WorldWideScience

Sample records for metal cluster molecules

  1. Deposition of metal Islands, metal clusters and metal containing single molecules on self-assembled monolayers

    Speets, Emiel Adrianus

    2005-01-01

    The central topic of this thesis is the deposition of metals on Self-Assembled Monolayers (SAMs). Metals are deposited in the form of submicron scale islands, nanometer scale clusters, and as supramolecular, organometallic coordination cages. Several SAMs on various substrates were prepared and

  2. Three exciting areas of experimental physical sciences : high temperature superconductors, metal clusters and super molecules of carbon

    Rao, C.N.

    1992-01-01

    The author has narrated his experience in carrying out research in three exciting areas of physical sciences. These areas are : high temperature superconductors, metal clusters and super molecules of carbon. (M.G.B.)

  3. Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach.

    Hu, Zhongwei; Autschbach, Jochen; Jensen, Lasse

    2014-09-28

    Resonance hyper-Rayleigh scattering (HRS) of molecules and metal clusters have been simulated based on a time-dependent density functional theory approach. The resonance first-order hyperpolarizability (β) is obtained by implementing damped quadratic response theory using the (2n + 1) rule. To test this implementation, the prototypical dipolar molecule para-nitroaniline (p-NA) and the octupolar molecule crystal violet are used as benchmark systems. Moreover, small silver clusters Ag 8 and Ag 20 are tested with a focus on determining the two-photon resonant enhancement arising from the strong metal transition. Our results show that, on a per atom basis, the small silver clusters possess two-photon enhanced HRS comparable to that of larger nanoparticles. This finding indicates the potential interest of using small metal clusters for designing new nonlinear optical materials.

  4. Metal cluster compounds - chemistry and importance; clusters containing isolated main group element atoms, large metal cluster compounds, cluster fluxionality

    Walther, B.

    1988-01-01

    This part of the review on metal cluster compounds deals with clusters containing isolated main group element atoms, with high nuclearity clusters and metal cluster fluxionality. It will be obvious that main group element atoms strongly influence the geometry, stability and reactivity of the clusters. High nuclearity clusters are of interest in there own due to the diversity of the structures adopted, but their intermediate position between molecules and the metallic state makes them a fascinating research object too. These both sites of the metal cluster chemistry as well as the frequently observed ligand and core fluxionality are related to the cluster metal and surface analogy. (author)

  5. Fano-induced spontaneous emission enhancement of molecule placed in a cluster of asymmetrically-arranged metallic nanoparticles

    Le, Khai Q., E-mail: khai.lequang@hoasen.edu.vn [Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh (Viet Nam); Department of Electrical Engineering, University of Minnesota, Duluth, MN 55812 (United States); Bai, Jing [Department of Electrical Engineering, University of Minnesota, Duluth, MN 55812 (United States); Nguyen, H.P.T. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ 07102 (United States)

    2016-05-15

    We demonstrate that plasmonic Fano resonance significantly boosts spontaneous emission rate of a single emitter, e.g. atom, molecule and quantum dot, over a moderately broad emission spectrum. An emission enhancement of up to 140 times compared to the system with no external inclusion at tunable frequencies is achieved, providing a new complementary enhancement mechanism. Fano resonance is induced in clusters of four asymmetric-arranged nanoparticles with ultra-small inter-particle gaps. It is shown to play a dominant role in light-emitting enhancement, mediated by combined localized surface plasmon resonances.

  6. Metallic behavior and negative differential resistance properties of (InAs)n (n = 2 − 4) molecule cluster junctions via a combined non–equilibrium Green's function and density functional theory study

    Wang, Qi; Li, Rong; Xu, Yuanlan; Zhang, Jianbing; Miao, Xiangshui; Zhang, Daoli

    2014-01-01

    In this present work, the geometric structures and electronic transport properties of (InAs) n (n = 2, 3, 4) molecule cluster junctions are comparatively investigated using NEGF combined with DFT. Results indicate that all (InAs) n molecule cluster junctions present metallic behavior at the low applied biases ([−2V, 2V]), while NDR appears at a certain high bias range. Our calculation shows that the current of (InAs) 4 molecule cluster–based junction is almost the largest at any bias. The mechanisms of the current–voltage characteristics of all the three molecule cluster junctions are proposed.

  7. Clusters of atoms and molecules theory, experiment, and clusters of atoms

    1994-01-01

    Clusters of Atoms and Molecules is devoted to theoretical concepts and experimental techniques important in the rapidly expanding field of cluster science. Cluster properties are dicussed for clusteres composed of alkali metals, semiconductors, transition metals, carbon, oxides and halides of alkali metals, rare gases, and neutral molecules. The book is composed of several well-integrated treatments all prepared by experts. Each contribution starts out as simple as possible and ends with the latest results so that the book can serve as a text for a course, an introduction into the field, or as a reference book for the expert.

  8. Mononuclear Clusterfullerene Single-Molecule Magnet Containing Strained Fused-Pentagons Stabilized by a Nearly Linear Metal Cyanide Cluster

    Liu, Fupin; Wang, Song; Gao, Cong Li

    2017-01-01

    Fused-pentagons results in an increase of local steric strain according to the isolated pentagon rule (IPR), and for all reported non-IPR clusterfullerenes multiple (two or three) metals are required to stabilize the strained fused-pentagons, making it difficult to access the single-atom properti...... (SMM)....

  9. Metal interactions with boron clusters

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  10. Electronic structure of metal clusters

    Wertheim, G.K.

    1989-01-01

    Photoemission spectra of valence electrons in metal clusters, together with threshold ionization potential measurements, provide a coherent picture of the development of the electronic structure from the isolated atom to the large metallic cluster. An insulator-metal transition occurs at an intermediate cluster size, which serves to define the boundary between small and large clusters. Although the outer electrons may be delocalized over the entire cluster, a small cluster remains insulating until the density of states near the Fermi level exceeds 1/kT. In large clusters, with increasing cluster size, the band structure approaches that of the bulk metal. However, the bands remain significantly narrowed even in a 1000-atom cluster, giving an indication of the importance of long-range order. The core-electron binding-energy shifts of supported metal clusters depend on changes in the band structure in the initial state, as well as on various final-state effects, including changes in core hole screening and the coulomb energy of the final-state charge. For cluster supported on amorphous carbon, this macroscopic coulomb shift is often dominant, as evidenced by the parallel shifts of the core-electron binding energy and the Fermi edge. Auger data confirm that final-state effects dominate in cluster of Sn and some other metals. Surface atom core-level shifts provide a valuable guide to the contributions of initial-state changes in band structure to cluster core-electron binding energy shifts, especially for Au and Pt. The available data indicate that the shift observed in supported, metallic clusters arise largely from the charge left on the cluster by photoemission. As the metal-insulator transition is approached from above, metallic screening is suppressed and the shift is determined by the local environment. (orig.)

  11. Coupled Cluster Theory for Large Molecules

    Baudin, Pablo

    This thesis describes the development of local approximations to coupled cluster (CC) theory for large molecules. Two different methods are presented, the divide–expand–consolidate scheme (DEC), for the calculation of ground state energies, and a local framework denoted LoFEx, for the calculation...

  12. Cluster ions and van der Waals molecules

    Smirnov, Boris M

    1992-01-01

    This review discusses current ideas in the physics and chemistry of cluster ions and Van der Waals molecules as well as presenting numerical data on their parameters and the processes involving them. It is also a detailed reference on basic data relating to many species.

  13. Size selected metal clusters

    First page Back Continue Last page Overview Graphics. The Optical Absorption Spectra of Small Silver Clusters (5-11) ... Soft Landing and Fragmentation of Small Clusters Deposited in Noble-Gas Films. Harbich, W.; Fedrigo, S.; Buttet, J. Phys. Rev. B 1998, 58, 7428. CO combustion on supported gold clusters. Arenz M ...

  14. The molecule-metal interface

    Koch, Norbert; Wee, Andrew Thye Shen

    2013-01-01

    Reviewing recent progress in the fundamental understanding of the molecule-metal interface, this useful addition to the literature focuses on experimental studies and introduces the latest analytical techniques as applied to this interface.The first part covers basic theory and initial principle studies, while the second part introduces readers to photoemission, STM, and synchrotron techniques to examine the atomic structure of the interfaces. The third part presents photoelectron spectroscopy, high-resolution UV photoelectron spectroscopy and electron spin resonance to study the electroni

  15. Supersonic bare metal cluster beams

    Smalley, R.E.

    1991-01-01

    Progress continued this past year on two principal fronts in the study of bare metal clusters: photoelectron spectroscopy of mass selected negative ions, and surface chemisorption of cluster ions levitated in a superconducting magnet as monitored by fourier transform ion cyclotron resonance

  16. The atomic structure of transition metal clusters

    Riley, S.J.

    1995-01-01

    Chemical reactions are used to probe the atomic (geometrical) structure of isolated clusters of transition metal atoms. The number of adsorbate molecules that saturate a cluster, and/or the binding energy of molecules to cluster surfaces, are determined as a function of cluster size. Systematics in these properties often make it possible to propose geometrical structures consistent with the experimental observations. We will describe how studies of the reactions of cobalt and nickel clusters with ammonia, water, and nitrogen provide important and otherwise unavailable structural information. Specifically, small (less than 20 atoms) clusters of cobalt and nickel atoms adopt entirely different structures, the former having packing characteristic of the bulk and the latter having pentagonal symmetry. These observations provide important input for model potentials that attempt to describe the local properties of transition metals. In particular, they point out the importance of a proper treatment of d-orbital binding in these systems, since cobalt and nickel differ so little in their d-orbital occupancy

  17. New projectiles: multicharged metal clusters and biopolymers

    Della-Negra, S.; Gardes, D.; Le Beyec, Y.; Waast, B.

    1991-01-01

    Metal clusters and molecules are the one mean to realize simultaneous impacts of several atoms on a reduced surface(∼100A). The interaction characteristics is the non-linearity of energy deposition; the perturbation that the cluster produces, is above than the sum of the perturbation induced by its components, taken separately. The purpose of ORION project is to accelerate these new projectiles at ORSAY Tandem. The considered mass range is from 100 Daltons to 100 000 Daltons and energy range from MeV to GeV

  18. Fission of Polyanionic Metal Clusters

    König, S.; Jankowski, A.; Marx, G.; Schweikhard, L.; Wolfram, M.

    2018-04-01

    Size-selected dianionic lead clusters Pbn2 -, n =34 - 56 , are stored in a Penning trap and studied with respect to their decay products upon photoexcitation. Contrary to the decay of other dianionic metal clusters, these lead clusters show a variety of decay channels. The mass spectra of the fragments are compared to the corresponding spectra of the monoanionic precursors. This comparison leads to the conclusion that, in the cluster size region below about n =48 , the fission reaction Pbn2 -→Pbn-10 -+Pb10- is the major decay process. Its disappearance at larger cluster sizes may be an indication of a nonmetal to metal transition. Recently, the pair of Pb10- and Pbn-10 - were observed as pronounced fragments in electron-attachment studies [S. König et al., Int. J. Mass Spectrom. 421, 129 (2017), 10.1016/j.ijms.2017.06.009]. The present findings suggest that this combination is the fingerprint of the decay of doubly charged lead clusters. With this assumption, the dianion clusters have been traced down to Pb212 -, whereas the smallest size for the direct observation was as high as n =28 .

  19. Metal nanostructures: from clusters to nanocatalysis and sensors

    Smirnov, B. M.

    2017-12-01

    The properties of metal clusters and nanostructures composed of them are reviewed. Various existing methods for the generation of intense beams of metal clusters and their subsequent conversion into nanostructures are compared. Processes of the flow of a buffer gas with active molecules through a nanostructure are analyzed as a basis of using nanostructures for catalytic applications. The propagation of an electric signal through a nanostructure is studied by analogy with a macroscopic metal. An analysis is given of how a nanostructure changes its resistance as active molecules attach to its surface and are converted into negative ions. These negative ions induce the formation of positively charged vacancies inside the metal conductor and attract the vacancies to together change the resistance of the metal nanostructure. The physical basis is considered for using metal clusters and nanostructures composed of them to create new materials in the form of a porous metal film on the surface of an object. The fundamentals of nanocatalysis are reviewed. Semiconductor conductometric sensors consisting of bound nanoscale grains or fibers acting as a conductor are compared with metal sensors conducting via a percolation cluster, a fractal fiber, or a bunch of interwoven nanofibers formed in superfluid helium. It is shown that sensors on the basis of metal nanostructures are characterized by a higher sensitivity than semiconductor ones, but are not selective. Measurements using metal sensors involve two stages, one of which measures to high precision the attachment rate of active molecules to the sensor conductor, and in the other one the surface of metal nanostructures is cleaned from the attached molecules using a gas discharge plasma (in particular, capillary discharge) with a subsequent chromatography analysis for products of cleaning.

  20. Production of metal particles and clusters

    Mcmanus, S. P.

    1982-01-01

    The feasibility of producing novel metals or metal clusters in a low gravity environment was studied. The production of coordinately unsaturated metal carbonyls by thermolysis or photolysis of stable metal carbonyls has the potential to generate novel catalysts by this technique. Laser irradiation of available metal carbonyls was investigated. It is found that laser induced decomposition of metal carbonyls is feasible for producing a variety of coordinately unsaturated species. Formation of clustered species does occur but is hampered by weak metal-metal bonds.

  1. Formation of nuclear molecules in cluster radioactivity. On interpretation of the cluster radioactivity mechanism

    Volkov, V.V.; Cherepanov, E.A.

    2012-01-01

    The basis for cluster radioactivity is the property of nuclei of light isotopes of elements heavier than lead to spontaneously form clusters - nuclei of light elements - from valence nucleons, which gives rise to asymmetric nuclear molecules. The cluster formation proceeds through successive excitation-free transfer of valence nucleons to the particle and to subsequent light nuclei. Nuclear molecule formation is accompanied by a considerable amount of released energy, which allows quantum-mechanical penetration of the cluster through the exit Coulomb barrier

  2. Atoms, molecules, clusters and synchrotron radiation

    Kui Rexi; Ju Xin

    1995-01-01

    The importance of synchrotron radiation, especially the third generation synchrotron radiation light source, in atomic, molecular and cluster physics is discussed and some views are presented on new methods which may become available for research in the above fields

  3. Electrical transport through a metal-molecule-metal junction; Transport electrique a travers une jonction metal-molecule-metal

    Kergueris, Ch

    1998-12-17

    We investigate the electrical transport through a very few molecules connected to metallic electrodes at room temperature. First, the state of the art in molecular electronics is outlined. We present the most convincing molecular devices reported so far in the literature and the theoretical tools available to analyze the electron transport mechanism through a molecular junction. Second, we describe the use of mechanically controllable break junctions to investigate the electron transport properties through a metal-molecule-metal junction. Two kindsof molecules were adsorbed on the two facing gold electrodes, dodecane-thiol (DT) and bis-thiol-ter-thiophene ({alpha},{omega} T3), that are basically expected to behave as an insulator and as a molecular wire, respectively. In the latter case, we study the chemical reactivity of the molecule and show that {alpha},{omega} T3 is chemically adsorbed on gold electrodes. Current-voltage characteristics of the junction were observed at room temperature. The Gold-DT-Gold junction behaves as a simple metal-insulator-metal junction. On the other hand, the electron transport through a Gold-{alpha},{omega} T3-Gold junction explicitly involves the electronic structure of the molecule which gives rise to step-like features in the current-voltage characteristics. The measured zero bias conductance is interpreted using the scattering theory. At high bias, we discuss two different models: a coherent model where the electron has no time to be completely re-localized in the molecule and a sequential model where the electron is localized in the molecule during the transfer. Finally, we show that the mechanical action of decreasing the inter-electrodes spacing can be used to induce a strong modification of the current-voltage characteristics. (author)

  4. Gas phase reactivity of thermal metal clusters

    Castleman, A.W. Jr.; Harms, A.C.; Leuchtner, R.E.

    1991-01-01

    Reaction kinetics of metal cluster ions under well defined thermal conditions were studied using a flow tube reactor in combination with laser vaporization. Aluminum anions and cations were reacted with oxygen, and several species which are predicted jellium shell closings, were found to have special stability. Metal alloy cluster anions comprised of Al, V and Nb were also seen to react with oxygen. Alloy clusters with an even number of electrons reacted more slowly than odd electron species, and certain clusters appeared to be exceptionally unreactive. Copper cation clusters were observed to associate with carbon monoxide with reactivities that approach bulk behavior at surprisingly small cluster size. These reactions demonstrate how the rate of reaction changes with cluster size. (orig.)

  5. Gas phase reactivity of thermal metal clusters

    Castleman, A. W., Jr.; Harms, A. C.; Leuchtner, R. E.

    1991-03-01

    Reaction kinetics of metal cluster ions under well defined thermal conditions were studied using a flow tube reactor in combination with laser vaporization. Aluminum anions and cations were reacted with oxygen, and several species which are predicted jellium shell closings, were found to have special stability. Metal alloy cluster anions comprised of Al, V and Nb were also seen to react with oxygen. Alloy clusters with an even number of electrons reacted more slowly than odd electron species, and certain clusters appeared to be exceptionally unreactive. Copper cation clusters were observed to associate with carbon monoxide with reactivities that approach bulk behavior at surprisingly small cluster size. These reactions demonstrate how the rate of reaction changes with cluster size.

  6. Photometric metal abundances for twenty clusters

    Jennens, P.A.; Helfer, H.L.

    1975-01-01

    Metal abundances, colour excesses and distance moduli have been determined for individual giant stars, using UBViyz photometry, in NGC 188, 559, 752, 1245, 1342, 1907, 1912, 2099, 5139 (ω cen), 5316, 5617, 5822, 5823, 6067, IC 4651, 6819, 6940, 7142, 7261 and 7789. All six clusters with ages 3 to 8x10 9 yr have metal abundances agreeing with one another; their average value of [Fe/H]=-0.24+-0.05, agrees with the average found for the bright K-giants near the Sun. All six clusters are at least 140pc from the galactic plane. For the younger clusters less than approximately 10 9 yr old, one-third are metal deficient. The very young cluster, NGC 559, is probably very metal weak. (author)

  7. Spectral simulations of polar diatomic molecules immersed in He clusters: application to the ICl (X) molecule

    Villarreal, P; Lara-Castells, M P de; Prosmiti, R; Delgado-Barrio, G; Lopez-Duran, D; Gianturco, F A; Jellinek, J

    2007-01-01

    A recently developed quantum-chemistry-like methodology to study molecules solvated in atomic clusters is applied to the ICl (iodine chloride) polar diatomic molecule immersed in clusters of He atoms. The atoms of the solvent clusters are treated as the 'electrons' and the solvated molecule as a structured 'nucleus' of the combined solvent-solute system. The helium-helium and helium-dopant interactions are represented by parametrized two-body and ab initio three-body potentials, respectively. The ground-state wavefunctions are used to compute the infrared (IR) spectra of the solvated molecule. In agreement with the experimental observations, the computed spectra exhibit considerable differences depending on whether the solvent cluster is comprised of bosonic ( 4 He) or fermionic ( 3 He) atoms. The source of these differences is attributed to the different spin-statistics of the solvent clusters. The bosonic versus fermionic nature of the solvent is reflected in the IR absorption selection rules. Only P and R branches with single state transitions appear in the spectrum when the molecule is solvated in a bosonic cluster. On the other hand, when the solvent represents a fermionic environment, quasi-degenerate multiplets of spin states contribute to each branch and, in addition, the Q-branch becomes also allowed. Combined, these two factors explain the more congested nature of the spectrum in the fermionic case

  8. Collective excitations in deformed alkali metal clusters

    Lipparini, E.; Stringari, S.; Istituto Nazionale di Fisica Nucleare, Povo

    1991-01-01

    A theoretical study of collective excitations in deformed metal clusters is presented. Sum rules are used to study the splittings of the dipole surface plasma resonance originating from the cluster deformation. The vibrating potential model is developed and used to predict the occurrence of a low lying collective mode of orbital magnetic nature. (orig.)

  9. An algebraic model for three-cluster giant molecules

    Hess, P.O.; Bijker, R.; Misicu, S.

    2001-01-01

    After an introduction to the algebraic U(7) model for three bodies, we present a relation of a geometrical description of three-cluster molecule to the algebraic U(7) model. Stiffness parameters of oscillations between each of two clusters are calculated and translated to the model parameter values of the algebraic model. The model is applied to the trinuclear system l32 Sn+ α + ll6 Pd which occurs in the ternary cold fission of 252 Cf. (Author)

  10. Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters

    Ralević, Uroš; Isić, Goran; Anicijević, Dragana Vasić; Laban, Bojana; Bogdanović, Una; Lazović, Vladimir M.; Vodnik, Vesna; Gajić, Radoš

    2018-03-01

    The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry.

  11. Electron scattering on metal clusters and fullerenes

    Solov'yov, A.V.

    2001-01-01

    This paper gives a survey of physical phenomena manifesting themselves in electron scattering on atomic clusters. The main emphasis is made on electron scattering on fullerenes and metal clusters, however some results are applicable to other types of clusters as well. This work is addressed to theoretical aspects of electron-cluster scattering, however some experimental results are also discussed. It is demonstrated that the electron diffraction plays important role in the formation of both elastic and inelastic electron scattering cross sections. It is elucidated the essential role of the multipole surface and volume plasmon excitations in the formation of electron energy loss spectra on clusters (differential and total, above and below ionization potential) as well as the total inelastic scattering cross sections. Particular attention is paid to the elucidation of the role of the polarization interaction in low energy electron-cluster collisions. This problem is considered for electron attachment to metallic clusters and the plasmon enhanced photon emission. Finally, mechanisms of electron excitation widths formation and relaxation of electron excitations in metal clusters and fullerenes are discussed. (authors)

  12. Extragalactic globular clusters. I. The metallicity calibration

    Brodie, J.P.; Huchra, J.P.

    1990-01-01

    The ability of absorption-line strength indices, measured from integrated globular cluster spectra, to predict mean cluster metallicity is explored. Statistical criteria, are used to identify the six best indices out of about 20 measured in a large sample of Galactic and M31 cluster spectra. Linear relations between index and metallicity have been derived along with new calibrations of infrared colors (V - K, J - K, and CO) versus Fe/H. Estimates of metallicity from the six spectroscopic index-metallicity relations have been combined in three different ways to identify the most efficient estimator and the minimum bias estimator of Fe/H - the weighted mean. This provides an estimate of Fe/H accurate to about 15 percent. 37 refs

  13. Manipulating Light with Transition Metal Clusters, Organic Dyes, and Metal Organic Frameworks

    Ogut, Serdar [Univ. of Illinois, Chicago, IL (United States)

    2017-09-11

    The primary goals of our research program is to develop and apply state-of-the-art first-principles methods to predict electronic and optical properties of three systems of significant scientific and technological interest: transition metal clusters, organic dyes, and metal-organic frameworks. These systems offer great opportunities to manipulate light for a wide ranging list of energy-related scientific problems and applications. During this grant period, we focused our investigations on the development, implementation, and benchmarking of many-body Green’s function methods (GW approximation and the Bethe-Salpeter equation) to examine excited-state properties of transition metal/transition-metal-oxide clusters and organic molecules that comprise the building blocks of dyes and metal-organic frameworks.

  14. Study of the electronic properties of organic molecules within a metal-molecule-metal junction

    Lambert, Mathieu

    2003-01-01

    This ph-D thesis is about electronic transport through organic molecules inserted in a metal molecule-metal junction. We describe first a simple process to prepare sub-3 nm gaps by controllable breakage (under an electrical stress) of gold wires lithographed on a SiO 2 Si substrate at low temperature (4.2 K). We show that the involved mechanism is thermally assisted electromigration. We observe that current-voltage (I-V) characteristics of resulting electrodes are stable up to ∼5 V. which gives access to the well-known Fowler-Nordheim regime in the I-V, allowing an accurate characterisation of the gap size. The average gap is found lo be between 1.5 nm in width and 2.5 eV in height. Molecules and nanoparticles have then been inserted in the junction in the case of nanoparticles for example. The resulting IV clearly shows the suppression of electrical current at low bias known as Coulomb blockade. Characteristic of single-electron tunnelling through nanometer-sized structures, finally we fabricated a single-electron tunneling device based on Au nanoparticles connected to the electrodes via terthiophene (T3) molecule. We use the silicon substrate, separated from the planar structure by a silicon oxide of 200 nm, as an electrostatic gate and observed clear current modulation with possible signature of the transport properties of the terthiophene molecules. (author) [fr

  15. (Electronic structure and reactivities of transition metal clusters)

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  16. Electrons from fixed in space molecules and clusters

    Doerner, R.; Jahnke, T.; Czasch, A.; Jagutzki, O.; Schmidt-Boecking; Kreidi, K.; Knapp, A.; Schmidt, L.; Schoeffler, M.; Foucar, L.; Cocke, C.L.; Osipov, T.; Alnaser, A.

    2004-01-01

    Full text: We use modern multi particle momentum imaging techniques (COLTRIMS) to measure the vector momenta of all charged fragments, ions, photoelectrons and Auger electrons for small molecules excited by synchrotron radiation. These complete images of the fragmentation give an umprecedented detailed insight in the molecular photoionization and Auger process. Also latest results on molecular double ionisation and on cluster fragmentation unveiling interatomic coulomb decay will be presented

  17. Energetics of charged metal clusters containing vacancies

    Pogosov, Valentin V.; Reva, Vitalii I.

    2018-01-01

    We study theoretically large metal clusters containing vacancies. We propose an approach, which combines the Kohn-Sham results for monovacancy in a bulk of metal and analytical expansions in small parameters cv (relative concentration of vacancies) and RN,v -1, RN ,v being cluster radii. We obtain expressions of the ionization potential and electron affinity in the form of corrections to electron work function, which require only the characteristics of 3D defect-free metal. The Kohn-Sham method is used to calculate the electron profiles, ionization potential, electron affinity, electrical capacitance; dissociation, cohesion, and monovacancy-formation energies of the small perfect clusters NaN, MgN, AlN (N ≤ 270) and the clusters containing a monovacancy (N ≥ 12) in the stabilized-jellium model. The quantum-sized dependences for monovacancy-formation energies are calculated for the Schottky scenario and the "bubble blowing" scenario, and their asymptotic behavior is also determined. It is shown that the asymptotical behaviors of size dependences for these two mechanisms differ from each other and weakly depend on the number of atoms in the cluster. The contribution of monovacancy to energetics of charged clusters and the size dependences of their characteristics and asymptotics are discussed. It is shown that the difference between the characteristics for the neutral and charged clusters is entirely determined by size dependences of ionization potential and electron affinity. Obtained analytical dependences may be useful for the analysis of the results of photoionization experiments and for the estimation of the size dependences of the vacancy concentration including the vicinity of the melting point.

  18. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  19. Mass spectrometric production of heterogeneous metal clusters using Knudsen cell

    Veljković Filip M.

    2016-01-01

    Full Text Available Knudsen effusion mass spectrometry or high-temperature method of mass spectrometry for decades gives new information about saturated vapor of hardly volatile compounds and it is an important method in the discovery of many new molecules, radicals, ions and clusters present in the gas phase. Since pioneering works until now, this method has been successfully applied to a large number of systems (ores, oxides, ceramics, glass materials, borides, carbides, sulfides, nitrates, metals, fullerenes, etc which led to the establishment of various research branches such as chemistry of clusters. This paper describes the basic principles of Knudsen cell use for both identification of chemical species created in the process of evaporation and determination of their ionization energies. Depending on detected ions intensities and the partial pressure of each gaseous component, as well as on changes in partial pressure with temperature, Knudsen cell mass spectrometry enables the determination of thermodynamic parameters of the tested system. A special attention is paid to its application in the field of small heterogeneous and homogeneous clusters of alkali metals. Furthermore, experimental results for thermodynamic parameters of some clusters, as well as capabilities of non-standard ways of using Knudsen cells in the process of synthesis of new clusters are presented herein. [Projekat Ministarstva nauke Republike Srbije, br. 172019

  20. Far-Infrared Spectroscopy of Weakly Bound Hydrated Cluster Molecules

    Andersen, Jonas

    The thermodynamic properties of condensed phases, the functionality of many materials and the molecular organization in biological organisms are all governed by the classes of non-covalent interactions that occur already on the microscopic scale between pairs of molecules. A detailed investigation...... of the intermolecular interactions between prototypical molecular assemblies are valuable for accurate descriptions of larger supramolecular systems such as materials, gas hydrates and biological macromolecules. The aim of this PhD dissertation is to investigate intermolecular interactions fora series of medium...... vibrational bands of the cluster molecules in the challenging far-infrared and terahertz spectral regions.A key parameter in the validation of the performance of theoretical predictions for weak non-covalent intermolecular interactions is the dissociation energy D0 that depends heavily on the class of large...

  1. Desorption of large molecules with light-element clusters: Effects of cluster size and substrate nature

    Delcorte, Arnaud, E-mail: arnaud.delcorte@uclouvain.be [Institute of Condensed Matter and Nanosciences - Bio and Soft Matter, Universite catholique de Louvain, Croix du Sud, 1 bte 3, B-1348 Louvain-la-Neuve (Belgium); Garrison, Barbara J. [Department of Chemistry, Penn State University, University Park, PA 16802 (United States)

    2011-07-15

    This contribution focuses on the conditions required to desorb a large hydrocarbon molecule using light-element clusters. The test molecule is a 7.5 kDa coil of polystyrene (PS61). Several projectiles are compared, from C{sub 60} to 110 kDa organic droplets and two substrates are used, amorphous polyethylene and mono-crystalline gold. Different aiming points and incidence angles are examined. Under specific conditions, 10 keV nanodrops can desorb PS61 intact from a gold substrate and from a soft polyethylene substrate. The prevalent mechanism for the desorption of intact and 'cold' molecules is one in which the molecules are washed away by the projectile constituents and entrained in their flux, with an emission angle close to {approx}70 deg. The effects of the different parameters on the dynamics and the underlying physics are discussed in detail and the predictions of the model are compared with other published studies.

  2. Desorption of large molecules with light-element clusters: Effects of cluster size and substrate nature

    Delcorte, Arnaud; Garrison, Barbara J.

    2011-01-01

    This contribution focuses on the conditions required to desorb a large hydrocarbon molecule using light-element clusters. The test molecule is a 7.5 kDa coil of polystyrene (PS61). Several projectiles are compared, from C 60 to 110 kDa organic droplets and two substrates are used, amorphous polyethylene and mono-crystalline gold. Different aiming points and incidence angles are examined. Under specific conditions, 10 keV nanodrops can desorb PS61 intact from a gold substrate and from a soft polyethylene substrate. The prevalent mechanism for the desorption of intact and 'cold' molecules is one in which the molecules are washed away by the projectile constituents and entrained in their flux, with an emission angle close to ∼70 deg. The effects of the different parameters on the dynamics and the underlying physics are discussed in detail and the predictions of the model are compared with other published studies.

  3. Electric dipole moments of nanosolvated acid molecules in water clusters.

    Guggemos, Nicholas; Slavíček, Petr; Kresin, Vitaly V

    2015-01-30

    The electric dipole moments of (H2O)nDCl (n=3-9) clusters have been measured by the beam-deflection method. Reflecting the (dynamical) charge distribution within the system, the dipole moment contributes information about the microscopic structure of nanoscale solvation. The addition of a DCl molecule to a water cluster results in a strongly enhanced susceptibility. There is evidence for a noticeable rise in the dipole moment occurring at n≈5-6. This size is consistent with predictions for the onset of ionic dissociation. Additionally, a molecular-dynamics model suggests that even with a nominally bound impurity an enhanced dipole moment can arise due to the thermal and zero-point motion of the proton and the water molecules. The experimental measurements and the calculations draw attention to the importance of fluctuations in defining the polarity of water-based nanoclusters and generally to the essential role played by motional effects in determining the response of fluxional nanoscale systems under realistic conditions.

  4. Transition metal mediated transformations of small molecules

    Sen, Ayusman [Pennsylvania State Univ., University Park, PA (United States)

    2017-03-08

    Catalysis at metal centers is of great scientific, as well as practical, importance because of the high efficiency, high specificity, and low energy demands often associated with such systems. The two major themes of our research are (a) the design of metal-based systems for the synthesis of novel classes of polymers and (b) the identification of new metal-catalyzed systems for the conversion of biomass to fuels and chemicals, and related “green” chemical processes.

  5. NMR in metal cluster compounds compared to glasses

    Staveren, M.P.J. van; Brom, H.B.; Jongh, L.J. de; Schmid, G.

    1991-01-01

    The field and temperature dependence of the 31 P nuclear spin lattice relaxation rate in the metal cluster compound Ru 55 (P(t-Bu) 3 ) 12 Cl 20 follows a power law: 1/T 1 ∝ T n B -m , with n = 1.5 ± 0.1 at 3.25 T and n = 1.3 ± 0.1 at 6.45 T; m ≅ 1.4. Such dependences have so far only been observed in inorganic glasses and been attributed to two level systems. The correspondence suggests that the relaxation rate is due to interaction of the P-nuclear moment with electronic spins of stochastically moving charge carriers, which are thought to be responsible for the electrical conductivity through hopping between neigboring cluster molecules. (orig.)

  6. Ultrafast dynamics of electronically excited molecules and clusters

    Lietard, Aude

    2014-01-01

    This PhD thesis investigated the ultrafast dynamics of photo-chromic molecules and argon clusters in the gas phase at the femtosecond timescale. Pump-probe experiments are performed in a set-up which associates a versatile pulsed molecular beam coupled to a photoelectron/photoion velocity map imager (VMI) and a time-of-flight mass spectrometer (TOF-MS). Theses pump-probe experiments provides the temporal evolution of the electronic distribution for each system of interest. Besides, a modelization has been performed in order to characterize the density and the velocity distribution in the pulsed beam. Regarding the photo-chromic di-thienyl-ethene molecules, parallel electronic relaxation pathways were observed. This contrasts with the observation of sequential relaxation processes in most molecules studied so far. In the present case, the initial wave packet splits in two parts. One part is driven to the ground state at the femtosecond time scale through a conical intersection, and the second part remains for ps in the excited state and experiences oscillations in a suspended well. This study has shed light into the intrinsic dynamics of the molecules under study and a general relaxation mechanism has been proposed, which applies to the whole family of di-thienyl-ethene molecules whatever the state of matter (gas phase or solution) in which they have been investigated. Concerning argon clusters excited at about 14 eV, two behaviors of different time scale have been observed at different time scales. The first one occurs in the first picoseconds of the dynamics. It corresponds to the electronic relaxation of an excitonic state at a rate of 1 eV.ps -1 . The second phenomenon corresponds to the localization of the exciton on the excimer Ar 2 *. This phenomenon is observed 4-5 ps after the excitation. In this study, we also observed the ejection of excited argon atoms, addressing the lifetime of the delocalized excitonic state. This work provide additional informations

  7. Cluster Formation of Polyphilic Molecules Solvated in a DPPC Bilayer

    Xiang-Yang Guo

    2017-10-01

    Full Text Available We analyse the initial stages of cluster formation of polyphilic additive molecules which are solvated in a dipalmitoylphosphatidylcholine (DPPC lipid bilayer. Our polyphilic molecules comprise an aromatic (trans-bilayer core domain with (out-of-bilayer glycerol terminations, complemented with a fluorophilic and an alkyl side chain, both of which are confined within the aliphatic segment of the bilayer. Large-scale molecular dynamics simulations (1 μ s total duration of a set of six of such polyphilic additives reveal the initial steps towards supramolecular aggregation induced by the specific philicity properties of the molecules. For our intermediate system size of six polyphiles, the transient but recurrent formation of a trimer is observed on a characteristic timescale of about 100 ns. The alkane/perfluoroalkane side chains show a very distinct conformational distribution inside the bilayer thanks to their different philicity, despite their identical anchoring in the trans-bilayer segment of the polyphile. The diffusive mobility of the polyphilic additives is about the same as that of the surrounding lipids, although it crosses both bilayer leaflets and tends to self-associate.

  8. Hydrogen molecules adsorption on (100) plane of the 3d metal oxides of the first transition period

    Tsybulev, P.N.; Pinchuk, A.M.; Parkhomenko, N.V.

    1992-01-01

    New parameters for the calculation of clusters with participation of atoms of the first transition series of metals from Ti to Cu are suggested. Binding energy of H 2 molecule and M 9 O 9 clusters was calculated and it is shown that oxides of Ti, V and Cr form a bond with H 2 molecule mainly at the expence of interaction with 3d-orbitals

  9. Metallicity Spreads in M31 Globular Clusters

    Bridges, Terry

    2003-07-01

    Our recent deep HST photometry of the M31 halo globular cluster {GC} Mayall II, also called G1, has revealed a red-giant branch with a clear spread that we attribute to an intrinsic metallicity dispersion of at least 0.4 dex in [Fe/H]. The only other GC exhibiting such a metallicity dispersion is Omega Centauri, the brightest and most massive Galactic GC, whose range in [Fe/H] is about 0.5 dex. These observations are obviously linked to the fact that both G1 and Omega Cen are bright and massive GC, with potential wells deep enough to keep part of their gas, which might have been recycled, producing a metallicity scatter among cluster stars. These observations dramatically challenge the notion of chemical homogeneity as a defining characteristic of GCs. It is critically important to find out how common this phenomenon is and how it can constrain scenarios/models of GC formation. The obvious targets are other bright and massive GCs, which exist in M31 but not in our Galaxy where Omega Cen is an isolated giant. We propose to acquire, with ACS/HRC, deep imaging of 3 of the brightest M31 GCs for which we have observed velocity dispersion values similar to those observed in G1 and Omega Cen. A sample of GCs with chemical abundance dispersions will provide essential information about their formation mechanism. This would represent a major step for the studies of the origin and evolution of stellar populations.

  10. Molecule scattering from insulator and metal surfaces

    Moroz, Iryna; Ambaye, Hailemariam; Manson, J R

    2004-01-01

    Calculations are carried out and compared with data for the scattering of CH 4 molecules from a LiF(001) surface and for O 2 scattering from Al(111). The theory is a mixed classical-quantum formalism that includes energy and momentum transfers between the surface and projectile for translational and rotational motions as well as internal mode excitation of the projectile molecule. The translational and rotational degrees of freedom couple most strongly to multiphonon excitations of the surface and are treated with classical dynamics. Internal vibrational excitations of the molecules are treated with a semiclassical formalism with extension to arbitrary numbers of modes and arbitrary quantum numbers. Calculations show good agreement for the dependence on incident translational energy, incident beam angle and surface temperature when compared with data for energy-resolved intensity spectra and angular distributions

  11. Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions.

    Mativetsky, Jeffrey M; Pace, Giuseppina; Elbing, Mark; Rampi, Maria A; Mayor, Marcel; Samorì, Paolo

    2008-07-23

    Conductance switching associated with the photoisomerization of azobenzene-based (Azo) molecules was observed in nanoscopic metal-molecule-metal junctions. The junctions were formed by using a conducting atomic force microscope (C-AFM) approach, where a metallic AFM tip was used to electrically contact a gold-supported Azo self-assembled monolayer. The measured 30-fold increase in conductance is consistent with the expected decrease in tunneling barrier length resulting from the conformational change of the Azo molecule.

  12. Shock wave compression and metallization of simple molecules

    Ross, M.; Radousky, H.B.

    1988-03-01

    In this paper we combine shock wave studies and metallization of simple molecules in a single overview. The unifying features are provided by the high shock temperatures which lead to a metallic-like state in the rare gases and to dissociation of diatomic molecules. In the case of the rare gases, electronic excitation into the conduction band leads to a metallic-like inert gas state at lower than metallic densities and provides information regarding the closing of the band gap. Diatomic dissociation caused by thermal excitation also leads to a final metallic-like or monatomic state. Ina ddition, shock wave data can provide information concerning the short range intermolecular force of the insulator that can be useful for calculating the metallic phase transition as for example in the case of hydrogen. 69 refs., 36 figs., 2 tabs

  13. Globular cluster metallicity scale: evidence from stellar models

    Demarque, P.; King, C.R.; Diaz, A.

    1982-01-01

    Theoretical giant branches have been constructed to determine their relative positions for metallicities in the range -2.3 0 )/sub 0,g/ based on these models is presented which yields good agreement over the observed range of metallicities for galactic globular clusters and old disk clusters. The metallicity of 47 Tuc and M71 given by this calibration is about -0.8 dex. Subject headings: clusters, globular: stars: abundances: stars: interiors

  14. Lanthanide Single-Molecule Magnets Framed by Alkali Metals & Magnetic and Spectroscopic Studies of 3d Transition Metal Complexes

    Konstantatos, Andreas

    -molecule magnets (SMMs). Starting from the archetype SMM Mn12 we present the details of the mechanisms governing the relaxation of the magnetization of these systems. In Chapter 2 we present our work on the coordination chemistry of lanthanides with a new Schiff-base ligand, H3L [(E)-3-((2-hydroxyphenyl...... complexes of M3+ or M2+ metal ions (M: 3d transition metal) with the preference to either approximate octahedral or trigonal prismatic coordination geometry. A detailed magnetic characterization for most of the complexes is presented where a trinuclear Co2+ cluster stands out for its pronounced SMM...

  15. Beam broadening of polar molecules and clusters in deflection experiments.

    Bulthuis, J; Kresin, V V

    2012-01-07

    A beam of rotating dipolar particles (molecules or clusters) will broaden when passed through an electric or magnetic field gradient region. This broadening, which is a common experimental observable, can be expressed in terms of the variance of the distribution of the resulting polarization orientation (the direction cosine). Here, the broadening for symmetric-top and linear rotors is discussed. These two types of rotors have qualitatively different low-field orientation distribution functions, but behave similarly in a strong field. While analytical expressions for the polarization variance can be derived from first-order perturbation theory, for experimental guidance it is important to identify the applicability and limitations of these expressions, and the general dependence of the broadening on the experimental parameters. For this purpose, the analytical results are compared with the full diagonalization of the rotational Stark-effect matrices. Conveniently for experimental estimations, it is found that for symmetric tops, the dependence of the broadening parameter on the rotational constant, the axial ratio, and the field strength remains similar to the analytical expression even outside of the perturbative regime. Also, it is observed that the shape envelope, the centroid, and the width of the orientation distribution function for a symmetric top are quite insensitive to the value of its rotational constant (except at low rotational temperatures).

  16. Enhanced polarizability of aromatic molecules placed in the vicinity of silver clusters

    Mayer, A; Schatz, G C

    2009-01-01

    We use a charge-dipole interaction model to study the polarizability of aromatic molecules that are placed between two silver clusters. In particular we examine the enhancement in polarizability induced by the clusters at plasmon-like resonant frequencies of the cluster-molecule-cluster system. The model used for these simulations relies on representation of the atoms by both a net electric charge and a dipole. By relating the time variation of the atomic charges to the currents that flow through the bonds of the structures considered, a least-action principle can be formulated that enables the atomic charges and dipoles to be determined. We consider benzene, naphthalene and anthracene for this study, comparing the polarizability of these aromatic molecules when placed in the middle between two Ag 120 clusters, with their polarizability as isolated molecules. We find that the polarizability of these molecules is enhanced by the clusters, and this increases the electromagnetic coupling between the two clusters. This results in significant red-shifting (by up to 0.8 eV) of the lowest energy optical transition in the cluster-molecule-cluster system compared to plasmon-like excitation in the cluster-cluster system. The resulting resonant polarizability enhancement leads to an electromagnetic enhancement in surface-enhanced Raman scattering of over 10 6 .

  17. An efficient laser vaporization source for chemically modified metal clusters characterized by thermodynamics and kinetics

    Masubuchi, Tsugunosuke; Eckhard, Jan F.; Lange, Kathrin; Visser, Bradley; Tschurl, Martin; Heiz, Ulrich

    2018-02-01

    A laser vaporization cluster source that has a room for cluster aggregation and a reactor volume, each equipped with a pulsed valve, is presented for the efficient gas-phase production of chemically modified metal clusters. The performance of the cluster source is evaluated through the production of Ta and Ta oxide cluster cations, TaxOy+ (y ≥ 0). It is demonstrated that the cluster source produces TaxOy+ over a wide mass range, the metal-to-oxygen ratio of which can easily be controlled by changing the pulse duration that influences the amount of reactant O2 introduced into the cluster source. Reaction kinetic modeling shows that the generation of the oxides takes place under thermalized conditions at less than 300 K, whereas metal cluster cores are presumably created with excess heat. These characteristics are also advantageous to yield "reaction intermediates" of interest via reactions between clusters and reactive molecules in the cluster source, which may subsequently be mass selected for their reactivity measurements.

  18. Observing single molecule chemical reactions on metal nanoparticles.

    Emory, S. R. (Steven R.); Ambrose, W. Patrick; Goodwin, P. M. (Peter M); Keller, Richard A.

    2001-01-01

    We report the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scattering (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of broad SERS vibrational bands at 1592 cm{sup -1} and 1340 cm{sup -1} observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurements of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  19. Dependence of energy per molecule on sputtering yields with reactive gas cluster ions

    Toyoda, Noriaki; Yamada, Isao

    2010-01-01

    Gas cluster ions show dense energy deposition on a target surface, which result in the enhancement of chemical reactions. In reactive sputtering with gas cluster ions, the energy per atom or molecule plays an important role. In this study, the average cluster size (N, the number of atoms or molecules in a cluster ion) was controlled; thereby the dependences of the energy per molecule on the sputtering yields of carbon by CO 2 cluster ions and that of Si by SF 6 /Ar mixed gas cluster ions were investigated. Large CO 2 cluster ions with energy per molecule of 1 eV showed high reactive sputtering yield of an amorphous carbon film. However, these ions did not cause the formation of large craters on a graphite surface. It is possible to achieve very low damage etching by controlling the energy per molecule of reactive cluster ions. Further, in the case of SF 6 /Ar mixed cluster ions, it was found that reactive sputtering was enhanced when a small amount of SF 6 gas (∼10%) was mixed with Ar. The reactive sputtering yield of Si by one SF 6 molecule linearly increased with the energy per molecule.

  20. Transition metal chemistry of hydroxy(–OH)-rich molecules ...

    Administrator

    Appropriately designed hydroxy(–OH) containing Schiff's base and Mannich base molecules have been recently found to be important for development of the coordination chemistry of a number of metal ions in the biomimetic chemistry of metalloenzymes. In this context, our group has studied the coordination role of these ...

  1. Volume shift and charge instability of simple-metal clusters

    Brajczewska, Marta; Vieira, Armando; Fiolhais, Carlos

    1996-01-01

    Experiment indicates that small clusters show changes (mostly contractions) of the bond lengths with respect to bulk values. We use the stabilized jellium model to study the self-expansion and self-compression of spherical clusters (neutral or ionized) of simple metals. Results from Kohn — Sham density functional theory are presented for small clusters of Al and Na, including negatively-charged ones. We also examine the stability of clusters with respect to charging

  2. Volume shift and charge instability of simple-metal clusters

    Brajczewska, M.; Vieira, A.; Fiolhais, C.; Perdew, J. P.

    1996-12-01

    Experiment indicates that small clusters show changes (mostly contractions) of the bond lengths with respect to bulk values. We use the stabilized jellium model to study the self-expansion and self-compression of spherical clusters (neutral or ionized) of simple metals. Results from Kohn - Sham density functional theory are presented for small clusters of Al and Na, including negatively-charged ones. We also examine the stability of clusters with respect to charging.

  3. Influence of reactive gas admixture on transition metal cluster nucleation in a gas aggregation cluster source

    Peter, Tilo; Polonskyi, Oleksandr; Gojdka, Björn; Mohammad Ahadi, Amir; Strunskus, Thomas; Zaporojtchenko, Vladimir; Biederman, Hynek; Faupel, Franz

    2012-12-01

    We quantitatively assessed the influence of reactive gases on the formation processes of transition metal clusters in a gas aggregation cluster source. A cluster source based on a 2 in. magnetron is used to study the production rate of titanium and cobalt clusters. Argon served as working gas for the DC magnetron discharge, and a small amount of reactive gas (oxygen and nitrogen) is added to promote reactive cluster formation. We found that the cluster production rate depends strongly on the reactive gas concentration for very small amounts of reactive gas (less than 0.1% of total working gas), and no cluster formation takes place in the absence of reactive species. The influence of discharge power, reactive gas concentration, and working gas pressure are investigated using a quartz micro balance in a time resolved manner. The strong influence of reactive gas is explained by a more efficient formation of nucleation seeds for metal-oxide or nitride than for pure metal.

  4. Ruprecht 106 - A young metal-poor Galactic globular cluster

    Buonanno, R.; Buscema, G.; Fusi Pecci, F.; Richer, H.B.; Fahlman, G.G.

    1990-01-01

    The first CCD photometric survey in the Galactic globular cluster Ruprecht 106 has been performed. The results show that Ruprecht 106 is a metal-poor cluster with (Fe/H) about -2 located at about 25 kpc from the Galactic center. A sizable, high centrally concentrated population of blue stragglers was detected. Significant differences in the positions of the turnoffs in the color-magnitude diagram are found compared to those in metal-poor clusters. The cluster appears younger than other typical metal-poor Galactic globulars by about 4-5 Gyr; if true, this object would represent the first direct proof of the existence of a significant age spread among old, very metal-poor clusters. 51 refs

  5. A density-dependent switch drives stochastic clustering and polarization of signaling molecules.

    Alexandra Jilkine

    2011-11-01

    Full Text Available Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered "off" state is desired? And, what limits the spread of clusters when an "on" state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the "neutral drift polarity model." Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization.

  6. Rotation of small clusters in sheared metallic glasses

    Delogu, Francesco

    2011-01-01

    Graphical abstract: When a Cu 50 Ti 50 metallic glass is shear-deformed, the irreversible rearrangement of local structures allows the rigid body rotation of clusters. Highlights: → A shear-deformed Cu 50 Ti 50 metallic glass was studied by molecular dynamics. → Atomic displacements occur at irreversible rearrangements of local structures. → The dynamics of such events includes the rigid body rotation of clusters. → Relatively large clusters can undergo two or more complete rotations. - Abstract: Molecular dynamics methods were used to simulate the response of a Cu 50 Ti 50 metallic glass to shear deformation. Attention was focused on the atomic displacements taking place during the irreversible rearrangement of local atomic structures. It is shown that the apparently disordered dynamics of such events hides the rigid body rotation of small clusters. Cluster rotation was investigated by evaluating rotation angle, axis and lifetimes. This permitted to point out that relatively large clusters can undergo two or more complete rotations.

  7. Ion beam induced nanosized Ag metal clusters in glass

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-01-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam

  8. Single-Molecule Photocurrent at a Metal-Molecule-Semiconductor Junction.

    Vezzoli, Andrea; Brooke, Richard J; Higgins, Simon J; Schwarzacher, Walther; Nichols, Richard J

    2017-11-08

    We demonstrate here a new concept for a metal-molecule-semiconductor nanodevice employing Au and GaAs contacts that acts as a photodiode. Current-voltage traces for such junctions are recorded using a STM, and the "blinking" or "I(t)" method is used to record electrical behavior at the single-molecule level in the dark and under illumination, with both low and highly doped GaAs samples and with two different types of molecular bridge: nonconjugated pentanedithiol and the more conjugated 1,4-phenylene(dimethanethiol). Junctions with highly doped GaAs show poor rectification in the dark and a low photocurrent, while junctions with low doped GaAs show particularly high rectification ratios in the dark (>10 3 for a 1.5 V bias potential) and a high photocurrent in reverse bias. In low doped GaAs, the greater thickness of the depletion layer not only reduces the reverse bias leakage current, but also increases the volume that contributes to the photocurrent, an effect amplified by the point contact geometry of the junction. Furthermore, since photogenerated holes tunnel to the metal electrode assisted by the HOMO of the molecular bridge, the choice of the latter has a strong influence on both the steady state and transient metal-molecule-semiconductor photodiode response. The control of junction current via photogenerated charge carriers adds new functionality to single-molecule nanodevices.

  9. Radiation-Induced Correlation between Molecules Nearby Metallic Antenna Array

    Yoshiki Osaka

    2015-01-01

    Full Text Available We theoretically investigate optical absorption of molecules embedded nearby metallic antennas by using discrete dipole approximation method. It is found that the spectral peak of the absorption is shifted due to the radiation-induced correlation between the molecules. The most distinguishing feature of our work is to show that the shift is largely enhanced even when the individual molecules couple with localized surface plasmons near the different antennas. Specifically, we first consider the case that two sets of dimeric gold blocks with a spacing of a few nanometers are arranged and reveal that the intensity and spectral peak of the optical absorption strongly depend on the position of the molecules. In addition, when the dimeric blocks and the molecules are periodically arranged, the peak shift is found to increase up to ~1.2 meV (300 GHz. Because the radiation-induced correlation is essential for collective photon emission, our result implies the possibility of plasmon-assisted superfluorescence in designed antenna-molecule complex systems.

  10. Mode selectivity in cluster-molecule interactions: Ni13 + D2

    Jellinek, J.; Guevenc, Z.B.

    1991-01-01

    Results of a detailed quasiclassical simulation study of the Ni 13 + D 2 collision system are presented. The dissociative adsorption of the molecule as well as its scattering from the cluster are analyzed as functions of the initial rovibrational molecular state, collision energy and structure of the cluster. Mode-specific features of the reactive and nonreactive channels of the cluster-molecule interaction are displayed and discussed. Evidence for resonances and for a strong cluster structure-reactivity correlation is presented. 13 refs., 6 figs

  11. Building thiol and metal-thiolate functions into coordination nets: Clues from a simple molecule

    He Jun; Yang Chen; Xu Zhengtao; Zeller, Matthias; Hunter, Allen D.; Lin Jianhua

    2009-01-01

    The simple and easy-to-prepare bifunctional molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid (H 4 DMBD) interacts with the increasingly harder metal ions of Cu + , Pb 2+ and Eu 3+ to form the coordination networks of Cu 6 (DMBD) 3 (en) 4 (Hen) 6 (1), Pb 2 (DMBD)(en) 2 (2) and Eu 2 (H 2 DMBD) 3 (DEF) 4 (3), where the carboxyl and thiol groups bind with distinct preference to the hard and soft metal ions, respectively. Notably, 1 features uncoordinated carboxylate groups and Cu 3 cluster units integrated via the thiolate groups into an extended network with significant interaction between the metal centers and the organic molecules; 2 features a 2D coordination net based on the mercapto and carboxylic groups all bonded to the Pb 2+ ions; 3 features free-standing thiol groups inside the channels of a metal-carboxylate-based network. This study illustrates the rich solid state structural features and potential functions offered by the carboxyl-thiol combination. - Graphical Abstract: Molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid was reacted with Cu + , Pb 2+ and Eu 3+ ions to explore solid state networks with the rich structural features arising from the carboxyl-thiol combination.

  12. METALS IN THE ICM: WITNESSES OF CLUSTER FORMATION AND EVOLUTION

    Lorenzo Lovisari

    2013-12-01

    Full Text Available The baryonic composition of galaxy clusters and groups is dominated by a hot, X-ray emitting Intra-Cluster Medium (ICM. The mean metallicity of the ICM has been found to be roughly 0.3 ÷ 0.5 times the solar value, therefore a large fraction of this gas cannot be of purely primordial origin. Indeed, the distribution and amount of metals in the ICM is a direct consequence of the past history of star formation in the cluster galaxies and of the processes responsible for the injection of enriched material into the ICM. We here shortly summarize the current views on the chemical enrichment, focusing on the observational evidence in terms of metallicity measurements in clusters, spatial metallicity distribution and evolution, and expectations from future missions.

  13. Adsorption of organic molecules may explain growth of newly nucleated clusters and new particle formation

    Wang, Jian; Wexler, Anthony S.

    2013-05-01

    New particle formation consists of formation of thermodynamically stable clusters from trace gas molecules (homogeneous nucleation) followed by growth of these clusters to a detectable size. Because of the large coagulation rate of clusters smaller than 3 nm with the preexisting aerosol population, for new particle formation to take place, these clusters need to grow sufficiently fast to escape removal by coagulation. Previous studies have indicated that condensation of low-volatility organic vapor may play an important role in the initial growth of the clusters. However, due to the relatively high vapor pressure and partial molar volume of even highly oxidized organic compounds, the strong Kelvin effect may prevent typical ambient organics from condensing on these small clusters. Earlier studies did not consider that adsorption of organic molecules on the cluster surface, due to the intermolecular forces between the organic molecule and cluster, may occur and substantially alter the growth process under sub-saturated conditions. Using the Brunauer-Emmett-Teller (BET) isotherm, we show that the adsorption of organic molecules onto the surface of clusters may significantly reduce the saturation ratio required for condensation of organics to occur, and therefore may provide a physico-chemical explanation for the enhanced initial growth by condensation of organics despite the strong Kelvin effect.

  14. Orbital magnetism and dynamics in alkali metal clusters

    Nesterenko, V.O.; Kleinig, W.; Souza Cruz, FF. de; Marinelli, J.R.

    2000-01-01

    Two remarkable orbital magnetic resonances, M1 scissor mode and M2 twist mode, are predicted in deformed and spherical metal clusters, respectively. We show that these resonances provide a valuable information about many cluster properties (quadrupole deformation, magnetic susceptibility, single-particle spectrum, etc.)

  15. Electroless deposition of metal nanoparticle clusters: Effect of pattern distance

    Gentile, Francesco

    2014-04-03

    Electroless plating is a deposition technique in which metal ions are reduced as atoms on specific patterned sites of a silicon surface to form metal nanoparticles (NPs) aggregates with the desired characteristics. Those NPs, in turn, can be used as constituents of surface enhanced Raman spectroscopy substrates, which are devices where the electromagnetic field and effects thereof are giantly amplified. Here, the electroless formation of nanostructures was studied as a function of the geometry of the substrate. High resolution, electron beam lithography techniques were used to obtain nonperiodic arrays of circular patterns, in which the spacing of patterns was varied over a significant range. In depositing silver atoms in those circuits, the authors found that the characteristics of the aggregates vary with the pattern distance. When the patterns are in close proximity, the interference of different groups of adjacent aggregates cannot be disregarded and the overall growth is reduced. Differently from this, when the patterns are sufficiently distant, the formation of metal clusters of NPs is independent on the spacing of the patterns. For the particular subset of parameters used here, this critical correlation distance is about three times the pattern diameter. These findings were explained within the framework of a diffusion limited aggregation model, which is a simulation method that can decipher the formation of nanoaggregates at an atomic level. In the discussion, the authors showed how this concept can be used to fabricate ordered arrays of silver nanospheres, where the size of those spheres may be regulated on varying the pattern distance, for applications in biosensing and single molecule detection.

  16. Electroless deposition of metal nanoparticle clusters: Effect of pattern distance

    Gentile, Francesco; Laura Coluccio, Maria; Candeloro, Patrizio; Barberio, Marianna; Perozziello, Gerardo; Francardi, Marco; Di Fabrizio, Enzo M.

    2014-01-01

    Electroless plating is a deposition technique in which metal ions are reduced as atoms on specific patterned sites of a silicon surface to form metal nanoparticles (NPs) aggregates with the desired characteristics. Those NPs, in turn, can be used as constituents of surface enhanced Raman spectroscopy substrates, which are devices where the electromagnetic field and effects thereof are giantly amplified. Here, the electroless formation of nanostructures was studied as a function of the geometry of the substrate. High resolution, electron beam lithography techniques were used to obtain nonperiodic arrays of circular patterns, in which the spacing of patterns was varied over a significant range. In depositing silver atoms in those circuits, the authors found that the characteristics of the aggregates vary with the pattern distance. When the patterns are in close proximity, the interference of different groups of adjacent aggregates cannot be disregarded and the overall growth is reduced. Differently from this, when the patterns are sufficiently distant, the formation of metal clusters of NPs is independent on the spacing of the patterns. For the particular subset of parameters used here, this critical correlation distance is about three times the pattern diameter. These findings were explained within the framework of a diffusion limited aggregation model, which is a simulation method that can decipher the formation of nanoaggregates at an atomic level. In the discussion, the authors showed how this concept can be used to fabricate ordered arrays of silver nanospheres, where the size of those spheres may be regulated on varying the pattern distance, for applications in biosensing and single molecule detection.

  17. Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts

    Cox, D. M.; Kaldor, A.; Zakin, M. R.

    1987-01-01

    Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.

  18. bcl::Cluster : A method for clustering biological molecules coupled with visualization in the Pymol Molecular Graphics System.

    Alexander, Nathan; Woetzel, Nils; Meiler, Jens

    2011-02-01

    Clustering algorithms are used as data analysis tools in a wide variety of applications in Biology. Clustering has become especially important in protein structure prediction and virtual high throughput screening methods. In protein structure prediction, clustering is used to structure the conformational space of thousands of protein models. In virtual high throughput screening, databases with millions of drug-like molecules are organized by structural similarity, e.g. common scaffolds. The tree-like dendrogram structure obtained from hierarchical clustering can provide a qualitative overview of the results, which is important for focusing detailed analysis. However, in practice it is difficult to relate specific components of the dendrogram directly back to the objects of which it is comprised and to display all desired information within the two dimensions of the dendrogram. The current work presents a hierarchical agglomerative clustering method termed bcl::Cluster. bcl::Cluster utilizes the Pymol Molecular Graphics System to graphically depict dendrograms in three dimensions. This allows simultaneous display of relevant biological molecules as well as additional information about the clusters and the members comprising them.

  19. Oxide-supported metal clusters: models for heterogeneous catalysts

    Santra, A K; Goodman, D W

    2003-01-01

    Understanding the size-dependent electronic, structural and chemical properties of metal clusters on oxide supports is an important aspect of heterogeneous catalysis. Recently model oxide-supported metal catalysts have been prepared by vapour deposition of catalytically relevant metals onto ultra-thin oxide films grown on a refractory metal substrate. Reactivity and spectroscopic/microscopic studies have shown that these ultra-thin oxide films are excellent models for the corresponding bulk oxides, yet are sufficiently electrically conductive for use with various modern surface probes including scanning tunnelling microscopy (STM). Measurements on metal clusters have revealed a metal to nonmetal transition as well as changes in the crystal and electronic structures (including lattice parameters, band width, band splitting and core-level binding energy shifts) as a function of cluster size. Size-dependent catalytic reactivity studies have been carried out for several important reactions, and time-dependent catalytic deactivation has been shown to arise from sintering of metal particles under elevated gas pressures and/or reactor temperatures. In situ STM methodologies have been developed to follow the growth and sintering kinetics on a cluster-by-cluster basis. Although several critical issues have been addressed by several groups worldwide, much more remains to be done. This article highlights some of these accomplishments and summarizes the challenges that lie ahead. (topical review)

  20. Split and Compensated Hyperfine Fields in Magnetic Metal Clusters

    Nakamura, H.; Chudo, H.; Shiga, M.; Kohara, T.

    2004-01-01

    As prominent characteristics of magnetic metal cluster found in vanadium sulfides, we point out marked separation and compensation of the hyperfine field at the nuclear site; these are in somewhat discordance with the common sense for 3d transition-metal magnets, where the on-site isotropic field, scaling the ordered moment magnitude, is dominant.

  1. Thermodynamics of Pore Filling Metal Clusters in Metal Organic Frameworks: Pd in UiO-66

    Vilhelmsen, Lasse; Sholl, David S.

    2012-01-01

    Metal organic frameworks (MOFs) have experimentally been demonstrated to be capable of supporting isolated transition-metal clusters, but the stability of these clusters with respect to aggregation is unclear. In this letter we use a genetic algorithm together with density functional theory...... calculations to predict the structure of Pd clusters in UiO-66. The cluster sizes examined are far larger than those in any previous modeling studies of metal clusters in MOFs and allow us to test the hypothesis that the physically separated cavities in UiO-66 could stabilize isolated Pd clusters. Our...... calculations show that Pd clusters in UiO-66 are, at best, metastable and will aggregate into connected pore filling structures at equilibrium....

  2. Clustered field evaporation of metallic glasses in atom probe tomography

    Zemp, J.; Gerstl, S.S.A.; Löffler, J.F.; Schönfeld, B.

    2016-01-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3 nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different – as yet unknown – physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. - Highlights: • Field evaporation of metallic glasses is heterogeneous on a scale of up to 3 nm. • Amount of clustered evaporation depends on ion species and temperature. • Length scales of clustered evaporation and correlative evaporation are similar.

  3. Experimental studies of the chemistry of metal clusters

    Parks, E.K.; Riley, S.J.

    1988-01-01

    The procedures for studying chemical reactions of metal clusters in a continuous-flow reactor are described, and examples of such studies are given. Experiments to be discussed include kinetics and thermodynamics measurements, and determination of the composition of clusters saturated with various adsorbate reagents. Specific systems to be covered include the reaction of iron clusters with ammonia and with hydrogen, the reaction of nickel clusters with hydrogen and with ammonia, and the reaction of platinum clusters with ethylene. The last two reactions are characterized by complex, multi-step processes that lead to adsorbate decomposition and hydrogen desorption from the clusters. Methods for probing these processes will be discussed. 26 refs., 8 figs

  4. MHCcluster, a method for functional clustering of MHC molecules

    Thomsen, Martin Christen Frølund; Lundegaard, Claus; Buus, Søren

    2013-01-01

    The identification of peptides binding to major histocompatibility complexes (MHC) is a critical step in the understanding of T cell immune responses. The human MHC genomic region (HLA) is extremely polymorphic comprising several thousand alleles, many encoding a distinct molecule. The potentially...... binding specificity. The method has a flexible web interface that allows the user to include any MHC of interest in the analysis. The output consists of a static heat map and graphical tree-based visualizations of the functional relationship between MHC variants and a dynamic TreeViewer interface where...

  5. Self-assembled metal clusters on an alumina nanomesh

    Buchsbaum, A.

    2012-01-01

    Template mediated growth of metals has attracted much interest due to the remarkable magnetic and catalytic properties of clusters in the nanometer range and provides the opportunity to grow clusters with narrow size distributions. When the Ni3Al(111) surface is exposed to oxygen at elevated temperature a thin oxide film with a well-defined structure and uniform thickness grows and covers the alloy surface completely. The structure of the alumina film has been solved mainly by the help of scanning tunneling microscopy (STM) combined with density functional theory (DFT) calculations. The structure of the approx. 0.5 nm thick oxide film has sixfold symmetry and exhibits holes with a diameter of approx. 400 pm reaching down to the metal substrate at the corners of the (Sqrt(67) x Sqrt(67))R12.2° unit cell. The side length of the unit cell is 4.1 nm. The driving force for the formation of the oxide nanomesh is the reduction of the metal/oxide interface energy by the formation of energetically favorable Al-Ni bonds at the interface. Due to better wetting of metal on metal surfaces than on oxide surfaces, metal atoms prefer to bind to the substrate in the hole, not to the oxide. Therefore the oxide forms a template with a hexagonal 4.1 nm lattice for the growth of well-ordered metal clusters. Nevertheless, the growth of most metal clusters on top of the corner holes is not straightforward. Fe and Co atoms cannot jump into the corner holes due to a barrier for diffusion and nucleate at their second favorable adsorption site. However, Pd atoms trapped in these corner holes reduce the barrier for diffusion and create metallic nucleation sites where Fe as well as Co clusters can nucleate and form a well-ordered hexagonal arrangement on the oxide nanomesh. We have studied these Fe and Co clusters and applied different methods like STM and surface x-ray diffraction (SXRD) to determine the morphology and crystallography of the clusters. For Fe we found cluster growth with

  6. Ultrafast relaxation dynamics of electrons in Au clusters capped with dodecanethiol molecules

    Hamanaka, Y.; Fukagawa, K.; Tai, Y.; Murakami, J.; Nakamura, A.

    2006-01-01

    We have investigated electron relaxation dynamics of size-selected Au clusters capped by dodecanethiol molecules in the cluster sizes of 28-142 atoms using femtosecond pump-probe spectroscopy. Absorption spectra of 28-71-atom clusters show discrete peaks due to the optical transitions between quantized states, while an absorption band due to the surface plasmon is observed in 142-atom clusters. In the differential absorption spectra measured by the pump-probe experiments, a large redshift of 140 meV lasting over 10 ps and absorption bleaching decaying within 2 ps are observed at the absorption peaks of 28-atom clusters. The redshift is ascribed to a charge transfer between Au clusters and dodecanethiol molecules adsorbed on the cluster surface, and the bleaching is due to blocking of the optical transitions between the ground state and the occupied electronic states due to the Pauli's-exclusion principle. Such behavior is in contrast to the 142-atom clusters, where the cooling of hot electrons generated by photo-excitation determines the relaxation dynamics. These results indicate molecular properties of the 28-atom Au cluster-dodecanethiol system

  7. The effect of alkylating agents on model supported metal clusters

    Erdem-Senatalar, A.; Blackmond, D.G.; Wender, I. (Pittsburgh Univ., PA (USA). Dept. of Chemical and Petroleum Engineering); Oukaci, R. (CERHYD, Algiers (Algeria))

    1988-01-01

    Interactions between model supported metal clusters and alkylating agents were studied in an effort to understand a novel chemical trapping technique developed for identifying species adsorbed on catalyst surfaces. It was found that these interactions are more complex than had previously been suggested. Studies were completed using deuterium-labeled dimethyl sulfate (DMS), (CH{sub 3}){sub 2}SO{sub 4}, as a trapping agent to interact with the supported metal cluster ethylidyne tricobalt enneacarbonyl. Results showed that oxygenated products formed during the trapping reaction contained {minus}OCD{sub 3} groups from the DMS, indicating that the interaction was not a simple alkylation. 18 refs., 1 fig., 3 tabs.

  8. Low-energy electron collisions with metal clusters: Electron capture and cluster fragmentation

    Kresin, V.V.; Scheidemann, A.; Knight, W.D.

    1993-01-01

    The authors have carried out the first measurement of absolute cross sections for the interaction between electrons and size-resolved free metal clusters. Integral inelastic scattering cross sections have been determined for electron-Na n cluster collisions in the energy range from 0.1 eV to 30 eV. At energies ≤1 eV, cross sections increase with decreasing impact energies, while at higher energies they remain essentially constant. The dominant processes are electron attachment in the low-energy range, and collision-induced fragmentation at higher energies. The magnitude of electron capture cross sections can be quantitatively explained by the effect of the strong polarization field induced in the cluster by the incident electron. The cross sections are very large, reaching values of hundreds of angstrom 2 ; this is due to the highly polarizable nature of metal clusters. The inelastic interaction range for fragmentation collisions is also found to considerably exceed the cluster radius, again reflecting the long-range character of electron-cluster interactions. The important role played by the polarization interaction represents a bridge between the study of collision processes and the extensive research on cluster response properties. Furthermore, insight into the mechanisms of electron scattering is important for understanding production and detection of cluster ions in mass spectrometry and related processes

  9. Electrical Matching at Metal/Molecule Contacts for Efficient Heterogeneous Charge Transfer.

    Sato, Shino; Iwase, Shigeru; Namba, Kotaro; Ono, Tomoya; Hara, Kenji; Fukuoka, Atsushi; Uosaki, Kohei; Ikeda, Katsuyoshi

    2018-02-27

    In a metal/molecule hybrid system, unavoidable electrical mismatch exists between metal continuum states and frontier molecular orbitals. This causes energy loss in the electron conduction across the metal/molecule interface. For efficient use of energy in a metal/molecule hybrid system, it is necessary to control interfacial electronic structures. Here we demonstrate that electrical matching between a gold substrate and π-conjugated molecular wires can be obtained by using monatomic foreign metal interlayers, which can change the degree of d-π* back-donation at metal/anchor contacts. This interfacial control leads to energy level alignment between the Fermi level of the metal electrode and conduction molecular orbitals, resulting in resonant electron conduction in the metal/molecule hybrid system. When this method is applied to molecule-modified electrocatalysts, the heterogeneous electrochemical reaction rate is considerably improved with significant suppression of energy loss at the internal electron conduction.

  10. State selective dynamics of molecules, clusters, and nanostructures

    John W. Keto

    2005-01-01

    Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transfer between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the size-tunable properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demonstrated that CdSe nanoparticles produced by LAM were efficient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtained efficient fluorescence from Er doped phosphate glass nanoparticles which have application to gain waveguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO2

  11. State selective dynamics of molecules, clusters, and nanostructures

    Keto, John W. [Univ. of Texas, Austin, TX (United States)

    2005-06-01

    Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transver between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the size-tunable properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demostrated that CdSe nanoparticles produced by LAM were efficiient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtiained efficient fluorescence from Er doped phosphate glass nanopartiicles which have application to gain wafeguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO 2.

  12. The Role of Molecule Clustering by Hydrogen Bond in Hydrous Ethanol on Laminar Burning Velocity

    I Made Suarta

    2016-01-01

    Full Text Available The role of hydrogen bond molecule clustering in laminar burning velocities was observed. The water in hydrous ethanol can change the interaction between water-ethanol molecules. A certain amount of water can become oxygenated which increases the burning velocity. The hydrogen bond interaction pattern of ethanol and water molecules was modeled. Based on the molecular model, azeotropic behavior emerges from ethanol-water hydrogen bond, which is at a 95.1%v composition. The interaction with water molecule causes the ethanol molecule to be clustered with centered oxygenated compound. So, it supplies extra oxygen and provides intermolecular empty spaces that are easily infiltrated by the air. In the azeotropic composition, the molecular bond chain is the shortest, so hypothetically the burning velocity is anticipated to increase. The laminar burning velocity of ethanol fuel was tested in a cylindrical explosion bomb in lean, stoichiometric, and rich mixtures. The experimental result showed that the maximum burning velocity occurred at hydrous ethanol of 95.5%v composition. This discrepancy is the result of the addition of energy from 7.7% free ethanol molecules that are not clustered. At the rich mixture, the burning velocity of this composition is higher than that of anhydrous ethanol.

  13. STAR CLUSTERS IN M31. II. OLD CLUSTER METALLICITIES AND AGES FROM HECTOSPEC DATA

    Caldwell, Nelson; Schiavon, Ricardo; Morrison, Heather; Harding, Paul; Rose, James A.

    2011-01-01

    We present new high signal-to-noise spectroscopic data on the M31 globular cluster (GC) system, obtained with the Hectospec multifiber spectrograph on the 6.5 m MMT. More than 300 clusters have been observed at a resolution of 5 A and with a median S/N of 75 per A, providing velocities with a median uncertainty of 6 km s -1 . The primary focus of this paper is the determination of mean cluster metallicities, ages, and reddenings. Metallicities were estimated using a calibration of Lick indices with [Fe/H] provided by Galactic GCs. These match well the metallicities of 24 M31 clusters determined from Hubble Space Telescope color-magnitude diagrams, the differences having an rms of 0.2 dex. The metallicity distribution is not generally bimodal, in strong distinction with the bimodal Galactic globular distribution. Rather, the M31 distribution shows a broad peak, centered at [Fe/H] = -1, possibly with minor peaks at [Fe/H] = -1.4, -0.7, and -0.2, suggesting that the cluster systems of M31 and the Milky Way had different formation histories. Ages for clusters with [Fe/H] > - 1 were determined using the automatic stellar population analysis program EZ A ges. We find no evidence for massive clusters in M31 with intermediate ages, those between 2 and 6 Gyr. Moreover, we find that the mean ages of the old GCs are remarkably constant over about a decade in metallicity (-0.95∼< [Fe/H] ∼<0.0).

  14. Linear and nonlinear surface spectroscopy of supported size selected metal clusters and organic adsorbates

    Thaemer, Martin Georg

    2012-03-08

    The spectroscopic investigation of supported size selected metal clusters over a wide wavelength range plays an important role for understanding their outstanding catalytic properties. The challenge which must be overcome to perform such measurements is the difficult detection of the weak spectroscopic signals from these samples. As a consequence, highly sensitive spectroscopic methods are applied, such as surface Cavity Ringdown Spectroscopy and surface Second Harmonic Generation Spectroscopy. The spectroscopic apparatus developed is shown to have a sensitivity which is high enough to detect sub-monolayer coverages of adsorbates on surfaces. In the measured spectra of small supported silver clusters of the sizes Ag{sub 4}2, Ag{sub 2}1, Ag{sub 9}, and Ag atoms a stepwise transition from particles with purely metallic character to particles with molecule-like properties can be observed within this size range.

  15. Dynamics of photoprocesses induced by femtosecond infrared radiation in free molecules and clusters of iron pentacarbonyl

    Kompanets, V. O.; Lokhman, V. N.; Poydashev, D. G.; Chekalin, S. V.; Ryabov, E. A.

    2016-01-01

    The dynamics of photoprocesses induced by femtosecond infrared radiation in free Fe(CO) 5 molecules and their clusters owing to the resonant excitation of vibrations of CO bonds in the 5-μm range has been studied. The technique of infrared excitation and photoionization probing (λ = 400 nm) by femtosecond pulses has been used in combination with time-of-flight mass spectrometry. It has been found that an infrared pulse selectively excites vibrations of CO bonds in free molecules, which results in a decrease in the yield of the Fe(CO) 5 + molecular ion. Subsequent relaxation processes have been analyzed and the results have been interpreted. The time of the energy transfer from excited vibrations to other vibrations of the molecule owing to intramolecular relaxation has been measured. The dynamics of dissociation of [Fe(CO) 5 ] n clusters irradiated by femtosecond infrared radiation has been studied. The time dependence of the yield of free molecules has been measured under different infrared laser excitation conditions. We have proposed a model that well describes the results of the experiment and makes it possible, in particular, to calculate the profile of variation of the temperature of clusters within the “evaporation ensemble” concept. The intramolecular and intracluster vibrational relaxation rates in [Fe(CO) 5 ] n clusters have been estimated.

  16. Ab initio study of neutral (TiO2)n clusters and their interactions with water and transition metal atoms

    Çakır, D; Gülseren, O

    2012-01-01

    We have systematically investigated the growth behavior and stability of small stoichiometric (TiO 2 ) n (n = 1-10) clusters as well as their structural, electronic and magnetic properties by using the first-principles plane wave pseudopotential method within density functional theory. In order to find out the ground state geometries, a large number of initial cluster structures for each n has been searched via total energy calculations. Generally, the ground state structures for the case of n = 1-9 clusters have at least one monovalent O atom, which only binds to a single Ti atom. However, the most stable structure of the n = 10 cluster does not have any monovalent O atom. On the other hand, Ti atoms are at least fourfold coordinated for the ground state structures for n ≥ 4 clusters. Our calculations have revealed that clusters prefer to form three-dimensional structures. Furthermore, all these stoichiometric clusters have nonmagnetic ground state. The formation energy and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for the most stable structure of (TiO 2 ) n clusters for each n have also been calculated. The formation energy and hence the stability increases as the cluster size grows. In addition, the interactions between the ground state structure of the (TiO 2 ) n cluster and a single water molecule have been studied. The binding energy (E b ) of the H 2 O molecule exhibits an oscillatory behavior with the size of the clusters. A single water molecule preferably binds to the cluster Ti atom through its oxygen atom, resulting an average binding energy of 1.1 eV. We have also reported the interaction of the selected clusters (n = 3, 4, 10) with multiple water molecules. We have found that additional water molecules lead to a decrease in the binding energy of these molecules to the (TiO 2 ) n clusters. Finally, the adsorption of transition metal (TM) atoms (V, Co and Pt) on the n = 10 cluster has been

  17. Even-Odd Differences and Shape Deformation of Metal Clusters

    Hidetoshi, Nishioka; Yoshio, Takahashi; Department of Physics, Konan University; Faculty of General Education, Yamagata University

    1994-01-01

    The relation between even-odd difference of metal cluster and the deformation of equilibrium shape is studied in terms of two different models; (i) tri-axially deformed harmonic oscillator model, (ii) rectangular box model. Having assumed the matter density ρ kept constant for different shapes of a cluster, we can determine the equilibrium shape both for the two models. The enhancement of HOMO-LUMO gap is obtained and it is ascribed to Jahn-Teller effect. Good agreement of the calculated resu...

  18. Metal-Organic Framework of Lanthanoid Dinuclear Clusters Undergoes Slow Magnetic Relaxation

    Hikaru Iwami

    2017-01-01

    Full Text Available Lanthanoid metal-organic frameworks (Ln-MOFs can adopt a variety of new structures due to the large coordination numbers of Ln metal ions, and Ln-MOFs are expected to show new luminescence and magnetic properties due to the localized f electrons. In particular, some Ln metal ions, such as Dy(III and Tb(III ions, work as isolated quantum magnets when they have magnetic anisotropy. In this work, using 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoic acid (H3TATB as a ligand, two new Ln-MOFs, [Dy(TATB(DMF2] (1 and [Tb(TATB(DMF2] (2, were obtained. The Ln-MOFs contain Ln dinuclear clusters as secondary building units, and 1 underwent slow magnetic relaxation similar to single-molecule magnets.

  19. Electronic relaxation dynamics of a metal atom deposited on argon cluster

    Awali, Slim

    2014-01-01

    binding Π-state, and an anti-binding Σ-state were observed. In the case of potassium, we observed that the excitation on the Σ-state leads to the ejection of the metal within 1-2 ps while for barium, the excited state relaxes mainly on the Π-state within 6 ps and does not followed by an ejection. The interpretation of these results uses the structures and potential calculated. A similar study was conducted on the DABCO molecule deposited argon cluster. Instead of K and Ba, the first excited state of this molecule is a diffuse isotropic state, which gives a specific relaxation to the photoinduced dynamics. (author) [fr

  20. Interaction of intense electromagnetic fields with SF6 molecules and clusters in supersonic expansion

    Airoldi, V.J.T.

    1987-01-01

    A method of measuring SF 6 cluster formation and inhibition in pulsed supersonic expansion in the presence of intense electromagnetic radiation is presented. The characterization of the expansion of SF 6 molecules was done and, the extension of the collision region was determined. An improved unidimensional theory of supersonic expansion showed good agreement with the experimental results. The spectra of multiphoton absorption of SF 6 molecules in supersonic jet and the average energy absorved by each molecule were determined. The absorption spectra of molecule in the collision region present absorption maxima different from those obtained in the collisionless region. The results, if compared with the literature data, show good agreement, with a small difference in the spetra corresponding to the collisionless region. This difference was observed, for the first time in the multiphoton absorption and is attribuited to cluster formation in the jet. A new technique for measuring cluster formation in the supersonic jet, based on determination of the spatial distribution of the energy of molecules in the jet after passing through a skimmer located in the collision region is shown. The inhibition of cluster formation, due to the incidence of intense electromagnetic radiation from a CO 2 -TEA pulsed laser in the initial collision region of the jet, causes a second expansion in the skimmer. The results obtained show that this method can lead to a new isotope separation process. All the parts of the experimental set up, for example, high vacuum system, pulsed valve and pyroelectric detector, were developed and constructed specially for the experiment. (Author) [pt

  1. Scattering of ultrashort electromagnetic pulses on metal clusters

    Astapenko, V. A.; Sakhno, S. V.

    2016-01-01

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  2. Scattering of ultrashort electromagnetic pulses on metal clusters

    Astapenko, V. A., E-mail: astval@mail.ru; Sakhno, S. V. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2016-12-15

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  3. Interaction of Model Inhibitor Compounds with Minimalist Cluster Representations of Hydroxyl Terminated Metal Oxide Surfaces

    Christopher D. Taylor

    2018-01-01

    Full Text Available The computational modeling of corrosion inhibitors at the level of molecular interactions has been pursued for decades, and recent developments are allowing increasingly realistic models to be developed for inhibitor–inhibitor, inhibitor–solvent and inhibitor–metal interactions. At the same time, there remains a need for simplistic models to be used for the purpose of screening molecules for proposed inhibitor performance. Herein, we apply a reductionist model for metal surfaces consisting of a metal cation with hydroxide ligands and use quantum chemical modeling to approximate the free energy of adsorption for several imidazoline class candidate corrosion inhibitors. The approximation is made using the binding energy and the partition coefficient. As in some previous work, we consider different methods for incorporating solvent and reference systems for the partition coefficient. We compare the findings from this short study with some previous theoretical work on similar systems. The binding energies for the inhibitors to the metal hydroxide clusters are found to be intermediate to the binding energies calculated in other work for bare metal vs. metal oxide surfaces. The method is applied to copper, iron, aluminum and nickel metal systems.

  4. Site-specific fragmentation of polystyrene molecule using size-selected Ar gas cluster ion beam

    Moritani, Kousuke; Mukai, Gen; Hashinokuchi, Michihiro; Mochiji, Kozo

    2009-01-01

    The secondary ion mass spectrum (SIMS) of a polystyrene thin film was investigated using a size-selected Ar gas cluster ion beam (GCIB). The fragmentation in the SIM spectrum varied by kinetic energy per atom (E atom ); the E atom dependence of the secondary ion intensity of the fragment species of polystyrene can be essentially classified into three types based on the relationship between E atom and the dissociation energy of a specific bonding site in the molecule. These results indicate that adjusting E atom of size-selected GCIB may realize site-specific bond breaking within a molecule. (author)

  5. Analysis of the Alkali Metal Diatomic Spectra; Using molecular beams and ultracold molecules

    Kim, Jin-Tae

    2014-12-01

    This ebook illustrates the complementarity of molecular beam (MB) spectra and ultracold molecule (UM) spectra in unraveling the complex electronic spectra of diatomic alkali metal molecules, using KRb as a prime example. Researchers interested in molecular spectroscopy, whether physicist, chemist, or engineer, may find this ebook helpful and may be able to apply similar ideas to their molecules of interest.

  6. Influencing the bonding and assembly of a multiterminal molecule on a metal surface

    Lukas, Maya; Doessel, Kerrin; Fink, Karin; Fuhr, Olaf [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); Schramm, Alexandrina; Stroh, Christophe [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); Mayor, Marcel [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); University of Basel, Department of Chemistry, CH-4056 Basel (Switzerland); Loehneysen, Hilbert von [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Physics Institute and Institute for Solid State Physics, D-76049 Karlsruhe (Germany)

    2011-07-01

    The bond of a molecule to a metallic electrode is known to have a crucial influence on the molecular conductance. As electronic functionalities are integrated into molecules or several subunits are connected to a three-dimensional multiterminal molecule, it is not obvious that a ''well-known'' chemical linker group will lead to the bonding configuration known from simpler molecules. We investigated a series of tripodal molecules on metal surfaces by STM. The chemical linker groups and the complex connecting the three wire-units are varied. We find that the position of molecules on the surface is governed by a subtle balance of intermolecular and molecule-surface interactions, partly in strong contrast to expectations. This emphasizes the need to characterize the nature of molecule-electrode contacts along with the investigation of the electronic conductance.

  7. FURTHER DEFINITION OF THE MASS-METALLICITY RELATION IN GLOBULAR CLUSTER SYSTEMS AROUND BRIGHTEST CLUSTER GALAXIES

    Cockcroft, Robert; Harris, William E.; Wehner, Elizabeth M. H.; Whitmore, Bradley C.; Rothberg, Barry

    2009-01-01

    We combine the globular cluster (GC) data for 15 brightest cluster galaxies and use this material to trace the mass-metallicity relations (MMRs) in their globular cluster systems (GCSs). This work extends previous studies which correlate the properties of the MMR with those of the host galaxy. Our combined data sets show a mean trend for the metal-poor subpopulation that corresponds to a scaling of heavy-element abundance with cluster mass Z ∼ M 0.30±0.05 . No trend is seen for the metal-rich subpopulation which has a scaling relation that is consistent with zero. We also find that the scaling exponent is independent of the GCS specific frequency and host galaxy luminosity, except perhaps for dwarf galaxies. We present new photometry in (g',i') obtained with Gemini/GMOS for the GC populations around the southern giant ellipticals NGC 5193 and IC 4329. Both galaxies have rich cluster populations which show up as normal, bimodal sequences in the color-magnitude diagram. We test the observed MMRs and argue that they are statistically real, and not an artifact caused by the method we used. We also argue against asymmetric contamination causing the observed MMR as our mean results are no different from other contamination-free studies. Finally, we compare our method to the standard bimodal fitting method (KMM or RMIX) and find our results are consistent. Interpretation of these results is consistent with recent models for GC formation in which the MMR is determined by GC self-enrichment during their brief formation period.

  8. Electronic and magnetic properties of 3d transition metal-doped strontium clusters: Prospective magnetic superatoms

    Chauhan, Vikas; Sen, Prasenjit

    2013-01-01

    Highlights: • Structural, electronic and magnetic properties of TM-Sr clusters are studied using DFT methods. • CrSr 9 and MnSr 10 have enhanced stability in the CrSr n and MnSrn series. • These two clusters behave as magnetic superatoms. • A qualitative understanding of the magnetic coupling between two superatom units is offered. • Reactivity of these superatoms to molecular oxygen also studied. - Abstract: Structural, electronic and magnetic properties of 3d transition metal doped strontium clusters are studied using first-principles electronic structure methods based on density functional theory. Clusters with enhanced kinetic and thermodynamic stability are identified by studying their hardness, second order energy difference and adiabatic spin excitation energy. CrSr 9 and MnSr 10 are found to have enhanced stability. They retain their structural identities in assemblies, and are classified as magnetic superatoms. A qualitative understanding of the magnetic coupling between two cluster units is arrived at. Reactivity of these superatoms with O 2 molecule is also studied. Prospects for using these magnetic superatoms in applications are discussed

  9. Electrostrictive deformations in small carbon clusters, hydrocarbon molecules, and carbon nanotubes

    Cabria, I.; Lopez, M. J.; Alonso, J. A.; Amovilli, C.; March, N. H.

    2006-01-01

    The electrostrictive response of small carbon clusters, hydrocarbon molecules, and carbon nanotubes is investigated using the density functional theory. For ringlike carbon clusters, one can get insight on the deformations induced by an electric field from a simple two-dimensional model in which the positive charge of the carbon ions is smeared out in a circular homogeneous line of charge and the electronic density is calculated for a constant applied electric field within a two-dimensional Thomas-Fermi method. According to the Hellmann-Feynman theorem, this model predicts, for fields of about 1 V/A ring , only a small elongation of the ring clusters in the direction of the electric field. Full three-dimensional density functional calculations with an external electric field show similar small deformations in the ring carbon clusters compared to the simple model. The saturated benzene and phenanthrene hydrocarbon molecules do not experience any deformation, even under the action of relatively intense (1 V/A ring ) electric fields. In contrast, finite carbon nanotubes experience larger elongations (∼2.9%) induced by relatively weak (0.1 V/A ring ) applied electric fields. Both C-C bond length elongation and the deformation of the honeycomb structure contribute equally to the nanotube elongation. The effect of the electric field in hydrogen terminated nanotubes is reduced with respect to the nanotubes with dangling bonds in the edges

  10. Formation of clusters composed of C60 molecules via self-assembly in critical fluids

    Fukuda, Takahiro; Ishii, Koji; Kurosu, Shunji; Whitby, Raymond; Maekawa, Toru

    2007-01-01

    Fullerenes are promising candidates for intelligent, functional nanomaterials because of their unique mechanical, electronic and chemical properties. However, it is necessary to invent some efficient but relatively simple methods of producing structures composed of fullerenes for the development of nanomechatronic, nanoelectronic and biochemical devices and sensors. In this paper, we show that various structures such as straight fibres, networks formed by fibres, wide sheets and helical structures, which are composed of C 60 molecules, are created by placing C 60 -crystals in critical ethane, carbon dioxide and xenon even though C 60 molecules do not dissolve or disperse in the above fluids. It is supposed, judging by the intermolecular potentials between C 60 and C 60 , between C 60 and ethane, and between ethane and ethane, that C 60 -clusters grow with the assistance of solvent molecules, which are trapped between C 60 molecules under critical conditions. This room-temperature self-assembly cluster growth process in critical fluids may open up a new methodology of forming structures built up with fullerenes without the need for any ultra-fine processing technologies

  11. Light controllable catalytic activity of Au clusters decorated with photochromic molecules

    Guo, Na; Meng Yam, Kah; Zhang, Chun

    2018-06-01

    By ab initio calculations, we show that when decorated with a photochromic molecule, the catalytic activity of an Au nanocluster can be reversibly controlled by light. The combination of a photochromic thiol-pentacarbonyl azobenzene (TPA) molecule and an Au8 cluster is chosen as a model catalyst. The TPA molecule has two configurations (trans and cis) that can be reversibly converted to each other upon photo-excitation. Our calculations show that when the TPA takes the trans configuration, the combined system (trans-Au8) is an excellent catalyst for CO oxidation. The reaction barrier of the catalyzed CO oxidation is less than 0.4 eV. While, the reaction barrier of CO oxidation catalyzed by cis-Au8 is very high (>2.7 eV), indicating that the catalyst is inactive. These results pave the way for a new class of light controllable nanoscale catalysts.

  12. Metal clusters on supported argon layers; Metallcluster auf dielektrischen Substraten

    Faber, Bernhard

    2011-10-21

    The deposition of small sodium clusters on supported Ar(001)-surfaces is simulated. Theoretical description is achieved by a hierarchical model consisting of time-dependent DFT and molecular dynamics. The valence electrons of the sodium atoms are considered by Kohn-Sham-Scheme with self interaction correction. The interaction of argon atoms and sodium ions is described by atom-atom potentials whereas the coupling to the QM electrons is done by local pseudo-potentials. A decisive part of the model is the dynamical polarizability of the rare-gas atoms. The optional metal support is considered by the method of image charges. The influence of the forces caused by image charges and the influence of the number of argon monolayers on structure, optical response and deposition dynamics of Na{sub 6} and Na{sub 8} is investigated. There is very little influence on cluster structure and only a small shift of the cluster perpendicular to the surface. Concerning optical response the position of the Mie plasmon peak stays robust whereas the details of spectral fragmentation react very sensitively to changes. The forces caused by image charges of the metal support play only a little role with the dynamics of deposition while the thickness of the argon surface strongly influences the dissipation. (orig.)

  13. Charge Transport in Metal-Molecule-Metal Junctions Probed by Conducting Atomic Force Microscopy

    Lee, Min Hyung; Song, Hyunwook

    2013-01-01

    We have demonstrated a proof of intrinsic charge transport properties in alkanedithiol molecular junctions using a multiprobe approach combining a variety of transport techniques. The temperature-independent I(V) behavior and the correct exponential decay of conductance with respect to molecular length shows that the dominant charge transport mechanism is off-resonant tunneling. Length-dependent TVS measurements for the saturated alkane-dithiol series indicate that we did indeed probe a molecular system with CAFM. These results can provide stringent criteria to establish a valid molecular transport junction via a probabilistic measurement technique. In this study, we report a study of charge transport in alkanedithiol SAMs formed in metal-molecule-metal junctions using CAFM in combination with a variety of molecular transport techniques including temperature-and length-variable transport measurements and transition voltage spectroscopy. The main goal of this study is to probe the intrinsic transport properties of component molecules using CAFM, but not parasitic or defect-related effects

  14. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  15. Electron attachment to molecules and clusters of atmospheric relevance: oxygen and ozone

    Matejcik, S.; Cicman, P.; Skalny, J.; Kiendler, A.; Stampfli, P.; Maerk, T.D.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    Highly monochromatized electrons are used in a crossed beams experiment to investigate electron attachment to oxygen clusters (O 2 )-n at electron energies from approximately zero eV up to 2 eV. At energies close to zero the attachment cross section for the reaction (O 2 ) n + e → O 2 - varies inversely with the electron energy, indicative of s-wave electron capture to (O 2 ) n . Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for. In addition electron attachment to ozone and mixed oxygen/ozone clusters has been studied in the energy range up to 4 eV. Absolute attachment cross sections for both fragment ions anions, O - and O 2 - , from ozone could be deduced. Moreover, despite the initially large excess of oxygen molecules in the neutral oxygen/ozone clusters the dominant attachment products are un-dissociated cluster ions (O 3 ) m - including the O 3 - monomer while oxygen cluster ions (O 2 ) n appear with comparatively low intensity. (authors)

  16. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd, E-mail: gerd.meyer@uni-koeln.de

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  17. Metal-Containing Molecules Beyond the Solar System: a Laboratory and Radio Astronomical Perspective

    Ziurys, L. M.

    2010-06-01

    Although the history of interstellar molecules began around 1970, with the millimeter-wave detection of CO in the Orion Nebula, metal-containing species have been somewhat elusive for astronomical searches. Only in the past two decades have metal-bearing molecules been identified in space, starting with metal halides (NaCl, KCl, AlCl, and AlF), and then metal cyanide and isocyanide species (MgNC, MgCN, NaCN, and AlNC). Moreover, the metal-containing molecules seemed to be present in a single astronomical object: the envelope of a dying, carbon-rich star, IRC+10216. However, with improvements both in laboratory spectroscopy and telescope sensitivity, it is becoming clear that the relevance of metal-containing species in astrophysics is increasing. Metal oxide and hydroxide species, such as AlO and AlOH, have recently been identified in interstellar space. Metal-containing molecules are now being found in other astronomical sources, such as the oxygen-rich shell surrounding VY Canis Majoris, a supergiant star. These new astronomical discoveries will be presented, as well as the laboratory measurements that made them possible. New directions in rotational spectroscopy of metal-bearing molecules will also be discussed.

  18. Electronic structure of vacancies and vacancy clusters in simple metals

    Manninen, M.; Nieminen, R.M.

    1978-05-01

    The self-consistent density functional approach has been applied in a study of electronic properties of vacancies and vacancy clusters in simple metals. The electron density profiles and potentials have been obtained for spherical voids of varying size. The formation energies and residual resistivities have been calculated for vacancies using both perturbational and variational inclusion of discrete lattice effects. The relation of the void properties to the plane surface ones is studied, and the inadequacy of the jellium-based methods to high-index faces is demonstrated. (author)

  19. Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices.

    Aragonès, Albert C; Aravena, Daniel; Valverde-Muñoz, Francisco J; Real, José Antonio; Sanz, Fausto; Díez-Pérez, Ismael; Ruiz, Eliseo

    2017-04-26

    The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their Fermi levels for one of the electronic spins only. The key ingredient for the metal surface is to provide an efficient spin texture induced by the spin-orbit coupling in the topological surface states that results in an efficient spin-dependent interaction with the orbitals of the molecule. The strong magnetoresistance effect found in this kind of single-molecule wire opens a new approach for the design of room-temperature nanoscale devices based on spin-polarized currents controlled at molecular level.

  20. Damage clustering in metals: Importance, advances and challenges

    Nordlund, K.; Sand, A.E.; Granberg, F.; Levo, E.; Djurabekova, F.

    2016-01-01

    The damage produced in metals has traditionally been primarily characterized in terms of the total damage production, which typically is first estimated with the dpa number. As discussed in previous meetings of this CRP, the dpa is not actually very well suited for typical dense metals, since the number it gives is typically about 3 times larger than the number of actual defects produced, and 30 times smaller than the actual number of defects produced. Hence we developed the improved arc-dpa and rpa standards, that give in a simple analytical form a defect number that does correspond well to MD and experimental data. Section 2 summarizes the development of the arc-dpa and rpa standards. In sections 3 and 4 we discuss the role of damage clustering in damage production

  1. Spectra of matrix isolated metal atoms and clusters

    Meyer, B.

    1977-01-01

    The matrix isolation spectra of all of the 40 presently known atomic metal species show strong matrix effects. The transition energies are increased, and the bands are broad and exhibit splitting of sublevels which are degenerate in the gas phase. Several models have been proposed for splitting of levels, but basic effects are not yet understood, and spectra cannot be predicted, yet it is possible to correlate gas phase and matrix in many of the systems. Selective production of diatomics and clusters via thermal and optical annealing of atomic species can be monitored by optical spectra, but yields spectroscopically complex systems which, however, especially in the case of transition metals, can be used as precursors in novel chemical reactions. A combination of absorption, emission, ir, Raman, ESR, and other methods is now quickly yielding data which will help correlate the increasing wealth of existing data. 55 references, 6 figures

  2. Multipole moments of water molecules in clusters and ice Ih from first principles calculations

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.

    1999-01-01

    We have calculated molecular multipole moments for water molecules in clusters and in ice Ih by partitioning the charge density obtained from first principles calculations. Various schemes for dividing the electronic charge density among the water molecules were used. They include Bader close-quote s zero flux surfaces and Voronoi partitioning schemes. A comparison was also made with an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments. We have found that the different density partitioning schemes lead to widely different values for the molecular multipoles, illustrating how poorly defined molecular multipoles are in clusters and condensed environments. For instance, the magnitude of the molecular dipole moment in ice Ih ranges between 2.3 D and 3.1 D depending on the partitioning scheme used. Within each scheme, though, the value for the molecular dipole moment in ice is larger than in the hexamer. The magnitude of the molecular dipole moment in the clusters shows a monotonic increase from the gas phase value to the one in ice Ih, with the molecular dipole moment in the water ring hexamer being smaller than the one in ice Ih for all the partitioning schemes used. copyright 1999 American Institute of Physics

  3. Independent center, independent electron approximation for dynamics of molecules and clusters

    McGuire, J.H.; Straton, J.C.; Wang, J.; Wang, Y.D.; Weaver, O.L.; Corchs, S.E.; Rivarola, R.D.

    1996-01-01

    A formalism is developed for evaluating probabilities and cross sections for multiple-electron transitions in scattering of molecules and clusters by charged collision partners. First, the molecule is divided into subclusters each made up of identical centers (atoms). Within each subcluster coherent scattering from identical centers may lead to observable phase terms and a geometrical structure factor. Then, using a mean field approximation to describe the interactions between centers we obtain A I ∼ summation k product ke iδ k I A Ik . Second, the independent electron approximation for each center may be obtained by neglecting the correlation between electrons in each center. The probability amplitude for each center is then a product of single electron transition probability amplitudes, a Ik i , i.e. A Ik ≅ product iaik i . Finally, the independent subcluster approximation is introduced by neglecting the interactions between different subclusters in the molecule or cluster. The total probability amplitude then reduces to a simple product of amplitudes for each subcluster, A≅ product IAI . Limitations of this simple approximation are discussed. copyright 1996 American Institute of Physics

  4. Molecular limit of a bulk semiconductor: size dependent optical spectroscopy study of CdSe cluster molecules

    Soloviev, V.N.; Banin, U. [Hebrew Univ., Jerusalem (Israel). Dept. of Physical Chemistry; Eichhoefer, A. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Nanotechnologie; Fenske, D. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Nanotechnologie; Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Steady state and time-resolved photoluminescence measurements of a homologous series of CdSe cluster molecules were performed over a broad temperature range (T = 5-200 K). The absorption and low temperature PLE onset of the clusters shifts systematically to the blue in smaller clusters, manifesting the quantum confinement effect. The emission in all cluster molecules is observed only at low temperatures and is red-shifted significantly from the absorption onset. It is assigned to optically forbidden transitions involving surface states, as substantiated by the {mu}s range of lifetimes and by the involvement of low frequency vibrations of capping selenophenol ligands in the nonradiative relaxation of excited cluster molecules. (orig.)

  5. Collective-field-corrected strong field approximation for laser-irradiated metal clusters

    Keil, Th; Bauer, D

    2014-01-01

    The strong field approximation (SFA) formulated in terms of so-called ‘quantum orbits’ led to much insight into intense-laser driven ionization dynamics. In plain SFA, the emitted electron is treated as a free electron in the laser field alone. However, with improving experimental techniques and more advanced numerical simulations, it becomes more and more obvious that the plain SFA misses interesting effects even on a qualitative level. Examples are holographic side lobes, the low-energy structure, radial patterns in photoelectron spectra at low kinetic energies and strongly rotated angular distributions. For this reason, increasing efforts have been recently devoted to Coulomb corrections of the SFA. In the current paper, we follow a similar line but consider ionization of metal clusters. It is known that photoelectrons from clusters can be much more energetic than those emitted from atoms or small molecules, especially if the Mie resonance of the expanding cluster is evoked. We develop a SFA that takes the collective field inside the cluster via the simple rigid-sphere model into account. Our approach is based on field-corrected quantum orbits so that the acceleration process (or any other spectral feature of interest) can be investigated in detail. (paper)

  6. Adsorption of metal-phthalocyanine molecules onto the Si(111) surface passivated by δ doping: Ab initio calculations

    Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.

    2016-03-01

    We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.

  7. Tuning aromaticity in trigonal alkaline earth metal clusters and their alkali metal salts.

    Jiménez-Halla, J Oscar C; Matito, Eduard; Blancafort, Lluís; Robles, Juvencio; Solà, Miquel

    2009-12-01

    In this work, we analyze the geometry and electronic structure of the [X(n)M(3)](n-2) species (M = Be, Mg, and Ca; X = Li, Na, and K; n = 0, 1, and 2), with special emphasis on the electron delocalization properties and aromaticity of the cyclo-[M(3)](2-) unit. The cyclo-[M(3)](2-) ring is held together through a three-center two-electron bond of sigma-character. Interestingly, the interaction of these small clusters with alkali metals stabilizes the cyclo-[M(3)](2-) ring and leads to a change from sigma-aromaticity in the bound state of the cyclo-[M(3)](2-) to pi-aromaticity in the XM(3) (-) and X(2)M(3) metallic clusters. Our results also show that the aromaticity of the cyclo-[M(3)](2-) unit in the X(2)M(3) metallic clusters depends on the nature of X and M. Moreover, we explored the possibility for tuning the aromaticity by simply moving X perpendicularly to the center of the M(3) ring. The Na(2)Mg(3), Li(2)Mg(3), and X(2)Ca(3) clusters undergo drastic aromaticity alterations when changing the distance from X to the center of the M(3) ring, whereas X(2)Be(3) and K(2)Mg(3) keep its aromaticity relatively constant along this process. (c) 2009 Wiley Periodicals, Inc.

  8. Phase-coherent electron transport through metallic atomic-sized contacts and organic molecules

    Pauly, F.

    2007-02-02

    This work is concerned with the theoretical description of systems at the nanoscale, in particular the electric current through atomic-sized metallic contacts and organic molecules. In the first part, the characteristic peak structure in conductance histograms of different metals is analyzed within a tight-binding model. In the second part, an ab-initio method for quantum transport is developed and applied to single-atom and single-molecule contacts. (orig.)

  9. Lanczos-driven coupled-cluster damped linear response theory for molecules in polarizable environments

    List, Nanna Holmgaard; Coriani, Sonia; Kongsted, Jacob

    2014-01-01

    are specifically motivated by a twofold aim: (i) computation of core excitations in realistic surroundings and (ii) examination of the effect of the differential response of the environment upon excitation solely related to the CC multipliers (herein denoted the J matrix) in computations of excitation energies......We present an extension of a previously reported implementation of a Lanczos-driven coupled-cluster (CC) damped linear response approach to molecules in condensed phases, where the effects of a surrounding environment are incorporated by means of the polarizable embedding formalism. We...... and transition moments of polarizable-embedded molecules. Numerical calculations demonstrate that the differential polarization of the environment due to the first-order CC multipliers provides only minor contributions to the solvatochromic shift for all transitions considered. We thus complement previous works...

  10. Adsorption of metalorganic molecules on metal-semiconductor systems

    Brand, Christian; Schmeidel, Jedrzej; Chen, Wei; Tegenkamp, Christoph; Pfnuer, Herbert [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover (Germany)

    2011-07-01

    The controlled implementation of single molecules in appropriate contact assemblies is the ultimate realization of an ultra-small device structure. Besides extremely high integration densities the functionalities of the devices are adjustable by chemical synthesis. However, the interaction of the molecule with its environment is decisive. The adsorption of ferrocene-1,1'-dithiol (FDT) on Ag-{radical}(3) reconstructions on nominally flat and vicinal Si(111) substrates has been studied. The FDT was chosen because of its large conductance and high structural flexibility with respect to rotation of the two cyclopentadienyl (Cp) rings. The reconstruction is a prototype of a highly conductive low dimensional electron gas on a technologically relevant substrate. The adsorption of intact molecules takes place predominantly at defect sites, e.g. vacancy and step structures. Submolecular resolution showing the Cp-ring structure was obtained at perfect terrace sites. Due to chemisorption of the S-atoms at hollow sites the molecule axis is oriented parallel to the substrate. The initial rotational flexibility is frozen and only tow different rotated configurations were found. The adsorption geometry is confirmed by VASP calculations. Recently, Ag reconstructions on Si(557) substrates have been used. The effect of the uniaxial step configuration towards the adsorption of the FDT molecules is discussed.

  11. High-intensity X-rays interaction with matter processes in plasmas, clusters, molecules and solids

    Hau-Riege, Stefan P

    2012-01-01

    Filling the need for a book bridging the effect of matter on X-ray radiation and the interaction of x-rays with plasmas, this monograph provides comprehensive coverage of the topic. As such, it presents and explains such powerful new X-ray sources as X-ray free-electron lasers, as well as short pulse interactions with solids, clusters, molecules, and plasmas, and X-ray matter interactions as a diagnostic tool. Equally useful for researchers and practitioners working in the field.

  12. Order and chaos in nuclear and metal cluster deformation

    Radu, S.

    1995-08-01

    The vast amount of nuclear and metal cluster data indicates that shell structure and deformation are two simultaneous properties. A conflicting situation is therefore encountered as the shell structure, a firm expression of order, is apparently not compatible with the non-integrable nature of the models incorporating deformation. The main issue covered in this thesis is the intricate connection between deformation and chaotic behaviour in deformation models pertinent to nuclear structure and metal cluster physics. It is shown that, at least in some cases, it is possible to reconcile the occurrence of shell structure with non-integrability. The coupling of an axially deformed harmonic oscillator to an axially symmetric octupole term renders the problem non-integrable. The chaotic character of the motion is strongly dependent on the type of deformation, in that a prolate shape shows virtually no chaos, while in an oblate case the motion exhibits fully developed chaos when the octupole term is switched on. Whereas the problem is non-integrable, the quantum mechanical spectrum nevertheless shows some shell structure in the prolate case for particular, yet fairly large octupole strengths; for spherical or oblate deformation the shell structure disappears. This result is explained in terms of classical periodic orbits which are found by employing the 'removal of resonances method'. Particular emphasis is put on the effect of the hexadecapole deformation which is important in fission processes. The combined effect of octupole and hexadecapole deformation leads to important conclusions for the experimental work as a high degree of ambiguity is signaled for the interpretation of data. The ambiguity results from the discovery of a mutual cancellation of the octupole and hexadecapole deformation in prolate superdeformed systems. The phenomenological Nilsson model is treated in a similar way. It is argued that while in nuclei it produces good results for the low-lying levels

  13. Anchoring of organic molecules to a metal surface: HtBDC on Cu(110)

    Schunack, M.; Petersen, L.; Kuhnle, A.

    2001-01-01

    The interaction of largish molecules with metal surfaces has been studied by combining the imaging and manipulation capabilities of the scanning tunneling microscope (STM). At the atomic scale, the STM results directly reveal that the adsorption of a largish organic molecule can induce...

  14. Sulphur in the metal poor globular cluster NGC 6397

    Koch, A.; Caffau, E.

    2011-10-01

    Sulphur (S) is a non-refractory α-element that is not locked into dust grains in the interstellar medium. Thus no correction to the measured, interstellar sulphur abundance is needed and it can be readily compared to the S content in stellar photospheres. Here we present the first measurement of sulphur in the metal poor globular cluster (GC) NGC 6397, as detected in a MIKE/Magellan high signal-to-noise, high-resolution spectrum of one red giant star. While abundance ratios of sulphur are available for a larger number of Galactic stars down to an [Fe/H] of ~ -3.5 dex, no measurements in globular clusters more metal poor than -1.5 dex have been reported so far. We find aNLTE, 3-D abundance ratio of [S/Fe] = +0.52 ± 0.20 (stat.) ± 0.08 (sys.), based on theS I, Multiplet 1 line at 9212.8 Å. This value is consistent with a Galactic halo plateau as typical of other α-elements in GCs and field stars, but we cannot rule out its membership with a second branch of increasing [S/Fe] with decreasing [Fe/H], claimed in the literature, which leads to a large scatter at metallicities around - 2 dex. The [S/Mg] and [S/Ca] ratios in this star are compatible with a Solar value to within the (large) uncertainties. Despite the very large scatter in these ratios across Galactic stars between literature samples, this indicates that sulphur traces the chemical imprints of the other α-elements in metal poor GCs. Combined with its moderate sodium abundance ([S/Na]NLTE = 0.48), the [S/Fe] ratio in this GC extends a global, positive S-Na correlation that is not seen in field stars and might indicate that proton-capture reactions contributed to the production of sulphur in the (metal poor) early GC environments. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  15. Structure and Mobility of Metal Clusters in MOFs: Au, Pd, and AuPd Clusters in MOF-74

    Vilhelmsen, Lasse; Walton, Krista S.; Sholl, David S.

    2012-01-01

    is just as important for nanocluster adsorption as open Zn or Mg metal sites. Using the large number of clusters generated by the GA, we developed a systematic method for predicting the mobility of adsorbed clusters. Through the investigation of diffusion paths a relationship between the cluster......Understanding the adsorption and mobility of metal–organic framework (MOF)-supported metal nanoclusters is critical to the development of these catalytic materials. We present the first theoretical investigation of Au-, Pd-, and AuPd-supported clusters in a MOF, namely MOF-74. We combine density...... functional theory (DFT) calculations with a genetic algorithm (GA) to reliably predict the structure of the adsorbed clusters. This approach allows comparison of hundreds of adsorbed configurations for each cluster. From the investigation of Au8, Pd8, and Au4Pd4 we find that the organic part of the MOF...

  16. Single Molecule Cluster Analysis Identifies Signature Dynamic Conformations along the Splicing Pathway

    Blanco, Mario R.; Martin, Joshua S.; Kahlscheuer, Matthew L.; Krishnan, Ramya; Abelson, John; Laederach, Alain; Walter, Nils G.

    2016-01-01

    The spliceosome is the dynamic RNA-protein machine responsible for faithfully splicing introns from precursor messenger RNAs (pre-mRNAs). Many of the dynamic processes required for the proper assembly, catalytic activation, and disassembly of the spliceosome as it acts on its pre-mRNA substrate remain poorly understood, a challenge that persists for many biomolecular machines. Here, we developed a fluorescence-based Single Molecule Cluster Analysis (SiMCAn) tool to dissect the manifold conformational dynamics of a pre-mRNA through the splicing cycle. By clustering common dynamic behaviors derived from selectively blocked splicing reactions, SiMCAn was able to identify signature conformations and dynamic behaviors of multiple ATP-dependent intermediates. In addition, it identified a conformation adopted late in splicing by a 3′ splice site mutant, invoking a mechanism for substrate proofreading. SiMCAn presents a novel framework for interpreting complex single molecule behaviors that should prove widely useful for the comprehensive analysis of a plethora of dynamic cellular machines. PMID:26414013

  17. Ion collision-induced chemistry in pure and mixed loosely bound clusters of coronene and C60 molecules.

    Domaracka, Alicja; Delaunay, Rudy; Mika, Arkadiusz; Gatchell, Michael; Zettergren, Henning; Cederquist, Henrik; Rousseau, Patrick; Huber, Bernd A

    2018-05-23

    Ionization, fragmentation and molecular growth have been studied in collisions of 22.5 keV He2+- or 3 keV Ar+-projectiles with pure loosely bound clusters of coronene (C24H12) molecules or with loosely bound mixed C60-C24H12 clusters by using mass spectrometry. The heavier and slower Ar+ projectiles induce prompt knockout-fragmentation - C- and/or H-losses - from individual molecules and highly efficient secondary molecular growth reactions before the clusters disintegrate on picosecond timescales. The lighter and faster He2+ projectiles have a higher charge and the main reactions are then ionization by ions that are not penetrating the clusters. This leads mostly to cluster fragmentation without molecular growth. However, here penetrating collisions may also lead to molecular growth but to a much smaller extent than with 3 keV Ar+. Here we present fragmentation and molecular growth mass distributions with 1 mass unit resolution, which reveals that the same numbers of C- and H-atoms often participate in the formation and breaking of covalent bonds inside the clusters. We find that masses close to those with integer numbers of intact coronene molecules, or with integer numbers of both intact coronene and C60 molecules, are formed where often one or several H-atoms are missing or have been added on. We also find that super-hydrogenated coronene is formed inside the clusters.

  18. Renormalization of Optical Excitations in Molecules near a Metal Surface

    García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2011-01-01

    consequence we find that close to the metal surface the optical gap of benzene can exceed its quasiparticle gap. A classical image charge model for the screened Coulomb interaction can account for all these effects which, on the other hand, are completely missed by standard time-dependent density functional...

  19. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    Lichtenberger, D.L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of (η 5 -C 5 H 4 X)Rh(CO) 2 complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C 60 reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs

  20. Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms

    Aldegunde, Jesus; Hutson, Jeremy M.

    2018-04-01

    Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.

  1. Contribution of radiation chemistry to the study of metal clusters.

    Belloni, J

    1998-11-01

    Radiation chemistry dates from the discovery of radioactivity one century ago by H. Becquerel and P. and M. Curie. The complex phenomena induced by ionizing radiation have been explained progressively. At present, the methodology of radiation chemistry, particularly in the pulsed mode, provides a powerful means to study not only the early processes after the energy absorption, but more generally a broad diversity of chemical and biochemical reaction mechanisms. Among them, the new area of metal cluster chemistry illustrates how radiation chemistry contributed to this field in suggesting fruitful original concepts, in guiding and controlling specific syntheses, and in the detailed elaboration of the mechanisms of complex and long-unsolved processes, such as the dynamics of nucleation, electron transfer catalysis and photographic development.

  2. Lipid-Mediated Clusters of Guest Molecules in Model Membranes and Their Dissolving in the Presence of Lipid Rafts.

    Kardash, Maria E; Dzuba, Sergei A

    2017-05-25

    The clustering of molecules is an important feature of plasma membrane organization. It is challenging to develop methods for quantifying membrane heterogeneities because of their transient nature and small size. Here, we obtained evidence that transient membrane heterogeneities can be frozen at cryogenic temperatures which allows the application of solid-state experimental techniques sensitive to the nanoscale distance range. We employed the pulsed version of electron paramagnetic resonance (EPR) spectroscopy, the electron spin echo (ESE) technique, for spin-labeled molecules in multilamellar lipid bilayers. ESE decays were refined for pure contribution of spin-spin magnetic dipole-dipolar interaction between the labels; these interactions manifest themselves at a nanometer distance range. The bilayers were prepared from different types of saturated and unsaturated lipids and cholesterol (Chol); in all cases, a small amount of guest spin-labeled substances 5-doxyl-stearic-acid (5-DSA) or 3β-doxyl-5α-cholestane (DChl) was added. The local concentration found of 5-DSA and DChl molecules was remarkably higher than the mean concentration in the bilayer, evidencing the formation of lipid-mediated clusters of these molecules. To our knowledge, formation of nanoscale clusters of guest amphiphilic molecules in biological membranes is a new phenomenon suggested only recently. Two-dimensional 5-DSA molecular clusters were found, whereas flat DChl molecules were found to be clustered into stacked one-dimensional structures. These clusters disappear when the Chol content is varied between the boundaries known for lipid raft formation at room temperatures. The room temperature EPR evidenced entrapping of DChl molecules in the rafts.

  3. Spectroscopy of selected metal-containing diatomic molecules

    Gordon, Iouli E.

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Sigma+ electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH, and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm-1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant oe for MnH was found to be 1546.84518(65) cm-1, the equilibrium rotational constant Be was found to be 5.6856789(103) cm-1 and the equilibrium bond distance re was determined to be 1.7308601(47) A. New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3.5 mum region using a Fourier transform spectrometer. Many bands were observed for the A'3phi- X3phi electronic transition of CoH and CoD. In addition, a new [13.3]4 electronic state was found by observing the [13.3]4-X3phi3 and [13.3]4- X3phi4 transitions in the spectrum of CoD. Analysis of the transitions with DeltaO = 0, +/-1 provided more accurate values of spin-orbit splittings between O = 4 and O = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800--11 300 cm-1 were recorded at a resolution of 0.04 cm-1. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the X1Sigma+ ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. Electronic spectra of the previously unobserved EuH and Eu

  4. Chemical bonding of hydrogen molecules to transition metal complexes

    Kubas, G.J.

    1990-01-01

    The complex W(CO) 3 (PR 3 ) 2 (H 2 ) (CO = carbonyl; PR 3 = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H 2 exchanges easily with D 2 . This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H 2 bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H 2 )(R 2 PCH 2 CH 2 PR 2 ) 2 were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig

  5. PREFACE: International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (MPS2014)

    Ancarani, Lorenzo Ugo

    2015-04-01

    This volume contains a collection of contributions from the invited speakers at the 2014 edition of the International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces held in Metz, France, from 15th to 18th July 2014. This biennial conference alternates with the ICPEAC satellite International Symposium on (e,2e), Double Photoionization and Related Topics, and is concerned with experimental and theoretical studies of radiation interactions with matter. These include many-body and electron-electron correlation effects in excitation, and in single and multiple ionization of atoms, molecules, clusters and surfaces with various projectiles: electrons, photons and ions. More than 80 scientists, from 19 different countries around the world, came together to discuss the most recent progress on these topics. The scientific programme included 28 invited talks and a poster session extending over the three days of the meeting. Amongst the 51 posters, 11 have been selected and were advertised through short talks. Besides, Professor Nora Berrah gave a talk in memory of Professor Uwe Becker who sadly passed away shortly after co-chairing the previous edition of this conference. Financial support from the Institut Jean Barriol, Laboratoire SRSMC, Groupement de Recherche THEMS (CNRS), Ville de Metz, Metz Métropole, Conseil Général de la Moselle and Région Lorraine is gratefully acknowledged. Finally, I would like to thank the members of the local committee and the staff of the Université de Lorraine for making the conference run smoothly, the International Advisory Board for building up the scientific programme, the sessions chairpersons, those who gave their valuable time in carefully refereeing the articles of this volume and last, but not least, all participants for contributing to lively and fruitful discussions throughout the meeting.

  6. Interface properties of organic molecules on metal surfaces; Grenzflaecheneigenschaften organischer Molekuele auf Metalloberflaechen

    Karacuban, Hatice

    2010-01-28

    In this work, the growth of the archetype molecules CuPc and PTCDA was investigated on Cu(111). PTCDA was also studied on NaCl/Cu(111). The main experiments were carried out with a scanning tunneling microscope. Structural analysis of CuPc on Cu (111) is only possible at low temperatures, since at room temperature the molecules exhibit a high surface mobility. For the investigation of these structures and especially to enable scanning tunneling spectroscopy, a low-temperature scanning tunneling microscope was developed. Using this home built STM the experiments could be carried out at about 10 K. After the adsorption of CuPc on Cu (111) a substrate-induced symmetry reduction of the molecules can be observed in scanning tunneling microscopy. When the occupied states of the molecules are imaged, a switching between two distinct levels is found. These modifications are determined by the adsorption geometry of the molecules. Based on high resolution STM data, an on-top adsorption geometry of the CuPc-molecules on Cu (111)-substrate can be deducted. At low temperatures, two new superstructures of PTCDA on Cu(111) are observed. The molecules within these superstructures are tilted with respect to the substrate. Intermolecular interactions may be the crucial factor for the realignment of the molecules. If PTCDA molecules are adsorbed on a NaCl/Cu (111) substrate, at room temperature, also two new superstructures on the copper substrate were found. They indicate the formation of a metall-organic-complex. On top of the NaCl layer the molecules exclusively grow at polar NaCl step edges. This is an indication for electrostatic interaction between the PTCDA molecules and the NaCl layer. When the molecule density is further increased, a Vollmer-Weber growth sets in. If both molecules PTCDA and CuPc are present on the sample at the same time, local spectroscopy provides information on the metal-organic interface in direct comparison. The STS-results of CuPc/PTCDA on Cu (111

  7. Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions

    Keesee, R.G.; Lee, N.; Castleman, A.W. Jr.

    1980-01-01

    Ion--molecules association reactions of the form A - (B)/sub n1/-+B=A - (B)/sub n/ were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl - , I - , and NO 2 - with n ranging from one to three or four, and onto SO 2 - and SO 3 - with n equal to one; and (2) carbon dioxide onto Cl - , I - , NO 2 - , CO 3 - , and SO 3 - with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions. For any given ion, the relative order of the addition enthalpies among the neutrals was found to be dependent on the polarizabilities of the neutrals and on the covalency in the ion-neutral bond. Dispersion of charge via covalent bonding was found to affect significantly the succeeding clustering steps

  8. Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.

    Simeone, Felice Carlo; Rampi, Maria Anita

    2010-01-01

    Junctions based on mesoscopic Hg electrodes are used to characterize the electrical properties of the organic molecules organized in self-assembled monolayers (SAMs). The junctions M-SAM//SAM-Hg are formed by one electrode based on metals (M) such as Hg, Ag, Au, covered by a SAM, and by a second electrode always formed by a Hg drop carrying also a SAM. The electrodes, brought together by using a micromanipulator, sandwich SAMs of different nature at the contact area (approximately = 0.7 microm2). The high versatility of the system allows a series of both electrical and electrochemical junctions to be assembled and characterized: (i) The compliant nature of the Hg electrodes allows incorporation into the junction and measurement of the electrical behavior of a large number of molecular systems and correlation of their electronic structure to the electrical behavior; (ii) by functionalizing both electrodes with SAMs exposing different functional groups, X and Y, it is possible to compare the rate of electron transfer through different X...Y molecular interactions; (iii) when the junction incorporates one of the electrode formed by a semitransparent film of Au, it allows electrical measurements under irradiation of the sandwiched SAMs. In this case the junction behaves as a photoswitch; iv) incorporation of redox centres with low lying, easily reachable energy levels, provides electron stations as indicated by the hopping mechanism dominating the current flow; (v) electrochemical junctions incorporating redox centres by both covalent and electrostatic interactions permit control of the potential of the electrodes with respect to that of the redox state by means of an external reference electrode. Both these junctions show an electrical behavior similar to that of conventional diodes, even though the mechanism generating the current flow is different. These systems, demonstrating high mechanical stability and reproducibility, easy assembly, and a wide variety of

  9. Entrapment of metal clusters in metal-organic framework channels by extended hooks anchored at open metal sites.

    Zheng, Shou-Tian; Zhao, Xiang; Lau, Samuel; Fuhr, Addis; Feng, Pingyun; Bu, Xianhui

    2013-07-17

    Reported here are the new concept of utilizing open metal sites (OMSs) for architectural pore design and its practical implementation. Specifically, it is shown here that OMSs can be used to run extended hooks (isonicotinates in this work) from the framework walls to the channel centers to effect the capture of single metal ions or clusters, with the concurrent partitioning of the large channel spaces into multiple domains, alteration of the host-guest charge relationship and associated guest-exchange properties, and transfer of OMSs from the walls to the channel centers. The concept of the extended hook, demonstrated here in the multicomponent dual-metal and dual-ligand system, should be generally applicable to a range of framework types.

  10. Stability of metal organic frameworks and interaction of small gas molecules in these materials

    Tan, Kui

    The work in this dissertation combines spectroscopy ( in-situ infrared absorption and Raman), powder X-ray diffraction and DFT calculations to study the stability of metal organic frameworks materials (MOFs) in the presence of water vapor and other corrosive gases (e.g., SO 2, NO2 NO), and the interaction and competitive co-adsorption of several gases within MOFs by considering two types of prototypical MOFs: 1) a MOF with saturated metal centers based on paddlewheel secondary building units: M(bdc)(ted)0.5 [M=Cu, Zn, Ni, Co, bdc = 1,4-benzenedicarboxylate, ted = triethylenediamine], and 2) a MOF with unsaturated metal centers: M2(dobdc) [M=Mg2+, Zn2+, Ni2+, Co2+ and dobdc = 2,5-dihydroxybenzenedicarboxylate]. We find that the stability of MOFs to water vapor critically depends on their structure and the specific metal cation in the building units. For M(bdc)(ted)0.5, the metal-bdc bond is the most vulnerable for Cu(bdc)(ted)0.5, while the metal-ted bond is first attacked for the Zn and Co analogs. In contrast, Ni(bdc)(ted)0.5 remains stable under the same conditions. For M2(dobdc), or MOF-74, the weak link is the dobdc-metal bond. The water molecule is dissociatively adsorbed at the metal-oxygen group with OH adsorption directly on the metal center and H adsorption on the bridging O of the phenolate group in the dobdc linker. Other technologically important molecules besides water, such as NO, NO2, SO2, tend to poison M2(dobdc) through dissociative or molecular adsorption onto the open metal sites. A high uptake SO2 capacity was measured in M(bdc)(ted)0.5, attributed to multipoint interactions between the guest SO2 molecule and the MOF host. In the case of competitive co-adsorption between CO2 and other small molecules, we find that binding energy alone is not a good indicator of molecular site occupation within the MOF (i.e., it cannot successfully predict and evaluate the displacement of CO2 by other molecules). Instead, we show that the kinetic barrier for the

  11. Magnetic properties of free alkali and transition metal clusters

    Heer, W. de; Milani, P.; Chatelain, A.

    1991-01-01

    The Stern-Gerlach deflections of small alkali clusters (N<6) and iron clusters (10< N<500) show that the paramagnetic alkali clusters always have a nondeflecting component, while the iron clusters always deflect in the high field direction. Both of these effects appear to be related to spin relaxation however in the case of alkali clusters it is shown that they are in fact caused by avoided level crossing in the Zeeman diagram. For alkali clusters the relatively weak couplings cause reduced magnetic moments where levels cross. For iron clusters however the total spin is strongly coupled to the molecular framework. Consequently this coupling is responsible for avoided level crossing which ultimately cause the total energy of the cluster to decrease with increasing magnetic field so that the iron clusters will deflect in one direction when introduced in an inhomogeneous magnetic field. Experiment and theory are discussed for both cases. (orig.)

  12. Plasmon resonances in large noble-metal clusters

    Soennichsen, C; Franzl, T; Wilk, T; Plessen, G von; Feldmann, J

    2002-01-01

    We investigate the optical properties of spherical gold and silver clusters with diameters of 20 nm and larger. The light scattering spectra of individual clusters are measured using dark-field microscopy, thus avoiding inhomogeneous broadening effects. The dipolar plasmon resonances of the clusters are found to have nearly Lorentzian line shapes. With increasing size we observe polaritonic red-shifts of the plasmon line and increased radiation damping for both gold and silver clusters. Apart from some cluster-to-cluster variations of the plasmon lines, agreement with Mie theory is reasonably good for the gold clusters. However, it is less satisfactory for the silver clusters, possibly due to cluster faceting or chemical effects

  13. Manipulation of Origin of Life Molecules: Recognizing Single-Molecule Conformations in β-Carotene and Chlorophyll-a/β-Carotene Clusters

    Ngo, Anh T.; Skeini, Timur [Nanoscale; amp, Quantum Phenomena Institute and Physics & amp, Astronomy Department, Ohio University, Athens, Ohio 45701, United States; Iancu, Violeta [Nanoscale; amp, Quantum Phenomena Institute and Physics & amp, Astronomy Department, Ohio University, Athens, Ohio 45701, United States; Redfern, Paul C.; Curtiss, Larry A.; Hla, Saw Wai [Nanoscale; amp, Quantum Phenomena Institute and Physics & amp, Astronomy Department, Ohio University, Athens, Ohio 45701, United States

    2018-01-11

    Carotenoids and chlorophyll are essential parts of plant leaves and are involved in photosynthesis, a vital biological process responsible for the origin of life on Earth. Here, we investigate how beta-carotene and chlorophyll-a form mixed molecular phases On a Au(111) surface using low-temperature scanning tunneling microscopy and molecular manipulation at the single-molecule level supported by density functional theory calculations. By isolating individual molecules from nanoscale molecular clusters with a scanning tunneling microscope tip, we are able to identify five beta-carotene conformations including a structure exhibiting a three-dimensional conformation. Furthermore, molecular resolution images enable direct visualization of beta-carotene/chlorophyll-a clsuters, with intimate structural details highlighting how they pair: beta-carotene preferentially positions next to chlorophyll-a and induces switching of chlorophyll-a from straight to several bent tail conformations in the molecular clusters.

  14. Reaction dynamics of small molecules at metal surfaces

    Samson, P.A.

    1999-09-01

    The dissociation-desorption dynamics of D 2 upon the Sn/Pt(111) surface alloy are dependent on the surface concentration of Sn. The p(2 x 2) Sn/Pt(111) alloy surface (Θ Sn = 0.25 ML), is initially ∼30 times less reactive towards D 2 adsorption than clean Pt(111). On the (√3 x √3) R30 deg Sn/Pt(111) alloy surface (Θ Sn = 0.33 ML), increased inhibition of D 2 adsorption is reported, with S o ∼ 10 -5 at low energy, coinciding with the loss of stable Pt 3 hollow sites and a significant reduction in the D atom binding energy. Sticking on the √3 alloy is activated with an increased energy threshold of ∼280 meV, with no evidence that vibration enhances dissociation. The barrier to dissociation remains in the entrance channel before the D 2 bond begins to stretch. Vibrational excitation is, however, observed in nitrogen desorption from the catalytic reaction of NO + H 2 over Pd(110). For a surface at 600 K, N 2 vibrational state population ratios of P(v=1/v=0) = 0.50 ± 0.05 and P(v=2/v=0) = 0.60 ± 0.20 are reported. Desorption occurs via the N(ad) + N(ad) recombination channel with little energy released into translation and rotation. The translational energy release observed is dependent on the N 2 vibrational state, with translational temperatures of 425 K, 315 K and 180 K reported for the v=0, 1 and 2 states respectively. Sub-thermal energy releases and normally directed angular distributions suggest the influence of a trapping mechanism, recombining molecules scattering through a molecularly adsorbed state, with a transition state of large d NN responsible for the product vibrational excitation. Although N 2 dissociation on Fe(100) forms a simple overlayer structure, on Fe(110), molecular chemisorption does not occur at or above room temperature and the sticking is extremely small (∼10 -6 to 10 -7 ). Activated nitrogen bombardment can be used to prepare a 'surface nitride' with a structure related to the geometry of bulk Fe 4 N. Scanning tunnelling

  15. Shell structures and chaos in nuclei and large metallic clusters

    Heiss, W.D.; University of the Witwatersrand, Johannesburg; Nazmitdinov, R.G.; Radu, S.; University of the Witwatersrand, Johannesburg

    1995-01-01

    A reflection-asymmetric deformed oscillator potential is analyzed from the classical and quantum mechanical point of view. The connection between occurrence of shell structures and classical periodic orbits is studied using the ''removal of resonances method'' in a classical analysis. In this approximation, the effective single particle potential becomes separable and the frequencies of the classical trajectories are easily determined. It turns out that the winding numbers calculated in this way are in good agreement with the ones found from the corresponding quantum mechanical spectrum using the particle number dependence of the fluctuating part of the total energy. When the octupole term is switched on it is found that prolate shapes are stable against chaos and can exhibit shells where spherical and oblate cases become chaotic. An attempt is made to explain this difference in the quantum mechanical context by looking at the distribution of exceptional points which results from the matrix structure of the respective Hamiltonians. In a similar way we analyze the modified Nilsson model and discuss its consequences for metallic clusters. (orig.)

  16. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  17. Magnetic behavior of clusters of ferromagnetic transition metals

    Khanna, S. N.; Linderoth, Søren

    1991-01-01

    The effective magnetic moments of small iron and cobalt clusters have been calculated by assuming that the clusters undergo superparamagnetic relaxation. The effective moments per atom are found to be much below the bulk values, even at low temperatures (100 K). They increase with particle size a...... moments in small clusters compared to bulk as being due to melting of surface spins....

  18. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces

    Abild-Pedersen, Frank; Greeley, Jeffrey Philip; Studt, Felix

    2007-01-01

    Density functional theory calculations are presented for CHx, x=0,1,2,3, NHx, x=0,1,2, OHx, x=0,1, and SHx, x=0,1 adsorption on a range of close-packed and stepped transition-metal surfaces. We find that the adsorption energy of any of the molecules considered scales approximately with the adsorp...

  19. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    Lichienberger, D.L.

    1990-10-01

    This quarter has witnessed further progress both in our experimental methods of photoelectron spectroscopy and in our understanding the fundamental relationships between ionization energies and the chemistry of transition metal species. Progress continues on the new gas phase photoelectron spectrometer that combine improved capabilities for HeI/HeII UPS, XPS, and Auger investigations of organometallic molecules. Several measurements have been accomplished this year that were not possible previously. We have published the formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies, and applied the relationships to homonuclear and heteronuclear diatomic molecules, multiple bonds, and metal-ligand bonds. Studies of C-H bond activation have continued with examination of different degrees of Si-H bond addition to metals. the electronic effects of intermolecular interactions have been observed by comparing the ionizations of metal complexes in the gas phase with the ionizations of monolayer solid organometallic films prepared in ultra-high vacuum. The orientations of the molecules have been determined by scanning tunneling microscopy. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene. Studies of the following complexes are described : Fe, Os, Nb, Mo, Rh, Re, Al, and Mn. 19 refs

  20. Renormalization of Molecular Quasiparticle Levels at Metal-Molecule Interfaces: Trends across Binding Regimes

    Thygesen, Kristian Sommer; Rubio, Angel

    2009-01-01

    a microscopic model of the metal-molecule interface, we illustrate the basic features of this renormalization mechanism through systematic GW, Hartree-Fock, and Kohn-Sham calculations for the molecular energy levels as function of the model parameters. We identify two different polarization mechanisms: (i...

  1. Chemisorption on size-selected metal clusters: activation barriers and chemical reactions for deuterium and aluminum cluster ions

    Jarrold, M.F.; Bower, J.E.

    1988-01-01

    The authors describe a new approach to investigating chemisorption on size-selected metal clusters. This approach involves investigating the collision-energy dependence of chemisorption using low-energy ion beam techniques. The method provides a direct measure of the activation barrier for chemisorption and in some cases an estimate of the desorption energy as well. They describe the application of this technique to chemisorption of deuterium on size-selected aluminum clusters. The activation barriers increase with cluster size (from a little over 1 eV for Al 10 + to around 2 eV for Al 27 + ) and show significant odd-even oscillations. The activation barriers for the clusters with an odd number of atoms are larger than those for the even-numbered clusters. In addition to chemisorption of deuterium onto the clusters, chemical reactions were observed, often resulting in cluster fragmentation. The main products observed were Al/sub n-1/D + , Al/sub n-2/ + , and Al + for clusters with n + and Al/sub n-1/D + for the larger clusters

  2. A family of mixed-metal cyanide cubes with alternating octahedral and tetrahedral corners exhibiting a variety of magnetic behaviors including single molecule magnetism.

    Schelter, Eric J; Karadas, Ferdi; Avendano, Carolina; Prosvirin, Andrey V; Wernsdorfer, Wolfgang; Dunbar, Kim R

    2007-07-04

    A series of structurally related pseudocubic metal cyanide clusters of Re(II) and 3d metal ions [{MX}4{Re(triphos)(CN)3}4] (M = Mn, Fe, Co, Ni, Zn; X = Cl, I, -OCH3) have been prepared, and their magnetic and electrochemical properties have been probed to evaluate the effect of changing the identity of the 3d metal ion. Electrochemistry of the clusters reveals several rhenium-based oxidation and reduction processes, some of which result in cluster fragmentation. The richest electrochemistry was observed for the iron congener, which exists as the Re(I)/Fe(III) cluster at the resting potential and exhibits six clear one-electron reversible redox couples and two, closely spaced one-electron quasi-reversible processes. The [{MnIICl}4{ReII(triphos)(CN)3}4] complex exhibits single molecule magnetism with a fast tunneling relaxation process observed at H = 0 determined by micro-SQUID magnetization measurements. A comparative evaluation of the magnetic properties across the series reveals that the compounds exhibit antiferromagnetic coupling between the metal ions, except for [{NiIICl}4{ReII(triphos)(CN)3}4] that shows ferromagnetic behavior. Despite the large ground-state spin value of [{NiIICl}4{ReII(triphos)(CN)3}4] (S = 6), only manganese congeners exhibit SMM behavior to 1.8 K.

  3. Bonding and vibrational dynamics of a large π-conjugated molecule on a metal surface

    Temirov, R; Soubatch, S; Lassise, A; Tautz, F S

    2008-01-01

    The interplay between the substrate bonding of a large π-conjugated semiconductor molecule and the dynamical properties of the metal-organic interface is studied, employing the prototypical PTCDA/Ag(111) monolayer as an example. Both the coupling of molecular vibrations to the electron-hole-pair continuum of the metal surface and the inelastic scattering of tunnelling electrons by the molecular vibrations on their passage through the molecule are considered. The results of both types of experiment are consistent with the findings of measurements which probe the geometric and electronic structure of the adsorbate-substrate complex directly; generally speaking, they can be understood in the framework of standard theories for the electron-vibron coupling. While the experiments reported here in fact provide additional qualitative insights into the substrate bonding of our π-conjugated model molecule, their detailed quantitative understanding would require a full calculation of the dynamical interface properties, which is currently not available

  4. A magnetic nanoparticle-clustering biosensor for blu-ray based optical detection of small-molecules

    Yang, Jaeyoung; Donolato, Marco; Antunes, Paula Soares Martins

    2014-01-01

    MNP-clustering facilitates high-resolution small-molecule assays. For experiments, aptamer-functionalized MNPs (Apt-MNPs) were first incubated with adenosine-5'-triphosphate (ATP) followed by adding MNPs with linker strands (linker-MNPs). The linker hybridizes with a region of aptamer sequences...

  5. Bonding in Mercury Molecules Described by the Normalized Elimination of the Small Component and Coupled Cluster Theory

    Cremer, Dieter; Kraka, Elfi; Filatov, Michael

    2008-01-01

    Bond dissociation energies (BDEs) of neutral HgX and cationic HgX(+) molecules range from less than a kcal mol(-1) to as much as 60 kcal mol(-1). Using NESCICCCSD(T) [normalized elimination of the small component and coupled-cluster theory with all single and double excitations and a perturbative

  6. Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface

    Shirhatti, Pranav R.; Rahinov, Igor; Golibrzuch, Kai; Werdecker, Jörn; Geweke, Jan; Altschäffel, Jan; Kumar, Sumit; Auerbach, Daniel J.; Bartels, Christof; Wodtke, Alec M.

    2018-06-01

    The most common mechanism of catalytic surface chemistry is that of Langmuir and Hinshelwood (LH). In the LH mechanism, reactants adsorb, become thermalized with the surface, and subsequently react. The measured vibrational (relaxation) lifetimes of molecules adsorbed at metal surfaces are in the range of a few picoseconds. As a consequence, vibrational promotion of LH chemistry is rarely observed, with the exception of LH reactions occurring via a molecular physisorbed intermediate. Here, we directly detect adsorption and subsequent desorption of vibrationally excited CO molecules from a Au(111) surface. Our results show that CO (v = 1) survives on a Au(111) surface for 1 × 10-10 s. Such long vibrational lifetimes for adsorbates on metal surfaces are unexpected and pose an interesting challenge to the current understanding of vibrational energy dissipation on metal surfaces. They also suggest that vibrational promotion of surface chemistry might be more common than is generally believed.

  7. Theory of the reaction dynamics of small molecules on metal surfaces

    Jackson, Bret [Univ. of Massachusetts, Amherst, MA (United States)

    2016-09-09

    The objective of this project has been to develop realistic theoretical models for gas-surface interactions, with a focus on processes important in heterogeneous catalysis. The dissociative chemisorption of a molecule on a metal is a key step in many catalyzed reactions, and is often the rate-limiting step. We have explored the dissociative chemisorption of H2, H2O and CH4 on a variety of metal surfaces. Most recently, our extensive studies of methane dissociation on Ni and Pt surfaces have fully elucidated its dependence on translational energy, vibrational state and surface temperature, providing the first accurate comparisons with experimental data. We have explored Eley-Rideal and hot atom reactions of H atoms with H- and C-covered metal surfaces. H atom interactions with graphite have also been explored, including both sticking and Eley-Rideal recombination processes. Again, our methods made it possible to explain several experiments studying these reactions. The sticking of atoms on metal surfaces has also been studied. To help elucidate the experiments that study these processes, we examine how the reaction dynamics depend upon the nature of the molecule-metal interaction, as well as experimental variables such as substrate temperature, beam energy, angle of impact, and the internal states of the molecules. Electronic structure methods based on Density Functional Theory are used to compute each molecule-metal potential energy surface. Both time-dependent quantum scattering techniques and quasi-classical methods are used to examine the reaction or scattering dynamics. Much of our effort has been directed towards developing improved quantum methods that can accurately describe reactions, as well as include the effects of substrate temperature (lattice vibration).

  8. Living Colloidal Metal Particles from Solvated Metal Atoms. Clustering of Metal Atoms in Organic Media 15.

    1986-09-23

    attributed to these solutions, especially toward heart disease. And in 1618 Antoni published Panacea Aurea : Auro Potabile 4 which centered on the...probably a slow process (discussed next under the electrophoresis section ). Electrophoresis: Electrophoresis, the movement of charged particles in...electrical properties. Experimental Section Preparation of a Typical Au-Acetone Colloid The metal atom reactor has been described previo sly. 3 9 ’ 5 9 ’ 6 0

  9. Size dependent magnetism of mass selected deposited transition metal clusters

    Lau, T.

    2002-05-01

    The size dependent magnetic properties of small iron clusters deposited on ultrathin Ni/Cu(100) films have been studied with circularly polarised synchrotron radiation. For X-ray magnetic circular dichroism studies, the magnetic moments of size selected clusters were aligned perpendicular to the sample surface. Exchange coupling of the clusters to the ultrathin Ni/Cu(100) film determines the orientation of their magnetic moments. All clusters are coupled ferromagnetically to the underlayer. With the use of sum rules, orbital and spin magnetic moments as well as their ratios have been extracted from X-ray magnetic circular dichroism spectra. The ratio of orbital to spin magnetic moments varies considerably as a function of cluster size, reflecting the dependence of magnetic properties on cluster size and geometry. These variations can be explained in terms of a strongly size dependent orbital moment. Both orbital and spin magnetic moments are significantly enhanced in small clusters as compared to bulk iron, although this effect is more pronounced for the spin moment. Magnetic properties of deposited clusters are governed by the interplay of cluster specific properties on the one hand and cluster-substrate interactions on the other hand. Size dependent variations of magnetic moments are modified upon contact with the substrate. (orig.)

  10. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.1; monometallic clusters

    Bazin, D.C.; Sayers, D.A.

    1993-01-01

    The structural information found using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to nanometer scale metallic clusters. (author)

  11. The influence of nanoscale morphology on the resistivity of cluster-assembled nanostructured metallic thin films

    Barborini, E; Bertolini, G; Repetto, P; Leccardi, M; Vinati, S; Corbelli, G; Milani, P

    2010-01-01

    We have studied in situ the evolution of the electrical resistivity of Fe, Pd, Nb, W and Mo cluster-assembled films during their growth by supersonic cluster beam deposition. We observed resistivity of cluster-assembled films several orders of magnitude larger than the bulk, as well as an increase in resistivity by increasing the film thickness in contrast to what was observed for atom-assembled metallic films. This suggests that the nanoscale morphological features typical of ballistic films growth, such as the minimal cluster-cluster interconnection and the evolution of surface roughness with thickness, are responsible for the observed behaviour.

  12. Mass spectrometric probes of metal cluster distributions and metastable ion decay

    Parks, E.K.; Liu, K.; Cole, S.K.; Riley, S.J.

    1988-01-01

    The study of metal clusters has provided both an opportunity and a challenge to the application of mass spectrometry. These days the most often-used technique for cluster generation - laser vaporization - leads to extensive distributions of cluster sizes, from one to perhaps thousands of atoms, and most studies reported to date use excimer laser ionization and time-of-flight mass spectrometry for cluster detection. Our apparatus is a simple one-stage TOF design employing Wiley-McLauren spatial focusing and a one-meter drift tube. In a second apparatus employing a pulsed valve in the cluster source, we see asymmetric broadening of niobium cluster mass peaks under multiphoton ionization conditions, indicating metastable decay of parent cluster ions. Other studies of niobium clusters have shown no such asymmetric peaks. 2 figs

  13. Energy Characteristics of Small Metal Clusters Containing Vacancies

    Reva, V. I.; Pogosov, V. V.

    2018-02-01

    Self-consistent calculations of spatial distributions of electrons, potentials, and energies of dissociation, cohesion, vacancy formation, and electron attachment, as well as the ionization potential of solid Al N , Na N clusters ( N ≥ 254), and clusters containing a vacancy ( N ≥ 12) have been performed using a model of stable jellium. The contribution of a monovacancy to the energy of the cluster, the size dependences of the characteristics, and their asymptotic forms have been considered. The calculations have been performed on the SKIT-3 cluster at the Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine (Rpeak = 7.4 Tflops).

  14. 25. Steenbock symposium -- Biosynthesis and function of metal clusters for enzymes: Proceedings

    NONE

    1997-12-31

    This symposium was held June 10--14, 1997 in Madison, Wisconsin. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on biochemistry of enzymes that have an affinity for metal clusters. Attention is focused on the following: metal clusters involved in energy conservation and remediation; tungsten, molybdenum, and cobalt-containing enzymes; Fe proteins, and Mo-binding proteins; nickel enzymes; and nitrogenase.

  15. Properties and origin of the old, metal rich, star cluster, NGC 6791

    Carraro, Giovanni

    2013-01-01

    In this contribution I summarize the unique properties of the old, metal rich, star cluster NGC 6791, with particular emphasis on its population of extreme blue horizontal branch stars. I then conclude providing my personal view on the origin of this fascinating star cluster.

  16. Structure Determination of Anionic Metal Clusters via Infrared Resonance Enhanced Multiple Photon Electron Detachment Spectroscopy

    Haertelt, M.; Lapoutre, V. J. F.; Bakker, J. M.; Redlich, B.; Harding, D. J.; Fielicke, A.; Meijer, G.

    2011-01-01

    We report vibrational spectra of anionic metal clusters, measured via electron detachment following resonant absorption of multiple infrared photons. To facilitate the sequential absorption of the required large number of photons, the cluster beam interacts with the infrared radiation inside the

  17. Van der Waals coefficients for alkali metal clusters and their size

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, ...

  18. Effect of functionalization of boron nitride flakes by main group metal clusters on their optoelectronic properties

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2017-10-01

    The possibility of functionalizing boron nitride flakes (BNFs) with some selected main group metal clusters, viz. OLi4, NLi5, CLi6, BLI7 and Al12Be, has been analyzed with the aid of density functional theory (DFT) based computations. Thermochemical as well as energetic considerations suggest that all the metal clusters interact with the BNF moiety in a favorable fashion. As a result of functionalization, the static (first) hyperpolarizability (β ) values of the metal cluster supported BNF moieties increase quite significantly as compared to that in the case of pristine BNF. Time dependent DFT analysis reveals that the metal clusters can lower the transition energies associated with the dominant electronic transitions quite significantly thereby enabling the metal cluster supported BNF moieties to exhibit significant non-linear optical activity. Moreover, the studied systems demonstrate broad band absorption capability spanning the UV-visible as well as infra-red domains. Energy decomposition analysis reveals that the electrostatic interactions principally stabilize the metal cluster supported BNF moieties.

  19. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  20. Ab initio dynamics and photoionization mass spectrometry reveal ion-molecule pathways from ionized acetylene clusters to benzene cation.

    Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P; Fang, Yigang; Kostko, Oleg; Ahmed, Musahid; Head-Gordon, Martin

    2017-05-23

    The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion-molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C 2 H 2 ) n + , just like ionized acetylene clusters. The fragmentation products result from reactive ion-molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C 4 H 4 + and C 6 H 6 + structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C 2 H 2 ) n + isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C 6 H 6 + isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.

  1. Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation

    Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P.; Fang, Yigang; Kostko, Oleg

    2017-01-01

    The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C2H2)n+, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C4H4+ and C6H6+ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C2H2)n+ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C6H6+ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM. PMID:28484019

  2. Metallicity Variations in the Type II Globular Cluster NGC 6934

    Marino, A. F.; Yong, D.; Milone, A. P.; Piotto, G.; Lundquist, M.; Bedin, L. R.; Chené, A.-N.; Da Costa, G.; Asplund, M.; Jerjen, H.

    2018-06-01

    The Hubble Space Telescope photometric survey of Galactic globular clusters (GCs) has revealed a peculiar “chromosome map” for NGC 6934. In addition to a typical sequence, similar to that observed in Type I GCs, NGC 6934 displays additional stars on the red side, analogous to the anomalous Type II GCs, as defined in our previous work. We present a chemical abundance analysis of four red giants in this GC. Two stars are located on the chromosome map sequence common to all GCs, and another two lie on the additional sequence. We find (i) star-to-star Fe variations, with the two anomalous stars being enriched by ∼0.2 dex. Because of our small-size sample, this difference is at the ∼2.5σ level. (ii) There is no evidence for variations in the slow neutron-capture abundances over Fe, at odds with what is often observed in anomalous Type II GCs, e.g., M 22 and ω Centauri (iii) no large variations in light elements C, O, and Na, compatible with locations of the targets on the lower part of the chromosome map where such variations are not expected. Since the analyzed stars are homogeneous in light elements, the only way to reproduce the photometric splits on the sub-giant (SGB) and the red giant (RGB) branches is to assume that red RGB/faint SGB stars are enhanced in [Fe/H] by ∼0.2. This fact corroborates the spectroscopic evidence of a metallicity variation in NGC 6934. The observed chemical pattern resembles only partially the other Type II GCs, suggesting that NGC 6934 might belong either to a third class of GCs, or be a link between normal Type I and anomalous Type II GCs. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and Gemini Telescope at Canada–France–Hawaii Telescope.

  3. Structure of the Buried Metal-Molecule Interface in Organic Thin Film Devices

    Hansen, Christian Rein; Sørensen, Thomas Just; Glyvradal, Magni

    2009-01-01

    By use of specular X-ray reflectivity (XR) the structure of a metal-covered organic thin film device is measured with angstrom resolution. The model system is a Langmuir-Blodgett (LB) film, sandwiched between a silicon substrate and a top electrode consisting of 25 Å titanium and 100 Å aluminum....... By comparison of XR data for the five-layer Pb2+ arachidate LB film before and after vapor deposition of the Ti/Al top electrode, a detailed account of the structural damage to the organic film at the buried metal-molecule interface is obtained. We find that the organized structure of the two topmost LB layers...

  4. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina

    2013-01-01

    remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...... substrate surfaces and gold-coated atomic force microscopy tips. The coordination and bond breaking between terpyridine and osmium are followed in situ by electrochemically controlled atomic force microscopy at the single-molecule level. The redox state of the central metal atom is found to have...

  5. Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment

    Luther, George W.; Rickard, David T.

    2005-01-01

    Aqueous clusters of FeS, ZnS and CuS constitute a major fraction of the dissolved metal load in anoxic oceanic, sedimentary, freshwater and deep ocean vent environments. Their ubiquity explains how metals are transported in anoxic environmental systems. Thermodynamic and kinetic considerations show that they have high stability in oxic aqueous environments, and are also a significant fraction of the total metal load in oxic river waters. Molecular modeling indicates that the clusters are very similar to the basic structural elements of the first condensed phase forming from aqueous solutions in the Fe-S, Zn-S and Cu-S systems. The structure of the first condensed phase is determined by the structure of the cluster in solution. This provides an alternative explanation of Ostwald's Rule, where the most soluble, metastable phases form before the stable phases. For example, in the case of FeS, we showed that the first condensed phase is nanoparticulate, metastable mackinawite with a particle size of 2 nm consisting of about 150 FeS subunits, representing the end of a continuum between aqueous FeS clusters and condensed material. These metal sulfide clusters and nanoparticles are significant in biogeochemistry. Metal sulfide clusters reduce sulfide and metal toxicity and help drive ecology. FeS cluster formation drives vent ecology and AgS cluster formation detoxifies Ag in Daphnia magna neonates. We also note a new reaction between FeS and DNA and discuss the potential role of FeS clusters in denaturing DNA

  6. Collision induced fragmentation dynamics of small metallic clusters; Dynamique de fragmentation induite par collision de petits agregats metalliques

    Picard, Y

    1999-04-15

    The goal of this work is the complete analysis of the fragmentation of alkali clusters (Na{sub n}{sup +} (n < 10), NaK{sup +} and K{sub 2}{sup +}) induced by collision with light atomic (He) or molecular (H{sub 2}) targets. The main point is to study how the energy is transmitted to the cluster during the collision and how this energy is shared among the various degrees of freedom of the system and leads to its fragmentation. Two types of interactions govern the collision induced dissociation processes: on one hand, the electronic mechanisms where the target perturbs the electronic cloud and brings the molecule into a dissociative state, and on the other hand, the impulsive mechanisms where the momentum transferred to the atomic cores leads to the rotational-vibrational dissociation of the molecule. The experimental procedure is based on the measurement of the velocity vectors of the outgoing fragments detected in coincidence. This allows to reconstruct the full kinematics of the fragmentation and to separate and characterize for the first time the two types of interactions. The two basic mechanisms of collision induced dissociation are then clearly resolved for the diatomic molecule Na{sub 2}{sup +}. For the heteronuclear molecular ion NaK{sup +}, it is shown that the dissociation process is due to a combination of electronic and impulsive mechanisms in some of the dissociation pathways. The extension to the study of metallic clusters Na{sub n}{sup +} (n < 10) fragmentation shows the role and the relative importance of the electronic and impulsive mechanisms and their evolution with the cluster size. The complete analysis of Na{sub 3}{sup +} multi-fragmentation is also presented. (author)

  7. Confined Catalysis in the g-C3N4/Pt(111) Interface: Feasible Molecule Intercalation, Tunable Molecule-Metal Interaction, and Enhanced Reaction Activity of CO Oxidation.

    Wang, Shujiao; Feng, Yingxin; Yu, Ming'an; Wan, Qiang; Lin, Sen

    2017-09-27

    The deposition of a two-dimensional (2D) atomic nanosheet on a metal surface has been considered as a new route for tuning the molecule-metal interaction and surface reactivity in terms of the confinement effect. In this work, we use first-principles calculations to systematically explore a novel nanospace constructed by placing a 2D graphitic carbon nitride (g-C 3 N 4 ) nanosheet over a Pt(111) surface. The confined catalytic activity in this nanospace is investigated using CO oxidation as a model reaction. With the inherent triangular pores in the g-C 3 N 4 overlayer being taken advantage of, molecules such as CO and O 2 can diffuse to adsorb on the Pt(111) surface underneath the g-C 3 N 4 overlayer. Moreover, the mechanism of intercalation is also elucidated, and the results reveal that the energy barrier depends mainly on the properties of the molecule and the channel. Importantly, the molecule-catalyst interaction can be tuned by the g-C 3 N 4 overlayer, considerably reducing the adsorption energy of CO on Pt(111) and leading to enhanced reactivity in CO oxidation. This work will provide important insight for constructing a promising nanoreactor in which the following is observed: The molecule intercalation is facile; the molecule-metal interaction is efficiently tuned; the metal-catalyzed reaction is promoted.

  8. Formation of metal clusters in halloysite clay nanotubes

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.

    2017-12-01

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length 1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.

  9. Constrained-DFT method for accurate energy-level alignment of metal/molecule interfaces

    Souza, A. M.

    2013-10-07

    We present a computational scheme for extracting the energy-level alignment of a metal/molecule interface, based on constrained density functional theory and local exchange and correlation functionals. The method, applied here to benzene on Li(100), allows us to evaluate charge-transfer energies, as well as the spatial distribution of the image charge induced on the metal surface. We systematically study the energies for charge transfer from the molecule to the substrate as function of the molecule-substrate distance, and investigate the effects arising from image-charge confinement and local charge neutrality violation. For benzene on Li(100) we find that the image-charge plane is located at about 1.8 Å above the Li surface, and that our calculated charge-transfer energies compare perfectly with those obtained with a classical electrostatic model having the image plane located at the same position. The methodology outlined here can be applied to study any metal/organic interface in the weak coupling limit at the computational cost of a total energy calculation. Most importantly, as the scheme is based on total energies and not on correcting the Kohn-Sham quasiparticle spectrum, accurate results can be obtained with local/semilocal exchange and correlation functionals. This enables a systematic approach to convergence.

  10. Constrained-DFT method for accurate energy-level alignment of metal/molecule interfaces

    Souza, A. M.; Rungger, I.; Pemmaraju, C. D.; Schwingenschlö gl, Udo; Sanvito, S.

    2013-01-01

    We present a computational scheme for extracting the energy-level alignment of a metal/molecule interface, based on constrained density functional theory and local exchange and correlation functionals. The method, applied here to benzene on Li(100), allows us to evaluate charge-transfer energies, as well as the spatial distribution of the image charge induced on the metal surface. We systematically study the energies for charge transfer from the molecule to the substrate as function of the molecule-substrate distance, and investigate the effects arising from image-charge confinement and local charge neutrality violation. For benzene on Li(100) we find that the image-charge plane is located at about 1.8 Å above the Li surface, and that our calculated charge-transfer energies compare perfectly with those obtained with a classical electrostatic model having the image plane located at the same position. The methodology outlined here can be applied to study any metal/organic interface in the weak coupling limit at the computational cost of a total energy calculation. Most importantly, as the scheme is based on total energies and not on correcting the Kohn-Sham quasiparticle spectrum, accurate results can be obtained with local/semilocal exchange and correlation functionals. This enables a systematic approach to convergence.

  11. Tracing the Chemical Evolution of Metal-rich Galactic Bulge Globular Clusters

    Munoz Gonzalez, Cesar; Saviane, Ivo; Geisler, Doug; Villanova, Sandro

    2018-01-01

    We present in this poster the metallicity characterization of the four metal rich Bulge Galactic Gobular Clusters, which have controversial metallicities. We analyzed our high-resolution spectra (using UVES-580nm and GIRAFFE-HR13 setups) for a large sample of RGB/AGB targets in each cluster in order to measure their metallicity and prove or discard the iron spread hypothesis. We have also characterized chemically stars with potentially different iron content by measuring light (O, Na, Mg, Al), alpha (Si, Ca, Ti), iron–peak (V, Cr, Ni, Mn) and s and r process (Y, Zr, Ba, Eu) elements. We have identified possible channels responsible for the chemical heterogeneity of the cluster populations, like AGB or massive fast-rotating stars contamination, or SN explosion. Also, we have analyzed the origin and evolution of these bulge GCs and their connection with the bulge itself.

  12. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    Arslan, Ilke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Univ. of Alabama, Tuscaloosa, AL (United States); Gates, Bruce C. [Univ. of California, Davis, CA (United States); Katz, Alexander [Univ. of California, Berkeley, CA (United States)

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify

  13. Photochemical activation and reactivity of polynuclear transition metal complex molecules. Final report

    Endicott, J.F.; Lintvedt, R.L.

    1982-06-01

    Several bi- and trinuclear metal complexes containing ligands from β-polyketonates have been synthesized and characterized including homo- and hetero-polynuclear complexes. New synthetic approaches to the preparation of heterobi- and trinuclear complexes have been developed that allow the preparation of a large number of molecules containing heavy-metal ions such as Pd 2+ or UO 2 2+ and a first-row transition-metal ion. The electrochemical properties of these complexes have been investigated and many exhibit the ability to transfer two electrons at very nearly the same potential. Photochemical studies on binuclear Cu(II) and Ni(II) showed that these compounds yielded reduced metal species and decomposition upon irradiation. Luminescence of hetero-complexes of uranyl polyketonates is observed at 77 0 K with the UO 2 2+ moiety functioning as an isolated chromophore in which emission is observed only on direct excitation of UO 2 2+ and energy transfer to lower states in the molecule is not observed

  14. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks

    Mann, Gregory W., E-mail: gmann@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Mesosphere, Inc., San Francisco, California 94105 (United States); Lee, Kyuho, E-mail: kyuholee@lbl.gov [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Synopsys, Inc., Mountain View, California 94043 (United States); Cococcioni, Matteo, E-mail: matteo.cococcioni@epfl.ch [Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Smit, Berend, E-mail: Berend-Smit@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, Valais Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion (Switzerland); Neaton, Jeffrey B., E-mail: jbneaton@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2016-05-07

    We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO{sub 2}-MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO{sub 2} binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.

  15. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks

    Mann, Gregory W.; Lee, Kyuho; Cococcioni, Matteo; Smit, Berend; Neaton, Jeffrey B.

    2016-01-01

    We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO 2 -MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO 2 binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.

  16. Vascular Cell Adhesion Molecule 1, Intercellular Adhesion Molecule 1, and Cluster of Differentiation 146 Levels in Patients with Type 2 Diabetes with Complications.

    Hocaoglu-Emre, F Sinem; Saribal, Devrim; Yenmis, Guven; Guvenen, Guvenc

    2017-03-01

    Type 2 diabetes mellitus (T2DM) is a multisystemic, chronic disease accompanied by microvascular complications involving various complicated mechanisms. Intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and cluster of differentiation-146 (CD146) are mainly expressed by endothelial cells, and facilitate the adhesion and transmigration of immune cells, leading to inflammation. In the present study, we evaluated the levels of soluble adhesion molecules in patients with microvascular complications of T2DM. Serum and whole blood samples were collected from 58 T2DM patients with microvascular complications and 20 age-matched healthy subjects. Levels of soluble ICAM-1 (sICAM-1) and soluble VCAM-1 (sVCAM-1) were assessed using enzyme-linked immunosorbent assay, while flow cytometry was used to determine CD146 levels. Serum sICAM-1 levels were lower in T2DM patients with microvascular complications than in healthy controls (Pmolecule levels were not correlated with the complication type. In the study group, most of the patients were on insulin therapy (76%), and 95% of them were receiving angiotensin-converting enzyme (ACE)-inhibitor agents. Insulin and ACE-inhibitors have been shown to decrease soluble adhesion molecule levels via various mechanisms, so we suggest that the decreased or unchanged levels of soluble forms of cellular adhesion molecules in our study group may have resulted from insulin and ACE-inhibitor therapy, as well as tissue-localized inflammation in patients with T2DM. Copyright © 2017 Korean Endocrine Society

  17. Conduction mechanism in assemblies of metal nanoparticles linked by organic molecules

    Mueller, K.-H.; Herrmann, J.; Raguse, B.; Baxter, G.; Reda, T.

    2002-01-01

    Full text: We have investigated theoretically and experimentally electron transport through thin films of gold nanoparticles which are linked by alkanedithiol molecules of different chain lengths. We find that conduction between neighbouring nanoparticles takes place by electron tunnelling along weakly conducting organic linker molecules. Using a tight binding model for the alkanedithiol molecules to describe the tunnelling process we predict the conductivity to decrease exponentially with the length of the molecules. During tunnelling the electron has to overcome a charging energy due to the electron-hole interaction between tunnelling electrons and the corresponding holes left behind on the donor nanoparticle. Experimentally we find that large applied voltages cause nonlinear I-V characteristics and that the temperature dependence of the conductivity does not show Arrhenius behaviour but instead is of the form exp[-(E o /kT) 1/2 ]. Using percolation theory for a network of metal nanoparticles separated by barriers we show that strong disorder caused by variations in nanoparticle size and linker length as well as randomly trapped electric charges on the linker molecules can well explain our experimental data

  18. Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds

    Jafri, S. Hassan M.; Löfås, Henrik; Blom, Tobias; Wallner, Andreas; Grigoriev, Anton; Ahuja, Rajeev; Ottosson, Henrik; Leifer, Klaus

    2015-09-01

    Reproducibility, stability and the coupling between electrical and molecular properties are central challenges in the field of molecular electronics. The field not only needs devices that fulfill these criteria but they also need to be up-scalable to application size. In this work, few-molecule based electronics devices with reproducible electrical characteristics are demonstrated. Our previously reported 5 nm gold nanoparticles (AuNP) coated with ω-triphenylmethyl (trityl) protected 1,8-octanedithiol molecules are trapped in between sub-20 nm gap spacing gold nanoelectrodes forming AuNP-molecule network. When the trityl groups are removed, reproducible devices and stable Au-thiol junctions are established on both ends of the alkane segment. The resistance of more than 50 devices is reduced by orders of magnitude as well as a reduction of the spread in the resistance histogram is observed. By density functional theory calculations the orders of magnitude decrease in resistance can be explained and supported by TEM observations thus indicating that the resistance changes and strongly improved resistance spread are related to the establishment of reproducible and stable metal-molecule bonds. The same experimental sequence is carried out using 1,6-hexanedithiol functionalized AuNPs. The average resistances as a function of molecular length, demonstrated herein, are comparable to the one found in single molecule devices.

  19. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule.

    Abdalla, S; Obaid, A; Al-Marzouki, F M

    2017-12-01

    Deoxyribonucleic acid (DNA) is one of the best candidate materials for various device applications such as in electrodes for rechargeable batteries, biosensors, molecular electronics, medical- and biomedical-applications etc. Hence, it is worthwhile to examine the mechanism of charge transport in the DNA molecule, however, still a question without a clear answer is DNA a molecular conducting material (wire), semiconductor, or insulator? The answer, after the published data, is still ambiguous without any confirmed and clear scientific answer. DNA is found to be always surrounded with different electric charges, ions, and dipoles. These surrounding charges and electric barrier(s) due to metallic electrodes (as environmental factors (EFs)) play a substantial role when measuring the electrical conductivity through λ-double helix (DNA) molecule suspended between metallic electrodes. We found that strong frequency dependence of AC-complex conductivity comes from the electrical conduction of EFs. This leads to superimposing serious incorrect experimental data to measured ones. At 1 MHz, we carried out a first control experiment on electrical conductivity with and without the presence of DNA molecule. If there are possible electrical conduction due to stray ions and contribution of substrate, we will detected them. This control experiment revealed that there is an important role played by the environmental-charges around DNA molecule and any experiment should consider this role. We have succeeded to measure both electrical conductivity due to EFs (σ ENV ) and electrical conductivity due to DNA molecule (σ DNA ) independently by carrying the measurements at different DNA-lengths and subtracting the data. We carried out measurements as a function of frequency (f) and temperature (T) in the ranges 0.1 Hz molecule from all EFs effects that surround the molecule, but also to present accurate values of σ DNA and the dielectric constant of the molecule ε' DNA as a

  20. Adsorption of formaldehyde molecule on the pristine and transition metal doped graphene: First-principles study

    Chen, Xin; Xu, Lei; Liu, Lin-Lin; Zhao, Lu-Si; Chen, Chun-Ping; Zhang, Yong; Wang, Xiao-Chun

    2017-01-01

    Highlights: • Formaldehyde molecule (H_2CO) is a common environmental pollutant with strong toxicity. • Total 36 different initial configurations of H_2CO molecule adsorbing onto three types of substrates have been investigated. • The Ti-doped graphene has the enough binding energy, significant changes in electronic structure, and reasonable short recovery time 10"−"3 s. • The Ti-doped graphene is a promising candidate for detecting formaldehyde gas. - Abstract: The adsorption of H_2CO molecule on pristine and transition metal (Ti and V) doped graphene samples were investigated via a first-principles approach based on density functional theory. The most stable adsorption geometry, energy and charge transfer of H_2CO molecule on pristine and doped graphene are discussed respectively. We have found that Ti and V dopant atoms can significantly enhance the interaction between H_2CO molecule and graphene. The calculated net electron transfers, electronic density difference images and densities of states give the evidence that the H_2CO molecules stay on Ti (or V) – doped graphene by chemisorption. After H_2CO adsorption, there are significant changes in electronic structure near the Fermi level, for both two systems of Ti and V doped graphene. This indicates distinct changes of electron transport properties. We have also found that H_2CO molecule has a larger absorption energy on V-doped graphene (1.939 eV) compared with Ti-doped graphene (1.120 eV). It is shown that the Ti-doped graphene has enough binding energy, adequate changes in electronic structure and reasonable short recovery time 10"−"3 s, making it a promising candidate for detecting formaldehyde gas.

  1. Adsorption of formaldehyde molecule on the pristine and transition metal doped graphene: First-principles study

    Chen, Xin [Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012 (China); Institute of Theoretical Chemistry, Jilin University, Changchun 130012 (China); Xu, Lei [Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012 (China); College of Physics, Jilin University, Changchun, 130012 (China); Liu, Lin-Lin; Zhao, Lu-Si; Chen, Chun-Ping [Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012 (China); Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University), Changchun, 130012 (China); Zhang, Yong [Department of Electrical and Computer Engineering, The University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States); Wang, Xiao-Chun, E-mail: wangxiaochun@jlu.edu.cn [Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012 (China); Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University), Changchun, 130012 (China)

    2017-02-28

    Highlights: • Formaldehyde molecule (H{sub 2}CO) is a common environmental pollutant with strong toxicity. • Total 36 different initial configurations of H{sub 2}CO molecule adsorbing onto three types of substrates have been investigated. • The Ti-doped graphene has the enough binding energy, significant changes in electronic structure, and reasonable short recovery time 10{sup −3} s. • The Ti-doped graphene is a promising candidate for detecting formaldehyde gas. - Abstract: The adsorption of H{sub 2}CO molecule on pristine and transition metal (Ti and V) doped graphene samples were investigated via a first-principles approach based on density functional theory. The most stable adsorption geometry, energy and charge transfer of H{sub 2}CO molecule on pristine and doped graphene are discussed respectively. We have found that Ti and V dopant atoms can significantly enhance the interaction between H{sub 2}CO molecule and graphene. The calculated net electron transfers, electronic density difference images and densities of states give the evidence that the H{sub 2}CO molecules stay on Ti (or V) – doped graphene by chemisorption. After H{sub 2}CO adsorption, there are significant changes in electronic structure near the Fermi level, for both two systems of Ti and V doped graphene. This indicates distinct changes of electron transport properties. We have also found that H{sub 2}CO molecule has a larger absorption energy on V-doped graphene (1.939 eV) compared with Ti-doped graphene (1.120 eV). It is shown that the Ti-doped graphene has enough binding energy, adequate changes in electronic structure and reasonable short recovery time 10{sup −3} s, making it a promising candidate for detecting formaldehyde gas.

  2. First-principles studies on graphene-supported transition metal clusters

    Sahoo, Sanjubala; Khanna, Shiv N.; Gruner, Markus E.; Entel, Peter

    2014-01-01

    Theoretical studies on the structure, stability, and magnetic properties of icosahedral TM 13 (TM = Fe, Co, Ni) clusters, deposited on pristine (defect free) and defective graphene sheet as well as graphene flakes, have been carried out within a gradient corrected density functional framework. The defects considered in our study include a carbon vacancy for the graphene sheet and a five-membered and a seven-membered ring structures for graphene flakes (finite graphene chunks). It is observed that the presence of defect in the substrate has a profound influence on the electronic structure and magnetic properties of graphene-transition metal complexes, thereby increasing the binding strength of the TM cluster on to the graphene substrate. Among TM 13 clusters, Co 13 is absorbed relatively more strongly on pristine and defective graphene as compared to Fe 13 and Ni 13 clusters. The adsorbed clusters show reduced magnetic moment compared to the free clusters

  3. Comparison and combination of "direct" and fragment based local correlation methods: Cluster in molecules and domain based local pair natural orbital perturbation and coupled cluster theories

    Guo, Yang; Becker, Ute; Neese, Frank

    2018-03-01

    Local correlation theories have been developed in two main flavors: (1) "direct" local correlation methods apply local approximation to the canonical equations and (2) fragment based methods reconstruct the correlation energy from a series of smaller calculations on subsystems. The present work serves two purposes. First, we investigate the relative efficiencies of the two approaches using the domain-based local pair natural orbital (DLPNO) approach as the "direct" method and the cluster in molecule (CIM) approach as the fragment based approach. Both approaches are applied in conjunction with second-order many-body perturbation theory (MP2) as well as coupled-cluster theory with single-, double- and perturbative triple excitations [CCSD(T)]. Second, we have investigated the possible merits of combining the two approaches by performing CIM calculations with DLPNO methods serving as the method of choice for performing the subsystem calculations. Our cluster-in-molecule approach is closely related to but slightly deviates from approaches in the literature since we have avoided real space cutoffs. Moreover, the neglected distant pair correlations in the previous CIM approach are considered approximately. Six very large molecules (503-2380 atoms) were studied. At both MP2 and CCSD(T) levels of theory, the CIM and DLPNO methods show similar efficiency. However, DLPNO methods are more accurate for 3-dimensional systems. While we have found only little incentive for the combination of CIM with DLPNO-MP2, the situation is different for CIM-DLPNO-CCSD(T). This combination is attractive because (1) the better parallelization opportunities offered by CIM; (2) the methodology is less memory intensive than the genuine DLPNO-CCSD(T) method and, hence, allows for large calculations on more modest hardware; and (3) the methodology is applicable and efficient in the frequently met cases, where the largest subsystem calculation is too large for the canonical CCSD(T) method.

  4. Computer simulations of small semiconductor and metal clusters

    Andreoni, W.

    1991-01-01

    A brief survey is presented of recent simulations of small clusters, made with both ab-initio and classical approaches, with particular emphasis on the application of the Car-Parrinello method. The discussion mainly focusses on the structural properties of a variety of materials and on the effects of temperature. (orig.)

  5. Metal cluster fission: jellium model and Molecular dynamics simulations

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia

    2004-01-01

    Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18...

  6. Structure investigation of metal ions clustering in dehydrated gel using x-ray anomalous dispersion effect

    Soejima, Y; Sugiyama, M; Annaka, M; Nakamura, A; Hiramatsu, N; Hara, K

    2003-01-01

    The structure of copper ion clusters in dehydrated N-isopropylacrylamide/sodium acrylate (NIPA/SA) gel has been studied by means of small angle X-ray scattering (SAXS) method. In order to distinguish the intensity scattered by Cu ions, the X-ray anomalous dispersion effect around the Cu K absorption edge has been coupled with SAXS. It is found that the dispersion effect dependent on the incident X-ray energy is remarkable only at the momentum transfer q = 0.031 A sup - sup 1 , where a SAXS peak is observed. The results indicate that copper ions form clusters in the dehydrated gel, and that the mean size of clusters is the same as that of SA clusters produced by microphase separation. It is therefore naturally presumed that copper ions are adsorbed into the SA molecules. On the basis of the presumption, a mechanism is proposed for microphase-separation and clustering of Cu ions.

  7. Discrete Visible Luminescence of Helium Atoms and Molecules Desorbing from Helium Clusters: The Role of Electronic, Vibrational, and Rotational Energy Transfer

    von Haeften, K.; von Pietrowski, R.; Moeller, T.; Joppien, M.; Moussavizadeh, L.; de Castro, A.R.

    1997-01-01

    Discrete visible and near-infrared luminescence of a beam of photoexcited helium clusters is reported. The emission lines are attributed to free helium atoms and molecules desorbing from clusters in electronically excited states. Depending on the excitation energy, various atomic and molecular singlet and triplet states are involved in the relaxation process. With increasing cluster size the intensity of molecular transitions becomes dominant. The temperature of ejected molecules could be estimated to T vib ∼2500 K and T rot ∼450 K and is much higher than that of the cluster itself. copyright 1997 The American Physical Society

  8. Brome isotope selective control of CF3Br molecule clustering by IR laser radiation in gas-dynamic expansion of CF3Br - Ar mixture

    Apatin, V. M.; Lokhman, V. N.; Makarov, G. N.; Ogurok, N.-D. D.; Ryabov, E. A.

    2018-02-01

    We report the results of research on the experimental control of CF3Br molecule clustering under gas-dynamic expansion of the CF3Br - Ar mixture at a nozzle exit by using IR laser radiation. A cw CO2 laser is used for exciting molecules and clusters in the beam and a time-of-flight mass-spectrometer with laser UV ionisation of particles for their detection. The parameters of the gas above the nozzle are determined (compositions and pressure) at which intensive molecule clustering occurs. It is found that in the case of the CF3Br gas without carrier when the pressure P0 above the nozzle does not exceed 4 atm, molecular clusters actually are not generated in the beam. If the gas mixture of CF3Br with argon is used at a pressure ratio 1 : N, where N >= 3, and the total pressure above the nozzle is P0 >= 2 atm, then there occurs molecule clustering. We study the dependences of the efficiency of suppressing the molecule clustering on parameters of the exciting pulse, gas parameters above the nozzle, and on a distance of the molecule irradiation zone from the nozzle exit section. It is shown that in the case of resonant vibrational excitation of gas-dynamically cooled CF3Br molecules at the nozzle exit one can realise isotope-selective suppression of molecule clustering with respect to bromine isotopes. With the CF3Br - Ar mixtures having the pressure ratio 1 : 3 and 1 : 15, the enrichment factors obtained with respect to bromine isotopes are kenr ≈ 1.05 ± 0.005 and kenr ≈ 1.06 ± 0.007, respectively, under jet irradiation by laser emission in the 9R(30) line (1084.635 cm-1). The results obtained let us assume that this method can be used to control clustering of molecules comprising heavy element isotopes, which have a small isotopic shift in IR absorption spectra.

  9. Measuring age differences among globular clusters having similar metallicities - A new method and first results

    Vandenberg, D.A.; Bolte, M.; Stetson, P.B.

    1990-01-01

    A color-difference technique for estimating the relative ages of globular clusters with similar chemical compositions on the basis of their CM diagrams is described and demonstrated. The theoretical basis and implementation of the procedure are explained, and results for groups of globular clusters with m/H = about -2, -1.6, and -1.3, and for two special cases (Palomar 12 and NGC 5139) are presented in extensive tables and graphs and discussed in detail. It is found that the more metal-deficient globular clusters are nearly coeval (differences less than 0.5 Gyr), whereas the most metal-rich globular clusters exhibit significant age differences (about 2 Gyr). This result is shown to contradict Galactic evolution models postulating halo collapse in less than a few times 100 Myr. 77 refs

  10. Laser-induced desorption of organic molecules from front- and back-irradiated metal foils

    Zinovev, Alexander V.; Veryovkin, Igor V.; Pellin, Michael J.

    2009-01-01

    Laser-Induced Acoustic Desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the Single Photon Ionization (SPI) method combined with time-of-flight mass-spectrometry (TOF MS), desorbed flux in LIAD was examined and compared to that from direct laser desorption (LD). Molecules of various organic dyes were used in experiments. Translational velocities of the desorbed intact molecules did not depend on the desorbing laser intensity, which implies the presence of more sophisticated mechanism of energy transfer than the direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. The results of our experiments indicate that the LIAD phenomenon cannot be described in terms of a simple mechanical shake-off nor the direct laser desorption. Rather, they suggest that multi-step energy transfer processes are involved. Possible qualitative mechanism of LIAD that are based on formation of non-equilibrium energy states in the adsorbate-substrate system are proposed and discussed.

  11. POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE

    Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir

    2017-01-01

    Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...

  12. Metallicity in galactic clusters from high signal-to-noise spectroscopy

    Boesgaard, A.M.

    1989-01-01

    High-quality spectroscopic data on selected F dwarfs in six Galactic clusters are used to determine global (Fe/H) values for the clusters. For the two youngest clusters, Pleiades and Alpha Per, the (Fe/H) values are solar: 0.017 + or - 0.055. The Hyades and Praesepe are slightly metal-enhanced at (Fe/H) = + 0.125 + or - 0.032, even though they are an order of magnitude older than the Pleiades. Coma and the UMa Group at the age of the Hyades are slightly metal-deficient with (Fe/H) = - 0.082 + or - 0.039. The lack of an age-metallicity relationship indicates that the enrichment and mixing in the Galactic disk have not been uniform on time scales less than a billion years. 39 references

  13. Nonequilibrium electron energy-loss kinetics in metal clusters

    Guillon, C; Fatti, N D; Vallee, F

    2003-01-01

    Ultrafast energy exchanges of a non-Fermi electron gas with the lattice are investigated in silver clusters with sizes ranging from 4 to 26 nm using a femtosecond pump-probe technique. The results yield evidence for a cluster-size-dependent slowing down of the short-time energy losses of the electron gas when it is strongly athermal. A constant rate is eventually reached after a few hundred femtoseconds, consistent with the electron gas internal thermalization kinetics, this behaviour reflecting evolution from an individual to a collective electron-lattice type of coupling. The timescale of this transient regime is reduced in small nanoparticles, in agreement with speeding up of the electron-electron interactions with size reduction. The experimental results are in quantitative agreement with numerical simulations of the electron kinetics.

  14. Oxidative addition of C--H bonds in organic molecules to transition metal centers

    Bergman, R.G.

    1989-04-01

    Alkanes are among the most chemically inert organic molecules. They are reactive toward a limited range of reagents, such as highly energetic free radicals and strongly electrophilic and oxidizing species. This low reactivity is a consequence of the C--H bond energies in most saturated hydrocarbons. These values range from 90 to 98 kcal/mole for primary and secondary C--H bonds; in methane, the main constituent of natural gas, the C--H bond energy is 104 kcal/mole. This makes methane one of the most common but least reactive organic molecules in nature. This report briefly discusses the search for metal complexes capable of undergoing the C--H oxidative addition process allowing alkane chemistry to be more selective than that available using free radical reagents. 14 refs

  15. Polycylcic carbon molecules with zigzag edges as sources of defects in graphene on a metal

    Artaud, Alexandre; Magaud, Laurence; Ratter, Kitti; Guisset, Valérie; David, Philippe; Gilles, Bruno; Coraux, Johann; Chapelier, Claude

    Unlike the armchair edge, the zigzag edge of graphene breaks the equivalence of its two constituting carbon sub-lattices. Uncompensated magnetic moments are thus expected for such edges. For the same reason, dense polycyclic molecules (PCMs) terminated by zigzag edges are predicted to host net magnetic moments. Unfortunately, their synthesis is challenging. One approach relies on the pyrolysis of hydrocarbons, catalyzed by a transition metal. Here we investigate this little-explored approach, and put in evidence the formation of a series of highly symmetric zigzag edge PCMs onto Re (0001), among which phenalene, coronene and sumanene. We also address the relationship between the preparation of such molecules and graphene, which both form following hydrocarbon pyrolysis. We establish that the PCMs are unexpected obstacles towards high quality graphene.

  16. Spin Seebeck effect in a metal-single-molecule-magnet-metal junction

    Pengbin Niu

    2018-01-01

    Full Text Available We investigate the nonlinear regime of temperature-driven spin-related currents through a single molecular magnet (SMM, which is connected with two metal electrodes. Under a large spin approximation, the SMM is simplified to a natural two-channel model possessing spin-opposite configuration and Coulomb interaction. We find that in temperature-driven case the system can generate spin-polarized currents. More interestingly, at electron-hole symmetry point, the competition of the two channels induces a temperature-driven pure spin current. This device demonstrates that temperature-driven SMM junction shows some results different from the usual quantum dot model, which may be useful in the future design of thermal-based molecular spintronic devices.

  17. Spin Seebeck effect in a metal-single-molecule-magnet-metal junction

    Niu, Pengbin; Liu, Lixiang; Su, Xiaoqiang; Dong, Lijuan; Luo, Hong-Gang

    2018-01-01

    We investigate the nonlinear regime of temperature-driven spin-related currents through a single molecular magnet (SMM), which is connected with two metal electrodes. Under a large spin approximation, the SMM is simplified to a natural two-channel model possessing spin-opposite configuration and Coulomb interaction. We find that in temperature-driven case the system can generate spin-polarized currents. More interestingly, at electron-hole symmetry point, the competition of the two channels induces a temperature-driven pure spin current. This device demonstrates that temperature-driven SMM junction shows some results different from the usual quantum dot model, which may be useful in the future design of thermal-based molecular spintronic devices.

  18. Electronic properties of large metal clusters in Jellium and pseudo-jellium models

    Catara, F.; Van Giai, N.; Chomaz, P.

    1994-08-01

    The energy-density functional approach and jellium-like models are used to examine two important electronic properties of metal (Li, Na, K) clusters: their shell and supershell structures, and the behaviour of plasmon energies with increasing cluster sizes. A comparative study is made between predictions of the usual jellium model and those of the pseudo-jellium model where pseudo-Hamiltonians are used. (authors) 10 figs., 5 tabs., 16 refs

  19. METAL DEFICIENCY IN CLUSTER STAR-FORMING GALAXIES AT Z = 2

    Valentino, F.; Daddi, E.; Strazzullo, V.; Gobat, R.; Bournaud, F.; Juneau, S.; Zanella, A. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Onodera, M.; Carollo, M. [Institute for Astronomy, ETH Zürich Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Renzini, A. [INAF-Osservatorio Astronomico di Padova Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Arimoto, N., E-mail: francesco.valentino@cea.fr [Subaru Telescope, National Astronomical Observatory of Japan 650 North A’ohoku Place, Hilo, HI 96720 (United States)

    2015-03-10

    We investigate the environmental effect on the metal enrichment of star-forming galaxies (SFGs) in the farthest spectroscopically confirmed and X-ray-detected cluster, CL J1449+0856 at z = 1.99. We combined Hubble Space Telescope/WFC3 G141 slitless spectroscopic data, our thirteen-band photometry, and a recent Subaru/Multi-object InfraRed Camera and Spectrograph (MOIRCS) near-infrared spectroscopic follow-up to constrain the physical properties of SFGs in CL J1449+0856 and in a mass-matched field sample. After a conservative removal of active galactic nuclei, stacking individual MOIRCS spectra of 6 (31) sources in the cluster (field) in the mass range 10 ≤ log(M/M{sub ⊙}) ≤ 11, we find a ∼4σ lower [N ii]/Hα ratio in the cluster than in the field. Stacking a subsample of 16 field galaxies with Hβ and [O iii] in the observed range, we measure an [O iii]/Hβ ratio fully compatible with the cluster value. Converting these ratios into metallicities, we find that the cluster SFGs are up to 0.25 dex poorer in metals than their field counterparts, depending on the adopted calibration. The low metallicity in cluster sources is confirmed using alternative indicators. Furthermore, we observe a significantly higher Hα luminosity and equivalent width in the average cluster spectrum than in the field. This is likely due to the enhanced specific star formation rate; even if lower dust reddening and/or an uncertain environmental dependence on the continuum-to-nebular emission differential reddening may play a role. Our findings might be explained by the accretion of pristine gas around galaxies at z = 2 and from cluster-scale reservoirs, possibly connected with a phase of rapid halo mass assembly at z > 2 and of a high galaxy merging rate.

  20. BVRI CCD photometry of the metal-poor globular cluster M68 (NGC 4590)

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E.

    1990-01-01

    BVRI photometry of the low metallicity globular cluster M68 (NGC 4590) was obtained with a CCD camera and the 2.2-m ESO telescope. The resulting BV color-magnitude diagrams are compared with the observations of McClure et al. (1987). The observations are also compared with theoretical isochrones, yielding a cluster age of 13 Gyr with a likely external uncertainty of 2 or 3 Gyr. 25 refs

  1. Metal oxide/polyaniline nanocomposites: Cluster size and ...

    Wintec

    Metal oxide/polyaniline nanocomposites; structural properties; magnetic properties. 1. Introduction ... The powder obtained was ground in a motor and pestle, sonicated in ... Figure 1. XRD of (a) iron oxide nanoparticles and (b) iron oxide/PANI (1 : 0⋅4) composite. .... shape of the particles and the anisotropy energy, as also.

  2. Metal-organic and supramolecular architectures based on mechanically interlocked molecules

    Fernando, Isurika Rosini

    The focus of this work is on mechanically interlocked molecules (MIMs), which have unusual physicochemical and mechanical properties with potential applications in nano-scale/molecular devices and high strength materials. Rotaxanes, for example, consist of an axle-like molecule threaded through a wheel-like molecule, with bulky groups at the two ends of the axle preventing the wheel from dissociating. The position of the wheel along the axle can be switched in a controllable and reversible manner by applying external stimuli, a feature that might lead to the next generation of computers. Molecularly woven materials (MWMs), another example of molecules with mechanically interlocked features, are predicted to be unprecedentedly strong while being lightweight and flexible. With the ultimate goal of achieving control over the functioning of molecular devices in the solid state, a variety of pseudorotaxane building blocks were prepared and characterized, including a novel, rare blue-colored motif. The temperature-dependent assembly/disassembly of pseudorotaxanes was exploited for the construction of single-wavelength colorimetric temperature sensors over a 100 °C window. Pseudorotaxanes based on aromatic crown ether wheels and disubstituted 4,4'-bipyridinium axles were converted into rotaxanes upon binding to metal complexes (zinc, cadmium, mercury, copper, cobalt), and the formation of ordered crystalline arrays was studied in the solid state. The columnar organization of pseudorotaxanes by Hg2X6 2-- complexes (X = Cl, Br, I), leading to unprecedented dichroic (blue/red) rotaxane crystals, was demonstrated for the first time. From the crystal structures studied it became apparent that negatively charged metal complexes are needed for successful assembly with the positively charged pseudorotaxane units. To be able to use the more common, positively charged metal ions for rotaxane framework construction, neutral and negatively charged pseudorotaxanes were synthesized

  3. Chemical probes of metal cluster structure--Fe, Co, Ni, and Cu

    Parks, E.K.; Zhu, L.; Ho, J.; Riley, S.J.

    1992-01-01

    Chemical reactivity is one of the few methods currently available for investigating the geometrical structure of isolated transition metal clusters. In this paper we summarize what is currently known about the structures of clusters of four transition metals, Fe, Co, Ni, and Cu, in the size range from 13 to 180 atoms. Chemical probes used to determine structural information include reactions with H 2 (D 2 ), H 2 0, NH 3 and N 2 . Measurements at both low coverage and at saturation are discussed

  4. THE METALLICITY BIMODALITY OF GLOBULAR CLUSTER SYSTEMS: A TEST OF GALAXY ASSEMBLY AND OF THE EVOLUTION OF THE GALAXY MASS-METALLICITY RELATION

    Tonini, Chiara

    2013-01-01

    We build a theoretical model to study the origin of the globular cluster metallicity bimodality in the hierarchical galaxy assembly scenario. The model is based on empirical relations such as the galaxy mass-metallicity relation [O/H]-M star as a function of redshift, and on the observed galaxy stellar mass function up to redshift z ∼ 4. We make use of the theoretical merger rates as a function of mass and redshift from the Millennium simulation to build galaxy merger trees. We derive a new galaxy [Fe/H]-M star relation as a function of redshift, and by assuming that globular clusters share the metallicity of their original parent galaxy at the time of their formation, we populate the merger tree with globular clusters. We perform a series of Monte Carlo simulations of the galaxy hierarchical assembly, and study the properties of the final globular cluster population as a function of galaxy mass, assembly and star formation history, and under different assumptions for the evolution of the galaxy mass-metallicity relation. The main results and predictions of the model are the following. (1) The hierarchical clustering scenario naturally predicts a metallicity bimodality in the galaxy globular cluster population, where the metal-rich subpopulation is composed of globular clusters formed in the galaxy main progenitor around redshift z ∼ 2, and the metal-poor subpopulation is composed of clusters accreted from satellites, and formed at redshifts z ∼ 3-4. (2) The model reproduces the observed relations by Peng et al. for the metallicities of the metal-rich and metal-poor globular cluster subpopulations as a function of galaxy mass; the positions of the metal-poor and metal-rich peaks depend exclusively on the evolution of the galaxy mass-metallicity relation and the [O/Fe], both of which can be constrained by this method. In particular, we find that the galaxy [O/Fe] evolves linearly with redshift from a value of ∼0.5 at redshift z ∼ 4 to a value of ∼0.1 at

  5. Proofs of cluster formation and transitions in liquid metals and alloys

    Filippov, E.S.

    1985-01-01

    Calculational and experimental proofs are presented indicating to existence of clusters in liquid metals and alloys. Systems of liquid alloys both on the base of ferrous metals and non-ferrous metals (Fe-C, Ni-C, Co-C, Fe-Ni, Ni-Mo, Co-Cr, Co-V as well as In-Sn, Bi-Sn, Si-Ge and others) are studied experimentally. It is shown that the general feature of the systems studied is sensitivity of a volume to change in structure, to replacement fcc structure on bcc or to initiation-dissociation of intermetallic compounds AxBy. It is shown that both in pure liquid metals and in their.alloys there are clusters as ordered aggregate of atoms

  6. Atomic structures and covalent-to-metallic transition of lead clusters Pbn (n=2-22)

    Wang Baolin; Zhao Jijun; Chen Xiaoshuang; Shi Daning; Wang Guanghou

    2005-01-01

    The lowest-energy structures and electronic properties of the lead clusters are studied by density-functional-theory calculations with Becke-Lee-Yang-Parr gradient correction. The lowest-energy structures of Pb n (n=2-22) clusters are determined from a number of structural isomers, which are generated from empirical genetic algorithm simulations. The competition between atom-centered compact structures and layered stacking structures leads to the alternative appearance of the two types of structures as global minimum. The size evolution of geometric and electronic properties from covalent bonding towards bulk metallic behavior in Pb clusters is discussed

  7. Structure of s - p bonded metal clusters with 8, 20 and 40 valence electrons

    Kumar, V.

    1992-10-01

    From studies on some clusters of metals and semiconductors, there appear some similarities in the structure of clusters with a given number of atoms and having the number of valence electrons corresponding to a shell closing. Here we present results of the atomic and electronic structure of a few other clusters with 20 and 40 valence electrons, namely Sb 4 , Sn 5 and Sb 8 using the density functional molecular dynamics method. We suggest that the similarities in the structure and deviation from them may help to understand bonding characteristics in clusters and its evolution to bulk behaviour. Our results on Sb 8 cluster are preliminary but indicate that above room temperature its structure is two weakly interacting tetrahedra which is in general agreement with the observation of predominently antimony tetramers at T > 300 K. (author). 16 refs, 2 figs

  8. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts

    Verkhoturov, Stanislav V.; Gołuński, Mikołaj; Verkhoturov, Dmitriy S.; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A.

    2018-04-01

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C602+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H)-, emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H)- from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ˜30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves tunneling of

  9. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts.

    Verkhoturov, Stanislav V; Gołuński, Mikołaj; Verkhoturov, Dmitriy S; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A

    2018-04-14

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C 60 2+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H) - , emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H) - from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ∼30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves

  10. Electronic coupling effects and charge transfer between organic molecules and metal surfaces

    Forker, Roman

    2010-07-01

    We employ a variant of optical absorption spectroscopy, namely in situ differential reflectance spectroscopy (DRS), for an analysis of the structure-properties relations of thin epitaxial organic films. Clear correlations between the spectra and the differently intense coupling to the respective substrates are found. While rather broad and almost structureless spectra are obtained for a quaterrylene (QT) monolayer on Au(111), the spectral shape resembles that of isolated molecules when QT is grown on graphite. We even achieve an efficient electronic decoupling from the subjacent Au(111) by inserting an atomically thin organic spacer layer consisting of hexa-peri-hexabenzocoronene (HBC) with a noticeably dissimilar electronic behavior. These observations are further consolidated by a systematic variation of the metal substrate (Au, Ag, and Al), ranging from inert to rather reactive. For this purpose, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) is chosen to ensure comparability of the molecular film structures on the different metals, and also because its electronic alignment on various metal surfaces has previously been studied with great intensity. We present evidence for ionized PTCDA at several interfaces and propose the charge transfer to be related to the electronic level alignment governed by interface dipole formation on the respective metals. (orig.)

  11. On the role of resonances in photoionization of metal clusters

    Wopperer, P; Dinh, P M; Suraud, E; Reinhard, P G

    2013-01-01

    We analyze electron emission from irradiated clusters by means of time-dependent density-functional theory (TDDFT) in real time. We focus on photo-electron spectra (PES) which deliver an invaluable tool to explore static and dynamical properties of irradiated species. We discuss, in particular, the role of resonances in the PES once the laser frequency is below the emission threshold which implies multiphoton processes. We show that the resonances in the electronic spectrum lead to the occurrence of several peaks in the PES and also strongly affect the standard scaling relations between ionization and the number of required photons for electronic emission.

  12. Impurity cluster interaction in fcc metals studied by PAC

    Deicher, M.; Echt, O.; Recknagel, E.; Wichert, T.

    1981-01-01

    A defect configuration of high thermal stability has been observed by PAC in Au, showing the same properties as previously published configuration in Cu and Ni. We prove that these configurations cannot consist of any small defect complex with well-defined size; especially the observed influence of the damaging conditions on the thermal stability of the defects in Au and Cu would contradict such an assumption. It is shown that probe atoms trapped at large clusters of variable size can nevertheless experience a unique electric field gradient, and that in our case intrinsic stacking faults, formed by vacancies, can account for all the measured properties. (orig.)

  13. Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si

    Chen, Renyu; Trzynadlowski, Bart; Dunham, Scott T. [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-02-07

    In this work, we develop models for the gettering of metals in silicon by high phosphorus concentration. We first performed ab initio calculations to determine favorable configurations of complexes involving phosphorus and transition metals (Fe, Cu, Cr, Ni, Ti, Mo, and W). Our ab initio calculations found that the P{sub 4}V cluster, a vacancy surrounded by 4 nearest-neighbor phosphorus atoms, which is the most favorable inactive P species in heavily doped Si, strongly binds metals such as Cu, Cr, Ni, and Fe. Based on the calculated binding energies, we build continuum models to describe the P deactivation and Fe gettering processes with model parameters calibrated against experimental data. In contrast to previous models assuming metal-P{sub 1}V or metal-P{sub 2}V as the gettered species, the binding of metals to P{sub 4}V satisfactorily explains the experimentally observed strong gettering behavior at high phosphorus concentrations.

  14. Nonlinear Color–Metallicity Relations of Globular Clusters. VII. Nonlinear Absorption-line Index versus Metallicity Relations and Bimodal Index Distributions of NGC 5128 Globular Clusters

    Kim, Sooyoung; Yoon, Suk-Jin, E-mail: sjyoon0691@yonsei.ac.kr [Department of Astronomy and Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2017-07-01

    Spectroscopy on the globular cluster (GC) system of NGC 5128 revealed bimodality in absorption-line index distributions of its old GCs. GC division is a widely observed and studied phenomenon whose interpretation has depicted host galaxy formation and evolution such that it harbors two distinct metallicity groups. Such a conventional view of GC bimodality has mainly been based on photometry. The recent GC photometric data, however, presented an alternative perspective in which the nonlinear metallicity-to-color transformation is responsible for color bimodality of GC systems. Here we apply the same line of analysis to the spectral indices and examine the absorption-line index versus metallicity relations for the NGC 5128 GC system. NGC 5128 GCs display nonlinearity in the metallicity-index planes, most prominently for the Balmer lines and by a non-negligible degree for the metallicity-sensitive magnesium line. We demonstrate that the observed spectroscopic division of NGC 5128 GCs can be caused by the nonlinear nature of the metallicity-to-index conversions and thus one does not need to resort to two separate GC subgroups. Our analysis incorporating this nonlinearity provides a new perspective on the structure of NGC 5128's GC system, and a further piece to the global picture of the formation of GC systems and their host galaxies.

  15. Pulse laser-induced generation of cluster codes from metal nanoparticles for immunoassay applications

    Chia-Yin Chang

    2017-05-01

    Full Text Available In this work, we have developed an assay for the detection of proteins by functionalized nanomaterials coupled with laser-induced desorption/ionization mass spectrometry (LDI-MS by monitoring the generation of metal cluster ions. We achieved selective detection of three proteins [thrombin, vascular endothelial growth factor-A165 (VEGF-A165, and platelet-derived growth factor-BB (PDGF-BB] by modifying nanoparticles (NPs of three different metals (Au, Ag, and Pt with the corresponding aptamer or antibody in one assay. The Au, Ag, and Pt acted as metal bio-codes for the analysis of thrombin, VEGF-A165, and PDGF-BB, respectively, and a microporous cellulose acetate membrane (CAM served as a medium for an in situ separation of target protein-bound and -unbound NPs. The functionalized metal nanoparticles bound to their specific proteins were subjected to LDI-MS on the CAM. The functional nanoparticles/CAM system can function as a signal transducer and amplifier by transforming the protein concentration into an intense metal cluster ion signal during LDI-MS analysis. This system can selectively detect proteins at picomolar concentrations. Most importantly, the system has great potential for the detection of multiple proteins without any pre-concentration, separation, or purification process because LDI-MS coupled with CAM effectively removes all signals except for those from the metal cluster ions.

  16. Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer.

    Pangarkar, Chinmay; Dinh, Anh-Tuan; Mitragotri, Samir

    2012-08-20

    Lysosomes play a critical role in intracellular drug delivery. For enzyme-based therapies, they represent a potential target site whereas for nucleic acid or many protein drugs, they represent the potential degradation site. Either way, understanding the mechanisms and processes involved in routing of materials to lysosomes after cellular entry is of high interest to the field of drug delivery. Most therapeutic cargoes other than small hydrophobic molecules enter the cells through endocytosis. Endocytosed cargoes are routed to lysosomes via microtubule-based transport and are ultimately shared by various lysosomes via tethering and clustering of endocytic vesicles followed by exchange of their contents. Using a combined experimental and numerical approach, here we studied the rates of mass transfer into and among the endocytic vesicles in a model cell line, 3T3 fibroblasts. In order to understand the relationship of mass transfer with microtubular transport and vesicle clustering, we varied both properties through various pharmacological agents. At the same time, microtubular transport and vesicle clustering were modeled through diffusion-advection equations and the Smoluchowski equations, respectively. Our analysis revealed that the rate of mass transfer is optimally related to microtubular transport and clustering properties of vesicles. Further, the rate of mass transfer is highest in the innate state of the cell. Any perturbation to either microtubular transport or vesicle aggregation led to reduced mass transfer to lysosome. These results suggest that in the absence of an external intervention the endocytic pathway appears to maximize molecular delivery to lysosomes. Strategies are discussed to reduce mass transfer to lysosomes so as to extend the residence time of molecules in endosomes or late endosomes, thus potentially increasing the likelihood of their escape before disposition in the lysosomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The evoluation of the galactic globular clusters; I Metal abundance calibrations

    Lee, S.W.; Park, N.K.

    1984-01-01

    Five different calibrations of metal abundances of globular clusters are examined and these are compared with metallicity ranking parameters such as (Sp)sub(c), , Q39 and IR-indices. Except for the calibration *(Fe/H*)sub(H) by the high dispersion echelle analysis, the other calibration scales are correlated with the morphological parameters of red giant branch. In the *(Fe/H*)sub(Hsup(-))scale, the clusters later than approx.F8 have nearly a constant metal abundance, *(Fe/H*)sub(H)approx.-1.05, regardless of morphological characteristics of horizontal branch and red giant branch. By the two fundamental calibration scales of *(Fe/H*)sub(L) (derived by the low dispersion analysis), and *(Fe/H*)sub(delta S) (derived by the spectral analysis of RR Lyrae stars), the globular clusters are divided into the halo clusters with *(Fe/H*)<-1.0 and the disk clusters confined within the galactocentric distance rsub(G)=10 kpc and galactic plane distance absolute z=3 kpc. In this case the abundance gradient is given by d*(Fe/H*)/drsub(G)approx.-0.05kpcsup(-1) and d*(Fe/H*)/d absolute z approx. -0.08 kpcsup(-1) within rsub(G)=20 kpc and absolute z=10 kpc, respectively. According to these characteristics of the spatial distribution of globular clusters, the chemical evolution of the galactic globular clusters can be accounted for by the two-zone (disk-halo) slow collapse model when the *(Fe/H*)sub(Lsup(-)) or *(Fe/H*)sub(DELTA Ssup(-))scale is applied. In the case of *(Fe/H*)sub(Hsup(-))scale, the one-zone fast collapse model is preferred for the evolution of globular clusters. (Author)

  18. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    Steimle, Timothy [Arizona State Univ., Tempe, AZ (United States)

    2015-12-15

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladium (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μm. In general terms, μel, gives insight into the charge distribution and mm into

  19. Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks.

    Ongari, Daniele; Tiana, Davide; Stoneburner, Samuel J; Gagliardi, Laura; Smit, Berend

    2017-07-20

    The copper paddle-wheel is the building unit of many metal organic frameworks. Because of the ability of the copper cations to attract polar molecules, copper paddle-wheels are promising for carbon dioxide adsorption and separation. They have therefore been studied extensively, both experimentally and computationally. In this work we investigate the copper-CO 2 interaction in HKUST-1 and in two different cluster models of HKUST-1: monocopper Cu(formate) 2 and dicopper Cu 2 (formate) 4 . We show that density functional theory methods severely underestimate the interaction energy between copper paddle-wheels and CO 2 , even including corrections for the dispersion forces. In contrast, a multireference wave function followed by perturbation theory to second order using the CASPT2 method correctly describes this interaction. The restricted open-shell Møller-Plesset 2 method (ROS-MP2, equivalent to (2,2) CASPT2) was also found to be adequate in describing the system and used to develop a novel force field. Our parametrization is able to predict the experimental CO 2 adsorption isotherms in HKUST-1, and it is shown to be transferable to other copper paddle-wheel systems.

  20. Analysis of functional organic molecules at noble metal surfaces by means of vibrational spectroscopies

    Leyssner, Felix

    2011-10-24

    The goal of this work is to optimize the efficiency of photoinduced molecular switching processes on surfaces via controlled variations of the adsorption and electronic properties of the switch. We investigated the influence of external stimuli, i.e. photons and thermal activation, on surface bound molecular switches undergoing trans/cis-isomerizations and ring-opening/closing-reactions, respectively. High resolution electron energy loss spectroscopy (HREELS) and sum-frequency generation (SFG) spectroscopy have been used as the main tools to investigate the adsorption behavior and the molecular switching properties. Two basic concepts of coupling the molecular switch to the surface have been studied: (i) physisorbed or weakly chemisorbed systems deposited on noble metal surfaces under UHV conditions and (ii) molecular switches bound covalently via anchor groups. In the HREELS study following concept (i), we investigated the adsorption geometry and isomerization behavior of various molecular switches on metal substrates which are able to undergo a photoinduced trans/cis-isomerization in solution. We investigated three isoelectronic molecules on Au where we systematically changed the photochemically active group from the diazo-group in an azobenzene-derivative (on Cu(111)) to the imine-group, and the vinylene-group, respectively. Finding the photoisomerization quenched for all systems we observed considerable differences in their thermal isomerization behavior. Comparable we find the photoinduced ring-opening/closing-reaction of spiropyran quenched on Au(111) but a thermally induced ring-opening reaction resulting in the open form being strongly stabilized by the metal. SFG spectroscopy is employed to investigate the reversible, photoinduced trans/cis-isomerization of an azobenzene-functionalized self-assembled monolayer (SAM) on gold using a tripodal linker system. In consequence of the decoupling provided by the tripodal linker, the switching behavior of the

  1. Scaling from single molecule to macroscopic adhesion at polymer/metal interfaces.

    Utzig, Thomas; Raman, Sangeetha; Valtiner, Markus

    2015-03-10

    Understanding the evolution of macroscopic adhesion based on fundamental molecular interactions is crucial to designing strong and smart polymer/metal interfaces that play an important role in many industrial and biomedical applications. Here we show how macroscopic adhesion can be predicted on the basis of single molecular interactions. In particular, we carry out dynamic single molecule-force spectroscopy (SM-AFM) in the framework of Bell-Evans' theory to gain information about the energy barrier between the bound and unbound states of an amine/gold junction. Furthermore, we use Jarzynski's equality to obtain the equilibrium ground-state energy difference of the amine/gold bond from these nonequilibrium force measurements. In addition, we perform surface forces apparatus (SFA) experiments to measure macroscopic adhesion forces at contacts where approximately 10(7) amine/gold bonds are formed simultaneously. The SFA approach provides an amine/gold interaction energy (normalized by the number of interacting molecules) of (36 ± 1)k(B)T, which is in excellent agreement with the interaction free energy of (35 ± 3)k(B)T calculated using Jarzynski's equality and single-molecule AFM experiments. Our results validate Jarzynski's equality for the field of polymer/metal interactions by measuring both sides of the equation. Furthermore, the comparison of SFA and AFM shows how macroscopic interaction energies can be predicted on the basis of single molecular interactions, providing a new strategy to potentially predict adhesive properties of novel glues or coatings as well as bio- and wet adhesion.

  2. NEAR-IR PHOTOMETRIC PROPERTIES OF HB, MSTO, AND SGB FOR METAL POOR GALACTIC GLOBULAR CLUSTERS

    J.-W. Kim

    2007-03-01

    Full Text Available We report photometric features of the HB, MSTO, and SGB for a set of metal-poor Galactic globular clusters on the near-IR CMDs. The magnitude and color of the MSTO and SGB are measured on the fiducial normal points of the CMDs by applying a polynomial fit. The near-IR luminosity functions of horizontal branch stars in the classical second parameter pair M3 and M13 indicate that HB stars in M13 are dominated by hot stars that are rotatively faint in the infrared, whereas HB stars in M3 are brighter than those in M13. The luminosity functions of HB stars in the observed bulge clusters, except for NGC 6717, show a trend that the fainter hot HB stars are dominated in the relatively metal-poor clusters while the relatively metal-rich clusters contain the brighter HB stars. It is suggestive that NGC 6717 would be an extreme example of the second-parameter phenomenon for the bulge globular clusters.

  3. Adsorption behavior of sulfur-containing amino acid molecule on transition metal surface studied by S K-edge NEXAFS

    Yagi, S.; Matsumura, K.; Nakano, Y.; Ikenaga, E.; Sardar, S.A.; Syed, J.A.; Soda, K.; Hashimoto, E.; Tanaka, K.; Taniguchi, M.

    2003-01-01

    Adsorption behavior of a sulfur-containing amino acid L-cysteine molecule on transition metal surface have been investigated by S K-edge near-edge X-ray absorption fine structure. The L-cysteine molecule for first adsorption layer was found to dissociate on polycrystalline nickel surface, whereas molecularly adsorbed on copper surface at room temperature. Most of the L-cysteine molecules have been dissociated on nickel surface in annealing condition up to 353 K. On the other hand, the L-cysteine molecule did not dissociate on copper surface and the elongation of the S-C bonding occurred at 353 K

  4. Photochemistry of Nitrophenol Molecules and Clusters: Intra- vs Intermolecular Hydrogen Bond Dynamics

    Grygoryeva, Kateřina; Kubečka, J.; Pysanenko, Andriy; Lengyel, Jozef; Slavíček, Petr; Fárník, Michal

    2016-01-01

    Roč. 120, č. 24 (2016), s. 4139-4146 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GA15-12386S Institutional support: RVO:61388955 Keywords : photochemistry * clusters * laser techniques Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.847, year: 2016

  5. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  6. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.

    Mejia, Camilo A; Huang, Ningfeng; Povinelli, Michelle L

    2012-09-01

    We predict the formation of optically trapped, metal-dielectric nanoparticle clusters above photonic crystal microcavities. We determine the conditions on particle size and position for a gold particle to be trapped above the microcavity. We then show that strong field redistribution and enhancement near the trapped gold nanoparticle results in secondary trapping sites for a pair of dielectric nanoparticles.

  7. Spectroscopic and electric properties of the LiCs molecule: a coupled cluster study including higher excitations

    Sørensen, L. K.; Fleig, T.; Olsen, J.

    2009-08-01

    Aimed at obtaining complete and highly accurate potential energy surfaces for molecules containing heavy elements, we present a new general-order coupled cluster method which can be applied in the framework of the spin-free Dirac formalism. As an initial application we present a systematic study of electron correlation and relativistic effects on the spectroscopic and electric properties of the LiCs molecule in its electronic ground state. In particular, we closely investigate the importance of excitations higher than coupled cluster doubles, spin-free and spin-dependent relativistic effects and the correlation of outer-core electrons on the equilibrium bond length, the harmonic vibrational frequency, the dissociation energy, the dipole moment and the static electric dipole polarizability. We demonstrate that our new implementation allows for highly accurate calculations not only in the bonding region but also along the complete potential curve. The quality of our results is demonstrated by a vibrational analysis where an almost complete set of vibrational levels has been calculated accurately.

  8. Spectroscopic and electric properties of the LiCs molecule: a coupled cluster study including higher excitations

    Soerensen, L K; Fleig, T; Olsen, J

    2009-01-01

    Aimed at obtaining complete and highly accurate potential energy surfaces for molecules containing heavy elements, we present a new general-order coupled cluster method which can be applied in the framework of the spin-free Dirac formalism. As an initial application we present a systematic study of electron correlation and relativistic effects on the spectroscopic and electric properties of the LiCs molecule in its electronic ground state. In particular, we closely investigate the importance of excitations higher than coupled cluster doubles, spin-free and spin-dependent relativistic effects and the correlation of outer-core electrons on the equilibrium bond length, the harmonic vibrational frequency, the dissociation energy, the dipole moment and the static electric dipole polarizability. We demonstrate that our new implementation allows for highly accurate calculations not only in the bonding region but also along the complete potential curve. The quality of our results is demonstrated by a vibrational analysis where an almost complete set of vibrational levels has been calculated accurately.

  9. Processes of conversion of a hot metal particle into aerogel through clusters

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.

  10. Nonlocality and particle-clustering effects on the optical response of composite materials with metallic nanoparticles

    Chen, C. W.; Chung, H. Y.; Chiang, H.-P.; Lu, J. Y.; Chang, R.; Tsai, D. P.; Leung, P. T.

    2010-10-01

    The optical properties of composites with metallic nanoparticles are studied, taking into account the effects due to the nonlocal dielectric response of the metal and the coalescing of the particles to form clusters. An approach based on various effective medium theories is followed, and the modeling results are compared with those from the cases with local response and particles randomly distributed through the host medium. Possible observations of our modeling results are illustrated via a calculation of the transmission of light through a thin film made of these materials. It is found that the nonlocal effects are particularly significant when the particles coalesce, leading to blue-shifted resonances and slightly lower values in the dielectric functions. The dependence of these effects on the volume fraction and fractal dimension of the metal clusters is studied in detail.

  11. Reversible Capture of Small Molecules On Bimetallaborane Clusters: Synthesis, Structural Characterization, and Photophysical Aspects

    Bould, Jonathan; Baše, Tomáš; Londesborough, Michael Geoffrey Stephen; Oro, L.A.; Macias, R.; Kennedy, J.D.; Kubát, Pavel; Fuciman, M.; Polívka, T.; Lang, Kamil

    2011-01-01

    Roč. 50, č. 16 (2011), s. 7511-7523 ISSN 0020-1669 R&D Projects: GA AV ČR(CZ) KAN400480701; GA ČR GAP208/10/1678; GA ČR(CZ) GAP207/11/1577 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : metallaborane reaction chemistry * metal-metal bonds * sulfur-dioxide * singlet oxygen * photochemical elimination Subject RIV: CA - Inorganic Chemistry Impact factor: 4.601, year: 2011

  12. Medium-induced change of the optical response of metal clusters in rare-gas matrices

    Xuan, Fengyuan; Guet, Claude

    2017-10-01

    Interaction with the surrounding medium modifies the optical response of embedded metal clusters. For clusters from about ten to a few hundreds of silver atoms, embedded in rare-gas matrices, we study the environment effect within the matrix random phase approximation with exact exchange (RPAE) quantum approach, which has proved successful for free silver clusters. The polarizable surrounding medium screens the residual two-body RPAE interaction, adds a polarization term to the one-body potential, and shifts the vacuum energy of the active delocalized valence electrons. Within this model, we calculate the dipole oscillator strength distribution for Ag clusters embedded in helium droplets, neon, argon, krypton, and xenon matrices. The main contribution to the dipole surface plasmon red shift originates from the rare-gas polarization screening of the two-body interaction. The large size limit of the dipole surface plasmon agrees well with the classical prediction.

  13. Excitation of chiral molecules and their hydrated by clusters by R2PI studies

    Satta, M.; Piccirillo, S.; Scuderia, D.; Paladini, A.; Della Vedova, L.; Filippi, A.; Speranza, M.; Giardini, A.

    2002-01-01

    Molecular clusters play a key role in the molecular scale explanation of macroscopic phenomena, being in between the isolated gas phase and the condensed phase. Thus, allowing to obtain information on intermolecular forces simply by studying the physicochemical properties of isolated clusters and to extend them macroscopic systems. A comprehensive study of the short-range forces operating in the molecular complexes between several chiral aromatic alcohols (M) and water (solv), through the application of mass resolved REMPI technique is reported. The experimental setup was composed by a supersonic molecular beam, two Nd-YAG pumped dye lasers and a time of flight mass spectrometer. The photoionization efficiency curves were obtained as follows: a) the first exciting laser (hv 1 ) was tuned on the S 1 0 transition of the species of interest; b) the laser intensity is lowered to about 1 % of the initial fluence to minimize the hv 1 absorption; c)a second laser (hv 2 ) is scanned through the cluster ionization and fragmentation threshold regions. The binding energy of the M-solv adduct was computed from the differences between its dissociative ionization threshold and the ionization threshold of bare M. The mass-resolved one colour R2PI excitation spectra of l-tetralol (THN R ), THN R -H 2 O, l i ndanol (I R ) and I R -H 2 O are given. (nevyjel)

  14. Isonitrile ligand effects on small-molecule-sequestering in bimetalladodecaborane clusters

    Bould, Jonathan; Londesborough, Michael Geoffrey Stephen; Kennedy, JD.; Macias, R.; Winter, REK.; Císařová, I.; Kubát, Pavel; Lang, Kamil

    2013-01-01

    Roč. 747, december (2013), s. 76-84 ISSN 0022-328X R&D Projects: GA ČR GAP207/11/1577; GA ČR GAP208/10/1678; GA ČR GAP207/11/0705 Institutional support: RVO:61388980 ; RVO:61388955 Keywords : Metallaboranes * Small molecule * Sequestration * DFT * Isonitrile * Carbon monoxide Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 2.302, year: 2013

  15. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok; Sohn, Young-Jong

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellar features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  16. Metals on graphene and carbon nanotube surfaces: From mobile atoms to atomtronics to bulk metals to clusters and catalysts

    Sarkar, Santanu C.

    2014-01-14

    In this Perspective, we present an overview of recent fundamental studies on the nature of the interaction between individual metal atoms and metal clusters and the conjugated surfaces of graphene and carbon nanotube with a particular focus on the electronic structure and chemical bonding at the metal-graphene interface. We discuss the relevance of organometallic complexes of graphitic materials to the development of a fundamental understanding of these interactions and their application in atomtronics as atomic interconnects, high mobility organometallic transistor devices, high-frequency electronic devices, organometallic catalysis (hydrogen fuel generation by photocatalytic water splitting, fuel cells, hydrogenation), spintronics, memory devices, and the next generation energy devices. We touch on chemical vapor deposition (CVD) graphene grown on metals, the reactivity of its surface, and its use as a template for asymmetric graphene functionalization chemistry (ultrathin Janus discs). We highlight some of the latest advances in understanding the nature of interactions between metals and graphene surfaces from the standpoint of metal overlayers deposited on graphene and SWNT thin films. Finally, we comment on the major challenges facing the field and the opportunities for technological applications. © 2013 American Chemical Society.

  17. ENVIRONMENTAL EFFECTS ON THE METAL ENRICHMENT OF LOW-MASS GALAXIES IN NEARBY CLUSTERS

    Petropoulou, V.; Vilchez, J.; Iglesias-Paramo, J. [Instituto de Astrofisica de Andalucia-C.S.I.C., Glorieta de la Astronomia, 18008 Granada (Spain)

    2012-04-20

    In this paper, we study the chemical history of low-mass star-forming (SF) galaxies in the local universe clusters Coma, A1367, A779, and A634. The aim of this work is to search for the imprint of the environment on the chemical evolution of these galaxies. Galaxy chemical evolution is linked to the star formation history, as well as to the gas interchange with the environment, and low-mass galaxies are well known to be vulnerable systems to environmental processes affecting both these parameters. For our study we have used spectra from the SDSS-III DR8. We have examined the spectroscopic properties of SF galaxies of stellar masses 10{sup 8}-10{sup 10} M{sub Sun }, located from the core to the cluster's outskirts. The gas-phase O/H and N/O chemical abundances have been derived using the latest empirical calibrations. We have examined the mass-metallicity relation of cluster galaxies, finding well-defined sequences. The slope of these sequences, for galaxies in low-mass clusters and galaxies at large cluster-centric distances, follows the predictions of recent hydrodynamic models. A flattening of this slope has been observed for galaxies located in the core of the two more massive clusters of the sample, principally in Coma, suggesting that the imprint of the cluster environment on the chemical evolution of SF galaxies should be sensitive to both the galaxy mass and the host cluster mass. The H I gas content of Coma and A1367 galaxies indicates that low-mass SF galaxies, located at the core of these clusters, have been severely affected by ram-pressure stripping (RPS). The observed mass-dependent enhancement of the metal content of low-mass galaxies in dense environments seems plausible, according to hydrodynamic simulations. This enhanced metal enrichment could be produced by the combination of effects such as wind reaccretion, due to pressure confinement by the intracluster medium (ICM), and the truncation of gas infall, as a result of the RPS. Thus, the

  18. ENVIRONMENTAL EFFECTS ON THE METAL ENRICHMENT OF LOW-MASS GALAXIES IN NEARBY CLUSTERS

    Petropoulou, V.; Vílchez, J.; Iglesias-Páramo, J.

    2012-01-01

    In this paper, we study the chemical history of low-mass star-forming (SF) galaxies in the local universe clusters Coma, A1367, A779, and A634. The aim of this work is to search for the imprint of the environment on the chemical evolution of these galaxies. Galaxy chemical evolution is linked to the star formation history, as well as to the gas interchange with the environment, and low-mass galaxies are well known to be vulnerable systems to environmental processes affecting both these parameters. For our study we have used spectra from the SDSS-III DR8. We have examined the spectroscopic properties of SF galaxies of stellar masses 10 8 -10 10 M ☉ , located from the core to the cluster's outskirts. The gas-phase O/H and N/O chemical abundances have been derived using the latest empirical calibrations. We have examined the mass-metallicity relation of cluster galaxies, finding well-defined sequences. The slope of these sequences, for galaxies in low-mass clusters and galaxies at large cluster-centric distances, follows the predictions of recent hydrodynamic models. A flattening of this slope has been observed for galaxies located in the core of the two more massive clusters of the sample, principally in Coma, suggesting that the imprint of the cluster environment on the chemical evolution of SF galaxies should be sensitive to both the galaxy mass and the host cluster mass. The H I gas content of Coma and A1367 galaxies indicates that low-mass SF galaxies, located at the core of these clusters, have been severely affected by ram-pressure stripping (RPS). The observed mass-dependent enhancement of the metal content of low-mass galaxies in dense environments seems plausible, according to hydrodynamic simulations. This enhanced metal enrichment could be produced by the combination of effects such as wind reaccretion, due to pressure confinement by the intracluster medium (ICM), and the truncation of gas infall, as a result of the RPS. Thus, the properties of the ICM

  19. Percolation model for electron conduction in films of metal nanoparticles linked by organic molecules

    Muller, K.H.; Herrmann, J.; Raguse, B.; Baxter, G.; Reda, T.

    2002-01-01

    Full text: We have investigated theoretically and experimentally the temperature dependence of the conductance of films of Au nanoparticles linked by alkane dithiol molecules in the temperature range between 5 K and 300 K. Conduction in these films is due to tunneling of single electrons between neighbouring metal nanoparticles. During tunnelling an electron has to overcome the Coulomb charging energy. We find that the observed temperature dependence of the conductance is non-Arrhenius like and can be described in terms of a percolation theory which takes account of disorder in the system. Disorder in our nanoparticle films is caused by variations in the nanoparticle size, fluctuations in the separation gaps between adjacent nanoparticles and by offset charges. To explain in detail our experimental data, a wide distribution of separation gaps and charging energies is needed. We find that a wide Coulomb charging energy distribution can arise from random offset charges even if the nanoparticle size distribution is narrow

  20. Spin tunneling in magnetic molecules: Quantitative estimates for Fe8 clusters

    Galetti, D.; Silva, Evandro C.

    2007-12-01

    Spin tunneling in the particular case of the magnetic molecular cluster octanuclear iron(III), Fe8, is treated by an effective Hamiltonian that allows for an angle-based description of the process. The presence of an external magnetic field along the easy axis is also taken into account in this description. Analytic expressions for the energy levels and barriers are obtained from a harmonic approximation of the potential function which give results in good agreement with the experimental results. The energy splittings due to spin tunneling is treated in an adapted WKB approach and it is shown that the present description can give results to a reliable degree of accuracy.

  1. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source

    Polonskyi, O.; Solar, P.; Kylian, O.; Drabik, M.; Artemenko, A.; Kousal, J.; Hanus, J.; Pesicka, J.; Matolinova, I. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic); Kolibalova, E. [Tescan, Libusina trida 21, 632 00 Brno (Czech Republic); Slavinska, D. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic); Biederman, H., E-mail: bieder@kmf.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic)

    2012-04-02

    Nanocomposite metal/plasma polymer films have been prepared by simultaneous plasma polymerization using a mixture of Ar/n-hexane and metal cluster beams. A simple compact cluster gas aggregation source is described and characterized with emphasis on the determination of the amount of charged clusters and their size distribution. It is shown that the fraction of neutral, positively and negatively charged nanoclusters leaving the gas aggregation source is largely influenced by used operational conditions. In addition, it is demonstrated that a large portion of Ag clusters is positively charged, especially when higher currents are used for their production. Deposition of nanocomposite Ag/C:H plasma polymer films is described in detail by means of cluster gas aggregation source. Basic characterization of the films is performed using transmission electron microscopy, ultraviolet-visible and Fourier-transform infrared spectroscopies. It is shown that the morphology, structure and optical properties of such prepared nanocomposites differ significantly from the ones fabricated by means of magnetron sputtering of Ag target in Ar/n-hexane mixture.

  2. Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment

    Guerout, R.; Aymar, M.; Dulieu, O.

    2010-01-01

    In this study, we investigate the structure of the polar alkali-metal-atom-strontium diatomic molecules as possible candidates for the realization of samples of ultracold polar molecular species not yet investigated experimentally. Using a quantum chemistry approach based on effective core potentials and core polarization potentials, we model these systems as effective three-valence-electron systems, allowing for calculation of electronic properties with full configuration interaction. The potential curve and the permanent dipole moment of the 2 Σ + ground state are determined as functions of the internuclear distance for LiSr, NaSr, KSr, RbSr, and CsSr molecules. These molecules are found to exhibit a significant permanent dipole moment, though smaller than those of the alkali-metal-atom-Rb molecules.

  3. A step towards molecular electronics. The ferrocene molecule on a metal-semiconductor system

    Schmeidel, Jedrzej Piotr

    2012-05-14

    In the first part, the domain walls on Ag {radical}(3) x {radical}(3) are investigated and structural and electronic model are introduced and discussed. Furthermore, the temperature dependence is investigated, showing the Peierls-type transition along the domain wall chain. In the second part, the high resolution STM data of the local adsorption geometry of FDT on Ag {radical}(3)< x {radical}(3) are presented. The comparison of theoretical results obtained for the molecule, on Ag(lll) and Ag {radical}(3) x {radical}(3) surfaces, with STM measurement at RT, support the chemisorption with thiolate bonds to the Ag trimers on the HCT surface. The molecule is aligned with the Cp-Fe-Cp axis parallel to the surface, while the rotational freedom of the molecule is limited due to chemisorption. The presented adsorption model is supported by experiment and simulation. In the third part, the perfect Ag {radical}(3) x {radical}(3) is prepared and investigated by means of STM, focusing on structural and electronic characteristics. The different reconstructions and amounts of Ag on Si are investigated; the submonolayer amounts, Ag {radical}(3) x {radical}(3) wetting layers, perfect epitaxial layers and multilayer systems. The influence of wetting layer on electronic character of deposited Ag nanostructures is studied. The occurrence of effective single and double barriers in tunnelling microscopy and spectroscopy for the Ag {radical}(3) x <{radical}(3) system is investigated in the monolayer regime by varying the measurement and preparation conditions. The Coulomb Blockade oscillations are found for granular multilayer Ag films, whereas similar structures with existence of Ag {radical}(3) x {radical}(3) show only a single barrier characteristic. The vertical transport properties in this metal/ semiconductor system depend on the structure and bonding on the atomic scale and on the lateral two-dimensional properties of the interface.

  4. Plasmon-enhanced absorption in a metal nanoparticles and photosynthetic molecules hybrid system

    Fan, Zhiyuan; Govorov, Alexander

    2010-03-01

    Photosystem I from cyanobacteria is one of nature's most efficient light harvesting complexes, converting light energy into electronic energy with a quantum yield of 100% and an energy yield about 58%. It is very attractive to the nanotechnology community because of its nanoscale dimensions and excellent optoelectronic properties. This protein has the potential to be utilized in devices such as solar cells, electric switches, photo-detectors, etc. However, there is one limiting factor for potential applications of a single monolayer of these photosynthetic proteins. One monolayer absorbs less than 1% of sunlight's energy, despite their excellent optoelectronic properties. Recently, experiments [1] have been conducted to enhance light absorption with the assistance of metal nanoparticles as artificial antenna for the photosystem I. Here, we present a theoretical description of the strong plasmon-assisted interactions between the metal nanoparticles and the optical dipoles of the reaction centers observed in the experiments. The resonance and off-resonance plasmon effects enhance the electromagnetic fields around the photosystem-I molecules and, in this way, lead to enhanced absorption. [4pt] [1] I. Carmeli, I. Lieberman, L. Kraversky, Zhiyuan Fan, A. O. Govorov, G. Markovich, and S. Richter, submitted.

  5. Selective on site separation and detection of molecules in diluted solutions with super-hydrophobic clusters of plasmonic nanoparticles

    Gentile, Francesco T.; Coluccio, Maria Laura; Proietti Zaccaria, Remo; Francardi, Marco; Cojoc, Gheorghe; Perozziello, Gerardo; Raimondo, Raffaella; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2014-01-01

    Super-hydrophobic surfaces are bio-inspired interfaces with a superficial texture that, in its most common evolution, is formed by a periodic lattice of silicon micro-pillars. Similar surfaces reveal superior properties compared to conventional flat surfaces, including very low friction coefficients. In this work, we modified meso-porous silicon micro-pillars to incorporate networks of metal nano-particles into the porous matrix. In doing so, we obtained a multifunctional-hierarchical system in which (i) at a larger micrometric scale, the super-hydrophobic pillars bring the molecules dissolved in an ultralow-concentration droplet to the active sites of the device, (ii) at an intermediate meso-scale, the meso-porous silicon film adsorbs the low molecular weight content of the solution and, (iii) at a smaller nanometric scale, the aggregates of silver nano-particles would measure the target molecules with unprecedented sensitivity. In the results, we demonstrated how this scheme can be utilized to isolate and detect small molecules in a diluted solution in very low abundance ranges. The presented platform, coupled to Raman or other spectroscopy techniques, is a realistic candidate for the protein expression profiling of biological fluids. © 2014 the Partner Organisations.

  6. Coronene molecules in helium clusters: Quantum and classical studies of energies and configurations

    Rodríguez-Cantano, Rocío; Pérez de Tudela, Ricardo; Bartolomei, Massimiliano; Hernández, Marta I.; Campos-Martínez, José; González-Lezana, Tomás, E-mail: t.gonzalez.lezana@csic.es; Villarreal, Pablo [Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid (Spain); Hernández-Rojas, Javier; Bretón, José [Departamento de Física and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain)

    2015-12-14

    Coronene-doped helium clusters have been studied by means of classical and quantum mechanical (QM) methods using a recently developed He–C{sub 24}H{sub 12} global potential based on the use of optimized atom-bond improved Lennard-Jones functions. Equilibrium energies and geometries at global and local minima for systems with up to 69 He atoms were calculated by means of an evolutive algorithm and a basin-hopping approach and compared with results from path integral Monte Carlo (PIMC) calculations at 2 K. A detailed analysis performed for the smallest sizes shows that the precise localization of the He atoms forming the first solvation layer over the molecular substrate is affected by differences between relative potential minima. The comparison of the PIMC results with the predictions from the classical approaches and with diffusion Monte Carlo results allows to examine the importance of both the QM and thermal effects.

  7. Catalytic dehydrogenation of alcohol over solid-state molybdenum sulfide clusters with an octahedral metal framework

    Kamiguchi, Satoshi, E-mail: kamigu@riken.jp [Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako City, Saitama 351-0198 (Japan); Organometallic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198 (Japan); Okumura, Kazu [School of Advanced Engineering, Kogakuin University, Nakano-machi, Hachioji City, Tokyo 192-0015 (Japan); Nagashima, Sayoko; Chihara, Teiji [Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan)

    2015-12-15

    Graphical abstract: - Highlights: • Solid-state molybdenum sulfide clusters catalyzed the dehydrogenation of alcohol. • The dehydrogenation proceeded without the addition of any oxidants. • The catalytic activity developed when the cluster was activated at 300–500 °C in H{sub 2}. • The Lewis-acidic molybdenum atom and basic sulfur ligand were catalytically active. • The clusters function as bifunctional acid–base catalysts. - Abstract: Solid-state molybdenum sulfide clusters with an octahedral metal framework, the superconducting Chevrel phases, are applied to catalysis. A copper salt of a nonstoichiometric sulfur-deficient cluster, Cu{sub x}Mo{sub 6}S{sub 8–δ} (x = 2.94 and δ ≈ 0.3), is stored in air for more than 90 days. When the oxygenated cluster is thermally activated in a hydrogen stream above 300 °C, catalytic activity for the dehydrogenation of primary alcohols to aldehydes and secondary alcohols to ketones develops. The addition of pyridine or benzoic acid decreases the dehydrogenation activity, indicating that both a Lewis-acidic coordinatively unsaturated molybdenum atom and a basic sulfur ligand synergistically act as the catalytic active sites.

  8. Cluster-based bulk metallic glass formation in Fe-Si-B-Nb alloy systems

    Zhu, C L; Wang, Q; Li, F W; Li, Y H; Wang, Y M; Dong, C [State Key Laboratory of Materials Modification, Dalian University of Technology (DUT), Dalian 116024 (China); Zhang, W; Inoue, A, E-mail: dong@dlut.edu.c [Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2009-01-01

    Bulk metallic glass formations have been explored in Fe-B-Si-Nb alloy system using the so-called atomic cluster line approach in combination with minor alloying guideline. The atomic cluster line refers to a straight line linking binary cluster to the third element in a ternary system. The basic ternary compositions in Fe-B-Si system are determined by the inetersection points of two cluster lines, namely Fe-B cluster to Si and Fe-Si cluster to B, and then further alloyed with 3-5 at. % Nb for enhancing glass forming abilities. BMG rods with a diameter of 3 mm are formed under the case of minor Nb alloying the basic intersecting compositions of Fe{sub 8}B{sub 3}-Si with Fe{sub 12}Si-B and Fe{sub 8}B{sub 2}-Si with Fe{sub 9}Si-B. The BMGs also exhibit high Vickers hardness (H{sub v}) of 1130-1164 and high Young's modulous (E) of 170-180 GPa

  9. Cluster perturbation theory for calculation of electronic properties of ensembles of metal nanoclusters

    Zhumagulov, Yaroslav V.; Krasavin, Andrey V.; Kashurnikov, Vladimir A.

    2018-05-01

    The method is developed for calculation of electronic properties of an ensemble of metal nanoclusters with the use of cluster perturbation theory. This method is applied to the system of gold nanoclusters. The Greens function of single nanocluster is obtained by ab initio calculations within the framework of the density functional theory, and then is used in Dyson equation to group nanoclusters together and to compute the Greens function as well as the electron density of states of the whole ensemble. The transition from insulator state of a single nanocluster to metallic state of bulk gold is observed.

  10. AGES AND METALLICITIES OF CLUSTER GALAXIES IN A779 USING MODIFIED STROeMGREN PHOTOMETRY

    Sreedhar, Yuvraj Harsha; Rakos, Karl D.; Hensler, Gerhard; Zeilinger, Werner W. [University of Vienna, Institute of Astronomy, Tuerkenschanzstrasse 17, A-1180 Vienna (Austria); Odell, Andrew P. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ (United States)

    2012-03-01

    In the quest for the formation and evolution of galaxy clusters, Rakos and co-workers introduced a spectrophotometric method using modified Stroemgren photometry, but with the considerable debate toward the project's abilities, we re-introduce the system by testing for the repeatability of the modified Stroemgren colors and compare them with the Stroemgren colors, and check for the reproducibility of the ages and metallicities (using the Principle Component Analysis (PCA) technique and the GALEV models) for the six common galaxies in all three A779 data sets. As a result, a fair agreement between two filter systems was found to produce similar colors (with a precision of 0.09 mag in (uz - vz), 0.02 mag in (bz - yz), and 0.03 mag in (vz - vz)) and the generated ages and metallicities are also similar (with an uncertainty of 0.36 Gyr and 0.04 dex from PCA and 0.44 Gyr and 0.2 dex using the GALEV models). We infer that the technique is able to relieve the age-metallicity degeneracy by separating the age effects from the metallicity effects, but it is still unable to completely eliminate it. We further extend this paper to re-study the evolution of galaxies in the low mass, dynamically poor A779 cluster (as it was not elaborately analyzed by Rakos and co-workers in their previous work) by correlating the luminosity (mass), density, and radial distance with the estimated age, metallicity, and the star formation history. Our results distinctly show the bimodality of the young, low-mass, metal-poor population with a mean age of 6.7 Gyr ({+-} 0.5 Gyr) and the old, high-mass, metal-rich galaxies with a mean age of 9 Gyr ({+-} 0.5 Gyr). The method also observes the color evolution of the blue cluster galaxies to red (Butcher-Oemler phenomenon), and the downsizing phenomenon. Our analysis shows that modified Stroemgren photometry is very well suited for studying low- and intermediate-z clusters, as it is capable of observing deeper with better spatial resolution at

  11. Transition metal-induced activation of alkynes leading to metal carbene species: synthetic application to new {pi}-conjugated molecules

    Abo, T; Ohe, K [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)], E-mail: ohe@scl.kyoto-u.ac.jp

    2008-03-15

    The in situ generation of furylcarbene complexes by means of transition metals was applied to catalytic carbene reactions, such as Wittig-type olefination and cycloisomerization reactions. In the presence of [Rh(OAc){sub 2}]{sub 2} as a catalyst and triphenylphosphine as a carbene accepter, carbonyl-ene-ynes 1a reacted with benzaldehyde to give a 2-styrylfuran derivative 3a. The reaction involving phosphine-ylide formation followed by Wittig-type olefination with aldehydes was applied to synthesis of furfurylidene-containing p-extended conjugated molecules. A Ruthenium catalyst underwent cycloisomerization of 1,2-bis(carbonylenyl)acetylene 10a,b to afford 2,2'-bifuran structures. The crystal structure of 5,5'-diphenyl-2,2'-bifuran 11b was determined by X-ray crystallography. The ORTEP drawings of 11b exhibited transoid and highly planar structure. The emission bands of the bisfuran 11b were observed at 414 and 440 nm, its quantum yield (84%) was higher than that of a similar 5,5'-diphenyl-2,2'-bithiophene.

  12. Scattering of neutral metal clusters: Long-range interactions and response properties

    Kresin, V.V.; Scheidemann, A.

    1993-01-01

    The absolute integral cross sections for low-energy collisions of neutral sodium clusters Na n (n=2--40) with atoms and molecules (Ar, N 2 , O 2 , and halogens) have been measured. The cross sections are found to be exceptionally large (up to thousands of square angstroms), showing the dominant role of long-range intermolecular interactions. Elastic scattering proceeding under the influence of the van der Waals force, and a reaction channel involving electron transfer can successfully describe the measurements. The strength of the van der Waals potential is defined by such cluster response properties as the electric polarizability and the frequency of the giant dipole resonance. The reactive electron-jump channel, in turn, is described by the ''harpooning'' mechanism which is sensitive to the cluster ionization potential. Employing parameters taken from spectroscopic studies of alkali clusters, we obtain good agreement with the observed cross sections. This provides a direct connection between beam scattering experiments and studies of cluster electromagnetic response properties

  13. Magnetron sputtering cluster apparatus for formation and deposition of size-selected metal nanoparticles

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    selection is achieved using an electrostatic quadrupole mass selector. The deposited silver clusters are studied using atomic force microscopy. The height distributions show typical relative standard size deviation of 9-13% for given sizes in the range between 5-23 nm. Thus, the apparatus demonstrates good...... capability in formation of supported size-selected metal nanoparticles with controllable coverage for various practical applications....

  14. Giant metal sputtering yields induced by 20-5000 keV/atom gold clusters

    Andersen, H.H.; Brunelle, A.; Della-Negra, S.; Depauw, J.; Jacquet, D.; Le Beyec, Y.

    1997-01-01

    Very large non-linear effects have been found in cluster-induced metal sputtering over a broad projectile energy interval for the first time. Recently available cluster beams from tandem accelerators have allowed sputtering yield measurements to be made with Au 1 to Au 5 from 20 keV/atom to 5 MeV/atom. The cluster-sputtering yield maxima were found at the same total energy but not at the same energy/atom as expected. For Au 5 a yield as high as 3000 was reached at 150 keV/atom while the Au 1 yield was only 55 at the same velocity. The Sigmund-Claussen thermal spike theory, which fits published data at low energy, cannot reproduce our extended new data set. (author)

  15. Stability and mobility of defect clusters and dislocation loops in metals

    Osetsky, Y.N.; Bacon, D.J.; Serra, A.

    2000-01-01

    has been observed in the computer simulation of small vacancy loops in alpha-Fe. In the present paper we summarise results obtained by molecular dynamics simulations of defect clusters and small dislocation loops in alpha-Fe(bcc) and Cu(fcc). The structure and stability of vacancy and interstitial......According to the production bias model, glissile defect clusters and small dislocation loops play an important role in the microstructural evolution during irradiation under cascade damage conditions. The atomic scale computer simulations carried out in recent years have clarified many questions...... loops are reviewed, and the dynamics of glissile clusters assessed. The relevance and importance of these results in establishing a better understanding of the observed differences in the damage accumulation behaviour between bcc and fee metals irradiated under cascade damage conditions are pointed out...

  16. The Next Generation Virgo Cluster Survey (NGVS). XXVI. The Issues of Photometric Age and Metallicity Estimates for Globular Clusters

    Powalka, Mathieu; Lançon, Ariane; Duc, Pierre-Alain [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Puzia, Thomas H.; Muñoz, Roberto P.; Zhang, Hongxin [Institute of Astrophysics, Pontificia Universidad Católica de Chile, 7820436 Macul, Santiago (Chile); Peng, Eric W. [Department of Astronomy, Peking University, Beijing 100871 (China); Liu, Chengze [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Blakeslee, John P.; Côté, Patrick; Ferrarese, Laura; Roediger, Joel; Gwyn, S. D. J. [National Research Council of Canada, Herzberg Astronomy and Astrophysics Program, Victoria, BC V9E 2E7 (Canada); Sánchez-Janssen, Rúben [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Durrell, Patrick R. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH (United States); Cuillandre, Jean-Charles [AIM Paris Saclay, CNRS/INSU, CEA/Irfu,Université Paris Diderot, Orme des Merisiers, F-91191 Gif sur Yvette cedex (France); Guhathakurta, Puragra [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Hudelot, Patrick, E-mail: mathieu.powalka@astro.unistra.fr [Institut d’Astrophysique de Paris, UMR 7095 CNRS and UPMC, 98bis Bd Arago, F-75014 Paris (France); and others

    2017-08-01

    Large samples of globular clusters (GC) with precise multi-wavelength photometry are becoming increasingly available and can be used to constrain the formation history of galaxies. We present the results of an analysis of Milky Way (MW) and Virgo core GCs based on 5 optical-near-infrared colors and 10 synthetic stellar population models. For the MW GCs, the models tend to agree on photometric ages and metallicities, with values similar to those obtained with previous studies. When used with Virgo core GCs, for which photometry is provided by the Next Generation Virgo cluster Survey (NGVS), the same models generically return younger ages. This is a consequence of the systematic differences observed between the locus occupied by Virgo core GCs and models in panchromatic color space. Only extreme fine-tuning of the adjustable parameters available to us can make the majority of the best-fit ages old. Although we cannot exclude that the formation history of the Virgo core may lead to more conspicuous populations of relatively young GCs than in other environments, we emphasize that the intrinsic properties of the Virgo GCs are likely to differ systematically from those assumed in the models. Thus, the large wavelength coverage and photometric quality of modern GC samples, such as those used here, is not by itself sufficient to better constrain the GC formation histories. Models matching the environment-dependent characteristics of GCs in multi-dimensional color space are needed to improve the situation.

  17. THE SLUGGS SURVEY: NGC 3115, A CRITICAL TEST CASE FOR METALLICITY BIMODALITY IN GLOBULAR CLUSTER SYSTEMS

    Brodie, Jean P.; Conroy, Charlie; Arnold, Jacob A.; Romanowsky, Aaron J. [University of California Observatories and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Usher, Christopher; Forbes, Duncan A. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Strader, Jay, E-mail: brodie@ucolick.org [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2012-11-10

    Due to its proximity (9 Mpc) and the strongly bimodal color distribution of its spectroscopically well-sampled globular cluster (GC) system, the early-type galaxy NGC 3115 provides one of the best available tests of whether the color bimodality widely observed in GC systems generally reflects a true metallicity bimodality. Color bimodality has alternatively been attributed to a strongly nonlinear color-metallicity relation reflecting the influence of hot horizontal-branch stars. Here, we couple Subaru Suprime-Cam gi photometry with Keck/DEIMOS spectroscopy to accurately measure GC colors and a CaT index that measures the Ca II triplet. We find the NGC 3115 GC system to be unambiguously bimodal in both color and the CaT index. Using simple stellar population models, we show that the CaT index is essentially unaffected by variations in horizontal-branch morphology over the range of metallicities relevant to GC systems (and is thus a robust indicator of metallicity) and confirm bimodality in the metallicity distribution. We assess the existing evidence for and against multiple metallicity subpopulations in early- and late-type galaxies and conclude that metallicity bi/multimodality is common. We briefly discuss how this fundamental characteristic links directly to the star formation and assembly histories of galaxies.

  18. THE SLUGGS SURVEY: NGC 3115, A CRITICAL TEST CASE FOR METALLICITY BIMODALITY IN GLOBULAR CLUSTER SYSTEMS

    Brodie, Jean P.; Conroy, Charlie; Arnold, Jacob A.; Romanowsky, Aaron J.; Usher, Christopher; Forbes, Duncan A.; Strader, Jay

    2012-01-01

    Due to its proximity (9 Mpc) and the strongly bimodal color distribution of its spectroscopically well-sampled globular cluster (GC) system, the early-type galaxy NGC 3115 provides one of the best available tests of whether the color bimodality widely observed in GC systems generally reflects a true metallicity bimodality. Color bimodality has alternatively been attributed to a strongly nonlinear color-metallicity relation reflecting the influence of hot horizontal-branch stars. Here, we couple Subaru Suprime-Cam gi photometry with Keck/DEIMOS spectroscopy to accurately measure GC colors and a CaT index that measures the Ca II triplet. We find the NGC 3115 GC system to be unambiguously bimodal in both color and the CaT index. Using simple stellar population models, we show that the CaT index is essentially unaffected by variations in horizontal-branch morphology over the range of metallicities relevant to GC systems (and is thus a robust indicator of metallicity) and confirm bimodality in the metallicity distribution. We assess the existing evidence for and against multiple metallicity subpopulations in early- and late-type galaxies and conclude that metallicity bi/multimodality is common. We briefly discuss how this fundamental characteristic links directly to the star formation and assembly histories of galaxies.

  19. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. III. ON THE DISCREPANCY IN METALLICITY BETWEEN GLOBULAR CLUSTER SYSTEMS AND THEIR PARENT ELLIPTICAL GALAXIES

    Yoon, Suk-Jin; Lee, Sang-Yoon; Cho, Jaeil; Kim, Hak-Sub; Chung, Chul; Kim, Sooyoung; Lee, Young-Wook; Blakeslee, John P.; Peng, Eric W.; Sohn, Sangmo T.

    2011-01-01

    One of the conundrums in extragalactic astronomy is the discrepancy in observed metallicity distribution functions (MDFs) between the two prime stellar components of early-type galaxies—globular clusters (GCs) and halo field stars. This is generally taken as evidence of highly decoupled evolutionary histories between GC systems and their parent galaxies. Here we show, however, that new developments in linking the observed GC colors to their intrinsic metallicities suggest nonlinear color-to-metallicity conversions, which translate observed color distributions into strongly peaked, unimodal MDFs with broad metal-poor tails. Remarkably, the inferred GC MDFs are similar to the MDFs of resolved field stars in nearby elliptical galaxies and those produced by chemical evolution models of galaxies. The GC MDF shape, characterized by a sharp peak with a metal-poor tail, indicates a virtually continuous chemical enrichment with a relatively short timescale. The characteristic shape emerges across three orders of magnitude in the host galaxy mass, suggesting a universal process of chemical enrichment among various GC systems. Given that GCs are bluer than field stars within the same galaxy, it is plausible that the chemical enrichment processes of GCs ceased somewhat earlier than that of the field stellar population, and if so, GCs preferentially trace the major, vigorous mode of star formation events in galactic formation. We further suggest a possible systematic age difference among GC systems, in that the GC systems in more luminous galaxies are older. This is consistent with the downsizing paradigm whereby stars of brighter galaxies, on average, formed earlier than those of dimmer galaxies; this additionally supports the similar nature shared by GCs and field stars. Although the sample used in this study (the Hubble Space Telescope Advanced Camera for Surveys/Wide Field Channel, WFPC2, and WFC3 photometry for the GC systems in the Virgo galaxy cluster) confines our

  20. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2017-01-10

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.

  1. A High-precision Trigonometric Parallax to an Ancient Metal-poor Globular Cluster

    Brown, T. M.; Casertano, S.; Strader, J.; Riess, A.; VandenBerg, D. A.; Soderblom, D. R.; Kalirai, J.; Salinas, R.

    2018-03-01

    Using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST), we have obtained a direct trigonometric parallax for the nearest metal-poor globular cluster, NGC 6397. Although trigonometric parallaxes have been previously measured for many nearby open clusters, this is the first parallax for an ancient metal-poor population—one that is used as a fundamental template in many stellar population studies. This high-precision measurement was enabled by the HST/WFC3 spatial-scanning mode, providing hundreds of astrometric measurements for dozens of stars in the cluster and also for Galactic field stars along the same sightline. We find a parallax of 0.418 ± 0.013 ± 0.018 mas (statistical, systematic), corresponding to a true distance modulus of 11.89 ± 0.07 ± 0.09 mag (2.39 ± 0.07 ± 0.10 kpc). The V luminosity at the stellar main-sequence turnoff implies an absolute cluster age of 13.4 ± 0.7 ± 1.2 Gyr. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-13817, GO-14336, and GO-14773.

  2. Detecting groups of coevolving positions in a molecule: a clustering approach

    Galtier Nicolas

    2007-11-01

    Full Text Available Abstract Background Although the patterns of co-substitutions in RNA is now well characterized, detection of coevolving positions in proteins remains a difficult task. It has been recognized that the signal is typically weak, due to the fact that (i amino-acid are characterized by various biochemical properties, so that distinct amino acids changes are not functionally equivalent, and (ii a given mutation can be compensated by more than one mutation, at more than one position. Results We present a new method based on phylogenetic substitution mapping. The two above-mentioned problems are addressed by (i the introduction of a weighted mapping, which accounts for the biochemical effects (volume, polarity, charge of amino-acid changes, (ii the use of a clustering approach to detect groups of coevolving sites of virtually any size, and (iii the distinction between biochemical compensation and other coevolutionary mechanisms. We apply this methodology to a previously studied data set of bacterial ribosomal RNA, and to three protein data sets (myoglobin of vertebrates, S-locus Receptor Kinase and Methionine Amino-Peptidase. Conclusion We succeed in detecting groups of sites which significantly depart the null hypothesis of independence. Group sizes range from pairs to groups of size ≃ 10, depending on the substitution weights used. The structural and functional relevance of these groups of sites are assessed, and the various evolutionary processes potentially generating correlated substitution patterns are discussed.

  3. Quantum kinetic theory of metal clusters in an intense electromagnetic field

    M.Bonitz

    2004-01-01

    Full Text Available A quantum kinetic theory for weakly inhomogeneous charged particle systems is derived within the framework of nonequilibrium Green's functions. The results are of relevance for valence electrons of metal clusters as well as for confined Coulomb systems, such as electrons in quantum dots or ultracold ions in traps and similar systems. To be specific, here we concentrate on the application to metal clusters, but the results are straightforwardly generalized. Therefore, we first give an introduction to the physics of correlated valence electrons of metal clusters in strong electromagnetic fields. After a brief overview on the jellium model and the standard density functional approach to the ground state properties, we focus on the extension of the theory to nonequilibrium. To this end a general gauge-invariant kinetic theory is developed. The results include the equations of motion of the two-time correlation functions, the equation for the Wigner function and an analysis of the spectral function. Here, the concept of an effective quantum potential is introduced which retains the convenient local form of the propagators. This allows us to derive explicit results for the spectral function of electrons in a combined strong electromagnetic field and a weakly inhomogeneous confinement potential.

  4. Quantum Monte-Carlo programming for atoms, molecules, clusters, and solids

    Schattke, Wolfgang; Diez Muino, Ricardo

    2013-01-01

    This is a book that initiates the reader into the basic concepts and practical applications of Quantum Monte Carlo. Because of the simplicity of its theoretical concept, the authors focus on the variational Quantum Monte Carlo scheme. The reader is enabled to proceed from simple examples as the hydrogen atom to advanced ones as the Lithium solid. In between, several intermediate steps are introduced, including the Hydrogen molecule (2 electrons), the Lithium atom (3 electrons) and expanding to an arbitrary number of electrons to finally treat the three-dimensional periodic array of Lithium atoms in a crystal. The book is unique, because it provides both theory and numerical programs. It pedagogically explains how to transfer into computational tools what is usually described in a theoretical textbook. It also includes the detailed physical understanding of methodology that cannot be found in a code manual. The combination of both aspects allows the reader to assimilate the fundamentals of Quantum Monte Carlo not only by reading but also by practice.

  5. Atmospheric parameters and metallicities for 2191 stars in the globular cluster M4

    Malavolta, Luca; Piotto, Giampaolo; Nascimbeni, Valerio; Sneden, Christopher; Milone, Antonino P.; Bedin, Luigi R.

    2014-01-01

    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the Very Large Telescope (VLT) FLAMES+GIRAFFE spectrograph at VLT. These medium-resolution spectra cover a small wavelength range, and often have very low signal-to-noise ratios. We approached this data set by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all of the data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 red giant branch (RGB) stars with V ≤ 14.7, we obtain a nearly constant metallicity, ([Fe/H]) = –1.07 (σ = 0.02). No difference in the metallicity at the level of 0.01 dex is observed between the two RGB sequences identified by Monelli et al. For 1869 subgiant and main-sequence stars with V > 14.7, we obtain ([Fe/H]) = –1.16 (σ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than 2000 stars, using a data set that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions

  6. Atmospheric parameters and metallicities for 2191 stars in the globular cluster M4

    Malavolta, Luca; Piotto, Giampaolo; Nascimbeni, Valerio [Dipartimento di Fisica e Astronomia, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Sneden, Christopher [Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712 (United States); Milone, Antonino P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bedin, Luigi R., E-mail: luca.malavolta@unipd.it, E-mail: giampaolo.piotto@unipd.it, E-mail: valerio.nascimbeni@unipd.it, E-mail: luigi.bedin@oapd.inaf.it, E-mail: chris@verdi.as.utexas.edu, E-mail: milone@mso.anu.edu.au [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2014-02-01

    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the Very Large Telescope (VLT) FLAMES+GIRAFFE spectrograph at VLT. These medium-resolution spectra cover a small wavelength range, and often have very low signal-to-noise ratios. We approached this data set by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all of the data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 red giant branch (RGB) stars with V ≤ 14.7, we obtain a nearly constant metallicity, ([Fe/H]) = –1.07 (σ = 0.02). No difference in the metallicity at the level of 0.01 dex is observed between the two RGB sequences identified by Monelli et al. For 1869 subgiant and main-sequence stars with V > 14.7, we obtain ([Fe/H]) = –1.16 (σ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than 2000 stars, using a data set that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions.

  7. Metal-Organic Frameworks for Resonant-Gravimetric Detection of Trace-Level Xylene Molecules.

    Xu, Tao; Xu, Pengcheng; Zheng, Dan; Yu, Haitao; Li, Xinxin

    2016-12-20

    As one of typical VOCs, xylene is seriously harmful to human health. Nowadays, however, there is really lack of portable sensing method to directly detect environmental xylene that has chemical inertness. Especially when the concentration of xylene is lower than the human olfactory threshold of 470 ppb, people are indeed hard to be aware of and avoid this harmful vapor. Herein the metal-organic framework (MOF) of HKUST-1 is first explored for sensing to the nonpolar molecule of p-xylene. And the sensing mechanism is identified that is via host-guest interaction of MOF with xylene molecule. By loading MOFs on mass-gravimetric resonant-cantilevers, sensing experiments for four MOFs of MOF-5, HKUST-1, ZIF-8, and MOF-177 approve that HKUST-1 has the highest sensitivity to p-xylene. The resonant-gravimetric sensing experiments with our HKUST-1 based sensors have demonstrated that trace-level p-xylene of 400 ppb can be detected that is lower than the human olfactory threshold of 470 ppb. We analyze that the specificity of HKUST-1 to xylene comes from Cu 2+ -induced moderate Lewis acidity and the "like dissolves like" interaction of the benzene ring. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to elucidate the adsorbing/sensing mechanism of HKUST-1 to p-xylene, where p-xylene adsorbing induced blue-shift phenomenon is observed that confirms the sensing mechanism. Our study also indicates that the sensor shows good selectivity to various kinds of common interfering gases. And the long-term repeatability and stability of the sensing material are also approved for the usage/storage period of two months. This research approves that the MOF materials exhibit potential usages for high performance chemical sensors applications.

  8. Theoretical characterization of the F(2)O(3) molecule by coupled-cluster methods.

    Huang, Ming-Ju; Watts, John D

    2010-09-23

    Coupled-cluster calculations with extended basis sets that include noniterative connected triple excitations (CCSD(T)) have been used to study the FOOOF isomer of F(2)O(3). Second-order Moller-Plessett perturbation theory (MP2) and density-functional theory (B3LYP functional) calculations have also been performed for comparison. Two local minima of similar energy, namely, conformers of C(2) and C(s) symmetry have been located. Structures, harmonic vibrational frequencies, and standard enthalpies and free energies of formation have been calculated. The calculated bond lengths of F(2)O(3) are more characteristic of those in F(2)O and a "normal" peroxide than the unusual bond lengths in F(2)O(2). Both conformers have equal F-O and O-O bond lengths, contrary to a recent suggestion of an unsymmetrical structure. The harmonic vibrational frequencies can aid possible identification of gaseous F(2)O(3). The calculated Δ(f)H° and Δ(f)G° are 110 and 173 kJ mol(-1), respectively. These values are based on extrapolation of CCSD(T) results with augmented triple- and quadruple-ζ basis sets and are expected to be within chemical accuracy (i.e., 1 kcal mol(-1) or 4 kJ mol(-1)). F(2)O(3) is calculated to be stable to decomposition to either FO + FOO or F(2) + O(3), but unstable to decomposition to its elements, to F(2)O(2) + (1)/(2)O(2), and to F(2)O + O(2).

  9. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Study of molecule-metal interfaces by means of the normal incidence X-ray standing wave technique

    Mercurio, Giuseppe

    2012-01-01

    Functional surfaces based on monolayers of organic molecules are currently subject of an intense research effort due to their applications in molecular electronics, sensing and catalysis. Because of the strong dependence of organic based devices on the local properties of the molecule-metal interface, a direct investigation of the interface chemistry is of paramount importance. In this context, the bonding distance, measured by means of the normal incidence X-ray standing wave technique (NIXSW), provides a direct access to the molecule-metal interactions. At the same time, NIXSW adsorption heights are used to benchmark different density functional theory (DFT) schemes and determine the ones with predictive power for similar systems. This work investigates the geometric and chemical properties of different molecule/metal interfaces, relevant to molecular electronics and functional surfaces applications, primarily by means of the NIXSW technique. All NIXSW data are analyzed with the newly developed open source program Torricelli, which is thoroughly documented in the thesis. In order to elucidate the role played by the substrate within molecule/metal interfaces, the prototype organic molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) is explored on the Ag(110) surface. The molecule results more distorted and at smaller bonding distances on the more reactive Ag(110) surface, in comparison with the Ag(100), the Ag(111) and Au(111) substrates. This conclusion follows from the detailed molecular adsorption geometry obtained from the differential analysis of nonequivalent carbon and oxygen species (including a careful error analysis). Subsequently, the chemisorptive PTCDA/Ag(110) interaction is tuned by the co-deposition of an external alkali metal, namely K. As a consequence, the functional groups of PTCDA unbind from the surface, which, in turn, undergoes major reconstruction. In fact, the resulting nanopatterned surface consists of alternated up and down

  11. Magneto-structural properties and magnetic anisotropy of small transition-metal clusters: a first-principles study

    Blonski, Piotr; Hafner, Juergen

    2011-01-01

    Ab initio density-functional calculations including spin-orbit coupling (SOC) have been performed for Ni and Pd clusters with three to six atoms and for 13-atom clusters of Ni, Pd, and Pt, extending earlier calculations for Pt clusters with up to six atoms (2011 J. Chem. Phys. 134 034107). The geometric and magnetic structures have been optimized for different orientations of the magnetization with respect to the crystallographic axes of the cluster. The magnetic anisotropy energies (MAE) and the anisotropies of spin and orbital moments have been determined. Particular attention has been paid to the correlation between the geometric and magnetic structures. The magnetic point group symmetry of the clusters varies with the direction of the magnetization. Even for a 3d metal such as Ni, the change in the magnetic symmetry leads to small geometric distortions of the cluster structure, which are even more pronounced for the 4d metal Pd. For a 5d metal the SOC is strong enough to change the energetic ordering of the structural isomers. SOC leads to a mixing of the spin states corresponding to the low-energy spin isomers identified in the scalar-relativistic calculations. Spin moments are isotropic only for Ni clusters, but anisotropic for Pd and Pt clusters, orbital moments are anisotropic for the clusters of all three elements. The magnetic anisotropy energies have been calculated. The comparison between MAE and orbital anisotropy invalidates a perturbation analysis of magnetic anisotropy for these small clusters.

  12. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    Liu Xuan; Ito, Haruhiko; Torikai, Eiko

    2012-01-01

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li n , Na n , K n , Rb n , and Cs n with n = 2–8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  13. Spectra of globular clusters in the Sombrero galaxy: evidence for spectroscopic metallicity bimodality

    Alves-Brito, Alan; Hau, George K. T.; Forbes, Duncan A.; Spitler, Lee R.; Strader, Jay; Brodie, Jean P.; Rhode, Katherine L.

    2011-11-01

    We present a large sample of over 200 integrated-light spectra of confirmed globular clusters (GCs) associated with the Sombrero (M104) galaxy taken with the Deep Imaging Multi-Object Spectrograph (DEIMOS) instrument on the Keck telescope. A significant fraction of the spectra have signal-to-noise ratio levels high enough to allow measurements of GC metallicities using the method of Brodie & Huchra. We find a distribution of spectroscopic metallicities in the range -2.2 < [Fe/H] < +0.1 that is bimodal, with peaks at [Fe/H]˜-1.4 and -0.6. Thus, the GC system of the Sombrero galaxy, like a few other galaxies now studied in detail, reveals a bimodal spectroscopic metallicity distribution supporting the long-held belief that colour bimodality reflects two metallicity subpopulations. This further suggests that the transformation from optical colour to metallicity for old stellar populations, such as GCs, is not strongly non-linear. We also explore the radial and magnitude distribution with metallicity for GC subpopulations but small number statistics prevent any clear trends in these distributions. Based on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration.

  14. Clustered atom-replaced structure in single-crystal-like metal oxide

    Araki, Takeshi; Hayashi, Mariko; Ishii, Hirotaka; Yokoe, Daisaku; Yoshida, Ryuji; Kato, Takeharu; Nishijima, Gen; Matsumoto, Akiyoshi

    2018-06-01

    By means of metal organic deposition using trifluoroacetates (TFA-MOD), we replaced and localized two or more atoms in a single-crystalline structure having almost perfect orientation. Thus, we created a new functional structure, namely, clustered atom-replaced structure (CARS), having single-crystal-like metal oxide. We replaced metals in the oxide with Sm and Lu and localized them. Energy dispersive x-ray spectroscopy results, where the Sm signal increases with the Lu signal in the single-crystalline structure, confirm evidence of CARS. We also form other CARS with three additional metals, including Pr. The valence number of Pr might change from 3+ to approximately 4+, thereby reducing the Pr–Ba distance. We directly observed the structure by a high-angle annular dark-field image, which provided further evidence of CARS. The key to establishing CARS is an equilibrium chemical reaction and a combination of additional larger and smaller unit cells to matrix cells. We made a new functional metal oxide with CARS and expect to realize CARS in other metal oxide structures in the future by using the above-mentioned process.

  15. On the widths of Stokes lines in Raman scattering from molecules adsorbed at metal surfaces and in molecular conduction junctions

    Gao, Yi, E-mail: yig057@ucsd.edu; Galperin, Michael, E-mail: migalperin@ucsd.edu [Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093 (United States); Nitzan, Abraham, E-mail: nitzan@post.tau.ac.il [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2016-06-28

    Within a generic model we analyze the Stokes linewidth in surface enhanced Raman scattering (SERS) from molecules embedded as bridges in molecular junctions. We identify four main contributions to the off-resonant Stokes signal and show that under zero voltage bias (a situation pertaining also to standard SERS experiments) and at low bias junctions only one of these contributions is pronounced. The linewidth of this component is determined by the molecular vibrational relaxation rate, which is dominated by interactions with the essentially bosonic thermal environment when the relevant molecular electronic energy is far from the metal(s) Fermi energy(ies). It increases when the molecular electronic level is close to the metal Fermi level so that an additional vibrational relaxation channel due to electron-hole (eh) exciton in the molecule opens. Other contributions to the Raman signal, of considerably broader linewidths, can become important at larger junction bias.

  16. Importance of semicore states in GW calculations for simulating accurately the photoemission spectra of metal phthalocyanine molecules.

    Umari, P; Fabris, S

    2012-05-07

    The quasi-particle energy levels of the Zn-Phthalocyanine (ZnPc) molecule calculated with the GW approximation are shown to depend sensitively on the explicit description of the metal-center semicore states. We find that the calculated GW energy levels are in good agreement with the measured experimental photoemission spectra only when explicitly including the Zn 3s and 3p semicore states in the valence. The main origin of this effect is traced back to the exchange term in the self-energy GW approximation. Based on this finding, we propose a simplified approach for correcting GW calculations of metal phthalocyanine molecules that avoids the time-consuming explicit treatment of the metal semicore states. Our method allows for speeding up the calculations without compromising the accuracy of the computed spectra.

  17. Molecule Matters van der Waals Molecules

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Molecule Matters van der Waals Molecules - Noble Gas Clusters are London Molecules! E Arunan. Feature Article Volume 14 Issue 12 December 2009 pp 1210-1222 ...

  18. Influence of a transition metal atom on the geometry and electronic structure of Mg and Mg-H clusters

    Siretskiy, M.Yu.; Shelyapina, M.G.; Fruchart, D.; Miraglia, S.; Skryabina, N.E.

    2009-01-01

    We report on the study of (MgH 2 ) n + M complexes (M = Ti or Ni) carried out within the framework of the cluster density functional theory (DFT) method. The influence of such transition metal atoms on the cluster geometry and electronic structure is discussed considering the stability of MgH 2 hydride.

  19. Density functional investigation of mercury and arsenic adsorption on nitrogen doped graphene decorated with palladium clusters: A promising heavy metal sensing material in farmland

    Zhao, Chunjiang, E-mail: zhaocj_nercita@163.com [National Engineering Research Center for Information Technology in Agriculture, Beijing 100097 (China); Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097 (China); Key Laboratory for Information Technologies in Agriculture, Ministry of Agriculture, Beijing100097 (China); Wu, Huarui, E-mail: wuhrnercita@163.com [National Engineering Research Center for Information Technology in Agriculture, Beijing 100097 (China); Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097 (China); Key Laboratory for Information Technologies in Agriculture, Ministry of Agriculture, Beijing100097 (China)

    2017-03-31

    Highlights: • PNG can be acted as micro-sensor for monitoring heavy metal in agriculture. • The most favorable adsorption site of Pd atom or cluster on PNG is the vacancy site. • The Pd atom or cluster enhance the reactivity of PNG toward Hg and AsH{sub 3} adsorption. • The efficiency of a sorbent can be tuned by tailoring the ε{sub d} of adsorbed metals. - Abstract: Density functional theory calculations are carried out to study the adsorption of mercury and arsenic on Pd{sub n} (n = 1–6) supported on pyridine-like nitrogen doped graphene (PNG). Owing to the promising sensitivity in trace amounts of atoms or molecules, PNG can be acted as micro-sensor for sensing heavy metals in agriculture soils. Through the analyses of structural and electronic properties of pristine PNG and Pd atom decorated PNG, we find that the most favorable adsorption site for Pd atom is the vacancy site. The analyses of structural and electronic properties reveal that the Pd atom or clusters can enhance the reactivity for Hg and AsH{sub 3} adsorption on PNG. The adsorption ability of Hg on Pd{sub n} decorated PNG is found to be related to the d-band center (ε{sub d}) of the Pd{sub n}, in which the closer ε{sub d} of Pd{sub n} to the Fermi level, the higher adsorption strength for Hg on Pd{sub n} decorated PNG. Moreover, the charge transfer between Pd{sub n} and arsenic may constitute arsenic adsorption on Pd{sub n} decorated PNG. Further design of highly efficient carbon based sorbents for heavy metals removal should be focused on tailoring ε{sub d} of adsorbed metals.

  20. Density functional investigation of mercury and arsenic adsorption on nitrogen doped graphene decorated with palladium clusters: A promising heavy metal sensing material in farmland

    Zhao, Chunjiang; Wu, Huarui

    2017-01-01

    Highlights: • PNG can be acted as micro-sensor for monitoring heavy metal in agriculture. • The most favorable adsorption site of Pd atom or cluster on PNG is the vacancy site. • The Pd atom or cluster enhance the reactivity of PNG toward Hg and AsH_3 adsorption. • The efficiency of a sorbent can be tuned by tailoring the ε_d of adsorbed metals. - Abstract: Density functional theory calculations are carried out to study the adsorption of mercury and arsenic on Pd_n (n = 1–6) supported on pyridine-like nitrogen doped graphene (PNG). Owing to the promising sensitivity in trace amounts of atoms or molecules, PNG can be acted as micro-sensor for sensing heavy metals in agriculture soils. Through the analyses of structural and electronic properties of pristine PNG and Pd atom decorated PNG, we find that the most favorable adsorption site for Pd atom is the vacancy site. The analyses of structural and electronic properties reveal that the Pd atom or clusters can enhance the reactivity for Hg and AsH_3 adsorption on PNG. The adsorption ability of Hg on Pd_n decorated PNG is found to be related to the d-band center (ε_d) of the Pd_n, in which the closer ε_d of Pd_n to the Fermi level, the higher adsorption strength for Hg on Pd_n decorated PNG. Moreover, the charge transfer between Pd_n and arsenic may constitute arsenic adsorption on Pd_n decorated PNG. Further design of highly efficient carbon based sorbents for heavy metals removal should be focused on tailoring ε_d of adsorbed metals.

  1. Major signal suppression from metal ion clusters in SFC/ESI-MS - Cause and effects.

    Haglind, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Pettersson, Curt E

    2018-05-01

    The widening application area of SFC-MS with polar analytes and water-containing samples facilitates the use of quick and simple sample preparation techniques such as "dilute and shoot" and protein precipitation. This has also introduced new polar interfering components such as alkali metal ions naturally abundant in e.g. blood plasma and urine, which have shown to be retained using screening conditions in SFC/ESI-TOF-MS and causing areas of major ion suppression. Analytes co-eluting with these clusters will have a decreased signal intensity, which might have a major effect on both quantification and identification. When investigating the composition of the alkali metal clusters using accurate mass and isotopic pattern, it could be concluded that they were previously not described in the literature. Using NaCl and KCl standards and different chromatographic conditions, varying e.g. column and modifier, the clusters proved to be formed from the alkali metal ions in combination with the alcohol modifier and make-up solvent. Their compositions were [(XOCH 3 ) n  + X] + , [(XOH) n  + X] + , [(X 2 CO 3 ) n  + X] + and [(XOOCOCH 3 ) n  + X] + for X = Na + or K + in ESI+. In ESI-, the clusters depended more on modifier, with [(XCl) n  + Cl] - and [(XOCH 3 ) n  + OCH 3 ] - mainly formed in pure methanol and [(XOOCH) n  + OOCH] - when 20 mM NH 4 Fa was added. To prevent the formation of the clusters by avoiding methanol as modifier might be difficult, as this is a widely used modifier providing good solubility when analyzing polar compounds in SFC. A sample preparation with e.g. LLE would remove the alkali ions, however also introducing a time consuming and discriminating step into the method. Since the alkali metal ions were retained and affected by chromatographic adjustments as e.g. mobile phase modifications, a way to avoid them could therefore be chromatographic tuning, when analyzing samples containing them. Copyright © 2018 Elsevier

  2. Spinterface between tris(8-hydroxyquinoline)metal(III) molecules and magnetic surfaces: a first-principles study

    Jiang, W.; Wang, Jingying; Dougherty, Daniel; Liu, Feng; Feng Liu Team; Daniel Dougherty Team

    Using first-principles calculations, we have systematically investigated the hybridization between tris(8-hydroxyquinoline)metal(III) (Mq3, M = Fe, Cr, Al) molecules and magnetic substrates (Co and Cr). Mq3 with different central metal elements but the same organic framework has dramatically different interaction with different magnetic substrates, which affect the interface state significantly. AFM coupling was observed between magnetic Mq3 molecules and ferromagnetic (Co) as well as antiferromagnetic (Cr) substrate, manifested with a superexchange and direct exchange interaction, respectively. Such strong magnetic interfacial coupling may open a gap around the Fermi level and significantly change interface transport properties. Nonmagnetic Alq3 molecule was found to enhance the interface spin polarization due to hybridization between the lowest unoccupied molecular orbitals (LUMO) of Alq3 and metallic surface state. These findings will help better understand spinterface and shed new light on future application of Mq3 molecules in spintronics devices. This work was support by NSF-MRSEC (DMR-1121252) and DOE-BES (DE-FG02-04ER46148).

  3. Molecular properties of metal difluorides and their interactions with CO2 and H2O molecules: a DFT investigation.

    Arokiyanathan, Agnes Lincy; Lakshmipathi, Senthilkumar

    2017-11-18

    A computational study of metal difluorides (MF 2 ; M = Ca to Zn) and their interactions with carbon dioxide and water molecules was performed. The structural parameter values obtained and the results of AIM analysis and energy decomposition analysis indicated that the Ca-F bond is weaker and less ionic than the bonds in the transition metal difluorides. A deformation density plot revealed the stablizing influence of the Jahn-Teller effect in nonlinear MF 2 molecules (e.g., where M= Sc, Ti, Cr). An anaysis of the metal K-edge peaks of the difluorides showed that shifts in the edge energy were due to the combined effects of the ionicity, effective nuclear charge, and the spin state of the metal. The interactions of CO 2 with ScF 2 (Scc3 geometry) and TiF 2 (Tic2 geometry) caused CO 2 to shift from its usual linear geometry to a bent geometry (η 2 (C=O) binding mode), while it retained its linear geometry (η 1 (O) binding mode) when it interacted with the other metal difluorides. Energy decomposition analysis showed that, among the various geometries considered, the Scc3 and Tic2 geometries possessed the highest interaction energies and orbital interaction energies. Heavier transition metal difluorides showed stronger affinities for H 2 O, whereas the lighter transition metal (Sc and Ti) difluorides preferred CO 2 . Overall, the results of this study suggest that fluorides of lighter transition metals with partially filled d orbitals (e.g., Sc and Ti) could be used for CO 2 capture under moist conditions. Graphical abstract Interaction of metal difluorides with carbon dioxide and water.

  4. Electrons as probes of dynamics in molecules and clusters: A contribution from Time Dependent Density Functional Theory

    Wopperer, P.; Dinh, P.M.; Reinhard, P.-G.; Suraud, E.

    2015-01-01

    There are various ways to analyze the dynamical response of clusters and molecules to electromagnetic perturbations. Particularly rich information can be obtained from measuring the properties of electrons emitted in the course of the excitation dynamics. Such an analysis of electron signals covers observables such as total ionization, Photo-Electron Spectra (PES), Photoelectron Angular Distributions (PAD), and ideally combined PES/PAD. It has a long history in molecular physics and was increasingly used in cluster physics as well. Recent progress in the design of new light sources (high intensity, high frequency, ultra short pulses) opens new possibilities for measurements and thus has renewed the interest on these observables, especially for the analysis of various dynamical scenarios, well beyond a simple access to electronic density of states. This, in turn, has motivated many theoretical investigations of the dynamics of electronic emission for molecules and clusters up to such a complex and interesting system as C 60 . A theoretical tool of choice is here Time-Dependent Density Functional Theory (TDDFT) propagated in real time and on a spatial grid, and augmented by a Self-Interaction Correction (SIC). This provides a pertinent, robust, and efficient description of electronic emission including the detailed pattern of PES and PAD. A direct comparison between experiments and well founded elaborate microscopic theories is thus readily possible, at variance with more demanding observables such as for example fragmentation or dissociation cross sections. The purpose of this paper is to describe the theoretical tools developed on the basis of real-time and real-space TDDFT and to address in a realistic manner the analysis of electronic emission following irradiation of clusters and molecules by various laser pulses. After a general introduction, we shall present in a second part the available experimental results motivating such studies, starting from the simplest

  5. INSIGHTS INTO PRE-ENRICHMENT OF STAR CLUSTERS AND SELF-ENRICHMENT OF DWARF GALAXIES FROM THEIR INTRINSIC METALLICITY DISPERSIONS

    Leaman, Ryan

    2012-01-01

    Star clusters are known to have smaller intrinsic metallicity spreads than dwarf galaxies due to their shorter star formation timescales. Here we use individual spectroscopic [Fe/H] measurements of stars in 19 Local Group dwarf galaxies, 13 Galactic open clusters, and 49 globular clusters to show that star cluster and dwarf galaxy linear metallicity distributions are binomial in form, with all objects showing strong correlations between their mean linear metallicity Z-bar and intrinsic spread in metallicity σ(Z) 2 . A plot of σ(Z) 2 versus Z-bar shows that the correlated relationships are offset for the dwarf galaxies from the star clusters. The common binomial nature of these linear metallicity distributions can be explained with a simple inhomogeneous chemical evolution model, where the star cluster and dwarf galaxy behavior in the σ(Z) 2 - Z-bar diagram is reproduced in terms of the number of enrichment events, covering fraction, and intrinsic size of the enriched regions. The inhomogeneity of the self-enrichment sets the slope for the observed dwarf galaxy σ(Z) 2 - Z-bar correlation. The offset of the star cluster sequence from that of the dwarf galaxies is due to pre-enrichment, and the slope of the star cluster sequence represents the remnant signature of the self-enriched history of their host galaxies. The offset can be used to separate star clusters from dwarf galaxies without a priori knowledge of their luminosity or dynamical mass. The application of the inhomogeneous model to the σ(Z) 2 - Z-bar relationship provides a numerical formalism to connect the self-enrichment and pre-enrichment between star clusters and dwarf galaxies using physically motivated chemical enrichment parameters. Therefore we suggest that the σ(Z) 2 - Z-bar relationship can provide insight into what drives the efficiency of star formation and chemical evolution in galaxies, and is an important prediction for galaxy simulation models to reproduce.

  6. Slow Cooling in Low Metallicity Clouds: An Origin of Globular Cluster Bimodality?

    Fernandez, Ricardo; Bryan, Greg L.

    2018-05-01

    We explore the relative role of small-scale fragmentation and global collapse in low-metallicity clouds, pointing out that in such clouds the cooling time may be longer than the dynamical time, allowing the cloud to collapse globally before it can fragment. This, we suggest, may help to explain the formation of the low-metallicity globular cluster population, since such dense stellar systems need a large amount of gas to be collected in a small region (without significant feedback during the collapse). To explore this further, we carry out numerical simulations of low-metallicity Bonner-Ebert stable gas clouds, demonstrating that there exists a critical metallicity (between 0.001 and 0.01 Z⊙) below which the cloud collapses globally without fragmentation. We also run simulations including a background radiative heating source, showing that this can also produce clouds that do not fragment, and that the critical metallicity - which can exceed the no-radiation case - increases with the heating rate.

  7. SOLAR-LIKE OSCILLATIONS IN A METAL-POOR GLOBULAR CLUSTER WITH THE HUBBLE SPACE TELESCOPE

    Stello, Dennis; Gilliland, Ronald L.

    2009-01-01

    We present analyses of variability in the red giant stars in the metal-poor globular cluster NGC 6397, based on data obtained with the Hubble Space Telescope. We use a nonstandard data reduction approach to turn a 23 day observing run originally aimed at imaging the white dwarf population, into time-series photometry of the cluster's highly saturated red giant stars. With this technique we obtain noise levels in the final power spectra down to 50 parts per million, which allows us to search for low-amplitude solar-like oscillations. We compare the observed excess power seen in the power spectra with estimates of the typical frequency range, frequency spacing, and amplitude from scaling the solar oscillations. We see evidence that the detected variability is consistent with solar-like oscillations in at least one and perhaps up to four stars. With metallicities 2 orders of magnitude lower than those of the Sun, these stars present so far the best evidence of solar-like oscillations in such a low-metallicity environment.

  8. Chemical study of the metal-rich globular cluster NGC 5927

    Mura-Guzmán, A.; Villanova, S.; Muñoz, C.; Tang, B.

    2018-03-01

    Globular clusters (GCs) are natural laboratories where stellar and chemical evolution can be studied in detail. In addition, their chemical patterns and kinematics can tell us to which Galactic structure (disc, bulge, halo or extragalactic) the cluster belongs to. NGC 5927 is one of most metal-rich GCs in the Galaxy and its kinematics links it to the thick disc. We present abundance analysis based on high-resolution spectra of seven giant stars. The data were obtained using Fibre Large Array Multi Element Spectrograph/Ultraviolet Echelle Spectrograph (UVES) spectrograph mounted on UT2 telescope of the European Southern Observatory. The principal objective of this work is to perform a wide and detailed chemical abundance analysis of the cluster and look for possible Multiple Populations (MPs). We determined stellar parameters and measured 22 elements corresponding to light (Na, Al), alpha (O, Mg, Si, Ca, Ti), iron-peak (Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and heavy elements (Y, Zr, Ba, Ce, Nd, Eu). We found a mean iron content of [Fe/H] = -0.47 ± 0.02 (error on the mean). We confirm the existence of MPs in this GC with an O-Na anti-correlation, and moderate spread in Al abundances. We estimate a mean [α/Fe] = 0.25 ± 0.08. Iron-peak elements show no significant spread. The [Ba/Eu] ratios indicate a predominant contribution from SNeII for the formation of the cluster.

  9. Main sequence of the metal-poor globular cluster M30 (NGC 7099)

    Alcaino, G.; Liller, W.

    1980-01-01

    We present photographic photometry for 673 stars in the metal-poor globular cluster M30 (NGC 7099). The Racine wedge was used with the CTIO 1-m Yale telescope (Δm=3/sup m/.60), the CTIO 4-m telescope (Δm=6/sup m/.83), and the ESO 3.6-m telescope (Δm=4/sup m/.12) to extend the photoelectric limit from Vapprox. =16.3 to Vapprox. =20.4. For the main-sequence turn-off, we have determined its position to lie at V=18.4 +- 0.1 (m.e.) and B-V=0.49 +- 0.03 (m.e.). From these values, we calculate the intrinsic values M/sub v/ =3.87 and (B-V) 0 =0.47. For the cluster as a whole, we derive a distance modulus (m-M)/sub V/=14.53 +- 0.15 and reddening E(B-V)=0.02 +- 0.02. Using the models of Iben and Rood [Astrophys. J. 159, 605 (1970)] and the isochrones of Demarque and McClure [(1977), in Evolution of Galaxies and Stellar Populations, edited by B. Tinsley and R. B. Larson (Yale University Observatory, New Haven), p. 199], we deduce the cluster's age to be 14.5( +- 4.0) x 10 9 yr. The large uncertainty in this value emphasizes the dire need for more work on cluster evolution

  10. Tuning the magnetic properties of deposited transition metal clusters by decoration

    Minar, Jan; Bornemann, S.; Ebert, H. [Dept. Chemie, LMU, Butenandtstr. 5-13, 81377 Muenchen (Germany); Staunton, J.B. [Department of Physics, University of Warwick (United Kingdom); Rusponi, S.; Brunne, H. [EPF Lausanne (Switzerland)

    2008-07-01

    Using the fully relativistic version of the KKR-method for electronic structure calculations within local spin density functional theory (LSDA) the magnetic properties of Fe, Co and Ni clusters deposited on the Pt(111) surface have been investigated. Of central interest are the role of spin-orbit coupling as it influences the spontaneous formation and orientation of magnetic moments and gives rise amongst others to the occurrence of orbital magnetic moments, the magnetic anisotropy energy (MAE) and magnetic circular dichroism in X-ray absorption (XMCD). Our systematic investigations of different clusters and nanostructures aim to reveal the mutual relationship among their spin-orbit induced properties. In addition they show how their various magnetic properties depend on the structural properties and chemical composition of the studied system. For large two-dimensional clusters we focussed especially on the dependency of the MAE on decoration with another transition metal. Our results are in qualitative agreement with recent experimental findings. We resolved the MAE contributions for inequivalent cluster atoms and will discuss the effect of the induced MAE within the Pt substrate.

  11. An updated survey of globular clusters in M 31. III. A spectroscopic metallicity scale for the Revised Bologna Catalog

    Galleti, S.; Bellazzini, M.; Buzzoni, A.; Federici, L.; Fusi Pecci, F.

    2009-12-01

    Aims. We present a new homogeneous set of metallicity estimates based on Lick indices for the old globular clusters of the M 31 galaxy. The final aim is to add homogeneous spectroscopic metallicities to as many entries as possible of the Revised Bologna Catalog of M 31 clusters, by reporting Lick index measurements from any source (literature, new observations, etc.) on the same scale. Methods: New empirical relations of [Fe/H] as a function of [MgFe] and Mg2 indices are based on the well-studied galactic globular clusters, complemented with theoretical model predictions for -0.2≤ [Fe/H]≤ +0.5. Lick indices for M 31 clusters from various literature sources (225 clusters) and from new observations by our team (71 clusters) have been transformed into the Trager et al. system, yielding new metallicity estimates for 245 globular clusters of M 31. Results: Our values are in good agreement with recent estimates based on detailed spectral fitting and with those obtained from color magnitude diagrams of clusters imaged with the Hubble Space Telescope. The typical uncertainty on individual estimates is ≃±0.25 dex, as resulted from the comparison with metallicities derived from color magnitude diagrams of individual clusters. Conclusions: The metallicity distribution of M 31 globular cluster is briefly discussed and compared with that of the Milky Way. Simple parametric statistical tests suggest that the distribution is probably not unimodal. The strong correlation between metallicity and kinematics found in previous studies is confirmed. The most metal-rich GCs tend to be packed into the center of the system and to cluster tightly around the galactic rotation curve defined by the HI disk, while the velocity dispersion about the curve increases with decreasing metallicity. However, also the clusters with [Fe/H]<-1.0 display a clear rotation pattern, at odds with their Milky Way counterparts. Based on observations made at La Palma, at the Spanish Observatorio del Roque

  12. Synthesis and characterization of αzirconium (IV) hydrogenphosphate containing metallic copper clusters

    Souza, Alexilda Oliveira de; Rangel, Maria do Carmo; Alves, Oswaldo Luiz

    2005-01-01

    The α-zirconium (IV) hydrogenphosphate (α-ZrP) has received great attention in the last years due to its properties like ion exchange, intercalation, ionic conductivity and catalytic activity. This work reports a method to produce metallic copper clusters on α-ZrP to be used as catalysts in petrochemical processes. It was found that the solids were non-crystalline regardless of the uptake of copper and the reduction. The specific surface area increased as a consequence of the increase of the interlayer distance to accept the copper ions between the layers. During the reduction, big clusters of copper (0,5-11μ) with different sizes and shapes were produced. (author)

  13. Photochemical activation and reactivity of polynuclear transition-metal-complex molecules. Progress report, June 1981-May 31, 1982

    Endicott, J.F.; Lintvedt, R.L.

    1982-01-01

    Significant results obtained during the year are summarized for the following programs: (1) reversible, two electron transfer at a single potential in binuclear complexes; (2) photophysics of polyketonate complexes; (3) synthetic strategies and characterization of heavy metal heterobinuclear complexes; (4) high yield synthesis of ligands capable of binding 3 and 4 metal ions per molecule. Electrochemical studies have uncovered a number of new binuclear metal complexes that undergo reversible two-electron reduction at single potential including Cu(II) complexes with two different coordination environments, mixed Ni(II), Cu(II) complexes and binuclear Ni(II) complexes. In each case the species that exhibit these electron transfer properties have been shown to be Na + ion-paired complexes. Several new trinuclear molecular complexes have been prepared and characterized that contain two UO 2 2+ ions and one transition metal ion. The electrochemistry, absorption spectra, and luminescence have been investigated

  14. Multivalent adhesion molecule 7 clusters act as signaling platform for host cellular GTPase activation and facilitate epithelial barrier dysfunction.

    Jenson Lim

    2014-09-01

    Full Text Available Vibrio parahaemolyticus is an emerging bacterial pathogen which colonizes the gastrointestinal tract and can cause severe enteritis and bacteraemia. During infection, V. parahaemolyticus primarily attaches to the small intestine, where it causes extensive tissue damage and compromises epithelial barrier integrity. We have previously described that Multivalent Adhesion Molecule (MAM 7 contributes to initial attachment of V. parahaemolyticus to epithelial cells. Here we show that the bacterial adhesin, through multivalent interactions between surface-induced adhesin clusters and phosphatidic acid lipids in the host cell membrane, induces activation of the small GTPase RhoA and actin rearrangements in host cells. In infection studies with V. parahaemolyticus we further demonstrate that adhesin-triggered activation of the ROCK/LIMK signaling axis is sufficient to redistribute tight junction proteins, leading to a loss of epithelial barrier function. Taken together, these findings show an unprecedented mechanism by which an adhesin acts as assembly platform for a host cellular signaling pathway, which ultimately facilitates breaching of the epithelial barrier by a bacterial pathogen.

  15. Elucidating the role of surface passivating ligand structural parameters in hole wave function delocalization in semiconductor cluster molecules.

    Teunis, Meghan B; Nagaraju, Mulpuri; Dutta, Poulami; Pu, Jingzhi; Muhoberac, Barry B; Sardar, Rajesh; Agarwal, Mangilal

    2017-09-28

    This article describes the mechanisms underlying electronic interactions between surface passivating ligands and (CdSe) 34 semiconductor cluster molecules (SCMs) that facilitate band-gap engineering through the delocalization of hole wave functions without altering their inorganic core. We show here both experimentally and through density functional theory calculations that the expansion of the hole wave function beyond the SCM boundary into the ligand monolayer depends not only on the pre-binding energetic alignment of interfacial orbitals between the SCM and surface passivating ligands but is also strongly influenced by definable ligand structural parameters such as the extent of their π-conjugation [π-delocalization energy; pyrene (Py), anthracene (Anth), naphthalene (Naph), and phenyl (Ph)], binding mode [dithiocarbamate (DTC, -NH-CS 2 - ), carboxylate (-COO - ), and amine (-NH 2 )], and binding head group [-SH, -SeH, and -TeH]. We observe an unprecedentedly large ∼650 meV red-shift in the lowest energy optical absorption band of (CdSe) 34 SCMs upon passivating their surface with Py-DTC ligands and the trend is found to be Ph- wave function delocalization rather than carrier trapping and/or phonon-mediated relaxation. Taken together, knowledge of how ligands electronically interact with the SCM surface is crucial to semiconductor nanomaterial research in general because it allows the tuning of electronic properties of nanomaterials for better charge separation and enhanced charge transfer, which in turn will increase optoelectronic device and photocatalytic efficiencies.

  16. CHEMICAL ABUNDANCES IN NGC 5053: A VERY METAL-POOR AND DYNAMICALLY COMPLEX GLOBULAR CLUSTER

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2015-05-10

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin–Indiana–Yale–NOAO–Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ∼ 75–90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of −2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na–O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  17. Chemical Abundances in NGC 5053: A Very Metal-poor and Dynamically Complex Globular Cluster

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ˜ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  18. Atmospheric Parameters and Metallicities for 2191 Stars in the Globular Cluster M4

    Malavolta, Luca; Sneden, Christopher; Piotto, Giampaolo; Milone, Antonino P.; Bedin, Luigi R.; Nascimbeni, Valerio

    2014-02-01

    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the Very Large Telescope (VLT) FLAMES+GIRAFFE spectrograph at VLT. These medium-resolution spectra cover a small wavelength range, and often have very low signal-to-noise ratios. We approached this data set by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all of the data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 red giant branch (RGB) stars with V 14.7, we obtain lang[Fe/H]rang = -1.16 (σ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than 2000 stars, using a data set that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions.

  19. Room-Temperature Synthesis of Transition Metal Clusters and Main Group Polycations from Ionic Liquids

    Ahmed, Ejaz

    2011-01-01

    Main group polycations and transition metal clusters had traditionally been synthesized via high-temperature routes by performing reactions in melts or by CTR, at room-temperature or lower temperature by using so-called superacid solvents, and at room-temperature in benzene–GaX3 media. Considering the major problems associated with higher temperature routes (e.g. long annealing time, risk of product decomposition, and low yield) and taking into account the toxicity of benzene and liquid SO2 i...

  20. A new method for measuring metallicities of young super star clusters

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio; Davies, Ben; Bastian, Nate; Bergemann, Maria; Plez, Bertrand; Evans, Chris; Patrick, Lee; Schinnerer, Eva

    2014-01-01

    We demonstrate how the metallicities of young super star clusters (SSC) can be measured using novel spectroscopic techniques in the J-band. The near-infrared flux of SSCs older than ∼6 Myr is dominated by tens to hundreds of red supergiant stars. Our technique is designed to harness the integrated light of that population and produces accurate metallicities for new observations in galaxies above (M83) and below (NGC 6946) solar metallicity. In M83 we find [Z] = +0.28 ± 0.14 dex using a moderate resolution (R ∼ 3500) J-band spectrum and in NGC 6496 we report [Z] = -0.32 ± 0.20 dex from a low resolution spectrum of R ∼ 1800. Recently commissioned low resolution multiplexed spectrographs on the Very Large Telescope (KMOS) and Keck (MOSFIRE) will allow accurate measurements of SSC metallicities across the disks of star-forming galaxies up to distances of 70 Mpc with single night observation campaigns using the method presented in this paper.

  1. Electronic structures and water reactivity of mixed metal sulfide cluster anions

    Saha, Arjun; Raghavachari, Krishnan [Department of Chemistry, Indiana University, Bloomington, Indiana 47405 (United States)

    2014-08-21

    The electronic structures and chemical reactivity of the mixed metal sulfide cluster anion (MoWS{sub 4}{sup −}) have been investigated with density functional theory. Our study reveals the presence of two almost isoenergetic structural isomers, both containing two bridging sulfur atoms in a quartet state. However, the arrangement of the terminal sulfur atoms is different in the two isomers. In one isomer, the two metals are in the same oxidation state (each attached to one terminal S). In the second isomer, the two metals are in different oxidation states (with W in the higher oxidation state attached to both terminal S). The reactivity of water with the two lowest energy isomers has also been studied, with an emphasis on pathways leading to H{sub 2} release. The reactive behavior of the two isomers is different though the overall barriers in both systems are small. The origin of the differences are analyzed and discussed. The reaction pathways and barriers are compared with the corresponding behavior of monometallic sulfides (Mo{sub 2}S{sub 4}{sup −} and W{sub 2}S{sub 4}{sup −}) as well as mixed metal oxides (MoWO{sub 4}{sup −})

  2. Relaxation processes in optically excites metal clusters; Relaxationsprozesse in optisch angeregten Metallclustern

    Stanzel, J.

    2007-08-10

    The present work is concerned with the dynamics of optically excited metal clusters in the gas phase. Small mass-selected gold and tungsten cluster anions (Au{sup -}{sub n}, n=5-8, 14, 20 and W{sup -}{sub n}, n=3-14) are studied using femtosecond time-resolved photoelectron spectroscopy. Depending on the electronic structure in the valence region as well as on the optical excitation energy fundamentally different relaxation processes are observed. In small gold cluster anions excited with 1.56 eV an isolated electronically excited state is populated. The time-dependent measurements are strongly sizedependent and open insights into photoinduced geometry changes of the nuclear framework. Oscillatory vibrational wavepacket motion in Au{sup -}{sub 5}, an extremely longlived ({tau} >90 ns) electronically excited state in Au{sup -}{sub 6} as well as photoinduced melting in Au{sup -}{sub 7} and Au{sup -}{sub 8} is monitored in real time. By increasing the OPTICAL excitation energy to 3.12 eV a completely different scenario is observed. A multitude of electronically excited states can be reached upon optical excitation and as a consequence electronic relaxation processes that take place on a time scale of 1 ps are dominating. This is shown for Au{sup -}{sub 7}, Au{sup -}{sub 14} and Au{sup -}{sub 20}. Compared to gold clusters, tungsten clusters are characterized by a significantly higher electronic density of states in the valence region. Therefore electronic relaxation processes are much more likely and take place on a significantly faster time scale. The fast electronic relaxation processes are distinguished from pure vibrational relaxation. It is shown that already in the four atomic tungsten cluster W{sup -}{sub 4} electronic relaxation processes take place on a time scale of 30 fs. In all investigated tungsten cluster anions (W{sup -}{sub n}, n=3-14) an equilibrium between electronic and vibrational system is reached within around 1 ps after optical excitation which

  3. The helium abundance in the metal-poor globular clusters M30 and NGC 6397

    Mucciarelli, A.; Lovisi, L.; Lanzoni, B.; Ferraro, F. R. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2014-05-01

    We present the helium abundance of the two metal-poor clusters M30 and NGC 6397. Helium estimates have been obtained by using the high-resolution spectrograph FLAMES at the European Southern Observatory Very Large Telescope and by measuring the He I line at 4471 Å in 24 and 35 horizontal branch (HB) stars in M30 and NGC 6397, respectively. This sample represents the largest data set of He abundances collected so far in metal-poor clusters. The He mass fraction turns out to be Y = 0.252 ± 0.003 (σ = 0.021) for M30 and Y = 0.241 ± 0.004 (σ = 0.023) for NGC 6397. These values are fully compatible with the cosmological abundance, thus suggesting that the HB stars are not strongly enriched in He. The small spread of the Y distributions are compatible with those expected from the observed main sequence splitting. Finally, we find a hint of a weak anticorrelation between Y and [O/Fe] in NGC 6397 in agreement with the prediction that O-poor stars are formed by (He-enriched) gas polluted by the products of hot proton-capture reactions.

  4. Open cluster Dolidze 25: Stellar parameters and the metallicity in the Galactic anticentre

    Negueruela, I.; Simón-Díaz, S.; Lorenzo, J.; Castro, N.; Herrero, A.

    2015-12-01

    Context. The young open cluster Dolidze 25, in the direction of the Galactic anticentre, has been attributed a very low metallicity, with typical abundances between -0.5 and -0.7 dex below solar. Aims: We intend to derive accurate cluster parameters and accurate stellar abundances for some of its members. Methods: We have obtained a large sample of intermediate- and high-resolution spectra for stars in and around Dolidze 25. We used the fastwind code to generate stellar atmosphere models to fit the observed spectra. We derive stellar parameters for a large number of OB stars in the area, and abundances of oxygen and silicon for a number of stars with spectral types around B0. Results: We measure low abundances in stars of Dolidze 25. For the three stars with spectral types around B0, we find 0.3 dex (Si) and 0.5 dex (O) below the values typical in the solar neighbourhood. These values, even though not as low as those given previously, confirm Dolidze 25 and the surrounding H ii region Sh2-284 as the most metal-poor star-forming environment known in the Milky Way. We derive a distance 4.5 ± 0.3 kpc to the cluster (rG ≈ 12.3 kpc). The cluster cannot be older than ~3 Myr, and likely is not much younger. One star in its immediate vicinity, sharing the same distance, has Si and O abundances at most 0.15 dex below solar. Conclusions: The low abundances measured in Dolidze 25 are compatible with currently accepted values for the slope of the Galactic metallicity gradient, if we take into account that variations of at least ±0.15 dex are observed at a given radius. The area traditionally identified as Dolidze 25 is only a small part of a much larger star-forming region that comprises the whole dust shell associated with Sh2-284 and very likely several other smaller H ii regions in its vicinity. Based on observations made with the Nordic Optical Telescope, the Mercator Telescope, and the telescopes of the Isaac Newton Group.

  5. Hot stars in young massive clusters: Mapping the current Galactic metallicity

    de la Fuente, Diego; Najarro, Francisco; Davies, Ben; Trombley, Christine; Figer, Donald F.; Herrero, Artemio

    2013-06-01

    Young Massive Clusters (YMCs) with ages guarantee that these objects present the same chemical composition than the surrounding environment where they are recently born. Finally, the YMCs host very massive stars whose extreme luminosities allow to accomplish detailed spectroscopic analyses even in the most distant regions of the Milky Way. Our group has carried out ISAAC/VLT spectroscopic observations of hot massive stars belonging to several YMCs in different locations around the Galactic disk. As a result, high signal-to-noise, near-infrared spectra of dozens of blue massive stars (including many OB supergiants, Wolf-Rayet stars and a B hypergiant) have been obtained. These data are fully reduced, and NLTE spherical atmosphere modeling is in process. Several line diagnostics will be combined in order to calculate metal abundances accurately for each cluster. The diverse locations of the clusters will allow us to draw a two-dimensional chemical map of the Galactic disk for the first time. The study of the radial and azimuthal variations of elemental abundances will be crucial for understanding the chemical evolution of the Milky Way. Particularly, the ratio between Fe-peak and alpha elements will constitute a powerful tool to investigate the past stellar populations that originated the current Galactic chemistry.

  6. Theoretical study of electronic and dynamic properties of simple metal clusters in jellium model

    El-Amine Madjet, M.

    1994-01-01

    We have studied the electronic properties of alkali-metal clusters in various theoretical approximations and in the framework of the spherical jellium model. We have investigated the ground state properties of alkali clusters both in the LDA (local density approximation) and in HF (Hartree-Fock) theory. We have compared the LDA predictions of the ground state properties to predictions obtained within the HF theory. Such a comparison permitted us to check the validity of the local density functional theory in describing the ground state of a finite fermion system. For the study of collective dipolar excitations in clusters, we have considered an electromagnetic excitation. We have investigated the collective modes in the following approximations: random phase approximation (RPA), time-dependent local-density approximation (TDLDA) and the sum-rules approach. An assessment of the approximation for the continuum state within the RPA is made by comparing with TDLDA calculations for the static and dynamic electronic properties. The comparative study that we have done on the exchange-correlation effects on the electronic and optical properties have shown that the discrepancies with measured data are due mostly to the jellium approximation for the ionic background. (author). 69 refs., 30 figs., 18 tabs

  7. Density-functional theory study of ionic inhomogeneity in metal clusters using SC-ISJM

    Payami, Mahmoud; Mahmoodi, Tahereh

    2017-12-01

    In this work we have applied the recently formulated self-compressed inhomogeneous stabilized jellium model [51] to describe the equilibrium electronic and geometric properties of atomic-closed-shell simple metal clusters of AlN (N = 13, 19, 43, 55, 79, 87, 135, 141), NaN, and CsN (N = 9, 15, 27, 51, 59, 65, 89, 113). To validate the results, we have also performed first-principles pseudo-potential calculations and used them as our reference. In the model, we have considered two regions consisting of ;surface; and ;inner; ones, the border separating them being sharp. This generalization makes possible to decouple the relaxations of different parts of the system. The results show that the present model correctly predicts the size reductions seen in most of the clusters. It also predicts increase in size of some clusters, as observed from first-principles results. Moreover, the changes in inter-layer distances, being as contractions or expansions, are in good agreement with the atomic simulation results. For a more realistic description of the properties, it is possible to improve the method of choosing the surface thicknesses or generalize the model to include more regions than just two.

  8. Homochiral coordination polymers with helixes and metal clusters based on lactate derivatives

    Xu, Zhong-Xuan, E-mail: xuzhongxuan4201@163.com [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China); Ma, Yu-Lu [School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Lv, Guo-ling [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China)

    2017-05-15

    Utilizing the lactic acid derivatives (R)-4-(1-carboxyethoxy)benzoic acid (denoted: (R)-H{sub 2}CBA) and (S)-4-(1-carboxyethoxy)benzoic acid (denoted: (S)-H{sub 2}CBA)as chiral linkers to self-assemble with 4, 4′-bipyridine (denoted: BIP) and Cd(II) ions, a couple of three-dimensional homochiral coordination polymers, namely [Cd{sub 3}((R)-CBA){sub 3} (BIP){sub 2}(H{sub 2}O)]·xGuest (1-D) and [Cd{sub 3}((S)-CBA){sub 3}(BIP){sub 2}(H{sub 2}O)]·xGuest (1-L), have been synthesized under solvothermal reaction condition. Single crystal X-ray diffraction analysis reveals the two complexes contain single helical chains based on enantiopure ligands and cadmium clusters. Moreover, some physical characteristics such as PXRD, thermal stability, solid-state circular dichroism (CD) and luminescent were also investigated. - Graphical abstract: Utilizing enantiomeric lactic acid derivatives (R)-H{sub 2}CBA and (S)-H{sub 2}CBA to assemble with Cd{sup 2+} ions and ancillary BIP ligands, a couple of 3D homochiral coordination polymers with metal clusters and helical chains have been prepared by hydrothermal reaction. - Highlights: • Chiral lactic acid derivative. • Enantiomeric coordination polymer. • Helical chain. • Trinuclear cadmium cluster.

  9. Influence of Guest Exchange on the Magnetization Dynamics of Dilanthanide Single-Molecule-Magnet Nodes within a Metal-Organic Framework.

    Zhang, Xuejing; Vieru, Veacheslav; Feng, Xiaowen; Liu, Jun-Liang; Zhang, Zhenjie; Na, Bo; Shi, Wei; Wang, Bing-Wu; Powell, Annie K; Chibotaru, Liviu F; Gao, Song; Cheng, Peng; Long, Jeffrey R

    2015-08-17

    Multitopic organic linkers can provide a means to organize metal cluster nodes in a regular three-dimensional array. Herein, we show that isonicotinic acid N-oxide (HINO) serves as the linker in the formation of a metal-organic framework featuring Dy2 single-molecule magnets as nodes. Importantly, guest solvent exchange induces a reversible single-crystal to single-crystal transformation between the phases Dy2(INO)4(NO3)2⋅2 solvent (solvent=DMF (Dy2-DMF), CH3CN (Dy2-CH3CN)), thereby switching the effective magnetic relaxation barrier (determined by ac magnetic susceptibility measurements) between a negligible value for Dy2-DMF and 76 cm(-1) for Dy2-CH3CN. Ab initio calculations indicate that this difference arises not from a significant change in the intrinsic relaxation barrier of the Dy2 nodes, but rather from a slowing of the relaxation rate of incoherent quantum tunneling of the magnetization by two orders of magnitude. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An important rule for realizing metal → half-metal → semiconductor transition in single-molecule junctions

    Zeng, Jing; Chen, Ke-Qiu; Long, Mengqiu

    2017-06-01

    Recently, Zhong et al (2015 Nano Lett. 15 8091) found that two additional hydrogen atoms can be adsorbed to the opposite aza-bridging nitrogen atoms of the manganese phthalocyanine (MnPc) macrocycle when exposed to H2. Thus the symmetry of the MnPc molecule is changed from 4-fold to 2-fold. Motivated by this recent experiment, we theoretically investigate a MnPc-based single-molecule junction in this work and propose a simple and reliable way to realize the transition of its electronic properties. On the basis of spin-polarized density-functional theory calculations combined with the Keldysh nonequilibrium Green’s technique, we find that the gradual hydrogenation in MnPc molecules gives rise to the changes of the hardness of the electron density and spin-selective orbital decoupling, which eventually leads to the realization of the first ever metal  →  half-metal  →  semiconductor transition behavior in single-molecule junctions. Analysis of molecular projected self-consistent Hamiltonian, Mulliken population, and local density of states also reveals an important rule for realizing this transition behavior. Our research confirms that the hydrogenation of MnPc molecules can realize various molecular functionalities in unitary material background.

  11. An important rule for realizing metal → half-metal → semiconductor transition in single-molecule junctions

    Zeng, Jing; Chen, Ke-Qiu; Long, Mengqiu

    2017-01-01

    Recently, Zhong et al (2015 Nano Lett . 15 8091) found that two additional hydrogen atoms can be adsorbed to the opposite aza-bridging nitrogen atoms of the manganese phthalocyanine (MnPc) macrocycle when exposed to H 2 . Thus the symmetry of the MnPc molecule is changed from 4-fold to 2-fold. Motivated by this recent experiment, we theoretically investigate a MnPc-based single-molecule junction in this work and propose a simple and reliable way to realize the transition of its electronic properties. On the basis of spin-polarized density-functional theory calculations combined with the Keldysh nonequilibrium Green’s technique, we find that the gradual hydrogenation in MnPc molecules gives rise to the changes of the hardness of the electron density and spin-selective orbital decoupling, which eventually leads to the realization of the first ever metal  →  half-metal  →  semiconductor transition behavior in single-molecule junctions. Analysis of molecular projected self-consistent Hamiltonian, Mulliken population, and local density of states also reveals an important rule for realizing this transition behavior. Our research confirms that the hydrogenation of MnPc molecules can realize various molecular functionalities in unitary material background. (paper)

  12. Van der Waals interaction between a molecule and a spherical cavity in a metal: Nonlocality and anisotropy effects

    Labani, B.; Boustimi, M.; Baudon, J.

    1997-01-01

    The electric response field of a small spherical metallic cavity to a molecule characterized by fluctuating dipolar and quadrupolar moments is built from spherical tensor theory. The electric susceptibility of the field gradient between the two points inside the metallic cavity is formulated by a general expression of the van der Waals energy between the two partners. The induction contribution is introduced by using the field gradient susceptibilities of the cavity at zero frequency. In order to illustrate the nonlocal effects as well as the importance of the curvature of the metallic cavity on the magnitude of the physisorption energy, we present numerical results for typical systems (HF, HCl on Ag, Al, and Cu). copyright 1997 The American Physical Society

  13. clusters

    2017-09-27

    Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

  14. clusters

    environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

  15. Blood trace metals in a sporadic amyotrophic lateral sclerosis geographical cluster.

    De Benedetti, Stefano; Lucchini, Giorgio; Del Bò, Cristian; Deon, Valeria; Marocchi, Alessandro; Penco, Silvana; Lunetta, Christian; Gianazza, Elisabetta; Bonomi, Francesco; Iametti, Stefania

    2017-06-01

    Amyotrophic lateral sclerosis (ALS) is a fatal disorder with unknown etiology, in which genetic and environmental factors interplay to determine the onset and the course of the disease. Exposure to toxic metals has been proposed to be involved in the etiology of the disease either through a direct damage or by promoting oxidative stress. In this study we evaluated the concentration of a panel of metals in serum and whole blood of a small group of sporadic patients, all living in a defined geographical area, for which acid mine drainage has been reported. ALS prevalence in this area is higher than in the rest of Italy. Results were analyzed with software based on artificial neural networks. High concentrations of metals (in particular Se, Mn and Al) were associated with the disease group. Arsenic serum concentration resulted lower in ALS patients, but it positively correlated with disease duration. Comet assay was performed to evaluate endogenous DNA damage that resulted not different between patients and controls. Up to now only few studies considered geographically well-defined clusters of ALS patients. Common geographical origin among patients and controls gave us the chance to perform metallomic investigations under comparable conditions of environmental exposure. Elaboration of these data with software based on machine learning processes has the potential to be extremely useful to gain a comprehensive view of the complex interactions eventually leading to disease, even in a small number of subjects.

  16. Switching behavior of double-decker single molecule magnets on a metal surface

    Fu, Yingshuang; Schwoebel, Joerg; Hoffmann, Germar; Brede, Jens; Wiesendanger, Roland [University of Hamburg, Hamburg (Germany); Dillulo, Andrew [Ohio University, Athens (United States); Klyatskaya, Svetlana [Karlsruhe Institute of Technology, Karlsruhe (Germany); Ruben, Mario [Karlsruhe Institute of Technology, Karlsruhe (Germany); Universite de Strasbourg, Strasbourg (France)

    2011-07-01

    Single molecule magnets (SMM) are most promising materials for spin based molecular electronics. Due to their large magnetic anisotropy stabilized by inside chemical bonds, SMM can potentially be used for information storage at the single molecule level. For applications, it is of importance to adsorb the SMM onto surfaces and to study their subsequent conformational, electronic and magnetic properties. We have investigated the adsorption behavior of Tb and Dy based double-decker SMM on an Ir(111) surface with low temperature scanning tunneling microscopy and spectroscopy. It is found that Tb double-decker molecules bind tightly to the Ir(111) surface. By resonantly injecting tunneling electrons into its LUMO or HOMO state, the Tb double-decker molecule can be switched from a four-lobed structure to an eight-lobed structure. After switching, energy positions of the HOMO and LUMO states both shift closer to the Fermi level. Dy double-decker molecules also exhibit the same switching properties on the Ir(111) surface. The switching behavior of the molecules is tentatively attributed to a conformational change of the double-decker molecular frame.

  17. Assessment of PM10 and heavy metals concentration in a Ceramic Cluster (NE Spain)

    Belen Vicente, Ana; Pardo, Francisco; Sanfeliu, Teofilo; Bech, Joan

    2013-04-01

    Environmental pollution control is one of the most important goals in pollution risk assessment today. The aim of this study is conducting a retrospective view of the evolution of particulate matter (PM10) and heavy metals (As, Cd, Ni and Pb) at different localities in the Spanish cluster ceramic in the period between January 2007 and December 2011. The study area is in the province of Castellón. This province is a strategical area in the framework of European Union Pollution control. Approximately 80% of European ceramic tiles and ceramic frits manufacturers are concentrated in two areas, forming the so-called "Ceramics Clusters"; one is in Modena (Italy) and the other in Castellón (Spain). In this kind of areas, there are a lot of pollutants from this industry that represent an important contribution to soil contamination so it is necessary to control the air quality in them. These atmospheric particles are deposited in the ground through both dry and wet deposition. Soil is a major sink for heavy metals released into the environment. The level of pollution of soils by heavy metals depends on the retention capacity of the soil, especially on physical-chemical properties (mineralogy, grain size, organic matter) affecting soil particle surfaces and also on the chemical properties of the metal. The most direct consequences on the ground of air pollutants are acidification, salinization and the pollutions that can cause heavy metals as components of suspended particulate matter. For this purpose the levels of PM10 in ambient air and the corresponding annual and weekly trend were calculated. The results of the study show that the PM10 and heavy metals concentrations are below the limit values recommended by European Union Legislation for the protection of human health and ecosystems in the study period. There is an important reduction of them from 2009 in all control stations due to the economic crisis. References Moral, R., Gilkes, R.J., Jordán, M.M., 2005

  18. Ligand combination strategy for the preparation of novel low-dimensional and open-framework metal cluster materials

    Anokhina, Ekaterina V.

    Low-dimensional and open-framework materials containing transition metals have a wide range of applications in redox catalysis, solid-state batteries, and electronic and magnetic devices. This dissertation reports on research carried out with the goal to develop a strategy for the preparation of low-dimensional and open-framework materials using octahedral metal clusters as building blocks. Our approach takes its roots from crystal engineering principles where the desired framework topologies are achieved through building block design. The key idea of this work is to induce directional bonding preferences in the cluster units using a combination of ligands with a large difference in charge density. This investigation led to the preparation and characterization of a new family of niobium oxychloride cluster compounds with original structure types exhibiting 1ow-dimensional or open-framework character. Most of these materials have framework topologies unprecedented in compounds containing octahedral clusters. Comparative analysis of their structural features indicates that the novel cluster connectivity patterns in these systems are the result of complex interplay between the effects of anisotropic ligand arrangement in the cluster unit and optimization of ligand-counterion electrostatic interactions. The important role played by these factors sets niobium oxychloride systems apart from cluster compounds with one ligand type or statistical ligand distribution where the main structure-determining factor is the total number of ligands. These results provide a blueprint for expanding the ligand combination strategy to other transition metal cluster systems and for the future rational design of cluster-based materials.

  19. Decomposition of SnH{sub 4} molecules on metal and metal–oxide surfaces

    Ugur, D. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Storm, A.J.; Verberk, R. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Brouwer, J.C. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Sloof, W.G., E-mail: w.g.sloof@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-01

    Atomic hydrogen cleaning is a promising method for EUV lithography systems, to recover from surface oxidation and to remove carbon and tin contaminants. Earlier studies showed, however, that tin may redeposit on nearby surfaces due to SnH{sub 4} decomposition. This phenomenon of SnH{sub 4} decomposition during tin cleaning has been quantified for various metallic and metal-oxide surfaces using X-ray photoelectron spectroscopy (XPS). It was observed that the metal oxide surfaces (TiO{sub 2} and ZrO{sub 2}) were significantly less contaminated than metallic surfaces. Tin contamination due to SnH{sub 4} decomposition can thus be reduced or even mitigated by application of a suitable metal-oxide coating.

  20. Production and characterization of protonated molecular clusters containing a given number of water molecules with the DIAM set-up

    Bruny, G.

    2010-01-01

    nano-scale characterization of irradiation in bio-molecular systems requires observation of novel features which are now achievable with the recent technical progress. This work is a central part in the development of DIAM which is a new experimental set-up devoted to irradiation of bio-molecular clusters at the Institut de Physique Nucleaire de Lyon. The development of the cluster source and of a double focusing mass spectrometer leads to the production of intense beams of mass selected protonated molecular clusters. Combined with this mass selected cluster beams an innovative detection technique is demonstrated in collision induced dissociation experiments. The results contribute to the knowledge of the stability and the structure of the small protonated water clusters and mixed clusters of water and pyridine. (author)

  1. Ferromagnetism and suppression of metallic clusters in Fe implanted ZnO -- a phenomenon related to defects?

    Arenholz, Elke; Zhou, S.; Potzger, K.; Talut, G.; Reuther, H.; Kuepper, K.; Grenzer, J.; Xu, Q.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.

    2008-01-01

    We investigated ZnO(0001) single crystals annealed in high vacuum with respect to their magnetic properties and cluster formation tendency after implant-doping with Fe. While metallic Fe cluster formation is suppressed, no evidence for the relevance of the Fe magnetic moment to the observed ferromagnetism was found. The latter along with the cluster suppression is discussed with respect to defects in the ZnO host matrix, since the crystalline quality of the substrates was lowered due to the preparation as observed by x-ray diffraction

  2. Ferromagnetism and suppression of metallic clusters in Fe implanted ZnO: a phenomenon related to defects?

    Zhou Shengqiang; Potzger, K; Talut, G; Reuther, H; Kuepper, K; Grenzer, J; Xu Qingyu; Muecklich, A; Helm, M; Fassbender, J; Arenholz, E

    2008-01-01

    We investigated ZnO(0 0 0 1) single crystals annealed in high vacuum with respect to their magnetic properties and cluster formation tendency after implant-doping with Fe. While metallic Fe cluster formation is suppressed, no evidence for the relevance of the Fe magnetic moment to the observed ferromagnetism was found. The latter along with the cluster suppression is discussed with respect to defects in the ZnO host matrix, since the crystalline quality of the substrates was lowered due to the preparation as observed by x-ray diffraction

  3. Formation of transition metal cluster adducts on the surface of single-walled carbon nanotubes: HRTEM studies

    Kalinina, Irina V.

    2014-01-01

    We report the formation of chromium clusters on the outer walls of single-walled carbon nanotubes (SWNTs). The clusters were obtained by reacting purified SWNTs with chromium hexacarbonyl in dibutyl ether at 100°C. The functionalized SWNTs were characterized by thermogravimetic analysis, XPS, and high-resolution TEM. The curvature of the SWNTs and the high mobility of the chromium moieties on graphitic surfaces allow the growth of the metal clusters and we propose a mechanism for their formation. © 2014 Taylor and Francis Group, LLC.

  4. Low Metallicities and Old Ages for Three Ultra-diffuse Galaxies in the Coma Cluster

    Gu, Meng; Conroy, Charlie; Law, David; van Dokkum, Pieter; Yan, Renbin; Wake, David; Bundy, Kevin; Merritt, Allison; Abraham, Roberto; Zhang, Jielai; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Drory, Niv; Grabowski, Kathleen; Masters, Karen; Pan, Kaike; Parejko, John; Weijmans, Anne-Marie; Zhang, Kai

    2018-05-01

    A large population of ultra-diffuse galaxies (UDGs) was recently discovered in the Coma cluster. Here we present optical spectra of three such UDGs, DF 7, DF 44, and DF 17, which have central surface brightnesses of μ g ≈ 24.4–25.1 mag arcsec‑2. The spectra were acquired as part of an ancillary program within the SDSS-IV MaNGA Survey. We stacked 19 fibers in the central regions from larger integral field units (IFUs) per source. With over 13.5 hr of on-source integration, we achieved a mean signal-to-noise ratio in the optical of 9.5 Å‑1, 7.9 Å‑1, and 5.0 Å‑1, respectively, for DF 7, DF 44, and DF 17. Stellar population models applied to these spectra enable measurements of recession velocities, ages, and metallicities. The recession velocities of DF 7, DF 44, and DF 17 are {6599}-25+40 km s‑1, {6402}-39+41 km s‑1, and {8315}-43+43 km s‑1, spectroscopically confirming that all of them reside in the Coma cluster. The stellar populations of these three galaxies are old and metal-poor, with ages of {7.9}-2.5+3.6 Gyr, {8.9}-3.3+4.3 Gyr, and {9.1}-5.5+3.9 Gyr, and iron abundances of [Fe/H] -{1.0}-0.4+0.3, -{1.3}-0.4+0.4, and -{0.8}-0.5+0.5, respectively. Their stellar masses are (3–6) × 108 M ⊙. The UDGs in our sample are as old or older than galaxies at similar stellar mass or velocity dispersion (only DF 44 has an independently measured dispersion). They all follow the well-established stellar mass–stellar metallicity relation, while DF 44 lies below the velocity dispersion-metallicity relation. These results, combined with the fact that UDGs are unusually large for their stellar masses, suggest that stellar mass plays a more important role in setting stellar population properties for these galaxies than either size or surface brightness.

  5. Liquid-liquid phase separation and cluster formation at deposition of metals under inhomogeneous magnetic field

    Gorobets, O. Yu; Gorobets, Yu I.; Rospotniuk, V. P.; Grebinaha, V. I.; Kyba, A. A.

    2017-10-01

    The formation and dynamic of expansion and deformation of the liquid-liquid interface of an electrolyte at deposition of metals at the surface of the magnetized steel ball is considered in this paper. The electrochemical processes were investigated in an external magnetic field directed at an arbitrary angle to the force of gravity. These processes are accompanied by the formation of effectively paramagnetic clusters of electrochemical products - magnions. Tyndall effect was used for detection of the presence of magnions near the magnetized steel electrode in a solution. The shape of the interface separating the regions with different concentration of magnions, i.e. different magnetic susceptibilities, was described theoretically based on the equation of hydrostatic equilibrium which takes into account magnetic, hydrostatic and osmotic pressures.

  6. Exploring Charge Transport in Guest Molecule Infiltrated Cu3(BTC)2 Metal Organic Framework

    Leonard, Francois Leonard [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stavila, Vitalie [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Allendorf, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    The goal of this Exploratory Express project was to expand the understanding of the physical properties of our recently discovered class of materials consisting of metal-organic frameworks with electroactive ‘guest’ molecules that together form an electrically conducting charge-transfer complex (molecule@MOF). Thin films of Cu3(BTC)2 were grown on fused silica using solution step-by-step growth and were infiltrated with the molecule tetracyanoquinodimethane (TCNQ). The infiltrated MOF films were extensively characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy, electrical conductivity, and thermoelectric properties. Thermopower measurements on TCNQ@Cu3(BTC)2 revealed a positive Seebeck coefficient of ~400 μV/k, indicating that holes are the primary carriers in this material. The high value of the Seebeck coefficient and the expected low thermal conductivity suggest that molecule@MOF materials may be attractive for thermoelectric power conversion applications requiring low cost, solution-processable, and non-toxic active materials.

  7. Multivariate Metal-Organic Frameworks for Dialing-in the Binding and Programming the Release of Drug Molecules.

    Dong, Zhiyue; Sun, Yangzesheng; Chu, Jun; Zhang, Xianzheng; Deng, Hexiang

    2017-10-11

    We report the control of guest release profiles by dialing-in desirable interactions between guest molecules and pores in metal-organic frameworks (MOFs). The interactions can be derived by the rate constants that were quantitatively correlated with the type of functional group and its proportion in the porous structure; thus the release of guest molecules can be predicted and programmed. Specifically, three probe molecules (ibuprofen, rhodamine B, and doxorubicin) were studied in a series of robust and mesoporous MOFs with multiple functional groups [MIL-101(Fe)-(NH 2 ) x , MIL-101(Fe)-(C 4 H 4 ) x , and MIL-101(Fe)-(C 4 H 4 ) x (NH 2 ) 1-x ]. The release rate can be adjusted by 32-fold [rhodamine from MIL-101(Fe)-(NH 2 ) x ], and the time of release peak can be shifted by up to 12 days over a 40-day release period [doxorubicin from MIL-101(Fe)-(C 4 H 4 ) x (NH 2 ) 1-x ], which was not obtained in the physical mixture of the single component MOF counterparts nor in other porous materials. The corelease of two pro-drug molecules (ibuprofen and doxorubicin) was also achieved.

  8. Surface Chemistry Dependence of Mechanochemical Reaction of Adsorbed Molecules-An Experimental Study on Tribopolymerization of α-Pinene on Metal, Metal Oxide, and Carbon Surfaces.

    He, Xin; Kim, Seong H

    2018-02-20

    Mechanochemical reactions between adsorbate molecules sheared at tribological interfaces can induce association of adsorbed molecules, forming oligomeric and polymeric products often called tribopolymers). This study revealed the role or effect of surface chemistry of the solid substrate in mechanochemical polymerization reactions. As a model reactant, α-pinene was chosen because it was known to readily form tribopolymers at the sliding interface of stainless steel under vapor-phase lubrication conditions. Eight different substrate materials were tested-palladium, nickel, copper, stainless steel, gold, silicon oxide, aluminum oxide, and diamond-like carbon (DLC). All metal substrates and DLC were initially covered with surface oxide species formed naturally in air or during the oxidative sample cleaning. It was found that the tribopolymerization yield of α-pinene is much higher on the substrates that can chemisorb α-pinene, compared to the ones on which only physisorption occurs. From the load dependence of the tribopolymerization yield, it was found that the surfaces capable of chemisorption give a smaller critical activation volume for the mechanochemical reaction, compared to the ones capable of physisorption only. On the basis of these observations and infrared spectroscopy analyses of the adsorbed molecules and the produced polymers, it was concluded that the mechanochemical reaction mechanisms might be different between chemically reactive and inert surfaces and that the chemical reactivity of the substrate surface greatly influences the tribochemical polymerization reactions of adsorbed molecules.

  9. Assessment of Heavy Metal Pollution in Macrophytes, Water and Sediment of a Tropical Wetland System Using Hierarchical Cluster Analysis Technique

    , N. Kumar J.I.; , M. Das; , R. Mukherji; , R.N. Kumar

    2011-01-01

    Heavy metal pollution in aquatic ecosystems is becoming a global phenomenon because these metals are indestructible and most of them have toxic effects on living organisms. Most of the fresh water bodies all over the world are getting contaminated thus declining their suitability. Therefore, monitoring and assessment of such freshwater systems has become an environmental concern. This study aims to elucidate the useful role of the cluster analysis to assess the relationship and interdependenc...

  10. LIGHT-ELEMENT ABUNDANCE VARIATIONS AT LOW METALLICITY: THE GLOBULAR CLUSTER NGC 5466

    Shetrone, Matthew; Martell, Sarah L.; Wilkerson, Rachel; Adams, Joshua; Siegel, Michael H.; Smith, Graeme H.; Bond, Howard E.

    2010-01-01

    We present low-resolution (R ≅850) spectra for 67 asymptotic giant branch (AGB), horizontal branch, and red giant branch (RGB) stars in the low-metallicity globular cluster NGC 5466, taken with the VIRUS-P integral-field spectrograph at the 2.7 m Harlan J. Smith telescope at McDonald Observatory. Sixty-six stars are confirmed, and one rejected, as cluster members based on radial velocity, which we measure to an accuracy of 16 km s -1 via template-matching techniques. CN and CH band strengths have been measured for 29 RGB and AGB stars in NGC 5466, and the band-strength indices measured from VIRUS-P data show close agreement with those measured from Keck/LRIS spectra previously taken for five of our target stars. We also determine carbon abundances from comparisons with synthetic spectra. The RGB stars in our data set cover a range in absolute V magnitude from +2 to -3, which permits us to study the rate of carbon depletion on the giant branch as well as the point of its onset. The data show a clear decline in carbon abundance with rising luminosity above the luminosity function 'bump' on the giant branch, and also a subdued range in CN band strength, suggesting ongoing internal mixing in individual stars but minor or no primordial star-to-star variation in light-element abundances.

  11. Engineering giant magnetic anisotropy in single-molecule magnets by dimerizing heavy transition-metal atoms

    Qu, Jiaxing; Hu, Jun

    2018-05-01

    The search for single-molecule magnets with large magnetic anisotropy energy (MAE) is essential for the development of molecular spintronics devices for use at room temperature. Through systematic first-principles calculations, we found that an Os–Os or Ir–Ir dimer embedded in the (5,5‧-Br2-salophen) molecule gives rise to a large MAE of 41.6 or 51.4 meV, respectively, which is large enough to hold the spin orientation at room temperature. Analysis of the electronic structures reveals that the top Os and Ir atoms play the most important part in the total spin moments and large MAEs of the molecules.

  12. Electronic Effects on Room-Temperature, Gas-Phase C-H Bond Activations by Cluster Oxides and Metal Carbides: The Methane Challenge.

    Schwarz, Helmut; Shaik, Sason; Li, Jilai

    2017-12-06

    This Perspective discusses a story of one molecule (methane), a few metal-oxide cationic clusters (MOCCs), dopants, metal-carbide cations, oriented-electric fields (OEFs), and a dizzying mechanistic landscape of methane activation! One mechanism is hydrogen atom transfer (HAT), which occurs whenever the MOCC possesses a localized oxyl radical (M-O • ). Whenever the radical is delocalized, e.g., in [MgO] n •+ the HAT barrier increases due to the penalty of radical localization. Adding a dopant (Ga 2 O 3 ) to [MgO] 2 •+ localizes the radical and HAT transpires. Whenever the radical is located on the metal centers as in [Al 2 O 2 ] •+ the mechanism crosses over to proton-coupled electron transfer (PCET), wherein the positive Al center acts as a Lewis acid that coordinates the methane molecule, while one of the bridging oxygen atoms abstracts a proton, and the negatively charged CH 3 moiety relocates to the metal fragment. We provide a diagnostic plot of barriers vs reactants' distortion energies, which allows the chemist to distinguish HAT from PCET. Thus, doping of [MgO] 2 •+ by Al 2 O 3 enables HAT and PCET to compete. Similarly, [ZnO] •+ activates methane by PCET generating many products. Adding a CH 3 CN ligand to form [(CH 3 CN)ZnO] •+ leads to a single HAT product. The CH 3 CN dipole acts as an OEF that switches off PCET. [MC] + cations (M = Au, Cu) act by different mechanisms, dictated by the M + -C bond covalence. For example, Cu + , which bonds the carbon atom mostly electrostatically, performs coupling of C to methane to yield ethylene, in a single almost barrier-free step, with an unprecedented atomic choreography catalyzed by the OEF of Cu + .

  13. Ab initio investigation of inversion in tetrahedral molecules of transition metals

    Musaev, D.G.; Boldyrev, A.I.

    1984-01-01

    Tetrahedral and plane square configurations of TiH 4 , TiF 4 , molecules and ScH 4 - , ScF 4 - anions are optimized in the frames of Hartree-Fock-Roothaan method with the bases of DZHD and DZRS type. Inversion barriers of tetrahedral molecules through plane sqUare configuration which make up 46; 70; 27 and 39 kcal/mol in TiH 4 , TiF 4 , SoH 4 - and ScF 4 - respectively are estimated. Correlation diagrams under inversion are analyzed

  14. Use of ionic model for analysis of intramolecular movement in alkali metal metaborate molecules

    Ezhov, Yu.S.; Vinogradov, V.S.

    1978-01-01

    To clear out the peculiarities of intramolecular movement in MBO 2 (where M=Li, Na, K, Rb, Cs) molecules the energy dependence of cation electrostatic interaction with BO 2 anion on the charge value of oxygen, values of the MOB valence angle and internuclear distance r(M-O) is calculated. The calculation results on the base of ionic model show that the minimum of potential energy function corresponds to angular configuration of the MBO 2 molecules. Parameters of potential function of deformation oscillation connected with the change of MOB angle, are evaluated

  15. Electric response of a metal-molecule-metal junction to laser pulse by solving hierarchical equations of motion

    Cao, Hui, E-mail: yccaoh@hotmail.com; Zhang, Mingdao; Tao, Tao; Song, Mingxia; Zhang, Chaozhi, E-mail: chzhzhang@sohu.com [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu (China)

    2015-02-28

    We have combined the quantum dissipative theory and the time dependent density functional theory to perform the first principle calculation of laser induced quantum dynamical electron transport through a molecule weak bridged to two electrodes. The formalism of hierarchical equations of motion based on non-equilibrium Green’s function theory has been taken in this work. Numerical simulations of optical absorption spectra of benzene, laser induced transient current without and with bias, charge pumping effect, as well as the spectrum analysis from the current in Au-benzene-Au molecular junction are presented and discussed.

  16. Fluorescent molecule incorporated metal-organic framework for fluoride sensing in aqueous solution

    Zhao, Xudong, E-mail: zhaoxd_tykj@163.com; Wang, Yuanyang; Hao, Xiuli; Liu, Wen, E-mail: 13700509372@163.com

    2017-04-30

    Highlights: • Fluorescein sodium was successfully encapsulated in UiO-66 via in-situ synthesis. • FS@UiO-66 is one of the few Zr-MOF-based probes for fluoride so far. • FS@UiO-66 is a highly effective, fast-response and naked-eye sensor for fluoride. - Abstract: In this work, the fluorescent molecule (fluorescein sodium, FS) was successfully incorporated in the zirconium-based MOF (UiO-66) via in-situ synthesis method, which can be confirmed by FTIR spectra and fluorescence microscopic images. Based on this in-situ synthesis strategy, FS molecule can be immobilized tightly in the framework. Furthermore, the resulting FS@UiO-66 demonstrates to be a highly selective, real-time and naked-eye chemical sensor for fluoride in aqueous solution, which is mainly due to the release of FS molecule from FS@UiO-66 into the aqueous solution. Meanwhile, to the best of our knowledge, such Zr-MOF-based fluoride sensor is very rare so far. These results provide a promising approach to rationally design novel MOF-based fluorescent sensor for the target molecules.

  17. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    Liu Xuan, E-mail: liu.x.ad@m.titech.ac.jp; Ito, Haruhiko [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology (Japan); Torikai, Eiko [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi (Japan)

    2012-08-15

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li{sub n}, Na{sub n}, K{sub n}, Rb{sub n}, and Cs{sub n} with n = 2-8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  18. Effects of Carbonyl Bond and Metal Cluster Dissociation and Evaporation Rates on Predictions of Nanotube Production in HiPco

    Scott, Carl D.; Smalley, Richard E.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNT) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the co-formation of CO2. It is shown that the production of CO2 is significantly greater for FeCO due to its lower bond energy as compared with that ofNiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  19. Independent control of metal cluster and ceramic particle characteristics during one-step synthesis of Pt/TiO2

    Schulz, H.; Madler, L.; Strobel, R.

    2005-01-01

    Rapid quenching during flame spray synthesis of Pt/TiO2 (0-10 Wt% Pt) is demonstrated as a versatile method for independent control of support (TiO2) and noble metal (Pt)cluster characteristics. Titania grain size, morphology, crystal phase structure, and crystal size were analyzed by nitrogen ad...

  20. Investigating the synthesis of ligated metal clusters in solution using a flow reactor and electrospray ionization mass spectrometry.

    Olivares, Astrid; Laskin, Julia; Johnson, Grant E

    2014-09-18

    The scalable synthesis of ligated subnanometer metal clusters containing an exact number of atoms is of interest due to the highly size-dependent catalytic, electronic, and optical properties of these species. While significant research has been conducted on the batch preparation of clusters through reduction synthesis in solution, the processes of metal complex reduction as well as cluster nucleation, growth, and postreduction etching are still not well understood. Herein, we demonstrate a prototype temperature-controlled flow reactor for qualitatively studying cluster formation in solution at steady-state conditions. Employing this technique, methanol solutions of a chloro(triphenylphosphine)gold precursor, 1,4-bis(diphenylphosphino)butane capping ligand, and borane-tert-butylamine reducing agent were combined in a mixing tee and introduced into a heated capillary with a known length. In this manner, the temperature dependence of the relative abundance of different ionic reactants, intermediates, and products synthesized in real time was characterized qualitatively using online mass spectrometry. A wide distribution of doubly and triply charged cationic gold clusters was observed as well as smaller singly charged organometallic complexes. The results demonstrate that temperature plays a crucial role in determining the relative population of cationic gold clusters and, in general, that higher temperature promotes the formation of doubly charged clusters and singly charged organometallic complexes while reducing the abundance of triply charged species. Moreover, the distribution of clusters observed at elevated temperatures is found to be consistent with that obtained at longer reaction times at room temperature, thereby demonstrating that heating may be used to access cluster distributions characteristic of different stages of batch reduction synthesis in solution.

  1. A new family of Ln₇ clusters with an ideal D(3h) metal-centered trigonal prismatic geometry, and SMM and photoluminescence behaviors.

    Mazarakioti, Eleni C; Poole, Katye M; Cunha-Silva, Luis; Christou, George; Stamatatos, Theocharis C

    2014-08-14

    The first use of the flexible Schiff base ligand N-salicylidene-2-aminocyclohexanol in metal cluster chemistry has afforded a new family of Ln7 clusters with ideal D(3h) point group symmetry and metal-centered trigonal prismatic topology; solid-state and solution studies revealed SMM and photoluminescence behaviors.

  2. Generalized vibrating potential model for collective excitations in spherical, deformed and superdeformed systems: (1) atomic nuclei, (2) metal clusters

    Nesterenko, V.O.; Kleinig, W.

    1995-01-01

    The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated (''jungle-like'') structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonance in spherical sodium clusters Na 8 , Na 20 and Na 40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data. (orig.)

  3. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  4. Manipulating the dipole layer of polar organic molecules on metal surfaces via different charge-transfer channels

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Wang, Chin-Yung; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.

    The key properties of organic films such as energy level alignment (ELA), work functions, and injection barriers are closely linked to this dipole layer. Using angle resolved photoemission spectroscopy (ARPES), we systemically investigate the coverage-dependent work functions and spectra line shapes of occupied molecular orbital states of a polar molecule, chloroaluminium phthalocyanine (ClAlPc), grown on Ag(111) to show that the orientations of the first ClAlPc layer can be manipulated via the molecule deposition rate and post annealing, causing ELA at organic-metal interface to differ for about 0.3 eV between Cl-up and Cl-down configuration. Moreover, by comparing the experimental results with the calculations based on both gas-phase model and realistic model of ClAlPc on Ag(111) , we evidence that the different orientations of ClAlPc dipole layers lead to different charge-transfer channels between ClAlPc and Ag, a key factor that controls the ELA at organic-metal interface.

  5. Electron transport in disordered films of metal nanoparticles linked by organic molecules

    Mueller, K.H.; Wei, G.; Herrmann, J.; Raguse, B.; Baxter, G.

    2004-01-01

    Full text: We have investigated theoretically and experimentally the mechanism of electron transport in films made of ∼10 nm sized gold nanoparticles linked by alkanedithiol molecules. Conduction in these films is due to linker-molecule assisted single-electron tunnelling between neighbouring nanoparticles where electrons have to overcome the Coulomb blockade energy. Strong disorder in our films in the form of separation gap fluctuations between adjacent nanoparticles and variations in Coulomb blockade energies cause electron current percolation. We have found that the dependence of the conduction on the length of the alkanedithiol molecules is affected by the degree of disorder. In addition, we have observed that percolation leads to a non-Arrhenius-like temperature dependence of the conduction and to a film-thickness dependent conductivity. I-V characteristics at low temperatures reveal Coulomb blockade effects. The strong dependence of the electrical conduction on the separation gaps between adjacent nanoparticles can be utilized in strain gauge and gas sensor applications

  6. Controlling the formation process and atomic structures of single pyrazine molecular junction by tuning the strength of the metal-molecule interaction.

    Kaneko, Satoshi; Takahashi, Ryoji; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-04-12

    The formation process and atomic structures were investigated for single pyrazine molecular junctions sandwiched by three different Au, Ag, and Cu electrodes using a mechanically controllable break junction technique in ultrahigh vacuum conditions at 300 K. We demonstrated that the formation process of the single-molecule junction crucially depended on the choice of the metal electrodes. While single-molecule junction showing two distinct conductance states were found for the Au electrodes, only the single conductance state was evident for the Ag electrodes, and there was no junction formation for the Cu electrodes. These results suggested that metal-molecule interaction dominates the formation process and probability of the single-molecule junction. In addition to the metal-molecule interaction, temperature affected the formation process of the single-molecule junction. The single pyrazine molecular junction formed between Au electrodes exhibited significant temperature dependence where the junction-formation probability was about 8% at 300 K, while there was no junction-formation at 100 K. Instead of the junction formation, an Au atomic wire was formed at the low temperature. This study provides insight into the tuning of the junction-forming process for single-molecule junctions, which is needed to construct device structures on a single molecule scale.

  7. Super-solar Metallicity Stars in the Galactic Center Nuclear Star Cluster: Unusual Sc, V, and Y Abundances

    Do, Tuan; Kerzendorf, Wolfgang; Konopacky, Quinn; Marcinik, Joseph M.; Ghez, Andrea; Lu, Jessica R.; Morris, Mark R.

    2018-03-01

    We present adaptive-optics assisted near-infrared high-spectral-resolution observations of late-type giants in the nuclear star cluster of the Milky Way. The metallicity and elemental abundance measurements of these stars offer us an opportunity to understand the formation and evolution of the nuclear star cluster. In addition, their proximity to the supermassive black hole (∼0.5 pc) offers a unique probe of the star formation and chemical enrichment in this extreme environment. We observed two stars identified by medium spectral-resolution observations as potentially having very high metallicities. We use spectral-template fitting with the PHOENIX grid and Bayesian inference to simultaneously constrain the overall metallicity, [M/H], alpha-element abundance [α/Fe], effective temperature, and surface gravity of these stars. We find that one of the stars has very high metallicity ([M/H] > 0.6) and the other is slightly above solar metallicity. Both Galactic center stars have lines from scandium (Sc), vanadium (V), and yttrium (Y) that are much stronger than allowed by the PHOENIX grid. We find, using the spectral synthesis code Spectroscopy Made Easy, that [Sc/Fe] may be an order of magnitude above solar. For comparison, we also observed an empirical calibrator in NGC 6791, the highest metallicity cluster known ([M/H] ∼ 0.4). Most lines are well matched between the calibrator and the Galactic center stars, except for Sc, V, and Y, which confirms that their abundances must be anomalously high in these stars. These unusual abundances, which may be a unique signature of nuclear star clusters, offer an opportunity to test models of chemical enrichment in this region.

  8. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.2; bimetallic clusters

    Bazin, D.; Sayers, D.

    1993-01-01

    The structural information obtained using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to the study of nanometer scale bimetallic clusters. (author)

  9. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    Zhang, Yang

    2013-10-16

    Rare-earth metal containing endohedral fullerenes have attracted much attention due to the feasibility of encaging metal atom, atoms or cluster inside of carbon cages. By switching the metal atom or cluster entrapped inside of the carbon cage the physical and chemical properties of the fullerene compounds can be tuned. The understanding of magnetic and electrochemical properties of endohedral fullerenes plays an essential role in fundamental scientific researches and potential applications in materials science. In this thesis, synthesizing novel rare-earth metal containing endohedral fullerene structures, studying the properties of these isolated endohedral fullerenes and the strategies of tuning the electronic and magnetic properties of endohedral fullerenes were introduced. The DC-arc discharging synthesis of different lanthanide metal-based (Ho, Ce and Pr) mixed metal nitride clusterfullerenes was achieved. Those rare-earth metal containing endohedral fullerenes were isolated by multi-step HPLC. The isolated samples were characterized by spectroscopic techniques included UV-vis-NIR, FTIR, Raman, LDI-TOF mass spectrometry, NMR and electrochemistry. The Ho-based mixed metal nitride clusterfullerenes Ho{sub x}M{sub 3-x}N rate at C{sub 80} (M= Sc, Lu, Y; x=1, 2) were synthesized by ''reactive gas atmosphere'' method or ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UV-vis-NIR, FTIR, Raman and NMR spectroscopy. The {sup 13}C NMR spectroscopic studies demonstrated exceptional NMR behaviors that resulted from switching the second metal inside of the mixed metal nitride cluster Ho{sub x}M{sub 3-x}N from Sc to Lu and further to Y. The LnSc{sub 2}N rate at C{sub 80} (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCFs were characterized by {sup 13}C and {sup 45}Sc NMR study respectively. According to Bleaney's theory and Reilley method, the separation of δ{sup PC} and δ{sup con

  10. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    Zhang, Yang

    2013-01-01

    Rare-earth metal containing endohedral fullerenes have attracted much attention due to the feasibility of encaging metal atom, atoms or cluster inside of carbon cages. By switching the metal atom or cluster entrapped inside of the carbon cage the physical and chemical properties of the fullerene compounds can be tuned. The understanding of magnetic and electrochemical properties of endohedral fullerenes plays an essential role in fundamental scientific researches and potential applications in materials science. In this thesis, synthesizing novel rare-earth metal containing endohedral fullerene structures, studying the properties of these isolated endohedral fullerenes and the strategies of tuning the electronic and magnetic properties of endohedral fullerenes were introduced. The DC-arc discharging synthesis of different lanthanide metal-based (Ho, Ce and Pr) mixed metal nitride clusterfullerenes was achieved. Those rare-earth metal containing endohedral fullerenes were isolated by multi-step HPLC. The isolated samples were characterized by spectroscopic techniques included UV-vis-NIR, FTIR, Raman, LDI-TOF mass spectrometry, NMR and electrochemistry. The Ho-based mixed metal nitride clusterfullerenes Ho x M 3-x N rate at C 80 (M= Sc, Lu, Y; x=1, 2) were synthesized by ''reactive gas atmosphere'' method or ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UV-vis-NIR, FTIR, Raman and NMR spectroscopy. The 13 C NMR spectroscopic studies demonstrated exceptional NMR behaviors that resulted from switching the second metal inside of the mixed metal nitride cluster Ho x M 3-x N from Sc to Lu and further to Y. The LnSc 2 N rate at C 80 (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCFs were characterized by 13 C and 45 Sc NMR study respectively. According to Bleaney's theory and Reilley method, the separation of δ PC and δ con from δ para was achieved by the primary 13 C and 45 Sc NMR analysis of LnSc 2 N rate at C 80 (I). The

  11. Evidence for the direct ejection of clusters from non-metallic solids during laser vaporization

    Bloomfield, L.A.; Yang, Y.A.; Xia, P.; Junkin, A.L.

    1991-01-01

    This paper reports on the formation of molecular scale particles or clusters of alkali halides and semiconductors during laser vaporization of solids. By measuring the abundances of cluster ions produced in several different source configurations, the authors have determined that clusters are ejected directly from the source sample and do not need to grow from atomic or molecular vapor. Using samples of mixed alkali halide powders, the authors have found that unalloyed clusters are easily produced in a source that prevents growth from occurring after the clusters leave the sample surface. However, melting the sample or encouraging growth after vaporization lead to the production of alloyed cluster species. The sizes of the ejected clusters are initially random, but the population spectrum quickly becomes structured as hot, unstable-sized clusters decay into smaller particles. In carbon, large clusters with odd number of atoms decay almost immediately. The hot even clusters also decay, but much more slowly. The longest lived clusters are the magic C 50 and C 60 fullerenes. The mass spectrum of large carbon clusters evolves in time from structureless, to only the even clusters, to primarily C 50 and C 60 . If cluster growth is encouraged, the odd clusters reappear and the population spectrum again becomes relatively structureless

  12. Tetrahedral cluster and pseudo molecule: New approaches to Calculate Absolute Surface Energy of Zinc Blende (111)/(-1-1-1) Surface

    Zhang, Yiou; Zhang, Jingzhao; Tse, Kinfai; Wong, Lun; Chan, Chunkai; Deng, Bei; Zhu, Junyi

    Determining accurate absolute surface energies for polar surfaces of semiconductors has been a great challenge in decades. Here, we propose pseudo-hydrogen passivation to calculate them, using density functional theory approaches. By calculating the energy contribution from pseudo-hydrogen using either a pseudo molecule method or a tetrahedral cluster method, we obtained (111)/(-1-1-1) surfaces energies of Si, GaP, GaAs, and ZnS with high self-consistency. Our findings may greatly enhance the basic understandings of different surfaces and lead to novel strategies in the crystal growth. We would like to thank Su-huai Wei for helpful discussions. Computing resources were provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project.

  13. A multi purpose source chamber at the PLEIADES beamline at SOLEIL for spectroscopic studies of isolated species: cold molecules, clusters, and nanoparticles.

    Lindblad, Andreas; Söderström, Johan; Nicolas, Christophe; Robert, Emmanuel; Miron, Catalin

    2013-11-01

    This paper describes the philosophy and design goals regarding the construction of a versatile sample environment: a source capable of producing beams of atoms, molecules, clusters, and nanoparticles in view of studying their interaction with short wavelength (vacuum ultraviolet and x-ray) synchrotron radiation. In the design, specific care has been taken of (a) the use standard components, (b) ensuring modularity, i.e., that swiftly switching between different experimental configurations was possible. To demonstrate the efficiency of the design, proof-of-principle experiments have been conducted by recording x-ray absorption and photoelectron spectra from isolated nanoparticles (SiO2) and free mixed clusters (Ar/Xe). The results from those experiments are showcased and briefly discussed.

  14. Relaxation and final-state structure in XPS of atoms, molecules, and metals

    Shirley, D.A.; Martin, R.L.; McFeely, F.R.; Kowalczyk, S.P.; Ley, L.

    1975-03-01

    Photoemission from a many-electron system is a many-electron process, even though the transition operator may affect only one electron directly. Relaxation and ''shake-up'' structure are related by a sum rule. When one is present, the other must be also. Shake-up structure is shown to be accurately predictable in atomic neon and molecular HF if the CI calculations are done carefully. In metals the sum rule also applies but final-state effects usually appear as relaxation energy, which is large even for valence electrons. Finally, in rare-earth metals discrete shake-up structure is observable in the 4p region. (7 figs, 30 refs) (auth)

  15. Adhesion of Model Molecules to Metallic Surfaces, the Implications for Corrosion Protection

    De Wit, J. H. W.; Van den Brand, J.; De Wit, F. M.; Mol, J. M. C.

    2008-01-01

    The majority of the described experimental results deal with relatively pure aluminium. Variations were made in the pretreatment of the aluminum substrates and an investigation was performed on the resulting changes in oxide layer composition and chemistry. Subsequently, the bonding behavior of the surfaces was investigated by using model adhesion molecules. These molecules were chosen to represent the bonding functionality of an organic polymer. They were applied onto the pretreated surfaces as a monolayer and the bonding behavior was studied using infrared reflection absorption spectroscopy. A direct and clear relation was found between the hydroxyl fraction on the oxide surfaces and the amount of molecules that subsequently bonded to the surface. Moreover, it was found that most bonds between the oxide surface and organic functional groups are not stable in the presence of water. The best performance was obtained using molecules, which are capable of chemisorption with the oxide surface. Finally, it was found that freshly prepared relatively pure aluminum substrates, which are left in air, rapidly lose their bonding capacity towards organic functional groups. This can be attributed to the adsorption of contamination and water to the oxide surface. in addition the adhesion of a typical epoxy-coated aluminum system was investigated during exposure to water at different temperatures. The coating was found to quite rapidly lose its adhesion upon exposure to water. This rapid loss of adhesion corresponds well with the data where it was demonstrated that the studied epoxy coating only bonds through physisorptive hydrogen bonding, these bonds not being stable in the presence of water. After the initial loss the adhesion of the coating was however found to recover again and even exceeded the adhesion prior to exposure. The improvement could be ascribed to the growth of a thin oxyhydroxide layer on the aluminum substrate, which forms a new, water-stable and stronger bond

  16. Ultrahigh-sensitive detection of molecules produced in catalytic reactions by uni-atomic-composition bi-element clusters supported on solid substrate

    Yasumatsu, H; Fukui, N

    2013-01-01

    An apparatus has been developed for measuring catalytic activities of uni-atomic-composition bi-element clusters supported on a solid substrate. The cluster sample is prepared by irradiating a cluster-ion beam having the uni-atomic composition onto the substrate on a soft-landing condition in an ultra-high vacuum. The catalytic activity is measured by temperature-programmed desorption (TPD) mass analysis. Molecules at a density as low as 3 cm −3 have been detected with an ultrahigh-sensitive TPD mass spectrometer consisting of a cylindrical electron gun, a quadrupole mass filter and a micro-channel-plate ion-detector. The high reproducibility has been achieved by careful calibration of the TPD mass spectrometer. As a benchmark example, thermal oxidation of CO catalysed on Pt 30 disks supported on a silicon surface was studied. The CO 2 products have been successfully observed at the Pt 30 density as low as 3 × 10 12 clusters in a circular area of 8 mm in diameter at the ramping rate of the sample temperature as low as 0.3 K s −1 .

  17. The influence of internal degrees of freedom on the unimolecular decay of the molecule-cluster compound Au8+CH3OH

    Vogel, M.; Hansen, K.; Herlert, A.; Schweikhard, L.; Walther, C.

    2002-06-01

    Time-resolved photodissociation measurements of the sequential reaction Au8+CH3OH→Au8+→Au7+ and the direct reaction Au8+→Au7+ have been performed for several excitation energies. The production rates and yields of the final state Au7+ in the sequential process are strongly influenced by the excitation energy deposited into the evaporated methanol molecule during the initial fragmentation step. Both the rate constants and yields can be fitted with a single parameter, the cluster-methanol binding energy.

  18. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    Krishnan Balasubramanian

    2009-07-18

    methods with all-electron Douglas-Kroll relativistic methods. We have the capabilities for computing full CI extrapolations including spin-orbit effects and several one-electron properties and electron density maps including spin-orbit effects. We are continuously collaborating with several experimental groups around the country and at National Labs to carry out computational studies on the DOE-BES funded projects. The past work in the last 3 years was primarily motivated and driven by the concurrent or recent experimental studies on these systems. We were thus significantly benefited by coordinating our computational efforts with experimental studies. The interaction between theory and experiment has resulted in some unique and exciting opportunities. For example, for the very first time ever, the upper spin-orbit component of a heavy trimer such as Au{sub 3} was experimentally observed as a result of our accurate computational study on the upper electronic states of gold trimer. Likewise for the first time AuH{sub 2} could be observed and interpreted clearly due to our computed potential energy surfaces that revealed the existence of a large barrier to convert the isolated AuH{sub 2} back to Au and H{sub 2}. We have also worked on yet to be observed systems and have made predictions for future experiments. We have computed the spectroscopic and thermodynamic properties of transition metal carbides transition metal clusters and compared our electronic states to the anion photodetachment spectra of Lai Sheng Wang. Prof Mike Morse and coworkers(funded also by DOE-BES) and Prof Stimle and coworkers(also funded by DOE-BES) are working on the spectroscopic properties of transition metal carbides and nitrides. Our predictions on the excited states of transition metal clusters such as Hf{sub 3}, Nb{sub 2}{sup +} etc., have been confirmed experimentally by Prof. Lombardi and coworkers using resonance Raman spectroscopy. We have also been studying larger complexes critical to the

  19. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    Balasubramanian, Krishnan

    2009-01-01

    methods with all-electron Douglas-Kroll relativistic methods. We have the capabilities for computing full CI extrapolations including spin-orbit effects and several one-electron properties and electron density maps including spin-orbit effects. We are continuously collaborating with several experimental groups around the country and at National Labs to carry out computational studies on the DOE-BES funded projects. The past work in the last 3 years was primarily motivated and driven by the concurrent or recent experimental studies on these systems. We were thus significantly benefited by coordinating our computational efforts with experimental studies. The interaction between theory and experiment has resulted in some unique and exciting opportunities. For example, for the very first time ever, the upper spin-orbit component of a heavy trimer such as Au 3 was experimentally observed as a result of our accurate computational study on the upper electronic states of gold trimer. Likewise for the first time AuH 2 could be observed and interpreted clearly due to our computed potential energy surfaces that revealed the existence of a large barrier to convert the isolated AuH 2 back to Au and H 2 . We have also worked on yet to be observed systems and have made predictions for future experiments. We have computed the spectroscopic and thermodynamic properties of transition metal carbides transition metal clusters and compared our electronic states to the anion photodetachment spectra of Lai Sheng Wang. Prof Mike Morse and coworkers(funded also by DOE-BES) and Prof Stimle and coworkers(also funded by DOE-BES) are working on the spectroscopic properties of transition metal carbides and nitrides. Our predictions on the excited states of transition metal clusters such as Hf 3 , Nb 2 + etc., have been confirmed experimentally by Prof. Lombardi and coworkers using resonance Raman spectroscopy. We have also been studying larger complexes critical to the environmental management of high

  20. THE MASS-METALLICITY RELATION OF GLOBULAR CLUSTERS IN THE CONTEXT OF NONLINEAR COLOR-METALLICTY RELATIONS

    Blakeslee, John P.; Cantiello, Michele; Peng, Eric W.

    2010-01-01

    Two recent empirical developments in the study of extragalactic globular cluster (GC) populations are the color-magnitude relation of the blue GCs (the 'blue tilt') and the nonlinearity of the dependence of optical GC colors on metallicity. The color-magnitude relation, interpreted as a mass-metallicity relation, is thought to be a consequence of self-enrichment. Nonlinear color-metallicity relations have been shown to produce bimodal color distributions from unimodal metallicity distributions. We simulate GC populations including both a mass-metallicity scaling relation and nonlinear color-metallicity relations motivated by theory and observations. Depending on the assumed range of metallicities and the width of the GC luminosity function (GCLF), we find that the simulated populations can have bimodal color distributions with a 'blue tilt' similar to observations, even though the metallicity distribution appears unimodal. The models that produce these features have the relatively high mean GC metallicities and nearly equal blue and red peaks characteristic of giant elliptical galaxies. The blue tilt is less apparent in the models with metallicities typical of dwarf ellipticals; the narrower GCLF in these galaxies has an even bigger effect in reducing the significance of their color-magnitude slopes. We critically examine the evidence for nonlinearity versus bimodal metallicities as explanations for the characteristic double-peaked color histograms of giant ellipticals and conclude that the question remains open. We discuss the prospects for further theoretical and observational progress in constraining the models presented here and for uncovering the true metallicity distributions of extragalactic GC systems.

  1. From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry.

    Müller, Achim; Gouzerh, Pierre

    2012-11-21

    Following Nature's lessons, today chemists can cross the boundary of the small molecule world to construct multifunctional and highly complex molecular nano-objects up to protein size and even cell-like nanosystems showing responsive sensing. Impressive examples emerge from studies of the solutions of some oxoanions of the early transition metals especially under reducing conditions which enable the controlled linking of metal-oxide building blocks. The latter are available from constitutional dynamic libraries, thus providing the option to generate multifunctional unique nanoscale molecular systems with exquisite architectures, which even opens the way towards adaptive and evolutive (Darwinian) chemistry. The present review presents the first comprehensive report of current knowledge (including synthesis aspects not discussed before) regarding the related giant metal-oxide clusters mainly of the type {Mo(57)M'(6)} (M' = Fe(III), V(IV)) (torus structure), {M(72)M'(30)} (M = Mo, M' = V(IV), Cr(III), Fe(III), Mo(V)), {M(72)Mo(60)} (M = Mo, W) (Keplerates), {Mo(154)}, {Mo(176)}, {Mo(248)} ("big wheels"), and {Mo(368)} ("blue lemon") - all having the important transferable pentagonal {(M)M(5)} groups in common. These discoveries expanded the frontiers of inorganic chemistry to the mesoscopic world, while there is probably no collection of discrete inorganic compounds which offers such a versatile chemistry and the option to study new phenomena of interdisciplinary interest. The variety of different properties of the sphere- and wheel-type metal-oxide-based clusters can directly be related to their unique architectures: The spherical Keplerate-type capsules having 20 crown-ether-type pores and tunable internal functionalities allow the investigation of confined matter as well as that of sphere-surface-supramolecular and encapsulation chemistry - including related new aspects of the biologically important hydrophobic effects - but also of nanoscale ion transport and

  2. Radiation clusters formation and evolution in FCC metals at low-temperature neutron irradiation up to small damage fluences

    Kozlov, A.V.; Shcherbakov, E.N.; Asiptsov, O.I.; Skryabin, L.A.; Portnykh, I.A.

    2006-01-01

    Methods of transmission electron microscopy and precision size measurements are used to study the formation of radiation-induced clusters in FCC metals (Ni, Pt, austenitic steels EhI-844, ChS-68) irradiated with fast neutron (E>0.1 MeV) fluences from 7 x 10 21 up to 3.5 x 10 22 m -2 at a temperature of 310 K. Using statistical thermodynamic methods the process of radiation clusters formation and evolution is described quantitatively. The change in the concentration of point defects under irradiation as well as size variations of irradiated specimens on annealing are calculated [ru

  3. Variable stars in metal-rich globular clusters. IV. Long-period variables in NGC 6496

    Abbas, Mohamad A. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Layden, Andrew C.; Guldenschuh, Katherine A. [Physics and Astronomy Department, Bowling Green State University, Bowling Green, OH 43403 (United States); Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; Nysewander, M. C.; LaCluyze, A. P. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Welch, Douglas L., E-mail: mabbas@ari.uni-heidelberg.de, E-mail: laydena@bgsu.edu [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8 S 4M1 (Canada)

    2015-02-01

    We present VI-band photometry for stars in the metal-rich globular cluster NGC 6496. Our time-series data were cadenced to search for long-period variables (LPVs) over a span of nearly two years, and our variability search yielded the discovery of 13 new variable stars, of which 6 are LPVs, 2 are suspected LPVs, and 5 are short-period eclipsing binaries. An additional star was found in the ASAS database, and we clarify its type and period. We argue that all of the eclipsing binaries are field stars, while five to six of the LPVs are members of NGC 6496. We compare the period–luminosity distribution of these LPVs with those of LPVs in the Large Magellanic Cloud and 47 Tucanae, and with theoretical pulsation models. We also present a VI color–magnitude diagram, display the evolutionary states of the variables, and match isochrones to determine a reddening of E(B−V)= 0.21±0.02 mag and apparent distance modulus of 15.60±0.15 mag.

  4. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  5. Stellar Population Properties of Ultracompact Dwarfs in M87: A Mass–Metallicity Correlation Connecting Low-metallicity Globular Clusters and Compact Ellipticals

    Zhang, Hong-Xin; Puzia, Thomas H.; Peng, Eric W.; Liu, Chengze; Côté, Patrick; Ferrarese, Laura; Duc, Pierre-Alain; Eigenthaler, Paul; Lim, Sungsoon; Lançon, Ariane; Muñoz, Roberto P.; Roediger, Joel; Sánchez-Janssen, Ruben; Taylor, Matthew A.; Yu, Jincheng

    2018-05-01

    We derive stellar population parameters for a representative sample of ultracompact dwarfs (UCDs) and a large sample of massive globular clusters (GCs) with stellar masses ≳ 106 M ⊙ in the central galaxy M87 of the Virgo galaxy cluster, based on model fitting to the Lick-index measurements from both the literature and new observations. After necessary spectral stacking of the relatively faint objects in our initial sample of 40 UCDs and 118 GCs, we obtain 30 sets of Lick-index measurements for UCDs and 80 for GCs. The M87 UCDs have ages ≳ 8 Gyr and [α/Fe] ≃ 0.4 dex, in agreement with previous studies based on smaller samples. The literature UCDs, located in lower-density environments than M87, extend to younger ages and smaller [α/Fe] (at given metallicities) than M87 UCDs, resembling the environmental dependence of the stellar nuclei of dwarf elliptical galaxies (dEs) in the Virgo cluster. The UCDs exhibit a positive mass–metallicity relation (MZR), which flattens and connects compact ellipticals at stellar masses ≳ 108 M ⊙. The Virgo dE nuclei largely follow the average MZR of UCDs, whereas most of the M87 GCs are offset toward higher metallicities for given stellar masses. The difference between the mass–metallicity distributions of UCDs and GCs may be qualitatively understood as a result of their different physical sizes at birth in a self-enrichment scenario or of galactic nuclear cluster star formation efficiency being relatively low in a tidal stripping scenario for UCD formation. The existing observations provide the necessary but not sufficient evidence for tidally stripped dE nuclei being the dominant contributors to the M87 UCDs.

  6. Random phase approximation applied to solids, molecules, and graphene-metal interfaces

    Olsen, Thomas; Thygesen, Kristian S.

    2013-01-01

    The random phase approximation (RPA) is attracting renewed interest as a universal and accurate method for first-principles total energy calculations. The RPA naturally accounts for long-range dispersive forces without compromising accuracy for short-range interactions making the RPA superior...... to semilocal and hybrid functionals in systems dominated by weak van der Waals or mixed covalent-dispersive interactions. In this work, we present plane-wave-based RPA calculations for a broad collection of systems with bond types ranging from strong covalent to van der Waals. Our main result is the RPA...... the RPA captures both the weak covalent and dispersive forces, which are equally important for these systems. We benchmark our implementation in the GPAW electronic structure code by calculating cohesive energies of graphite and a range of covalently bonded solids and molecules as well as the dissociation...

  7. Laser Controlled Synthesis of Noble Metal Nanoparticle Arrays for Low Concentration Molecule Recognition

    Enza Fazio

    2014-12-01

    Full Text Available Nanostructured gold and silver thin films were grown by pulsed laser deposition.Performing the process in an ambient gas (Ar leads to the nucleation and growth ofnanoparticles in the ablation plasma and their self-organization on the substrate. Thedependence of surface nanostructuring of the films on the deposition parameters is discussedconsidering in particular the number of laser pulses and the ambient gas nature and pressure.The performance of the deposited thin films as substrates for surface-enhanced Ramanspectroscopy (SERS was tested against the detection of molecules at a low concentration.Taking Raman maps on micrometer-sized areas, the spatial homogeneity of the substrateswith respect to the SERS signal was tested.

  8. Energy level alignment and quantum conductance of functionalized metal-molecule junctions

    Jin, Chengjun; Strange, Mikkel; Markussen, Troels

    2013-01-01

    We study the effect of functional groups (CH3*4, OCH3, CH3, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density...... functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method...... predicts the correct ordering of the conductance amongst the molecules. The absolute GW (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close...

  9. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress1

    Thao, Nguyen Phuong; Khan, M. Iqbal R.; Thu, Nguyen Binh Anh; Hoang, Xuan Lan Thi; Asgher, Mohd; Khan, Nafees A.; Tran, Lam-Son Phan

    2015-01-01

    Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance. PMID:26246451

  10. [Ti8Zr2O12(COO)16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal-Organic Frameworks.

    Yuan, Shuai; Qin, Jun-Sheng; Xu, Hai-Qun; Su, Jie; Rossi, Daniel; Chen, Yuanping; Zhang, Liangliang; Lollar, Christina; Wang, Qi; Jiang, Hai-Long; Son, Dong Hee; Xu, Hongyi; Huang, Zhehao; Zou, Xiaodong; Zhou, Hong-Cai

    2018-01-24

    Metal-organic frameworks (MOFs) based on Ti-oxo clusters (Ti-MOFs) represent a naturally self-assembled superlattice of TiO 2 nanoparticles separated by designable organic linkers as antenna chromophores, epitomizing a promising platform for solar energy conversion. However, despite the vast, diverse, and well-developed Ti-cluster chemistry, only a scarce number of Ti-MOFs have been documented. The synthetic conditions of most Ti-based clusters are incompatible with those required for MOF crystallization, which has severely limited the development of Ti-MOFs. This challenge has been met herein by the discovery of the [Ti 8 Zr 2 O 12 (COO) 16 ] cluster as a nearly ideal building unit for photoactive MOFs. A family of isoreticular photoactive MOFs were assembled, and their orbital alignments were fine-tuned by rational functionalization of organic linkers under computational guidance. These MOFs demonstrate high porosity, excellent chemical stability, tunable photoresponse, and good activity toward photocatalytic hydrogen evolution reactions. The discovery of the [Ti 8 Zr 2 O 12 (COO) 16 ] cluster and the facile construction of photoactive MOFs from this cluster shall pave the way for the development of future Ti-MOF-based photocatalysts.

  11. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films

    Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, St?phane; Ohashi, Naoki

    2016-01-01

    Abstract The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth ...

  12. Theoretical studies of molecule surface scattering: Rotationally inelastic diffraction and dissociative dynamics of H2 on metals

    Cruz Pol, A.J.

    1993-01-01

    The interaction of H 2 and its isotopes with metal surfaces has been the subject of many investigations. The scattering experiments provide data such as the final rotational state distribution, sticking coefficients, kinetic energy distribution, and diffraction data. In the first study of this thesis the author implemented a model for looking at the rotationally inelastic diffraction probabilities for H 2 , HD, and D 2 , as a function of surface temperature. The surface is treated in a quantum mechanical fashion using a recently developed formalism. The center of mass translational motion is treated semiclassically using Gaussian wave packets, and the rotations are described quantum mechanically. The phonon summed rotation-diffraction probabilities as well as the probability distribution for a scattering molecule exchanging an amount of energy ΔE with the surface were computed. In the second and third study of this thesis the author implemented a mixed quantum-classical model to compute the probability for dissociation and rotational excitation for H 2 , HD, and D 2 scattered from Ni(100) dimensionally in dynamics simulations. Of the six degrees of freedom for the dissociative adsorption of a diatomic molecule on a static surface, the author treats Z,d the center of mass distance above the surface plan, r, the internuclear separation, θ, the polar orientation angle, quantum mechanically. The remaining three degrees of freedom, X and Y, the center of mass position on the surface plane, and oe, the azimuthal orientation angle, are treated classically. Probabilities for dissociation and ro-vibrational excitation are computed as a function of incident translational energy. Two sudden approximations are tested, in which either the center of mass translation parallel to the surface or the azimuthal orientation of the molecule are frozen. Comparisons are made between low and high dimensionality results and with fully classical results

  13. Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules.

    Sadeghi, S M; Hatef, A; Fortin-Deschenes, Simon; Meunier, Michel

    2013-05-24

    Interaction of a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle (MNP) with a laser beam can replace the intrinsic plasmonic field of the MNP with a coherently normalized field (coherent-plasmonic or CP field). In this paper we show how quantum coherence effects in such a hybrid system can form a coherent barrier (quantum cage) that spatially confines the CP field. This allows us to coherently control the modal volume of this field, making it significantly smaller or larger than that of the intrinsic plasmonic field of the MNP. We investigate the spatial profiles of the CP field and discuss how the field barrier depends on the collective states of the hybrid system.

  14. Supersonic pulsed free-jet of atoms and molecules of refractory metals: laser induced fluorescence spectroscopic studies on zirconium atoms and zirconium oxide molecules

    Nakhale, S.G.

    2004-11-01

    The experimental setup for generating supersonic pulsed free-jet containing atoms and molecules of refractory nature has been built. The technique of laser vaporization in conjunction with supersonic cooling is used to generate these species. The cooled atoms and molecules in supersonic free-jet are probed by laser induced fluorescence spectroscopy. In particular, the technique has been used to perform low-resolution laser induced fluorescence spectroscopy, limited by laser linewidth, on cold Zr atoms and ZrO molecules. The translational temperatures of ∼ 26.5 K and the rotational temperatures of ∼ 81 K have been achieved. It is possible to achieve the Doppler width of few tens of MHz allowing it to perform high-resolution spectroscopy on these atomic and molecular species. Also because of low rotational temperature of molecules the spectral congestion is greatly reduced. In general, this technique can be applied to perform spectroscopy on atoms and molecules of refractory nature. (author)

  15. On the Chemical Abundances of Miras in Clusters: V1 in the Metal-rich Globular NGC 5927

    D’Orazi, V.; Magurno, D.; Bono, G.; Matsunaga, N.; Braga, V. F.; Elgueta, S. S.; Fukue, K.; Hamano, S.; Inno, L.; Kobayashi, N.; Kondo, S.; Monelli, M.; Nonino, M.; Przybilla, N.; Sameshima, H.; Saviane, I.; Taniguchi, D.; Thevenin, F.; Urbaneja-Perez, M.; Watase, A.; Arai, A.; Bergemann, M.; Buonanno, R.; Dall’Ora, M.; Da Silva, R.; Fabrizio, M.; Ferraro, I.; Fiorentino, G.; Francois, P.; Gilmozzi, R.; Iannicola, G.; Ikeda, Y.; Jian, M.; Kawakita, H.; Kudritzki, R. P.; Lemasle, B.; Marengo, M.; Marinoni, S.; Martínez-Vázquez, C. E.; Minniti, D.; Neeley, J.; Otsubo, S.; Prieto, J. L.; Proxauf, B.; Romaniello, M.; Sanna, N.; Sneden, C.; Takenaka, K.; Tsujimoto, T.; Valenti, E.; Yasui, C.; Yoshikawa, T.; Zoccali, M.

    2018-03-01

    We present the first spectroscopic abundance determination of iron, α-elements (Si, Ca, and Ti), and sodium for the Mira variable V1 in the metal-rich globular cluster NGC 5927. We use high-resolution (R ∼ 28,000), high signal-to-noise ratio (∼200) spectra collected with WINERED, a near-infrared (NIR) spectrograph covering simultaneously the wavelength range 0.91–1.35 μm. The effective temperature and the surface gravity at the pulsation phase of the spectroscopic observation were estimated using both optical (V) and NIR time-series photometric data. We found that the Mira is metal-rich ([Fe/H] = ‑0.55 ± 0.15) and moderately α-enhanced ([α/Fe] = 0.15 ± 0.01, σ = 0.2). These values agree quite well with the mean cluster abundances based on high-resolution optical spectra of several cluster red giants available in the literature ([Fe/H] = ‑ 0.47 ± 0.06, [α/Fe] = + 0.24 ± 0.05). We also found a Na abundance of +0.35 ± 0.20 that is higher than the mean cluster abundance based on optical spectra (+0.18 ± 0.13). However, the lack of similar spectra for cluster red giants and that of corrections for departures from local thermodynamical equilibrium prevents us from establishing whether the difference is intrinsic or connected with multiple populations. These findings indicate a strong similarity between optical and NIR metallicity scales in spite of the difference in the experimental equipment, data analysis, and in the adopted spectroscopic diagnostics. Based on spectra collected with the WINERED spectrograph available as a visitor instrument at the ESO New Technology Telescope (NTT), La Silla, Chile (ESO Proposal: 098.D-0878(A), PI: G. Bono).

  16. Supported Metal Zeolites as Environmental Catalysts for Reduction of NOx Molecules

    May Nwe Win; Tin Tin Aye; Kyaw Myo Naing; Nyunt Wynn; Maung Maung Htay

    2005-09-01

    The NOx contamination of air is a major pollutant due to its reaction with the volatile organic compounds, which give rise to ground level (tropospheric) ozone. It is a conventional fact that NOx are one of the major components of car exhaust. In view of that fact, to sustain the tropospheric ozone is to reduce the amount of NOx in the air. Therefore, this paper is concerned with the catalytic activity of Fe-loaded zeolite and Cu-loaded zeolite used to decompose NIOx by SCR (selective catalytic reduction) reaction with very high activity have been studied. Their preparations, characterization by XRD, FT-IR and SEM were also studied. Fe and Cu containig were prepared by soild state ion-exchange method under ambient presure and at the temperature of 600C for 4 hours. From this study, selective catalytic reduction rection was observed, showing about 87% conversion of the NOx molecule with the corresponding optimum amount of catalyst (1.0+-0.5)g working under the reactor space volume of 30cm3 at ambient temperature (30-32)C

  17. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites

    Hong, Soon-Jik; Kim, Hong-Moule; Huh, Dae; Suryanarayana, C.; Chun, Byong Sun

    2003-01-01

    Al 2024-SiC metal matrix composite (MMC) powders produced by centrifugal atomization were hot extruded to investigate the effect of clustering on their mechanical properties. Fracture toughness and tension tests were conducted on specimens reinforced with different volume fractions of SiC. A model was proposed to suggest that the strength of the MMCs could be estimated from the load transfer model approach that takes into consideration the extent of clustering. This model has been successful in predicting the experimentally observed strength and fracture toughness values of the Al 2024-SiC MMCs. On the basis of experimental observations, it is suggested that the strength of particulate-reinforced MMCs may be calculated from the relation: σ y =σ m V m +σ r (V r -V c )-σ r V c , where σ and V represent the yield strength and volume fraction, respectively, and the subscripts m, r, and c represent the matrix, reinforcement, and clusters, respectively

  18. DERIVING METALLICITIES FROM THE INTEGRATED SPECTRA OF EXTRAGALACTIC GLOBULAR CLUSTERS USING THE NEAR-INFRARED CALCIUM TRIPLET

    Foster, Caroline; Forbes, Duncan A.; Proctor, Robert N.; Spitler, Lee R.; Strader, Jay; Brodie, Jean P.

    2010-01-01

    The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as a metallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.

  19. Preparation and investigation of burried metal/molecule contact interfaces with surface sensitive methods; Praeparation und Untersuchung verborgener Metall/Molekuel-Kontaktgrenzflaechen mit oberflaechensensitiven Methoden

    Vrdoljak, Pavo

    2011-05-13

    The present thesis establishes an optimised concept of a delamination technique suitable for ultra high vacuum (UHV) with which model systems of buried interfaces were made accessible for surface sensitive methods which were applied to investigate their electronic and topographical properties. A primary focus of this work is on the question how buried interfaces could be accessed successfully for surface sensitive methods using buried metal/NTCDA and metal/PTCDA interfaces as model systems. Contacts of approximately 10 x 15 mm{sup 2} in size were accessed. The second focus of the thesis is on the investigation of the electronical and topographical properties of the buried interfaces, for which some similarities between delaminated metal (Au,Ag)/ PTCDA- and Ag/NTCDA interfaces were found: After the delamination of top-contacts there were inhomogeneous layers of molecules on the metal contacts. Whereas PTCDA covered metal contacts had thicker molecular layers (4-5 ML PTCDA on Ag), NTCDA covered contacts showed only one monolayer coverage over large areas of at least 2 mm in diameter. Regions with multilayer coverage showed smooth surfaces whereas metal surfaces showed a fissured, meander-like and rough surface. Both contact systems also had in common that the adhesive made PES investigations of valence states very difficult. Furthermore, it was possible to thin out the molecular layers thermally but afterwards no valence states could be measured. Investigating in-situ delaminated buried interfaces, the focus was on metal (Au,Ag)/PTCDA interfaces first. The molecular layers could be successfully desorbed thermally at 260 C to 1-3 monolayers so that valence states were investigated. The spectra of the in-situ delaminated and thermally desorbed Ag/PTCDA contact were noticeably broadened so that the positions of HOMO and FLUMO could only be estimated at 1.9 eV and 0.7 eV, respectively. Additionally, interfaces of Ag/NTCDA contacts were investigated. With UPS it was found

  20. Mixed-metal cluster chemistry. 28. Core enlargement of tungsten-iridium clusters with alkynyl, ethyndiyl, and butadiyndiyl reagents.

    Dalton, Gulliver T; Viau, Lydie; Waterman, Susan M; Humphrey, Mark G; Bruce, Michael I; Low, Paul J; Roberts, Rachel L; Willis, Anthony C; Koutsantonis, George A; Skelton, Brian W; White, Allan H

    2005-05-02

    Reaction of [WIr3(mu-CO)3(CO)8(eta-C5Me5)] (1c) with [W(C[triple bond]CPh)(CO)3(eta-C5H5)] afforded the edge-bridged tetrahedral cluster [W2Ir3(mu4-eta2-C2Ph)(mu-CO)(CO)9(eta-C5H5)(eta-C5Me5)] (3) and the edge-bridged trigonal-bipyramidal cluster [W3Ir3(mu4-eta2-C2Ph)(mu-eta2-C=CHPh)(Cl)(CO)8(eta-C5Me5)(eta-C5H5)2] (4) in poor to fair yield. Cluster 3 forms by insertion of [W(C[triple bond]CPh)(CO)3(eta-C5H5)] into Ir-Ir and W-Ir bonds, accompanied by a change in coordination mode from a terminally bonded alkynyl to a mu4-eta2 alkynyl ligand. Cluster 4 contains an alkynyl ligand interacting with two iridium atoms and two tungsten atoms in a mu4-eta2 fashion, as well as a vinylidene ligand bridging a W-W bond. Reaction of [WIr3(CO)11(eta-C5H5)] (1a) or 1c with [(eta-C5H5)(CO)2 Ru(C[triple bond]C)Ru(CO)2(eta-C5H5)] afforded [Ru2WIr3(mu5-eta2-C2)(mu-CO)3(CO)7(eta-C5H5)2(eta-C5R5)] [R = H (5a), Me (5c)] in low yield, a structural study of 5a revealing a WIr3 butterfly core capped and spiked by Ru atoms; the diruthenium ethyndiyl precursor has undergone Ru-C scission, with insertion of the C2 unit into a W-Ir bond of the cluster precursor. Reaction of [W2Ir2(CO)10(eta-C5H5)2] with the diruthenium ethyndiyl reagent gave [RuW2Ir2{mu4-eta2-(C2C[triple bond]C)Ru(CO)2(eta-C5H5)}(mu-CO)2(CO)6(eta-C5H5)3] (6) in low yield, a structural study of 6 revealing a butterfly W2Ir2 unit capped by a Ru(eta-C5H5) group resulting from Ru-C scission; the terminal C2 of a new ruthenium-bound butadiyndiyl ligand has been inserted into the W-Ir bond. Reaction between 1a, [WIr3(CO)11(eta-C5H4Me)] (1b), or 1c and [(eta-C5H5)(CO)3W(C[triple bond]CC[triple bond]C)W(CO)3(eta-C5H5)] afforded [W2Ir3{mu4-eta2-(C2C[triple bond]C)W(CO)3(eta-C5H5)}(mu-CO)2(CO)2(eta-C5H5)(eta-C5R5)] [R = H (7a), Me (7c); R5 = H4Me (7b)] in good yield, a structural study of 7c revealing it to be a metallaethynyl analogue of 3.

  1. Structural study of CH4, CO2 and H2O clusters containing from several tens to several thousands of molecules

    Torchet, G.; Farges, J.; de Feraudy, M. F.; Raoult, B.

    Clusters are produced during the free jet expansion of gaseous CH4, CO2 or H2O. For a given stagnation temperature To, the mean cluster size is easily increased by increasing the stagnation pressure p0. On the other hand, the cluster temperature does not depend on stagnation conditions but mainly on properties of the condensed gas. An electron diffraction analysis provides information about the cluster structure. Depending on whether the diffraction patterns exhibit crystalline lines or not, the structure is worked out either by using crystallographic methods or by constructing cluster models. When they contain more than a few thousand molecules, clusters show a crystalline structure identical to that of one phase, namely, the cubic phase, known in bulk solid: plastic phase (CH4), unique solid phase (CO2) or metastable cubic phase (H2O). When decreasing the cluster size, the studied compounds behave quite differently: CO2 clusters keep the same crystalline structure, CH4 clusters show the multilayer icosahedral structure wich has been found in rare gas clusters, and H2O clusters adopt a disordered structure different from the amorphous structures of bulk ice. Des agrégats sont produits au cours de la détente en jet libre des gaz CH4, CO2 ou H2O. Pour une température initiale donnée To, on accroît facilement la taille moyenne des agrégats en augmentant la pression initiale po . Par contre, la température des agrégats dépend principalement des propriétés du gaz condensé. Une analyse par diffraction électronique permet l'étude de la structure des agrégats. Selon que les diagrammes de diffraction contiennent ou non des raies cristallines, on a recours soit à des méthodes cristallographiques soit à la construction de modèles d'agrégats. Lorsqu'ils renferment plus de quelques milliers de molécules, les agrégats adoptent la structure cristalline de l'une des phases connues du solide massif et plus précisément la phase cubique : phase plastique pour

  2. Synchrotron far-IR RAIRS studies of interfaces created by polyfunctional organic molecules at defined metal surfaces

    Raval, R.; Williams, J.; Roberts, A.J.; Nunney, T.S.; Surman, M.

    1998-01-01

    Far-IR Reflection Absorption Infrared Spectroscopy (RAIRS) has been used to probe sub monolayers and multilayers of polyfunctional organic ad layers deposited under clean controlled conditions on small-area single-crystal surfaces, using the newly commissioned Daresbury 13.3 far-IR synchrotron beamline. It's shown that the current performance of the beamline allows to monitor fractions of monolayers of formate species on Cu(110), formed at 300 K from the deprotonation of formic acid. Two distinct vCu-O vibrations are observed for coverages up to 0.25 monolayer. The paper attributes the two bands to at least two chemically distinct species, each possessing a local site symmetry of C 2v and bonded to the metal surface via the two oxygen atoms. The two types of formate species are thought to arise from local density fluctuations in formate coverage across the ad layer which leads to local changes in the Cu-O bond. In additions, it's reported far-IR RAIRS spectra of bio molecule/metal interfaces created by depositing thin films (3-10 layers) of the chiral amino-acid, L-methionine, on Cu(110) at 300 K. The multilayer spectra closely resemble the far-IR spectra obtained from crystalline L-methionine, suggesting that the thin layer consists of the zwitterionic species. These thin bio films are stable on the surface to >330 K. No growth of metal-ligand vibrations in the multilayer phase is observed, demonstrating that corrosive chemisorption processes that create Cu-methionine complexes in the multilayer by leaching of surface Cu atoms do not occur in these conditions

  3. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4 He adsorbed on metallic films. In contrast to measurements of 4 He adsorbed on all other insulating substrates, we have shown that 4 He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4 He adsorbed on sapphire and on Ag films and H 2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  4. Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence

    Golberg, Karina; Elbaz, Amit; McNeil, Ronald; Kushmaro, Ariel; Geddes, Chris D.; Marks, Robert S.

    2014-01-01

    We report the use of bioluminescence signal enhancement via proximity to deposited silver nanoparticles for bioactive compound discovery. This approach employs a whole-cell bioreporter harboring a plasmid-borne fusion of a specific promoter incorporated with a bioluminescence reporter gene. The silver deposition process was first optimized to provide optimal nanoparticle size in the reaction time dependence with fluorescein. The use of silver deposition of 350 nm particles enabled the doubling of the bioluminescent signal amplitude by the bacterial bioreporter when compared to an untouched non-silver-deposited microtiter plate surface. This recording is carried out in the less optimal but necessary far-field distance. SEM micrographs provided a visualization of the proximity of the bioreporter to the silver nanoparticles. The electromagnetic field distributions around the nanoparticles were simulated using Finite Difference Time Domain, further suggesting a re-excitation of non-chemically excited bioluminescence in addition to metal-enhanced bioluminescence. The possibility of an antiseptic silver effect caused by such a close proximity was eliminated disregarded by the dynamic growth curves of the bioreporter strains as seen using viability staining. As a highly attractive biotechnology tool, this silver deposition technique, coupled with whole-cell sensing, enables increased bioluminescence sensitivity, making it especially useful for cases in which reporter luminescence signals are very weak

  5. Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence

    Golberg, Karina, E-mail: karingo@bgu.ac.il; Elbaz, Amit [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel); McNeil, Ronald [The Institute of Fluorescence, University of Maryland Baltimore County (United States); Kushmaro, Ariel [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel); Geddes, Chris D. [The Institute of Fluorescence, University of Maryland Baltimore County (United States); Marks, Robert S., E-mail: rsmarks@bgu.ac.il [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel)

    2014-12-15

    We report the use of bioluminescence signal enhancement via proximity to deposited silver nanoparticles for bioactive compound discovery. This approach employs a whole-cell bioreporter harboring a plasmid-borne fusion of a specific promoter incorporated with a bioluminescence reporter gene. The silver deposition process was first optimized to provide optimal nanoparticle size in the reaction time dependence with fluorescein. The use of silver deposition of 350 nm particles enabled the doubling of the bioluminescent signal amplitude by the bacterial bioreporter when compared to an untouched non-silver-deposited microtiter plate surface. This recording is carried out in the less optimal but necessary far-field distance. SEM micrographs provided a visualization of the proximity of the bioreporter to the silver nanoparticles. The electromagnetic field distributions around the nanoparticles were simulated using Finite Difference Time Domain, further suggesting a re-excitation of non-chemically excited bioluminescence in addition to metal-enhanced bioluminescence. The possibility of an antiseptic silver effect caused by such a close proximity was eliminated disregarded by the dynamic growth curves of the bioreporter strains as seen using viability staining. As a highly attractive biotechnology tool, this silver deposition technique, coupled with whole-cell sensing, enables increased bioluminescence sensitivity, making it especially useful for cases in which reporter luminescence signals are very weak.

  6. Mass-spectrometric study of ion clustering in alkali-metal hydroxide vapor: cluster-ion energy and structural characteristics

    Kudin, L.S.; Butman, M.F.; Krasnov, K.S.

    1986-01-01

    Various positive and negative ions have been recorded in the equilibrium vapors from alkali-metal hydroxides: M/sup +/-/, OH - , O - , MO - , MOH - , and X/sup +/-/ (MOH)/sub n/, where X = M/sup +/-/, OH - , n = 1-6. The equilibrium constants have been measured for X/sup +/-/(MOH)/sub n/ = x/sup +/-/ + nMOH(k), n = 1-3, and the enthalpies of reaction have been determined, from which the enthalpies of formation and dissociation energies of X/sup +/-/ (MOH)/sub n/ have been calculated. The relative stabilities of the ions in the series from Na to Cs are examined

  7. SMC west halo: a slice of the galaxy that is being tidally stripped?. Star clusters trace age and metallicity gradients

    Dias, B.; Kerber, L.; Barbuy, B.; Bica, E.; Ortolani, S.

    2016-06-01

    Context. The evolution and structure of the Magellanic Clouds is currently under debate. The classical scenario in which both the Large and Small Magellanic Clouds (LMC, SMC) are orbiting the Milky Way has been challenged by an alternative in which the LMC and SMC are in their first close passage to our Galaxy. The clouds are close enough to us to allow spatially resolved observation of their stars, and detailed studies of stellar populations in the galaxies are expected to be able to constrain the proposed scenarios. In particular, the west halo (WH) of the SMC was recently characterized with radial trends in age and metallicity that indicate tidal disruption. Aims: We intend to increase the sample of star clusters in the west halo of the SMC with homogeneous age, metallicity, and distance derivations to allow a better determination of age and metallicity gradients in this region. Positions are compared with the orbital plane of the SMC from models. Methods: Comparisons of observed and synthetic V(B-V) colour-magnitude diagrams were used to derive age, metallicity, distance, and reddening for star clusters in the SMC west halo. Observations were carried out using the 4.1 m SOAR telescope. Photometric completeness was determined through artificial star tests, and the members were selected by statistical comparison with a control field. Results: We derived an age of 1.23 ± 0.07 Gyr and [Fe/H] = -0.87 ± 0.07 for the reference cluster NGC 152, compatible with literature parameters. Age and metallicity gradients are confirmed in the WH: 2.6 ± 0.6 Gyr/° and -0.19 ± 0.09 dex/°, respectively. The age-metallicity relation for the WH has a low dispersion in metallicity and is compatible with a burst model of chemical enrichment. All WH clusters seem to follow the same stellar distribution predicted by dynamical models, with the exception of AM-3, which should belong to the counter-bridge. Brück 6 is the youngest cluster in our sample. It is only 130 ± 40 Myr old and

  8. Structural, electronic, and magnetic properties of 3D metal trioxide and tetraoxide superhalogen cluster-doped monolayer BN

    Meng, Jingjing; Li, Dan; Niu, Yuan; Zhao, Hongmin; Liang, Chunjun; He, Zhiqun

    2016-01-01

    The structural, electronic, and magnetic properties of monolayer BN doped with 3D metal trioxide and tetraoxide superhalogen clusters are investigated using first-principle calculations. TMO_3_(_4_)-doped monolayer BN exhibits a low negative formation energy, whereas TM atoms embedded in monolayer BN show a high positive formation energy. TMO_3_(_4_) clusters are embedded more easily in monolayer BN than TM atoms. Compared with TMO_3-doped structures, TMO_4-doped structures have a higher structural stability because of their higher binding energies. Given their low negative formation energies, TMO_4-doped structures are more favored for specific applications than TMO_3-doped structures and TM atom-doped structures. Large magnetic moments per supercell and significant ferromagnetic couplings between a TM atom and neighboring B and N atoms on the BN layer were observed in all TMO_4-doped structures, except for TiO_4-doped structures. - Highlights: • TMO_3_(_4_) superhalogen clusters incorporated into monolayer BN were investigated. • TMO_3_(_4_) clusters are embedded more easily in monolayer BN than TM atoms. • TMO_4-doped structures are more favored for specific applications. • Large magnetic moments were observed in TMO_4-doped structures. • The band gap was sensitively dependent on the doped clusters.

  9. Voltage-dependent cluster expansion for electrified solid-liquid interfaces: Application to the electrochemical deposition of transition metals

    Weitzner, Stephen E.; Dabo, Ismaila

    2017-11-01

    The detailed atomistic modeling of electrochemically deposited metal monolayers is challenging due to the complex structure of the metal-solution interface and the critical effects of surface electrification during electrode polarization. Accurate models of interfacial electrochemical equilibria are further challenged by the need to include entropic effects to obtain accurate surface chemical potentials. We present an embedded quantum-continuum model of the interfacial environment that addresses each of these challenges and study the underpotential deposition of silver on the gold (100) surface. We leverage these results to parametrize a cluster expansion of the electrified interface and show through grand canonical Monte Carlo calculations the crucial need to account for variations in the interfacial dipole when modeling electrodeposited metals under finite-temperature electrochemical conditions.

  10. Production of Hydrated Metal Ions by Fast Ion or Atom Beam Sputtering. Collision-Induced Dissociation and Successive Hydration Energies of Gaseous Cu+ with 1-4 Water Molecules

    Magnera, Thomas F.; David, Donald E.; Stulik, Dusan; Orth, Robert G.; Jonkman, Harry T.; Michl, Josef

    1989-01-01

    Low-temperature sputtering of frozen aqueous solutions of metal salts, of hydrated crystalline transition-metal salts, of frosted metal surfaces, and of frosted metal salts with kiloelectronvolt energy rare gas atoms or ions produces copious amounts of cluster ions, among which M+(H2O)n and/or

  11. Metals on graphene and carbon nanotube surfaces: From mobile atoms to atomtronics to bulk metals to clusters and catalysts

    Sarkar, Santanu C.; Moser, Matthew L.; Tian, Xiaojuan; Zhang, Xixiang; Al-Hadeethi, Yas Fadel; Haddon, Robert C.

    2014-01-01

    , and the next generation energy devices. We touch on chemical vapor deposition (CVD) graphene grown on metals, the reactivity of its surface, and its use as a template for asymmetric graphene functionalization chemistry (ultrathin Janus discs). We highlight some

  12. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  13. Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2 molecule

    Sauer, Stephan P. A.; Ul Haq, Inam; Sabin, John R.

    2014-01-01

    by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42:28 eV (Helium) and I0 = 19:62 eV (H2), correspond to full conguration interaction results and are therefore the exact, non-relativistic theoretical values......Using an asymmetric-Lanczos-chain algorithm for the calculation of the coupled cluster linear response functions at the CCSD and CC2 levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule H2. Convergence with respect...... for the mean excitation energy of these two systems within the Bethe theory for the chosen basis set and, in the case of H2, at the experimental equilibrium geometry....

  14. [Electronic and structural properties of individual nanometer-size supported metallic clusters

    Reifenberger, R.

    1993-01-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained

  15. [Electronic and structural properties of individual nanometer-size supported metallic clusters]. Final performance report

    Reifenberger, R.

    1993-09-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained.

  16. From clusters to biomolecules: electric dipole, structure and dynamics

    Broyer, M; Antoine, R; Compagnon, I; Rayane, D; Dugourd, P

    2007-01-01

    In this paper, it is demonstrated that the electric dipole of complex molecules or clusters can be measured by beam deviation in an inhomogeneous electric field. This measurement, associated to appropriate theoretical calculations and simulations, allows us to determine the geometry of these systems and their dynamical behaviour as a function of temperature. Selected examples for mixed clusters (metal-fullerene, metal-benzene, salt) and biomolecules (hydrogen bound amino acids and glycine based polypeptides) are discussed

  17. Revealing dynamically-organized receptor ion channel clusters in live cells by a correlated electric recording and super-resolution single-molecule imaging approach.

    Yadav, Rajeev; Lu, H Peter

    2018-03-28

    The N-methyl-d-aspartate (NMDA) receptor ion-channel is activated by the binding of ligands, along with the application of action potential, important for synaptic transmission and memory functions. Despite substantial knowledge of the structure and function, the gating mechanism of the NMDA receptor ion channel for electric on-off signals is still a topic of debate. We investigate the NMDA receptor partition distribution and the associated channel's open-close electric signal trajectories using a combined approach of correlating single-molecule fluorescence photo-bleaching, single-molecule super-resolution imaging, and single-channel electric patch-clamp recording. Identifying the compositions of NMDA receptors, their spatial organization and distributions over live cell membranes, we observe that NMDA receptors are organized inhomogeneously: nearly half of the receptor proteins are individually dispersed; whereas others exist in heterogeneous clusters of around 50 nm in size as well as co-localized within the diffraction limited imaging area. We demonstrate that inhomogeneous interactions and partitions of the NMDA receptors can be a cause of the heterogeneous gating mechanism of NMDA receptors in living cells. Furthermore, comparing the imaging results with the ion-channel electric current recording, we propose that the clustered NMDA receptors may be responsible for the variation in the current amplitude observed in the on-off two-state ion-channel electric signal trajectories. Our findings shed new light on the fundamental structure-function mechanism of NMDA receptors and present a conceptual advancement of the ion-channel mechanism in living cells.

  18. Insights into magnetic interactions in a monodisperse Gd{sub 12}Fe{sub 14} metal cluster

    Zheng, Xiu-Ying; Zhang, Hui; Liu, Pengxin; Du, Ming-Hao; Han, Ying-Zi; Wei, Rong-Jia; Kong, Xiang-Jian; Long, La-Sheng; Zheng, Lan-Sun [Collaborative Innovation Center of Chemistry for Energy Materials, State Key Lab. of Physical Chemistry of Solid Surface and Dept. of Chemistry, College of Chemistry and Chemical Engineering, Xiamen Univ. (China); Wang, Zhenxing; Ouyang, Zhong-Wen [Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan (China); Zhuang, Gui-Lin [College of Chemcal Engineering, Zhejiang University of Technology, Hangzhou (China)

    2017-09-11

    The largest Ln-Fe metal cluster [Gd{sub 12}Fe{sub 14}(μ{sub 3}-OH){sub 12}(μ{sub 4}-OH){sub 6}(μ{sub 4}-O){sub 12}(TEOA){sub 6}(CH{sub 3}COO){sub 16}(H{sub 2} O){sub 8}].(CH{sub 3}COO){sub 2}(CH{sub 3}CN){sub 2}.(H{sub 2}O){sub 20} (1) and the core-shell monodisperse metal cluster of 1 a rate at SiO{sub 2} (1 a=[Gd{sub 12}Fe{sub 14}(μ{sub 3}-OH){sub 12}(μ{sub 4}-OH){sub 6}(μ{sub 4}-O){sub 12}(TEOA){sub 6}(CH{sub 3}COO){sub 16} (H{sub 2}O){sub 8}]{sup 2+}) were prepared. Experimental and theoretical studies on the magnetic properties of 1 and 1 a rate at SiO{sub 2} reveal that encapsulation of one cluster into one silica nanosphere not only effectively decreases intermolecular magnetic interactions but also significantly increases the zero-field splitting effect of the outer layer Fe{sup 3+} ions. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Irradiation characteristics of metal-cluster-complex ions containing diverse multi-elements with large mass differences

    Fujiwara, Yukio; Kondou, Kouji; Teranishi, Yoshikazu; Nonaka, Hidehiko; Saito, Naoaki; Fujimoto, Toshiyuki; Kurokawa, Akira; Ichimura, Shingo; Tomita, Mitsuhiro

    2007-01-01

    Tetrairidium dodecacarbonyl, Ir 4 (CO) 12 , is a metal cluster complex which has a molecular weight of 1104.9. Using a metal-cluster-complex ion source, the interaction between Ir 4 (CO) n + ions (n=0-12) and silicon substrates was studied at a beam energy ranging from 2keV to 10keV at normal incidence. By adjusting Wien-filter voltage, the influence of CO ligands was investigated. Experimental results showed that sputtering yield of silicon bombarded with Ir 4 (CO) n + ions at 10keV decreased with the number of CO ligands. In the case of 2keV, deposition tended to be suppressed by removing CO ligands from the impinging cluster ions. The influence of CO ligands was explained by considering changes in surface properties caused by the irradiation of Ir 4 (CO) n + ions. It was also found that the bombardment with Ir 4 (CO) 7 + ions at 2.5keV caused deposition on silicon target

  20. Metal Substitution in Keggin-Type Tridecameric Aluminum-Oxo-Hydroxy Clusters.

    Parker, Wallace O'Neil; Millini, Roberto; Kiricsi, Imre

    1997-02-12

    The species resulting from a typical preparation for metal-substituted hybrids of the Keggin tridecamer, Al 13 or [AlO 4 Al 12 (OH) 24 (OH 2 ) 12 ] 7+ , were examined by performing 27 Al NMR on the solutions during aging and by studying the precipitated sulfate salts via solid state 27 Al NMR and powder X-ray diffraction (XRD). Aqueous mixtures (0.25 mol L -1 ) of AlCl 3 and another metal ion (M), in a 12:1 mole ratio (Al:M), where M = Fe 3+ , Zn 2+ , Ga 3+ , In 3+ , Sn 2+ , La 3+ , and Bi 3+ , were subjected to forced hydrolysis by addition of NaOH (1.0 mol L -1 ) until OH/(Al + M) = 2.25, and the kinetics of Al 13 formation and disappearance with aging at 80 °C was monitored by 27 Al NMR spectroscopy. Al 13 units polymerize on aging with an apparent rate constant (k) of 4.8(8) × 10 -2 h -1 to form a species referred to as AlP 2 . Only the solutions containing Ga 3+ and Sn 2+ exhibited faster Al 13 conversion rates. GaAl 12 forms quickly at 80 °C (k = 0.54 h -1 ) and is more stable than AlP 2 . Sn 2+ apparently promotes AlP 2 formation (k = 0.38 h -1 ). XRD and solid state NMR reveal that only the Ga hybrid can be prepared by this method. No hybrid formation was evidenced using M = Mg 2+ , Fe 3+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , In 3+ , La 3+ , or Ce 3+ at 25 °C or M = Co 2+ or La 3+ under reflux conditions. Isostructural (cubic symmetry) single crystals were obtained for the sulfate salts of Al 13 and GaAl 12 . Single-crystal XRD analysis of these two polyoxocations provides the first rigorous comparison between them and shows they have very similar structures. The main crystallographic data for Al 13 and GaAl 12 are as follows:  Na[AlO 4 Al 12 (OH) 24 (H 2 O) 12 ](SO 4 ) 4 ·10H 2 O, cubic, F4̄3m, a = 17.856(2) Å, Z = 4; Na[GaO 4 Al 12 (OH) 24 (H 2 O) 12 ](SO 4 ) 4 ·10H 2 O, cubic, F4̄3m, a = 17.869(3) Å, Z = 4. Thus, the greater thermal stability of GaAl 12 cannot be rationalized in terms of the overall geometric considerations, as suggested by

  1. Quantum molecular dynamics: Numerical methods and physical study of the structure, thermodynamics, stability and fragmentation of sodium metallic clusters

    Blaise, Philippe

    1998-01-01

    The aim of this thesis is to study metallic sodium clusters by numerical simulation. We have developed two ab initio molecular dynamics programs within the formalism of density functional theory. The first is based on the semi-classical extended Thomas-Fermi approach. We use a real-space grid and a Car-Parrinello-like scheme. The computational cost is O(N), and we have built a pseudopotential that speeds up the calculations. By neglecting quantum shell effects, we are able to study a very large set of clusters. We show that sodium cluster energies fit well a liquid drop formula, by adjusting a few parameters. We have investigated breathing modes, surface oscillations and the net charge density. We have shown that the surface energy varies strongly with temperature, and that clusters have a lower melting point than bulk material. We have calculated fission barriers by a constraint method. The second program is based on the quantum Kohn-Sham approach. We use a real-space grid, and combine a generalized Broyden scheme for assuring self-consistency with an iterative Davidson-Lanczos algorithm for solving the Eigen-problem. The cost of the method is much higher. First of all, we have calculated some stable structures for small clusters and their energetics. We obtained very good agreement with previous works. Then, we have investigated highly charged cluster dynamics. We have identified a chaotic fission process. For high fissility systems, we observe a multi-fragmentation dynamics and we find preferential emission of monomers on a characteristic time scale less than a pico-second. This has been simulated for the first time, with the help of our adaptive grid method which follows each fragment as they move apart during the fragmentation. (author)

  2. Clustering of nucleosides in the presence of alkali metals: Biologically relevant quartets of guanosine, deoxyguanosine and uridine observed by ESI-MS/MS.

    Aggerholm, Tenna; Nanita, Sergio C; Koch, Kim J; Cooks, R Graham

    2003-01-01

    Electrospray ionization (ESI) mass spectra of nucleosides, recorded in the presence of alkali metals, display alkali metal ion-bound quartets and other clusters that may have implications for understanding non-covalent interactions in DNA and RNA. The tetramers of guanosine and deoxyguanosine and also their metaclusters (clusters of clusters), cationized by alkali metals, were observed as unusually abundant magic number clusters. The observation of these species in the gas phase parallels previous condensed-phase studies, which show that guanine derivatives can form quartets and metaclusters of quartets in solution in the presence of metal cations. This parallel behavior and also internal evidence suggest that bonding in the guanosine tetramers involves the bases rather than the sugar units. The nucleobases thymine and uracil are known to form magic number pentameric adducts with K+, Cs+ and NH4+ in the gas phase. In sharp contrast, we now show that the nucleosides uridine and deoxythymidine do not form the pentameric clusters characteristic of the corresponding bases. More subtle effects of the sugars are evident in the fact that adenosine and cytidine form numerous higher order clusters with alkali metals, whereas deoxyadenosine and deoxycytidine show no clustering. It is suggested that hydrogen bonding between the bases in the tetramers of dG and rG are the dominant interactions in the clusters, hence changing the ribose group to deoxyribose (and vice versa) generally has little effect. However, the additional hydroxyl group of RNA nucleosides enhances the non-selective formation of higher-order aggregates for adenosine and cytidine and results in the lack of highly stable magic number clusters. Some clusters are the result of aggregation in the course of ionization (ESI) whereas others appear to be intrinsic to the solution being examined. Copyright 2003 John Wiley & Sons, Ltd.

  3. The Metal-poor non-Sagittarius (?) Globular Cluster NGC 5053: Orbit and Mg, Al, and Si Abundances

    Tang, Baitian; Fernández-Trincado, J. G.; Geisler, Doug; Zamora, Olga; Mészáros, Szabolcs; Masseron, Thomas; Cohen, Roger E.; García-Hernández, D. A.; Dell’Agli, Flavia; Beers, Timothy C.; Schiavon, Ricardo P.; Sohn, Sangmo Tony; Hasselquist, Sten; Robin, Annie C.; Shetrone, Matthew; Majewski, Steven R.; Villanova, Sandro; Schiappacasse Ulloa, Jose; Lane, Richard R.; Minnti, Dante; Roman-Lopes, Alexandre; Almeida, Andres; Moreno, E.

    2018-03-01

    Metal-poor globular clusters (GCs) exhibit intriguing Al–Mg anti-correlations and possible Si–Al correlations, which are important clues to decipher the multiple-population phenomenon. NGC 5053 is one of the most metal-poor GCs in the nearby universe and has been suggested to be associated with the Sagittarius (Sgr) dwarf galaxy, due to its similarity in location and radial velocity with one of the Sgr arms. In this work, we simulate the orbit of NGC 5053, and argue against a physical connection between Sgr and NGC 5053. On the other hand, the Mg, Al, and Si spectral lines, which are difficult to detect in the optical spectra of NGC 5053 stars, have been detected in the near-infrared APOGEE spectra. We use three different sets of stellar parameters and codes to derive the Mg, Al, and Si abundances. Regardless of which method is adopted, we see a large Al variation, and a substantial Si spread. Along with NGC 5053, metal-poor GCs exhibit different Mg, Al, and Si variations. Moreover, NGC 5053 has the lowest cluster mass among the GCs that have been identified to exhibit an observable Si spread until now.

  4. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide.

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-12-18

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants.

  5. Evidence for a hopping mechanism in metal|single molecule|metal junctions involving conjugated metal–terpyridyl complexes; potential-dependent conductances of complexes [M(pyterpy)2]2+(M = Co and Fe; pyterpy = 4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine) in ionic liquid

    Chappell, Sarah; Brooke, Carly; Nichols, Richard John

    2016-01-01

    Extensive studies of various families of conjugated molecules in metal|molecule|metal junctions suggest that the mechanism of conductance is usually tunnelling for molecular lengths < ca. 4 nm, and that for longer molecules, coherence is lost as a hopping element becomes more significant. In this...

  6. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    Holmlid, Leif, E-mail: holmlid@chem.gu.se [Atmospheric Science, Department of Chemistry, University of Gothenburg, SE-412 96 Göteborg (Sweden); Kotzias, Bernhard [Airbus DS, Department Mechanical Engineering, D28199 Bremen (Germany)

    2016-04-15

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H{sub 2N}(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H{sub 4}(0) and H{sub 3}(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H{sub 2N}(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

  7. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    Holmlid, Leif; Kotzias, Bernhard

    2016-01-01

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H_2_N(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H_4(0) and H_3(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H_2_N(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

  8. Coulomb frustration of the multiphoton ionization of metallic clusters under intense EUV FEL evidenced by ion spectrometry

    Mazza, T; Devetta, M; Milani, P; Motomura, K; Liu, X-J; Fukuzawa, H; Yamada, A; Nagaya, K; Iwayama, H; Sugishima, A; Mizoguchi, Y; Saito, N; Coreno, M; Nagasono, M; Tono, K; Togashi, T; Kimura, H; Okunishi, M; Fennel, Th; Senba, Y

    2015-01-01

    Free electron laser light sources delivering high intensity pulses of short wavelength radiation are opening novel possibilities for the investigation of matter at the nanoscale and for the discovery and understanding of new physical processes occurring at the exotic transient states they make accessible. Strong ionization of atomic constituents of a nano-sized sample is a representative example of such processes and the understanding of ionization dynamics is crucial for a realistic description of the experiments. We report here on multiple ionization experiments on free clusters of titanium, a high cohesive energy metal. The time of flight ion spectra reveal a saturation of the cluster ionization at ∼10 16 photons per pulse per cm 2 . Our results also show a clear lack of any explosion process, opposite to what is observed for a rare-gas cluster under similar conditions. A simple and generalized multi-step ionization model including Coulomb frustration of the photoemission process effectively reproduces with a good agreement the main features of the experimental observation and points to an interpretation of the data involving a substantial energy deposition into the cluster through electronic system heating upon scattering events within photoemission. (paper)

  9. Quantum size correction to the work function and the centroid of excess charge in positively ionized simple metal clusters

    M. Payami

    2003-12-01

    Full Text Available  In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different values . For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes in the framework of local spin-density approximation and stabilized jellium model (SJM as well as simple jellium model (JM with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere.

  10. Quantum size correction to the work function and centroid of excess charge in positively ionized simple metal clusters

    Payami, M.

    2004-01-01

    In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different r s values (2≤ r s ≥ 7). For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes 2≤ N ≥100 in the framework of local spin-density approximation and stabilized jellium model as well as simple jellium model with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere

  11. Arrays of Size-Selected Metal Nanoparticles Formed by Cluster Ion Beam Technique

    Ceynowa, F. A.; Chirumamilla, Manohar; Zenin, Volodymyr

    2018-01-01

    Deposition of size-selected copper and silver nanoparticles (NPs) on polymers using cluster beam technique is studied. It is shown that ratio of particle embedment in the film can be controlled by simple thermal annealing. Combining electron beam lithography, cluster beam deposition, and heat...... with required configurations which can be applied for wave-guiding, resonators, in sensor technologies, and surface enhanced Raman scattering....

  12. Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals

    Xu Donghua; Wirth, Brian D.; Li Meimei; Kirk, Marquis A.

    2012-01-01

    We present a combinatorial approach that integrates state-of-the-art transmission electron microscopy (TEM) in situ irradiation experiments and high-performance computing techniques to study irradiation defect dynamics in metals. Here, we have studied the evolution of visible defect clusters in nanometer-thick molybdenum foils under 1 MeV krypton ion irradiation at 80 °C through both cluster dynamics modeling and in situ TEM experiments. The experimental details are reported elsewhere; we focus here on the details of model construction and comparing the model with the experiments. The model incorporates continuous production of point defects and/or small clusters, and the accompanying interactions, which include clustering, recombination and loss to the surfaces that result from the diffusion of the mobile defects. To account for the strong surface effect in thin TEM foils, the model includes one-dimensional spatial dependence along the foil depth, and explicitly treats the surfaces as black sinks. The rich amount of data (cluster number density and size distribution at a variety of foil thickness, irradiation dose and dose rate) offered by the advanced in situ experiments has allowed close comparisons with computer modeling and permitted significant validation and optimization of the model in terms of both physical model construct (damage production mode, identities of mobile defects) and parameterization (diffusivities of mobile defects). The optimized model exhibits good qualitative and quantitative agreement with the in situ TEM experiments. The combinatorial approach is expected to bring a unique opportunity for the study of radiation damage in structural materials.

  13. Electronic and magnetic properties of 3d-metal trioxides superhalogen cluster-doped monolayer MoS2: A first-principles study

    Li, Dan; Niu, Yuan; Zhao, Hongmin; Liang, Chunjun; He, Zhiqun

    2014-01-01

    Utilizing first-principle calculations, the structural, electronic, and magnetic properties of monolayer MoS 2 doped with 3d transition-metal (TM) atoms and 3d-metal trioxides (TMO 3 ) superhalogen clusters are investigated. 3d-metal TMO 3 superhalogen cluster-doped monolayers MoS 2 almost have negative formation energies except CoO 3 and NiO 3 doped monolayer MoS 2 , which are much lower than those of 3d TM-doped structures. 3d-metal TMO 3 superhalogen clusters are more easily embedded in monolayer MoS 2 than 3d-metal atoms. MnO 3 , FeO 3 , CoO 3 , and NiO 3 incorporated into monolayer MoS 2 are magnetic, and the total magnetic moments are approximately 1.0, 2.0, 3.0, and 4.0 μB per supercell, respectively. MnO 3 and FeO 3 incorporated into monolayer MoS 2 become semiconductors, whereas CoO 3 and NiO 3 incorporated into monolayer MoS 2 become half-metallic. Our studies demonstrate that the half-metallic ferromagnetic nature of 3d-metal TMO 3 superhalogen clusters-doped monolayer MoS 2 has a great potential for MoS 2 -based spintronic device applications. -- Highlights: •TMO 3 superhalogen clusters incorporated into monolayer MoS 2 were investigated. •TMO 3 doped structures have much lower formation energies than TM doped structures. •TMO 3 cluster-doped MoS 2 are thermodynamically favored. •Significant charge transfers between O atoms and Mo atoms in TMO 3 doped structures. •MnO 3 , FeO 3 , CoO 3 , and NiO 3 incorporated into monolayer MoS 2 are magnetic.

  14. Crystalline self-assembly of organic molecules with metal ions at the air-aqueous solution interface. A grazing incidence X-ray scattering study

    Weissbuch, I.; Buller, R.; Kjær, K.

    2002-01-01

    The advent of intense X-rays from synchrotron sources made possible to probe, at the molecular level, the structural aspects of self-assemblies generated at interfaces. Here we present the two-dimensional (2-D) packing arrangements of two-, three- and multi-component organo-metallic self......-assemblies formed via interfacial reaction at the air-aqueous solution interface, as determined by grazing incidence X-ray diffraction (GIRD) and X-ray specular reflectivity techniques. GIXD yields structural information on the crystalline part of the Langmuir film, including the ions and counterions lateral order...... of metal ions bound to the polar head groups of amphipilic molecules; use of bolaamphiphiles to generate oriented thin films with metal ions arranged in periodic layers; delineation of differences in the lateral organization of metal ions at interfaces as induced by racemates and enantiomerically pure...

  15. Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules

    Coppe, Jean-Philippe; Xu Zhida; Chen Yi; Logan Liu, G

    2011-01-01

    Molecular probe arrays printed on solid surfaces such as DNA, peptide, and protein microarrays are widely used in chemical and biomedical applications especially genomic and proteomic studies (Pollack et al 1999 Nat. Genet. 23 41-6, Houseman et al 2002 Nat. Biotechnol. 20 270-4, Sauer et al 2005 Nat. Rev. Genet. 6 465-76) as well as surface imaging and spectroscopy (Mori et al 2008 Anal. Biochem. 375 223-31, Liu et al 2006 Nat. Nanotechnol. 1 47-52, Liu 2010 IEEE J. Sel. Top. Quantum Electron. 16 662-71). Unfortunately the printed molecular spots on solid surfaces often suffer low distribution uniformity due to the lingering 'coffee stain' (Deegan et al 1997 Nature 389 827-9) problem of molecular accumulations and blotches, especially around the edge of deposition spots caused by solvent evaporation and convection processes. Here we present, without any surface chemistry modification, a unique solid surface of high-aspect-ratio silver-coated silicon nanocone arrays that allows highly uniform molecular deposition and thus subsequent uniform optical imaging and spectroscopic molecular detection. Both fluorescent Rhodamine dye molecules and unlabeled oligopeptides are printed on the metallic nanocone photonic substrate surface as circular spot arrays. In comparison with the printed results on ordinary glass slides and silver-coated glass slides, not only high printing density but uniform molecular distribution in every deposited spot is achieved. The high-uniformity and repeatability of molecular depositions on the 'coffee stain'-free nanocone surface is confirmed by laser scanning fluorescence imaging and surface enhanced Raman imaging experiments. The physical mechanism for the uniform molecular deposition is attributed to the superhydrophobicity and localized pinned liquid-solid-air interface on the silver-coated silicon nanocone surface. The unique surface properties of the presented nanocone surface enabled high-density, high-uniformity probe spotting beneficial

  16. On the applicability of deformed jellium model to the description of metal clusters

    Lyalin, Andrey G.; Matveentsev, Anton; Solov'yov, Ilia

    2003-01-01

    -density approximation deformed jellium model we have calculated the binding energies per atom, ionization potentials, deformation parameters and the optimized values of the Wigner-Seitz radii for neutral and singly charged sodium clusters with the number of atoms $N0$. These characteristics are compared...... shape deformations in the formation cluster properties and the quite reasonable level of applicability of the deformed jellium model.......This work is devoted to the elucidation the applicability of jellium model to the description of alkali cluster properties on the basis of comparison the jellium model results with those derived from experiment and within ab initio theoretical framework. On the basis of the Hartree-Fock and local...

  17. The thermodynamic study of alkali metal clusters, and gaseous molecules in the lithium hydride, oxide and cyanide systems

    Wu, C.H.

    1983-11-01

    Thermodynamic properties have been evaluated by the third law or second law method using the equilibrium constant measured by mass spectrometry of the species in an effurate from a Knudsen cell. (GG) [de

  18. Metal cluster cation reactions: Carbon monoxide association to Cu + n ions

    Leuchtner, R. E.; Harms, A. C.; Castleman, A. W., Jr.

    1990-06-01

    Copper cluster cations (Cu+n,n=1-14) were produced in a laser vaporization/flow tube apparatus and equilibrated to room temperature. The association rate constants of carbon monoxide onto these ions were measured; low-pressure, termolecular behavior was observed for the smaller species while for clusters greater than Cu+7, the longer lifetimes due to the increased number of degrees of freedom leads to pressure independence (>0.3 Torr) of the effective bimolecular rates. Unimolecular decay theory (RRKM) is used to explain the overall trend and when intrinsic surface site reactivity is taken into account, excellent agreement with measured reactivity is obtained.

  19. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films

    Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, Stéphane; Ohashi, Naoki

    2016-01-01

    The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth elements. The luminescence properties of solution and dip-coated films were investigated. The luminescence of such a system is strongly dependent on the ratios between ZnO and CMIF amounts, the excitation wavelength and the nature of the system. By varying these two parameters (ratio and wavelength), a large variety of colors, from blue to red as well as white, can be achieved. In addition, differences in the luminescence properties have been observed between solutions and thin films as well as changes of CMIF emission band maximum wavelength. This may suggest some possible interactions between the different luminophore centers, such as energy transfer or ligands exchange on the Mo6 clusters.

  20. Density functional study of structural and catalytic properties of free and supported metal nano cluster; Dichtefunktionalstudie der strukturellen und katalytischen Eigenschaften freier und getraegerter Metallnanocluster

    Huber, B.

    2007-04-11

    The structural and catalytic properties of metal clusters were determined in the framework of density functional theory. The first part of this work investigates the electronic and geometrical structure of sodium clusters with up to 309 atoms. The ground-state structures of the clusters are determined and the corresponding electronic density of states is compared to experimental photoelectron spectras. The excellent agreement to the experimental results indicates that the correct growth motive of the sodium clusters was found. Small clusters from Na{sup -}{sub 20} to Na{sup -}{sub 42} prefer pentagonal and icosahedral structures with anti-Mackay overlayers, while clusters larger than Na{sup -}{sub 50} prefer icosahedral structures with Mackay overlayers. Clusters between the closed-shell Mackay Clusters often exhibit a twist deformation with respect to the regular Mackay positions. The second part of this work investigates the catalytic properties of free and supported palladium clusters. For both cases the oxidation of small Pd{sub N} clusters (N {<=} 9) was studied. It turned out that MgO supported Pd-clusters dissociate oxygen with a significant lower reaction energy than free clusters or supported systems with particles consisting of several thousands of atoms. The reaction with oxygen transforms the non-crystalline Pd-clusters into crystalline Pd{sub x}O{sub y} nano-oxide clusters that are in epitaxy with the underlying support. Simulations of the CO oxidation on the Pd{sub x}O{sub y} cluster predict a low-temperature reaction mechanism. By calculating the electronic density of states and CO stretch frequencies, different ways of verifying the results experimentally are discussed. (orig.)

  1. Tuning dispersion correction in DFT-D2 for metal-molecule interactions: A tailored reparameterization strategy for the adsorption of aromatic systems on Ag(1 1 1)

    Schiavo, Eduardo; Muñoz-García, Ana B.; Barone, Vincenzo; Vittadini, Andrea; Casarin, Maurizio; Forrer, Daniel; Pavone, Michele

    2018-02-01

    Common local and semi-local density functionals poorly describe the molecular physisorption on metal surfaces due to the lack of dispersion interactions. In the last decade, several correction schemes have been proposed to amend this fundamental flaw of Density Functional Theory. Using the prototypical case of aromatic molecules adsorbed on Ag(1 1 1), we discuss the accuracy of different dispersion-correction methods and present a reparameterization strategy for the simple and effective DFT-D2. For the adsorption of different aromatic systems on the same metallic substrate, good results at feasible computational costs are achieved by means of a fitting procedure against MP2 data.

  2. Oxygen abundances in halo giants. I - Giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field

    Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.

    1991-12-01

    Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.

  3. Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Framework.

    Ikuno, Takaaki; Zheng, Jian; Vjunov, Aleksei; Sanchez-Sanchez, Maricruz; Ortuño, Manuel A; Pahls, Dale R; Fulton, John L; Camaioni, Donald M; Li, Zhanyong; Ray, Debmalya; Mehdi, B Layla; Browning, Nigel D; Farha, Omar K; Hupp, Joseph T; Cramer, Christopher J; Gagliardi, Laura; Lercher, Johannes A

    2017-08-02

    Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu + and ∼85% Cu 2+ . The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu 2+ to Cu + . The products, methanol, dimethyl ether, and CO 2 , were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.

  4. New insights into the origin and evolution of the old, metal-rich open cluster NGC 6791

    Martinez-Medina, Luis A.; Gieles, Mark; Pichardo, Barbara; Peimbert, Antonio

    2018-02-01

    NGC 6791 is one of the most studied open clusters, it is massive (˜5000 M⊙), located at the solar circle, old (˜8 Gyr) and yet the most metal-rich cluster ([Fe/H] ≃ 0.4) known in the Milky Way. By performing an orbital analysis within a Galactic model including spiral arms and a bar, we found that it is plausible that NGC 6791 formed in the inner thin disc or in the bulge, and later displaced by radial migration to its current orbit. We apply different tools to simulate NGC 6791, including direct N-body summation in time-varying potentials, to test its survivability when going through different Galactic environments. In order to survive the 8-Gyr journey moving on a migrating orbit, NGC 6791 must have been more massive, M0 ≥ 5 × 104 M⊙, when formed. We find independent confirmation of this initial mass in the stellar mass function, which is observed to be flat; this can only be explained if the average tidal field strength experienced by the cluster is stronger than what it is at its current orbit. Therefore, the birth place and journeys of NGC 6791 are imprinted in its chemical composition, in its mass-loss and in its flat stellar mass function, supporting its origin in the inner thin disc or in the bulge.

  5. DNA-Protected Silver Clusters for Nanophotonics

    Elisabeth Gwinn

    2015-02-01

    Full Text Available DNA-protected silver clusters (AgN-DNA possess unique fluorescence properties that depend on the specific DNA template that stabilizes the cluster. They exhibit peak emission wavelengths that range across the visible and near-IR spectrum. This wide color palette, combined with low toxicity, high fluorescence quantum yields of some clusters, low synthesis costs, small cluster sizes and compatibility with DNA are enabling many applications that employ AgN-DNA. Here we review what is known about the underlying composition and structure of AgN-DNA, and how these relate to the optical properties of these fascinating, hybrid biomolecule-metal cluster nanomaterials. We place AgN-DNA in the general context of ligand-stabilized metal clusters and compare their properties to those of other noble metal clusters stabilized by small molecule ligands. The methods used to isolate pure AgN-DNA for analysis of composition and for studies of solution and single-emitter optical properties are discussed. We give a brief overview of structurally sensitive chiroptical studies, both theoretical and experimental, and review experiments on bringing silver clusters of distinct size and color into nanoscale DNA assemblies. Progress towards using DNA scaffolds to assemble multi-cluster arrays is also reviewed.

  6. Communication: IR spectroscopy of neutral transition metal clusters through thermionic emission

    Lapoutre, V. J. F.; Haertelt, M.; Meijer, G.; Fielicke, A.; Bakker, J. M.

    2013-01-01

    The resonant multiple photon excitation of neutral niobium clusters using tunable infrared (IR) radiation leads to thermionic emission. By measuring the mass-resolved ionization yield as a function of IR wavenumber species selective IR spectra are obtained for Nb-n (n = 5-20) over the 200-350 cm(-1)

  7. Chemical Bonding of Transition-Metal Co13 Clusters with Graphene.

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2015-12-01

    We carried out density functional calculations to study the adsorption of Co13 clusters on graphene. Several free isomers were deposited at different positions with respect to the hexagonal lattice nodes, allowing us to study even the hcp 2d isomer, which was recently obtained as the most stable one. Surprisingly, the Co13 clusters attached to graphene prefer icosahedron-like structures in which the low-lying isomer is much distorted; in such structures, they are linked with more bonds than those reported in previous works. For any isomer, the most stable position binds to graphene by the Co atoms that can lose electrons. We find that the charge transfer between graphene and the clusters is small enough to conclude that the Co-graphene binding is not ionic-like but chemical. Besides, the same order of stability among the different isomers on doped graphene is kept. These findings could also be of interest for magnetic clusters on graphenic nanostructures such as ribbons and nanotubes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Non-Linear Optically Active Metal Clusters in Nanoscaled Systems Including Self-Assembled Organic Films

    Balzer, Frank; Jett, S. D.; Rubahn, Horst-Günter

    2000-01-01

    are initially monitored in ultrahigh vacuum by comparison of calculated with measured polarization-dependent extinction spectra. We find that at low surface temperatures (150 K) the cluster growth is very similar to growth directly on insulating substrates. With increasing surface temperature the size...

  9. Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate.

    Soe, We-Hyo; Manzano, Carlos; Renaud, Nicolas; de Mendoza, Paula; De Sarkar, Abir; Ample, Francisco; Hliwa, Mohamed; Echavarren, Antonio M; Chandrasekhar, Natarajan; Joachim, Christian

    2011-02-22

    Quantum states of a trinaphthylene molecule were manipulated by putting its naphthyl branches in contact with single Au atoms. One Au atom carries 1-bit of classical information input that is converted into quantum information throughout the molecule. The Au-trinaphthylene electronic interactions give rise to measurable energy shifts of the molecular electronic states demonstrating a NOR logic gate functionality. The NOR truth table of the single molecule logic gate was characterized by means of scanning tunnelling spectroscopy.

  10. Cluster-cluster clustering

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  11. Electron Accumulative Molecules.

    Buades, Ana B; Sanchez Arderiu, Víctor; Olid-Britos, David; Viñas, Clara; Sillanpää, Reijo; Haukka, Matti; Fontrodona, Xavier; Paradinas, Markos; Ocal, Carmen; Teixidor, Francesc

    2018-02-28

    With the goal to produce molecules with high electron accepting capacity and low reorganization energy upon gaining one or more electrons, a synthesis procedure leading to the formation of a B-N(aromatic) bond in a cluster has been developed. The research was focused on the development of a molecular structure able to accept and release a specific number of electrons without decomposing or change in its structural arrangement. The synthetic procedure consists of a parallel decomposition reaction to generate a reactive electrophile and a synthesis reaction to generate the B-N(aromatic) bond. This procedure has paved the way to produce the metallacarboranylviologen [M(C 2 B 9 H 11 )(C 2 B 9 H 10 )-NC 5 H 4 -C 5 H 4 N-M'(C 2 B 9 H 11 )(C 2 B 9 H 10 )] (M = M' = Co, Fe and M = Co and M' = Fe) and semi(metallacarboranyl)viologen [3,3'-M(8-(NC 5 H 4 -C 5 H 4 N-1,2-C 2 B 9 H 10 )(1',2'-C 2 B 9 H 11 )] (M = Co, Fe) electron cumulative molecules. These molecules are able to accept up to five electrons and to donate one in single electron steps at accessible potentials and in a reversible way. By targeted synthesis and corresponding electrochemical tests each electron transfer (ET) step has been assigned to specific fragments of the molecules. The molecules have been carefully characterized, and the electronic communication between both metal centers (when this situation applies) has been definitely observed through the coplanarity of both pyridine fragments. The structural characteristics of these molecules imply a low reorganization energy that is a necessary requirement for low energy ET processes. This makes them electronically comparable to fullerenes, but on their side, they have a wide range of possible solvents. The ET from one molecule to another has been clearly demonstrated as well as their self-organizing capacity. We consider that these molecules, thanks to their easy synthesis, ET, self-organizing capacity, wide range of solubility, and easy processability, can

  12. Radial velocities and metallicities from infrared Ca ii triplet spectroscopy of open clusters. II. Berkeley 23, King 1, NGC 559, NGC 6603, and NGC 7245

    Carrera, R.; Casamiquela, L.; Ospina, N.; Balaguer-Núñez, L.; Jordi, C.; Monteagudo, L.

    2015-06-01

    Context. Open clusters are key to studying the formation and evolution of the Galactic disc. However, there is a deficiency of radial velocity and chemical abundance determinations for open clusters in the literature. Aims: We intend to increase the number of determinations of radial velocities and metallicities from spectroscopy for open clusters. Methods: We acquired medium-resolution spectra (R ~ 8000) in the infrared region Ca ii triplet lines (~8500 Å) for several stars in five open clusters with the long-slit IDS spectrograph on the 2.5 m Isaac Newton Telescope (Roque de los Muchachos Observatory, Spain). Radial velocities were obtained by cross-correlation fitting techniques. The relationships available in the literature between the strength of infrared Ca ii lines and metallicity were also used to derive the metallicity for each cluster. Results: We obtain ⟨Vr⟩ = 48.6 ± 3.4, -58.4 ± 6.8, 26.0 ± 4.3, and -65.3 ± 3.2 km s-1 for Berkeley 23, NGC 559, NGC 6603, and NGC 7245, respectively. We found [ Fe/H ] = -0.25 ± 0.14 and -0.15 ± 0.18 for NGC 559 and NGC 7245, respectively. Berkeley 23 has low metallicity, [ Fe/H ] = -0.42 ± 0.13, which is similar to other open clusters in the outskirts of the Galactic disc. In contrast, we derived high metallicity ([ Fe/H ] = +0.43 ± 0.15) for NGC 6603, which places this system among the most metal-rich known open clusters. To our knowledge, this is the first determination of radial velocities and metallicities from spectroscopy for these clusters, except NGC 6603, for which radial velocities had been previously determined. We have also analysed ten stars in the line of sight to King 1. Because of the large dispersion obtained in both radial velocity and metallicity, we cannot be sure that we have sampled true cluster members. Based on observations made with the 2.5 m Isaac Newton Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the

  13. Toward control of the metal-organic interfacial electronic structure in molecular electronics: a first-principles study on self-assembled monolayers of pi-conjugated molecules on noble metals.

    Heimel, Georg; Romaner, Lorenz; Zojer, Egbert; Brédas, Jean-Luc

    2007-04-01

    Self-assembled monolayers (SAMs) of organic molecules provide an important tool to tune the work function of electrodes in plastic electronics and significantly improve device performance. Also, the energetic alignment of the frontier molecular orbitals in the SAM with the Fermi energy of a metal electrode dominates charge transport in single-molecule devices. On the basis of first-principles calculations on SAMs of pi-conjugated molecules on noble metals, we provide a detailed description of the mechanisms that give rise to and intrinsically link these interfacial phenomena at the atomic level. The docking chemistry on the metal side of the SAM determines the level alignment, while chemical modifications on the far side provide an additional, independent handle to modify the substrate work function; both aspects can be tuned over several eV. The comprehensive picture established in this work provides valuable guidelines for controlling charge-carrier injection in organic electronics and current-voltage characteristics in single-molecule devices.

  14. Cluster harvesting by successive reduction of a metal halide with a nonconventional reduction agent: a benefit for the exploration of metal-rich halide systems.

    Ströbele, Markus; Mos, Agnieszka; Meyer, Hans-Jürgen

    2013-06-17

    The preparation of thermally labile compounds is a great temptation in chemistry which requires a careful selection of reaction media and reaction conditions. With a new scanning technique denoted here as Cluster Harvesting, a whole series of metal halide compounds is detected by differential thermal analysis (DTA) in fused silica tubes and structurally characterized by X-ray powder diffraction. Experiments of the reduction of tungsten hexahalides with elemental antimony and iron are presented. A cascade of six compounds is identified during the reduction with antimony, and five compounds or phases are monitored following the reduction with iron. The crystal structure of Fe2W2Cl10 is reported, and two other phases in the Fe-W-Cl system are discussed.

  15. Ab Initio Study of Chemical Reactions of Cold SrF and CaF Molecules with Alkali-Metal and Alkaline-Earth-Metal Atoms: The Implications for Sympathetic Cooling.

    Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon

    2017-06-01

    We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.

  16. Validity of the classical monte carlo method to model the magnetic properties of a large transition-metal cluster: Mn19.

    Lima, Nicola; Caneschi, Andrea; Gatteschi, Dante; Kritikos, Mikael; Westin, L Gunnar

    2006-03-20

    The susceptibility of the large transition-metal cluster [Mn19O12(MOE)14(MOEH)10].MOEH (MOE = OC2H2O-CH3) has been fitted through classical Monte Carlo simulation, and an estimation of the exchange coupling constants has been done. With these results, it has been possible to perform a full-matrix diagonalization of the cluster core, which was used to provide information on the nature of the low-lying levels.

  17. Probing Interactions of N-Donor Molecules with Open Metal Sites within Paramagnetic Cr-MIL-101: A Solid-State NMR Spectroscopic and Density Functional Theory Study.

    Wittmann, Thomas; Mondal, Arobendo; Tschense, Carsten B L; Wittmann, Johannes J; Klimm, Ottokar; Siegel, Renée; Corzilius, Björn; Weber, Birgit; Kaupp, Martin; Senker, Juergen

    2018-02-14

    Understanding host-guest interactions is one of the key requirements for adjusting properties in metal-organic frameworks (MOFs). In particular, systems with coordinatively unsaturated Lewis acidic metal sites feature highly selective adsorption processes. This is attributed to strong interactions with Lewis basic guest molecules. Here we show that a combination of 13 C MAS NMR spectroscopy with state-of-the-art density functional theory (DFT) calculations allows one to unravel the interactions of water, 2-aminopyridine, 3-aminopyridine, and diethylamine with the open metal sites in Cr-MIL-101. The 13 C MAS NMR spectra, obtained with ultrafast magic-angle spinning, are well resolved, with resonances distributed over 1000 ppm. They present a clear signature for each guest at the open metal sites. Based on competition experiments this leads to the following binding preference: water open metal sites, the NMR data offer additional information about the guest and framework dynamics. We expect that our strategy has the potential for probing the binding situation of adsorbate mixtures at the open metal sites of MOFs in general and thus accesses the microscopic interaction mechanisms for this important material class, which is essential for deriving structure-property relationships.

  18. Probing the role of metal cations on the aggregation behavior of amyloid β-peptide at a single molecule level by AFM

    Xie, Yang; Wang, Jianhua, E-mail: wjh@cqu.edu.cn; Liu, Chundong [Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering (China)

    2016-09-15

    With the development of nanotechnology, understanding of intermolecular interactions on a single molecule level by atomic force spectroscopy (AFM) has played an important role in molecular biology and biomedical science. In recent years, some research suggested that the presence of metal cations is an important regulator in the processes of misfolding and aggregation of the amyloid β-protein (Aβ), which may be an important etiological factor of Alzheimer’s disease. However, the knowledge on the principle of interactions between Aβ and metal cations at the single molecule level is still poor understood. In this paper, the amyloid β-protein (Aβ) was fabricated on substrate of mixed thiol-modified gold nanoparticles using self-assembled monolayer method and the adhesion force in the longitudinal direction between metal cations and Aβ42 were investigated by AFM. The role of metal ions on Aβ aggregation is discussed from the perspective of single molecular force. The force results showed that the specific adhesion force F{sub i} and the nonspecific force F{sub 0} between a single Aβ–Aβ pair in control experiment were calculated as 42 ± 3 and 80 pN, respectively. However, F{sub i} between a single Aβ–Aβ pair in the presence of Cu{sup 2+}, Zn{sup 2+}, Ca{sup 2+} and Al{sup 3+} increased dramatically to 84 ± 6, 89 ± 3, 73 ± 5, 95 ± 5 pN successively, which indicated that unbinding between Aβ proteins is accelerated in the presence of metal cations. What is more, the imaging results showed that substoichiometric copper cations accelerate the formation of fibrils within 3 days. The combined atomic force spectroscopy and imaging analysis indicate that metal cations play a role in promoting the aggregating behavior of Aβ42.

  19. Probing the role of metal cations on the aggregation behavior of amyloid β-peptide at a single molecule level by AFM

    Xie, Yang; Wang, Jianhua; Liu, Chundong

    2016-09-01

    With the development of nanotechnology, understanding of intermolecular interactions on a single molecule level by atomic force spectroscopy (AFM) has played an important role in molecular biology and biomedical science. In recent years, some research suggested that the presence of metal cations is an important regulator in the processes of misfolding and aggregation of the amyloid β-protein (Aβ), which may be an important etiological factor of Alzheimer's disease. However, the knowledge on the principle of interactions between Aβ and metal cations at the single molecule level is still poor understood. In this paper, the amyloid β-protein (Aβ) was fabricated on substrate of mixed thiol-modified gold nanoparticles using self-assembled monolayer method and the adhesion force in the longitudinal direction between metal cations and Aβ42 were investigated by AFM. The role of metal ions on Aβ aggregation is discussed from the perspective of single molecular force. The force results showed that the specific adhesion force F i and the nonspecific force F 0 between a single Aβ-Aβ pair in control experiment were calculated as 42 ± 3 and 80 pN, respectively. However, F i between a single Aβ-Aβ pair in the presence of Cu2+, Zn2+, Ca2+ and Al3+ increased dramatically to 84 ± 6, 89 ± 3, 73 ± 5, 95 ± 5 pN successively, which indicated that unbinding between Aβ proteins is accelerated in the presence of metal cations. What is more, the imaging results showed that substoichiometric copper cations accelerate the formation of fibrils within 3 days. The combined atomic force spectroscopy and imaging analysis indicate that metal cations play a role in promoting the aggregating behavior of Aβ42.

  20. Probing the role of metal cations on the aggregation behavior of amyloid β-peptide at a single molecule level by AFM

    Xie, Yang; Wang, Jianhua; Liu, Chundong

    2016-01-01

    With the development of nanotechnology, understanding of intermolecular interactions on a single molecule level by atomic force spectroscopy (AFM) has played an important role in molecular biology and biomedical science. In recent years, some research suggested that the presence of metal cations is an important regulator in the processes of misfolding and aggregation of the amyloid β-protein (Aβ), which may be an important etiological factor of Alzheimer’s disease. However, the knowledge on the principle of interactions between Aβ and metal cations at the single molecule level is still poor understood. In this paper, the amyloid β-protein (Aβ) was fabricated on substrate of mixed thiol-modified gold nanoparticles using self-assembled monolayer method and the adhesion force in the longitudinal direction between metal cations and Aβ42 were investigated by AFM. The role of metal ions on Aβ aggregation is discussed from the perspective of single molecular force. The force results showed that the specific adhesion force F_i and the nonspecific force F_0 between a single Aβ–Aβ pair in control experiment were calculated as 42 ± 3 and 80 pN, respectively. However, F_i between a single Aβ–Aβ pair in the presence of Cu"2"+, Zn"2"+, Ca"2"+ and Al"3"+ increased dramatically to 84 ± 6, 89 ± 3, 73 ± 5, 95 ± 5 pN successively, which indicated that unbinding between Aβ proteins is accelerated in the presence of metal cations. What is more, the imaging results showed that substoichiometric copper cations accelerate the formation of fibrils within 3 days. The combined atomic force spectroscopy and imaging analysis indicate that metal cations play a role in promoting the aggregating behavior of Aβ42.

  1. Structural, electronic and magnetic properties of 3d metal trioxide clusters-doped monolayer graphene: A first-principles study

    Rafique, Muhammad [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); M.U.E.T, S.Z.A.B, Campus Khairpur Mir' s, Sindh (Pakistan); Shuai, Yong, E-mail: shuaiyong1978@gmail.com [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Tan, He-Ping; Hassan, Muhammad [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)

    2017-03-31

    Highlights: • First-principles calculations are performed for TMO{sub 3} cluster-doped and TM atoms adsorbed at three O atoms-doped graphene. • Significant magnetic coupling behavior is observed between TM atoms and neighboring C and O atoms for both cases. • The direction of charge transfer is always from monolayer graphene to TMO{sub 3} clusters incorporated into graphene. • TiO{sub 3} and VO{sub 3} doped structures display dilute magnetic semiconductor behavior. • Five different orbitals (d{sub xy}, d{sub yz}, d{sub z}{sup 2}, d{sub xz} and d{sub x}{sup 2}{sub -y}{sup 2}) of 3d TM atoms give rise to magnetic moments for both cases. - Abstract: We present first-principles density-functional calculations for the structural, electronic and magnetic properties of monolayer graphene doped with 3d (Ti, V, Cr, Fe, Co, Mn and Ni) metal trioxide TMO{sub 3} halogen clusters. In this paper we used two approaches for 3d metal trioxide clusters (i) TMO{sub 3} halogen cluster was embedded in monolayer graphene substituting four carbon (C) atoms (ii) three C atoms were substituted by three oxygen (O) atoms in one graphene ring and TM atom was adsorbed at the hollow site of O atoms substituted graphene ring. All the impurities were tightly bonded in the graphene ring. In first case of TMO{sub 3} doped graphene layer, the bond length between C−O atom was reduced and bond length between TM-O atom was increased. In case of Cr, Fe, Co and Ni atoms substitution in between the O atoms, leads to Fermi level shifting to conduction band thereby causing the Dirac cone to move into valence band, however a band gap appears at high symmetric K-point. In case of TiO{sub 3} and VO{sub 3} substitution, system exhibits semiconductor properties. Interestingly, TiO{sub 3}-substituted system shows dilute magnetic semiconductor behavior with 2.00 μ{sub B} magnetic moment. On the other hand, the substitution of CoO{sub 3}, CrO{sub 3}, FeO{sub 3} and MnO{sub 3} induced 1.015 μ{sub B}, 2

  2. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    Battista, Edmondo; Coluccio, Maria Laura; Alabastri, Alessandro; Barberio, Marianna; Causa, Filippo; Netti, Paolo Antonio; Di Fabrizio, Enzo M.; Gentile, Francesco

    2016-01-01

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  3. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    Battista, Edmondo

    2016-12-15

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  4. Molecular dynamics simulations with electronic stopping can reproduce experimental sputtering yields of metals impacted by large cluster ions

    Tian, Jiting; Zhou, Wei; Feng, Qijie; Zheng, Jian

    2018-03-01

    An unsolved problem in research of sputtering from metals induced by energetic large cluster ions is that molecular dynamics (MD) simulations often produce sputtering yields much higher than experimental results. Different from the previous simulations considering only elastic atomic interactions (nuclear stopping), here we incorporate inelastic electrons-atoms interactions (electronic stopping, ES) into MD simulations using a friction model. In this way we have simulated continuous 45° impacts of 10-20 keV C60 on a Ag(111) surface, and found that the calculated sputtering yields can be very close to the experimental results when the model parameter is appropriately assigned. Conversely, when we ignore the effect of ES, the yields are much higher, just like the previous studies. We further expand our research to the sputtering of Au induced by continuous keV C60 or Ar100 bombardments, and obtain quite similar results. Our study indicates that the gap between the experimental and the simulated sputtering yields is probably induced by the ignorance of ES in the simulations, and that a careful treatment of this issue is important for simulations of cluster-ion-induced sputtering, especially for those aiming to compare with experiments.

  5. Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation

    Nakasuji, Toshiki, E-mail: t-nakasuji@iae.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Morishita, Kazunori [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Ruan, Xiaoyong [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2017-02-15

    Highlights: • Monte-Carlo simulations were performed to investigate the nucleation process of copper-vacancy clusters in Fe. • Nucleation paths were obtained as a function of temperature and the damage rate. - Abstract: A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP’s composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.

  6. Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation

    Nakasuji, Toshiki; Morishita, Kazunori; Ruan, Xiaoyong

    2017-01-01

    Highlights: • Monte-Carlo simulations were performed to investigate the nucleation process of copper-vacancy clusters in Fe. • Nucleation paths were obtained as a function of temperature and the damage rate. - Abstract: A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP’s composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.

  7. VizieR Online Data Catalog: Ages and metallicities for M31 star clusters (Fan+, 2016)

    Fan, Z.; de Grijs, R.; Chen, B.; Jiang, L.; Bian, F.; Li, Z.

    2017-05-01

    We have selected 22 confirmed M31 globular clusters from Peacock et al. 2010 (Cat. J/MNRAS/402/803). Spectroscopic observations were carried out with the 6.5m MMT/Red Channel Spectrograph from 2010 October 31 to 2010 November 2 and on 2011 November 4. The telescope is located on Mt. Hopkins in Arizona (USA) at an altitude of 2581m. The exposure times used ranged from 480-1800s, depending on the cluster brightness. The median seeing was ~0.98'' and we adopted a slit aperture of 0.75''*180''. The CCD's size is 450*1032 pixels2. It is characterized by a gain of 1.3e- ADU-1, with a readout noise of 3.5e-. A grating with 600l/mm with a blaze 1st/4800 was used. The spectral resolution was R=960 for a slit of 1'' and a central wavelength of 4701Å; the dispersion was 1.63Å/pixel. (7 data files).

  8. The emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on gamma-Al2O3.

    Sanchez, Sergio I; Menard, Laurent D; Bram, Ariella; Kang, Joo H; Small, Matthew W; Nuzzo, Ralph G; Frenkel, Anatoly I

    2009-05-27

    The structural dynamics-cluster size and adsorbate-dependent thermal behaviors of the metal-metal (M-M) bond distances and interatomic order-of Pt nanoclusters supported on a gamma-Al(2)O(3) are described. Data from scanning transmission electron microscopy (STEM) and X-ray absorption spectroscopy (XAS) studies reveal that these materials possess a dramatically nonbulklike nature. Under an inert atmosphere small, subnanometer Pt/gamma-Al(2)O(3) clusters exhibit marked relaxations of the M-M bond distances, negative thermal expansion (NTE) with an average linear thermal expansion coefficient alpha = (-2.4 +/- 0.4) x 10(-5) K(-1), large static disorder and dynamical bond (interatomic) disorder that is poorly modeled within the constraints of classical theory. The data further demonstrate a significant temperature-dependence to the electronic structure of the Pt clusters, thereby suggesting the necessity of an active model to describe the cluster/support interactions mediating the cluster's dynamical structure. The quantitative dependences of these nonbulklike behaviors on cluster size (0.9 to 2.9 nm), ambient atmosphere (He, 4% H(2) in He or 20% O(2) in He) and support identity (gamma-Al(2)O(3) or carbon black) are systematically investigated. We show that the nonbulk structural, electronic and dynamical perturbations are most dramatically evidenced for the smallest clusters. The adsorption of hydrogen on the clusters leads to an increase of the Pt-Pt bondlengths (due to a lifting of the surface relaxation) and significant attenuation of the disorder present in the system. Oxidation of these same clusters has the opposite effect, leading to an increase in Pt-Pt bond strain and subsequent enhancement in nonbulklike thermal properties. The structural and electronic properties of Pt nanoclusters supported on carbon black contrast markedly with those of the Pt/gamma-Al(2)O(3) samples in that neither NTE nor comparable levels of atomic disorder are observed. The Pt

  9. Optoelectronic figure of merit of a metal nanoparticle—quantum dot (MNP-QD) hybrid molecule for assessing its suitability for sensing applications

    Hapuarachchi, Harini; Mallawaarachchi, Sudaraka; Hattori, Haroldo T.; Zhu, Weiren; Premaratne, Malin

    2018-02-01

    Recently, many have studied various configurations of metal nanoparticle-quantum dot (MNP-QD) hybrid molecules based on different metals and tunable parameters. In this paper, we aim to incite the interest in using MNP-QD nanohybrids, which possess sensing capabilities superior to those of the individual constituents, for sensing applications that rely on scattered light. When assessing whether a given MNP-QD configuration is suited for an application, sometimes it is hard to assess the pros and cons of a given configuration against other candidates. Here we propose a simple, elegant relative figure of merit (RFoM), which focuses on maximizing the scattered intensity and the refractive index sensitivity of the nanohybrid, to rank the suitability of viable MNP-QD configurations for a particular sensing application. We use the proposed RFoM to analyse the optical spectra of noble, transition, post transition and alkali metal based MNP-QD nanohybrids using the representative metals Au, Ag, Cu, Al and Na, adopting a generalized nonlocal optical response (GNOR) method based cavity QED approach. Based on our observations, we suggest how the usage of MNP-QD nanohybrids could improve the conventionally studied tumour targeting applications. Moreover, we propose potential substitutes for noble metals conventionally considered for MNP-QD nanohybrids.

  10. MASS-TO-LIGHT RATIOS FOR M31 GLOBULAR CLUSTERS: AGE DATING AND A SURPRISING METALLICITY TREND

    Strader, Jay; Huchra, John P.; Smith, Graeme H.; Brodie, Jean P.; Larsen, Soeren

    2009-01-01

    We have obtained velocity dispersions from Keck high-resolution integrated spectroscopy of 10 M31 globular clusters (GCs), including three candidate intermediate-age GCs. We show that these candidates have the same V-band mass-to-light (M/L V ) ratios as the other GCs, implying that they are likely to be old. We also find a trend of derived velocity dispersion with wavelength, but cannot distinguish between a systematic error and a physical effect. Our new measurements are combined with photometric and spectroscopic data from the literature in a re-analysis of all M31 GC M/L V values. In a combined sample of 27 GCs, we show that the metal-rich GCs have lower M/L V than the metal-poor GCs, in conflict with predictions from stellar population models. Fragmentary data for other galaxies support this observation. The M31 GC fundamental plane is extremely tight, and we follow up an earlier suggestion by Djorgovski to show that the fundamental plane can be used to estimate accurate distances (potentially 10% or better).

  11. Components of the Bond Energy in Polar Diatomic Molecules, Radicals, and Ions Formed by Group-1 and Group-2 Metal Atoms.

    Yu, Haoyu; Truhlar, Donald G

    2015-07-14

    Although many transition metal complexes are known to have high multireference character, the multireference character of main-group closed-shell singlet diatomic molecules like BeF, CaO, and MgO has been less studied. However, many group-1 and group-2 diatomic molecules do have multireference character, and they provide informative systems for studying multireference character because they are simpler than transition metal compounds. The goal of the present work is to understand these multireference systems better so that, ultimately, we can apply what we learn to more complicated multireference systems and to the design of new exchange-correlation functionals for treating multireference systems more adequately. Fourteen main-group diatomic molecules and one triatomic molecule (including radicals, cations, and anions, as well as neutral closed-shell species) have been studied for this article. Eight of these molecules contain a group-1 element, and six contain a group-2 element. Seven of these molecules are multireference systems, and eight of them are single-reference systems. Fifty-three exchange-correlation functionals of 11 types [local spin-density approximation (LSDA), generalized gradient approximation (GGA), nonseparable gradient approximation (NGA), global-hybrid GGA, meta-GGA, meta-NGA, global-hybrid meta GGA, range-separated hybrid GGA, range-separated hybrid meta-GGA, range-separated hybrid meta-NGA, and DFT augmented with molecular mechanics damped dispersion (DFT-D)] and the Hartree-Fock method have been applied to calculate the bond distance, bond dissociation energy (BDE), and dipole moment of these molecules. All of the calculations are converged to a stable solution by allowing the symmetry of the Slater determinant to be broken. A reliable functional should not only predict an accurate BDE but also predict accurate components of the BDE, so each bond dissociation energy has been decomposed into ionization potential (IP) of the electropositive

  12. Structure and binding of molecular clusters of trivalent metal halides in an ionic model

    Akdeniz, Z.; Pastore, G.; Tosi, M.P.

    1997-10-01

    A model of ionic interactions first proposed for the molecular monomers of alkaline earth dihalides (G. Galli and M. P. Tosi, N. Ciemento D 4,413 (1984)) is used in a systematic study of the structure and binding of monomeric and dimeric units of Al, Fe ad Ga chlorides, bromides and iodides. Ionized states obtained by stripping or adding a halogen ion are considered in addition to neutral states. The main motivation for this work comes from recent studies of liquid structure in several of these systems by neutron and X-ray diffraction and Raman scattering. Main attention is consequently given in the present calculations to (i) bond lengths and bond angles in isolated clusters as precursors of local structures in melts, and (ii) stability of local structures against fluctuations into ionized states. The results are discussed in comparison with the available experimental data as well as with the results from Hartree-Fock and density functional calculations. (author)

  13. Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters

    Souza, Fabio A. L. de; Jorge, Francisco E.

    2013-01-01

    A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)

  14. Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters

    Souza, Fabio A. L. de; Jorge, Francisco E., E-mail: jorge@cce.ufes.br [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil)

    2013-07-15

    A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)

  15. Effects of carbonyl bond, metal cluster dissociation, and evaporation rates on predictions of nanotube production in high-pressure carbon monoxide

    Scott, Carl D.; Smalley, Richard E.

    2003-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNTs) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the conformation of CO2. It is shown that the production of CO2 is significantly greater for FeCO because of its lower bond energy as compared with that of NiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  16. Structure and nature of the metal-support interface: characterization of iridium clusters on magnesium oxide by extended x-ray absorption fine structure spectroscopy

    Zon, van F.B.M.; Maloney, S.D.; Gates, B.C.; Koningsberger, D.C.

    1993-01-01

    X-ray absorption spectroscopy was used to characterize the metal-support interface in catalysts consisting of very small Ir clusters of nearly uniform nuclearity on the surface of MgO powder. [Ir4(CO)12] on MgO was converted in high yield into [HIr4(CO)11]- and sep. into [Ir6(CO)15]2-. EXAFS data

  17. Cluster beam injection

    Bottiglioni, F.; Coutant, J.; Fois, M.

    1978-01-01

    Areas of possible applications of cluster injection are discussed. The deposition inside the plasma of molecules, issued from the dissociation of the injected clusters, has been computed. Some empirical scaling laws for the penetration are given

  18. Investigating cluster formation in adsorption of CO2, CH4, and Ar in zeolites and metal organic frameworks at subcritical temperatures

    Krishna, R.; van Baten, J.M.

    2010-01-01

    The critical temperatures, T-c, of CO2, CH4, and Ar are 304 K, 191 K, and 151 K, respectively. This paper highlights some unusual characteristics of adsorption and diffusion of these molecules in microporous structures such as zeolites and metal organic frameworks at temperatures T < T-c. Published

  19. Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence

    Falicov, L.M.; Somorjai, G.A.

    1985-01-01

    Correlation between catalytic activity and low-energy local electronic fluctuation in transition metals is proposed. A theory and calculations are presented which indicate that maximum electronic fluctuants take place at high-coordination metal sites. Either (i) atomically rough surfaces that expose to the reactant molecules atoms with large numbers of nonmagnetic or weakly magnetic neighbors in the first or second layer at the surface or (ii) stepped and kinked surfaces are the most active in carrying out structure-sensitive catalytic reactions. The synthesis of ammonia from N 2 and H 2 over iron and rhenium surfaces, 1 H 2 / 2 H 2 exchange over stepped platinum crystal surfaces at low pressures, and the hydrogenolysis (C - C bond breaking) of isobutane at kinked platinum crystal surfaces are presented as experimental evidence in support of the theory

  20. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies.

    Scivetti, Iván; Persson, Mats

    2017-09-06

    We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals-HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments. This increase of the gap can be rationalised in a simple dielectric model with parameters determined from DFT calculations and is found to be dominated by the image interaction with the metal. We find, however, that this simplified model overestimates the downward shift of the energy gap in the limit of an infinitely thick film.

  1. [Dynamic study of small metallic clusters]; Estudio Dinamico de Pequenos Agregados Metalicos

    Lopez, M.J. [Valladolid Univ. (Spain). Dept. de Fisica Teorica; Jellinek, J. [Argonne National Lab., IL (United States)

    1995-12-31

    We present a brief introduction to computer simulation techniques (particularly to classical molecular dynamics) and their application to the study of the thermodynamic properties of a material system. The basic concepts are illustrated in the study of structural and energetic properties such as the liquid-solid transition and the fragmentation of small clusters of nickel. [Espanol] Presentamos una breve introducci{acute o}n de las t{acute e}cnicas de simulaci{acute o}n por ordenador (en particular de la Din{acute a}mica Molecular cl{acute a}sica) y de su aplicaci{acute o}n al estudio de las propiedades termodin{acute a}micas de un sistema material. Los conceptos b{acute a}sicos se ilustran en el estudio de las propieades estructurales y energ{acute e}ticas, as{acute i} como de la transici{acute o}n de fase s{acute o}lido-l{acute i}quido y de las fragmentaciones de peque{tilde n}os agregados de n{acute i}quel.

  2. Self-consistent meta-generalized gradient approximation study of adsorption of aromatic molecules on noble metal surfaces

    Ferrighi, Lara; Madsen, Georg Kent Hellerup; Hammer, Bjørk

    2011-01-01

    aromatic molecules considered. The adsorption of pentacene is studied on Au, Ag, and Cu surfaces. In agreement with experiment, the adsorption energies are found to increase with decreasing nobleness, but the dependency is underestimated. We point out how the kinetic energy density can discriminate between...

  3. Molecule-Level g-C3N4 Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions

    Zheng, Yao

    2017-02-21

    Organometallic complexes with metal-nitrogen/carbon (M-N/C) coordination are the most important alternatives to precious metal catalysts for oxygen reduction and evolution reactions (ORR and OER) in energy conversion devices. Here, we designed and developed a range of molecule-level graphitic carbon nitride (g-C3N4) coordinated transition metals (M-C3N4) as a new generation of M-N/C catalysts for these oxygen electrode reactions. As a proof-of-concept example, we conducted theoretical evaluation and experimental validation on a cobalt-C3N4 catalyst with a desired molecular configuration, which possesses comparable electrocatalytic activity to that of precious metal benchmarks for the ORR and OER in alkaline media. The correlation of experimental and computational results confirms that this high activity originates from the precise M-N2 coordination in the g-C3N4 matrix. Moreover, the reversible ORR/OER activity trend for a wide variety of M-C3N4 complexes has been constructed to provide guidance for the molecular design of this promising class of catalysts.

  4. Van der Waals potentials between metal clusters and helium atoms obtained with density functional theory and linear response methods

    Liebrecht, M.

    2014-01-01

    The importance of van der Waals interactions in many diverse research fields such as, e. g., polymer science, nano--materials, structural biology, surface science and condensed matter physics created a high demand for efficient and accurate methods that can describe van der Waals interactions from first principles. These methods should be able to deal with large and complex systems to predict functions and properties of materials that are technologically and biologically relevant. Van der Waals interactions arise due to quantum mechanical correlation effects and finding appropriate models an numerical techniques to describe this type of interaction is still an ongoing challenge in electronic structure and condensed matter theory. This thesis introduces a new variational approach to obtain intermolecular interaction potentials between clusters and helium atoms by means of density functional theory and linear response methods. It scales almost linearly with the number of electrons and can therefore be applied to much larger systems than standard quantum chemistry techniques. The main focus of this work is the development of an ab-initio method to account for London dispersion forces, which are purely attractive and dominate the interaction of non--polar atoms and molecules at large distances. (author) [de

  5. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-01

    In this paper, we systematically investigate the electronic structure for the 2 Σ + ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained

  6. Spatial clustering of metal and metalloid mixtures in unregulated water sources on the Navajo Nation - Arizona, New Mexico, and Utah, USA.

    Hoover, Joseph H; Coker, Eric; Barney, Yolanda; Shuey, Chris; Lewis, Johnnye

    2018-08-15

    Contaminant mixtures are identified regularly in public and private drinking water supplies throughout the United States; however, the complex and often correlated nature of mixtures makes identification of relevant combinations challenging. This study employed a Bayesian clustering method to identify subgroups of water sources with similar metal and metalloid profiles. Additionally, a spatial scan statistic assessed spatial clustering of these subgroups and a human health metric was applied to investigate potential for human toxicity. These methods were applied to a dataset comprised of metal and metalloid measurements from unregulated water sources located on the Navajo Nation, in the southwest United States. Results indicated distinct subgroups of water sources with similar contaminant profiles and that some of these subgroups were spatially clustered. Several profiles had metal and metalloid concentrations that may have potential for human toxicity including arsenic, uranium, lead, manganese, and selenium. This approach may be useful for identifying mixtures in water sources, spatially evaluating the clusters, and help inform toxicological research investigating mixtures. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Hydrothermal crystal growth and Vernier structures of the metal benzenedicarboxylates MIL-47 and MIL-53 containing guest molecules of benzenecarboxylic acid

    Wang, Xiqu; Jacobson, Allan J., E-mail: ajjacob@uh.edu

    2016-04-15

    The nanoporous frameworks VO(bdc), MIL-47, and M(OH)(bdc), MIL-53; bdc=1,4-benzenedicarboxylate, can absorb various guest species in their channels. As synthesized, the channels are filled with H{sub 2}bdc molecules that have been reported to be disordered, except for [In(OH)bdc](H{sub 2}bdc){sub 3/4}, 1, which has a inorganic-organic hybrid Vernier structure with the H{sub 2}bdc molecules forming an ordered sublattice. Based on X-ray data from large single crystals grown by hydrothermal techniques, similar Vernier structures have been found for MIL-47, [VO(bdc)](H{sub 2}bdc){sub 5/7}, 2, MIL-53Al, [Al(OH)(bdc)](H{sub 2}bdc){sub 11/16}, 3, and MIL-53Ga, [Ga(OH)(bdc)](H{sub 2}bdc){sub 12/17}, 4. The Vernier structures of 2–4 at room temperature were determined based on superstructure unit cells that index both host and guest sublattices: 2, space group P2{sub 1}, a=23.903(2), b=17.191(2), c=25.722(2) Å, β=105.914(8)°; 3, P2{sub 1}/n, a=105.224(4), b=12.2441(5), c=17.0143(6) Å, β=89.99(1)°; 4, P2{sub 1}, a=114.562(5), b=12.1503(5), c=17.4275(7) Å, β=89.99(1)°. The number of guest H{sub 2}bdc molecules per framework metal ion is determined by the ratio of the repeat distances of the two sublattices which depends on the size of the metal ion in the octahedral chain. The octahedral chains are parallel to [201] in 2, and to [100] in 3 and 4. Remarkably, all atoms in 3 and 4 show significant sinusoidal modulations transverse to the chain axis. - Graphical abstract: The sinusoidal modulation along the channel axis direction involving all atoms in the structure of [Al(OH)(bdc)](H{sub 2}bdc){sub 11/16}. - Highlights: • Crystal growth of MIL-47, MIL-53Al, and MIL-53Ga. • The Vernier structures have corner-sharing MO6 octrahedral chains and chains of H2BDC molecules. • The stoichiometry is determined by the ratio of the host framework to the guest H2BDC column lengths. • A correlation is established between the stoichiometry and the radius of the metal ion

  8. Hydrothermal crystal growth and Vernier structures of the metal benzenedicarboxylates MIL-47 and MIL-53 containing guest molecules of benzenecarboxylic acid

    Wang, Xiqu; Jacobson, Allan J.

    2016-01-01

    The nanoporous frameworks VO(bdc), MIL-47, and M(OH)(bdc), MIL-53; bdc=1,4-benzenedicarboxylate, can absorb various guest species in their channels. As synthesized, the channels are filled with H 2 bdc molecules that have been reported to be disordered, except for [In(OH)bdc](H 2 bdc) 3/4 , 1, which has a inorganic-organic hybrid Vernier structure with the H 2 bdc molecules forming an ordered sublattice. Based on X-ray data from large single crystals grown by hydrothermal techniques, similar Vernier structures have been found for MIL-47, [VO(bdc)](H 2 bdc) 5/7 , 2, MIL-53Al, [Al(OH)(bdc)](H 2 bdc) 11/16 , 3, and MIL-53Ga, [Ga(OH)(bdc)](H 2 bdc) 12/17 , 4. The Vernier structures of 2–4 at room temperature were determined based on superstructure unit cells that index both host and guest sublattices: 2, space group P2 1 , a=23.903(2), b=17.191(2), c=25.722(2) Å, β=105.914(8)°; 3, P2 1 /n, a=105.224(4), b=12.2441(5), c=17.0143(6) Å, β=89.99(1)°; 4, P2 1 , a=114.562(5), b=12.1503(5), c=17.4275(7) Å, β=89.99(1)°. The number of guest H 2 bdc molecules per framework metal ion is determined by the ratio of the repeat distances of the two sublattices which depends on the size of the metal ion in the octahedral chain. The octahedral chains are parallel to [201] in 2, and to [100] in 3 and 4. Remarkably, all atoms in 3 and 4 show significant sinusoidal modulations transverse to the chain axis. - Graphical abstract: The sinusoidal modulation along the channel axis direction involving all atoms in the structure of [Al(OH)(bdc)](H 2 bdc) 11/16 . - Highlights: • Crystal growth of MIL-47, MIL-53Al, and MIL-53Ga. • The Vernier structures have corner-sharing MO6 octrahedral chains and chains of H2BDC molecules. • The stoichiometry is determined by the ratio of the host framework to the guest H2BDC column lengths. • A correlation is established between the stoichiometry and the radius of the metal ion. • All atoms in the Al and Ga compounds show sinusoidal

  9. Gaussian free field in the background of correlated random clusters, formed by metallic nanoparticles

    Cheraghalizadeh, Jafar; Najafi, Morteza N.; Mohammadzadeh, Hossein

    2018-05-01

    The effect of metallic nano-particles (MNPs) on the electrostatic potential of a disordered 2D dielectric media is considered. The disorder in the media is assumed to be white-noise Coulomb impurities with normal distribution. To realize the correlations between the MNPs we have used the Ising model with an artificial temperature T that controls the number of MNPs as well as their correlations. In the T → 0 limit, one retrieves the Gaussian free field (GFF), and in the finite temperature the problem is equivalent to a GFF in iso-potential islands. The problem is argued to be equivalent to a scale-invariant random surface with some critical exponents which vary with T and correspondingly are correlation-dependent. Two type of observables have been considered: local and global quantities. We have observed that the MNPs soften the random potential and reduce its statistical fluctuations. This softening is observed in the local as well as the geometrical quantities. The correlation function of the electrostatic and its total variance are observed to be logarithmic just like the GFF, i.e. the roughness exponent remains zero for all temperatures, whereas the proportionality constants scale with T - T c . The fractal dimension of iso-potential lines ( D f ), the exponent of the distribution function of the gyration radius ( τ r ), and the loop lengths ( τ l ), and also the exponent of the loop Green function x l change in terms of T - T c in a power-law fashion, with some critical exponents reported in the text. Importantly we have observed that D f ( T) - D f ( T c ) 1/√ ξ( T), in which ξ( T) is the spin correlation length in the Ising model.

  10. Metallic oxide nano-clusters synthesis by ion implantation in high purity Fe10Cr alloy

    Zheng, Ce

    2015-01-01

    ODS (Oxide Dispersed Strengthened) steels, which are reinforced with metal dispersions of nano-oxides (based on Y, Ti and O elements), are promising materials for future nuclear reactors. The detailed understanding of the mechanisms involved in the precipitation of these nano-oxides would improve manufacturing and mechanical properties of these ODS steels, with a strong economic impact for their industrialization. To experimentally study these mechanisms, an analytical approach by ion implantation is used, to control various parameters of synthesis of these precipitates as the temperature and concentration. This study demonstrated the feasibility of this method and concerned the behaviour of alloys models (based on aluminium oxide) under thermal annealing. High purity Fe-10Cr alloys were implanted with Al and O ions at room temperature. Transmission electron microscopy observations showed that the nano-oxides appear in the Fe-10Cr matrix upon ion implantation at room temperature without subsequent annealing. The mobility of implanted elements is caused by the defects created during ion implantation, allowing the nucleation of these nanoparticles, of a few nm in diameter. These nanoparticles are composed of aluminium and oxygen, and also chromium. The high-resolution experiments show that their crystallographic structure is that of a non-equilibrium compound of aluminium oxide (cubic γ-Al 2 O 3 type). The heat treatment performed after implantation induces the growth of the nano-sized oxides, and a phase change that tends to balance to the equilibrium structure (hexagonal α-Al 2 O 3 type). These results on model alloys are fully applicable to industrial materials: indeed ion implantation reproduces the conditions of milling and heat treatments are at equivalent temperatures to those of thermo-mechanical treatments. A mechanism involving the precipitation of nano-oxide dispersed in ODS alloys is proposed in this manuscript based on the obtained experimental results

  11. The Gaia-ESO Survey: the present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters

    Spina, L.; Randich, S.; Magrini, L.; Jeffries, R. D.; Friel, E. D.; Sacco, G. G.; Pancino, E.; Bonito, R.; Bravi, L.; Franciosini, E.; Klutsch, A.; Montes, D.; Gilmore, G.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Frasca, A.; Hourihane, A.; Jofré, P.; Lewis, J.; Lind, K.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    Context. The radial metallicity distribution in the Galactic thin disc represents a crucial constraint for modelling disc formation and evolution. Open star clusters allow us to derive both the radial metallicity distribution and its evolution over time. Aims: In this paper we perform the first investigation of the present-day radial metallicity distribution based on [Fe/H] determinations in late type members of pre-main-sequence clusters. Because of their youth, these clusters are therefore essential for tracing the current interstellar medium metallicity. Methods: We used the products of the Gaia-ESO Survey analysis of 12 young regions (age ages is not easily explained by the models. Our results reveal a complex interplay of several processes (e.g. star formation activity, initial mass function, supernova yields, gas flows) that controlled the recent evolution of the Milky Way. Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey).Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A70

  12. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2018-02-01

    The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two

  13. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements.

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2018-02-07

    The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two

  14. Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster.

    Bao, Han; Dilbeck, Preston L; Burnap, Robert L

    2013-10-01

    The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry

  15. Creation, synthesis and characterisation of nitrogenous poly-heterocyclic new molecules for specific complexation of metallic cations

    Dupont, C.

    2010-01-01

    In France, the nuclear waste issued from the industrial reprocessing of spent nuclear fuels (by the PUREX process) are currently vitrified at the La Hague plant, waiting for a final disposal in a deep geological repository. The law voted in June 2006 on the management of highly active nuclear waste plans to look for solutions enabling the separation and transmutation of long-lived radionuclides so as to reduce the quantity and noxiousness of the final nuclear waste. To address this issue, the CEA investigates and elaborates advanced separation processes based on specially designed complexing or extracting molecules to selectively extract minor actinides from PUREX raffinates containing fission products like lanthanides, which are neutron scavengers. BTP or bis-triazinyl-pyridines have been extensively studied at the CEA (and in Europe) for actinides(III)/lanthanides(III) separation. They complex actinides(III) selectively. However, they are sensitive to degradation by hydrolysis and radiolysis. Besides, their separation mechanisms are not well understood, especially the influence of their substituting groups on their complexing and extracting properties. The first part of work reports the syntheses of various BTP and BTBP molecules, differently substituted, as well as a new family of poly-aromatic nitrogen-contained ligands: BPBT, presenting a pyridine/triazine sequence that has never been reported in the literature. The second part is devoted to the physico-chemistry studies of the synthesized molecules, such as the determination of their protonation and complexation constants to describe the influence of different substituting groups. Finally, the last part outlines solvent extraction studies by using these ligands either like extractants or like complexants. (author) [fr

  16. Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy

    Risco, Cristina; Sanmartín-Conesa, Eva; Tzeng, Wen-Pin; Frey, Teryl K.; Seybold, Volker; de Groot, Raoul J.

    2012-01-01

    Summary More than any other methodology, transmission electron microscopy (TEM) has contributed to our understanding of the architecture and organization of cells. With current detection limits approaching atomic resolution, it will ultimately become possible to ultrastructurally image intracellular macromolecular assemblies in situ. Presently, however, methods to unambiguously identify proteins within the crowded environment of the cell’s interior are lagging behind. We describe a novel approach, metal-tagging TEM (METTEM) that allows detection of intracellular proteins in mammalian cells with high specificity, exceptional sensitivity and at molecular scale resolution. In live cells treated with gold salts, proteins bearing a small metal-binding tag will form 1-nm gold nanoclusters, readily detectable in electron micrographs. The applicability and strength of METTEM is demonstrated by a study of Rubella virus replicase and capsid proteins, which revealed virus-induced cell structures not seen before. PMID:22579245

  17. Nuclear magnetic resonance study of the structure of simple molecules adsorbed on metal surfaces: acetylene on platinum

    Wang, P.K.

    1984-01-01

    We have used NMR to determine the structure of acetylene (HC - CH) adsorbed at room temperature on small platinum particles by studying the 13 C- 13 C, 13 C- 1 H, and 1 H- 1 H dipolar interactions among the nuclei in the adsorbed molecules. We find a model of 77% CCH 2 and 23% HCCH to be the only one consistent with all of our data. The C-C bond length of the majority species, CCH 2 , is determined as 1.44 +- 0.02 A, midway between a single and double bond, suggesting that both carbon atoms bond to the surface. 36 references, 29 figures, 1 table

  18. 2012 Gordon Research Conference On Molecular And Ionic Clusters

    McCoy, Anne

    2012-01-01

    The Gordon Research Conference on 'Molecular and Ionic Clusters' focuses on clusters, which are the initial molecular species found in gases when condensation begins to occur. Condensation can take place solely from molecules interacting with each other, mostly at low temperatures, or when molecules condense around charged particles (electrons, protons, metal cations, molecular ions), producing ion molecule clusters. These clusters provide models for solvation, allow a pristine look at geometric as well as electronic structures of molecular complexes or matter in general, their interaction with radiation, their reactivity, their thermodynamic properties and, in particular, the related dynamics. This conference focuses on new ways to make clusters composed of different kinds of molecules, new experimental techniques to investigate the properties of the clusters and new theoretical methods with which to calculate the structures, dynamical motions and energetics of the clusters. Some of the main experimental methods employed include molecular beams, mass spectrometry, laser spectroscopy (from infrared to XUV; in the frequency as well as the time domain) and photoelectron spectroscopy. Techniques include laser absorption spectroscopy, laser induced fluorescence, resonance enhanced photoionization, mass-selected photodissociation, photofragment imaging, ZEKE photoelectron spectroscopy, etc. From the theoretical side, this conference highlights work on potential surfaces and measurable properties of the clusters. The close ties between experiment, theory and computation have been a hallmark of the Gordon Research Conference on Molecular and Ionic Clusters. In the 2012 meeting, we plan to have sessions that will focus on topics including: (1) The use of cluster studies to probe fundamental phenomena; (2) Finite size effects on structure and thermodynamics; (3) Intermolecular forces and cooperative effects; (4) Molecular clusters as models for solvation; and (5) Studies of

  19. Comparison of single-use and reusable metal laryngoscope blades for orotracheal intubation during rapid sequence induction of anesthesia: a multicenter cluster randomized study.

    Amour, Julien; Le Manach, Yannick Le; Borel, Marie; Lenfant, François; Nicolas-Robin, Armelle; Carillion, Aude; Ripart, Jacques; Riou, Bruno; Langeron, Olivier

    2010-02-01

    Single-use metal laryngoscope blades are cheaper and carry a lower risk of infection than reusable metal blades. The authors compared single-use and reusable metal blades during rapid sequence induction of anesthesia in a multicenter cluster randomized trial. One thousand seventy-two adult patients undergoing general anesthesia under emergency conditions and requiring rapid sequence induction were randomly assigned on a weekly basis to either single-use or reusable metal blades (cluster randomization). After induction, a 60-s period was allowed to complete intubation. In the case of failed intubation, a second attempt was performed using the opposite type of blade. The primary endpoint was the rate of failed intubation, and the secondary endpoints were the incidence of complications (oxygen desaturation, lung aspiration, and/or oropharynx trauma) and the Cormack and Lehane score. Both groups were similar in their main characteristics, including the risk factors for difficult intubation. The rate of failed intubation was significantly decreased with single-use metal blades at the first attempt compared with reusable blades (2.8 vs. 5.4%, P < 0.05). In addition, the proportion of grades III and IV in Cormack and Lehane score were also significantly decreased with single-use metal blades (6 vs. 10%, P < 0.05). The global complication rate did not reach statistical significance, although the same trend was noted (6.8% vs. 11.5%, P = not significant). An investigator survey and a measure of illumination pointed that illumination might have been responsible for this result. The single-use metal blade was more efficient than a reusable metal blade in rapid sequence induction of anesthesia.

  20. Single molecule conductance

    Willems, R.

    2008-01-01

    This thesis represents an excursion into the world of molecular electronics, i.e. the field of research trying to use individual (organic) molecules as electronic components; in this work various experimental methods have been explored to connect individual molecules to metallic contacts and