The molar conductance data revealed that all the metal chelates were non-electrolytes. The thermal stability of the complexes was studied by thermogravimetry and the decomposition schemes of the complexes are given. The ligands and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli, and fungicidal activity against Aspergillus flavus, Curvularia lunata and Penicillium notatum.

  1. Metal ion cage complexes as imaging agents for cancer cells

    International Nuclear Information System (INIS)

    Di Bartolo, N.; Smith, S.; Sargeson, A.

    2000-01-01

    Full text: Cage ligands are very attractive for use in radiolabelling antibodies. Their synthesis is based around Co(III) octahedral co-ordination chemistry and they may be easily derivatised for attachment to antibodies. They are known to form kinetically inert metal complexes. Copper-64 (t 1/2 = 12.7 h) has been identified as having potential value in diagnostic and therapeutic application. Its positron annihilation radiation is useful for PET imaging, while its beta (E max 578 keV, 37.2 %) emissions may also be suitable for therapy. In the current study, the new hexa-aza-cryptand, 1 -N-(4-amino-benzyl)-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]eicosane- 1,8-diamine, or SarAr, has been synthesised specifically for radiolabelling antibodies with 64 Cu and a kit formulation has been produced. The resulting radiolabelled immunoconjugate ( 64 Cu-SarArB-72.3) was injected into nude mice bearing LS174t colorectal carcinoma. Clearance of 64 CuSarAr-B72.3 from the liver and kidneys was typical of a whole IgG antibody. Tumour localisation was comparable to similar radiolabelled immunoconjugates (38± 5 % ID/g at 48 hours). Biodistribution studies of 123 I- and 111 In- radiolabelled B72.3 were conducted in the same animal model. MIRDOSE 3 was used to compare target to non-target dose of their analogous therapeutic counterparts ( 90 Y and 131 I respectively) with 64 Cu-SarAr-B72.3. Total body dose for 64 Cu-SarAr-B72.3 was significantly lower (0.09 rad/mCi) than analogous products ( 131 I-B72.3, 2.64 rad/mCi; 90 Y- B72.3, 2.387 rad/mCi) while still providing enough dose to small tumours to be potentially therapeutic. In order to assess therapeutic effect of 64 Cu, a biological study was conducted over a 12 month period. Nude mice bearing tumours between 3.5 - 5.5 mm in length were injected with various doses (0, 10, 20, 30, 40 MBq) of 64 Cu-SarAr-B72.3. Animals were regularly monitored for tumour size, animal mass, behavioural and physical abnormalities (e.g. movement / gait

  2. Evaluation of Physicochemical Properties and Heavy Metals ...

    African Journals Online (AJOL)

    Physicochemical properties of municipal dumpsite compost in Kano metropolis and concentration of heavy metals were investigated. Analysis was carried out by atomic absorption spectrometry (Buck Scientific VPG 210). The results shows that the compost pH (6.63-8.19), electric conductivity of compost (638-933μs/cm), ...

  3. Synthesis, spectral, thermal, potentiometric and antimicrobial studies of transition metal complexes of tridentate ligand

    Directory of Open Access Journals (Sweden)

    Sarika M. Jadhav

    2014-01-01

    Full Text Available A series of metal complexes of Cu(II, Ni(II, Co(II, Fe(III and Mn(II have been synthesized with newly synthesized biologically active tridentate ligand. The ligand was synthesized by condensation of dehydroacetic acid (3-acetyl-6-methyl-(2H pyran-2,4(3H-dione or DHA, o-phenylene diamine and fluoro benzaldehyde and characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV–Vis spectroscopy and mass spectra. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand with octahedral geometry. The molar conductance values suggest the non-electrolyte nature of metal complexes. The IR spectral data suggest that the ligand behaves as a dibasic tridentate ligand with ONN donor atoms sequence towards central metal ion. Thermal behaviour (TG/DTA and kinetic parameters calculated by the Coats–Redfern and Horowitz–Metzger method suggest more ordered activated state in complex formation. To investigate the relationship between stability constants of metal complexes and antimicrobial activity, the dissociation constants of Schiff bases and stability constants of their binary metal complexes have been determined potentiometrically in THF–water (60:40% solution at 25 ± 1 °C and at 0.1 M NaClO4 ionic strength. The potentiometric study suggests 1:1 and 1:2 complexation. Antibacterial and antifungal activities in vitro were performed against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma, respectively. The stability constants of the metal complexes were calculated by the Irving–Rosotti method. A relation between the stability constant and antimicrobial activity of complexes has been discussed. It is observed that the activity enhances upon complexation and the order of antifungal activity is in accordance with stability order of metal ions.

  4. Metal-ion complexes of functionalised 1,10-Phenanthrolines as hydrolytic synzymes

    NARCIS (Netherlands)

    Weijnen, J.G.J.

    1993-01-01

    In this thesis metal-ion complexes of functionalised 1,10-phenanthroline derivatives have been studied as model systems for hydrolytic metallo-enzymes. Amphiphilic metallo- complexes incorporated into micelles or vesicles and water-soluble complexes in pure aqueous buffer solutions, have

  5. Divalent metal complexes of 4-amino-N-pyrimidin-2-ylbenzene ...

    African Journals Online (AJOL)

    In all the complexes the metal ions coordinate through pyrimidinic nitrogen and sulphonamidic nitrogen of the two molecules of APS. The suggested structure for Cd(II) complex of APS is tetrahedral, while that of Cu(II), Mn(II) and Ni(II) APS complexes is octahedral. The inner coordination spheres were occupied by two water ...

  6. Self-Assembly of Discrete Metal Complexes in Aqueous Solution via Block Copolypeptide Amphiphiles

    Directory of Open Access Journals (Sweden)

    Timothy J. Deming

    2013-01-01

    Full Text Available The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN2]−, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K183L19 to [Au(CN2]− solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals. This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water.

  7. A new Mannich base and its transition metal (II) complexes ...

    Indian Academy of Sciences (India)

    The monomeric and non-electrolytic nature of the complexes is evidenced by their magnetic susceptibility and low conductance data. The electrochemical property of the ligand and its complexes in acetonitrile solution was studied by cyclic voltammetry. The X-band ESR spectra of the Cu(II) complex in DMSO at 300 and 77 ...

  8. Antibacterial activity of metal complexes of antifolate drug ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... methanol in 2:1 mole ratios for Cu(II) and Co(II) complexes and 1:1 for silver ... The physical properties of the complexes showed that ... properties. The zones of inhibition of the Ag(I) complex- es are presented in Table 4. The minimum inhibitory concentration (MIC) and the minimum bacteria concen-.

  9. Metal-ligand ``multiple`` bonding: Revelations in the electronic structure of complexes of high-valent f-elements

    Energy Technology Data Exchange (ETDEWEB)

    Burns, C.J.; Arney, D.S.J.; Schnabel, R.C.; Warner, B.P. [Los Alamos National Lab., NM (United States); Bursten, B.E. [Ohio State Univ., Columbus, OH (United States); Green, J.C. [Univ. of Oxford (United Kingdom); Marks, T.J. [Northwestern Univ., Boston, MA (United States)

    1997-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project has been to extend the understanding of the nature of interactions between f-metals and first row elements (important both in natural systems and in ceramics), as well as providing important new information regarding basic differences in the chemical nature of d- and f-metals. By developing preparative routes to novel classes of early actinide and lanthanide complexes in which metal-ligand bonding is formally unsaturated, this project has provided the means to study orbital interactions and charge distribution in these species by physical, chemical, and theoretical means. Evaluation of the physical and chemical characteristics of these species is providing dramatic evidence for the involvement of valence metal orbitals [nf and (n+1)d] in bonding, and is yielding new insights into the factors influencing stability of related species.

  10. Synthesis and characterization of transition metal complexes derived from some biologically active furoic acid hydrazones

    Directory of Open Access Journals (Sweden)

    P. Venkateswar Rao

    2007-04-01

    Full Text Available Two new physiologically active ligands, N’-2-[(E-1-hydroxy-4-methyl-2-oxo-2H-8-chromenyl ethylidene-2-furan carbohydrazide (HMCFCH and N’-2-[(Z-1-(4-hydroxy-6-methyl-2-oxo-2H-pyranyl ethylidene]-furan carbohydrazide (HMPFCH and their VO(II, Mn(II, Fe(II, Co(II, Ni(II and Cu(II complexes have been prepared. The ligands and the metal complexes have been characterized by elemental analyses, electrical conductance, magnetic susceptibility measurements, UV-Vis, IR, and ESR spectroscopic data. Basing on the above data, Fe(II and Co(II complexes of HMCFCH and HMPFCH have been assigned a dimeric octahedral geometry. VO(II complexes of HMCFCH and HMPFCH have been assigned sulfate bridged dimeric square pyramidal geometry. Mn(II complex of HMCFCH has been assigned a dimeric octahedral geometry, where as Mn(II complex of HMPFCH has been ascribed to monomeric octahedral geometry. Cu(II and Ni(II complexes of HMCFCH have been ascribed to a polymeric structure. Ni(II complex of HMPFCH has been assigned a dimeric square planar geometry. Cu(II complex of HMPFCH has been proposed an octahedral geometry. The ligands and their metal chelates were screened against S. aureus and P. aeruginosa. The ligands and the metal complexes have been found to be active against these microorganisms. The ligands show more activity than the metal complexes.

  11. Transition metal complexes of neocryptolepine analogues. Part I: Synthesis, spectroscopic characterization, and invitro anticancer activity of copper(II) complexes

    Science.gov (United States)

    Emam, Sanaa Moustafa; El Sayed, Ibrahim El Tantawy; Nassar, Nagla

    2015-03-01

    New generation of copper(II) complexes with aminoalkylaminoneocryptolepine as bidentate ligands has been synthesized and it is characterized by elemental analyses, magnetic moment, spectra (IR, UV-Vis, 1H NMR and ESR) and thermal studies. The IR data suggest the coordination modes for ligands which behave as a bidentate with copper(II) ion. Based on the elemental analysis, magnetic studies, electronic and ESR data, binuclear square planar geometry was proposed for complexes 7a, 7b, square pyramidal for 9a, 9b and octahedral for 8a, 8b, 10a, 10b. The molar conductance in DMF solution indicates that all complexes are electrolyte except 7a and 7b. The ESR spectra of solid copper(II) complexes in powder form showed an axial symmetry with 2B1g as a ground state and hyperfine structure. The thermal stability and degradation of the ligands and their metal complexes were studied employing DTA and TG methods. The metal-free ligands and their copper(II) complexes were tested for their in vitro anticancer activity against human colon carcinoma (HT-29). The results showed that the synthesized copper(II) complexes exhibited higher anticancer activity than their free ligands. Of all the studied copper(II) complexes, the bromo-substituted complex 9b exhibited high anticancer activity at low micromolar inhibitory concentrations (IC50 = 0.58 μM), compared to the other complexes and the free ligands.

  12. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  13. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture

    International Nuclear Information System (INIS)

    Zhang Yu; Cai Xiyun; Lang Xianming; Qiao Xianliang; Li Xuehua; Chen Jingwen

    2012-01-01

    Co-contamination of ligand-like antibiotics (e.g., tetracyclines and quinolones) and heavy metals prevails in the environment, and thus the complexation between them is involved in environmental risks of antibiotics. To understand toxicological significance of the complex, effects of metal coordination on antibiotics' toxicity were investigated. The complexation of two antibiotics, oxytetracycline and ciprofloxacin, with three heavy metals, copper, zinc, and cadmium, was verified by spectroscopic techniques. The antibiotics bound metals via multiple coordination sites and rendered a mixture of various complexation speciations. Toxicity analysis indicated that metal coordination did modify the toxicity of the antibiotics and that antibiotic, metal, and their complex acted primarily as concentration addition. Comparison of EC 50 values revealed that the complex commonly was highest toxic and predominately correlated in toxicity to the mixture. Finally, environmental scenario analysis demonstrated that ignoring complexation would improperly classify environmental risks of the antibiotics. - Highlights: ► The complex of antibiotic with metal is a mixture of various complexation modes. ► Antibiotic and metal act as various combined interactions when their complexation is ignored. ► Antibiotic, metal, and their complex act as concentration addition interaction. ► Complex commonly is the highest toxicant. ► Neglecting complexation renders improper classification of risks for antibiotics. - Antibiotic, heavy metal and their complex act primarily as concentration addition interaction and the complex commonly is highest toxic.

  14. Stability constants determination of successive metal complexes by hyphenated CE-ICPMS.

    Science.gov (United States)

    Petit, Jeremy; Aupiais, Jean; Topin, Sylvain; Geertsen, Valérie; Beaucaire, Catherine; Stambouli, Moncef

    2010-01-01

    The study of radionuclides speciation requires accurate evaluation of stability constants, which can be achieved by CE-ICPMS. We have previously described a method for 1:1 metal complexes stability constants determination. In this paper, we present its extension to the case of successive complexations and its application to uranyl-oxalate and lanthanum-oxalate systems. Several significant steps are discussed: analytical conditions choice, mathematical treatment by non-linear regression, ligand concentration and ionic strength corrections. The following values were obtained: at infinite dilution, log(beta(1) degrees (UO(2)Oxa))=6.93+/-0.05, log(beta(2) degrees (UO(2)(Oxa)(2) (2-)))=11.92+/-0.43 and log(beta(3) degrees (UO(2)(Oxa)(3) (4-)))=15.11+/-0.12; log(beta(1) degrees (LaOxa(+)))=5.90+/-0.07, log(beta(2) degrees (La(Oxa)(2) (-)))=9.18+/-0.19 and log(beta(3) degrees (La(Oxa)(3) (3-)))=9.81+/-0.33. These values are in good agreement with the literature data, even though we suggest the existence of a new lanthanum-oxalate complex: La(Oxa)(3) (3-). This study confirms the suitability of CE-ICPMS for complexation studies.

  15. Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes.

    Science.gov (United States)

    El Sayed Aly, Mohamed Ramadan; Abd El Razek Fodah, Hamadah Hamadah; Saleh, Sherif Yousef

    2014-04-09

    Four sets of rationally designed chalcones were prepared for evaluation of their antiobesity, antioxidant and cytotoxicity activities. These sets include nine oleoyl chalcones as mimics of oleoyl estrone, three monohydroxy chalcones (chalcone ligands), Schiff base-derived chalcones and four copper as well as zinc complexes. Oleoyl chalcones 4d, 4e and particularly 6a as an isosteric isomer of oleoyl estrone, were as active as Orlistat on weight loss and related metabolic parameters using male SD rats in vivo. Chalcone ligands 10a-c and Schiff base-derived chalcones 11 and 14a,b were weakly antioxidants, while, the copper and zinc complexes 15a-d were good antioxidants with zinc chelates 15b,d being more active than their copper analogues 15a,cin vitro. Compounds 10c and 14a showed good cytotoxicity activities as Doxorubicin against PC3 cancer cell line in vitro, while, the copper complex 15c showed promising activity with IC₅₀ value of 5.95 μM. The estimated IC₅₀ value for Doxorubicin was 8.7 μM. Chalcones 14a,b are bifunctional probes for potential investigations in cancer diagnosis and radiotherapy by complexation with Gd(3+) or metal radioisotopes followed by posttranslation of Shiga toxin B-subunits that target globotriosyl ceramide expressing cancer cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes

    Science.gov (United States)

    Shebl, Magdy

    2014-01-01

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H and 13C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]·4H2O, [(HL)Fe2Cl4(H2O)3]·EtOH, [(HL)Fe2(ox)Cl2(H2O)3]·2H2O, [(L)M2(OAc)(H2O)m]·nH2O; M = Co, Ni or Cu, m = 4, 0 and n = 2, 3, [(HL)Cu2Cl]Cl·6H2O and [(L)(UO2)2(OAc)(H2O)3]·6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.34 × 104 and 2.5 × 104 M-1, respectively.

  17. Mechanochemical Synthesis, In vivo Anti-malarial and Safety Evaluation of Amodiaquine-zinc Complex

    Directory of Open Access Journals (Sweden)

    Arise Rotimi Olusanya

    2017-09-01

    Full Text Available So far, some prospective metal-based anti-malarial drugs have been developed. The mechanochemical synthesis and characterization of Zn (II complex with amodiaquine and its anti-malarial efficacy on Plasmodium berghei-infected mice and safety evaluation were described in this study.

  18. Self-Assembly of Mono- and Dinuclear Metal Complexes; Oxidation Catalysis and Metalloenzyme Models

    NARCIS (Netherlands)

    Gelling, Onko-Jan; Rispens, Minze T.; Lubben, Marcel; Feringa, Bernard

    1994-01-01

    In this chapter several approaches to achieve assembly of mono- and dinuclear metal complexes, which can be considered structural and functional models for metalloenzymes, are described. The emphasis lies on oxidation chemistry, summarizing O2 binding, hydroxylation, demethylation, dehalogenation

  19. Density functional study of isoguanine tetrad and pentad sandwich complexes with alkali metal ions.

    Science.gov (United States)

    Meyer, Michael; Steinke, Thomas; Sühnel, Jürgen

    2007-02-01

    Isoguanine tetraplexes and pentaplexes contain two or more stacked polyads with intercalating metal ions. We report here the results of a density functional study of sandwiched isoguanine tetrad and pentad complexes consisting of two polyads with Na(+), K(+) and Rb(+) ions at the B3LYP level. In comparison to single polyad metal ion complexes, there is a trend towards increased non-planarity of the polyads in the sandwich complexes. In general, the pentad sandwiches have relatively planar polyad structures, whereas the tetrad complexes contain highly non-planar polyad building blocks. As in other sandwich complexes and in metal ion complexes with single polyads, the metal ion-base interaction energy plays an essential role. In iG sandwich structures, this interaction energy is slightly larger than in the corresponding guanine sandwich complexes. Because the base-base interaction energy is even more increased in passing from guanine to isoguanine, the isoguanine sandwiches are thus far the only examples where the base-base interaction energy is larger than the base-metal ion interaction energy. Stacking interactions have been studied in smaller models consisting of two bases, retaining the geometry from the complete complex structures. From the data obtained at the B3LYP and BH&H levels and with Møller-Plesset perturbation theory, one can conclude that the B3LYP method overestimates the repulsion in stacked base dimers. For the complexes studied in this work, this is only of minor importance because the direct inter-tetrad or inter-pentad interaction is supplemented by a strong metal ion-base interaction. Using a microsolvation model, the metal ion preference K(+) approximately Rb(+) > Na(+) is found for tetrad complexes. On the other hand, for pentads the ordering is Rb(+) > K(+) > Na(+). In the latter case experimental data are available that agree with this prediction.

  20. Interactions between metal cations with H2 in the M - H2 complexes ...

    Indian Academy of Sciences (India)

    Interaction; metal cation–dihydrogen complexes; well depth; binding energy; PECs; energy components; DHDF; CCSD(T); SAPT; NBO. 1. Introduction. Interactions between metal cations and neutral molecu- les play important roles in a variety of contexts including gas storage in solid materials, ion solvation, laser plas-.

  1. A detailed in vitro study of naproxen metal complexes in quest of ...

    African Journals Online (AJOL)

    Results: The Naproxen metal chelates showed significant anti-inflammatory effects in dose dependent manner. Naproxen standard showed maximum inhibition occurred 73.21% at the dose of 2000 lg/ml. Among Naproxen metal chelates, Naproxen silver complex showed potent antimicrobial activity against most of the ...

  2. Some transition metal complexes derived from mono- and di-ethynyl perfluorobenzenes

    NARCIS (Netherlands)

    Armitt, D.J.; Bruce, M.I.; Gaudio, M.; Zaitseva, N.N.; Skelton, B.W.; White, A.H.; Le Guennic, B.; Halet, J.-F.; Fox, M.A.; Roberts, R.L.; Hartl, F.; Low, P.J.

    2008-01-01

    Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me3SiC CC6F5 and RuCl(dppe)Cp'[Cp' = Cp, Cp*] in the presence of

  3. Transition metal M(II complexes with isonicotinoylhydrazone-9-anthraldehyde

    Directory of Open Access Journals (Sweden)

    Dianu M.L.

    2010-01-01

    Full Text Available New complexes of isonicotinoylhydrazone-9-anthraldehyde with Cu(II, Co(II and Ni(II have been prepared and characterized by analytical and physico-chemical techniques, such as elemental and thermal analyses, magnetic susceptibility and conductivity measurements, and electronic, EPR and IR spectral studies. The infrared spectral studies revealed the bidentate or monodentate nature of the Schiff base in the complexes; the pyridine nitrogen does not participate in the coordination. A tetrahedral geometry is suggested for the nitrate-complexes and an octahedral geometry for the others. Thermal studies support the chemical formulation of these complexes.

  4. Synthesis and spectral studies on metal complexes of s-triazine based ligand and non linear optical properties

    Science.gov (United States)

    Shanmugakala, R.; Tharmaraj, P.; Sheela, C. D.

    2014-11-01

    A series of transition metal complexes of type [ML] and [ML2]Cl2 (where M = Cu(II), Ni(II), Co(II) have synthesized from 2-phenylamino-4,6-dichloro-s-triazine and 3,5-dimethyl pyrazole; their characteristics have been investigated by means of elemental analyses, magnetic susceptibility, molar conductance, IR, UV-Vis, Mass, NMR and ESR spectra. The electrochemical behavior of copper(II) complexes we have studied, by using cyclic voltammetry. The ESR spectra of copper(II) complexes are recorded at 300 K and 77 K and their salient features are appropriately reported. Spectral datas, we found, show that the ligand acts as a neutral tridentate, and coordinates through the triazine ring nitrogen and pyrazolyl ring nitrogen atoms to the metal ion. Evident from our findings, the metal(II) complexes of [ML] type exhibit square pyramidal geometry, and that of [ML2]Cl2 exhibit octahedral geometry. The in vitro antimicrobial activities of the ligand and its complexes are evaluated against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus vulgaris, Cryptococcus neoformans, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Shigella flexneri, Vibrio cholera, Vibris parahaemolyticus, Aspergillus niger, Candida albicans and Penicillium oxalicum by well-diffusion method. The second harmonic generation efficiency of the ligand and its complexes are determined and compared with urea and KDP.

  5. Synthesis and characterization of some metal complexes of a Schiff ...

    African Journals Online (AJOL)

    Orgel, L.F. An Introduction to Transition Metal Chemistry: Ligand Field Theory, Buttler and. Tanner: London; 1960. 46. Lewis, J.; Wilkins, R.G. Modern Coordination Chemistry, Principles and Methods,. Interscience: New York; 1967. 47. Kettle, S.F.A. Coordination Compounds, Thomas Nelson and Sons Ltd.: England; 1979.

  6. New trends for metal complexes with anticancer activity

    NARCIS (Netherlands)

    Bruijnincx, P.C.A.; Sadler, Peter J.

    2008-01-01

    Medicinal inorganic chemistry can exploit the unique properties of metal ions for the design of new drugs. This has, for instance, led to the clinical application of chemotherapeutic agents for cancer treatment, such as cisplatin. The use of cisplatin is, however, severely limited by its toxic

  7. Reactions of transition metal complexes with cyclic ethers

    International Nuclear Information System (INIS)

    Milstein, D.

    1977-02-01

    Three novel reactions of epoxides with homogeneous transition-metal catalysts have been explored: (a) the selective rearrangement of internal epoxides to ketones; (b) the cleavage of C-C bond in epoxides having electron-attracting substituents; (c) the transformation of terminal epoxides into esters. Based on an intensive kinetic study, a general mechanism for the transformations of epoxides is postulated

  8. Synthesis of first row transition metal carboxylate complexes by ring ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 2 ... Metal carboxylates; ring opening reactions; cyclic anhydrides; structural study. Abstract. Hydrolytic and solvolytic ring opening reactions of phthalic anhydride, pyromellitic dianhydride and 2,3-pyridine dicarboxylic anhydride in the presence of various ...

  9. Bovine Serum Albumin Metal Complexes for Mimic of SOD

    Indian Academy of Sciences (India)

    Proteins are well-known for efficiency and selecti- vity that few other natural or artificial molecules can match,24,25 whether in catalysis or molecular recogni- tion. Owing to 35 cysteine residues, human serum albu- min (HSA) is facile to be combined with metal ions. The serum albumin is readily available, non-antigenic.

  10. Chiral phosphites as ligands in asymmetric metal complex catalysis and synthesis of coordination compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, Konstantin N [Department of Chemistry, S.A. Esenin Ryazan State Pedagogical University, Ryazan (Russian Federation); Bondarev, Oleg G; Polosukhin, Aleksei I [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation)

    2004-07-31

    The data published during the last five years on the application of chiral derivatives of phosphorous acid in coordination chemistry and enantioselective catalysis are summarised and discussed. The effect of the nature of these ligands on the structure of metal complexes and on the efficiency of catalytic organic syntheses is shown. Hydroformylation, hydrogenation, allylic substitution and conjugate addition catalysed by transition metal complexes with optically active phosphites and hydrophosphoranes are considered. The prospects for the development of this field of research are demonstrated.

  11. Design of supramolecular metal complex catalytic systems for organic and petrochemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Karakhanov, Eduard A; Maksimov, Anton L; Runova, Elena A [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2005-01-31

    The state-of-the-art in investigations into the supramolecular catalysis by metal complexes using macrocyclic receptor molecules is surveyed. The emphasis is placed on issues related to the design of novel metal complex catalysts capable of molecular recognition and to their applications in organic synthesis, in particular, in such reactions as hydrogenation, hydroformylation, carbonylation, hydroxylation, Wacker oxidation, biomimetic oxidation, and some others. The factors affecting the activity, stability and selectivity of such catalytic systems are discussed.

  12. Metal Fluoride Complexes of Na,K-ATPase

    Science.gov (United States)

    Cornelius, Flemming; Mahmmoud, Yasser A.; Toyoshima, Chikashi

    2011-01-01

    The Na,K-ATPase belongs to the P-type ATPase family of primary active cation pumps. Metal fluorides like magnesium-, beryllium-, and aluminum fluoride act as phosphate analogues and inhibit P-type ATPases by interacting with the phosphorylation site, stabilizing conformations that are analogous to specific phosphoenzyme intermediates. Cardiotonic steroids like ouabain used in the treatment of congestive heart failure and arrhythmias specifically inhibit the Na,K-ATPase, and the detailed structure of the highly conserved binding site has recently been described by the crystal structure of the shark Na,K-ATPase in a state analogous to E2·2K+·Pi with ouabain bound with apparently low affinity (1). In the present work inhibition, and subsequent reactivation by high Na+, after treatment of shark Na,K-ATPase with various metal fluorides are characterized. Half-maximal inhibition of Na,K-ATPase activity by metal fluorides is in the micromolar range. The binding of cardiotonic steroids to the metal fluoride-stabilized enzyme forms was investigated using the fluorescent ouabain derivative 9-anthroyl ouabain and compared with binding to phosphorylated enzyme. The fastest binding was to the Be-fluoride stabilized enzyme suggesting a preformed ouabain binding cavity, in accord with results for Ca-ATPase where Be-fluoride stabilizes the E2-P ground state with an open luminal ion access pathway, which in Na,K-ATPase could be a passage for ouabain. The Be-fluoride stabilized enzyme conformation closely resembles the E2-P ground state according to proteinase K cleavage. Ouabain, but not its aglycone ouabagenin, prevented reactivation of this metal fluoride form by high Na+ demonstrating the pivotal role of the sugar moiety in closing the extracellular cation pathway. PMID:21708939

  13. Synthesis, physico-chemical characterization and biological activity of 2-aminobenzimidazole complexes with different metal ions

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2004-01-01

    Full Text Available Complexes of 2-aminobenzimidazole (L with nitrates of cobalt(II nickel(II, copper (II, zinc(II and silver(I were synthesized. The molar ratio metal:ligand in the reaction of the complex formation was 1:2. It should be noticed, that the reaction of all the metal salts yielded bis(ligand complexes of the general formula M(L2(NO32 × nH2O (M=Co, Ni Cu, Zn or Ag; n=0, 1, 2 or 6. The complexes were characterized by elemental analysis of the metal, molar conductivity, magnetic susceptibility measurements and IR spectra. Co(II, Ni(II and Cu(II complexes behave as non-electrolytes, whilst Zn(II and Ag(I are 1:1 electrolytes. Cu(II complex has a square-planar stereochemistry, Ag(I complex is linear, whilst the Co(II, Ni(II and Zn(II complexes have a tetrahedral configuration. In all the complexes ligand is coordinated by participation of the pyridine nitrogen of the benzimidazole ring. The antimicrobial activity of the ligand and its complexes against Pseudomonas aeruginosa, Bacillus sp. Staphylococcus aureus and Saccharomyces cerevisiae was investigated. The effect of metal on the ligand antimicrobial activity is discussed.

  14. The dynamic behavior of the exohedral transition metal complexes ...

    Indian Academy of Sciences (India)

    NAIWRIT KARMODAK

    Abstract. The dynamic nature of the exohedral η6- and the η7-complexes of B40 with Cr(CO)3 has been explored using density functional theory. The ab initio molecular dynamic simulations were performed at. 1200 K to investigate the fluxionality of the heptagonal and hexagonal faces of exohedral B40 complexes.

  15. The dynamic behavior of the exohedral transition metal complexes ...

    Indian Academy of Sciences (India)

    Abstract. The dynamic nature of the exohedral η⁶- and the η⁷-complexes of B₄₀ with Cr(CO) ₃ has been explored using density functional theory. The ab initio molecular dynamic simulations were performed at 1200 K to investigate the fluxionality of the heptagonal and hexagonal faces of exohedral B40 complexes.

  16. Using metal complex-labeled peptides for charge transfer-based biosensing with semiconductor quantum dots

    Science.gov (United States)

    Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi

    2009-02-01

    Luminescent colloidal semiconductor quantum dots (QDs) have unique optical and photonic properties and are highly sensitive to charge transfer in their surrounding environment. In this study we used synthetic peptides as physical bridges between CdSe-ZnS core-shell QDs and some of the most common redox-active metal complexes to understand the charge transfer interactions between the metal complexes and QDs. We found that QD emission underwent quenching that was highly dependent on the choice of metal complex used. We also found that quenching traces the valence or number of metal complexes brought into close proximity of the nanocrystal surface. Monitoring of the QD absorption bleaching in the presence of the metal complex provided insight into the charge transfer mechanism. The data suggest that two distinct charge transfer mechanisms can take place. One directly to the QD core states for neutral capping ligands and a second to surface states for negatively charged capping ligands. A basic understanding of the proximity driven charge-transfer and quenching interactions allowed us to construct proteolytic enzyme sensing assemblies with the QD-peptide-metal complex conjugates.

  17. Solvation Effect on Complexation of Alkali Metal Cations by a Calix[4]arene Ketone Derivative.

    Science.gov (United States)

    Požar, Josip; Nikšić-Franjić, Ivana; Cvetnić, Marija; Leko, Katarina; Cindro, Nikola; Pičuljan, Katarina; Borilović, Ivana; Frkanec, Leo; Tomišić, Vladislav

    2017-09-14

    The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na + cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL + complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL + stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1 H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.

  18. The preparation and characterization of the metal-texaphyrin complex and metal-texaphyrin-antibody conjugate

    International Nuclear Information System (INIS)

    Rekova, M.; Kral, V.; Jedinakova-Krizova, V.

    2006-01-01

    This work was aimed to the preparation of yttrium-texaphyrin or lutetium-texaphyrin complex and the characterization of these complexes by various methods. The yttrium-texaphyrin complex (or the lutetium-texaphyrin complex) was prepared via transmetallation of the calcium-texaphyrin complex in ethanol at 70 deg C. The complexes prepared were purified on reverse-phase SepPak TM columns (C18). Mass spectrometry (MS-ESI) and UV-VIS spectrophotometry were used for analytical determination of the yttrium-texaphyrin complex and lutetium-texaphyrin complex in the transmetallation product. The complexes were characterized by UV-VIS spectrophotometry, IRFT spectroscopy, FT-Raman spectroscopy, etc. The complexes were also labelled with radionuclides such as 90 Y and 177 Lu. These complexes are conjugated with the monoclonal antibody and labelled with 90 Y or 177 Lu nuclides. After clinical testing, the radionuclide-texaphyrin-monoclonal antibody immunoconjugates can be used for diagnosis and therapy. (author)

  19. Crystal structures of Dronpa complexed with quenchable metal ions provide insight into metal biosensor development.

    Science.gov (United States)

    Kim, In Jung; Kim, Sangsoo; Park, Jeahyun; Eom, Intae; Kim, Sunam; Kim, Jin-Hong; Ha, Sung Chul; Kim, Yeon Gil; Hwang, Kwang Yeon; Nam, Ki Hyun

    2016-09-01

    Many fluorescent proteins (FPs) show fluorescence quenching by specific metal ions, which can be applied towards metal biosensor development. In this study, we investigated the significant fluorescence quenching of Dronpa by Co(2+) and Cu(2+) ions. Crystal structures of Co(2+) -, Ni(2+) - and Cu(2+) -bound Dronpa revealed previously unseen, unique, metal-binding sites for fluorescence quenching. These metal ions commonly interact with surface-exposed histidine residues (His194-His210 and His210-His212), and interact indirectly with chromophores. Structural analysis of the Co(2+) - and Cu(2+) - binding sites of Dronpa provides insight into FP-based metal biosensor engineering. © 2016 Federation of European Biochemical Societies.

  20. Features of proteolytic properties of tetraphenylporphyrin complex with lanthanide group metals

    Science.gov (United States)

    Tobolkina, Elena A.; Skripnikova, Tatiana A.; Starikova, Anna A.; Shumilova, Galina I.; Pendin, Andrey A.

    2018-01-01

    Demetallation of metalloporphyrin molecules is one of the essential degradation reactions in photosynthesis. The effect of metalloporphyrin nature on removal of central metals from tetraphenylporphyrin complexes based on lanthanide group metals (Dy, Er, Lu, Ho) has been studied. pH values, at which the metal ions leave the metalloporphyrin complex were established using two-phase spectrophotometric titration with potentiometric pH-control. The pH values decrease with the increase of atomic numbers of lanthanide groups, as well as with increase of 4f-electrons. The reaction of an extra ligand exchange for the hydroxide ion was studied. For Dy-, Er- and Ho-tetraphenylporphyrin complexes one particle of extra ligand coordinates with one porphyrin complex. A complex with dimeric particles can be formed for the system of Lu-tetraphenylporphyrin. Constants of the ion exchange reactions were calculated.

  1. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    Science.gov (United States)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  2. Biological activities of some Fluoroquinolones-metal complexes

    African Journals Online (AJOL)

    McRoy

    synthesis of two zinc (II) complexes with ciprofloxacin,. [cfH2]2[ZnCl4].2H2O and. [Zn(cf)2]3H2O[32] and a cobalt complex, compound. [Co(cf)2].3H2O.[33] The complex [cfH2]2[ZnCl4].2H2O was shown to be ionic consisting of a tetrachlorozincate(II) dianion and two protonated monatomic ciprofloxacin molecules, while.

  3. Destruction of chemical warfare agent simulants by air and moisture stable metal NHC complexes.

    Science.gov (United States)

    Weetman, Catherine; Notman, Stuart; Arnold, Polly L

    2018-02-20

    The cooperative effect of both NHC and metal centre has been found to destroy chemical warfare agent (CWA) simulants. Choice of both the metal and NHC is key to these transformations as simple, monodentate N-heterocyclic carbenes in combination with silver or vanadium can promote stoichiometric destruction, whilst bidentate, aryloxide-tethered NHC complexes of silver and alkali metals promote breakdown under mild heating. Iron-NHC complexes generated in situ are competent catalysts for the destruction of each of the three targetted CWA simulants.

  4. Preparation of Palladium-Impregnated Ceria by Metal Complex Decomposition for Methane Steam Reforming Catalysis

    Directory of Open Access Journals (Sweden)

    Worawat Wattanathana

    2017-01-01

    Full Text Available Palladium-impregnated ceria materials were successfully prepared via an integrated procedure between a metal complex decomposition method and a microwave-assisted wetness impregnation. Firstly, ceria (CeO2 powders were synthesized by thermal decomposition of cerium(III complexes prepared by using cerium(III nitrate or cerium(III chloride as a metal source to form a metal complex precursor with triethanolamine or benzoxazine dimer as an organic ligand. Palladium(II nitrate was consequently introduced to the preformed ceria materials using wetness impregnation while applying microwave irradiation to assist dispersion of the dopant. The palladium-impregnated ceria materials were obtained by calcination under reduced atmosphere of 10% H2 in He stream at 700°C for 2 h. Characterization of the palladium-impregnated ceria materials reveals the influences of the metal complex precursors on the properties of the obtained materials. Interestingly, the palladium-impregnated ceria prepared from the cerium(III-benzoxazine dimer complex revealed significantly higher BET specific surface area and higher content of the more active Pdδ+ (δ > 2 species than the materials prepared from cerium(III-triethanolamine complexes. Consequently, it exhibited the most efficient catalytic activity in the methane steam reforming reaction. By optimization of the metal complex precursors, characteristics of the obtained palladium-impregnated ceria catalysts can be modified and hence influence the catalytic activity.

  5. Complexes of 3.6 kDa Maltodextrin with Some Metals

    Directory of Open Access Journals (Sweden)

    Christopher H. Schilling

    2004-06-01

    Full Text Available Preparation of magnesium, lanthanum, and bismuth(III complexes of 3.6 kDa maltodextrin and some properties of the resulting materials are presented. The metal derivatives contain metals bound to the oxygen atoms of the hydroxyl groups of maltodextrin. Additionally, the metal atoms are coordinated to the hydroxyl groups of the D-glucose units of the macroligand. Such coordination stabilized the metal – oxygen bond against hydrolysis, even in boiling water. The presence of magnesium and lanthanum atoms increased the thermal stability of maltodextrin, whereas bismuth atoms decreased it.

  6. Evaluation of metal trace detachment from dosing pumps using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, Omar, E-mail: omar.lozanogarcia@unamur.be [Research Centre for the Physics of Matter and Radiation (PMR), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Mejia, Jorge [Research Centre for the Physics of Matter and Radiation (PMR), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Laloy, Julie; Alpan, Lütfiye [Namur Thrombosis and Hemostasis Centre (NTHC), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Toussaint, Olivier [Laboratory of Biochemistry and Cellular Biology (URBC), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Dogné, Jean-Michel [Namur Thrombosis and Hemostasis Centre (NTHC), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Lucas, Stéphane [Research Centre for the Physics of Matter and Radiation (PMR), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2014-07-15

    Metal trace detachment evaluation is essential for instruments destined for pharmaceutical applications, such as pumps. Particle-Induced X-ray Emission (PIXE) was used to determine and quantify metal traces originated from stainless steel and ceramic dosing pumps. Metal traces were quantified from either distilled water samples or cellulose filters in two tests: a short-term test of 16 h mimicking a daily cycle of a dosing pump for industrial applications, and a long-term test of 9 days evaluating the pump wearing. The main result is that ceramic dosing pumps present lower metal detachment than stainless steel counterparts. Traces of Si and Al were found originating from pieces around the pumps (pipes and joints)

  7. Gas phase hydrogen/deuterium exchange of arginine and arginine dipeptides complexed with alkali metals.

    Science.gov (United States)

    Mertens, Laura A; Marzluff, Elaine M

    2011-08-25

    The hydrogen/deuterium (H/D) exchange of protonated and alkali-metal cationized Arg-Gly and Gly-Arg peptides with D(2)O in the gas phase was studied using electrospray ionization quadropole ion trap mass spectrometry. The Arg-Gly and Gly-Arg alkali metal complexes exchange significantly more hydrogens than protonated Arg-Gly and Gly-Arg. We propose a mechanism where the peptide shifts between a zwitterionic salt bridge and nonzwitterionic charge solvated conformations. The increased rate of H/D exchange of the alkali metal complexes is attributed to the peptide metal complexes' small energy difference between the salt-bridge conformation and the nonzwitterionic charge-solvated conformation. Implications for the applicability of this mechanism to other zwitterionic systems are discussed. © 2011 American Chemical Society

  8. SEM evaluation of metallization on semiconductors. [Scanning Electron Microscope

    Science.gov (United States)

    Fresh, D. L.; Adolphsen, J. W.

    1974-01-01

    A test method for the evaluation of metallization on semiconductors is presented and discussed. The method has been prepared in MIL-STD format for submittal as a proposed addition to MIL-STD-883. It is applicable to discrete devices and to integrated circuits and specifically addresses batch-process oriented defects. Quantitative accept/reject criteria are given for contact windows, other oxide steps, and general interconnecting metallization. Figures are provided that illustrate typical types of defects. Apparatus specifications, sampling plans, and specimen preparation and examination requirements are described. Procedures for glassivated devices and for multi-metal interconnection systems are included.

  9. Pushing the Limits of Delta Bonding in Metal-Chromium Complexes with Redox Changes and Metal Swapping.

    Science.gov (United States)

    Eisenhart, Reed J; Rudd, P Alex; Planas, Nora; Boyce, David W; Carlson, Rebecca K; Tolman, William B; Bill, Eckhard; Gagliardi, Laura; Lu, Connie C

    2015-08-03

    Into the metalloligand Cr[N(o-(NCH2P((i)Pr)2)C6H4)3] (1, CrL) was inserted a second chromium atom to generate the dichromium complex Cr2L (2), which is a homobimetallic analogue of the known MCrL complexes, where M is manganese (3) or iron (4). The cationic and anionic counterparts, [MCrL](+) and [MCrL](-), respectively, were targeted, and each MCr pair was isolated in at least one other redox state. The solid-state structures of the [MCrL](+,0,-) redox members are essentially the same, with ultrashort metal-metal bonds between 1.96 and 1.74 Å. The formal shortness ratios (r) of these interactions are between 0.84 and 0.74 and are interpreted as triple to quintuple metal-metal bonds with the aid of theory. The trio of (d-d)(10) species [Cr2L](-) (2(red)), MnCrL (3), and [FeCrL](+) (4(ox)) are S = 0 diamagnets. On the basis of M-Cr bond distances and theoretical calculations, the strength of the metal-metal bond across the (d-d)(10) series increases in the order Fe Complex 2(red) was further investigated by resonance Raman spectroscopy, and a band at 434 cm(-1) was assigned as the Cr-Cr bond vibration. Finally, 4(ox) exhibited a Mössbauer doublet with an isomer shift of 0.18 mm/s that suggests a primarily Fe-based oxidation to Fe(I).

  10. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  11. A detailed in vitro study of naproxen metal complexes in quest of ...

    African Journals Online (AJOL)

    Md. Sharif Hasan

    2016-07-01

    Jul 1, 2016 ... Conclusion: The present study demonstrated that Naproxen and its complexes possess in vitro anti-inflammatory activity while silver, .... freely soluble in different coordination solvents such as. DMF, DMSO, THF and .... Naproxen metal chelates, Cobalt-Naproxen complex showed highest protection of RBC ...

  12. BIOASSAY STUDIES OF METAL(II) COMPLEXES OF 2,2'-(ETHANE ...

    African Journals Online (AJOL)

    Preferred Customer

    diyldiimino)diacetic acid (EDDA) were prepared and characterized. Coordination complexes of the EDDA ... corresponding amines with alkyl halide to bear diammines of the same class with different substituents. ... Bioassay studies of metal(II) complexes of 2,2'-(ethane-1,2-diyldiimino)diacetic acid. Bull. Chem. Soc. Ethiop.

  13. Cations in a Molecular Funnel: Vibrational Spectroscopy of Isolated Cyclodextrin Complexes with Alkali Metals

    NARCIS (Netherlands)

    Gámez, F.; Hurtado, P.; Hortal, A.R.; Martínez-Haya, B.; Berden, G.; Oomens, J.

    2013-01-01

    The benchmark inclusion complexes formed by -cyclodextrin (CD) with alkali-metal cations are investigated under isolated conditions in the gas phase. The relative CD-M+ (M=Li+, Na+, K+, Cs+) binding affinities and the structure of the complexes are determined from a combination of mass spectrometry,

  14. Luminescent Stability of Hybrids Based on Different Borate Glass Matrix’s and Organic Metal Complexes

    Science.gov (United States)

    Petrova, Olga; Avetisov, Roman; Akkuzina, Alina; Anurova, Mariia; Mozhevitina, Elena; Khomyakov, Andrew; Taydakov, Ilya; Avetissov, Igor

    2017-08-01

    The stability of the luminescent properties of new hybrid materials based on 8-oxyquinoline metal (Li, Rb, Sr) complexes and Eu complex with phenanthroline and low-melting Pb-based inorganic glass matrixes under conditions of prolonged exposure under ambient conditions and heating above the glass transition temperature of the matrix’s has been investigated.

  15. Confirmation of molecular formulas of metallic complexes through X-ray fluorescence quantitative analysis

    International Nuclear Information System (INIS)

    Filgueiras, C.A.L.; Marques, E.V.; Machado, R.M.

    1984-01-01

    X-ray fluorescence spectrophotometry was employed to determined the metal content in a series of five transition element complexes (Mn, Ti, Zn, V). The results confirmed the molecular formulas of these complexes, already proposed on the basis of elemental microanalysis, solution condutimetry and other analytical methods. (C.L.B.) [pt

  16. FIRST-ROW TRANSITION METAL COMPLEXES OF OMEPRAZOLE AS ANTI-ULCERATIVE DRUGS

    Directory of Open Access Journals (Sweden)

    Suman Malik

    2010-12-01

    Full Text Available Omeprazole (OME is a proton pump inhibitor (PPI. PPIs have enabled to improve the treatment of various acid-peptic disorders. OME is a weak base and it can form several complexes with transition and non-transition metal ions. In the present paper, we are describing series of transition metal complexes of omeprazole i.e., 5-methoxy-2[(4methoxy-3, 5dimethyl-2-pyridinyl methylsulfinyl]-1H-benzimidazole with CuII, MnII, CoII, NiII, FeII, ZnII and HgII. These complexes were characterized by elemental analysis, molar conductivity, IR, NMR, magnetic susceptibility, UV-visible spectral studies, ESR, SEM and X-ray diffraction. Based on the above studies, the ligand behaves as bidentate O, N donor and forms coordinate bonds through C=N and S=O groups. The complexes were found to non-electrolytic in nature on the basis of low values of molar conductivity. Analytical data and stoichiometry analysis suggest ligand to metal ratio of 2:1 for all the complexes. Electronic spectra and magnetic susceptibility measurements reveal octahedral geometry for Mn(II,Co(II, Ni(II,Fe(II and Cu(II complexes and tetrahedral for Hg(II and Zn(II complexes. Ligands and their metal complexes have been screened for their antibacterial and antifungal activities against bacteria Pseudomonas, Staphylococcus aureus and fungi Aspergillus niger and A. flavous.

  17. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Susan K.; Zhang, Guoqi; Vasudevan, Kalyan V.

    2017-02-14

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  18. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Kalyan V.; Zhang, Guoqi; Hanson, Susan K.

    2016-09-06

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  19. Humic substances in natural waters and their complexation with trace metals and radionuclides: a review

    International Nuclear Information System (INIS)

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    1985-07-01

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empirically determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs

  20. Fabrication of carbon nanotube films from alkyne-transition metal complexes

    Science.gov (United States)

    Iyer, Vivekanantan S.; Vollhardt, K. Peter C.

    2007-08-28

    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  1. Stability constant of the trisglycinto metal complexes | Na'aliya ...

    African Journals Online (AJOL)

    The stability constants of iron, manganese, cobalt, and nickel complexes of glycine have been determined in aqueous solution by potentiometric titration with standard sodium hydroxide solution. The values of the stepwise stability constants were obtained by ORIGIN '50' program. The overall stability constants of the ...

  2. Zinc (II) metal ion complexes of Chitosan: Toward heterogeneous ...

    African Journals Online (AJOL)

    The Application of Zn(II)-Chit for the polymerization of VAc yielded PVAc in good yield. The catalyst efficiency of Zn(II)-Chit for the polymerization of VAc was considerably high in terms of induction period and percentage yield of PVAc. Keywords: Chitosan, Zn(II)-Chitosan Complex, Catalyst, Polymerization, Polyvinyl Acetate ...

  3. Mixed amido-cyclopentadienyl group 4 metal complexes

    Czech Academy of Sciences Publication Activity Database

    Havlík, Aleš; Lamač, Martin; Pinkas, Jiří; Růžička, A.; Horáček, Michal

    2015-01-01

    Roč. 5, č. 73 (2015), s. 59154-59166 ISSN 2046-2069 R&D Projects: GA ČR GAP106/10/0924 Institutional support: RVO:61388955 Keywords : BOND COVALENT RADII * IMIDO COMPLEXES * SIDE-ON Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.289, year: 2015

  4. Metal oxalate complexes as novel inorganic dopants: Studies on ...

    Indian Academy of Sciences (India)

    The conductivity of the polymer samples strongly depended on the degree of crystallinity induced by complex counter anions as dopant. All the polymer materials, as evident from TGA curves, were observed to undergo three-step degradation of water loss, de-doping and decomposition of polymer. Further, the thermal ...

  5. Metal complexes of salicylhydroxamic acid and 1,10-phen ...

    African Journals Online (AJOL)

    ) complexes involving 1,10-phenanthroline were studied pH-potentiometrically in 0.15 mol.L-1 NaNO3 aqueous solutions at 37 oC. The protonation constants of salicylhydroxamic acid and 1,10-phenanthroline as well their binary and mixed ...

  6. The dynamic behavior of the exohedral transition metal complexes ...

    Indian Academy of Sciences (India)

    NAIWRIT KARMODAK

    Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012,. India. E-mail: jemmis@ipc.iisc.ernet.in. MS received 16 February 2017; accepted 13 April 2017. Abstract. The dynamic nature of the exohedral η6- and the η7-complexes of B40 with Cr(CO)3 has been explored ...

  7. Thiosemicarbazone complexes of the platinum metals. A story of ...

    Indian Academy of Sciences (India)

    Unknown

    (4). Structure determination of the [Ru(PPh3)2(bztsc-NO2)2] complex (figure 2) shows that the thiosemicarbazone ligands are again coordinated in a similar fashion (10) as before, forming four-membered chelate rings. This exercise therefore indicates that intramolecular hydrogen bonding is not responsible for the unusual ...

  8. Synthesis of first row transition metal carboxylate complexes by ring ...

    Indian Academy of Sciences (India)

    cis positions are occupied by carboxylate groups and another two cis positions are by 1,10-phenanthroline. ... which the dicarboxylates are at para position to each other. The cationic part is a complex cation of tetra-aqua ..... nology, New Delhi, India for financial support. References. 1. Spivey A L and Andrews B I 2001 ...

  9. Synthesis, spectral, thermal and antimicrobial studies of some new tri metallic biologically active ceftriaxone complexes

    Science.gov (United States)

    Ali, Alaa E.

    2011-01-01

    Iron, cobalt, nickel and copper complexes of ceftriaxone were prepared in 1:3 ligand:metal ratio to examine the ligating properties of the different moieties of the drug. The complexes were found to have high percentages of coordinated water molecules. The modes of bonding were discussed depending on the infrared spectral absorption peaks of the different allowed vibrations. The Nujol mull electronic absorption spectra and the magnetic moment values indicated the Oh geometry of the metal ions in the complexes. The ESR spectra of the iron, cobalt, and copper complexes were determined and discussed. The thermal behaviors of the complexes were studied by TG and DTA techniques. The antimicrobial activities of the complexes were examined and compared to that of the ceftriaxone itself.

  10. Investigation of the complexation of metal-ions by strong ligands in fresh and marine water.

    Science.gov (United States)

    Pesavento, Maria; Biesuz, Raffaela; Profumo, Antonella; Soldi, Teresa

    2003-01-01

    The detection and investigation of metal ions bound in strong complexes in natural waters is a difficult task, due to low concentration of the metal ions themselves, and also of the strong ligands, which, moreover, are often not of a well-defined composition. Here, a method is proposed for the investigation of the speciation of metal ions in natural waters. It is based on the sorption of metal ions on strongly sorbing ion exchange resins, i.e. complexing resins. For this reason the method is called Resin Titration. It has been shown in previous investigations that the concentration of metal ion totally sorbed by a particular resin, and its reaction coefficient in the solution phase in the presence of the resin, can be determined from the sorption data using a simple relationship. Here, a data treatment (the Ruzic linearization method) is proposed for also determining the concentration of the ligands responsible for the complex in equilibrium with the resin. The method was applied to data obtained by Resin Titration of a freshwater and a seawater. Copper(II) and aluminium(III) were considered, using Chelex 100 as a titrant, due to its strong sorbing properties towards these metal ions. The results were: the total metal concentration in equilibrium with the resin, the side reaction coefficients, and the concentration of ligands. In all these cases the ligands forming very strong complexes were found to be at concentration lower than that of the metals. The Ruzic linearization method allows the determination of the concentration of the ligands forming very strong complexes in equilibrium with Chelex 100. The reaction coefficient was better determined by the calculation method previously proposed for RT. The ligands responsible for the strong complexes were found to be at low concentration, often lower than that of the metal ions considered. The metal in the original sample is partly bound to these ligands, since the complexes are very strong. Only a part of the metal

  11. Metal resistance systems in cultivated bacteria: are they found in complex communities?

    Science.gov (United States)

    Gillan, David C

    2016-04-01

    Metal resistance systems found in complex bacterial communities by shotgun metagenomic approaches were reviewed. For that, 6 recent studies investigating 9 metal-contaminated environments (water or sediments) were selected. Of the 22 possible metal-resistance systems, only 14 were found in complex communities. These widespread and easily detected metal-resistance systems were mainly biogenic sulfide production (dsr genes), resistance mediated in the periplasm (CopK and multicopper oxidases such as PcoA/CopA), efflux proteins (HME-RND systems, P-type ATPases, and the cation diffusion facilitator CzcD) as well as proteins used to treat oxidative damages (e.g., SodA) and down-regulation of transporters. A total of 8 metal-resistance systems were not found in the complex communities investigated. These rare systems include metal resistance by phosphatases, ureases, metallophores, outer membrane vesicles, methylation genes and cytoplasmic metal accumulation systems. In this case rarity may also be explained by a lack of knowledge on the specific genes involved and/or analytical biases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Peptides having antimicrobial activity and their complexes with transition metal ions.

    Science.gov (United States)

    Jeżowska-Bojczuk, Małgorzata; Stokowa-Sołtys, Kamila

    2018-01-01

    Peptide antibiotics are produced by bacterial, mammalian, insect or plant organisms in defense against invasive microbial pathogens. Therefore, they are gaining importance as anti-infective agents. There are a number of antibiotics that require metal ions to function properly. Metal ions play a key role in their action and are involved in specific interactions with proteins, nucleic acids and other biomolecules. On the other hand, it is well known that some antimicrobial agents possess functional groups that enable them interacting with metal ions present in physiological fluids. Some findings support a hypothesis that they may alter the serum metal ions concentration in humans. Complexes usually have a higher positive charge than uncomplexed compounds. This means that they might interact more tightly with polyanionic DNA and RNA molecules. It has been shown that several metal ion complexes with antibiotics promote degradation of DNA. Some of them, such as bleomycin, form stable complexes with redox metal ions and split the nucleic acids chain via the free radicals mechanism. However, this is not a rule. For example blasticidin does not cause DNA damage. This indicates that some peptide antibiotics can be considered as ligands that effectively lower the oxidative activity of transition metal ions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Lutetium-177 complexation of DOTA and DTPA in the presence of competing metals

    International Nuclear Information System (INIS)

    Watanabe, Satoshi; Ishioka, Noriko S.; Hashimoto, Kazuyuki

    2013-01-01

    177 Lu complexation of DOTA and DTPA is investigated by the addition of Ca(II), Fe(II) and Zn(II). The 177 Lu complexation yield of DTPA was higher than that of DOTA in the presence of Ca(II), Fe(II) and Zn(II). Therefore, it was found that the 177 Lu complexation of DTPA was more advantageous compared with DOTA in the presence of competing metals, Ca, Fe and Zn. (author)

  14. Synthesis, characterization, biological and electrical conductivity studies of some Schiff base metal complexes

    Directory of Open Access Journals (Sweden)

    A. R. Yaul

    2014-05-01

    Full Text Available Metal complexes of VO(IV, Zr(IV, Th(IV and UO2(VI with Schiff base ligands derived from 4-nitrobenzoylhydrazide with 2-hydroxy-5-methylacetophenone (H2L1 or 2-hydroxy-5-chloroacetophenone (H2L2 have been prepared. All the complexes have been characterized on the basis of elemental analyses, magnetic susceptibility measurement, electronic and IR spectra and thermogravimetric analysis. The IR spectral data suggested that the ligands behave as dibasic tridentate moiety towards the central metal ion coordinating through phenolic oxygen, enolic oxygen and azomethine nitrogen atoms. The elemental analyses show a 1:1 metal:ligand stoichiometry for all the complexes except Th(IV which has 1:2 stoichiometry. The thermal analysis evidenced that thermal transformations of complexes are processes according to TG curves including dehydration, thermolysis and oxidative degradation of Schiff base. The final product of decomposition is the most stable metallic oxide. The kinetic analysis of the thermogravimetric data was performed by using the Coats-Redfern method. Solid state electrical conductivity of the complexes has been measured in their compressed pellet form over a 310-413 K temperature range. All the complexes show semiconducting behavior as their conductivity increases with increasing temperature and a function of ionic size. All the complexes along with ligands were also screened for their antibacterial and antifungal activities. DOI: http://dx.doi.org/10.4314/bcse.v28i2.9

  15. Quantitative structure-activity relationships for aqueous metal-siderophore complexes.

    Science.gov (United States)

    Duckworth, Owen W; Bargar, John R; Sposito, Garrison

    2009-01-15

    Siderophores, biogenic chelating agents that facilitate the solubilization and uptake of ferric iron, form stable complexes with a wide range of nutrient and contaminant metals and thus may profoundly affect their fate, transport, and biogeochemical cycling. To understand more comprehensively the factors that control the stability and reactivity, as well as the potential for microbial uptake, of metal-siderophore complexes, we probed the structures of complexes formed between the trihydroxamate siderophore desferrioxamine B (DFOB) and Cu(II), Ga(III), Mn(II), Ni(II), and Zn(II) in solution by using extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that all metals studied are dominantly in octahedral coordination, with significant Jahn-Teller distortion of the Cu(II)HDFOB(0) complex. Additionally, log-transformed complex stability constants correlate not only with the charge-normalized interatomic distances within the complex, affirming and expanding existing predictive relationships, but also with the Debye-Waller parameter of the first coordination shell. The derived structure-activity relationships not only quantitatively relate the measured physical architecture of aqueous complexes to their observed stability but also allow for the prediction of siderophore-metal stability constants.

  16. Metal Complexes with a Hexadentate Macrocyclic Diamine-Tetracarbene Ligand.

    Science.gov (United States)

    Lu, Taotao; Yang, Chu-Fan; Zhang, Li-Yi; Fei, Fan; Chen, Xue-Tai; Xue, Zi-Ling

    2017-10-02

    A hexadentate macrocyclic N-heterocyclic carbene (NHC) ligand precursor (H 4 L)(PF 6 ) 4 containing four benzimidazolium and two secondary amine groups, has been synthesized and characterized. Coordination chemistry of this new macrocyclic diamine-tetracarbene ligand has been studied by the synthesis of its Ag(I), Au(I), Ni(II), and Pd(II) complexes. Reactions of (H 4 L)(PF 6 ) 4 with different equiv of Ag 2 O result in Ag(I) complexes [Ag(H 2 L)](PF 6 ) 3 (1) and [Ag 2 (H 2 L)](PF 6 ) 4 (2). A mononuclear Au(I) complex [Au(H 2 L)](PF 6 ) 3 (3) and a trinuclear Au(I) complex [Au 3 (H 2 L)(Cl) 2 ](PF 6 ) (4) are obtained by transmetalation of 1 and 2 with AuCl(SMe 2 ), respectively. Reactions of (H 4 L)(PF 6 ) 4 with Ni(OAc) 2 and Pd(OAc) 2 in the presence of NaOAc yield [Ni(L)](PF 6 ) 2 (5) and [Pd(L)](PF 6 ) 2 (6), respectively, containing one Ni(II) and Pd(II) ion with distorted square-planar geometry. Using more NaOAc results in the formation of unusual dinuclear complexes [Ni 2 (L-2H)](PF 6 ) 2 (7) and [Pd 2 (L-2H)](PF 6 ) 2 (8) (L-2H = deprotonated ligand after removing two H + ions from two secondary amine groups in L), respectively, featuring a rare M 2 N 2 core formed by two bridging amides. 7 is also formed by the reaction of 5 with 1.0 equiv of Ni(OAc) 2 ·4H 2 O in the presence of NaOAc. Transmetalation of 2 with 2.0 equiv of Ni(PPh 3 ) 2 Cl 2 gives [Ni 2 (L)(μ-O)](PF 6 ) 2 (9), the first example of a dinuclear Ni(II) complex with a singly bridging oxo group. 9 is converted to 7 in good yield through the treatment with NaOAc.

  17. Speciation Studies of Some Toxic Metal Complexes of Glycylglycine ...

    African Journals Online (AJOL)

    The formation equilibria of complexes of Pb(II), Cd(II) and Hg(II) with glycylglycine were investigated pH-metrically in propylene glycol-water mixtures (0–60 % v/v) at 303 K and an ionic strength of 0.16 mol L–1. The dominant species detected were ML+ and ML2H22+ for Pb(II); MLH2+ and ML2H+ for Cd(II) and ML+,ML2 ...

  18. thiosemicarbazide complexes with some first row transition metal i

    Indian Academy of Sciences (India)

    Unknown

    after decomposition with a mixture of conc. HNO3 and HCl, followed by conc. .... which falls in the range reported for an 1:1 electrolyte 19, indicating solvolysis in DMF, while other complexes show molar conductivities of 33⋅3–63⋅4 Ω–1 cm2 mol–1, suggesting their non-electrolytic nature 19. The following equations ...

  19. A mononuclear non-heme manganese(IV)-oxo complex binding redox-inactive metal ions.

    Science.gov (United States)

    Chen, Junying; Lee, Yong-Min; Davis, Katherine M; Wu, Xiujuan; Seo, Mi Sook; Cho, Kyung-Bin; Yoon, Heejung; Park, Young Jun; Fukuzumi, Shunichi; Pushkar, Yulia N; Nam, Wonwoo

    2013-05-01

    Redox-inactive metal ions play pivotal roles in regulating the reactivities of high-valent metal-oxo species in a variety of enzymatic and chemical reactions. A mononuclear non-heme Mn(IV)-oxo complex bearing a pentadentate N5 ligand has been synthesized and used in the synthesis of a Mn(IV)-oxo complex binding scandium ions. The Mn(IV)-oxo complexes were characterized with various spectroscopic methods. The reactivities of the Mn(IV)-oxo complex are markedly influenced by binding of Sc(3+) ions in oxidation reactions, such as a ~2200-fold increase in the rate of oxidation of thioanisole (i.e., oxygen atom transfer) but a ~180-fold decrease in the rate of C-H bond activation of 1,4-cyclohexadiene (i.e., hydrogen atom transfer). The present results provide the first example of a non-heme Mn(IV)-oxo complex binding redox-inactive metal ions that shows a contrasting effect of the redox-inactive metal ions on the reactivities of metal-oxo species in the oxygen atom transfer and hydrogen atom transfer reactions.

  20. Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean

    Science.gov (United States)

    Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.

    2017-12-01

    Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.

  1. Assessment of atmospheric trace metals in the western Bushveld Igneous Complex, South Africa

    Directory of Open Access Journals (Sweden)

    Pieter G. Van Zyl"

    2014-03-01

    Full Text Available Trace metal species emitted into the atmosphere from natural and anthropogenic sources can cause various health-related and environmental problems. Limited data exist for atmospheric trace metal concentrations in South Africa, which has the largest industrialised economy in Africa, with significant mining and metallurgical activities. A large fraction of these mineral assets is concentrated in the Bushveld Igneous Complex, with the western limb being the most exploited. To partially address this knowledge gap, atmospheric trace metals were collected in the western Bushveld Igneous Complex at Marikana in the North West Province. Diurnal PM2.5 and PM10 samples were collected for 1 year. A total of 27 trace metal species were determined. With the exception of Ni, none of the trace metals measured during the sampling period exceeded local or international air quality standard limit values. Total trace metal concentrations in the PM10 fraction peaked during the dry months and were regularly washed out during the wet season. A less significant seasonal trend was observed for the trace metal concentrations in the PM2.5 fraction; a finding attributed to a faster replenishment of smaller particles into the atmosphere after rain events. About 80% of the PM10 trace metal levels measured occurred in the PM2.5 fraction, while 40% or more of all metals emanated from the PM2.5 fraction. This finding indicated a strong influence of anthropogenic sources. Four meaningful emission sources were determined from explorative principal component factor analysis: crustal, vanadium related, base metal related and ferrochromium related, which correlated well with the anticipated atmospheric trace metal sources in the region.

  2. Metal complexes in cancer therapy – an update from drug design perspective

    Directory of Open Access Journals (Sweden)

    Ndagi U

    2017-03-01

    Full Text Available Umar Ndagi, Ndumiso Mhlongo, Mahmoud E Soliman Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa Abstract: In the past, metal-based compounds were widely used in the treatment of disease conditions, but the lack of clear distinction between the therapeutic and toxic doses was a major challenge. With the discovery of cisplatin by Barnett Rosenberg in 1960, a milestone in the history of metal-based compounds used in the treatment of cancers was witnessed. This forms the foundation for the modern era of the metal-based anticancer drugs. Platinum drugs, such as cisplatin, carboplatin and oxaliplatin, are the mainstay of the metal-based compounds in the treatment of cancer, but the delay in the therapeutic accomplishment of other metal-based compounds hampered the progress of research in this field. Recently, however, there has been an upsurge of activities relying on the structural information, aimed at improving and developing other forms of metal-based compounds and nonclassical platinum complexes whose mechanism of action is distinct from known drugs such as cisplatin. In line with this, many more metal-based compounds have been synthesized by redesigning the existing chemical structure through ligand substitution or building the entire new compound with enhanced safety and cytotoxic profile. However, because of increased emphasis on the clinical relevance of metal-based complexes, a few of these drugs are currently on clinical trial and many more are awaiting ethical approval to join the trial. In this review, we seek to give an overview of previous reviews on the cytotoxic effect of metal-based complexes while focusing more on newly designed metal-based complexes and their cytotoxic effect on the cancer cell lines, as well as on new approach to metal-based drug design and molecular target in cancer therapy. We are optimistic that the concept of selective

  3. Method for Evaluating the Corrosion Resistance of Aluminum Metallization of Integrated Circuits under Multifactorial Influence

    Science.gov (United States)

    Kolomiets, V. I.

    2018-03-01

    The influence of complex influence of climatic factors (temperature, humidity) and electric mode (supply voltage) on the corrosion resistance of metallization of integrated circuits has been considered. The regression dependence of the average time of trouble-free operation t on the mentioned factors has been established in the form of a modified Arrhenius equation that is adequate in a wide range of factor values and is suitable for selecting accelerated test modes. A technique for evaluating the corrosion resistance of aluminum metallization of depressurized CMOS integrated circuits has been proposed.

  4. The preparation and use of metal salen complexes derived from cyclobutane diamine

    Science.gov (United States)

    Patil, Smita

    The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2 R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions. The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were found to be ineffective.

  5. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    DEFF Research Database (Denmark)

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina

    2013-01-01

    remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...... substrate surfaces and gold-coated atomic force microscopy tips. The coordination and bond breaking between terpyridine and osmium are followed in situ by electrochemically controlled atomic force microscopy at the single-molecule level. The redox state of the central metal atom is found to have......Coordination chemistry has been a consistently active branch of chemistry since Werner's seminal theory of coordination compounds inaugurated in 1893, with the central focus on transition metal complexes. However, control and measurement of metal-ligand interactions at the single-molecule level...

  6. Interaction of natural complexing agents with soil bound heavy metals -geochemical and environmental technical aspects

    International Nuclear Information System (INIS)

    Fischer, K.

    1994-01-01

    The sanitation of heavy metal polluted soils requires the application of an adequate technology, which should be consistent in its ecological aims and methodology. Therefore a research programme has been developed at the 'Institute of Ecological Chemistry' of the 'GSF-Research Center', Neuherberg, which has its starting point in the study of influences of natural organic complexing agents on the chemical activity and dynamic of heavy metals in soils. The groundlaying idea is to elevate the concentration of complexing agents in the soil solution by additional application and possible stimulation of their microbial production to such an extent, that heavy metals will be enhanced solubilized, mobilized and removed together with the seepage water. Batch experiments in order to extract heavy metals from typical soil components (bentonite, peat) by amino acids demonstrate, that removal rates up to 95% can be obtained. (orig.) [de

  7. Intraparticulate Metal Speciation Analysis of Soft Complexing Nanoparticles. The Intrinsic Chemical Heterogeneity of Metal-Humic Acid Complexes

    DEFF Research Database (Denmark)

    Town, R. M.; van Leeuwen, Herman P.

    2016-01-01

    The counterion condensation-Dorman (CCD) model for the electrostatic features of soft, charged nanopartides (NPs) is applied to the determination of the intrinsic stability constants, kit, for inner-sphere Cd(II) and Cu(II) complexes with humic acid NPs. The novel CCD model accounts for the stron...

  8. Molar absorption coefficients and stability constants of Zincon metal complexes for determination of metal ions and bioinorganic applications.

    Science.gov (United States)

    Kocyła, Anna; Pomorski, Adam; Krężel, Artur

    2017-11-01

    Zincon (ZI) is one of the most common chromophoric chelating probes for the determination of Zn 2+ and Cu 2+ ions. It is also known to bind other metal ions. However, literature data on its binding properties and molar absorption coefficients are rather poor, varying among publications or determined only in certain conditions. There are no systematic studies on Zn 2+ and Cu 2+ affinities towards ZI performed under various conditions. However, this widely commercially available and inexpensive agent is frequently the first choice probe for the measurement of metal binding and release as well as determination of affinity constants of other ligands/macromolecules of interest. Here, we establish the spectral properties and the stability of ZI and its complexes with Zn 2+ , Cu 2+ , Cd 2+ , Hg 2+ , Co 2+ , Ni 2+ and Pb 2+ at multiple pH values from 6 to 9.9. The obtained results show that in water solution the MZI complex is predominant, but in the case of Co 2+ and Ni 2+ , M(ZI) 2 complexes are also formed. The molar absorption coefficient at 618 nm for ZnZI and 599nm for CuZI complexes at pH7.4 in buffered (I=0.1M) water solutions are 24,200 and 26,100M -1 cm -1 , respectively. Dissociation constants of those complexes are 2.09×10 -6 and 4.68×10 -17 M. We also characterized the metal-assisted Zincon decomposition. Our results provide new and reassessed optical and stability data that are applicable to a wide range of chemical and bioinorganic applications including metal ion detection, and quantification and affinity studies of ligands of interest. Accurate values of molar absorption coefficients of Zincon complex with Zn 2+ , Cd 2+ , Hg 2+ , Co 2+ , Ni 2+ , Cu 2+ , and Pb 2+ for rapid metal ion quantification are provided. Zincon stability constants with Zn 2+ and Cu 2+ in a wide pH range were determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Characterization of the anti tumoral activity of the thiosemicarbazones derived from N(4)-methyl-tolyl-2acetylpyridine And 2-pyridinoformamide and its metal complex: evaluation of the radiopharmaceutical potential; Caracterizacao da atividade antitumoral das tiossemicarbazonas derivadas de N(4)-metil-toluil-2-acetilpiridina e 2-piridinoformamida e seus complexos metalicos: avaliacao do potencial radiofarmaceutico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Paulo Roberto Ornelas da

    2008-07-01

    Thiosemicarbazones have attracted great pharmacological interest because of their biological properties, such as cytotoxic activity against multiple strains of human tumors. The most studied compounds are pyridine-based because of their resemblance to pyridoxal metabolites that attach to co-enzyme B{sub 6}-dependant enzymes. This work aimed the characterization of the anti tumoral effect of N(4)-methyl-tolyl-2-acetylpyridine and 2-pyridinoformamide-derived thiosemicarbazones and the development of a radiopharmaceutical based on a thiosemicarbazone metal complex for positron emission tomography. In the first phase of this study were synthesized twenty-one thiosemicarbazones, derived from N(4)methyl-2 acetylpyridine and 2-pyridine formamide, as well as their metal complexes (Sn, Ga and Cu). Their cytotoxic potential were evaluated against brain and breast tumor cells in vitro. Our results showed all of them presented powerful cytotoxic and antiproliferative activities against glioblastoma multiform and breast adenocarcinoma at very low concentrations (nanomolar range). Morphological alterations characteristic of apoptosis, such as cell shrinkage, chromatin condensation were observed. Copper chloride was used as control and has presented IC50 at millimolar range suggesting that copper complexation with thiosemicarbazone significantly increases (more than 1 million) the anti tumoral effect of this metal. Due to the potent anti tumoral activity of N(4)-methyl-tolyl-2-acetylpyridine derived thiosemicarbazones and the excellent properties of {sup 64}Cu (T{sub 1/2} = 12.7 hours, {beta}{sup +}, {beta}{sup -}, and EC decay), at the second part for this work it was developed a new imaging agent (radiopharmaceutical) for tumor detection by positron emission tomography (PET). The radiopharmaceuticals were produced in the nuclear reactor TRIGA-IPR-R1 from CDTN, via neutron capture reaction {sup 63}Cu (n,{gamma}) {sup 64}Cu, of the copper complex N(4)-ortho-toluyl-2

  10. Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes

    Science.gov (United States)

    Sakthi, Marimuthu; Ramu, Andy

    2017-12-01

    A new salicylaldehyde derived 2,4-diiodo-6-((2-phenylaminoethylimino)methyl)phenol Schiff base(L) and its transition metal complexes of the type MLCl where, M = Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) have been synthesized. The coordination mode of Schiff base holding NNO donor atoms with metal ions was well investigated by elemental analysis, ESI-mass as well as IR, UV-vis, CV and NMR spectral studies. The binding efficiency and mode of these complexes with biological macromolecules viz., herring sperm DNA (HS- DNA) and bovine serum albumin (BSA) have been explored through various spectroscopic techniques. The characteristic changes in absorption, emission and, circular dichroism spectra of the complexes with DNA indicate the noticeable interaction between them. From the all spectral information complexes could interact with DNA via non-intercalation mode of binding. The hyperchromisim in absorption band and hypochromisim in emission intensity of BSA with different complex concentrations shown significant information, and the binding affinity value has been predicted from Stern-Volmer plots. Further, all the complexes could cleave the circular plasmid pUC19 DNA efficiently by using an activator H2O2. The ligand and all metal(II) complexes showed good antibacterial activities. The molecular docking studies of the complexes with DNA were performed in order to make a comparison and conclusion with spectral technic results.

  11. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.

    Science.gov (United States)

    Kim, Sang Bok; Pike, Robert D; Sweigart, Dwight A

    2013-11-19

    Quinonoid metal complexes have potential applications in surface chemistry, coordination polymers, and catalysts. Although quinonoid manganese tricarbonyl complexes have been used as secondary building units (SBUs) in the formation of novel metal-organometallic coordination networks and polymers, the potentially wider applications of these versatile linkers have not yet been recognized. In this Account, we focus on these diverse new applications of quinonoid metal complexes, and report on the variety of quinonoid metal complexes that we have synthesized. Through the use of [(η(6)-hydroquinone)Mn(CO)3](+), we are able to modify the surface of Fe3O4 and FePt nanoparticles (NPs). This process occurs either by the replacement of oleylamine with neutral [(η(5)-semiquinone)Mn(CO)3] at the NP surface, or by the binding of anionic [(η(4)-quinone)Mn(CO)3](-) upon further deprotonation of [(η(5)-semiquinone)Mn(CO)3] at the NP surface. We have demonstrated chemistry at the intersection of surface-modified NPs and coordination polymers through the growth of organometallic coordination polymers onto the surface modified Fe3O4 NPs. The resulting magnetic NP/organometallic coordination polymer hybrid material exhibited both the unique superparamagnetic behavior associated with Fe3O4 NPs and the paramagnetism attributable to the metal nodes, depending upon the magnetic range examined. By the use of functionalized [(η(5)-semiquinone)Mn(CO)3] complexes, we attained the formation of an organometallic monolayer on the surface of highly ordered pyrolitic graphite (HOPG). The resulting organometallic monolayer was not simply a random array of manganese atoms on the surface, but rather consisted of an alternating "up and down" spatial arrangement of Mn atoms extending from the HOPG surface due to hydrogen bonding of the quinonoid complexes. We also showed that the topology of metal atoms on the surface could be controlled through the use of quinonoid metal complexes. A quinonoid

  12. Asymmetric catalysis mediated by the ligand sphere of octahedral chiral-at-metal complexes.

    Science.gov (United States)

    Gong, Lei; Chen, Liang-An; Meggers, Eric

    2014-10-06

    Due to the relationship between structure and function in chemistry, access to novel chemical structures ultimately drives the discovery of novel chemical function. In this light, the formidable utility of the octahedral geometry of six-coordinate metal complexes is founded in its stereochemical complexity combined with the ability to access chemical space that might be unavailable for purely organic compounds. In this Minireview we wish to draw attention to inert octahedral chiral-at-metal complexes as an emerging class of metal-templated asymmetric "organocatalysts" which exploit the globular, rigid nature and stereochemical options of octahedral compounds and promise to provide new opportunities in the field of catalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural and Spectral Properties of Curcumin and Metal- Curcumin Complex Derived from Turmeric (Curcuma longa)

    Science.gov (United States)

    Bich, Vu Thi; Thuy, Nguyen Thi; Binh, Nguyen Thanh; Huong, Nguyen Thi Mai; Yen, Pham Nguyen Dong; Luong, Tran Thanh

    Structural and spectral properties of curcumin and metal- curcumin complex derived from turmeric (Curcuma longa) were studied by SEM and vibrational (FTIR and Raman) techniques. By comparison between curcumin commercial, fresh turmeric and a yellow powder obtained via extraction and purification of turmeric, we have found that this insoluble powder in water is curcumin. The yellow compound could complex with certain ion metal and this metal-curcumin coloring complex is water soluble and capable of producing varying hues of the same colors and having antimicrobial, cytotoxicity activities for use in foodstuffs and pharmacy. The result also demonstrates that Micro-Raman spec-troscopy is a valuable non-destructive tool and fast for investigation of a natural plant even when occurring in low concentrations.

  14. Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes.

    Science.gov (United States)

    McWilliams, Sean F; Rodgers, Kenton R; Lukat-Rodgers, Gudrun; Mercado, Brandon Q; Grubel, Katarzyna; Holland, Patrick L

    2016-03-21

    Alkali metal cations can interact with Fe-N2 complexes, potentially enhancing back-bonding or influencing the geometry of the iron atom. These influences are relevant to large-scale N2 reduction by iron, such as in the FeMoco of nitrogenase and the alkali-promoted Haber-Bosch process. However, to our knowledge there have been no systematic studies of a large range of alkali metals regarding their influence on transition metal-dinitrogen complexes. In this work, we varied the alkali metal in [alkali cation]2[LFeNNFeL] complexes (L = bulky β-diketiminate ligand) through the size range from Na(+) to K(+), Rb(+), and Cs(+). The FeNNFe cores have similar Fe-N and N-N distances and N-N stretching frequencies despite the drastic change in alkali metal cation size. The two diketiminates twist relative to one another, with larger dihedral angles accommodating the larger cations. In order to explain why the twisting has so little influence on the core, we performed density functional theory calculations on a simplified LFeNNFeL model, which show that the two metals surprisingly do not compete for back-bonding to the same π* orbital of N2, even when the ligand planes are parallel. This diiron system can tolerate distortion of the ligand planes through compensating orbital energy changes, and thus, a range of ligand orientations can give very similar energies.

  15. H-D exchange and other reactions of saturated hydrocarbons in solutions of transition metal complexes

    International Nuclear Information System (INIS)

    Shilov, A.E.; Shteinman, A.A.

    1975-01-01

    Heating methane, ethane and other paraffins with solutions of chlorides of Pt(II) or Pt(IV) in heavy water there was H-D exchange of D 2 O with RH molecule. The reaction was inhibited by chloride ions and accompanied by reduction of metal compounds. The investigation of kinetics and mechanism of these reactions has shown that alkyl derivatives of transition metals are the intermediates, the reaction rate increases with electron accepting properties of metal complexes and electron donating properties of C-H containing compounds. C-H bond was found to be activated to some reactions of substitution and dehydrogenation as well. (K.A.)

  16. Synthesis, structure and reactivity of rare-earth metal complexes containing anionic phosphorus ligands.

    Science.gov (United States)

    Li, Tianshu; Kaercher, Sabrina; Roesky, Peter W

    2014-01-07

    A comprehensive review of structurally characterized rare-earth metal complexes containing anionic phosphorus ligands is presented. Since rare-earth elements form hard ions and phosphorus is considered as a soft ligand, the rare-earth metal phosphorus coordination is regarded as a less favorite combination. Three classes of phosphorus ligands, (1) the monoanionic organophosphide ligands (PR2(-)) bearing one negative charge on the phosphorus atom; (2) the dianionic phosphinidene (PR(2-)) and P(3-) ligands; and (3) the pure inorganic polyphosphide ligands (Pn(x-)), are included here. Particular attention has been paid to the synthesis, structure, and reactivity of the rare-earth metal phosphides.

  17. Sub-chronic toxicological studies of transition metal complexes of ...

    African Journals Online (AJOL)

    Md. Sharif Hasan

    2017-01-18

    Jan 18, 2017 ... Objective: The purpose of this research was to investigate sub-chronic toxicity in animal model. Methods: A detailed study was ... Non steroidal anti-inflammatory drugs (NSAIDs) are one of the most widely utilized ... evaluate NSAID induced pathological state in young, healthy rat model to see overall effect.

  18. Simultaneous Exposure to Heavy Metals among Residents in the Industrial Complex: Korean National Cohort Study

    Directory of Open Access Journals (Sweden)

    Heejin Park

    2015-05-01

    Full Text Available A survey was conducted to evaluate the multi-exposure level and correlation among toxic metal biomarkers (Cd, Pb, and Hg. A total of 592 individuals who participated in the survey were residents near an industrial complex in Gwangyang and Yeosu (exposed group and of Hadong and Namhae (control group in southern Korea from May 2007 to November 2010. The Gwangyang and Yeosu area exposed groups had slightly higher blood Pb (2.21 and 1.90 µg/dL, urinary Cd observed values (2.20 and 1.46 µg/L, urinary Cd with a urinary creatinine correction (1.43 and 1.25 µg/g Cr, and urinary Hg observed values (2.26 and 0.98 µg/L in women participants than those in the Hadong and Namhae area (control group. Blood Pb (3.18 and 2.55 µg/dL, urinary Hg observed values (1.14 and 0.92 µg/L, and urinary Hg with a urinary creatinine correction (1.06 and 0.96 µg/L for male participants were also slightly higher than those in the Hadong and Namhae area (control group. The correlation among urinary Cd, Hg and Pb concentrations in the blood was significant. We suggest that the exposed group of residents were simultaneously exposed to Pb, Cd, and Hg from contaminated ambient air originating from the iron manufacturing industrial complex.

  19. Stromatolites, Metals, Statistics and Microbial Mats: A Complex Interplay

    Science.gov (United States)

    Spear, J. R.

    2014-12-01

    Initially thought to be relatively 'simple' ecosystems for study, microbial mats have long been considered ideal for any number of research questions. Microbial mats can be found in any number of environments, both natural and manmade, and are typically dependent upon the physiochemical environment for their structure, maintenance and longevity. Ultimately, these and other parameters govern community whereby a microbial mat provides overall ecosystem services to their environment. On the edge of a hotspring in Yellowstone National Park we have found an active microbial mat community that can form a laminated, lithified, accretionary structure that is likely the best example of a living and growing stromatolite. In the outfall channel of the sulfidic Stinking Spring, Utah, we have found examples of both naturally occurring laminated and floating mats where the carbon flux is controlled by abiotic degassing of CO2 rather than metabolism. δ13C-bicarbonate uptake experiments reveal an autotrophic growth rate of 0 - 0.16%/day while δ13C-acetate reveals a higher heterotrophic growth rate of 0.03 - 0.65%/day, which highlights the role of heterotrophs in these mats. Similar growth experiments on Little Hot Creek, California laminated microbial mats reveal a trend for top-down microbial growth with similar microbial taxonomy and diversity to other mat-types. Of a curious note is that incubation experiments with Little Hot Creek mats reveals the importance of particular metals in mat structure and function. Statistically, alpha- and beta-diversity metrics are often used to characterize microbial communities in such systems, but from an analysis of a wastewater treatment system, Hill diversities can better interpret the effective number of species to produce an ecologically intuitive quantity to better understand a microbial mat ecosystem.

  20. Development and evaluation of vinpocetine inclusion complex for brain targeting

    OpenAIRE

    Jiaojiao Ding; Jinfeng Li; Shirui Mao

    2015-01-01

    The objective of this paper is to prepare vinpocetine (VIN) inclusion complex and evaluate its brain targeting effect after intranasal administration. In the present study, VIN inclusion complex was prepared in order to increase its solubility. Stability constant (Kc) was used for host selection. Factors influencing properties of the inclusion complex was investigated. Formation of the inclusion complex was identified by solubility study and DSC analysis. The brain targeting effect of the com...

  1. Infrared Multiple-Photon Dissociation spectroscopy of group II metal complexes with salicylate

    Energy Technology Data Exchange (ETDEWEB)

    Ryan P. Dain; Gary Gresham; Gary S. Groenewold; Jeffrey D. Steill; Jos Oomens; Michael J. van Stipdonk

    2011-07-01

    Ion-trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations were used to characterize singly-charged, 1:1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO2 and (b) formation of [MOH]+ where M=Ca2+, Sr2+ or Ba2+. DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cation is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 – 1650 cm-1, and the best correlation between theoretical and experimental spectra for the structure that features coordination of the metal ion by phenoxide and the carbonyl group of the carboxylic acid group, consistent with calculated energies for the respective species.

  2. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    KAUST Repository

    Kaur, Sukhmanpreet

    2017-07-04

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  3. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    Science.gov (United States)

    Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj

    2017-07-01

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4±0.05, 7±0.05 and 9±0.05) and three different temperatures (15±0.5°C, 30±0.5°C and 45±0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  4. Strongly Phosphorescent Transition Metal π-Complexes of Boron-Boron Triple Bonds.

    Science.gov (United States)

    Braunschweig, Holger; Dellermann, Theresa; Dewhurst, Rian D; Hupp, Benjamin; Kramer, Thomas; Mattock, James D; Mies, Jan; Phukan, Ashwini K; Steffen, Andreas; Vargas, Alfredo

    2017-04-05

    Herein are reported the first π-complexes of compounds with boron-boron triple bonds with transition metals, in this case Cu I . Three different compounds were isolated that differ in the number of copper atoms bound to the BB unit. Metalation of the B-B triple bonds causes lengthening of the B-B and B-C NHC bonds, as well as large upfield shifts of the 11 B NMR signals, suggesting greater orbital interactions between the boron and transition metal atoms than those observed with recently published diboryne/alkali metal cation complexes. In contrast to previously reported fluorescent copper(I) π-complexes of boron-boron double bonds, the Cu n -π-diboryne compounds (n = 2, 3) show intense phosphorescence in the red to near-IR region from their triplet excited states, according to their microsecond lifetimes, with quantum yields of up to 58%. While the Cu diborene bond is dominated by electrostatic interactions, giving rise to S 1 and T 1 states of pure IL(π-π*) nature, DFT studies show that the Cu I π-complexes of diborynes reported herein exhibit enhanced metal d orbital contributions to HOMO and HOMO-1, which results in S 1 and T 1 having significant MLCT character, enabling strong spin-orbit coupling for highly efficient intersystem-crossing S 1 → T n and phosphorescence T 1 → S 0 .

  5. Applying complexity theory: a review to inform evaluation design.

    Science.gov (United States)

    Walton, Mat

    2014-08-01

    Complexity theory has increasingly been discussed and applied within evaluation literature over the past decade. This article reviews the discussion and use of complexity theory within academic journal literature. The aim is to identify the issues to be considered when applying complexity theory to evaluation. Reviewing 46 articles, two groups of themes are identified. The first group considers implications of applying complexity theory concepts for defining evaluation purpose, scope and units of analysis. The second group of themes consider methodology and method. Results provide a starting point for a configuration of an evaluation approach consistent with complexity theory, whilst also identifying a number of design considerations to be resolved within evaluation planning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. 'Pincer' dicarbene complexes of some early transition metals and uranium.

    Science.gov (United States)

    Pugh, David; Wright, Joseph A; Freeman, Sandra; Danopoulos, Andreas A

    2006-02-14

    The complexes [(C-N-C)MX(n)(thf)(m)] with the 'pincer' 2,6-bis(imidazolylidene)pyridine, (C-N-C) = 2,6-bis(arylimidazol-2-ylidene)pyridine, aryl = 2,6-Pr(i)2C6H3, M = V, X = Cl, n = 2, m = 1 1a; M = Cr, X = Cl, n = 2, m = 0, 2a, X = Br, 2b; M = Mn, X = Br, n = 2, m = 0, 3; M = Nb, X = Cl, n = 3, m = 0, 4; and M = U, X = Cl, n = 4, m = 0, 5, were synthesised by (a) substitution of labile tmed (1a), thf (2a, 3, 5) or dme (4) by free (C-N-C) or by (b) reaction of the bisimidazolium salt (CH-N-CH)Br2 with {Cr[N(SiMe3)2]2(thf)2} followed by amine elimination (2b). Attempted alkylation of 1a, 2, 3a and 4 with Grignard or alkyl lithiums gave intractable mixtures, and in one case [reaction of 1a with (mesityl)MgBr] resulted in exchange of Cl by Br (1b). Oxidation of 1a or [(C-N-C)VCl3] with 4-methylmorpholine N-oxide afforded the trans-V(C-N-C)(=O)Cl2, 6, which by reaction with AgBF4 in MeCN gave trans-[V(C-N-C)(=O)(MeCN)2][BF4]2, 7. Reaction of 1a with p-tolyl azide gave trans-V(C-N-C)(=N-p-tolyl)Cl2 8. The complex trans-Ti(C-N-C)(=NBu(t))Cl2, 9, was prepared by substitution of the pyridine ligands in Ti(NBu(t))Cl2(py)3 by C-N-C.

  7. Problematisations of Complexity: On the Notion and Production of Diverse Complexities in Healthcare Interventions and Evaluations

    NARCIS (Netherlands)

    T. Broer (Tineke); R.A. Bal (Roland); Pickersgill, M. (Martyn)

    2017-01-01

    textabstractWithin the literature on the evaluation of health (policy) interventions, complexity is a much-debated issue. In particular, many claim that so-called ‘complex interventions’ pose different challenges to evaluation studies than apparently ‘simple interventions’ do. Distinct ways of doing

  8. Characterization and evaluation of stress and heavy metal tolerance ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... Full Length Research Paper. Characterization and evaluation of stress and heavy metal tolerance of some predominant Gram negative halotolerant bacteria from mangrove soils of. Bhitarkanika, Orissa, India. Mishra R. R.1, Dangar T. K.2, Rath B1 and Thatoi H.N1*. 1P.G. Department of Biotechnology, ...

  9. evaluation of metal contaminants of surface water sources in an ...

    African Journals Online (AJOL)

    SAMSUNG

    This study evaluated the potential health risks associated with domestic use of surface water from an active Pb-Zn mine pit, compared to a ... about the health and environmental risks associated with high levels of metal ... S. O. Ngele, Department of Industrial Chemistry, Ebonyi State University Abakaliki, Nigeria. E. J. Itumoh ...

  10. Evaluation of Some Metals Content and Physicochemical Properties ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Chemical as well as physical and biological properties may change significantly during a year particularly as demand increases on a ground well and water table is lowered (James, 2010). The aim of this research was therefore to evaluate the metal contents and physicochemical parameters in some major rivers.

  11. Bioaccessibility of metals in alloys: evaluation of three surrogate biofluids.

    Science.gov (United States)

    Hillwalker, Wendy E; Anderson, Kim A

    2014-02-01

    Bioaccessibility in vitro tests measure the solubility of materials in surrogate biofluids. However, the lack of uniform methods and the effects of variable test parameters on material solubility limit interpretation. One aim of this study was to measure and compare bioaccessibility of selected economically important alloys and metals in surrogate physiologically based biofluids representing oral, inhalation and dermal exposures. A second aim was to experimentally test different biofluid formulations and residence times in vitro. A third aim was evaluation of dissolution behavior of alloys with in vitro lung and dermal biofluid surrogates. This study evaluated the bioaccessibility of sixteen elements in six alloys and 3 elemental/metal powders. We found that the alloys/metals, the chemical properties of the surrogate fluid, and residence time all had major impacts on metal solubility. The large variability of bioaccessibility indicates the relevancy of assessing alloys as toxicologically distinct relative to individual metals. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Synthesis and thermal studies of tetraaza macrocylic ligand and its transition metal complexes. DNA binding affinity of copper complex.

    Science.gov (United States)

    Saif, M; Mashaly, Mahmoud M; Eid, Mohamed F; Fouad, R

    2011-09-01

    A Tetraaza Macrocylic Ligand (H2L) and its complexes, [Cd(H2L)(OH2)2](NO3)(2)·1/2OH2 (I), [Co(H2L)(OH2)](NO3)(2)·1/2OH2 (II), [Cu(H2L)(NO3)2]·3/2OH2 (III) and [Ni(H2L)(NO3)(OH2)]NO3·OH2 (IV), have been synthesized and characterized on the basis of elemental analysis, molar conductivity, 1H NMR, UV-vis, FT-IR and mass spectroscopy. All results confirm that the prepared compounds have 1:1 metal-to-ligand stoichiometry, octahedral configuration and the ligand behaves as a neutral tetradendate towards the metal ions. [CdL(OH2)2] (V), [CoL(OH2)2] (VI), [CuL(OH2)2] (VII) and [Ni(H2L)(NO3)2] (VIII) were synthesized pyrolytically in solid state from corresponding compounds (I-IV). Analytical results of complexes (V-VIII) show that the ligand behaves either as a neutral tetradendate or dianionic tetradentate ligand towards the metal ions. The binding of H2L and its copper complex (III) to DNA has been investigated by ultraviolet absorption spectroscopy. The experiments indicate that H2L and its copper complex (III) can bind to DNA through an intercalative mode. The H2L and its copper complex (III) exhibited anti-tumor activity against Ehrlich Acites Carcinoma (E.A.C) at the concentration of 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Isolation of humic acid from oxidized lignite and complexation with metal cations

    Directory of Open Access Journals (Sweden)

    Ćatović Benjamin

    2017-01-01

    Full Text Available Lignite is brown coal, which in its composition contains humic acids. Humic acids are produced by coal combustion, which leads to the enrichment of coal humic acids. Lignite, from the opet pit mine Šikulje, lignite ore „Kreka“, Bosnia and Herzegovina, was fragmented and sieved to the appropriate size and used as a base material. The isolation of humic acid was carried out from pre-oxidized and dried lignite after which it was refined. Identification thus obtained humic acids was carried out by FTIR spectroscopy and its characterization of UV analysis which is determined by optical density of isolated humic acid and its complexation with metal cations. Data obtained by FTIR spectroscopic analysis of isolated humic acids show no significant structural and chemical difference in relation to the spectrum obtained for standard humic acids (Sigma Aldrich. UV analysis showed that isolated and standard humic acid have E4/E6 ratio in an appropriate range of 3–5, which indicates the presence of a large number of aliphatic structure. Based on the degree of humification was found that the isolated humic acids belong to the type B standard while humic acids belong to type A. The most important property of the humic substances is the ability to interact with the metal ions forming soluble or insoluble complexes which possess different chemical and biological properties and stability. The nature of the complex between humic acid and metal cation derived from the heterogeneous, polyelectric and polydispersive character humic acids that occurs due to the presence of a large number of functional groups. Complexation of humic acid is carried out with different concentrations of metal nitrate solutions and at different pH values. Different amounts of humic acids were used for the complexation. The amount of the free metal ions was measured with the ICP-OES methode. The data were also statistically analyzed with ANOVA. The results showed that increasing the p

  14. Preparation and properties of chitosan-metal complex: Some factors influencing the adsorption capacity for dyes in aqueous solution.

    Science.gov (United States)

    Rashid, Sadia; Shen, Chensi; Yang, Jing; Liu, Jianshe; Li, Jing

    2018-04-01

    Chitosan-metal complexes have been widely studied in wastewater treatment, but there are still various factors in complex preparation which are collectively responsible for improving the adsorption capacity need to be further studied. Thus, this study investigates the factors affecting the adsorption ability of chitosan-metal complex adsorbents, including various kinds of metal centers, different metal salts and crosslinking degree. The results show that the chitosan-Fe(III) complex prepared by sulfate salts exhibited the best adsorption efficiency (100%) for various dyes in very short time duration (10min), and its maximum adsorption capacity achieved 349.22mg/g. The anion of the metal salt which was used in preparation played an important role to enhance the adsorption ability of chitosan-metal complex. SO 4 2- ions not only had the effect of crosslinking through electrostatic interaction with amine group of chitosan polymer, but also could facilitate the chelation of metal ions with chitosan polymer during the synthesis process. Additionally, the pH sensitivity and the sensitivity of ionic environment for chitosan-metal complex were analyzed. We hope that these factors affecting the adsorption of the chitosan-metal complex can help not only in optimizing its use but also in designing new chitosan-metal based complexes. Copyright © 2017. Published by Elsevier B.V.

  15. Metal halide-group III halide gas complexes with emphasis on aluminum chloride

    International Nuclear Information System (INIS)

    Oeye, H.A.; Gruen, D.M.

    1978-01-01

    The thermodynamics of the presently known gas complexation reactions between metal halides and group III halides are treated in a self-consistent manner. By focusing on aluminum chloride as a complexing agent, certain systematic trends are revealed. The partial pressures of the gaseous complexes display shallow minima near 800 0 K whenever the complex molecules involve more than one molecule of AlCl 3 . Increasing the aluminum chloride pressure from 1 atm. to 10 3 atm. decreases somewhat the differences in the partial pressures among the various gaseous complexes which span two to three orders of magnitude. The methods developed for characterizing the complexes, and their structures as well as some applications of gas complexation are discussed

  16. The first example of intensive luminescence of LMCT state based on metal complexes in solution

    International Nuclear Information System (INIS)

    Lukova, G.V.; Vasil'ev, V.P.; Smirnov, V.A.; Huhn, W.

    2007-01-01

    A bridge complex rac-C 6 H 10 (IndH 4 ) 2 ZrC 2 , featuring a unique long-living luminescence in liquid solutions at 20 deg C, has been prepared for the first time by catalytic hydrogenation of bis-indinyl complex C 6 H 10 (Ind) 2 Zr 2 Cl 2 . It has been identified that quantum yields of luminescence of the complex solutions at room temperature are the greatest ones for the known compounds possessing emission states of charge transfer from ligand to metal. Linear correlations of quantum yield of metal complex luminescence in a solution with steric features of the solvent molecules have been detected for the first time [ru

  17. E'-N-(2,4-dihydroxybenzylidene)nicotinohydrazide and its Metal Complexes: Synthesis, Characterisation and Antitubercular Activity

    International Nuclear Information System (INIS)

    Ogunniran, K. O.; Adekoya, J. A.; Ehi-Eromosele, C.; Ajani, O. O.; Kayode, A.; Narender, T.

    2016-01-01

    Nicotinic acid hydrazide and 2,4-dihydoxylbenzaldehyde were condensed at 20 degree C to form an acylhydrazone (H3L1) with ONO coordination pattern. The structure of the acylhydrazone was elucidated by using CHN analyzer, ESI mass spectrometry, IR, 1H NMR, 13C NMR and 2D NMR such as COSY and HSQC. Thereafter, five novel metal complexes [Mn(II), Fe(II), Pt(II) Zn(II) and Pd(II)] of the hydrazone ligand were synthesized and their structural characterization were achieved by several physicochemical methods namely: elemental analysis, electronic spectra, infrared, EPR, molar conductivity and powder X-ray diffraction studies. An octahedral geometry was suggested for both Pd(II) and Zn(II) complexes while both Mn(II) and Fe(II) complexes conformed with tetrahedral pyramidal. However, Pt(II) complex agreed with tetrahedral geometry. In vitro antitubercular activity study of the ligand and the metal complexes were evaluated against Mycobacterium tuberculosis, H37Rv, by using micro-diluted method. The results obtained revealed that (PtL1) (MIC = 0.56 mg/mL), (ZnL1) (MIC = 0.61 mg/mL), (MnL1) (MIC = 0.71 mg/mL) and (FeL1) (MIC = 0.82 mg/mL), exhibited a significant activity when compared with first line drugs such as isoniazid (INH) (MIC = 0.9 mg/mL). H3L1 exhibited lesser antitubercular activity with MIC value of 1.02 mg/mL. However, the metal complexes displayed higher cytotoxicity but were found to be non-significant different (P > 0.05) to isoniazid drug. (author)

  18. Determination of metallic complexing capacities of the dissolved organic material in seawater

    OpenAIRE

    Luis M. Laglera-Baquer; Melchor González-Dávila; J. Magdalena Santana-Casiano

    2001-01-01

    The use of the Langmuir isotherm for the study of the complexing properties of functional groups present both in dissolved organic material and on biological surfaces in aquatic systems needs a heterogeneous model and an iterative linear regression solution. The method proposed previously by van den Berg is improved by replacing the expression used to obtain the complexing capacity and the conditional stability constant of the functional groups with stronger trace metal affinity, for the line...

  19. Investigation of complexing ability of ionites with various groups to some heavy and transition metal ions

    Directory of Open Access Journals (Sweden)

    Yedil Yergozhin

    2013-05-01

    Full Text Available The physico-chemical and complexing properties of the sorbent based on chloromethylated styrene and divinylbenzene copolymer with nicotinamide groups and copolymers based on metacryloilaminobenzene acids with 2-methyl-5-vinylpyridineisomers are studied. By potentiometric titration method the constant of polyelectrolytes functional groups ionization, the composition and strength of the resulting complexes with ions of some heavy and transition metals are determined.

  20. Exploration of complex metal 2D design rules using inverse lithography

    Science.gov (United States)

    Chang, Simon; Blatchford, James; Prins, Steve; Jessen, Scott; Dam, Thuc; Xiao, Guangming; Pang, Linyong; Gleason, Bob

    2009-03-01

    As design rule (DR) scaling continues to push lithographic imaging to higher numerical aperture (NA) and smaller k1 factor, extensive use of resolution enhancement techniques becomes a general practice. Use of these techniques not only adds considerable complexity to the design rules themselves, but also can lead to undesired and/or unanticipated problematic imaging effects known as "hotspots." This is particularly common for metal layers in interconnect patterning due to the many complex random and bidirectional (2D) patterns present in typical layout. In such situations, the validation of DR becomes challenging, and the ability to analyze large numbers of 2D layouts is paramount in generating a DR set that encodes all lithographic constraints to avoid hotspot formation. Process window (PW) and mask error enhancement factor (MEEF) are the two most important lithographic constraints in defining design rules. Traditionally, characterization of PW and MEEF by simulation has been carried out using discrete cut planes. For a complex 2D pattern or a large 2D layout, this approach is intractable, as the most likely location of the PW or MEEF hotspots often cannot be predicted empirically, and the use of large numbers of cut planes to ensure all hotspots are detected leads to excessive simulation time. In this paper, we present a novel approach to analyzing fullfield PW and MEEF using the inverse lithography technology (ILT) technique, [1] in the context of restrictive design rule development for the 32nm node. Using this technique, PW and MEEF are evaluated on every pixel within a design, thereby addressing the limitations of cut-plane approach while providing a complete view of lithographic performance. In addition, we have developed an analysis technique using color bitmaps that greatly facilitates visualization of PW and MEEF hotspots anywhere in the design and at an arbitrary level of resolution. We have employed the ILT technique to explore metal patterning options

  1. Ultrafast Transient Absorption Spectroscopy of Polymer-Based Organophotoredox Catalysts Mimicking Transition-Metal Complexes

    Science.gov (United States)

    Jamhawi, Abdelqader; Paul, Anam C.; Smith, Justin D.; Handa, Sachin; Liu, Jinjun

    2017-06-01

    Transition-metal complexes of rare earth metals including ruthenium and iridium are most commonly employed as visible-light photocatalysts. Despite their highly important and broad applications, they have many disadvantages including high cost associated with low abundance in earth crust, potential toxicity, requirement of specialized ligands for desired activity, and difficulty in recycling of metal contents as well as associated ligands. Polymer-based organophotoredox catalysts are promising alternatives and possess unique advantages such as easier synthesis from inexpensive starting material, longer excited state life time, broad range of activity, sustainability, and recyclability. In this research talk, time-resolved photoluminescence and femtosecond transient absorption (TA) spectroscopy measurements of three novel polymer-based organophotoredox catalysts will be presented. By our synthetic team, their catalytic activity has been proven in some highly valuable chemical transformations, that otherwise require transition metal complexes. Time-resolved spectroscopic investigations have demonstrated that photoinduced processes in these catalysts are similar to the transition metal complexes. Especially, intramolecular vibrational relaxation, internal conversion, and intersystem crossing from the S1 state to the T1 state all occur on a sub-picosecond timescale. The long lifetime of the T1 state ( 2-3 microsecond) renders these polymers potent oxidizing and reducing agents. A spectroscopic and kinetic model has been developed for global fitting of TA spectra in both the frequency and time domains. Implication of the current ultrafast spectroscopy studies of these novel molecules to their roles in photocatalysis will be discussed.

  2. Molybdenum/alkali metal/ethylene glycol complexes useful as epoxidation catalysts

    International Nuclear Information System (INIS)

    Marquis, E.T.; Sanderson, J.R.; Keating, K.P.

    1987-01-01

    This patent describes a clear, storage stable solution of a molybdenum/alkali metal/ethylene glycol complex in ethylene glycol made by the process comprising: reacting at an elevated temperature between about 25 0 and 150 0 C a solid ammonium molybdate or a hydrate thereof and a solid alkali metal molybdate or a hydrate thereof with ethylene glycol, such that the ratio of moles of ethylene glycol to total gram atoms of molybdenum in the molybdates ranges from about 7:10 to 10:1, and the ratio of gram atoms of molybdenum in the ammonium molybdate or hydrate thereof to gram atoms of molybdenum in the alkali metal molybdate is from about 1:1 to about 20:1 to thereby provide a reaction product composed of a solution of an alkali metal-containing complex of molybdenum, alkali metal and ethylene glycol and by-products, including water, in the ethylene glycol and subsequently stripping the solution at a reduced pressure to remove from about 5 to about 25% of the reaction product, as distillate, to thereby provide a storage stable solution of the complex in the ethylene glycol having a molybdenum content of about 6 wt. % to about 20 wt. %, a water concentration of about 0.1 wt. % to about 6 wt. % and an acid number of more than about 60

  3. Coordination diversity of new mononucleating hydrazone in 3d metal complexes: Synthesis, characterization and structural studies

    Directory of Open Access Journals (Sweden)

    RAJESH S. BALIGAR

    2006-12-01

    Full Text Available The mononucleating hydrazone ligand LH3, a condensation product of salicyloylhydrazine and (2-formylphenoxyacetic acid, was synthesized and its coordination behavior with first row transition metal(II ions was investigated by isolating and elucidating the structure of the complexes using elemental analysis, conductivity and magnetic susceptibility measurements, as well as IR, 1H-NMR, electronic and EPR spectral techniques. The ligand forms mononuclear metal(II complexes of the type [CoLH(H2O2], [NiLH(H2O2, [CuLH] and [ZnLH]. The ligand field parameters, Dq, B and b values, in the case of the cobalt and nickel complexes support not only the octahedral geometry around the metal ion, but also imply the covalent nature of the bonding in the complexes. The EPR study revealed the presence of a spin exchange interaction in the solid copper complex and the covalent nature of the bonding. The 1H-NMR study of the zinc(II complex indicated the non-involvement of the COOH group in the coordination. The physico-chemical study supports for the presence of octahedral geometry around cobalt(II, nickel(II and tetrahedral geometry around copper(II and zinc(II ions.

  4. A review on versatile applications of transition metal complexes incorporating Schiff bases

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu-Dief

    2015-06-01

    Full Text Available Schiff bases and their complexes are versatile compounds synthesized from the condensation of an amino compound with carbonyl compounds and widely used for industrial purposes and also exhibit a broad range of biological activities including antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral, and antipyretic properties. Many Schiff base complexes show excellent catalytic activity in various reactions and in the presence of moisture. Over the past few years, there have been many reports on their applications in homogeneous and heterogeneous catalysis. The high thermal and moisture stabilities of many Schiff base complexes were useful attributes for their application as catalysts in reactions involving at high temperatures. The activity is usually increased by complexation therefore to understand the properties of both ligands and metal can lead to the synthesis of highly active compounds. The influence of certain metals on the biological activity of these compounds and their intrinsic chemical interest as multidentate ligands has prompted a considerable increase in the study of their coordination behaviour. Development of a new chemotherapeutic Schiff bases and their metal complexes is now attracting the attention of medicinal chemists. This review compiles examples of the most promising applied Schiff bases and their complexes in different areas.

  5. Microwave synthesis, spectral, thermal, and antimicrobial activities of some transition metal complexes involving 5-bromosalicylaldehyde moiety

    Directory of Open Access Journals (Sweden)

    Rajendra K. Jain

    2012-07-01

    Full Text Available The coordination complexes of Co(II, Ni(II and Cu(II derived from 5-bromosalicylidene-3,4-dimethylaniline (BSMA and 5-bromosalicylidene-3,4-dichloroaniline (BSCA have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, FT-IR, molar conductance, electronic spectra, 1H-NMR, FAB-mass, ESR, magnetic susceptibility, electrical conductivity and thermal analysis. The complexes are coloured and stable in air. Analytical data revealed that all the complexes exhibited 1:2 (metal: ligand ratio with coordination number 4 or 6. IR data shows that the ligand coordinates with the metal ions in a bidentate manner through the phenolic oxygen and azomethine nitrogen. FAB-mass and thermal data show degradation pattern of the complexes. Solid state electrical conductivity studies reflect semiconducting nature of the complexes. The Schiff base and metal complexes show a good activity against the Gram-positive bacteria; Staphylococcus aureus and Gram-negative bacteria; Escherichia coli and fungi Aspergillus niger and Candida albicans.

  6. Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Jianxian [College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China) and College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)], E-mail: zengjianxian@163.com; Ye Hongqi [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Hu Zhongyu [College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China)

    2009-01-30

    Complexation-ultrafiltration process was investigated for mercury and cadmium removal from aqueous solutions by using poly(acrylic acid) sodium salt (PAASS) as a complexing agent. The kinetics of complexation reactions of PAASS with the metal ions were studied under a large excess PAASS and pH 5.5. It takes 25 and 50 min for mercury and cadmium to get the complexation equilibrium, respectively, and the reaction kinetics can be described by a pseudo-first-order equation. Effects of various operating parameters such as loading ratios, pH values, etc. on metal rejection coefficients (R) were investigated. In the process of concentration, membrane fluxes decline slowly and R values are about 1. The concentrated retentates were used further for the decomplexation. The decomplexation ratio of mercury-PAASS complex is about 30%, whereas that of cadmium-PAASS complex reaches 93.5%. After the decomplexation, diafiltration experiments were carried out at pH 2.5. Cadmium can be diafiltrated satisfactorily from the retentate, but for mercury it is the contrary. Selective separation of the both metal ions was studied from a binary solution at pH 5. When mercury, cadmium and PAASS concentrations are 30, 30 and 40 mg L{sup -1}, respectively, mercury is retained by ultrafiltration while almost all cadmium passes through the membrane.

  7. Calculation of equilibrium stable isotope partition function ratios for aqueous zinc complexes and metallic zinc

    Science.gov (United States)

    Black, Jay R.; Kavner, Abby; Schauble, Edwin A.

    2011-02-01

    The goal of this study is to determine reduced partition function ratios for a variety of species of zinc, both as a metal and in aqueous solutions in order to calculate equilibrium stable isotope partitioning. We present calculations of the magnitude of Zn stable-isotope fractionation ( 66,67,68Zn/ 64Zn) between aqueous species and metallic zinc using measured vibrational spectra (fit from neutron scattering studies of metallic zinc) and a variety of electronic structure models. The results show that the reduced metal, Zn(0), will be light in equilibrium with oxidized Zn(II) aqueous species, with the best estimates for the Zn(II)-Zn(0) fractionation between hexaquo species and metallic zinc being Δ 66/64Zn aq-metal ˜ 1.6‰ at 25 °C, and Δ 66/64Zn aq-metal ˜ 0.8‰ between the tetrachloro zinc complex and metallic zinc at 25 °C using B3LYP/aug-cc-pVDZ level of theory and basis set. To examine the behavior of zinc in various aqueous solution chemistries, models for Zn(II) complex speciation were used to determine which species are thermodynamically favorable and abundant under a variety of different conditions relevant to natural waters, experimental and industrial solutions. The optimal molecular geometries for [Zn(H 2O) 6] 2+, [Zn(H 2O) 6]·SO 4, [ZnCl 4] 2- and [Zn(H 2O) 3(C 3H 5O(COO) 3)] - complexes in various states of solvation, protonation and coordination were calculated at various levels of electronic structure theory and basis set size. Isotopic reduced partition function ratios were calculated from frequency analyses of these optimized structures. Increasing the basis set size typically led to a decrease in the calculated reduced partition function ratios of ˜0.5‰ with values approaching a plateau using the aug-cc-pVDZ basis set or larger. The widest range of species were studied at the B3LYP/LAN2DZ/6-31G ∗ level of theory and basis-set size for comparison. Aqueous zinc complexes where oxygen is bound to the metal center tended to have the

  8. Long-range intramolecular electron transfer in aromatic radical anions and binuclear transition metal complexes

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Ulstrup, Jens

    1981-01-01

    radicals containing two aromatic end groups connected by a flexible polymethylene chain or a rigid cyclohexane frame is thus trapped on either aromatic end group, and ET between these groups can be detected by ESR techniques. Intramolecular ET also occurs in binuclear transition metal complexes in which......, and for intramolecular and inner sphere ET for transition metal complexes. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....... the coupling between the metal centers [(Ru(II)/Ru(III) and Ru(II)/Co(III) couples] is sufficiently weak (class I or II mixed valence compounds). The ET mechanism can involve either direct transfer between the donor and acceptor groups or a higher order mechanism in which ET proceeds through intermediate...

  9. Determination of metallic complexing capacities of the dissolved organic material in seawater

    Directory of Open Access Journals (Sweden)

    Luis M. Laglera-Baquer

    2001-07-01

    Full Text Available The use of the Langmuir isotherm for the study of the complexing properties of functional groups present both in dissolved organic material and on biological surfaces in aquatic systems needs a heterogeneous model and an iterative linear regression solution. The method proposed previously by van den Berg is improved by replacing the expression used to obtain the complexing capacity and the conditional stability constant of the functional groups with stronger trace metal affinity, for the linear expression of the Langmuir isotherm proposed by Scatchard. The result is also an iterative linear regression process, which gives a convergent solution, together with better statistical weight distribution of the initial metallic titration data. It also fits better with the titration data obtained at very low dissolved metallic ion concentrations.

  10. Radioactive contaminants in the subsurface: the influence of complexing ligands on trace metal speciation

    International Nuclear Information System (INIS)

    Hummel, W.

    2007-01-01

    in Swiss radioactive waste disposal projects. Within the scope of this TDB project I reviewed extensively thermodynamic data for Th, Pd, Al, and solubility and metal complexation of silicates, the review considering not only U, Np, Pu, Am, Tc, Ni, Se and Zr, but also the major constituents of ground and surface waters, i.e. H, Na, K, Mg and Ca. The decision to evaluate the organic ligands oxalate, citrate, ethylenediaminetetraacetate (edta) and α-isosaccharinate (isa) was based on two aspects, namely the importance of the ligands in radioactive waste problems, and the availability of experimental data. (ii) In many case studies involving inorganic and simple organic ligands a serious lack of reliable thermodynamic data is encountered. There, a new modeling approach to estimate the effects of these missing data was applied. This so called 'backdoor approach' begins with the question: 'What total concentration of a ligand is necessary to significantly influence the speciation, and hence the solubility, of a given trace metal?' Radioactive waste contains substantial amounts of ion-exchange resins from decontamination procedures. Degradation of these organic waste forms by radiolysis in a repository is a source of concern in radioactive waste management. Radiolytic degradation experiments with strong acidic ion exchange resins resulted in the formation of the complexing ligands oxalate and ligand X, whose structure could not be identified. In the case of anion exchange resins, ammonia and methylamines were detected. I assessed the influence of these ligands on radionuclide speciation in groundwater and cement pore water of a repository using the 'backdoor approach'. Prussian Blue, Fe III 4 [Fe II (CN) 6 ] 3 , and structurally related transition metal compounds like Ni 2 [Fe(CN) 6 ] are used as cesium ion exchangers in decontamination procedures of liquid radioactive waste. The used ion exchangers are conditioned as cementitious waste form for interim storage and finally

  11. Radioactive contaminants in the subsurface: the influence of complexing ligands on trace metal speciation

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, W

    2007-07-01

    database used in Swiss radioactive waste disposal projects. Within the scope of this TDB project I reviewed extensively thermodynamic data for Th, Pd, Al, and solubility and metal complexation of silicates, the review considering not only U, Np, Pu, Am, Tc, Ni, Se and Zr, but also the major constituents of ground and surface waters, i.e. H, Na, K, Mg and Ca. The decision to evaluate the organic ligands oxalate, citrate, ethylenediaminetetraacetate (edta) and {alpha}-isosaccharinate (isa) was based on two aspects, namely the importance of the ligands in radioactive waste problems, and the availability of experimental data. (ii) In many case studies involving inorganic and simple organic ligands a serious lack of reliable thermodynamic data is encountered. There, a new modeling approach to estimate the effects of these missing data was applied. This so called 'backdoor approach' begins with the question: 'What total concentration of a ligand is necessary to significantly influence the speciation, and hence the solubility, of a given trace metal?' Radioactive waste contains substantial amounts of ion-exchange resins from decontamination procedures. Degradation of these organic waste forms by radiolysis in a repository is a source of concern in radioactive waste management. Radiolytic degradation experiments with strong acidic ion exchange resins resulted in the formation of the complexing ligands oxalate and ligand X, whose structure could not be identified. In the case of anion exchange resins, ammonia and methylamines were detected. I assessed the influence of these ligands on radionuclide speciation in groundwater and cement pore water of a repository using the 'backdoor approach'. Prussian Blue, Fe{sup III}{sub 4} [Fe{sup II}(CN){sub 6}]{sub 3}, and structurally related transition metal compounds like Ni{sub 2}[Fe(CN){sub 6}] are used as cesium ion exchangers in decontamination procedures of liquid radioactive waste. The used ion exchangers

  12. Intravesicular and intervesicular interaction by orthogonal multivalent host-guest and metal-ligand complexation

    NARCIS (Netherlands)

    Lim, Choon Woo; Crespo-Biel, Olga; Stuart, Marc C. A.; Reinhoudt, David N.; Huskens, Jurriaan; Ravoo, Bart Jan

    2007-01-01

    Host vesicles composed of amphiphilic beta-cyclodextrin CID1 recognize metal-coordination complexes of the adamantyl-functionalized ethylenediamine ligand L via hydrophobic inclusion in the beta-cyclodextrin cavities at the vesicle surface. In the case of Cu(II) and L, the resulting coordination

  13. Polarographic Determination of Composition and Thermodynamic Stability Constant of a Complex Metal Ion.

    Science.gov (United States)

    Marin, Dolores; Mendicuti, Francisco

    1988-01-01

    Describes a laboratory experiment designed to encourage laboratory cooperation among individual undergraduate students or groups. Notes each student contributes results individually and the exchange of data is essential to obtain final results. Uses the polarographic method for determining complex metal ions. (MVL)

  14. Metal Cation Binding to Gas-Phase Pentaalanine: Divalent Ions Restructure the Complex

    NARCIS (Netherlands)

    Dunbar, R.C.; Steill, J.D.; Polfer, N.C.; Oomens, J.

    2013-01-01

    Ion-neutral complexes of pentaalalanine with several singly- and doubly charged metal ions are examined using conformation analysis by infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) computations. The infrared spectroscopy in the 1500-1800 cm(-1) region

  15. Intravesicular and intervesicular interaction by orthogonal multivalent host-guest and metal-ligand complexation

    NARCIS (Netherlands)

    Lim, C.W.; Crespo biel, O.; Stuart, Marc C.A.; Reinhoudt, David; Huskens, Jurriaan; Ravoo, B.J.

    2007-01-01

    Host vesicles composed of amphiphilic beta-cyclodextrin CD1 recognize metal-coordination complexes of the adamantyl-functionalized ethylenediamine ligand L via hydrophobic inclusion in the beta-cyclodextrin cavities at the vesicle surface. In the case of Cu(II) and L, the resulting coordination

  16. Predicting the stability constants of metal-ion complexes from first principles

    Czech Academy of Sciences Publication Activity Database

    Gutten, Ondrej; Rulíšek, Lubomír

    2013-01-01

    Roč. 52, č. 18 (2013), s. 10347-10355 ISSN 0020-1669 Institutional support: RVO:61388963 Keywords : stability constants * solvation energy * metal-ion complexation * theoretical calculations * DFT methods Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.794, year: 2013

  17. Thermochemistry of the complex oxides of uranium, vanadium, and alkali metals

    International Nuclear Information System (INIS)

    Karyakin, N.V.; Chernorukov, N.G.; Suleimanov, E.V.; Kharyushina, E.A.

    1992-01-01

    The standard enthalpies of the formation at T 298.15 K of complex oxides of uranium(VI), vanadium(V) and alkali metals with the general formula M 1 VUO 6 where M 1 = Na, K, Rb, and Cs, were calculated from the results of calorimetric experiments and from published data. 8 refs., 1 tab

  18. Isotope exchange study of the dissociation of metal - humic substance complexes

    Czech Academy of Sciences Publication Activity Database

    Mizera, J.; Jansová, A.; Hvoždová, I.; Beneš, P.; Novák, František

    2003-01-01

    Roč. 53, A (2003), s. A97-A101 ISSN 0011-4626 Institutional research plan: CEZ:AV0Z6066911; CEZ:MSM 210000019 Keywords : isotope exchange * dissociation of metal * humic substance complexes Subject RIV: EH - Ecology, Behaviour Impact factor: 0.263, year: 2003

  19. Alkali metal complexes of the Dipeptides PheAla and AlaPhe : IRMPD spectroscopy

    NARCIS (Netherlands)

    Polfer, N. C.; Oomens, J.; Dunbar, R. C.

    2008-01-01

    Complexes of PheAla and AlaPhe with alkali metal ions Na+ and K+ are generated by electroscopy ionization, isolated in the Fourier-transform ion cyclotron resonance (FT-ICR) ion trapping mass spectrometer, and investigated by infrared multiple-photon dissociation (IRMPD) using light from the FELIX

  20. Metal Ion Complexes with HisGly: Comparison with PhePhe and PheGly

    NARCIS (Netherlands)

    Dunbar, R.C.; Oomens, J.; Berden, G.; Lau, J.K.C.; Verkerk, U.H.; Hopkinson, A.C.; Siu, K.W.M.

    2013-01-01

    Gas-phase complexes of five metal ions with the dipeptide HisGly have been characterized by DFT computations and by infrared multiple photon dissociation spectroscopy (IRMPD) using the free electron laser FELIX. Fine agreement is found in all five cases between the predicted IR spectral features of

  1. The treatment of complex airway diseases with inverted Y-shaped self-expandable metal stent

    International Nuclear Information System (INIS)

    Li Jianming; Jia Guangzhi

    2011-01-01

    Objective: To investigate the application and therapeutic effects of inverted Y-shaped self-expandable metal airway stent in treating complex airway diseases (stenosis or fistula). Methods: According to the distinctive anatomic structure and the pathological changes of complex airway stenosis or fistula, the inverted y-shaped self-expandable metal airway stent was designed. Under fluoroscopic monitoring, a total of 12 inverted Y-shaped self-expandable metal stents were implanted in 12 patients with complex airway diseases. Results: Stent placement in the trachea-bronchial tree was technically successful in all patients. After the operation, the symptom of dyspnea was immediately relieved and the bucking following food intake disappeared. The general physical condition and living quality were much improved in all patients. Conclusion: The use of inverted Y-shaped self-expandable metal airway stent for the management of complex airway stenosis involving the tracheal carina was a simple and safe procedure and it has satisfactory short-term clinical results. (authors)

  2. Methodology development for the sustainability process assessment of sheet metal forming of complex-shaped products

    International Nuclear Information System (INIS)

    Pankratov, D L; Kashapova, L R

    2015-01-01

    A methodology was developed for automated assessment of the reliability of the process of sheet metal forming process to reduce the defects in complex components manufacture. The article identifies the range of allowable values of the stamp parameters to obtain defect-free punching of spars trucks. (paper)

  3. Novel D–π–A dye sensitizers of polymeric metal complexes with ...

    Indian Academy of Sciences (India)

    Because of being the key component of dye-sensitized solar cells and acting as an important role, dye sensitizer and its synthesis and application has been extensively researched. In this paper, four novel polymeric metal complexes with D––A structure that use 4-(octyloxymethyl)-N, N-diphenylbenzenamine as donor ...

  4. Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy

    KAUST Repository

    Zhu, Yihan

    2012-03-19

    On the surface: The surface reconstruction of an MoVTeO complex metal oxide catalyst was observed directly by various electron microscopic techniques and the results explain the puzzling catalytic behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preparation of supported vanadium and molybdenum oxide catalysts using metal acetylacetonate complexes

    NARCIS (Netherlands)

    van Hengstum, A.J.; van Ommen, J.G.; Bosch, H.; Gellings, P.J.

    1983-01-01

    Supported vanadium and molybdenum oxide catalysts were prepared by reaction of the corresponding acetylacetonate complex in a non-aqueous solution with the surface hydroxyl groups of the carrier. Continuous or batch adsorption of the metal acetylacetonate from toluene, as well as wet impregnation

  6. Group 4 Transition-Metal Complexes of an Aniline–Carbene–Phenol Ligand

    KAUST Repository

    Despagnet-Ayoub, Emmanuelle

    2013-05-24

    Attempts to install a tridentate aniline-NHC-phenol (NCO) ligand on titanium and zirconium led instead to complexes resulting from unexpected rearrangement pathways that illustrate common behavior in carbene-early- transition-metal chemistry. © 2013 American Chemical Society.

  7. Spectroscopic studies and biological activity of some transition metal complexes of unusual Schiff base.

    Science.gov (United States)

    Abu Al-Nasr, Ahmad K; Ramadan, Ramadan M

    2013-03-15

    Unusual Schiff base ligand, 4-ethanimidoyl-6-[(1E)-N-(2-hydroxy-4-methylphenyl)ethanimidoyl]benzene-1,3-diol, L, was synthesized via catalytic process involving the interaction of some metal ions with a macrocyclic Schiff base (MSB). The transition metal derivatives [ML(H(2)O)(4)](NO(3))(3), M=Cr(III) and Fe(III), [NiL(H(2)O)(4)](NO(3))(2), [ML(H(2)O)(2)](NO(3))(2), M=Zn(II) and Cd(II), [Cl(2)Pd(μ-Cl)(2)PdL], [PtL(Cl)(2)] and [PtL(Cl)(4)] were also synthesized from the corresponding metal species with L. The Schiff bases and complexes were characterized by elemental analysis, mass spectrometry, IR and (1)H NMR spectroscopy. The crystal structure of L was determined by X-ray analysis. The spectroscopic studies revealed a variety of structure arrangements for the complexes. The biological activities of L and metal complexes against the Escherchia coli as Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of [PtL(Cl)(2)] complex, a cis-platin analogous, was checked as an antitumor agent on two breast cancer cell lines (MCF7 and T47D) and human liver carcinoma cell line (HepG2). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Spectroscopic studies and biological activity of some transition metal complexes of unusual Schiff base

    Science.gov (United States)

    Abu Al-Nasr, Ahmad K.; Ramadan, Ramadan M.

    2013-03-01

    Unusual Schiff base ligand, 4-ethanimidoyl-6-[(1E)-N-(2-hydroxy-4-methylphenyl)ethanimidoyl]benzene-1,3-diol, L, was synthesized via catalytic process involving the interaction of some metal ions with a macrocyclic Schiff base (MSB). The transition metal derivatives [ML(H2O)4](NO3)3, M = Cr(III) and Fe(III), [NiL(H2O)4](NO3)2, [ML(H2O)2](NO3)2, M = Zn(II) and Cd(II), [Cl2Pd(μ-Cl)2PdL], [PtL(Cl)2] and [PtL(Cl)4] were also synthesized from the corresponding metal species with L. The Schiff bases and complexes were characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopy. The crystal structure of L was determined by X-ray analysis. The spectroscopic studies revealed a variety of structure arrangements for the complexes. The biological activities of L and metal complexes against the Escherchia coli as Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of [PtL(Cl)2] complex, a cis-platin analogous, was checked as an antitumor agent on two breast cancer cell lines (MCF7 and T47D) and human liver carcinoma cell line (HepG2).

  9. Interactions between metal cations with H 2 in the M-H 2 complexes ...

    Indian Academy of Sciences (India)

    Interactions between metal cations with H2 in the M+- H2 complexes: Performance of DFT and DFT-D methods ... Graduate School of Information Science, Nagoya University, Chukusa-ku, Nagoya 464-8601, Aichi, Japan; Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 ...

  10. Certain relationships in the luminescence of organophosphors based on metal complexes

    International Nuclear Information System (INIS)

    Zel'tser, L.E.; Talipov, S.T.; Vereshchagina, N.G.

    1986-01-01

    A study has been made of general relationships in the luminescent radiation of organophosphors based on metal complexes and the specific features of chemical and analytical properties of organic analytical reagents in the electronically excited state. Routes have been proposed for activation of emission and for the improvement of metrological characteristics of the luminescence method of analysis

  11. The impact of metal complex lipids on viscosity and curvature of hybrid liposomes.

    Science.gov (United States)

    Ohtani, Ryo; Tokita, Tsukasa; Takaya, Tomohisa; Iwata, Koichi; Kinoshita, Masanao; Matsumori, Nobuaki; Nakamura, Masaaki; Lindoy, Leonard F; Hayami, Shinya

    2017-12-12

    A morphology transformation of hybrid liposomes was shown to occur from spherical vesicles to tubular micelles when increasing the ratio of the metal complex lipid present. Phase transition temperatures increased while viscosities decreased, indicating that the hybrids exhibit stronger interaction between heads but weaker interaction between alkyl chains than occurs in pristine liposomes.

  12. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.

    Science.gov (United States)

    Kimura, Mutsumi; Yamagiwa, Hiroki; Asakawa, Daisuke; Noguchi, Makoto; Kurashina, Tadashi; Fukawa, Tadashi; Shirai, Hirofusa

    2010-12-01

    We demonstrate a simple route to depositing nickel layer patterns using photocross-linked polymer thin films containing palladium catalysts, which can be used as adhesive interlayers for fabrication of nickel patterns on glass and plastic substrates. Electroless nickel patterns can be obtained in three steps: (i) the pattern formation of partially quaterized poly(vinyl pyridine) by UV irradiation, (ii) the formation of macromolecular metal complex with palladium, and (iii) the nickel metallization using electroless plating bath. Metallization is site-selective and allows for a high resolution. And the resulting nickel layered structure shows good adhesion with glass and plastic substrates. The direct patterning of metallic layers onto insulating substrates indicates a great potential for fabricating micro/nano devices.

  13. Isotope exchange study of the dissociation of metal-humic substance complexes

    International Nuclear Information System (INIS)

    Mizera, J.; Jansova, A.; Hvozdova, I.; Benes, P.; Novak, F.

    2003-01-01

    Isotope exchange was employed to study dissociation of metal cations from their complexes with humic substances (HS). Dissociation of cation from HS controls the rate of isotope exchange between two identical metal-HS solutions (but for the presence of a radiotracer) divided by a dialysis membrane. The rate of isotope exchange of Eu/ 152 Eu and Co/ 60 Co in the systems with various HS was monitored as a function of pH, ionic strength, and the degree of HS loading with metal. The apparent rate of Eu-HS dissociation was found to be enhanced by decreasing pH, increasing ionic strength, and increasing metal loading. Co-HS dissociation was too fast to be followed by the method. For interpretation of the experimental kinetic data, the multiple first order law has been applied. Based on the results, a concept of HS as a mixture of two types of binding sites is discussed. (author)

  14. Effective DNA binding and cleaving tendencies of malonic acid coupled transition metal complexes

    Science.gov (United States)

    Pravin, Narayanaperumal; Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan

    2016-11-01

    Eight transition metal complexes were designed to achieve maximum biological efficacy. They were characterized by elemental analysis and various other spectroscopic techniques. The monomeric complexes were found to espouse octahedral geometry and non-electrolytic nature. The DNA interaction propensity of the complexes with calf thymus DNA (CT-DNA), studied at physiological pH by spectrophotometric, spectrofluorometric, cyclic voltammetry, and viscometric techniques revealed intercalation as the possible binding mode. Fascinatingly, the complexes were found to exhibit greater binding strength than that of the free ligands. A strong hypochromism and a slight red shift were exhibited by complex 5 among the other complexes. The intrinsic binding constant values of all the complexes compared to cisplatin reveal that they are excellent metallonucleases than that of cisplatin. The complexes were also shown to reveal displacement of the ethidium bromide, a strong intercalator using fluorescence titrations. Gel electrophoresis was used to divulge the competence of the complexes in cleaving the supercoiled pBR322 plasmid DNA. From the results, it is concluded that the complexes, especially 5, are excellent chemical nucleases in the presence of H2O2. Furthermore, the in vitro antimicrobial screening of the complexes exposes that these complexes are excellent antimicrobial agents. Overall the effect of coligands is evident from the results of all the investigations.

  15. Lanthanide Single-Molecule Magnets Framed by Alkali Metals & Magnetic and Spectroscopic Studies of 3d Transition Metal Complexes

    DEFF Research Database (Denmark)

    Konstantatos, Andreas

    This dissertation presents the results of our work on the synthesis and structural characterization of several families of coordination complexes as well as their study with regard to their magnetic properties. Chapter 1 provides a brief introduction in the field and theory of single-molecule mag......This dissertation presents the results of our work on the synthesis and structural characterization of several families of coordination complexes as well as their study with regard to their magnetic properties. Chapter 1 provides a brief introduction in the field and theory of single......-molecule magnets (SMMs). Starting from the archetype SMM Mn12 we present the details of the mechanisms governing the relaxation of the magnetization of these systems. In Chapter 2 we present our work on the coordination chemistry of lanthanides with a new Schiff-base ligand, H3L [(E)-3-((2-hydroxyphenyl......)imino)- methyl)benzene-1,2-diol]. Using this ligand, we were able to synthesize four different families of lanthanide complexes framed by alkali metals. Throughout the chapter we demonstrate how we can exploit the presence of the coordinated alkali metal ions in order to induce changes to the structure...

  16. Novel metal complexes of mixed piperaquine-acetaminophen and piperaquine-acetylsalicylic acid: Synthesis, characterization and antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Yusuf Oloruntoyin Ayipo

    2016-11-01

    Full Text Available Synthesis of coordination compounds of Zinc(II, Copper(II, Nickel(II, Cobalt(II and Iron(II with mixed piperaquine-acetaminophen and piperaquine-acetylsalicylic acid has been studied. The complexes were characterized via: solubility test, melting point determination, conductivity measurement, Atomic Absorption Spectroscopy, UV-Visible Spectroscopy, FTIR Spectroscopy and magnetic susceptibility. The complexes were proposed to have a stoichiometry ratio of 1:1:1 between each metal salt and the ligands with tetrahedral and octahedral geometry following the reaction pattern of MX.yH2O + L1L2/3 to give ML1L2/3X.yH2O. Biological activities of the synthesized complexes have been evaluated against Escherichia coli and Staphylococcus aureus.

  17. Effect of the type of metal on the electrical conductivity and thermal properties of metal complexes: The relation between ionic radius of metal complexes and electrical conductivity

    Science.gov (United States)

    Morgan, Sh. M.; El-Ghamaz, N. A.; Diab, M. A.

    2018-05-01

    Co(II) complexes (1-4) and Ni(II) complexes (5-8) were prepared and characterized by elemental analysis, IR spectra and thermal analysis data. Thermal decomposition of all complexes was discussed using thermogravimetric analysis. The dielectric properties and alternating current conductivity were investigated in the frequency range 0.1-100 kHz and temperature range 300-660 K. The thermal activation energies of electrical conductivity (ΔE1 and ΔE2) values for complexes were calculated and discussed. The values of ΔE1 and ΔE2 for complexes (1-8) were found to decrease with increasing the frequency. Ac electrical conductivity (σac) values increases with increasing temperatures and the values of σac for Co(II) complexes are greater than Ni(II) complexes. Co(II) complexes showed a higher conductivity than other Ni(II) complexes due to the higher crystallinity as confirmed by X-ray diffraction analysis.

  18. Alkali metal complexes of 6-methyl-2-pyridone: simple formulae, but not so simple structures.

    Science.gov (United States)

    Clegg, William; Tooke, Duncan M

    2013-12-01

    Reaction of 6-methyl-2-pyridone (Hmhp) with Na or K metal, or with Rb or Cs 2-ethylhexoxide, in an appropriate single or mixed solvent, yields a series of solvated polymeric complexes with the empirical formulae M(mhp)(H2O)2 [(1), M = Na; (2), M = K], M(mhp)(H2O) [(3), M = Rb; (4), M = Cs] and Cs(mhp)(ROH) [(5), R = Me; (6), R = Et]. All of the products have been crystallographically characterized and show sheet polymeric structures, except for a double-chain structure for (2). In all of the structures, mhp(-) and solvent molecules function as bridging ligands; two metal ions are bridged (μ2) by each solvent molecule in (1), (5) and (6), while (2) contains both μ2 and μ3 triple bridges, and (3) and (4) display highly unusual μ4 quadruple bridging of metal ions by water molecules. The pyridonate O atom bridges two or three metal ions in each case. Nitrogen is also involved in coordination to the heavier metals; it bonds to a single ion in (3) and (4), but has an almost unprecedented bridging role in (5) and (6). As a result of the extensive bridging by ligands, coordination numbers between 6 and 8 are achieved for the metal ions. In each structure, all solvent OH groups form hydrogen bonds to pyridonate O and, in some cases, N atoms. With one exception, these are the first reported pyridonate complexes of the alkali metals Na-Cs that do not also include transition metals.

  19. Unusual structures and reactivity of mixed metal cluster complexes containing the palladium/platinum tri-t-butylphosphine grouping.

    Science.gov (United States)

    Adams, Richard D; Captain, Burjor

    2009-03-17

    Polynuclear metal carbonyl complexes have a range of applications in chemical research: for example, they can serve as surface models to probe features of heterogeneous catalysis and can perform novel transformations of organic molecules in solutions. Mixed metal complexes can demonstrate bimetallic cooperativity and synergism and can also serve as precursors to multimetallic heterogeneous catalysts that have superior activities and selectivities. This Account describes the results of our recent comprehensive study of the chemistry of mixed metal cluster complexes containing the sterically encumbered M(PBu(t)(3)), M = Pd or Pt, group. This grouping readily adds to the metal-metal bonds of metal carbonyl cluster complexes and modifies their reactivity. We have prepared new, highly electronically unsaturated mixed metal complexes that exhibit unusually high reactivity toward hydrogen. The platinum atom of the Pt(PBu(t)(3)) grouping can bond to as many as five metal atoms, and it can interconvert, sometimes rapidly, between the different bonding modes. The large steric effects of the PBu(t)(3) ligand allowed us to prepare highly unsaturated, stable, mixed-metal complexes, and these complexes react with hydrogen, sometimes reversibly, under very mild conditions to yield polyhydride complexes. Strong evidence suggests that the Pt(PBu(t)(3)) group can also activate metal-hydrogen bonds in other complexes. In the future, we expect that researchers will prepare a greater variety of mixed metal complexes containing the Pd/Pt(PBu(t)(3)) group or other similar bulky groups, and that some of these complexes will exhibit even more unusual chemistry than what we have observed so far.

  20. Preparation, characterization and cytotoxicity studies of some transition metal complexes with ofloxacin and 1,10-phenanthroline mixed ligand

    Science.gov (United States)

    Sadeek, S. A.; El-Hamid, S. M. Abd

    2016-10-01

    [Zn(Ofl)(Phen)(H2O)2](CH3COO)·2H2O (1), [ZrO(Ofl)(Phen)(H2O)]NO3·2H2O (2) and [UO2(Ofl)(Phen)(H2O)](CH3COO)·H2O (3) complexes of fluoroquinolone antibacterial agent ofloxacin (HOfl), containing a nitrogen donor heterocyclic ligand, 1,10-phenathroline monohydrate (Phen), were prepared and their structures were established with the help of elemental analysis, molar conductance, magnetic properties, thermal studies and different spectroscopic studies like IR, UV-Vis., 1H NMR and Mass. The IR data of HOfl and Phen ligands suggested the existing of a bidentate binding involving carboxylate O and pyridone O for HOfl ligand and two pyridine N atoms for Phen ligand. The coordination geometries and electronic structures are determined from electronic absorption spectra and magnetic moment measurements. From molar conductance studies reveals that metal complexes are electrolytes and of 1:1 type. The calculated bond length and force constant, F(Udbnd O), in the uranyl complex are 1.751 Å and 641.04 Nm-1. The thermal properties of the complexes were investigated by thermogravimetry (TGA) technique. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. Antimicrobial activity of the compounds was evaluated against some bacteria and fungi species. The activity data show that most metal complexes have antibacterial activity than that of the parent HOfl drug. The in vitro cytotoxicities of ligands and their complexes were also evaluated against human breast and colon carcinoma cells.

  1. Synthesis, characterization and anti-bacterial activity of divalent transition metal complexes of hydrazine and trimesic acid

    Directory of Open Access Journals (Sweden)

    K. Kumar

    2018-01-01

    Full Text Available Transition metal complexes of trimesic acid and hydrazine mixed-ligands with a general formula M(Htma(N2H42, where, M = Mn, Co, Ni, Cu and Zn; H3tma = trimesic acid, have been prepared and characterized by elemental, structural, spectral and thermal analyses. For the complexes, the carboxylate νasym and νsym stretchings are observed at about 1626 and 1367 cm−1 respectively, with Δν between them of ∼260 cm−1, showing the unidentate coordination of each carboxylate group. The hydrazine moieties are present as bridging bidentates. Electronic and EPR spectral studies suggest an octahedral geometry for the complexes. All these complexes show three steps of decomposition in TGA/DTA. SEM images of CuO and MnO residues obtained from the complexes show nano-sized clusters suggesting that the complexes may be used as precursors for nano-CuO and nano-MnO preparation. The antimicrobial activities of the prepared complexes, against four bacteria have been evaluated.

  2. Solution equilibrium of metal ions-binary complexes with 3-(2-ethylamino-1-hydroxyethyl] phenol (Effortil

    Directory of Open Access Journals (Sweden)

    Mohamed Magdy Khalil

    2016-11-01

    Full Text Available Formation of binary complexes of Al(III, Cr(III, Fe(III, Th(IV, UO2(II, Ce(III, La(III, and Gd(III with 3-(2-ethylamino-1-hydroxyethyl] phenol (Effortil were studied potentiometrically at 37.0 °C and I = 0.16 mol dm−3 NaNO3 in aqueous solution. The acid–base properties of Effortil were investigated and discussed. The order of stability of the complexes was investigated and is discussed in terms of the metal ion. The experimental pH titration data were analyzed in order to evaluate the formation constants of various intermediate species formed. The concentration distribution of various species formed in solution was evaluated.

  3. The central chirality of the metal atom and configurational relations in asymmetric reactions catalysed by metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, Valerii A [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2004-12-31

    The recently published data on the dependence of the configuration of the reaction product on the structure of a catalytic metal complex (or an intermediate determining the asymmetric induction) in asymmetric catalytic reactions of hydrogen-transfer hydrogenation of acetophenone, hydroformylation of styrene, allylic alkylation of 1,3-diphenylprop-2-enyl acetate and alkylation of benzaldehyde with dialkylzinc are systematised. The applicabilities of octant and quadrant projections of the complexes are compared in order to establish the relationships between their structures and the enantioselectivities of the reactions. The known mechanisms of asymmetric induction in these reactions are discussed with regard to the C{sub 1} or C{sub 2} symmetry of the catalytic complex. The reasons for a decrease in the enantioselectivities of hydrogen-transfer hydrogenation, hydroformylation and alkylation by dialkylzinc [in the absence of Ti(OPr{sup i}){sub 4}] when performed with complexes with chiral C{sub 2}-symmetric ligands (as compared with complexes with asymmetric ligands) are considered.

  4. Alkali metal cation complexation and solvent interactions by robust chromium(III) fluoride complexes

    DEFF Research Database (Denmark)

    Birk, T.; Magnussen, M.J.; Piligkos, Stergios

    2010-01-01

    Interaction of robust chromium(III) fluoride complexes with sodium or lithium cations in solution lead to hypsochromic spectral shifts of increasing magnitude along the series: trans-[CrF2(py)(4)](+), mer-[CrF3(terpy)], and fac-[CrF3(Me(3)tacn)]. Crystalline products isolated from solution exhibi...

  5. UV and IR spectroscopy of cold 1,2-dimethoxybenzene complexes with alkali metal ions

    OpenAIRE

    Inokuchi Y; Boyarkin OV; Ebata T; Rizzo TR

    2012-01-01

    We report UV photodissociation (UVPD) and IR UV double resonance spectra of 12 dimethoxybenzene (DMB) complexes with alkali metal ions M+center dot DMB (M = Li Na K Rb and Cs) in a cold 22 pole ion trap. The UVPD spectrum of the Li+ complex shows a strong origin band. For the K+center dot DMB Rb+center dot DMB and Cs+center dot DMB complexes the origin band is very weak and low frequency progressions are much more extensive than that of the Li+ ion. In the case of the Na+center dot DMB comple...

  6. A Mononuclear Non-Heme Manganese(IV)-Oxo Complex Binding Redox-Inactive Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junying; Lee, Yong-Min; Davis, Katherine M.; Wu, Xiujuan; Seo, Mi Sook; Cho, Kyung-Bin; Yoon, Heejung; Park, Young Jun; Fukuzumi, Shunichi; Pushkar, Yulia N.; Nam, Wonwoo [Ewha; (Purdue); (Osaka)

    2013-05-29

    Redox-inactive metal ions play pivotal roles in regulating the reactivities of high-valent metal–oxo species in a variety of enzymatic and chemical reactions. A mononuclear non-heme Mn(IV)–oxo complex bearing a pentadentate N5 ligand has been synthesized and used in the synthesis of a Mn(IV)–oxo complex binding scandium ions. The Mn(IV)–oxo complexes were characterized with various spectroscopic methods. The reactivities of the Mn(IV)–oxo complex are markedly influenced by binding of Sc3+ ions in oxidation reactions, such as a ~2200-fold increase in the rate of oxidation of thioanisole (i.e., oxygen atom transfer) but a ~180-fold decrease in the rate of C–H bond activation of 1,4-cyclohexadiene (i.e., hydrogen atom transfer). The present results provide the first example of a non-heme Mn(IV)–oxo complex binding redox-inactive metal ions that shows a contrasting effect of the redox-inactive metal ions on the reactivities of metal–oxo species in the oxygen atom transfer and hydrogen atom transfer reactions.

  7. Comparison of trace metal bioavailabilities in European coastal waters using mussels from Mytilus edulis complex as biomonitors

    NARCIS (Netherlands)

    Przytarska, J.E.; Sokołowski, A.; Wołowicz, M.; Hummel, H.; Jansen, J.M.

    2010-01-01

    Mussels from Mytilus edulis complex were used as biomonitors of the trace metals Fe, Mn, Pb, Zn, and Cu at 17 sampling sites to assess the relative bioavailability of metals in coastal waters around the European continent. Because accumulated metal concentrations in a given area can differ

  8. Protein Labelling with Versatile Phosphorescent Metal Complexes for Live Cell Luminescence Imaging.

    Science.gov (United States)

    Connell, Timothy U; James, Janine L; White, Anthony R; Donnelly, Paul S

    2015-09-28

    To take advantage of the luminescent properties of d(6) transition metal complexes to label proteins, versatile bifunctional ligands were prepared. Ligands that contain a 1,2,3-triazole heterocycle were synthesised using Cu(I) catalysed azide-alkyne cycloaddition "click" chemistry and were used to form phosphorescent Ir(III) and Ru(II) complexes. Their emission properties were readily tuned, by changing either the metal ion or the co-ligands. The complexes were tethered to the metalloprotein transferrin using several conjugation strategies. The Ir(III)/Ru(II)-protein conjugates could be visualised in cancer cells using live cell imaging for extended periods without significant photobleaching. These versatile phosphorescent protein-labelling agents could be widely applied to other proteins and biomolecules and are useful alternatives to conventional organic fluorophores for several applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A series of 2D metal-quinolone complexes: Syntheses, structures, and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiang-Hong [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Xiao, Dong-Rong, E-mail: xiaodr98@yahoo.com.cn [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chen, Hai-Yan; Sun, Dian-Zhen; Yan, Shi-Wei; Wang, Xin; Ye, Zhong-Li [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Luo, Qun-Li, E-mail: qlluo@swu.edu.cn [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Wang, En-Bo, E-mail: wangeb889@nenu.edu.cn [Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2013-02-15

    Six novel 2D metal-quinolone complexes, namely [Cd(cfH)(bpdc)]{center_dot}H{sub 2}O (1), [M(norfH)(bpdc)]{center_dot}H{sub 2}O (M=Cd (2) and Mn (3)), [Mn{sub 2}(cfH)(odpa)(H{sub 2}O){sub 3}]{center_dot}0.5H{sub 2}O (4), [Co{sub 2}(norfH)(bpta)({mu}{sub 2}-H{sub 2}O)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) and [Co{sub 3}(saraH){sub 2}(Hbpta){sub 2}(H{sub 2}O){sub 4}]{center_dot}9H{sub 2}O (6) (cfH=ciprofloxacin, norfH=norfloxacin, saraH=sarafloxacin, bpdc=4,4 Prime -biphenyldicarboxylate, odpa=4,4 Prime -oxydiphthalate, bpta=3,3 Prime ,4,4 Prime -biphenyltetracarboxylate) have been synthesized and characterized. Compounds 1-3 consist of 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Compounds 4 and 5 display 2D structures based on tetranuclear manganese or cobalt clusters with (3,6)-connected kgd topology. Compound 6 exhibits a 2D bilayer structure, which represents the first example of metal-quinolone complexes with 2D bilayer structure. By inspection of the structures of 1-6, it is believed that the long aromatic polycarboxylate ligands are important for the formation of 2D metal-quinolone complexes. The magnetic properties of compounds 3-6 was studied, indicating the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compounds 1-2 are discussed. - Graphical abstract: Six novel 2D metal-quinolone complexes have been prepared by self-assemblies of the quinolones and metal salts in the presence of long aromatic polycarboxylates. Highlights: Black-Right-Pointing-Pointer Compounds 1-3 consist of novel 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Black-Right-Pointing-Pointer Compounds 4 and 5 are two novel 2D layers based on tetranuclear Mn or Co clusters with kgd topology. Black-Right-Pointing-Pointer Compound 6 is the first example of metal-quinolone complexes with 2D bilayer structure. Black-Right-Pointing-Pointer Compounds 1-6 represent six unusual

  10. Actinide chelation: biodistribution and in vivo complex stability of the targeted metal ions.

    Science.gov (United States)

    Kullgren, Birgitta; Jarvis, Erin E; An, Dahlia D; Abergel, Rebecca J

    2013-01-01

    Because of the continuing use of nuclear fuel sources and heightened threats of nuclear weapon use, the amount of produced and released radionuclides is increasing daily, as is the risk of larger human exposure to fission product actinides. A rodent model was used to follow the in vivo distribution of representative actinides, administered as free metal ions or complexed with chelating agents including diethylenetriamine pentaacetic acid (DTPA) and the hydroxypyridinonate ligands 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). Different metabolic pathways for the different metal ions were evidenced, resulting in intricate ligand- and metal-dependent decorporation mechanisms. While the three studied chelators are known for their unrivaled actinide decorporation efficiency, the corresponding metal complexes may undergo in vivo decomposition and release metal ions in various biological pools. This study sets the basis to further explore the metabolism and in vivo coordination properties of internalized actinides for the future development of viable therapeutic chelating agents.

  11. Exploring the Photovoltaic Properties of Metal Bipyridine Complexes (Metal = Fe, Zn, Cr, and Ru) by Density Functional Theory

    Science.gov (United States)

    Irfan, Ahmad; Abbas, Ghulam

    2018-03-01

    The synthesis and characterisation of mononuclear Fe complexes were carried out by using bipyridine (Compound 1) at ambient conditions. Additionally, three more derivatives were designed by substituting the central Fe metal with Zn, Cr, and Ru (Compound 2, Compound 3, and Compound 4), respectively. The ground state geometry calculations were carried out by using density functional theory (DFT) at B3LYP/6-31G** (LANL2DZ) level of theory. We shed light on the frontier molecular orbitals, electronic properties, photovoltaic parameters, and structure-property relationship. The open-circuit voltage is a promising parameter that considerably affects the photovoltaic performance; thus, we have estimated its value by considering the complexes as donors whereas TiO2 and/or Si were used as acceptors. The solar cell performance behaviour was also studied by shedding light on the band alignment and energy level offset.

  12. Evanescent wave sensing and absorption analysis of herbal tea floral extracts in the presence of silver metal complexes

    Science.gov (United States)

    Priyamvada, V. C.; Radhakrishnan, P.

    2017-06-01

    Fiber optic evanescent wave sensors are used for studying the absorption properties of biochemical samples. The studies give precise information regarding the actual ingredients of the samples. Recent studies report the corrosion of silver in the presence glucose dissolved in water and heated to a temperature of 70°C. Based on this report evanescent absorption studies are carried out in hibiscus herbal tea floral extracts in the presence of silver metal complexes. These studies can also lead to the evaluation of the purity of the herbal tea extract.

  13. Complexation of trichlorosalicylic acids by alkaline and first row transition metals as a switch for their antibacterial activity

    KAUST Repository

    Kumar, Vijay

    2017-09-14

    3,5,6-trichlorosalicylic acid (TCSA) does not show a good antibacterial activity. In contrast, here metal complexes with TCSA have shown better antibacterial activity for selected bacterial strains with a good degree of selectivity. Amongst the eight synthesized essential metal complexes complexed with TCSA, Mn(II)-TCSA and Ni(II)-TCSA have been found to be more effective with MIC range 20-50 µg/L as compared to control (chloramphenicol). The activity of an individual complex against different microbes was not found to be identical, indicating the usage of an individual metal chelate against a targeted bacterial strain. Further, the protein (BSA) binding constant of TCSA and its metal complexes were determined and ordered as Ca(II)-TCSA > Cu(II)-TCSA > Mg(II)-TCSA >> Mn(II)-TCSA >> Zn(II)-TCSA >>> Ni(II)-TCSA >>> Co(II)-TCSA > Fe(II)-TCSA > TCSA. The present study has confirmed enhanced antibacterial activities and binding constants for metal chelates of TCSA as compared to free TCSA, which seems directly related with the antioxidant activities of these complexes. Further, bearing the ambiguity related to the structural characterization of the metal complexed with TCSA ligands, DFT calculations have been used as the tool to unravel the right environment around the metals, studying basically the relative stability of square planar and octahedral metal complexes with TCSA.

  14. Electrochemistry of metal complexes applications from electroplating to oxide layer formation

    CERN Document Server

    Survila, Arvydas

    2015-01-01

    This book aims to sequentially cover all the major stages of electrochemical processes (mass transport, adsorption, charge transfer), with a special emphasis on their deep interrelation. Starting with general considerations on equilibria in solutions and at interfaces as well as on mass transport, the text acquaints readers with the theory and common experimental practice for studying electrochemical reactions of metals complexes. The core part of the book deals with all important aspects of electroplating, including a systematic discussion of co-deposition of metals and formation of alloys.

  15. Development of Theoretical Descriptors for Cytotoxicity Evaluation of Metallic Nanoparticles.

    Science.gov (United States)

    Boukhvalov, D W; Yoon, T H

    2017-08-21

    Motivated by the recent development of quantitative structure-activity relationship (QSAR) methods in the area of nanotoxicology, we proposed an approach to develop additional descriptors based on results of first-principles calculations. For the evaluation of the biochemical activity of metallic nanoparticles, we consider two processes: ion extraction from the surface of a specimen to aqueous media and water dissociation on the surface. We performed calculations for a set of metals (Al, Fe, Cu, Ag, Au, and Pt). Taking into account the diversity of atomic structures of real metallic nanoparticles, we performed calculations for different models such as (001) and (111) surfaces, nanorods, and two different cubic nanoparticles of 0.6 and 0.3 nm size. Significant energy dependence of the processes from the selected model of nanoparticle suggests that for the correct description we should combine the calculations for several representative models. In addition to the descriptors of chemical activity of the metallic nanoparticles for the two studied processes, we propose descriptors for taking into account the dependence of chemical activity from the size and shape of nanoparticles. Routes to minimization of computational costs for these calculations are also discussed.

  16. Synthesis, Characterization and Antibacterial Activity of Novel 1,3-Diethyl-1,3-bis(4-nitrophenylurea and Its Metal(II Complexes

    Directory of Open Access Journals (Sweden)

    Hoda Pasdar

    2017-12-01

    Full Text Available A bioactive ligand and its dinuclear metal(II complexes were synthesized and characterized by Fourier-transform infrared spectroscopy (FT-IR, ultraviolet-visible (UV-Visible, nuclear magnetic resonance (1H-NMR, mass spectroscopy and molar conductance measurements. The ligand has been crystalized in the monoclinic system with a P21/c space group. The biological activities of metal complexes were evaluated using disc diffusion and broth dilution methods. In vitro antibacterial activities of the ligand and their metal complexes were examined against two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus and two Gram-negative bacteria (Escherichia coli and Serratia marcescens and compared to the standard drugs. It was found that metal complexes displayed much higher antibacterial activities and better inhibitory effects than that of the ligand and standard drugs. Among these complexes, the compound having Zn-metal showed greater antibacterial activity against all four tested bacteria and was more effective against Serratia marcescens with the zone inhibition diameter of 26 mm and MIC value of 31.25 µg/mL.

  17. Evaluation of Accelerated Ageing Tests for Metallic and Non-Metallic Graffiti Paints Applied to Stone

    Directory of Open Access Journals (Sweden)

    Patricia Sanmartín

    2017-10-01

    Full Text Available Graffiti are increasingly observed on urban and peri-urban buildings and their removal requires a huge financial outlay by local governments and agencies. Graffiti are not usually removed immediately, but rather over the passage of time, viz. months or even years. In this study, which forms part of a wider research project on graffiti removal, different methods (gravimetric analysis, examination of digital images, colour and infrared measurements were used to evaluate the performance of accelerated ageing tests (involving exposure to humidity, freeze-thawing cycles and NaCl and Na2SO4 salts for graffiti painted on stone. Silver (metallic and black (non-metallic graffiti spray paints were applied to two types of igneous rock (granite and rhyolitic ignimbrite and one sedimentary rock (fossiliferous limestone, i.e., biocalcarenite. The metallic and non-metallic graffiti spray paints acted differently on the stone surfaces, both chemically and physically. Older graffiti were found to be more vulnerable to weathering agents. The ageing test with NaCl and particularly Na2SO4, both applied to granite, proved the most severe on the paints, yielding more detrimental and faster artificial ageing of the type of material under study.

  18. Complex C: A Low-Metallicity, High-Velocity Cloud Plunging into the Milky Way

    Science.gov (United States)

    Tripp, Todd M.; Wakker, Bart P.; Jenkins, Edward B.; Bowers, C. W.; Danks, A. C.; Green, R. F.; Heap, S. R.; Joseph, C. L.; Kaiser, M. E.; Linsky, J. L.; Woodgate, B. E.

    2003-06-01

    We present evidence that high-velocity cloud (HVC) complex C is a low-metallicity gas cloud that is plunging toward the disk and beginning to interact with the ambient gas that surrounds the Milky Way. This evidence begins with a new high-resolution (7 km s-1 FWHM) echelle spectrum of 3C 351 obtained with the Space Telescope Imaging Spectrograph (STIS). 3C 351 lies behind the low-latitude edge of complex C, and the new spectrum provides accurate measurements of O I, Si II, Al II, Fe II, and Si III absorption lines at the velocity of complex C; N I, S II, Si IV, and C IV are not detected at 3 σ significance in complex C proper. However, Si IV and C IV as well as O I, Al II, Si II and Si III absorption lines are clearly present at somewhat higher velocities associated with a ``high-velocity ridge'' (HVR) of 21 cm emission. This high-velocity ridge has a similar morphology to and is roughly centered on complex C proper. The similarities of the absorption-line ratios in the HVR and complex C suggest that these structures are intimately related. In complex C proper we find [O/H]=-0.76+0.23-0.21. For other species the measured column densities indicate that ionization corrections are important. We use collisional and photoionization models to derive ionization corrections; in both models we find that the overall metallicity Z=0.1-0.3 Zsolar in complex C proper, but nitrogen must be underabundant. The iron abundance indicates that the complex C contains very little dust. The size and density implied by the ionization models indicate that the absorbing gas is not gravitationally confined. The gas could be pressure confined by an external medium, but alternatively we may be viewing the leading edge of the HVC, which is ablating and dissipating as it plunges into the Milky Way. O VI column densities observed with the Far Ultraviolet Spectroscopic Explorer (FUSE) toward nine QSOs/AGNs behind complex C support this conclusion: N(O VI) is highest near 3C 351, and the O VI/H I

  19. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  20. SYNTHESIS OF METAL-ORGANIC (COMPLEXES COMPOUNDS COPPER(II-IMIDAZOLE FOR ANTIVIRAL HIV CANDIDATE

    Directory of Open Access Journals (Sweden)

    Teguh Hari Sucipto

    2016-01-01

    Full Text Available The human immunodeficiency virus (HIV is viruses known as rotaviruses. Potential target for therapeutic is reverse transcriptase (RT, possesses an RNA dependent DNA polymerase, DNA-dependent DNA polymerase and ribonuclease H fuctions. Imidazoles have high anti-HIV inhibitory activity, some derivates of imidazole reported drugs. 8-chloro-2,3-dihydroimidazole[1,2-b] [1,4,2]benzodithiazine-5,5-dioxides and 9-chloro-2,3,4-trihydropyri-mido[1,2-b][1,4,2]benzodithi-azine-6,6-dioxides. This compounds succesfully identified anti-HIV activity. Copper is a bio-essential element and copper complexes have been extensively utilized in metal mediated DNA cleavage for the generation of activated oxygen species. It has been reported that teraaza macrocyclic copper coordination compounds have anti-HIV activities. Studies have shown that these macrocyclic complexes can react with DNA in different binding fashions and exhibit effective nuclease activities. Complex compounds are compounds in which there is an atom that acts as the central atom and trotter group of molecules that can be either neutral or charged ions. Application a metal-organic (complex compounds, especially copper metal and derivates of imidazole. So, in this study can explore new anti-HIV candidate.

  1. Metal complexes of hydroxynaphthoquinones: Lawsone, bis-lawsone, lapachol, plumbagin and juglone

    Science.gov (United States)

    Salunke-Gawali, Sunita; Pereira, Eulália; Dar, Umar Ali; Bhand, Sujit

    2017-11-01

    Coordination chemistry of hydroxynaphthoquinones viz. lawsone (2-hydroxy-1,4-napthoquinone; Lw) derivatives, bis-lawsone (2,2´-bi(3-hydroxy-1,4-naphthoquinone; H2bhnq), lapachol (2-hydroxy-3-(3-methylbut-2-enyl)naphthalene-1,4-dione; Lap), plumbagin (5-hydroxy-2-methyl-naphthlene-1,4-dione; PLN) and juglone (5-hydroxy-1,4-naphthalenedione) have been reviewed in brief with respect to structural and spectroscopic properties. We aimed to gather most of the potential information of the known metal complexes of hydroxynapthoquinone derivatives obtained by various chemical and physical methods which are reported till date. A brief description of the synthetic and structural studies of hydroxynaphthoquinone ligands and their metal complexes are presented. The majority of the complexes are mononuclear with distorted octahedral geometry, however dimers, trimers, tetramers and polymers also have been reported. In most of the cases various ancillary ligands are present due to solvent or counterion binding, depending on the synthetic procedures. Several "cis, cis" and "trans, trans" isomeric structures were also reported. The review is a complete information guide for hydroxynapthoquinone and its derivative metal complexes.

  2. Multiheteromacrocycles that Complex Metal Ions. Second Progress Report, 1 May 1975 -- 30 April 1976

    Science.gov (United States)

    Cram, D. J.

    1976-01-15

    Objective is to develop cyclic and polycyclic host organic compounds to complex and lipophilize metal ions. Macrorings were synthesized: (OCH{sub 2} CH{sub 2} O CH{sub 2}COCH{sub 2} COCH{sub 2}){sub 2} and (OCH{sub 2} CH{sub 2} O CH{sub 2} COCH{sub 2} COCH{sub 2}){sub 3}. The smaller ring complexes divalent metals 10{sup 1+9} times better than the open-chain model CH{sub 3} O CH{sub 2} CO CH{sub 2} COCH{sub 2} O CH{sub 3}, and the order in which metal ions are complexed is Cu{sup 2+}, UO{sub 2}{sup 2+} greater than Ni{sup 2+} greater than Fe{sup 2+}, Co{sup 2+}, Zn{sup 2+}, Cd{sup 2+} greater than Mn{sup 2+}. The UO{sub 2}{sup 2+} and Cu{sup 2+} complexes were isolated and characterized. The larger ring complexes trivalent metals 10{sup 0.9-1.7} times better than the open- chain model compound, and the order is La{sup 3+}, Ce{sup 3+} greater than Cr{sup 3+}. Five other macrocycles were also synthesized, and their binding constants with Na, K, NH{sub 4}, and Cs picrates were measured. Six compounds containing one macroring and two inward-pointing ArOH or ArOCH{sub 3} groups were also prepared and tested for binding of Li, Na, K, Rb, and NH{sub 4} picrates. Racemic compounds containing two binaphthyls and its sulfur analog were prepared. Cage-shaped multiheteromacrocycles containing ten O ligand sites or four S and six O ligand sites were prepared and the binding capability of the first compound for picrates studied. Two ring systems with phosphonate ester groups were also prepared. (DLC)

  3. Electropholic Transition Metal Complexes: Catalysis of Isotope Exchange. April 1, 1992 - December 3, 1996. Final Report

    International Nuclear Information System (INIS)

    Heinekey, D. Michael

    1997-01-01

    The central aim of this project is to exploit transition metal dihydrogen complexes to develop catalysts for isotope exchange reactions between hydrogen and substrates such as water. The authors have partially met this goal by the synthesis of novel cationic rhenium complexes of the form [Re(CO) 3 (PR 3 ) 2 (H 2 )] + . These complexes bind hydrogen somehwat more strongly than the neutral tungsten analogs but also activate the bound H 2 to heterolytic cleavage. Thus rapid proton (deuteron) exchange between hydrogen and water can be achieved. An example of this reaction is the rapid formation of bound HD from the complex [Re(CO) 3 (PR 3 ) 2 (H 2 )] + and deuterium gas. Rapid incorporation of deuterium from D 2 O has also been observed. In these systems, the competitive binding of water to the metal center is a drawback. The affinity of the Re center for water depends upon the nature of the phosphine ligands, with the presumably more electrophilic PPh 3 complex binding water strongly and irreversibly, while the PCy 3 complex binds water reversibly. These results have been published in J.Am.Chem.Soc 1994, 116, 4515 and J.Am.Chem.Soc 1997, 119, 4172

  4. Developmental Evaluation: Applying Complexity Concepts to Enhance Innovation and Use

    Science.gov (United States)

    Patton, Michael Quinn

    2010-01-01

    Developmental evaluation (DE) offers a powerful approach to monitoring and supporting social innovations by working in partnership with program decision makers. In this book, eminent authority shows how to conduct evaluations within a DE framework. Patton draws on insights about complex dynamic systems, uncertainty, nonlinearity, and emergence. He…

  5. Complex Equilibria Changing in Photochemical Reaction: Computerized Evaluation and Simulation.

    Science.gov (United States)

    Horvath, Otto; Papp, Sandor

    1988-01-01

    States that if photochemical reactions can be followed spectrophotometrically, reactivities can be estimated by evaluating data from only one curve. Studies such a system using computerized evaluation and simulation. Uses chlorocuprate(II) complexes in acetonitrile solutions for the model systems. (MVL)

  6. The ecotoxicity of zinc and zinc-containing substances in soil with consideration of metal-moiety approaches and organometal complexes.

    Science.gov (United States)

    Ritchie, Ellyn; Boyd, Patrick; Lawson-Halasz, Annamaria; Hawari, Jalal; Saucier, Stacey; Scroggins, Richard; Princz, Juliska

    2017-12-01

    Within Canada, screening-level assessments for chemical substances are required to determine whether the substances pose a risk to human health and/or the environment, and as appropriate, risk management strategies. In response to the volume of metal and metal-containing substances, process efficiencies were introduced using a metal-moiety approach, whereby substances that contain a common metal moiety are assessed simultaneously as a group, with the moiety of concern consisting of the metal ion. However, for certain subgroups, such as organometals or organic metal salts, the organic moiety or parent substance may be of concern, rather than simply the metal ion. To further investigate the need for such additional consideration, certain substances were evaluated: zinc (Zn)-containing inorganic (Zn chloride [ZnCl2] and Zn oxide) and organic (organometal: Zn diethyldithiocarbamate [Zn(DDC) 2 ] and organic metal salts (Zn stearate [ZnSt] and 4-chloro-2-nitrobenzenediazonium tetrachlorozincate [BCNZ]). The toxicity of the substances were assessed using plant (Trifolium pratense and Elymus lanceolatus) and soil invertebrate (Folsomia candida and Eisenia andrei) tests in a sandy soil. Effect measures were determined based on total metal and total parent analyses (for organic substances). In general, the inorganic Zn substances were less toxic than the organometals and organic metal salts, with 50% effective concentrations ranging from 11 to >5194 mg Zn kg -1 dry soil. The data demonstrate the necessity for alternate approaches in the assessment of organo-metal complexes, with the organic moieties or parent substances warranting consideration rather than the metal ion alone. In this instance, the organometals and organic metal salts were significantly more toxic than other test substances despite their low total Zn content. Environ Toxicol Chem 2017;36:3324-3332. © 2017 Crown in the Right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC. © 2017 Crown

  7. Roles of dynamic metal speciation and membrane permeability in metal flux through lipophilic membranes: General theory and experimental validation with nonlabile complexes

    NARCIS (Netherlands)

    Zeshi, Zhang; Buffle, J.; Leeuwen, van H.P.

    2007-01-01

    The study of the role of dynamic metal speciation in lipophilic membrane permeability in aqueous solution requires accurate interpretation of experimental data. To meet this goal, a general theory is derived for describing 1:1 metal complex flux, under steady-state and ligand excess conditions,

  8. Initiator-integrated 3D printing enables the formation of complex metallic architectures.

    Science.gov (United States)

    Wang, Xiaolong; Guo, Qiuquan; Cai, Xiaobing; Zhou, Shaolin; Kobe, Brad; Yang, Jun

    2014-02-26

    Three-dimensional printing was used to fabricate various metallic structures by directly integrating a Br-containing vinyl-terminated initiator into the 3D resin followed by surface-initiated atomic-transfer radical polymerization (ATRP) and subsequent electroless plating. Cu- and Ni-coated complex structures, such as microlattices, hollow balls, and even Eiffel towers, were prepared. Moreover, the method is also capable of fabricating ultralight cellular metals with desired structures by simply etching the polymer template away. By combining the merits of 3D printing in structure design with those of ATRP in surface modification and polymer-assisted ELP of metals, this universal, robust, and cost-effective approach has largely extended the capability of 3D printing and will make 3D printing technology more practical in areas of electronics, acoustic absorption, thermal insulation, catalyst supports, and others.

  9. Conventional and microwave synthesis, spectral, thermal and antimicrobial studies of some transition metal complexes containing 2-amino-5-methylthiazole moiety

    Directory of Open Access Journals (Sweden)

    A.P. Mishra

    2014-12-01

    Full Text Available Schiff base metal complexes of Cr(III, Co(II, Ni(II and Cu(II derived from 5-chlorosalicylidene-2-amino-5-methylthiazole (HL1 and 2-hydroxy-1-naphthylidene-2-amino-5-methylthiazole (HL2 have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, FT-IR, FAB-mass, molar conductance, electronic spectra, 1H-NMR, ESR, magnetic susceptibility, thermal, electrical conductivity and XRD analyses. The complexes exhibit coordination number 4 or 6. The complexes are coloured and stable in air. Analytical data reveal that all the complexes exhibit 1:2 (metal:ligand ratio. IR data show that the ligand coordinates with the metal ions in a bidentate manner through the phenolic oxygen and azomethine nitrogen. FAB-mass and thermal data show degradation pattern of the complexes. The thermal behaviour of metal complexes shows that the hydrated complexes lose water molecules of hydration in the first step; followed by decomposition of ligand molecules in the subsequent steps. XRD patterns indicate crystalline nature for the complexes. The Schiff bases and metal complexes show good activity against the Gram-positive bacteria; Staphylococcus aureus and Gram-negative bacteria; Escherichia coli and fungi Aspergillus niger and Candida albicans. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases.

  10. Isotope exchange study of the dissociation of metal-humic complexes

    International Nuclear Information System (INIS)

    Mizera, J.; Jansova, A.; Hvozdova, I.; Benes, P.

    2002-01-01

    Prediction of the migration of toxic metals and radionuclides in the environment requires knowledge of equilibrium and kinetic parameters characterising their interaction with humic substance (HS). In this work, isotope exchange of Eu and Co in the systems containing HS has been used to study dissociation of the cations from their complexes with HS under quasi-stationary conditions. In the experimental arrangement of the so-called diaphragm method, a dialysis membrane divides two compartments containing solutions of metal and HS, identical in both half-cells but for radiolabeling ( 152 Eu and 60 Co) applied only in one cell. The membrane is permeable for free metal cation but not for the metal-HS complex. The slow dissociation of metal cation from HS is reflected by retardation (compared to a reference system in the absence of HS) of the rate of the isotope exchange between the two compartments. However, only an apparent dissociation rate can be observed, as detection of fast dissociation is limited by the rate of diffusion of dissociated cations through membrane and by their recombination with available binding sites of HS. The rate of isotope exchange of Eu and Co in the systems with HS (Aldrich sodium humate, soil humic and fulvic acid) was monitored as function of pH (4 and 6), ionic strength (0.01 and 0.1 M), and the degree of HS loading with metal ([M] 0 = 10 -7 - 2x10 -5 M at 10 mg/L HS). For Co, the rate of 60 Co 2+ diffusion through the membrane showed up to control the rate of the isotope exchange indicating that the Co-HS dissociation is too fast to be followed by the diaphragm method, and that the abundance of non-complexed Co is not negligible. The apparent rate of Eu-HS dissociation was found to be enhanced by decreasing pH value, increasing ionic strength, and increasing metal loading (i.e., metal/HS ratio). For interpretation of the experimental kinetic data, a discrete 2-component model (bi-exponential decay function) was applied. Based on

  11. Synthesis, Spectroscopic Studies and Biological Activities of Mixed Metal (III Complexes of Uracil with 1, 10-Phenanthroline

    Directory of Open Access Journals (Sweden)

    Shatha M. H.Obaid

    2017-09-01

    Full Text Available New complexes of the [M(Ura(Phen(OH2Cl2]Cl.2H2O type, where (Ura uracil ; (Phen 1,10-phenanthroline hydrate; M (Cr+3 , Fe+3 and La+3 were synthesized from mix ligand and characterized . These complexes have been characterized by the elemental micro analysis, spectral (FT-IR., UV-Vis, 1HNMR, 13CNMR and Mass and magnetic susceptibility as well the molar conductive mensuration. Cr+3, Fe+3 and La+3- complexes of six–coordinated were proposed for the insulated for three metal(III complexes for molecular formulas following into uracil property and 1,10-phenanthroline hydrate present . The proposed molecular structure for all metal (III complexes is octahedral geometries .The biological activity was tested of metal(III salts, ligands as well as metal(III complexes to the pathogenic bacteria as well as the antifungal activity has been studied .

  12. Evaluation of metallic osseous implants with nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, H.N.; Schauwecker, D.S.; Capello, W.N.

    1988-04-01

    Nuclear medicine has proven to have a valuable role in the evaluation of osseous metallic implants, particularly with joint prostheses, but can assist with evaluation of other appliances as well. The nuclear arthrogram has become an invaluable adjunct to simultaneously performed radiographic contrast arthrography. This application has been best evaluated in what is one of the most common of orthopedic prosthesis problems, namely, loosening of total hip prostheses. Experience indicates that both sensitivity and specificity of loosening of the femoral component can be increased to over 90% through combined use of nuclear with radiographic contrast arthrography. Furthermore the combination of routine skeletal scintimaging with the nuclear arthrogram adds a significant dimension to precise localizing of the nuclear arthrographics agent In-111 chloride. Nuclear medicine also plays an important role in further evaluating the presence of infection associated with metallic implants with In-111 WBC preparations being superior to Ga-67 as the radiopharmaceutical tracer. Infection has been detected with a sensitivity of 73% and a specificity of 93% in our series using combined In-111 WBC and simultaneous skeletal imaging with conventional Tc-99m MDP. Acute infections are more readily identifiable than chronic in association with prostheses. 29 references.

  13. Low-temperature operation of copper-vapor lasers by using vapor-complex reaction of metallic copper and metal halide

    OpenAIRE

    SAITO, HIROSHI; TANIGUCHI, HIROSHI

    1985-01-01

    The first successful use of vapor-complex reactions for a laser is reported. Vapor-complex reactions between metallic copper and metal halides are found effective in reducing the operating temperature in copper-vapor lasers. By using a vapor-complex reaction of Cu+AlBr3, a laser oscillation starts at a reservoir temperature of about 25°C. The results obtained by the mass spectroscopic analysis support the presumption that the copper vapor is generated through a vapor-complex reaction process.

  14. Assessment of heavy metal contamination in sediment at Sukinda ultramafic complex using HAADF-STEM analysis.

    Science.gov (United States)

    Equeenuddin, Sk Md; Pattnaik, Binaya Kumar

    2017-10-01

    The Sukinda ultramafic complex in Odisha has the largest chromite reserve in India. Sediment derived from ultramafic rocks has been enriched with various metals. Further, mining activities enhance the influx of metals into sediment by dumping mine overburden and tailings in the open area. Metal concentration in sediment is found in order of Cr Total (Cr) > Mn > Ni > Co > Zn > Cu with average concentration 26,778 mg/kg, 3098 mg/kg, 1813 mg/kg, 184 mg/kg, 116 mg/kg and 44 mg/kg respectively. Concentration of Cr(VI) varies from 5.25 to 26.47 mg/L with an average of 12.27 mg/L. Based on various pollution indices, it is confirmed that the area is severely contaminated. Nano-scale goethite, kaolinite, clinochlore and chromite have been identified and have high concentration of Cr, Co and Ni. Goethite has shown maximum metal retention potential as deciphered by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The HAADF-STEM mapping and principal component analysis indicate that Cr and Co mostly derived from chromite whereas Ni and Zn are derived from serpentine. Later, these metals co-precipitate and/or adsorbed onto the goethite and clay minerals. Fractionation study of metals confirms that Cu is the most mobile element followed by Zn. However, at low pH condition Ni is mobilized and likely to be bioavailable. Though Cr mostly occurs in residual fraction but as its concentration is very high, a small proportion of exchangeable fraction contributes significantly in terms of its bioavailability. Thus bioavailable Cr can pose severe threat to the environment in the Sukinda ultramafic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Unusual metal complex of cadinane sesquiterpene alkaloid and new neolignan glycosides from Alangium alpinum.

    Science.gov (United States)

    Ren, Jie; Xie, Yang-Guo; Guo, Yi-Gong; Zhu, Sheng-Lan; Jin, Hui-Zi; Zhang, Wei-Dong

    2018-03-01

    One unusual metal complex of cadinane sesquiterpene alkaloid (1), one new cadinane sesquiterpene alkaloid (2) and two new neolignan glycosides (3-4) along with six known cadinane sesquiterpene derivatives (5-10), nineteen known phenolic glycosides (11-29) were isolated from the aerial parts of Alangium alpinum. Structures of new crystals of metal complex were characterized by X-Ray diffraction and ICP-AES analysis. Other new compounds were elucidated by combined use and detailed analysis of HR-ESIMS, 1D and 2D NMR and CD spectroscopic method. In addition, all isolated compounds were tested for their inhibitory effects against TNF-α induced NF-κB activation in Hela cells and NO production in RAW 264.7 macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Use of Trabecular Metal Cones in Complex Primary and Revision Total Knee Arthroplasty.

    Science.gov (United States)

    Brown, Nicholas M; Bell, Joshua A; Jung, Edward K; Sporer, Scott M; Paprosky, Wayne G; Levine, Brett R

    2015-09-01

    Trabecular metal cones are one option for treating osseous defects during TKA. A total of 83 consecutive TKAs utilizing cones with an average of 40 months follow-up were reviewed. There were 24 males and 59 females, with an average age of 69 years old. Four were complex primary and 79 were revision procedures. Of 83 patients, 10 (12%) required repeat revision surgery (8 infections, one periprosthetic fracture, one aseptic loosening) and overall, 37 of 83 patients (45%) experienced at least one complication. Of 73 unrevised knees, 72 (99%) demonstrated radiographic evidence of osseointegration. Despite a high complication rate in this population, trabecular metal cones represent an attractive option for managing bone loss in complex primary and revision TKA with a high rate of osseointegration. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  18. Atomic Resolution Imaging of Nanoscale Structural Ordering in a Complex Metal Oxide Catalyst

    KAUST Repository

    Zhu, Yihan

    2012-08-28

    The determination of the atomic structure of a functional material is crucial to understanding its "structure-to-property" relationship (e.g., the active sites in a catalyst), which is however challenging if the structure possesses complex inhomogeneities. Here, we report an atomic structure study of an important MoVTeO complex metal oxide catalyst that is potentially useful for the industrially relevant propane-based BP/SOHIO process. We combined aberration-corrected scanning transmission electron microscopy with synchrotron powder X-ray crystallography to explore the structure at both nanoscopic and macroscopic scales. At the nanoscopic scale, this material exhibits structural and compositional order within nanosized "domains", while the domains show disordered distribution at the macroscopic scale. We proposed that the intradomain compositional ordering and the interdomain electric dipolar interaction synergistically induce the displacement of Te atoms in the Mo-V-O channels, which determines the geometry of the multifunctional metal oxo-active sites.

  19. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Science.gov (United States)

    Ley, Morten B.; Meggouh, Mariem; Moury, Romain; Peinecke, Kateryna; Felderhoff, Michael

    2015-01-01

    This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability. PMID:28793541

  20. Optical nonlinearity, limiting and switching characteristics of novel ruthenium metal-organic complex

    Science.gov (United States)

    Manjunatha, K. B.; Rajarao, Ravindra; Umesh, G.; Ramachandra Bhat, B.; Poornesh, P.

    2017-10-01

    We report the nonlinear optical properties of Ruthenium metal complex a promising organic material for use in scientific and technological applications. The thin films of newly synthesized ruthenium metal-organic complex were fabricated using spin coating technique. Z-scan and degenerate four wave mixing (DFWM) techniques used to extract the third-order nonlinear optical (NLO) parameters. The data reveals the investigated material exhibited relatively large NLO properties. The pump-probe experiments shows that the switch-on and off times of the material were in the order of μs at different pump intensities and the energy dependent transmission studies reveal good limiting property of the material in nanosecond regime.

  1. Complex Metal Hydrides for hydrogen storage and solid-state ion conductors

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein

    Renewable energy, such as sun and wind, are sustainable and clean sources of energy for the future but are unevenly distributed both over time and geographically. Therefore, this type of energy must be converted to a form that can be stored and two of the most promising options are hydrogen...... and electricity in batteries. However, both hydrogen and electricity must be stored in a very dense way to be useful, e.g. for mobile applications. Complex metal hydrides have high hydrogen density and have been studied during the past twenty years in hydrogen storage systems. Moreover, they have shown high ionic...... conductivities which promote their application as solid electrolytes in batteries. This dissertation presents the synthesis and characterization of a variety of complex metal hydrides and explores their hydrogen storage properties and ionic conductivity. Five halide free rare earth borohydrides RE(BH4)3, (RE...

  2. Highly active group 11 metal complexes with α-hydrazidophosphonate ligands.

    Science.gov (United States)

    Salvador-Gil, Daniel; Ortego, Lourdes; Herrera, Raquel P; Marzo, Isabel; Gimeno, M Concepción

    2017-10-17

    α-Hydrazidophosphonates are interesting scaffolds that could combine the biological properties of hydrazones and phosphonyl species, and their coordination properties remain unknown. The coordination chemistry of these ligands towards group 11 metals has been studied. A series of novel gold(i), silver(i) and copper(i) complexes with α-hydrazidophosphonate ligands have been prepared and characterised. The coordination geometries obtained vary from linear to trigonal planar for gold(i) to distorted trigonal planar or tetrahedral for silver(i) and copper(i). Structural characterisation of two silver derivatives shows the ligands in an O^N^O tridentate fashion, with dissimilar bond lengths. These compounds were screened for the in vitro cytotoxic activity against two tumour human cell lines such as HeLa (cervical carcinoma) and A549 (lung carcinoma). The IC 50 values reveal an excellent cytotoxic activity of the metal complexes compared with the α-hydrazidophosphonate ligands alone and cisplatin.

  3. Redox-stimulated motion and bistability in metal complexes and organometallic compounds.

    Science.gov (United States)

    Lomoth, Reiner

    2013-11-20

    Control over reversible changes to molecular structure forms the basis for artificial molecular machines that could eventually lead to the development of molecule-based nanotechnology. Particular applications in information storage and processing could emerge where the structural rearrangements give rise to bistability and molecular hysteresis effects. Oxidation-state-dependent coordination and bonding preferences in transition metal complexes and organometallic compounds provide a versatile approach to the control of molecular motions by redox input, but so far, few structural motifs have been applied in redox-actuated molecular machines. Further progress toward molecule-based nanoscale devices might be accomplished with molecular components derived from a wider range of structural themes and forms of molecular motion. Examples of redox-stimulated rearrangements in metal complexes and organometallic compounds are described that have been employed in molecular machines or could be considered for the design of new functional molecules.

  4. Synthesis of a Water-soluble Metal-Organic Complex Array.

    Science.gov (United States)

    Bose, Purnandhu; Sukul, Pradip K; Yaghi, Omar M; Tashiro, Kentaro

    2016-10-08

    We demonstrate a method for the synthesis of a water-soluble multimetallic peptidic array containing a predetermined sequence of metal centers such as Ru(II), Pt(II), and Rh(III). The compound, named as a water-soluble metal-organic complex array (WSMOCA), is obtained through 1) the conventional solution-chemistry-based preparation of the corresponding metal complex monomers having a 9-fluorenylmethyloxycarbonyl (Fmoc)-protected amino acid moiety and 2) their sequential coupling together with other water-soluble organic building units on the surface-functionalized polymeric resin by following the procedures originally developed for the solid-phase synthesis of polypeptides, with proper modifications. Traces of reactions determined by mass spectrometric analysis at the representative coupling steps in stage 2 confirm the selective construction of a predetermined sequence of metal centers along with the peptide backbone. The WSMOCA cleaved from the resin at the end of stage 2 has a certain level of solubility in aqueous media dependent on the pH value and/or salt content, which is useful for the purification of the compound.

  5. Molecular polypyridine-based metal complexes as catalysts for the reduction of CO2.

    Science.gov (United States)

    Elgrishi, Noémie; Chambers, Matthew B; Wang, Xia; Fontecave, Marc

    2017-02-06

    Polypyridyl transition metal complexes represent one of the more thoroughly studied classes of molecular catalysts towards CO 2 reduction to date. Initial reports in the 1980s began with an emphasis on 2nd and 3rd row late transition metals, but more recently the focus has shifted towards earlier metals and base metals. Polypyridyl platforms have proven quite versatile and amenable to studying various parameters that govern product distribution for CO 2 reduction. However, open questions remain regarding the key mechanistic steps that govern product selectivity and efficiency. Polypyridyl complexes have also been immobilized through a variety of methods to afford active catalytic materials for CO 2 reductions. While still an emerging field, materials incorporating molecular catalysts represent a promising strategy for electrochemical and photoelectrochemical devices capable of CO 2 reduction. In general, this class of compounds remains the most promising for the continued development of molecular systems for CO 2 reduction and an inspiration for the design of related non-polypyridyl catalysts.

  6. Synthesis, spectroscopic, thermal and biological activity studies on triazine metal complexes

    Science.gov (United States)

    Mohamed, Gehad G.; Badawy, M. A.; Omar, M. M.; Nassar, M. M.; Kamel, A. B.

    2010-11-01

    The coordination behaviour of the triazine ligand with NNO donation sites, derived from 3-benzyl-7-hydrazinyl-4H-[1,3,4]thiadiazolo[2,3c][1,2,4]triazin-4-one (HL), towards some metal ions namely Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) are reported. The metal complexes are characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analyses (TG, DTG and DTA). The ionization constants of the organic ligand under investigation as well as the stability constants of its metal chelates are calculated spectrophotometrically at 25 °C. The chelates are found to have octahedral geometrical structures. The ligand (HL) and its binary chelates are subjected to thermal analyses (TG, DTG and DTA) and the different activation thermodynamic parameters are calculated from their corresponding DTG curves to throw more light on the nature of changes accompanying the thermal decomposition process of these compounds. The synthesized ligand and its metal complexes were found to have biological activity against the desert locust Schistocerca gregaria (Forsk.) (Orthoptera - Acrididae) and its adult longevities.

  7. The importance of the Maillard-metal complexes and their silicates in astrobiology

    Science.gov (United States)

    Liesch, Patrick J.; Kolb, Vera M.

    2007-09-01

    The Maillard reaction occurs when sugars and amino acids are mixed together in the solid state or in the aqueous solution. Since both amino acids and sugar-like compounds are found on meteorites, we hypothesized that they would also undergo the Maillard reaction. Our recent work supports this idea. We have shown previously that the water-insoluble Maillard products have substantial similarities with the insoluble organic materials from the meteorites. The Maillard organic materials are also part of the desert varnish on Earth, which is a dark, shiny, hard rock coating that contains iron and manganese and is glazed in silicate. Rocks that are similar in appearance to the desert varnish have been observed on the Martian surface. They may also contain the organic materials. We have undertaken study of the interactions between the Maillard products, iron and other metals, and silicates, to elucidate the role of the Maillard products in the chemistry of desert varnish and meteorites. Specifically, we have synthesized a series of the Maillard-metal complexes, and have tested their reactivity towards silicates. We have studied the properties of these Maillard-metal-silicate products by the IR spectroscopy. The astrobiological potential of the Maillard-metal complexes is assessed.

  8. Metals impact into the Paranaguá Estuarine Complex (Brazil during the exceptional flood of 2011

    Directory of Open Access Journals (Sweden)

    Marilia Lopes da Rocha

    Full Text Available Abstract Particulate and dissolved metal concentrations were determined after the largest flood in the last 30 years on the east-west axis of the Paranaguá Estuarine Complex (PEC and compared to the those of the dry period at two stations. Results confirmed that the flood greatly affected riverine outflows and the behavior of metals in the PEC. In particular, a sharp decrease in salinity was followed by extremely high SPM concentrations leading to a decrease in DO concentrations at both stations. For the dissolved phase, ANOSIM analysis showed a significant dissimilarity at each station between the sampled periods, whereas for the particulate phase this dissimilarity was found only for the samplings taken at the Antonina Station. KD values suggested dissolved Cu behavior was related to the presence of organic complexes and dissolved Mn had sediment resuspension of redox sediments and or/pore water injection as sources. Metal concentrations were lower than in polluted estuaries, though high enrichment factors found after the flood pointed to the influence of anthropogenic sources. In conclusion, the flood's influence was more evident at the Antonina Station, due to its location in the upper estuary, whereas in Paranaguá a high SPM content with low metal concentration was found, following the common pattern generally found in other marine systems subject to heavy rainfall events.

  9. Bond-strengthening π backdonation in a transition-metal π-diborene complex.

    Science.gov (United States)

    Braunschweig, Holger; Damme, Alexander; Dewhurst, Rian D; Vargas, Alfredo

    2013-02-01

    Transition-metal catalysis is founded on the principle that electron donation from a metal to a ligand is accepted by an antibonding orbital of the ligand, thereby weakening one of the bonds in the ligand. Without this, the initial step of bond activation in many catalytic processes would simply not occur. This concept is enshrined in the well-accepted Dewar-Chatt-Duncanson model of transition-metal bonding. We present herein experimental and computational evidence for the first true violation of the Dewar-Chatt-Duncanson bonding model, found in a π-diborene complex in which an electron-rich group 10 metal donates electrons into an empty bonding π orbital on the ligand, and thereby strengthens the bond. The complex is also the first transition-metal complex to contain a bound diborene, a species not isolated before, either in its free form or bound to a metal.

  10. Synthesis, Characterization and Antimicrobial Activities of Transition Metal Complexes of methyl 2-(((E)-(2-hydroxyphenyl)methylidene)amino)benzoate

    International Nuclear Information System (INIS)

    Ikram, M.; Rehman, S.

    2016-01-01

    New metal complexes with Schiff base ligand methyl 2-(((E)-(2-hydroxyphenyl)methylidene)amino)benzoate, were synthesized and characterized. Elemental analyses, EI-MS, 1H and 13C(1H)-NMR were used for ligand characterization whereas elemental analyses, EI-MS, IR and UV-Visible spectroscopic techniques were used for the transition metal compounds. All these analyses reveal the bis arrangement of the ligand around the metal centres. The compounds were studied for their antimicrobial activities against different pathogenic microbial species. It was found that the Schiff base ligand was completely inactive in comparison to the transition metal compounds. It was also observed that nickel based metal complex shown good results against Candida albican (25 mm) and zinc based metal complex against Agrobacterium tumefaciens (16 mm). (author)

  11. Effect of substituents on polarizability and hyperpolarizability values of benzimidazole metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, P. A.; Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin films Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli - 620 024, Tamilnadu (India)

    2016-05-23

    In this report, the polarizability and first and second order hyperpolarizability values of bis benzimidazole Zn(II)-2R and bis benzimidazole Cd(II)-2R complexes, with different electron donating moieties R (R= Cl, Br, I, Acetate) were calculated using time dependent Hartree-Fock (TDHF) formalism embedded in MOPAC2012 package. Further the role of substituents on polarizability and hyperpolarizability values is investigated for the first time by analyzing the frontier molecular orbitals of the complexes with respect to the electronegativity of the substituents. It is found that the increase in electronegativity of the substituents correspondingly increases the energy gap of the molecules, which in turn reduces the polarizability values of both Zn and Cd benzimidazole complexes. Similarly, increase in electronegativity reduces the electric quadrupole moments of both the metal complexes, which in turn reduces the hyperpolarizability values.

  12. Thermochemistry of the alkali metal and alkaline earth-actinide complex oxides

    International Nuclear Information System (INIS)

    Fuger, J.

    1985-01-01

    After a brief discussion of the various techniques used for the preparation of actinide complex oxides, the present status of the thermochemistry of these compounds is reviewed. Perovskite-related compounds are especially considered as thermodynamic data are available for compounds of several actinides and/or several alkali and alkaline earth metals. The stabilities of the complex oxides are discussed with respect to the parent binary oxides and to the aqueous ions; trends as a function of the size and the alkali or the alkaline earth cation are presented. Suggestions for synthesis of some analogous compounds with heavier actinides are also discussed. (orig./RK)

  13. Tridentate hydrazone metal complexes derived from cephalexin and 2-hydrazinopyridine: Synthesis, characterization and antibacterial activity

    Science.gov (United States)

    Anacona, J. R.; Rincones, Maria

    2015-04-01

    Metal(II) coordination compounds of a tridentate hydrazone ligand (HL) derived from the condensation of cephalexin antibiotic with 2-hydrazinopyridine were synthesized. The hydrazone ligand and mononuclear [ML(OAc)(H2O)] (M(II) = Mn, Co, Ni, Cu, Zn, Ag) complexes were characterized by several techniques, including elemental and thermal analysis, molar conductance and magnetic susceptibility measurements, electronic, FT-IR, EPR and 1H NMR spectral studies. The cephalexin 2-pyridinylhydrazone ligand HL behaves as a monoanionic tridentate NNO chelating agent. The biological applications of complexes have been studied on three bacteria strains (Escherichia coli, Acinetobacter baumannii and Enterococcus faecalis) by agar diffusion disc method.

  14. Synthesis and properties of complexes of 1-phenyl-2,3-dimetylpyrazolone-5-thione with metals

    International Nuclear Information System (INIS)

    Bikkulova, A.T.; Kapina, A.P.; Medvedeva, E.A.

    1985-01-01

    Cadmium complexes with thiopyrine (1-phenyl-2.3-dimethylpyrazolone-5-thione) (R) of the composition CdR 2 X 2 are obtained by precipitation from hydrochloric acid solutions at pH=1 and at chloride and bromide (X) excess. The formation of coordination bond of a metal through the sulphur atom is established by the IR- and NMR-spectroscopy methods. Fungicidal activity of the compositions obtained is detected

  15. Metal ion complexes with HisGly: comparison with PhePhe and PheGly.

    Science.gov (United States)

    Dunbar, Robert C; Oomens, Jos; Berden, Giel; Lau, Justin Kai-Chi; Verkerk, Udo H; Hopkinson, Alan C; Siu, K W Michael

    2013-06-27

    Gas-phase complexes of five metal ions with the dipeptide HisGly have been characterized by DFT computations and by infrared multiple photon dissociation spectroscopy (IRMPD) using the free electron laser FELIX. Fine agreement is found in all five cases between the predicted IR spectral features of the lowest energy structures and the observed IRMPD spectra in the diagnostic region 1500-1800 cm(-1), and the agreement is largely satisfactory at longer wavelengths from 1000 to 1500 cm(-1). Weak-binding metal ions (K(+), Ba(2+), and Ca(2+)) predominantly adopt the charge-solvated (CS) mode of chelation involving both carbonyl oxygens, an imidazole nitrogen of the histidine side chain, and possibly the amino nitrogen. Complexes with Mg(2+) and Ni(2+) are found to adopt iminol (Im) binding, involving the deprotonated amide nitrogen, with tetradentate chelation. This tetradentate coordination of Ni(II) is the preferred binding mode in the gas phase, against the expectation under condensed-phase conditions that such binding would be sterically unfavorable and overshadowed by other outcomes such as metal ion hydration and formation of dimeric complexes. The HisGly results are compared with corresponding results for the PheAla, PheGly, and PhePhe ligands, and parallel behavior is seen for the dipeptides with N-terminal Phe versus His residues. An exception is the different chelation pattern determined for PhePhe versus HisGly, reflecting the intercalation-type cation binding pocket of the PhePhe ligand. The complexes group into three well-defined spectroscopic patterns: nickel and magnesium, calcium and barium, and potassium. Factors leading to differentiation of these distinct spectroscopic categories are (1) differing propensities for choosing the iminol binding pattern, and (2) single versus double charge on the metal center. Nickel and magnesium ions show similar gas-phase binding behavior, contrasting with their quite different patterns of peptide interaction in

  16. Theoretical NMR spectroscopy of N-heterocyclic carbenes and their metal complexes

    KAUST Repository

    Falivene, Laura

    2016-12-26

    Recent theoretical analysis of the NMR properties of free N-heterocyclic carbenes (NHC) and Metal-NHC complexes has complemented experiments, allowing the establishment of structure/property relationships and the rationalization of otherwise surprising experimental results. In this review, the main conclusions from recent literature are discussed, with the aim to offer a vision of the potential of theoretical analyses of NMR properties.

  17. Use of a Silver Ion Selective Electrode for the Determination of Stability Constants of Metal Complexes

    OpenAIRE

    Akio, Yuchi; Hiroko, Wada; Genkichi, Nakagawa

    1985-01-01

    The potential response of a sulfide-based silver ion selective electrode was examined in various metal buffer solutions. In every system tested, the potential response of the electrode was rapid and the electrode potential correctly reflected the free silver ion concentration in the solution. The stability constants of silver complexes with seven ligands were determined. This electrode was used also to measure the free cyanide ion concentration in the solutions containing silver, cyanide and ...

  18. Synthesis, Spectroscopic Characterization and Biological Activities of Transition Metal Complexes Derived from a Tridentate Schiff Base

    Directory of Open Access Journals (Sweden)

    J. Senthil Kumaran

    2013-01-01

    Full Text Available A new series of Cu (II, Ni (II, Co (II and Zn (II complexes have been synthesized from the Schiff base derived from 4-hydroxy-3-methoxybenzylidine-4-aminoantipyrine and 2-aminophenol. The structural features have been determined from their elemental analysis, magnetic susceptibility, molar conductance, Mass, IR, UV-Vis, 1H-NMR, 13C-NMR and ESR spectral studies. The redox behavior of the copper complex has been studied by cyclic voltammetry. The data confirm that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes propose an octahedral geometry around the central metal ion. All the metal complexes with DNA structure were guided by the presence of inter-molecular C–H⋯O and C–H⋯N hydrogen bonds. The biological activity of the synthesized compounds were tested against the bacterial species such as Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris and fungal species such as Candida albicans by the well-diffusion method.

  19. Copper-based metal coordination complexes with Voriconazole ligand: Syntheses, structures and antimicrobial properties

    Science.gov (United States)

    Zhao, Yan-Ming; Tang, Gui-Mei; Wang, Yong-Tao; Cui, Yue-Zhi; Ng, Seik Weng

    2018-03-01

    Three new chiral metal coordination complexes, namely, [Cu(FZ)2(CH3COO)2(H2O)]·2H2O (1), [Cu(FZ)2(NO3)2] (2), and [Cu2(FZ)2 (H2O)8](SO4)2·4H2O (3) [FZ = (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoro-4-pyrimidiny)-1-(1H-1,2,4-triazol-1-yl)-2-butanol) (Voriconazole)] have been obtained by the reaction of Cu(II) salts and the free ligand FZ at room temperature. Complexes 1-3 were structurally characterized by X-ray single-crystal diffraction, IR, UV-vis, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). Complex 1 crystallizes in the chiral space group C2, which exhibits a mono-nuclear structure. Both complexes 2 and 3 display a one-dimensional (1D) tape structure, which crystallize in chiral space group P21212 and P212121, respectively. Among these complexes, there exist a variety of hydrogen bonds and stacking interactions, through which a three-dimensional supramolecular architecture will be generated. Compared with the standard (Voriconazole), these Cu-based complexes show the more potent inhibiting efficiency against the species of Candida and Aspergillus. Moreover, among these complexes, complex 1 shows the most excellent efficiency.

  20. Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects

    International Nuclear Information System (INIS)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-01-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2 , where M   =  Mo, W; X   =  S, Se, Te) while including spin–orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. (paper)

  1. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  2. Depressing Iron Mineral by Metallic-Starch Complex (MSC in Reverse Flotation and Its Mechanism

    Directory of Open Access Journals (Sweden)

    Tao Yue

    2018-02-01

    Full Text Available A series of metallic-starch complex (MSC solutions, synthesized by mixing relevant metallic ionic solutions with the caustic starch solution, were used as the flotation depressants to investigate their depressing effects on hematite ore. The MSC is a nano-sized colloidal complex which is configured by hydrophilic metallic hydroxide as the colloidal nucleus on which starch and hydroxyl complex are adsorbed, resulting in a larger molecule than starch itself. The flotation tests showed that the depressing abilities of various MSC (Fe3+, Zn2+, Pb2+ and Mg2+ on the iron minerals were higher than the caustic starch, and the order of depression ability was: Zn2+-starch > Pb2+-starch > Fe3+-starch > Mg2+-starch > caustic starch. Based on the adsorption analysis, the high depressing ability of the MSC arose from increasing the adsorption density of starch on iron minerals and slightly reducing the absorption of the collector dodecylamine. Adsorption behaviour also indicated that the adsorption of the MSC on mineral surfaces was thicker than the caustic starch, and among various MSC the adsorption of Fe3+-starch exhibited the thickest adsorption layer while that of Mg2+-starch the thinnest. Zeta potential indicated that with a weaker electronegativity than the caustic starch, MSC adsorbed onto iron minerals more easily, and the strong electrostatic adsorption with the aid of the hydrogen bonding and chemisorption agreed well with the high depressing ability of the MSC.

  3. Effect of G-quadruplex polymorphism on the recognition of telomeric DNA by a metal complex.

    Directory of Open Access Journals (Sweden)

    Caterina Musetti

    Full Text Available The physiological role(s played by G-quadruplexes renders these 'non-canonical' DNA secondary structures interesting new targets for therapeutic intervention. In particular, the search for ligands for selective recognition and stabilization of G-quadruplex arrangements has led to a number of novel targeted agents. An interesting approach is represented by the use of metal-complexes, their binding to DNA being modulated by ligand and metal ion nature, and by complex stoichiometry. In this work we characterized thermodynamically and stereochemically the interactions of a Ni(II bis-phenanthroline derivative with telomeric G-quadruplex sequences using calorimetric, chiroptical and NMR techniques. We employed three strictly related sequences based on the human telomeric repeat, namely Tel22, Tel26 and wtTel26, which assume distinct conformations in potassium containing solutions. We were able to monitor specific enthalpy/entropy changes according to the structural features of the target telomeric sequence and to dissect the binding process into distinct events. Interestingly, temperature effects turned out to be prominent both in terms of binding stoichiometry and ΔH/ΔS contributions, while the final G-quadruplex-metal complex architecture tended to merge for the examined sequences. These results underline the critical choice of experimental conditions and DNA sequence for practical use of thermodynamic data in the rational development of effective G-quadruplex binders.

  4. Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives.

    Science.gov (United States)

    Sathish, Veerasamy; Ramdass, Arumugam; Velayudham, Murugesan; Lu, Kuang-Lieh; Thanasekaran, Pounraj; Rajagopal, Seenivasan

    2017-12-12

    The detection of chemical explosives is a major area of research interest and is essential for the military as well as homeland security to counter the catastrophic effects of global terrorism. In recent years, tremendous effort has been devoted to the development of luminescent materials for the detection of explosives in the vapor, solution, and solid states with a high degree of selectivity and sensitivity and a rapid response time. Apart from the wide range of organic fluorescent chemosensors, transition metal complexes play a prominent role in the sensing of nitroaromatic explosives owing to their rich photophysical characteristics. This review briefly summarizes the salient features of the design and preparation of transition metal (Zn(ii), Ir(iii), Pd(ii), Pt(ii), Re(i) and Ru(ii)) complexes/metallacycles/metallosupramolecules with emphasis on their photophysical properties, sensing behavior, mechanism of action, and the driving forces for detecting explosives and future prospects and challenges. Most of the probes that have been reported to date act as "turn-off" luminescent sensors because their emission (intensity, lifetime, and quantum yield) is eventually quenched upon sensing with nitroaromatic compounds (NACs) through photo-induced electron or energy transfer. These unique properties of transition metal complexes in response to explosives open up new vistas for the development of real world applications such as on-site detection, in-field security, forensic research, etc.

  5. Evaluation of Bosniak category IIF complex renal cysts

    DEFF Research Database (Denmark)

    Graumann, Ole; Osther, Susanne Sloth; Karstoft, Jens

    2013-01-01

    complex cystic lesions in the kidney (n = 550 in the same number of patients) were reclassified according to the Bosniak classification by two radiologists in consensus. If a patient had more than one lesion, only the highest Bosniak category was recorded. All Bosniak IIF lesions with ≥2-year follow......PURPOSE: To evaluate moderately complex renal cysts of Bosniak category IIF. MATERIALS AND METHODS: The regional ethics committee approved the study. In the period 2003-2009, radiological CT reports of 8,402 CT examinations of the kidneys were analysed retrospectively by one radiologist. All...... nephron-sparing approach to complex renal cysts. TEACHING POINTS : • The Bosniak classification is used to categorise complex renal cystic masses • BIIF cysts behave mostly as benign lesions • Radiological progression in complexity occurs in only 16 % of cases • BIIF category seems promising for clinical...

  6. Voltammetric investigation of the distribution of hydroxo-, chloro-, edta and carbohydrate complexes of lead, chromium, zinc, cadmium and copper: Potential application to metal speciation studies in brewery wastewater

    Directory of Open Access Journals (Sweden)

    J. Catherine Ngila

    2005-06-01

    Full Text Available This paper reports results on complex formation reactions between OH-, Cl-, EDTA and carbohydrate ligands with Pb2+ ions at various [LT]:[MT] ratios and at different pH values (1.5-13.0. Differential pulse anodic stripping voltammetry (DPASV employing an ex situ plated thin mercury film electrode (TMFE was used to measure the shifts in peak potentials. Formation of simple, polyligand as well as mixed ligand complexes are reported. The reactions between the Pb(II and the carbohydrate ligands showed pronounced pH dependency on metal forms compared to reactions with simple inorganic ions such as chloride. Modeling of the experimental data obtained with the DPASV method was done using computer software (3D-VISE. The calculated complex formation curves (CCFC based on mass balance equations were fitted to the experimental complex formation curves (ECFC and the goodness of the fit evaluated (RSD < 5%. These studies were applied to Pb, Cr, Zn, Cd and Cu speciation in brewery wastewater in which differences between total metal determined by flame atomic absorption spectrometry (FAAS after acid digestion and labile fraction determined by DPASV were used to estimate the percentage of non-labile fraction (mainly metal-organic complexes. Up to 90% of the metal was found to exist as the “inert” fraction, implying that the effluent system from the brewery industry poses minimal health risks to the environment with regard to toxic forms of the metals as the organically bound metal forms are generally known to have low toxicity compared to the aquo or labile metal forms.

  7. Can complex health interventions be evaluated using routine clinical and administrative data? - a realist evaluation approach.

    Science.gov (United States)

    Riippa, Iiris; Kahilakoski, Olli-Pekka; Linna, Miika; Hietala, Minni

    2014-12-01

    Interventions aimed at improving chronic care typically consist of multiple interconnected parts, all of which are essential to the effect of the intervention. Limited attention has been paid to the use of routine clinical and administrative data in the evolution of these complex interventions. The purpose of this study is to examine the feasibility of routinely collected data when evaluating complex interventions and to demonstrate how a theory-based, realist approach to evaluation may increase the feasibility of routine data. We present a case study of evaluating a complex intervention, namely, the chronic care model (CCM), in Finnish primary health care. Issues typically faced when evaluating the effects of a complex intervention on health outcomes and resource use are identified by using routine data in a natural setting, and we apply context-mechanism-outcome (CMO) approach from the realist evaluation paradigm to improve the feasibility of using routine data in evaluating complex interventions. From an experimentalist approach that dominates the medical literature, routine data collected from a single centre offered a poor starting point for evaluating complex interventions. However, the CMO approach offered tools for identifying indicators needed to evaluate complex interventions. Applying the CMO approach can aid in a typical evaluation setting encountered by primary care managers: one in which the intervention is complex, the primary data source is routinely collected clinical and administrative data from a single centre, and in which randomization of patients into two research arms is too resource consuming to arrange. © 2014 John Wiley & Sons, Ltd.

  8. A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence

    DEFF Research Database (Denmark)

    Chabera, Pavel; Liu, Yizhu; Prakash, Om

    2017-01-01

    sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(III) d(5) complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer ((LMCT)-L-2) state that is rarely seen for transition-metal...... complexes(4,16,17). The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions......Transition-metal complexes are used as photosensitizers(1), in light-emitting diodes, for biosensing and in photocatalysis(2). A key feature in these applications is excitation from the ground state to a charge-transfer state(3,4); the long charge-transfer-state lifetimes typical for complexes...

  9. Synthesis, characterization, DFT calculations and molecular docking studies of metal (II) complexes

    Science.gov (United States)

    Ekennia, Anthony C.; Osowole, Aderoju A.; Olasunkanmi, Lukman O.; Onwudiwe, Damian C.; Olubiyi, Olujide O.; Ebenso, Eno E.

    2017-12-01

    Two novel ligands, 2-methyl-6-[(5-methyl benzothiazol-2-ylimino)-methyl]-2-methoxycyclohexa-1,5-dienol (HL1) and 2-methyl-6-[(5-floro-benzothiazol-2-ylimino)-methyl]-2-methoxycyclohexa-1,5-dienol (HL2) were synthesized from the condensation reaction of 2-hydroxy-3-methoxybenzaldehyde with 2-amino-6-methylbenzothiazole and 2-amino-6-florobenzothiazole respectively. Mononuclear Cu(II), Ni(II) and Co(II) complexes of the ligands were synthesized and characterized using elemental analysis, magnetic susceptibility, thermogravimetric, conductance, infrared and UV-visible spectroscopic measurements. The 1H NMR, 13C NMR, Dept-90 NMR spectroscopy of the ligands was also recorded to establish the formation of the Schiff bases. The analytical data of the complexes showed that the metal to ligand ratio was 1:1 for Cu(II), Ni(II) and Co(II) complexes of HL1 and Cu(II) complexes of HL2, while Ni(II) and Co(II) complexes of HL2 was 1:2. The infrared spectral data showed that the chelation behaviour of the ligands towards transition metal ions was through phenolic oxygen and azomethine nitrogen atoms. Molar conductivity revealed the non-electrolytic nature of all chelates in DMSO solution. The geometry of the complexes was deduced from thermal, magnetic susceptibility and UV-visible spectroscopic results and was further confirmed with DFT calculations. The compounds were subjected to in-vitro antibacterial screening using agar well diffusion method on some clinically isolated Gram positive and Gram negative bacteria strains. The compounds showed varied antibacterial activities. Molecular docking studies were carried out to study the molecular interaction between the compounds and different enzymes of the bacterial strains. The antioxidant potentials of the compounds were studied using ferrous ion chelating assay and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. However, the complexes had better antioxidant potentials compared to the ligands.

  10. Evaluating Education and Science at the KSC Visitor Complex

    Science.gov (United States)

    Erickson, Lance K.

    2002-01-01

    As part of a two-year NASA-ASEE project, a preliminary evaluation and subsequent recommendations were developed to improve the education and science content of the Kennedy Space Center Visitor Complex exhibits. Recommendations for improvements in those exhibits were based on qualitative descriptions of the exhibits, on comparisons to similar exhibit collections, and on available evaluation processes. Because of the subjective nature of measuring content in a broad group of exhibits and displays, emphasis is placed on employing a survey format for a follow-on, more quantitative evaluation. The use of an external organization for this evaluation development is also recommended to reduce bias and increase validity.

  11. Crystal structure of glucose isomerase in complex with xylitol inhibitor in one metal binding mode.

    Science.gov (United States)

    Bae, Ji-Eun; Kim, In Jung; Nam, Ki Hyun

    2017-11-04

    Glucose isomerase (GI) is an intramolecular oxidoreductase that interconverts aldoses and ketoses. These characteristics are widely used in the food, detergent, and pharmaceutical industries. In order to obtain an efficient GI, identification of novel GI genes and substrate binding/inhibition have been studied. Xylitol is a well-known inhibitor of GI. In Streptomyces rubiginosus, two crystal structures have been reported for GI in complex with xylitol inhibitor. However, a structural comparison showed that xylitol can have variable conformation at the substrate binding site, e.g., a nonspecific binding mode. In this study, we report the crystal structure of S. rubiginosus GI in a complex with xylitol and glycerol. Our crystal structure showed one metal binding mode in GI, which we presumed to represent the inactive form of the GI. The metal ion was found only at the M1 site, which was involved in substrate binding, and was not present at the M2 site, which was involved in catalytic function. The O 2 and O 4 atoms of xylitol molecules contributed to the stable octahedral coordination of the metal in M1. Although there was no metal at the M2 site, no large conformational change was observed for the conserved residues coordinating M2. Our structural analysis showed that the metal at the M2 site was not important when a xylitol inhibitor was bound to the M1 site in GI. Thus, these findings provided important information for elucidation or engineering of GI functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Magnetic, structural and computational studies on transition metal complexes of a neurotransmitter, histamine

    Science.gov (United States)

    Kaştaş, Gökhan; Paşaoğlu, Hümeyra; Karabulut, Bünyamin

    2011-08-01

    In this study, the transition metal complexes of histamine (His) prepared with oxalate (Ox), that is, [Cu(His)(Ox)(H 2O)], [Zn(His)(Ox)(H 2O)] (or [Zn(His)(Ox)]·(H 2O)), [Cd(His)(Ox)(H 2O) 2] and [Co(His)(Ox)(H 2O)], are investigated experimentally and computationally as part of ongoing studies on the mode of complexation, the tautomeric form and non-covalent interactions of histamine in supramolecular structures. The structural properties of prepared complexes are experimentally studied by X-ray diffraction (XRD) technique and Fourier transform infrared (FT-IR) spectroscopy and computationally by density functional theory (DFT). The magnetic properties of the complexes are investigated by electron paramagnetic resonance (EPR) technique. The [Cu(His)(Ox)(H 2O)] complex has a supramolecular structure constructed by two different non-covalent interactions as hydrogen bond and C-H⋯π interactions. EPR studies on [Cu(His)(Ox)(H 2O)], Cu 2+-doped [Zn(His)(Ox)(H 2O)] and [Cd(His)(Ox)(H 2O) 2] complexes show that the paramagnetic centers have axially symmetric g values. It is also found that the ground state of the unpaired electrons in the complexes is dominantly d and unpaired electrons' life time is spent over this orbital.

  13. SQUIDs and inverse problem techniques in nondestructive evaluation of metals

    CERN Document Server

    Bruno, A C

    2001-01-01

    Superconducting Quantum Interference Devices coupled to gradiometers were used to defect flaws in metals. We detected flaws in aluminium samples carrying current, measuring fields at lift-off distances up to one order of magnitude larger than the size of the flaw. Configured as a susceptometer we detected surface-braking flaws in steel samples, measuring the distortion on the applied magnetic field. We also used spatial filtering techniques to enhance the visualization of the magnetic field due to the flaws. In order to assess its severity, we used the generalized inverse method and singular value decomposition to reconstruct small spherical inclusions in steel. In addition, finite elements and optimization techniques were used to image complex shaped flaws.

  14. Using Metal Complex Reduced States to Monitor the Oxidation of DNA

    Science.gov (United States)

    Olmon, Eric D.; Hill, Michael G.; Barton, Jacqueline K.

    2011-01-01

    Metallointercalating photooxidants interact intimately with the base stack of double-stranded DNA and exhibit rich photophysical and electrochemical properties, making them ideal probes for the study of DNA-mediated charge transport (CT). The complexes [Rh(phi)2(bpy′)]3+ (phi = 9,10-phenanthrenequinone diimine; bpy′ = 4-methyl-4′-(butyric acid)-2,2′-bipyridine), [Ir(ppy)2(dppz′)]+ (ppy = 2-phenylpyridine; dppz′ = 6-(dipyrido[3,2-a:2′,3′-c]phenazin-11-yl)hex-5-ynoic acid), and [Re(CO)3(dppz)(py′)]+ (dppz = dipyrido[2,3-a:2′,3′-c]phenazine; py′ = 3-(pyridin-4-yl)-propanoic acid) were each covalently tethered to DNA in order to compare their photooxidation efficiencies. Biochemical studies show that upon irradiation, the three complexes oxidize guanine by long-range DNA-mediated CT with the efficiency: Rh > Re > Ir. Comparison of spectra obtained by spectroelectrochemistry after bulk reduction of the free metal complexes with those obtained by transient absorption (TA) spectroscopy of the conjugates suggests that the reduced metal states form following excitation of the conjugates at 355 nm. Electrochemical experiments and kinetic analysis of the TA decays indicate that the thermodynamic driving force for CT, variations in the efficiency of back electron transfer, and coupling to DNA are the primary factors responsible for the trend observed in the guanine oxidation yield of the three complexes. PMID:22043853

  15. Synthesis and spectral characterisation of a new metal complex with a bidentate ligand

    Science.gov (United States)

    Niculescu, Violeta; Tamaian, Radu; Păun, Nadia; Pîrnău, Adrian; Szabo, Laszlo

    2009-08-01

    Literature mentions the important biologic-active, antimalaric, antiviral, antitumoural, tuberculostatic properties of 3-alkyl-and 3-alkenyl-substituted derivatives of 2-hydroxy-1,4-naphthoquinone and arylamino-1,4-naphthoquinones; the same properties are shown by the complexes that these ligands form with metal ions, which act in the biological structures as essential microelement. This paper reports the study of the structure of some new electron-transfer complexes with bidentate ligands of the naphthoquinone series by using IR, visible and UV spectra. A quantum-mechanical interpretation of the electronic transitions for the free and coordinated ligand has been performed in order to get information on the coordination of the heteroatoms to the M(II). The complexes of transitional metals with naphthoquinonic ligand have been prepared by following the procedure described by Jensen and Nielsen. The structural formula of the free and coordinated organic ligand has been modelled on the computer. The electronic spectra of the complexes studied lead to the conclusion that they are square-planar.

  16. New 14-membered octaazamacrocyclic complexes of divalent transition metal ions with their antimicrobial and spectral studies

    Science.gov (United States)

    Singh, D. P.; Kumar, Krishan; Sharma, Chetan

    2010-01-01

    A novel series of macrocyclic complexes of the type [M(C 18H 14N 10S 2)X 2]; where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); X = Cl -, NO 3-, CH 3COO - has been synthesized by [2+2] condensation of thiocarbohydrazide and isatin in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic measurements, electronic, NMR and infrared spectral studies. The low value of molar conductance indicates them to be non-electrolytes. On the basis of various studies a distorted octahedral geometry may be proposed for all of these complexes. These metal complexes were also tested for their in vitro antimicrobial activities against some Gram-positive bacteria viz. Staphylococcus aureus, Bacillus subtilis, and some Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and some fungal strains Aspergillus niger, Aspergillus flavus (molds), Candida albicans, Saccharomyces cerevisiae (yeasts). The results obtained were compared with standard antibiotic: Ciprofloxacin and the standard antifungal drug: Amphotericin-B.

  17. Chemodynamics of metal ion complexation by charged nanoparticles: a dimensionless rationale for soft, core-shell and hard particle types.

    Science.gov (United States)

    Duval, Jérôme F L

    2017-05-17

    Soft nanoparticulate complexants are defined by a spatial confinement of reactive sites and electric charges inside their 3D body. In turn, their reactivity with metal ions differs significantly from that of simple molecular ligands. A revisited form of the Eigen mechanism recently elucidated the processes leading to metal/soft particle pair formation. Depending on e.g. particle size and metal ion nature, chemodynamics of nanoparticulate metal complexes is controlled by metal conductive diffusion to/from the particles, by intraparticulate complex formation/dissociation kinetics, or by both. In this study, a formalism is elaborated to achieve a comprehensive and systematic identification of the rate-limiting step governing the overall formation and dissociation of nanoparticulate metal complexes. The theory covers the different types of spherical particulate complexants, i.e. 3D soft/permeable and core-shell particles, and hard particles with reactive sites at the surface. The nature of the rate-limiting step is formulated by a dynamical criterion involving a power law function of the ratio between particle radius and an intraparticulate reaction layer thickness defined by the key electrostatic, diffusional and kinetic components of metal complex formation/dissociation. The analysis clarifies the intertwined contributions of particle properties (size, soft or hard type, charge, density or number of reactive sites) and aqueous metal ion dehydration kinetics in defining the chemodynamic behavior of nanoparticulate metal complexes. For that purpose, fully parameterized chemodynamic portraits involving the defining features of particulate ligand and metal ion as well as the physicochemical conditions in the local intraparticulate environment, are constructed and thoroughly discussed under conditions of practical interest.

  18. Separation of heavy metal from water samples--The study of the synthesis of complex compounds of heavy metal with dithiocarbamates.

    Science.gov (United States)

    Kane, Sonila; Lazo, Pranvera; Ylli, Fatos; Stafilov, Trajce; Qarri, Flora; Marku, Elda

    2016-01-01

    The toxicity and persistence of heavy metal (HM) ions may cause several problems to marine organisms and human beings. For this reason, it is growing the interest in the chemistry of sulphur donor ligands such as dithiocarbamates (DDTC), due to their applications particularly in analytical chemistry sciences. The aim of this work has been the study of heavy metal complexes with DDTC and their application in separation techniques for the preconcentration and/or removing of heavy metals from the water solutions or the water ecosystems prior to their analysis. The HM-DDTC complexes were prepared and characterized by elemental analysis, FTIR and UV-Vis spectroscopic methods. The elemental analysis and the yield of the synthesis (97.5-99.9%) revealed a good purity of the complexes. High values of complex formation yields of HM-DDTC complexes is an important parameter for quantitatively removing/and or preconcentration of heavy metal ions from water solution even at low concentration of heavy metals. Significant differences founded between the characteristic parameters of UV/Vis (λmax and ϵmax) and FTIR absorption spectra of the parent DDTC and HM-DDTC complexes revealed the complex formation. The presence of the peaks at the visible spectral zone is important to M(nd(10-m))-L electron charge transfer of the new complexes. The (C=N) (1450-1500 cm(-1)) and the un-splitting (C-S) band (950-1002 cm(-1)) in HM-DDTC FTIR spectra are important to the identification of their bidentate mode (HM[S2CNC4H10]2). The total CHCl3 extraction of trace level heavy metals from water samples after their complex formation with DDTC is reported in this article.

  19. Infrared multiple photon dissociation action spectroscopy of alkali metal cation-cyclen complexes: Effects of alkali metal cation size on gas-phase conformation

    NARCIS (Netherlands)

    Austin, C.A.; Chen, Y.; Kaczan, C.M.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cationized complexes of cyclen (1,4,7,10-tetraazacyclododecane) are examined via infrared multiple photon dissociation (IRMPD) action spectroscopy and electronic structure theory calculations. The measured IRMPD action spectra of four M+(cyclen) complexes are

  20. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    Science.gov (United States)

    Steeves, Arthur F.; Stewart, James C.

    1981-01-01

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  1. TiO2 Photocatalyzed Oxidation of Free and Complex Metallic Cyanides.

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, J. E.; Esteghamatdarsthad, B.; Renteria, J.

    2006-07-01

    The TiO2 photo catalyzed oxidation of free cyanide and transition metal cyanide complexes often found in industrial mining wastes were studied. The photoreactor system used was a UV illuminated and stirred tank with suspended particles of TiO2. After to determine the optimization parameters such as light intensity, concentration of complex and free cyanides, in ideal conditions, the effect of the presence of different type of anions was also studied. The model substances chosen were potassium cyanide and cyanides complexes of Iron, Cobalt and Copper in a strong alkaline solution (pH = 11.0 - 12.0). The experimental results indicate that in the case of the hexaferricyanide complex Fe(CN)6 3, the reaction occur in two steps. The first step is the breakdown of the metal-cyanide bond (photo-dissociation) forming free cyanide (CN-) and Fe3+ ions. The second step is the photo-oxidation of the free cyanides formed before. The ions Fe3+ and OH- present in the alkaline solution, precipitate as iron hydroxide Fe(OH)3. During the photo-dissociation step of the iron complex, free CN- ions produced reaches a maximum concentration before it is eliminated by photo-oxidation. The free cyanide produced from the hexaferricyanide complex disappears rapidly at a velocity of 64.6 + - 5.0 ?M/min. This rate of photo-oxidation is comparable with the experiments using just alkaline solutions of potassium cyanide ('free cyanides'). In contrast, in alkaline solutions of cyanide complexes of Cu and Co the rate of photo-oxidation was substantially reduced (6.17+ - 0.80 ?M/min and 0.04 + - 0.010 ?M/min, respectively) and do not show any initial increase of free cyanides in the suspension. The slower rate of photo-oxidation suggests the formation of very stable hydroxyl-cyanide polymeric metallic complexes in the reaction mix. The photo-oxidation pathway of the nitrogen oxide products was also investigated and found that the final product consists mainly of nitrate ions. (Author)

  2. Evaluation of Wet Digestion Methods for Quantification of Metal Content in Electronic Scrap Material

    Directory of Open Access Journals (Sweden)

    Subhabrata Das

    2017-11-01

    Full Text Available Recent advances in the electronics sector and the short life-span of electronic products have triggered an exponential increase in the generation of electronic waste (E-waste. Effective recycling of E-waste has thus become a serious solid waste management challenge. E-waste management technologies include pyrometallurgy, hydrometallurgy, and bioleaching. Determining the metal content of an E-waste sample is critical in evaluating the efficiency of a metal recovery method in E-waste recycling. However, E-waste is complex and of diverse origins. The lack of a standard digestion method for E-waste has resulted in difficulty in comparing the efficiencies of different metal recovery processes. In this study, several solid digestion protocols including American Society for Testing and Materials (ASTM-D6357-11, United States Environment Protection Agency Solid Waste (US EPA SW 846 Method 3050b, ultrasound-assisted, and microwave digestion methods were compared to determine the metal content (Ag, Al, Au, Cu, Fe, Ni, Pb, Pd, Sn, and Zn of electronic scrap materials (ESM obtained from two different sources. The highest metal recovery (mg/g of ESM was obtained using ASTM D6357-11 for most of the metals, which remained mainly bound to silicate fractions, while a microwave-assisted digestion protocol (MWD-2 was more effective in solubilizing Al, Pb, and Sn. The study highlights the need for a judicious selection of digestion protocol, and proposes steps for selecting an effective acid digestion method for ESM.

  3. Noncovalent functionalization of carbon nanotubes with porphyrins: meso-tetraphenylporphine and its transition metal complexes.

    Science.gov (United States)

    Basiuk, Elena V; Basiuk, Vladimir A; Santiago, Patricia; Puente-Lee, Iván

    2007-01-01

    Noncovalent functionalization of carbon nanotubes with meso-tetraphenylporphine (H2TPP) and its metal(II) complexes NiTPP and CoTPP was studied by means of different experimental techniques and theoretical calculations. As follows from the experimental adsorption curves, free H2TPP ligand exhibits the strongest adsorption of three porphyrins tested, followed by CoTPP and NiTPP. At the highest porphyrin concentrations studied, the adsorption at multi-walled carbon nanotubes was about 2% (by weight) for H2TPP, 1% for CoTPP, and 0.5% for NiTPP. Transmission electron microscopy observations revealed carbon nanotubes with a variable degree of surface coverage with porphyrin molecules. According to scanning electron microscopy, the nanotubes glue together rather than debundle; apparently, a large porphyrin excess resulting in polymolecular adsorption is essential for exfoliation/debundling of the nanotube ropes. The nanotube/porphyrins hybrids were studied by infrared and Raman spectroscopy, as well as by scanning tunneling microscopy. Electronic structure calculations were performed at the B3LYP/LANL2MB theoretical level with the unsubstituted porphine (H2P) and its Co(II) complex, on one hand, and open-end armchair (5,5) (ANT) and zigzag (8,0) (ZNT) SWNT models, on the other hand. The interaction of H2P with ANT was found to be by 3.9 kcal mol(-1) stronger than that of CoP. At the same time, CoP+ZNT complex is more stable by 42.7 kcal mol(-1) as compared to H2P+ZNT According to these calculated results, the free porphyrins interact less selectively with zigzag and armchair (i.e., semiconducting and metallic) nanotubes, whereas the difference becomes very large for the metal porphyrins. HOMO-LUMO structure, electrostatic potential and spin density distribution for the paramagnetic cobalt(II) complexes were analyzed.

  4. Evaluation of Diazatetraoxa Cryptand as Extractant for Transition Metals and Pb2+

    Directory of Open Access Journals (Sweden)

    Gülsev Dilber

    2014-12-01

    Full Text Available The extractability of metal cations such as Mn2+, Co2+, Cu2+, Zn2+ and Pb2+ from aqueous phase to organic phase with 19-nitro-6,7,15,16,23,24-hexahydro-13H,26H-14,25-propanotribenzo-[b,I,o][1,4,11,14,7,18]-tetraoxadiazacycloikocine was investigated by means of UV-vis spectrophotometer. The aqueous phase and the organic phase contained metal picrate and the ligands, respectively. Chloroform and dichloromethane were the organic solvents. The effect of pH on the percent extraction was evaluated between 2.0 and 5.5 for both organic solvents. The range at which high percent extraction of the ligand was obtained was between pH 5.0 to 5.5 for both solvents. The most effective transport was observed for Mn2+ with 84.69 % picrate among the tested metal picrates with dichloromethane at pH 5.5. The extraction constant values (log Kex were determined for extracted metal complexes at the most effective extraction pH.

  5. The allosteric transition of GroEL induced by metal fluoride-ADP complexes.

    Science.gov (United States)

    Inobe, Tomonao; Kikushima, Kenji; Makio, Tadashi; Arai, Munehito; Kuwajima, Kunihiro

    2003-05-23

    To understand the mechanism of a functionally important ATP-induced allosteric transition of GroEL, we have studied the effect of a series of metal fluoride-ADP complexes and vanadate-ADP on GroEL by kinetic fluorescence measurement of pyrene-labeled GroEL and by small-angle X-ray scattering measurement of wild-type GroEL. The metal fluorides and vanadate, complexed with ADP, are known to mimic the gamma-phosphate group of ATP, but they differ in geometry and size; it is expected that these compounds will be useful for investigating the strikingly high specificity of GroEL for ATP that enables the induction of the allosteric transition. The kinetic fluorescence measurement revealed that aluminium, beryllium, and gallium ions, when complexed with the fluoride ion and ADP, induced a biphasic fluorescence change of pyrenyl GroEL, while scandium and vanadate ions did not induce any kinetically observed change in fluorescence. The burst phase and the first phase of the fluorescence kinetics were reversible, while the second phase and subsequent changes were irreversible. The dependence of the burst-phase and the first-phase fluorescence changes on the ADP concentration indicated that the burst phase represents non-cooperative nucleotide binding to GroEL, and that the first phase represents the allosteric transition of GroEL. Both the amplitude and the rate constant of the first phase of the fluorescence kinetics were well understood in terms of a kinetic allosteric model, which is a combination of transition state theory and the Monod-Wyman-Changeux allosteric model. From the kinetic allosteric model analysis, the relative free energy of the transition state in the metal fluoride-ADP-induced allosteric transition of GroEL was found to be larger than the corresponding free energy of the ATP-induced allosteric transition by more than 5.5kcal/mol. However, the X-ray scattering measurements indicated that the allosteric state induced by these metal fluoride-ADP complexes is

  6. Safety evaluation of a conceptual fuel recycle complex

    International Nuclear Information System (INIS)

    Hodges, M.E.

    1980-01-01

    A conceptual design integration study for an integrated Fuel Recycle Complex (FRC) has been completed. A safety evaluation of the radiation shielding, fire precautions, handling of nonradioactive hazardous materials, criticality hazards, operating errors, and the influence of natural phenomena on the FRC shows that all federal regulations are met or exceeded

  7. Evaluating complex fusion systems based on causal probabilistic models

    NARCIS (Netherlands)

    Mignet, F.; Pavlin, G.; de Oude, P.; da Costa, P.C.G.

    2013-01-01

    The paper evaluates a class of fusion systems that support interpretation of complex patterns consisting of large numbers of heterogeneous data obtained from distributed sources at different points in time. The fusion solutions in such domains must be able to process large quantities of

  8. Production of Decorative Cast Metal Matrix Composites with a Complex Relief and Nonmetal Reinforcement Phase

    Directory of Open Access Journals (Sweden)

    Daniela Spasova

    2016-02-01

    Full Text Available The present paper is relevant to the research of possibilities for the production of decorative complex relief metal matrix composites (MMCs of the “invitro” type, with unformed and unchanging reinforcement (strengthening phase in the process of creating a composite. The research on the methods of metal matrix composites development in this paper has been brought to the application of different space vacuum schemes for composite synthesisof vacuuming the space for composites synthesis by using the notion of the “capillary forming”. In this method the metal matrix (copper alloy melt was infiltrated in the space between the pellets of reinforcement phase (quartz particles – SiO2, whereas the classical method adopted for the obtaining MMCs “in vitro”, uses a mechanism of forced insertion of the reinforcement phase into the ready for use melt, followed by homogenization of the composite structure. In the particular case, because the obtained composite will have a complex relief three-dimensional surface, the conditions for compacting the building phases in the three directions x, y, z should be virtually equalized. In order to accomplish the task set, a laboratory system is developed. The experiments were conducted with laboratory equipment elaborated on the base of another equipment for "capillary forming" with extra vacuum. The structures of the obtained MMCs were tested by metallographic analysis.

  9. Potentiometric and spectrofluorimetric studies on complexation of tenoxicam with some metal ions.

    Science.gov (United States)

    Mohamed, Horria A; Wadood, Hanaa M A; Farghaly, Othman A

    2002-06-01

    The interaction of tenoxicam with six metal ions, viz. Fe(III), Bi(III), Sb(III), Cr(III), Cd(II) and Al(III) was studied using potentiometric and fluorimetric methods. In the potentiometric method the ionization constant of the ligand and stability constants of the complexes formed have been tabulated at 25+/-0.1 degrees C, ionic strength of NaNO3 in 50% (v/v) aqueous acetonitrile solution was 0.05 mol x dm(-3). Complexes of 1:1 and/or 1:2 and/or 1:3 metal to ligand ratios are formed. The fluorescence of tenoxicam in the presence and absence of the metal ions was studied. The drug can be determined fluorimetrically in 0.5 M HNO3 at an emission wavelength of 450 nm (excitation at 350 nm). The linear range is 0.040-0.2 microg/ml in the absence of Al(III) and 0.016-0.1 microg/ml in the presence of Al(III). Tenoxicam was determined by the proposed method in tablet, suppository and injection. The recovery percent ranged from 98.16 to 102.22%. The effect of 2-aminopyridine on the recovery of tenoxicam was also investigated.

  10. Cycloadditions to Epoxides Catalyzed by GroupIII-V Transition-Metal Complexes

    KAUST Repository

    D'Elia, Valerio

    2015-05-25

    Complexes of groupIII-V transition metals are gaining increasing importance as Lewis acid catalysts for the cycloaddition of dipolarophiles to epoxides. This review examines the latest reports, including homogeneous and heterogeneous applications. The pivotal step for the cycloaddition reactions is the ring opening of the epoxide following activation by the Lewis acid. Two modes of cleavage (C-C versus C-O) have been identified depending primarily on the substitution pattern of the epoxide, with lesser influence observed from the Lewis acid employed. The widely studied cycloaddition of CO2 to epoxides to afford cyclic carbonates (C-O bond cleavage) has been scrutinized in terms of catalytic efficiency and reaction mechanism, showing that unsophisticated complexes of groupIII-V transition metals are excellent molecular catalysts. These metals have been incorporated, as well, in highly performing, recyclable heterogeneous catalysts. Cycloadditions to epoxides with other dipolarophiles (alkynes, imines, indoles) have been conducted with scandium triflate with remarkable performances (C-C bond cleavage). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes.

    Science.gov (United States)

    DeMuth, J Corinne; McLuckey, Scott A

    2015-01-20

    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  12. DMSO containing ruthenium(ii) hydrazone complexes: in vitro evaluation of biomolecular interaction and anticancer activity.

    Science.gov (United States)

    Alagesan, M; Sathyadevi, P; Krishnamoorthy, P; Bhuvanesh, N S P; Dharmaraj, N

    2014-11-14

    Synthesis, spectral, electrochemical and single crystal X-ray diffraction data of a new series of DMSO containing bivalent ruthenium hydrazone complexes are presented. XRD data of two of the new complexes revealed an octahedral coordination around the ruthenium ion satisfied by NOS2Cl2 atoms. Electrochemical studies showed the metal centred, quasi-reversible, one-electron redox behaviour of the new complexes. The binding of these complexes with biomolecules such as calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) protein investigated by different spectrophotometric methods revealed an intercalative mode of interaction. The in vitro cytotoxicity of these complexes evaluated by the MTT assay on a panel of cancer and normal cell lines indicated that the above complexes are more toxic to cancer cells with a few micromolar concentrations as the IC50 value, but are significantly less toxic to normal cell lines. The observed variations in the binding interactions and cytotoxicity of the complexes were attributed to the nature of the hydrazide moiety of the hydrazones that influences their biological activities.

  13. Intramolecular apical metal-H-Csp3 interaction in molybdenum and silver complexes.

    Science.gov (United States)

    Ciclosi, Marco; Lloret, Julio; Estevan, Francisco; Sanaú, Mercedes; Pérez-Prieto, Julia

    2009-07-14

    The reaction of HTIMP3 (HTIMP3=tris[1-diphenylphosphino)-3-methyl-1H-indol-2-yl]methane) with AgBF4 and Mo(CO)3(NCCH3)3 leads to Ag(HTIMP3)BF4 and Mo(CO)3(HTIMP3), respectively. The metal centre is coordinated to the three phosphorus atoms of the HTIMP3 ligand, which adopts a facial coordination mode, placing a H-Csp3 hydrogen atom at the apical position close to the metal centre. The solid-state structure of Mo(CO)3(HTIMP3) has been determined by X-ray crystallography, and the data have been used as input parameters for obtaining the optimised geometry of the complex using the B3PW91 functional. The silver structure has been modelled from the X-ray parameters of the molybdenum structure. In addition, theoretical calculations on the H-Csp3 downfield shift upon metal coordination has also been performed. They reproduce the experimental H-Csp3 chemical shifts well and supports that proton deshielding is mainly due to the presence of the metal, since the hydrogen is already located in the cone created by the aromatic-phosphino arms in the free ligand.

  14. Treatment of complex heavy metal wastewater using a multi-staged ferrite process.

    Science.gov (United States)

    Tu, Yao-Jen; Chang, Chien-Kuei; You, Chen-Feng; Wang, Shan-Li

    2012-03-30

    Complete removal of heavy metal from complex heavy-metal wastewater (CHMW) requires advanced technology. This study investigated the feasibility of a multi-staged ferrite process (MSFP) for treating CHMW, containing Cd, Cu, Pb, Cr, Zn, Ag, Hg, Ni, Sn and Mn. Our experimental results showed that most of the supernatants after conventional single-step ferrite process could conform to the effluent standard of Environmental Protection Administration in Taiwan. However, the sludge could not satisfy the toxicity characteristic leaching procedure (TCLP) limits due to high Cd, Cu, and Pb concentrations. The performance of MSFP in removing heavy metals from wastewater was subsequently investigated and the parameters of three treating steps in MSFP were optimized under 70°C and 90°C at pH 9, and 80°C at pH 10. After the three-staged procedures, all heavy metals in supernatant and sludge could fulfill the contamination levels regulated by law. In addition, the sludge generated from the MSFP was examined by XRD and forms a stable spinel structure, which could be effectively separated by external magnetic field. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Template synthesis and characterization of biologically active transition metal complexes comprising 14-membered tetraazamacrocyclic ligand

    Directory of Open Access Journals (Sweden)

    DHARMPAL SINGH

    2010-02-01

    Full Text Available A novel series of complexes of the type [M(C28H24N4X2], whereM = Co(II, Ni(II, Cu(II, Zn(II and Cd(II, X = Cl–, NO3–, CH3COO– and (C28H24N4 corresponds to the tetradentate macrocyclic ligand, were synthe¬sized by template condensation of 1,8-diaminonaphthalene and diacetyl in the presence of divalent metal salts in methanolic medium. The complexes were characterized by elemental analyses, conductance and magnetic measurements, as well as by UV/Vis, NMR, IR and MS spectroscopy. The low values of the molar conductance indicate non-electrolyte type of complexes. Based on these spectral data, a distorted octahedral geometry may be proposed for all of these complexes. All the synthesized macrocyclic complexes were tested for in vitro antibacterial activity against some pathogenic bacterial strains, viz Bacillus cereus, Salmonella typhi, Escherichia coli and Staphylococcus aureus. The MIC values shown by the complexes against these bacterial strains were compared with the MIC shown by the standard antibiotics linezolid and cefaclor.

  16. Sulfonamide-metal complexes endowed with potent anti-Trypanosoma cruzi activity.

    Science.gov (United States)

    Chohan, Zahid H; Hernandes, Marcelo Zaldini; Sensato, Fabricio R; Moreira, Diogo Rodrigo Magalhaes; Pereira, Valéria Rego Alves; Neves, Juliana Kelle de Andrade Lemoine; de Oliveira, Andresa Pereira; de Oliveira, Beatriz Coutinho; Leite, Ana Cristina Lima

    2014-04-01

    In this article, we describe that mononuclear complexes composed of (5-chloro-2-hydroxybenzylidene)aminobenzenesulfonamides (L1-3) of general formula (L2(M)2H2O, where M is Co, Cu, Zn, Ni or Mn) reduced epimastigote proliferation and were found cidal for trypomastigotes of Trypanosoma cruzi Y strain. Complexes C5 and C11 have IC50 of 2.7 ± 0.27 and 4.8 ± 0.47 µM, respectively, for trypomastigotes, when the positive control Nifurtimox, which is also an approved drug for Chagas disease, showed IC50 of 2.7 ± 0.25 µM. We tested whether these complexes inhibit the enzyme T. cruzi trypanothione reductase or acting as DNA binders. While none of these complexes inhibited trypanothione reductase, we observed some degree of DNA binding, albeit less pronounced than observed for cisplatin in this assay. Unfortunately, most of these complexes were also toxic for mouse splenocytes. Along with the present studies, we discuss a number of interesting structure-activity relationships and chemical features for these metal complexes, including computational calculations.

  17. Spectro Analytical, Computational and In Vitro Biological Studies of Novel Substituted Quinolone Hydrazone and it's Metal Complexes.

    Science.gov (United States)

    Nagula, Narsimha; Kunche, Sudeepa; Jaheer, Mohmed; Mudavath, Ravi; Sivan, Sreekanth; Ch, Sarala Devi

    2018-01-01

    Some novel transition metal [Cu (II), Ni (II) and Co (II)] complexes of nalidixic acid hydrazone have been prepared and characterized by employing spectro-analytical techniques viz: elemental analysis, 1 H-NMR, Mass, UV-Vis, IR, TGA-DTA, SEM-EDX, ESR and Spectrophotometry studies. The HyperChem 7.5 software was used for geometry optimization of title compound in its molecular and ionic forms. Quantum mechanical parameters, contour maps of highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) and corresponding binding energy values were computed using semi empirical single point PM3 method. The stoichiometric equilibrium studies of metal complexes carried out spectrophotometrically using Job's continuous variation and mole ratio methods inferred formation of 1:2 (ML 2 ) metal complexes in respective systems. The title compound and its metal complexes screened for antibacterial and antifungal properties, exemplified improved activity in metal complexes. The studies of nuclease activity for the cleavage of CT- DNA and MTT assay for in vitro cytotoxic properties involving metal complexes exhibited high activity. In addition, the DNA binding properties of Cu (II), Ni (II) and Co (II) complexes investigated by electronic absorption and fluorescence measurements revealed their good binding ability and commended agreement of K b values obtained from both the techniques. Molecular docking studies were also performed to find the binding affinity of synthesized compounds with DNA (PDB ID: 1N37) and "Thymidine phosphorylase from E.coli" (PDB ID: 4EAF) protein targets.

  18. Synthesis, characterization, antibacterial and antifungal studies of some transition and rare earth metal complexes of N-benzylidene-2-hydroxybenzohydrazide

    Directory of Open Access Journals (Sweden)

    T.K. Chondhekar

    2011-12-01

    Full Text Available The solid complexes of Cu(II, Co(II, Mn(II, La(III and Ce(III were prepared from bidentate Schiff base, N-benzylidene-2-hydroxybenzohydrazide. The Schiff base ligand was synthesized from 2-hyhdroxybenzohydrazide and benzaldehyde. These metal complexes were characterized by molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, FTIR, 1H-NMR, UV-Vis and mass spectroscopy. The analytical data of these metal complexes showed metal:ligand ratio of 1:2. The physico-chemical study supports the presence of square planar geometry around Cu(II and octahedral geometry around Mn(II, Co(II, La(III and Ce(III ions. The IR spectral data reveal that the ligand behaves as bidentate with ON donor atom sequence towards central metal ion. The molar conductance values of metal complexes suggest their non-electrolyte nature. The X-ray diffraction data suggest monoclinic crystal system for these complexes. Thermal behavior (TG/DTA and kinetic parameters calculated by Coats-Redfern method are suggestive of more ordered activated state in complex formation. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus niger and Trichoderma.

  19. A Study of Complexation-ability of Neutral Schiff Bases to Some Metal Cations

    Directory of Open Access Journals (Sweden)

    Umit Cakir

    2007-09-01

    Full Text Available The constants of the extraction equilibrium and the distribution fordichloromethane as an organic solvent having low dielectric constant of metal cations withchiral Schiff bases, benzaldehydene-(S-2-amino-3-phenylpropanol (I, o- benzaldehydene-(S-2-hydroxybenzaldehydene-(S-2-amino-3-phenyl-propanol (II,amino-3-methylbutanol (III with anionic dyes [4-(2-pyridylazo-resorcinol mono sodiummonohydrate (NaPar, sodium picrat (NaPic and potassium picrat (KPic] and some heavymetal chlorides were determined at 25 oC. All the ligands have given strongestcomplexation for NaPar. In contrast, similar behaviour for both alkali metal picrates is notapparent in the complexation of corresponding ligands.

  20. Effects of alkaline earth metal ion complexation on amino acid zwitterion stability: Results from infrared action spectroscopy

    NARCIS (Netherlands)

    Bush, M. F.; Oomens, J.; Saykally, R. J.; Williams, E. R.

    2008-01-01

    The structures of isolated alkaline earth metal cationized amino acids are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and theory. These results indicate that arginine, glutamine, proline, serine, and valine all adopt zwitterionic structures when complexed with