Sample records for metal catalyzed hydrogen

  1. Transition-Metal-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation: Sustainable Chemistry to Access Bioactive Molecules. (United States)

    Ayad, Tahar; Phansavath, Phannarath; Ratovelomanana-Vidal, Virginie


    Over the last few decades, the development of new and highly efficient synthetic methods to obtain chiral compounds has become an increasingly important and challenging research area in modern synthetic organic chemistry. In this account, we review recent work from our laboratory toward the synthesis of valuable chiral building blocks through transition-metal-catalyzed asymmetric hydrogenation and transfer hydrogenation of C=O, C=N and C=C bonds. Application to the synthesis of biologically relevant products is also described. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Transition-metal-catalyzed hydrogen-transfer annulations: access to heterocyclic scaffolds. (United States)

    Nandakumar, Avanashiappan; Midya, Siba Prasad; Landge, Vinod Gokulkrishna; Balaraman, Ekambaram


    The ability of hydrogen-transfer transition-metal catalysts, which enable increasingly rapid access to important structural scaffolds from simple starting materials, has led to a plethora of research efforts on the construction of heterocyclic scaffolds. Transition-metal-catalyzed hydrogen-transfer annulations are environmentally benign and highly atom-economical as they release of water and hydrogen as by-product and utilize renewable feedstock alcohols as starting materials. Recent advances in this field with respect to the annulations of alcohols with various nucleophilic partners, thus leading to the formation of heterocyclic scaffolds, are highlighted herein. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Transition-metal-catalyzed enantioselective heteroatom-hydrogen bond insertion reactions. (United States)

    Zhu, Shou-Fei; Zhou, Qi-Lin


    Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C-X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom-hydrogen bond (X-H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C-X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X-H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C-H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X-H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X-H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N-H insertions of α-diazoesters into anilines, O-H insertions of α-diazoesters into phenols and water, O-H insertions of α-diazophosphonates into alcohols, and S-H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O-H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si-H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X-H insertions have many potential applications in organic synthesis because the insertion products, including chiral

  4. Noble metal catalyzed hydrogen generation from formic acid in nitrite-containing simulated nuclear waste media

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.; Wiemers, K.D.


    Simulants for the Hanford Waste Vitrification Plant (HWVP) feed containing the major non-radioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO 3 2- , NO 3 -, and NO 2 - were used as media to evaluate the stability of formic acid towards hydrogen evolution by the reaction HCO 2 H → H 2 + CO 2 catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Small scale experiments using 40-50 mL of feed simulant in closed glass reactors (250-550 mL total volume) at 80-100 degree C were used to study the effect of nitrite and nitrate ion on the catalytic activities of the noble metals for formic acid decomposition. Reactions were monitored using gas chromatography to analyze the CO 2 , H 2 , NO, and N 2 O in the gas phase as a function of time. Rhodium, which was introduced as soluble RhCl 3 ·3H 2 O, was found to be the most active catalyst for hydrogen generation from formic acid above ∼80 degree C in the presence of nitrite ion in accord with earlier observations. The inherent homogeneous nature of the nitrite-promoted Rh-catalyzed formic acid decomposition is suggested by the approximate pseudo first-order dependence of the hydrogen production rate on Rh concentration. Titration of the typical feed simulants containing carbonate and nitrite with formic acid in the presence of rhodium at the reaction temperature (∼90 degree C) indicates that the nitrite-promoted Rh-catalyzed decomposition of formic acid occurs only after formic acid has reacted with all of the carbonate and nitrite present to form CO 2 and NO/N 2 O, respectively. The catalytic activities of Ru and Pd towards hydrogen generation from formic acid are quite different than those of Rh in that they are inhibited rather than promoted by the presence of nitrite ion

  5. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang


    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  6. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds. (United States)

    Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin


    Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Orientation in metal-catalyzed hydrogen exchange between alkanes, naphthalene, or biphenyl and deuterium or deuterium oxide

    International Nuclear Information System (INIS)

    Long, M.A.; Moyes, R.B.; Wells, P.B.; Garnett, J.L.


    Hydrogen isotope exchange between deuterium gas and protium in hexane, pentane, 2-methyl-butane, 2-methylpentane, 3-methylpentane, 2,3-dimethylbutane, and 2,4-dimethylpentane has been catalyzed by clean platinum films (70--100 0 C). A selection of these reactions has been catalyzed by films of rhodium and iridium (typically -13 to -35 0 C). In all cases, multiple exchange occurred. Product analysis by mass and proton NMR spectroscopy showed that exchange in methylene and methine groups was more rapid than that in methyl groups. A similar orientation effect was observed in reactions over platinum powder but not over platinum-alumina. For exchange between deuterium oxide and hexane catalyzed by platinum films at 200 0 C, the rate of exchange in methyl groups exceeded that in methylene groups. It is proposed that preferential exchange in methylene and methine groups is normal behavior during alkane exchange with molecular deuterium over these platinum metals when their surfaces (i) are initially clean or (ii) contain several adjacent sites which are unperturbed by the presence of any electronegative adsorbed species. Preferential exchange in the methyl groups of hexane results from contamination of the surface by adsorbed D 2 O, OD, or O; this may be a geometric effect or an electronic effect, depending on the magnitude of the surface coverage of water, which is unknown. Orientation in the exchange between deuterium gas and naphthalene or biphenyl catalyzed by films of platinum and iridium does not differ from that observed in exchanges where the isotope source is deuterium oxide or deuterated solvent, but the M value calculated for exchange in naphthalene is higher than that previously reported

  8. Transition Metal-Catalyzed Regioselective Asymmetric Mono-hydrogenation of Dienes and Polyenes. (United States)

    Margarita, Cristiana; Rabten, Wangchuk; Andersson, Pher G


    Organic compounds containing multiple C=C bonds are attractive substrates for catalytic asymmetric hydrogenation. The full saturation of prochiral double bonds, controlling the creation of two or more stereocenters in one step, is obviously a remarkable goal. However, another fascinating and useful option is to selectively introduce a new defined stereogenic center, while leaving other double bonds untouched. Thus, the retained functionalities can be further exploited in synthesis. Examples of regio- and enantioselective mono-hydrogenations of polyolefins are highlighted in this Concept article, and are divided according to the nature of the reduced double bond and the transition-metal catalyst used. Alkenes bearing coordinating functional groups are often preferentially hydrogenated by Rh- and Ru-complexes, while the more recently developed Ir-based catalysts promote the selective saturation on alkyl-substituted olefins. Relevant applications of this effective methodology in the synthesis of natural products are included to demonstrate its value in organic synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Engineering catalyst microenvironments for metal-catalyzed hydrogenation of biologically derived platform chemicals. (United States)

    Schwartz, Thomas J; Johnson, Robert L; Cardenas, Javier; Okerlund, Adam; Da Silva, Nancy A; Schmidt-Rohr, Klaus; Dumesic, James A


    It is shown that microenvironments formed around catalytically active sites mitigate catalyst deactivation by biogenic impurities that are present during the production of biorenewable chemicals from biologically derived species. Palladium and ruthenium catalysts are inhibited by the presence of sulfur-containing amino acids; however, these supported metal catalysts are stabilized by overcoating with poly(vinyl alcohol) (PVA), which creates a microenvironment unfavorable for biogenic impurities. Moreover, deactivation of Pd catalysts by carbon deposition from the decomposition of highly reactive species is suppressed by the formation of bimetallic PdAu nanoparticles. Thus, a PVA-overcoated PdAu catalyst was an order of magnitude more stable than a simple Pd catalyst in the hydrogenation of triacetic acid lactone, which is the first step in the production of biobased sorbic acid. A PVA-overcoated Ru catalyst showed a similar improvement in stability during lactic acid hydrogenation to propylene glycol in the presence of methionine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Base-free non-noble-metal-catalyzed hydrogen generation from formic acid: scope and mechanistic insights. (United States)

    Mellmann, Dörthe; Barsch, Enrico; Bauer, Matthias; Grabow, Kathleen; Boddien, Albert; Kammer, Anja; Sponholz, Peter; Bentrup, Ursula; Jackstell, Ralf; Junge, Henrik; Laurenczy, Gábor; Ludwig, Ralf; Beller, Matthias


    The iron-catalyzed dehydrogenation of formic acid has been studied both experimentally and mechanistically. The most active catalysts were generated in situ from cationic Fe(II) /Fe(III) precursors and tris[2-(diphenylphosphino)ethyl]phosphine (1, PP3 ). In contrast to most known noble-metal catalysts used for this transformation, no additional base was necessary. The activity of the iron catalyst depended highly on the solvent used, the presence of halide ions, the water content, and the ligand-to-metal ratio. The optimal catalytic performance was achieved by using [FeH(PP3 )]BF4 /PP3 in propylene carbonate in the presence of traces of water. With the exception of fluoride, the presence of halide ions in solution inhibited the catalytic activity. IR, Raman, UV/Vis, and EXAFS/XANES analyses gave detailed insights into the mechanism of hydrogen generation from formic acid at low temperature, supported by DFT calculations. In situ transmission FTIR measurements revealed the formation of an active iron formate species by the band observed at 1543 cm(-1) , which could be correlated with the evolution of gas. This active species was deactivated in the presence of chloride ions due to the formation of a chloro species (UV/Vis, Raman, IR, and XAS). In addition, XAS measurements demonstrated the importance of the solvent for the coordination of the PP3 ligand. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Degradation of polycyclic aromatic hydrocarbons by hydrogen peroxide catalyzed by heterogeneous polymeric metal chelates

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Cajthaml, Tomáš; Merhautová, Věra; Gabriel, Jiří; Nerud, František; Stopka, P.; Hrubý, Martin; Beneš, Milan J.


    Roč. 59, - (2005), s. 267-274 ISSN 0926-3373 R&D Projects: GA AV ČR IBS5020306; GA ČR GA203/01/0944 Institutional research plan: CEZ:AV0Z7090911 Keywords : degradation * polycyclic aromatic hydrocarbon * hydrogen peroxide Subject RIV: EE - Microbiology, Virology Impact factor: 3.809, year: 2005

  12. Oxidation of Phenol by Hydrogen Peroxide Catalyzed by Metal-Containing Poly(amidoxime Grafted Starch

    Directory of Open Access Journals (Sweden)

    Hany El-Hamshary


    Full Text Available Polyamidoxime chelating resin was obtained from polyacrylonitrile (PAN grafted starch. The nitrile groups of the starch-grafted polyacrylonitrile (St-g-PAN were converted into amidoximes by reaction with hydroxylamine under basic conditions. The synthesized graft copolymer and polyamidoxime were characterized by FTIR, TGA and elemental microanalysis. Metal chelation of the polyamidoxime resin with iron, copper and zinc has been studied. The produced metal-polyamidoxime polymer complexes were used as catalysts for the oxidation of phenol using H2O2 as oxidizing agent. The oxidation of phenol depends on the central metal ion present in the polyamidoxime complex. Reuse of M-polyamidoxime catalyst/H2O2 system showed a slight decrease in catalytic activities for all M-polyamidoxime catalysts.

  13. Oxidation of phenol by hydrogen peroxide catalyzed by metal-containing poly(amidoxime) grafted starch. (United States)

    El-Hamshary, Hany; El-Newehy, Mohamed H; Al-Deyab, Salem S


    Polyamidoxime chelating resin was obtained from polyacrylonitrile (PAN) grafted starch. The nitrile groups of the starch-grafted polyacrylonitrile (St-g-PAN) were converted into amidoximes by reaction with hydroxylamine under basic conditions. The synthesized graft copolymer and polyamidoxime were characterized by FTIR, TGA and elemental microanalysis. Metal chelation of the polyamidoxime resin with iron, copper and zinc has been studied. The produced metal-polyamidoxime polymer complexes were used as catalysts for the oxidation of phenol using H(2)O(2) as oxidizing agent. The oxidation of phenol depends on the central metal ion present in the polyamidoxime complex. Reuse of M-polyamidoxime catalyst/H(2)O(2) system showed a slight decrease in catalytic activities for all M-polyamidoxime catalysts.

  14. Metal-free hydrogenation catalyzed by an air-stable borane: use of solvent as a frustrated Lewis base. (United States)

    Scott, Daniel J; Fuchter, Matthew J; Ashley, Andrew E


    In recent years 'frustrated Lewis pairs' (FLPs) have been shown to be effective metal-free catalysts for the hydrogenation of many unsaturated substrates. Even so, limited functional-group tolerance restricts the range of solvents in which FLP-mediated reactions can be performed, with all FLP-mediated hydrogenations reported to date carried out in non-donor hydrocarbon or chlorinated solvents. Herein we report that the bulky Lewis acids B(C6Cl5)x(C6F5)(3-x) (x=0-3) are capable of heterolytic H2 activation in the strong-donor solvent THF, in the absence of any additional Lewis base. This allows metal-free catalytic hydrogenations to be performed in donor solvent media under mild conditions; these systems are particularly effective for the hydrogenation of weakly basic substrates, including the first examples of metal-free catalytic hydrogenation of furan heterocycles. The air-stability of the most effective borane, B(C6Cl5)(C6F5)2, makes this a practically simple reaction method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. New Gateways to the Platinum Group Metal-Catalyzed Direct Deuterium-Labeling Method Utilizing Hydrogen as a Catalyst Activator. (United States)

    Sawama, Yoshinari; Park, Kwihwan; Yamada, Tsuyoshi; Sajiki, Hironao


    Deuterium-labeled compounds are widely utilized in various scientific fields. We summarize the recent advances in the direct deuteration of sugar, saturated fatty acid, and arene derivatives using heterogeneous platinum group metal on carbon catalysts by our research group. Hydrogen gas is a key catalyst-activator to facilitate the present H-D exchange reactions. In this review, the direct activation method of catalysts using in situ-generated hydrogen based on the dehydrogenation of alcohols is introduced. The obtained multiple deuterium-labeled products, including bioactive compounds, are expected to contribute to the development of many scientific investigations.

  16. Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity. (United States)

    Langer, Robert; Diskin-Posner, Yael; Leitus, Gregory; Shimon, Linda J W; Ben-David, Yehoshoa; Milstein, David


    A highly active iron catalyst for the hydrogenation of carbon dioxide and bicarbonates works under remarkably low pressures and achieves activities similar to some of the best noble metal catalysts. A mechanism is proposed involving the direct attack of an iron trans-dihydride on carbon dioxide, followed by ligand exchange and dihydrogen coordination. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Complementary Strategies for Directed C(sp3)-H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer. (United States)

    Chu, John C K; Rovis, Tomislav


    The functionalization of C(sp 3 )-H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C-H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition-metal-catalyzed C-H activation, 1,n-hydrogen atom transfer, and transition-metal-catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp 3 )-H bonds. For each strategy, the scope, the reactivity of different C-H bonds, the position of the reacting C-H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C-H functionalization reactions and inspire future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Palladium catalyzed hydrogenation of bio-oils and organic compounds (United States)

    Elliott, Douglas C [Richland, WA; Hu, Jianli [Kennewick, WA; Hart, Todd R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA


    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  19. Deuterium exchange at terminal boron--hydrogen bonds catalyzed by certain transition metal complexes. A qualitative study of selectivity and mechanism

    International Nuclear Information System (INIS)

    Hoel, E.L.; Talebinasab-Savari, M.; Hawthorne, M.F.


    A wide variety of substrates, including carboranes, metallocarboranes, and boron hydrides, were found to undergo catalytic isotopic exchange of terminal hydrogen with deuterium gas in the presence of various transition metal complexes. With (PPh 3 ) 3 RuHCl as catalyst, exchange was found to proceed with stereoselectivity indicative of nucleophilic attack at boron; e.g., the order of rates for deuterium incorporation at chemically nonequivalent sites in 1,2-C 2 B 10 H 12 was B(3,6) greater than B(4,5,7,11) greater than B(8,10) greater than B(9,12). Other catalysts, most notably the series of hydridometallocarboranes, (PPh 3 ) 2 HMC 2 B 9 H 11 (M = Rh, Ir), showed little or no stereoselectivity during deuterium exchange. Intermediate stereoselectivity was found with (PPh 3 ) 2 (CO)IrCl and (PPh 3 ) 2 IrCl species as catalysts, while exchange catalyzed by (AsPh 3 ) 2 IrCl exhibited the stereoselectivity found with (PPh 3 ) 3 RuHCl. A mechanism is postulated which rationalizes the varied results and which involves oxidative addition of boron--hydrogen bonds to catalytic species

  20. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ


    Full Text Available of hydrogen in metals processing and treatment identified, and mechanisms for hydrogen entry into a ferritic surface are discussed. The differences between hydrogen attack of ferritic steels and copper alloys are contrasted, and an unusual case study...

  1. Hydrogen generation from formic acid catalyzed by a metal complex under amine-free and aqueous conditions

    KAUST Repository

    Huang, Kuo-Wei


    The present invention provides a class of catalyst compounds that can safely and effectively release hydrogen gas from a chemical substrate without producing either noxious byproducts or byproducts that will deactivate the catalyst. The present invention provides catalysts used to produce hydrogen that has a satisfactory and sufficient lifespan (measured by turnover number (TON)), that has stability in the presence of moisture, air, acid, or impurities, promote a rapid reaction rate, and remain stable under the reaction conditions required for an effective hydrogen production system. Described herein are compounds for use as catalysts, as well as methods for producing hydrogen from formic acid and/or a formate using the disclosed catalysts. The methods include contacting formic acid and/or a formate with a catalyst as described herein, as well as methods of producing formic acid and/or a formate using the disclosed catalyst and methods for generating electricity using the catalysts described herein.

  2. The impact of Metal-Ligand Cooperation in Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium PNP Pincer

    NARCIS (Netherlands)

    Filonenko, G.A.; Conley, M.P.; Copéret, C.; Lutz, M.; Hensen, E.J.M.; Pidko, E.A.


    The metal–ligand cooperative activation of CO2 with pyridine-based ruthenium PNP pincer catalysts leads to pronounced inhibition of the activity in the catalytic CO2 hydrogenation to formic acid. The addition of water restores catalytic performance by activating alternative reaction pathways and

  3. Highly Chemoselective Hydrogenation of 2-Ethylanthraquinone to 2-Ethylanthrahydroquinone Catalyzed by Palladium Metal Dispersed inside Highly Lipophilic Functional Resins

    Czech Academy of Sciences Publication Activity Database

    Biffis, A.; Ricoveri, R.; Campestrini, S.; Králik, M.; Jeřábek, Karel; Corain, B.


    Roč. 8, č. 13 (2002), s. 2962-2967 ISSN 0947-6539 R&D Projects: GA ČR GA104/99/0125 Grant - others:MURST(IT) 9903558918 Keywords : functional resins * heterogeneous catalysis * hydrogen peroxide Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.238, year: 2002

  4. Greener Selective Cycloalkane Oxidations with Hydrogen Peroxide Catalyzed by Copper-5-(4-pyridyl)tetrazolate Metal-Organic Frameworks. (United States)

    Martins, Luísa; Nasani, Rajendar; Saha, Manideepa; Mobin, Shaikh; Mukhopadhyay, Suman; Pombeiro, Armando


    Microwave assisted synthesis of the Cu(I) compound [Cu(µ₄-4-ptz)]n [1, 4-ptz=5-(4-pyridyl)tetrazolate] has been performed by employing a relatively easy method and within a shorter period of time compared to its sister compounds. The syntheses of the Cu(II) compounds [Cu₃(µ₃-4-ptz)₄(µ₂-N₃)₂(DMF)₂]n∙(DMF)2n (2) and [Cu(µ₂-4-ptz)₂(H₂O)₂]n (3) using a similar method were reported previously by us. MOFs 1-3 revealed high catalytic activity toward oxidation of cyclic alkanes (cyclopentane, -hexane and -octane) with aqueous hydrogen peroxide, under very mild conditions (at room temperature), without any added solvent or additive. The most efficient system (2/H₂O₂) showed, for the oxidation of cyclohexane, a turnover number (TON) of 396 (TOF of 40 h(-1)), with an overall product yield (cyclohexanol and cyclohexanone) of 40% relative to the substrate. Moreover, the heterogeneous catalytic systems 1-3 allowed an easy catalyst recovery and reuse, at least for four consecutive cycles, maintaining ca. 90% of the initial high activity and concomitant high selectivity.

  5. Greener Selective Cycloalkane Oxidations with Hydrogen Peroxide Catalyzed by Copper-5-(4-pyridyltetrazolate Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Luísa Martins


    Full Text Available Microwave assisted synthesis of the Cu(I compound [Cu(µ4-4-ptz]n [1, 4-ptz = 5-(4-pyridyltetrazolate] has been performed by employing a relatively easy method and within a shorter period of time compared to its sister compounds. The syntheses of the Cu(II compounds [Cu3(µ3-4-ptz4(µ2-N32(DMF2]n∙(DMF2n (2 and [Cu(µ2-4-ptz2(H2O2]n (3 using a similar method were reported previously by us. MOFs 1-3 revealed high catalytic activity toward oxidation of cyclic alkanes (cyclopentane, -hexane and -octane with aqueous hydrogen peroxide, under very mild conditions (at room temperature, without any added solvent or additive. The most efficient system (2/H2O2 showed, for the oxidation of cyclohexane, a turnover number (TON of 396 (TOF of 40 h−1, with an overall product yield (cyclohexanol and cyclohexanone of 40% relative to the substrate. Moreover, the heterogeneous catalytic systems 1–3 allowed an easy catalyst recovery and reuse, at least for four consecutive cycles, maintaining ca. 90% of the initial high activity and concomitant high selectivity.

  6. Zeolite-catalyzed hydrogenation of carbon dioxide and ethene. (United States)

    Chan, Bun; Radom, Leo


    Ab initio molecular orbital theory and density functional theory calculations have been used to study the three-stage zeolite-catalyzed hydrogenation of CO2 to methanol and the hydrogenation of C2H 4 to ethane, with the aim of designing an effective zeolite catalyst for these reactions. Both Brønsted acid (XH) and alkali metal (XM) sites in model zeolites (-X-Al-XH- or -X-Al-XM-) have been examined. It is found that appropriately designed zeolites can provide excellent catalysis for these reactions, particularly for the hydrogenation of CO2, HCO2H and CH2O, with uncatalyzed barriers of more than 300 kJ mol(-1) being reduced to as little as 17 kJ mol(-1) (in the case of CH2O). The reaction barrier depends on the acidity of the XH moiety or the nature of the metal cation M in the XM moiety, and the basicity of the adjacent X group in the catalyst. For a catalyst based on alkali metal zeolites (XM), the catalytic activity is relatively insensitive to the nature of X in the XM group. As a result, the catalytic activity for these types of zeolites increases as X becomes more basic. We propose that alkali metal zeolites with Ge and N incorporated into the framework could be very effective catalysts for hydrogenation processes.

  7. Unusual non-bifunctional mechanism for Co-PNP complex catalyzed transfer hydrogenation governed by the electronic configuration of metal center. (United States)

    Hou, Cheng; Jiang, Jingxing; Li, Yinwu; Zhang, Zhihan; Zhao, Cunyuan; Ke, Zhuofeng


    The mimic of hydrogenases has unleashed a myriad of bifunctional catalysts, which are widely used in the catalytic hydrogenation of polar multiple bonds. With respect to ancillary ligands, the bifunctional mechanism is generally considered to proceed via the metal-ligand cooperation transition state. Inspired by the interesting study conducted by Hanson et al. (Chem Commun., 2013, 49, 10151), we present a computational study of a distinctive example, where a Co(II)-PNP catalyst with an ancillary ligand exhibits efficient transfer hydrogenation through a non-bifunctional mechanism. Both the bifunctional and non-bifunctional mechanisms are discussed. The calculated results, which are based on a full model of the catalyst, suggest that the inner-sphere non-bifunctional mechanism is more favorable (by ∼11 kcal mol(-1)) than the outer-sphere bifunctional mechanism, which is in agreement with the experimental observations. The origin of this mechanistic preference of the Co(II)-PNP catalyst can be attributed to its preference for the square planar geometry. A traditional bifunctional mechanism is less plausible for Co(II)-PNP due to the high distortion energy caused by the change in electronic configuration with the varied ligand field. Considering previous studies that focus on the development of ligands more often, this computational study indicates that the catalytic hydrogenation mechanism is controlled not only by the structure of the ligand but also by the electronic configuration of the metal center.

  8. Enantioselective, transition metal catalyzed cycloisomerizations. (United States)

    Marinetti, Angela; Jullien, Hélène; Voituriez, Arnaud


    This review illustrates enantioselective transition-metal promoted skeletal rearrangements of polyunsaturated substrates possessing olefin, alkyne or allene functions. These processes are classified according to the number of carbon atoms involved in the cyclization, from (1C+1C) to (2C+2C+2C) or (2C+5C) cyclizations. Thus, for instance, (1C+1C) processes are typified notably by Alder-ene type reactions taking place mainly under palladium and rhodium catalysis, in the presence of chiral phosphorus ligands. Also, rhodium, platinum, and gold promoted insertions of unsaturated carbon-carbon bonds into C-H bonds belong to this class. For each class of reactions or substrate type the best ligand-metal pairs are highlighted. Unfortunately, unlike other transition metal promoted reactions, the mechanisms of chiral induction and stereochemical pathways have not been established so far in any of these reactions. In only a few instances, qualitative heuristic models have been tentatively proposed. Although the available stereochemical information is systematically given here, the paper focuses mainly on synthetic aspects of enantioselective cycloisomerizations.

  9. Cobalt-catalyzed hydrogenation of esters to alcohols: unexpected reactivity trend indicates ester enolate intermediacy. (United States)

    Srimani, Dipankar; Mukherjee, Arup; Goldberg, Alexander F G; Leitus, Gregory; Diskin-Posner, Yael; Shimon, Linda J W; Ben David, Yehoshoa; Milstein, David


    The atom-efficient and environmentally benign catalytic hydrogenation of carboxylic acid esters to alcohols has been accomplished in recent years mainly with precious-metal-based catalysts, with few exceptions. Presented here is the first cobalt-catalyzed hydrogenation of esters to the corresponding alcohols. Unexpectedly, the evidence indicates the unprecedented involvement of ester enolate intermediates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Step into an eco-Compatible Future: Iron- and Cobalt-catalyzed Borrowing Hydrogen Transformation. (United States)

    Quintard, Adrien; Rodriguez, Jean


    Living on borrowed hydrogen: Recent developments in iron- and cobalt-catalyzed borrowing hydrogen have shown that economically reliable catalysts can be used in this type of waste-free reactions. By using well-defined inexpensive catalysts, known reactions can now be run efficiently without the necessary use of noble metals; however, in addition new types of reactivity can also be discovered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions. (United States)

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter


    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  12. Reversible Hydride Transfer to N,N'-Diarylimidazolinium Cations from Hydrogen Catalyzed by Transition Metal Complexes Mimicking the Reaction of [Fe]-Hydrogenase. (United States)

    Hatazawa, Masahiro; Yoshie, Naoko; Seino, Hidetake


    [Fe]-hydrogenase is a key enzyme involved in methanogenesis and facilitates reversible hydride transfer from H 2 to N 5 ,N 10 -methenyltetrahydromethanopterin (CH-H 4 MPT + ). In this study, a reaction system was developed to model the enzymatic function of [Fe]-hydrogenase by using N,N'-diphenylimidazolinium cation (1 + ) as a structurally related alternative to CH-H 4 MPT + . In connection with the enzymatic mechanism via heterolytic cleavage of H 2 at the single metal active site, several transition metal complex catalysts capable of such activation were utilized in the model system. Reduction of 1[BF 4 ] to N,N'-diphenylimidazolidine (2) was achieved under 1 atm H 2 at ambient temperature in the presence of an equimolar amount of NEt 3 as a proton acceptor. The proposed catalytic pathways involved the generation of active hydride complexes and subsequent intermolecular hydride transfer to 1 + . The reverse reaction was accomplished by treatment of 2 with HNMe 2 Ph + as the proton source, where [(η 5 -C 5 Me 5 )Ir{(p-MeC 6 H 4 SO 2 )NCHPhCHPhNH}] was found to catalyze the formation of 1 + and H 2 with high efficiency. These results are consistent with the fact that use of 2,6-lutidine in the forward reaction or 2,6-lutidinium in the reverse reaction resulted in incomplete conversion. By combining these reactions using the above Ir amido catalyst, the reversible hydride transfer interconverting 1 + /H 2 and 2/H + was performed successfully. This system demonstrated the hydride-accepting and hydride-donating modes of biologically relevant N-heterocycles coupled with proton concentration. The influence of substituents on the forward and reverse reactivities was examined for the derivatives of 1 + and 2 bearing one para-substituted N-phenyl group.

  13. Metal ion roles and the movement of hydrogen during reaction catalyzed by D-xylose isomerase: a joint x-ray and neutron diffraction study. (United States)

    Kovalevsky, Andrey Y; Hanson, Leif; Fisher, S Zoe; Mustyakimov, Marat; Mason, Sax A; Forsyth, V Trevor; Blakeley, Matthew P; Keen, David A; Wagner, Trixie; Carrell, H L; Katz, Amy K; Glusker, Jenny P; Langan, Paul


    Conversion of aldo to keto sugars by the metalloenzyme D-xylose isomerase (XI) is a multistep reaction that involves hydrogen transfer. We have determined the structure of this enzyme by neutron diffraction in order to locate H atoms (or their isotope D). Two studies are presented, one of XI containing cadmium and cyclic D-glucose (before sugar ring opening has occurred), and the other containing nickel and linear D-glucose (after ring opening has occurred but before isomerization). Previously we reported the neutron structures of ligand-free enzyme and enzyme with bound product. The data show that His54 is doubly protonated on the ring N in all four structures. Lys289 is neutral before ring opening and gains a proton after this; the catalytic metal-bound water is deprotonated to hydroxyl during isomerization and O5 is deprotonated. These results lead to new suggestions as to how changes might take place over the course of the reaction.

  14. Automated Quantum Mechanical Predictions of Enantioselectivity in a Rhodium-Catalyzed Asymmetric Hydrogenation. (United States)

    Guan, Yanfei; Wheeler, Steven E


    A computational toolkit (AARON: An automated reaction optimizer for new catalysts) is described that automates the density functional theory (DFT) based screening of chiral ligands for transition-metal-catalyzed reactions with well-defined reaction mechanisms but multiple stereocontrolling transition states. This is demonstrated for the Rh-catalyzed asymmetric hydrogenation of (E)-β-aryl-N-acetyl enamides, for which a new C 2 -symmetric phosphorus ligand is designed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chitosan catalyzes hydrogen evolution at mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Římánková, Ludmila


    Roč. 44, JUL2014 (2014), s. 59-62 ISSN 1388-2481 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081707 Keywords : Chitosan * Glucosamine-containing polymers * Catalytic hydrogen evolution Subject RIV: BO - Biophysics Impact factor: 4.847, year: 2014

  16. Diastereoselective Hydrogenation and Kinetic Resolution of Imines Using Rhodium/Diphosphine Catalyzed Hydrogenation.

    NARCIS (Netherlands)

    Lensink, Cornelis; Vries, Johannes G. de


    Kinetic resolution of racemic α-methylbenzyl amine can be achieved with 98% ee. of the remaining amine at 70% conversion using the Rhodium/2S,4S-BDPP catalyzed asymmetric hydrogenation of imines. The same catalyst will hydrogenate optically pure α-methylbenzyl amines with a diastereoselectivity of

  17. Homogenous Pd-catalyzed asymmetric hydrogenation of unprotected indoles: scope and mechanistic studies. (United States)

    Duan, Ying; Li, Lu; Chen, Mu-Wang; Yu, Chang-Bin; Fan, Hong-Jun; Zhou, Yong-Gui


    An efficient palladium-catalyzed asymmetric hydrogenation of a variety of unprotected indoles has been developed that gives up to 98% ee using a strong Brønsted acid as the activator. This methodology was applied in the facile synthesis of biologically active products containing a chiral indoline skeleton. The mechanism of Pd-catalyzed asymmetric hydrogenation was investigated as well. Isotope-labeling reactions and ESI-HRMS proved that an iminium salt formed by protonation of the C═C bond of indoles was the significant intermediate in this reaction. The important proposed active catalytic Pd-H species was observed with (1)H NMR spectroscopy. It was found that proton exchange between the Pd-H active species and solvent trifluoroethanol (TFE) did not occur, although this proton exchange had been previously observed between metal hydrides and alcoholic solvents. Density functional theory calculations were also carried out to give further insight into the mechanism of Pd-catalyzed asymmetric hydrogenation of indoles. This combination of experimental and theoretical studies suggests that Pd-catalyzed hydrogenation goes through a stepwise outer-sphere and ionic hydrogenation mechanism. The activation of hydrogen gas is a heterolytic process assisted by trifluoroacetate of Pd complex via a six-membered-ring transition state. The reaction proceeds well in polar solvent TFE owing to its ability to stabilize the ionic intermediates in the Pd-H generation step. The strong Brønsted acid activator can remarkably decrease the energy barrier for both Pd-H generation and hydrogenation. The high enantioselectivity arises from a hydrogen-bonding interaction between N-H of the iminium salt and oxygen of the coordinated trifluoroacetate in the eight-membered-ring transition state for hydride transfer, while the active chiral Pd complex is a typical bifunctional catalyst, effecting both the hydrogenation and hydrogen-bonding interaction between the iminium salt and the coordinated

  18. Metal salt catalysts for enhancing hydrogen spillover (United States)

    Yang, Ralph T; Wang, Yuhe


    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  19. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide (United States)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.


    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  20. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions. (United States)

    Zhang, Guoqi; Vasudevan, Kalyan V; Scott, Brian L; Hanson, Susan K


    Cobalt(II) alkyl complexes of aliphatic PNP pincer ligands have been synthesized and characterized. The cationic cobalt(II) alkyl complex [(PNHP(Cy))Co(CH2SiMe3)]BAr(F)4 (4) (PNHP(Cy) = bis[(2-dicyclohexylphosphino)ethyl]amine) is an active precatalyst for the hydrogenation of olefins and ketones and the acceptorless dehydrogenation of alcohols. To elucidate the possible involvement of the N-H group on the pincer ligand in the catalysis via a metal-ligand cooperative interaction, the reactivities of 4 and [(PNMeP(Cy))Co(CH2SiMe3)]BAr(F)4 (7) were compared. Complex 7 was found to be an active precatalyst for the hydrogenation of olefins. In contrast, no catalytic activity was observed using 7 as a precatalyst for the hydrogenation of acetophenone under mild conditions. For the acceptorless dehydrogenation of 1-phenylethanol, complex 7 displayed similar activity to complex 4, affording acetophenone in high yield. When the acceptorless dehydrogenation of 1-phenylethanol with precatalyst 4 was monitored by NMR spectroscopy, the formation of the cobalt(III) acetylphenyl hydride complex [(PNHP(Cy))Co(III)(κ(2)-O,C-C6H4C(O)CH3)(H)]BAr(F)4 (13) was detected. Isolated complex 13 was found to be an effective catalyst for the acceptorless dehydrogenation of alcohols, implicating 13 as a catalyst resting state during the alcohol dehydrogenation reaction. Complex 13 catalyzed the hydrogenation of styrene but showed no catalytic activity for the room temperature hydrogenation of acetophenone. These results support the involvement of metal-ligand cooperativity in the room temperature hydrogenation of ketones but not the hydrogenation of olefins or the acceptorless dehydrogenation of alcohols. Mechanisms consistent with these observations are presented for the cobalt-catalyzed hydrogenation of olefins and ketones and the acceptorless dehydrogenation of alcohols.

  1. Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation (United States)

    Durndell, Lee J.; Parlett, Christopher M. A.; Hondow, Nicole S.; Isaacs, Mark A.; Wilson, Karen; Lee, Adam F.


    Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly structure sensitive, with large nanoparticles and high hydrogen pressures favoring C = O over C = C hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing C = O hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to control the chemoselective hydrogenation of aromatic aldehydes. PMID:25800551

  2. Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation (United States)

    Bower, John F.; Krische, Michael J.


    The formation of C–C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C–C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile–nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C–H bonds. PMID:21822399

  3. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang


    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  4. The application of monodentate secondary phosphine oxide ligands in rhodium- and iridium-catalyzed asymmetric hydrogenation

    NARCIS (Netherlands)

    Jiang, Xiao-bin; van den Berg, Michel; Minnaard, Adriaan J.; Vries, Johannes G. de; Feringa, Bernard


    Enantiopure secondary phosphine oxides have been tested as ligands in the rhodium- and iridium-catalyzed asymmetric hydrogenation of functionalized olefins. tert-Butylphosphinoyl benzene turned out to be a versatile ligand in the iridium-catalyzed hydrogenation of β-branched dehydroamino esters and

  5. Metal-Catalyzed Asymmetric Michael Addition in Natural Product Synthesis. (United States)

    Hui, Chunngai; Pu, Fan; Xu, Jing


    Asymmetric catalysis for chiral compound synthesis is a rapidly growing field in modern organic chemistry. Asymmetric catalytic processes have been indispensable for the synthesis of enantioselective materials to meet demands from various fields. Michael addition has been used extensively for the construction of C-C bonds under mild conditions. With the discovery and development of organo- and metal-catalyzed asymmetric Michael additions, the synthesis of enantioselective and/or diastereoselective Michael adducts has become possible and increasingly prevalent in the literature. In particular, metal-catalyzed asymmetric Michael addition has been employed as a key reaction in natural product synthesis for the construction of contiguous quaternary stereogenic center(s), which is still a difficult task in organic synthesis. Previously reported applications of metal-catalyzed asymmetric Michael additions in natural product synthesis are presented here and discussed in depth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cooperative catalysis of metal and O-H···O/sp3-C-H···O two-point hydrogen bonds in alcoholic solvents: Cu-catalyzed enantioselective direct alkynylation of aldehydes with terminal alkynes. (United States)

    Ishii, Takaoki; Watanabe, Ryo; Moriya, Toshimitsu; Ohmiya, Hirohisa; Mori, Seiji; Sawamura, Masaya


    Catalyst-substrate hydrogen bonds in artificial catalysts usually occur in aprotic solvents, but not in protic solvents, in contrast to enzymatic catalysis. We report a case in which ligand-substrate hydrogen-bonding interactions cooperate with a transition-metal center in alcoholic solvents for enantioselective catalysis. Copper(I) complexes with prolinol-based hydroxy amino phosphane chiral ligands catalytically promoted the direct alkynylation of aldehydes with terminal alkynes in alcoholic solvents to afford nonracemic secondary propargylic alcohols with high enantioselectivities. Quantum-mechanical calculations of enantiodiscriminating transition states show the occurrence of a nonclassical sp(3)-C-H···O hydrogen bond as a secondary interaction between the ligand and substrate, which results in highly directional catalyst-substrate two-point hydrogen bonding. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. PDTI metal alloy as a hydrogen or hydrocarbon sensitive metal (United States)

    Hunter, Gary W. (Inventor)


    A hydrogen sensitive metal alloy contains palladium and titanium to provide a larger change in electrical resistance when exposed to the presence of hydrogen. The alloy can be used for improved hydrogen detection.

  8. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)


    high temperatures and long reaction times. To address this issue, we have developed several new families of carbon- and boron-based ligands, which are even better donors. The corresponding metal complexes (particularly gold, rhodium, iridium, and ruthenium) of all these species will be tested in the Markovnikov and anti-Markovnikov hydroamination of alkynes, allenes, and also alkenes with ammonia and hydrazine. We will also develop metal-free catalytic processes for the functionalization of ammonia and hydrazine. By possessing both a lone pair of electrons and an accessible vacant orbital, singlet carbenes resemble and can mimic the chemical behavior of transition metals. Our preliminary results demonstrate that specially designed carbenes can split the N–H bond of ammonia by an initial nucleophilic activation that prevents the formation of Lewis acid-base adducts, which is the major hurdle for the transition metal catalyzed functionalization of NH3. The use of purely organic compounds as catalysts will eliminate the major drawbacks of transition-metal-catalysis technology, which are the excessive cost of metal complexes (metal + ligands) and in many cases the toxicity of the metal.

  9. The behavior of hydrogen in metals

    International Nuclear Information System (INIS)

    Hirabayashi, Makoto


    Explanation is made on the equilibrium diagrams of metal-hydrogen systems and the state of hydrogen in metals. Some metals perform exothermic reaction with hydrogen, and the others endothermic reaction. The former form stable hydrides and solid solutions over a wide range of composition. Hydrogen atoms in fcc and bcc metals are present at the interstitial positions of tetrahedron lattice and octahedron lattice. For example, hydrogen atoms in palladium are present at the intersititial positions of octahedron. When the ratio of the composition of hydrogen and palladium is 1:1, the structure becomes NaCl type. Hydrogen atoms in niobium and vanadium and present interstitially in tetrahedron lattice. Metal hydrides with high hydrogen concentration are becoming important recently as the containers of hydrogen. Hydrogen atoms diffuse in metals quite easily. The activation energy of the diffusion of hydrogen atoms in Nb and V is about 2-3 kcal/g.atom. The diffusion coefficient is about 10 -5 cm 2 /sec in alpha phase at room temperature. The number of jumps of a hydrogen atom between neighboring lattice sites is 10 11 --10 12 times per second. This datum is almost the same as that of liquid metals. Discussion is also made on the electronic state of hydrogen in metals. (Fukutomi, T.)

  10. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar. (United States)

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J; Fountain, Mackenzie; Ralph, John; Hodge, David B; Hegg, Eric L


    Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10 h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. This study demonstrated that the fed-batch, two-stage Cu-AHP pretreatment

  11. Hydrogen Storage in Nanostructured Light Metal Hydrides

    NARCIS (Netherlands)

    Singh, S.


    The global energy issues can be solved by the abundantly available hydrogen on earth. Light metals are a compact and safe medium for storing hydrogen. This makes them attractive for vehicular use. Unfortunately, hydrogen uptake and release is slow in light metals at practical temperature and

  12. Interaction Of Hydrogen With Metal Alloys (United States)

    Danford, M. D.; Montano, J. W.


    Report describes experiments on interaction of hydrogen with number of metal alloys. Discusses relationship between metallurgical and crystallographic aspects of structures of alloys and observed distributions of hydrogen on charging. Also discusses effect of formation of hydrides on resistances of alloys to hydrogen. Describes attempt to correlate structures and compositions of alloys with their abilities to resist embrittlement by hydrogen.

  13. Steric and Electronic Effects of Bidentate Phosphine Ligands on Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide. (United States)

    Zhang, Pan; Ni, Shao-Fei; Dang, Li


    The reactivity difference between the hydrogenation of CO2 catalyzed by various ruthenium bidentate phosphine complexes was explored by DFT. In addition to the ligand dmpe (Me2 PCH2 CH2 PMe2 ), which was studied experimentally previously, a more bulky diphosphine ligand, dmpp (Me2 PCH2 CH2 CH2 PMe2 ), together with a more electron-withdrawing diphosphine ligand, PN(Me) P (Me2 PCH2 N(Me) CH2 PMe2 ), have been studied theoretically to analyze the steric and electronic effects on these catalyzed reactions. Results show that all of the most favorable pathways for the hydrogenation of CO2 catalyzed by bidentate phosphine ruthenium dihydride complexes undergo three major steps: cis-trans isomerization of ruthenium dihydride complex, CO2 insertion into the Ru-H bond, and H2 insertion into the ruthenium formate ion. Of these steps, CO2 insertion into the Ru-H bond has the lowest barrier compared with the other two steps in each preferred pathway. For the hydrogenation of CO2 catalyzed by ruthenium complexes of dmpe and dmpp, cis-trans isomerization of ruthenium dihydride complex has a similar barrier to that of H2 insertion into the ruthenium formate ion. However, in the reaction catalyzed by the PN(Me) PRu complex, cis-trans isomerization of the ruthenium dihydride complex has a lower barrier than H2 insertion into the ruthenium formate ion. These results suggest that the steric effect caused by the change of the outer sphere of the diphosphine ligand on the reaction is not clear, although the electronic effect is significant to cis-trans isomerization and H2 insertion. This finding refreshes understanding of the mechanism and provides necessary insights for ligand design in transition-metal-catalyzed CO2 transformation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Metal-catalyzed asymmetric aldol reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Luiz C.; Lucca Junior, Emilio C. de; Ferreira, Marco A. B.; Polo, Ellen C., E-mail: [Universidade de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica


    The aldol reaction is one of the most powerful and versatile methods for the construction of C-C bonds. Traditionally, this reaction was developed in a stoichiometric version; however, great efforts in the development of chiral catalysts for aldol reactions were performed in recent years. Thus, in this review article, the development of metal-mediated chiral catalysts in Mukaiyama-type aldol reaction, reductive aldol reaction and direct aldol reaction are discussed. Moreover, the application of these catalysts in the total synthesis of complex molecules is discussed. (author)

  15. Acid-catalyzed hydrogenation of olefins. A theoretical study of the HF- and H/sub 3/O/sup +/-catalyzed hydrogenation of ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Siria, J.C.; Duran, M.; Lledos, A.; Bertran, J.


    The HF- and H/sub 3/O/sup +/-catalyzed hydrogenation of ethylene and the direct addition of molecular hydrogen to ethylene have been studied theoretically by means of ab initio MO calculations using different levels of theory. The main results are that catalysis by HF lowers the potential energy barrier to a large extent, while catalysis by H/sub 3/O/sup +/ diminishes dramatically the barrier for the reaction. Entropic contributions leave these results unchanged. The mechanisms of the two acid-catalyzed hydrogenations are somewhat different. While catalysis by HF exhibits bifunctional characteristics, catalysis by H/sub 3/O/sup +/ proceeds via an initial formation of a carbocation. It is shown that catalysis by strong acids may be an alternate way for olefin hydrogenation.

  16. Bandstructure calculations for metal hydrogen systems

    International Nuclear Information System (INIS)

    Switendick, A.C.


    The factors contributing to hydride stability are discussed for a variety of metal hydride systems. The formation of a low-lying hydrogen associated state is a common feature. A significant transition metal character is also found in these states

  17. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes. (United States)

    Kaeffer, Nicolas; Chavarot-Kerlidou, Murielle; Artero, Vincent


    Mimicking photosynthesis and producing solar fuels is an appealing way to store the huge amount of renewable energy from the sun in a durable and sustainable way. Hydrogen production through water splitting has been set as a first-ranking target for artificial photosynthesis. Pursuing that goal requires the development of efficient and stable catalytic systems, only based on earth abundant elements, for the reduction of protons from water to molecular hydrogen. Cobalt complexes based on glyoxime ligands, called cobaloximes, emerged 10 years ago as a first generation of such catalysts. They are now widely utilized for the construction of photocatalytic systems for hydrogen evolution. In this Account, we describe our contribution to the development of a second generation of catalysts, cobalt diimine-dioxime complexes. While displaying similar catalytic activities as cobaloximes, these catalysts prove more stable against hydrolysis under strongly acidic conditions thanks to the tetradentate nature of the diimine-dioxime ligand. Importantly, H2 evolution proceeds via proton-coupled electron transfer steps involving the oxime bridge as a protonation site, reproducing the mechanism at play in the active sites of hydrogenase enzymes. This feature allows H2 to be evolved at modest overpotentials, that is, close to the thermodynamic equilibrium over a wide range of acid-base conditions in nonaqueous solutions. Derivatization of the diimine-dioxime ligand at the hydrocarbon chain linking the two imine functions enables the covalent grafting of the complex onto electrode surfaces in a more convenient manner than for the parent bis-bidentate cobaloximes. Accordingly, we attached diimine-dioxime cobalt catalysts onto carbon nanotubes and demonstrated the catalytic activity of the resulting molecular-based electrode for hydrogen evolution from aqueous acetate buffer. The stability of immobilized catalysts was found to be orders of magnitude higher than that of catalysts in the

  18. Rhodium-catalyzed asymmetric hydrogenation of unprotected NH imines assisted by a thiourea. (United States)

    Zhao, Qingyang; Wen, Jialin; Tan, Renchang; Huang, Kexuan; Metola, Pedro; Wang, Rui; Anslyn, Eric V; Zhang, Xumu


    Asymmetric hydrogenation of unprotected NH imines catalyzed by rhodium/bis(phosphine)-thiourea provided chiral amines with up to 97% yield and 95% ee. (1)H NMR studies, coupled with control experiments, implied that catalytic chloride-bound intermediates were involved in the mechanism through a dual hydrogen-bonding interaction. Deuteration experiments proved that the hydrogenation proceeded through a pathway consistent with an imine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oxidation of limonene catalyzed by Metal(Salen) complexes


    Lima, L. F.; Corraza, M. L.; Cardozo-Filho, L.; Márquez-Alvarez, H.; Antunes, O. A. C.


    The compound R-(+)limonene is available and cheap than its oxidized products. Consequently, the selective oxidation of R(+)limonene has attracted attention as a promising process for the production of compounds with a higher market value, such as cis/trans-1,2-limoneneoxide, cis/trans-carveol and/or carvone. One of the these processes, described in the recent literature, is submission of R-(+)limonene to an oxidation reaction catalyzed by neutral or cationic Metal(Salen) complexes, in the pre...

  20. Synthesis of heterocycles through transition-metal-catalyzed isomerization reactions

    DEFF Research Database (Denmark)

    Ishøy, Mette; Nielsen, Thomas Eiland


    of structurally complex and diverse heterocycles. In this Concept article, we attempt to cover this area of research through a selection of recent versatile examples. A sea of opportunities! Transition-metal-catalyzed isomerization of N- and O-allylic compounds provides a mild, selective and synthetically...... versatile method to form iminium and oxocarbenium ions. Given the number of reactions involving these highly electrophilic intermediates, this concept provides a sea of opportunities for heterocycle synthesis, (see scheme; Nu=nucleophile). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  1. The interaction of hydrogen with metal alloys (United States)

    Danford, M. D.; Montano, J. W.


    Hydrogen diffusion coefficients were measured for several alloys, and these were determined to be about the same at 25 C for all alloys investigated. The relation of structure, both metallurgical and crystallographic, to the observed hydrogen distribution on charging was investigated, as well as the role of hydride formation in the hydrogen resistance of metal alloys. An attempt was made to correlate the structures and compositions of metal alloys as well as other parameters with the ratios of their notched tensile strengths in hydrogen to that in helium, R(H2/He), which are believed to represent a measure of their hydrogen resistance. Evidence supports the belief that hydrogen permeability and hydrogen resistance are increased by smaller grain sizes for a given alloy composition.

  2. Metal-free hydrogenation of unsaturated hydrocarbons employing molecular hydrogen. (United States)

    Paradies, Jan


    The metal-free activation of hydrogen by frustrated Lewis pairs (FLPs) is a valuable method for the hydrogenation of polarized unsaturated molecules ranging from imines, enamines, and silyl enol ethers to heterocycles. However, one of the most important applications of hydrogenation technology is the conversion of unsaturated hydrocarbons into alkanes or alkenes. Despite the fast development of the FLP chemistry, such reactions proved as highly challenging. This Minireview provides an overview of the basic concepts of FLP chemistry, the challenge in the hydrogenation of unsaturated hydrocarbons, and first solutions to this central transformation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nanostructured Ti-catalyzed MgH2 for hydrogen storage. (United States)

    Shao, H; Felderhoff, M; Schüth, F; Weidenthaler, C


    Nanocrystalline Ti-catalyzed MgH(2) can be prepared by a homogeneously catalyzed synthesis method. Comprehensive characterization of this sample and measurements of hydrogen storage properties are discussed and compared to a commercial MgH(2) sample. The catalyzed MgH(2) nanocrystalline sample consists of two MgH(2) phases-a tetrahedral β-MgH(2) phase and an orthorhombic high-pressure modification γ-MgH(2). Transmission electron microscopy was used for the observation of the morphology of the samples and to confirm the nanostructure. N(2) adsorption measurement shows a BET surface area of 108 m(2) g(-1) of the nanostructured material. This sample exhibits a hydrogen desorption temperature more than 130 °C lower compared to commercial MgH(2). After desorption, the catalyzed nanocrystalline sample absorbs hydrogen 40 times faster than commercial MgH(2) at 300 °C. Both the Ti catalyst and the nanocrystalline structure with correspondingly high surface area are thought to play important roles in the improvement of hydrogen storage properties. The desorption enthalpy and entropy values of the catalyzed MgH(2) nanocrystalline sample are 77.7 kJ mol(-1) H(2) and 138.3 J K(-1) mol(-1) H(2), respectively. Thermodynamic properties do not change with the nanostructure.

  4. Method of producing metallized chloroplasts and use thereof in the photochemical production of hydrogen and oxygen (United States)

    Greenbaum, Elias


    The invention is primarily a metallized chloroplast composition for use in a photosynthetic reaction. A catalytic metal is precipitated on a chloroplast membrane at the location where a catalyzed reduction reaction occurs. This metallized chloroplast is stabilized by depositing it on a support medium such as fiber so that it can be easily handled. A possible application of this invention is the splitting of water to form hydrogen and oxygen that can be used as a renewable energy source.

  5. Ballmilling of metal borohydrides for hydrogen storage

    DEFF Research Database (Denmark)

    Sommer, Sanna


    is to hydrogenate simple compounds such as metalborides and hydrides with the intention of forming a new and more hydrogen rich borohydride. In contrast to mainstream research, the method of synthesis has been based on reactants that are expected to be found in the metal borohydride’s dehydrogenated state....... Specifically, the research undertaken targets CaB6 whose boron is in a octahedral network, or AlB2 whose boron is layered. These compounds were then reactive ball milled with alkali and alkaline earth metal under hydrogen pressure, with the intention of forming metal borohydrides. For CaB6, no clear sign...

  6. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue


    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example......, we show that it can store 9.1% hydrogen by weight in the form of ammonia. The storage is completely reversible, and by combining it with an ammonia decomposition catalyst, hydrogen can be delivered at temperatures below 620 K....

  7. Heterocycles by Transition Metals Catalyzed Intramolecular Cyclization of Acetylene Compounds

    International Nuclear Information System (INIS)

    Vizer, S.A.; Yerzhanov, K.B.; Dedeshko, E.C.


    Review shows the new strategies in the synthesis of heterocycles, having nitrogen, oxygen and sulfur atoms, via transition metals catalyzed intramolecular cyclization of acetylenic compounds on the data published at the last 30 years, Unsaturated heterocyclic compounds (pyrroles and pyrroline, furans, dihydro furans and benzofurans, indoles and iso-indoles, isoquinolines and isoquinolinones, aurones, iso coumarins and oxazolinone, lactams and lactones with various substitutes in heterocycles) are formed by transition metals, those salts [PdCl 2 , Pd(OAc) 2 , HgCl 2 , Hg(OAc) 2 , Hg(OCOCF 3 ) 2 , AuCl 3 ·2H 2 O, NaAuCl 4 ·2H 2 O, CuI, CuCl], oxides (HgO) and complexes [Pd(OAc) 2 (PPh 3 )2, Pd(PPh 3 ) 4 , PdCl 2 (MeCN) 2 , Pd(OAc ) 2 /TPPTS] catalyzed intramolecular cyclization of acetylenic amines, amides, ethers, alcohols, acids, ketones and βdiketones. More complex hetero polycyclic systems typical for natural alkaloids can to obtain similar. Proposed mechanisms of pyrroles, isoquinolines, iso indoles and indoles, benzofurans and iso coumarins, thiazolopyrimidinones formation are considered. (author)

  8. Towards hydrogen metallization: an Ab initio approach

    International Nuclear Information System (INIS)

    Bernard, St.


    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H 2 ) 2 which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author)

  9. Applications of ion implantation for modifying the interactions between metals and hydrogen gas (United States)

    Musket, R. G.


    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  10. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.


    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  11. Interaction of hydrogen with metallic nanojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Halbritter, Andras; Csonka, Szabolcs; Makk, Peter; Mihaly, Gyoergy [Electron Transport Research Group of the Hungarian Academy of Sciences and Department of Physics, Budapest University of Technology and Economics, 1111 Budapest (Hungary)


    We study the behavior of hydrogen molecules between atomic-sized metallic electrodes using the mechanically controllable break junction technique. We focus on the interaction H{sub 2} with monoatomic gold chains demonstrating the possibility of a hydrogen molecule being incorporated in the chain. We also show that niobium is strongly reactive with hydrogen, which enables molecular transport studies between superconducting electrodes. This opens the possibility for a full characterization of the transmission properties of molecular junctions with superconducting subgap structure measurements.

  12. Enantioselective Synthesis of α-Acetal-β'-Amino Ketone Derivatives by Rhodium-Catalyzed Asymmetric Hydrogenation. (United States)

    Llopis, Quentin; Guillamot, Gérard; Phansavath, Phannarath; Ratovelomanana-Vidal, Virginie


    A range of β-keto-γ-acetal enamides has been synthesized and transformed into the corresponding enantioenriched α-acetal-β'-amino ketones with enantioinductions of up to 99% by using rhodium/QuinoxP*-catalyzed enantioselective hydrogenation under mild conditions. This method also proved to be highly chemoselective toward the reduction of the C-C double bond.

  13. Asymmetric hydrogenation of quinolines catalyzed by iridium complexes of monodentate BINOL-derived phosphoramidites

    NARCIS (Netherlands)

    Mrsic, Natasa; Lefort, Laurent; Boogers, Jeroen A. F.; Minnaard, Adriaan J.; Feringa, Ben L.; de Vries, Johannes G.; Mršić, Nataša

    The monodentate BINOL-derived phosphoramidite PipPhos is used as ligand for the iridium-catalyzed asymmetric hydrogenation of 2- and 2,6-substituted quinolines. If tri-ortho-tolylphosphine and/or chloride salts are used as additives enantioselectivities are strongly enhanced up to 89%. NMR indicates

  14. Mechanism of Pd(NHC)-catalyzed transfer hydrogenation of alkynes. (United States)

    Hauwert, Peter; Boerleider, Romilda; Warsink, Stefan; Weigand, Jan J; Elsevier, Cornelis J


    The transfer semihydrogenation of alkynes to (Z)-alkenes shows excellent chemo- and stereoselectivity when using a zerovalent palladium(NHC)(maleic anhydride)-complex as precatalyst and triethylammonium formate as hydrogen donor. Studies on the kinetics under reaction conditions showed a broken positive order in substrate and first order in catalyst and hydrogen donor. Deuterium-labeling studies on the hydrogen donor showed that both hydrogens of formic acid display a primary kinetic isotope effect, indicating that proton and hydride transfers are separate rate-determining steps. By monitoring the reaction with NMR, we observed the presence of a coordinated formate anion and found that part of the maleic anhydride remains coordinated during the reaction. From these observations, we propose a mechanism in which hydrogen transfer from coordinated formate anion to zerovalent palladium(NHC)(MA)(alkyne)-complex is followed by migratory insertion of hydride, after which the product alkene is liberated by proton transfer from the triethylammonium cation. The explanation for the high selectivity observed lies in the competition between strongly coordinating solvent and alkyne for a Pd(alkene)-intermediate.

  15. Analysis of hydrogen in zirconium metallic

    International Nuclear Information System (INIS)

    Rodrigues, A.N.; Vega Bustillos, J.O.W.


    Determination of hydrogen in zirconium metallic have been performed using the hot vacuum extraction system and the gas chromatographic technique. The zirconium metallic samples were hydrieded by electrolitic technique at difference temperatures and times, then the samples were annealing at vacuum and eatching by fluoridric acid solution. The details of the hydrieded process, analytical technique and the data obtained are discussed. (author)

  16. Theory of hydrogen chemisorption on metals

    International Nuclear Information System (INIS)

    Brenig, W.


    A theory of hydrogen chemisorption on metals is presented. Green's function is derived taking into account the coupling strength between metal and chemisorbed atom and the strength of the interatomic Coulomb repulsion, allowing the calculation of the local density of states at the adatom, especially for the limiting cases of strong and weak coupling

  17. Metallic Hydrogen: A Game Changing Rocket Propellant (United States)

    Silvera, Isaac F.


    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  18. Oxidation of lignin-carbohydrate complex from bamboo with hydrogen peroxide catalyzed by Co(salen

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Fei


    Full Text Available The reactivity of salen complexes toward hydrogen peroxide has been long recognized. Co(salen was tested as catalyst for the aqueous oxidation of a refractory lignin-carbohydrate complex (LCC isolated from sweet bamboo (Dendrocalamushamiltonii in the presence of hydrogen peroxide as oxidant. Co(salen catalyzed the reaction of hydrogen peroxide with LCC. From the spectra analyses, lignin units in LCC were undergoing ring-opening, side chain oxidation, demethoxylation, β-O-4 cleavage with Co(salen catalytic oxidation. The degradation was also observed in the carbohydrate of LCC. The investigation on the refractory LCC degradation catalyzed by Co(salen may be an important aspect for environmentally-oriented biomimetic bleaching in pulp and paper industry.

  19. Transfer hydrogenation reactions catalyzed by chiral half-sandwich ...

    Indian Academy of Sciences (India)

    Chiral ruthenium half-sandwich complexes were prepared using a chelating diamine made from proline with a phenyl, ethyl, or benzyl group, instead of hydrogen on one of the coordinating arms. Three of these complexes were obtained as single diastereoisomers and their configuration identified by X-ray crystallography.

  20. Final Report: Metal Perhydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.


    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One Li

  1. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xia [value too long for type character varying(50); Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph


    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of

  2. Polylysine-catalyzed hydrogen evolution at mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Živanovic, Marko; Aleksić, M.; Ostatná, Veronika; Doneux, Thomas; Paleček, Emil


    Roč. 22, 17-18 (2010), s. 2064-2070 ISSN 1040-0397 R&D Projects: GA AV ČR(CZ) KJB100040901; GA MŠk(CZ) ME09038; GA MŠk(CZ) LC06035 Grant - others:GA AV ČR(CZ) KAN400310651 Program:KA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : catalytic hydrogen evolution * constant current chronopotentiometric stripping * polylysine Subject RIV: BO - Biophysics Impact factor: 2.721, year: 2010

  3. Transfer hydrogenation reactions catalyzed by chiral half-sandwich ...

    Indian Academy of Sciences (India)

    The 2-aminomethylpyrrolidine L4 ligand was pre- pared from the L-proline amide which on reduction with lithium aluminium hydride afforded the 2-amino- methylpyrrolidine L4 ligand (Scheme 3).39 Formation of ligands was confirmed by 1H and 13C NMR spec- troscopy. Metal complexes were synthesized by carrying out.

  4. Nanostructures from hydrogen implantation of metals.

    Energy Technology Data Exchange (ETDEWEB)

    McWatters, Bruce Ray (Sandia National Laboratories, Albuquerque, NM); Causey, Rion A.; DePuit, Ryan J.; Yang, Nancy Y. C.; Ong, Markus D.


    This study investigates a pathway to nanoporous structures created by hydrogen implantation in aluminum. Previous experiments for fusion applications have indicated that hydrogen and helium ion implantations are capable of producing bicontinuous nanoporous structures in a variety of metals. This study focuses specifically on hydrogen and helium implantations of aluminum, including complementary experimental results and computational modeling of this system. Experimental results show the evolution of the surface morphology as the hydrogen ion fluence increases from 10{sup 17} cm{sup -2} to 10{sup 18} cm{sup -2}. Implantations of helium at a fluence of 10{sup 18} cm{sup -2} produce porosity on the order of 10 nm. Computational modeling demonstrates the formation of alanes, their desorption, and the resulting etching of aluminum surfaces that likely drives the nanostructures that form in the presence of hydrogen.

  5. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan


    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional catalysts such as Ti-containing mesoporous silicas, which convert phenols to the corresponding benzoquinones, gold nanoparticles are very selective to biaryl compounds (3,3′,5,5′-tetra-tert-butyl diphenoquinone and 2,2′,3,3′,5,5′-hexamethyl-4,4′- biphenol, respectively). Products yields and selectivities depend on the solvent used, the best results being obtained in methanol with yields >98%. Au offers the possibility to completely change the selectivity in the oxidation of substituted phenols and opens interesting perspectives in the clean synthesis of biaryl compounds for pharmaceutical applications. © 2010 Elsevier B.V. All rights reserved.

  6. Microporous Metal Organic Materials for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Sankar; Jing Li; Karl Johnson


    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  7. Diastereo- and Enantioselective Iridium Catalyzed Carbonyl (α-Cyclopropyl)allylation via Transfer Hydrogenation. (United States)

    Tsutsumi, Ryosuke; Hong, Suckchang; Krische, Michael J


    The first examples of diastereo- and enantioselective carbonyl α-(cyclopropyl)allylation are reported. Under the conditions of iridium catalyzed transfer hydrogenation using the chiral precatalyst (R)-Ir-I modified by SEGPHOS, carbonyl α-(cyclopropyl)allylation may be achieved with equal facility from alcohol or aldehyde oxidation levels. This methodology provides a conduit to hitherto inaccessible inaccessible enantiomerically enriched cyclopropane-containing architectures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Oxidation of limonene catalyzed by Metal(Salen complexes

    Directory of Open Access Journals (Sweden)

    L. F. Lima


    Full Text Available The compound R-(+limonene is available and cheap than its oxidized products. Consequently, the selective oxidation of R(+limonene has attracted attention as a promising process for the production of compounds with a higher market value, such as cis/trans-1,2-limoneneoxide, cis/trans-carveol and/or carvone. One of the these processes, described in the recent literature, is submission of R-(+limonene to an oxidation reaction catalyzed by neutral or cationic Metal(Salen complexes, in the presence of effective terminal oxidants such as NaOCl or PhIO. These reactions are commonly carried out in organic solvents (dichromethane, ethyl acetate, acetonitrile or acetone. Thus, the main objective of the present work was to study the effect of several factors (type of oxidant, catalyst, solvent and time on reaction selectivity for the high-priced compounds referred to above. For this purposes, experimental statistical multivariate analysis was used in conjunction with a complete experimental design. From the results it was observed that for the three targeted products (1,2-limoneneoxide, carveol or carvone some factors, including the nature of the terminal oxidant and the catalyst, were significant for product selectivity (with a confidence level of 95%. Therefore, this statistical analysis proved to be suitable for choosing of the best reaction conditions for a specific desired product.

  9. Hydrogen storage properties of metallic hydrides

    International Nuclear Information System (INIS)

    Latroche, M.; Percheron-Guegan, A.


    Nowadays, energy needs are mainly covered by fossil energies leading to pollutant emissions mostly responsible for global warming. Among the different possible solutions for greenhouse effect reduction, hydrogen has been proposed for energy transportation. Indeed, H 2 can be seen as a clean and efficient energy carrier. However, beside the difficulties related to hydrogen production, efficient high capacity storage means are still to be developed. Many metals and alloys are able to store large amounts of hydrogen. This latter solution is of interest in terms of safety, global yield and long term storage. However, to be suitable for applications, such compounds must present high capacity, good reversibility, fast reactivity and sustainability. In this paper, we will review the structural and thermodynamic properties of metallic hydrides. (authors)

  10. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama


    A general and practical process for the conversion of prochiral ketones into the corresponding chiral acetates has been realized. An iron carbonyl complex is reported to catalyze the hydrogenation-dehydrogenation-hydrogenation of prochiral ketones. By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high yields and enantioselectivities. The use of an iron catalyst together with molecular hydrogen as the hydrogen donor and readily available ethyl acetate as acyl donor make this cascade process highly interesting in terms of both economic value and environmental credentials.

  11. Metallic Hydrogen - Potentially a High Energy Rocket Propellant (United States)

    Cole, John; Silvera, Ike


    Pure metallic hydrogen is predicted to have a specific impulse (Isp) of 1700 seconds, but the reaction temperature is too high for current engine materials. Diluting metallic hydrogen with liquid hydrogen can reduce the reaction temperature to levels compatible with current material limits and still provide an Isp greater than 900 s. Metallic hydrogen has not yet been produced on earth, but experimental techniques exist that may change this situation. This paper will provide a brief description of metallic hydrogen and the status of experiments that may soon produce detectable quantities of this material in the lab. Also provided are some characteristics for diluted metallic hydrogen engines and launch vehicles.

  12. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone. (United States)

    Gowda, Ravikumar R; Chen, Eugene Y-X


    Nanoparticles (NPs) derived from earth-abundant metal(0) carbonyls catalyze conversion of bio-derived levulinic acid into γ-valerolactone in up to 93% isolated yield. This sustainable and green route uses non-precious metal catalysts and can be performed in aqueous or ethanol solution without using hydrogen gas as the hydrogen source. Generation of metal NPs using microwave irradiation greatly enhances the rate of the conversion, enables the use of ethanol as both solvent and hydrogen source without forming the undesired ethyl levulinate, and affords recyclable polymer-stabilized NPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Determination of hydrogen in metals and alloys

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Ramakumar, K.L.


    Hydrogen will be invariably present in all materials. Its presence in excess is harmful and sometimes calamitous. Hydrogen embrittlement can occur quite readily in most high strength materials, irrespective of their composition or structure. It is therefore essential to maintain low levels of hydrogen. To know the amount of hydrogen present in the materials, it is essential to determine it with high degree of precision and accuracy. It is required to give the uncertainty associated with the measurement to increase the confidence on measurements. Several methodologies are available for the determination of hydrogen. It its isotope, deuterium, also co-exists it becomes all the more difficult to determine these individually. Hot vacuum extraction cum quadrupole mass spectrometry (HVE-QMS) developed in our laboratory to determine hydrogen and deuterium is routinely employed for the determination of hydrogen and deuterium in metals and alloys. The present paper deals in detail about our experiences with HVE-QMS and estimation of uncertainty associated in this methodology. (author)

  14. Insight into the electronic effect of phosphine ligand on Rh catalyzed CO2 hydrogenation by investigating the reaction mechanism. (United States)

    Ni, Shao-Fei; Dang, Li


    Improving the catalytic efficiency of CO2 hydrogenation is a big challenge in catalysed CO2 recycling and H2 conservation. The detailed mechanism of [Rh(PCH2X(R)CH2P)2](+) (X(R) = CH2, N-CH3, CF2) catalyzed CO2 hydrogenation is studied to obtain insights into the electronic effect of the substituents at diphosphine ligand on the catalytic efficiency. The most favorable reaction mechanism is found to be composed of three steps: (1) oxidative addition of dihydrogen onto the Rh center of the catalyst; (2) the first hydride abstraction by base from the Rh dihydride complexes; (3) the second hydride transfer from the Rh hydride complexes to CO2. It was found that the transition state for the first hydride abstraction from the Rh dihydride complex is the TOF-determining transition state (TDTS) in the most favorable mechanism. The energetic span (δE) of the cycle is suggested related to the thermodynamic hydricity of the Rh dihydride complex. Model catalyst [Rh(PCH2CF2CH2P)2](+) with a strong σ electron withdrawing group on the diphosphine ligand provides higher hydricity in the Rh dihydride complex and lower activation energy when compared with the other two catalysts. Our study shows that it is the σ electron withdrawing ability rather than the electron donating ability that enhances the catalytic efficiency in catalyzed CO2 hydrogenation. This finding will benefit ligand design in transition metal catalysts and lead to more efficient methods for CO2 transformation.

  15. Iron-catalyzed hydrogenation of bicarbonates and carbon dioxide to formates. (United States)

    Zhu, Fengxiang; Zhu-Ge, Ling; Yang, Guangfu; Zhou, Shaolin


    The catalytic hydrogenation of carbon dioxide and bicarbonate to formate has been explored extensively. The vast majority of the known active catalyst systems are based on precious metals. Herein, we describe an effective, phosphine-free, air- and moisture-tolerant catalyst system based on Knölker's iron complex for the hydrogenation of bicarbonate and carbon dioxide to formate. The catalyst system can hydrogenate bicarbonate at remarkably low hydrogen pressures (1-5 bar). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Solubility and diffusion of hydrogen in pure metals and alloys

    International Nuclear Information System (INIS)

    Wipf, H.


    Basic facts are presented of the absorption of hydrogen gas by metals and the diffusion of hydrogen in metals. Specifically considered are crystalline metals without defects and lattice disorder (pure metals), low hydrogen concentrations and the possibility of high hydrogen gas pressures. The first introductory topic is a short presentation of typical phase diagrams of metal hydrogen systems. Then, hydrogen absorption is discussed and shown to be decisively determined by the enthalpy of solution, in particular by its sign which specifies whether absorption is exothermic or endothermic. The formation of high-pressure hydrogen gas bubbles in a metal, which can lead to blistering, is addressed. It is demonstrated that bubble formation will, under realistic conditions, only occur in strongly endothermically hydrogen absorbing metals. The chief aspects of hydrogen diffusion in metals are discussed, especially the large size of the diffusion coefficient and its dependence on lattice structure. It is shown that forces can act on hydrogen in metals, causing a directed hydrogen flux. Such forces arise, for instance, in the presence of stress and temperature gradients and can result in local hydrogen accumulation with potential material failure effects. The final aspect discussed is hydrogen permeation, where the absorption behavior of the hydrogen is found to be in general more decisive on the permeation rate than the value of the diffusion coefficient. (orig.)

  17. Transition Metal Catalyzed Synthesis of Carboxylic Acids, Imines, and Biaryls

    DEFF Research Database (Denmark)

    Santilli, Carola; Madsen, Robert

    Dehydrogenative synthesis of carboxylic acids catalyzed by a ruthenium N- heterocycliccarbene complex. A new methodology for the synthesis of carboxylic acids from primary alcohols and hydroxide has been developed. The reaction is catalyzed by the ruthenium N-heterocycliccarbene complex [RuCl2(Ii...... to the carboxylic acids can be explained by the involvement of a competing Cannizzaro reaction. The scope of the dehydrogenation was further extended to linear and branched saturated aliphatic alcohols, although longer reaction times are necessary to ensure complete substrate conversions. The kinetic isotope effect...... the carboxylate.  Manganese catalyzed radical Kumada-type reaction between aryl halidesand aryl Grignard reagents. The reaction between aryl halides and aryl Grignard reagents catalyzed by MnCl2 has been extended to several methyl-substituted aryl iodide reagents byperforming the reaction at 120 ˚C in a microwave...

  18. Hydrogen Storage in Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing a high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H2 adsorption measurements, to provide a comprehensive picture of H2 adsorption at all relevant pressures. A

  19. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide (United States)

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen


    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  20. Autoinduced catalysis and inverse equilibrium isotope effect in the frustrated Lewis pair catalyzed hydrogenation of imines. (United States)

    Tussing, Sebastian; Greb, Lutz; Tamke, Sergej; Schirmer, Birgitta; Muhle-Goll, Claudia; Luy, Burkhard; Paradies, Jan


    The frustrated Lewis pair (FLP)-catalyzed hydrogenation and deuteration of N-benzylidene-tert-butylamine (2) was kinetically investigated by using the three boranes B(C6F5)3 (1), B(2,4,6-F3-C6H2)3 (4), and B(2,6-F2-C6H3)3 (5) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol(-1)) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Solubility of hydrogen in transition metals

    International Nuclear Information System (INIS)

    Lee, H.M.


    Correlations exist between the heat of solution of hydrogen and the difference in energy between the lowest lying energy levels of the trivalent d/sup n-1/s electronic configuration and the divalent d/sup n-2/s 2 (or the tetravalent d/sup n/) configuration of the neutral gaseous atoms. The trends observed in the transition metal series are discussed in relation to the number of valence electrons per atom in the transition elements in their metallic and neutral states

  2. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    International Nuclear Information System (INIS)

    Esaki, N.; Nakayama, T.; Sawada, S.; Tanaka, H.; Soda, K.


    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically

  3. Alumina-entrapped Ag catalyzed nitro compounds coupled with alcohols using borrowing hydrogen methodology. (United States)

    Liu, Huihui; Chuah, Gaik Khuan; Jaenicke, Stephan


    Supported silver catalysts were reported for the first time to be able to catalyze the coupling reaction between nitroarenes and alcohols via the borrowing hydrogen scheme. The recyclable, non-leaching catalyst is synthesized by the entrapment method, which allows entrapping of silver nanoparticles in an alumina matrix. Alcohols, acting as the reducing agents for nitro-groups, alkylated the resultant amines smoothly over these silver catalysts giving a yield of >98% towards the N-substituted amines. In this process, multiple steps were realized in one-pot over a single catalyst with very high efficiency. It offers another clean and economic way to achieve amination of alcohols.

  4. Recent advances in transition metal-catalyzed N -atom transfer reactions of azides (United States)

    Driver, Tom G.


    Transition metal-catalyzed N-atom transfer reactions of azides provide efficient ways to construct new carbon–nitrogen and sulfur–nitrogen bonds. These reactions are inherently green: no additive besides catalyst is needed to form the nitrenoid reactive intermediate, and the by-product of the reaction is environmentally benign N2 gas. As such, azides can be useful precursors for transition metal-catalyzed N-atom transfer to sulfides, olefins and C–H bonds. These methods offer competitive selectivities and comparable substrate scope as alternative processes to generate metal nitrenoids. PMID:20617243

  5. Supported Molten Metal Membranes for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Ravindra [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Ma, Yi Hua [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Yen, Pei-Shan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Deveau, Nicholas [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Fishtik, Ilie [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Mardilovich, Ivan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering


    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM. The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 °C has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and

  6. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides (United States)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (<100nm diameter) and ball-milled silicon powder (325 mesh). The increase in rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from <100 nm to ˜10 nm particles, the hydrogen production rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  7. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico


    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  8. Micelle-hosted palladium nanoparticles catalyze citral molecule hydrogenation in supercritical carbon dioxide. (United States)

    Meric, Pascal; Yu, Kai Man K; Tsang, Shik Chi


    A new approach of employing metal particles in micelles for the hydrogenation of organic molecules in the presence of fluorinated surfactant and water in supercritical carbon dioxide has very recently been introduced. This is allegedly to deliver many advantages for carrying out catalysis including the use of supercritical carbon dioxide (scCO2) as a greener solvent. Following this preliminary account, the present work aims to provide direct visual evidence on the formation of metal microemulsions and to investigate whether metal located in the soft micellar assemblies could affect reaction selectivity. Synthesis of Pd nanoparticles in perfluorohydrocarboxylate anionic micelles in scCO2 is therefore carried out in a stainless steel batch reactor at 40 degrees C and in a 150 bar CO2/H2 mixture. Homogeneous dispersion of the microemulsion containing Pd nanoparticles in scCO2 is observed through a sapphire window reactor at W0 ratios (molar water-to-surfactant ratios) ranging from 2 to 30. It is also evidenced that the use of micelle assemblies as new metal catalyst nanocarriers could indeed exert a great influence on product selectivity. The hydrogenation of a citral molecule that contains three reducible groups (aldehyde, double bonds at the 2,3-position and the 6,7-position) is studied. An unusually high selectivity toward citronellal (a high regioselectivity toward the reduction of the 2,3-unsaturation) is observed in supercritical carbon dioxide. On the other hand, when the catalysis is carried out in the conventional liquid or vapor phase over the same reaction time, total hydrogenation of the two double bonds is achieved. It is thought that the high kinetic reluctance for double bond hydrogenation of the citral molecule at the hydrophobic end (the 6,7-position) is due to the unique micelle environment that is in close proximity to the metal surface in supercritical carbon dioxide that guides a head-on attack of the molecule toward the core metal particle.

  9. How absorbed hydrogen affects the catalytic activity of transition metals. (United States)

    Aleksandrov, Hristiyan A; Kozlov, Sergey M; Schauermann, Swetlana; Vayssilov, Georgi N; Neyman, Konstantin M


    Heterogeneous catalysis is commonly governed by surface active sites. Yet, areas just below the surface can also influence catalytic activity, for instance, when fragmentation products of catalytic feeds penetrate into catalysts. In particular, H absorbed below the surface is required for certain hydrogenation reactions on metals. Herein, we show that a sufficient concentration of subsurface hydrogen, H(sub) , may either significantly increase or decrease the bond energy and the reactivity of the adsorbed hydrogen, H(ad) , depending on the metal. We predict a representative reaction, ethyl hydrogenation, to speed up on Pd and Pt, but to slow down on Ni and Rh in the presence of H(sub) , especially on metal nanoparticles. The identified effects of subsurface H on surface reactivity are indispensable for an atomistic understanding of hydrogenation processes on transition metals and interactions of hydrogen with metals in general. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. First-row transition metal hydrogenation and hydrosilylation catalysts (United States)

    Trovitch, Ryan J.; Mukhopadhyay, Tufan K.; Pal, Raja; Levin, Hagit Ben-Daat; Porter, Tyler M.; Ghosh, Chandrani


    Transition metal compounds, and specifically transition metal compounds having a tetradentate and/or pentadentate supporting ligand are described, together with methods for the preparation thereof and the use of such compounds as hydrogenation and/or hydrosilylation catalysts.

  11. Anoxia stimulates microbially catalyzed metal release from Animas River sediments†


    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; Cerrato, José M.; Johnston, Michael D.; Wilkins, Michael J.


    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold Ki...

  12. Three Metal Ions Participate in the Reaction Catalyzed by T5 Flap Endonuclease*S⃞ (United States)

    Syson, Karl; Tomlinson, Christopher; Chapados, Brian R.; Sayers, Jon R.; Tainer, John A.; Williams, Nicholas H.; Grasby, Jane A.


    Protein nucleases and RNA enzymes depend on divalent metal ions to catalyze the rapid hydrolysis of phosphate diester linkages of nucleic acids during DNA replication, DNA repair, RNA processing, and RNA degradation. These enzymes are widely proposed to catalyze phosphate diester hydrolysis using a “two-metal-ion mechanism.” Yet, analyses of flap endonuclease (FEN) family members, which occur in all domains of life and act in DNA replication and repair, exemplify controversies regarding the classical two-metal-ion mechanism for phosphate diester hydrolysis. Whereas substrate-free structures of FENs identify two active site metal ions, their typical separation of >4 Å appears incompatible with this mechanism. To clarify the roles played by FEN metal ions, we report here a detailed evaluation of the magnesium ion response of T5FEN. Kinetic investigations reveal that overall the T5FEN-catalyzed reaction requires at least three magnesium ions, implying that an additional metal ion is bound. The presence of at least two ions bound with differing affinity is required to catalyze phosphate diester hydrolysis. Analysis of the inhibition of reactions by calcium ions is consistent with a requirement for two viable cofactors (Mg2+ or Mn2+). The apparent substrate association constant is maximized by binding two magnesium ions. This may reflect a metal-dependent unpairing of duplex substrate required to position the scissile phosphate in contact with metal ion(s). The combined results suggest that T5FEN primarily uses a two-metal-ion mechanism for chemical catalysis, but that its overall metallobiochemistry is more complex and requires three ions. PMID:18697748

  13. PipPhos and MorfPhos : Privileged monodentate phosphoramidite ligands for rhodium-catalyzed asymmetric hydrogenation

    NARCIS (Netherlands)

    Bernsmann, Heiko; van den Berg, M; Hoen, Robert; Minnaard, AJ; Mehler, G; Reetz, MT; De Vries, JG; Feringa, BL


    A library of 20 monodentate phosphoramidite ligands has been prepared and applied in rhodium-catalyzed asymmetric hydrogenation. This resulted in the identification of two ligands, PipPhos and MorfPhos, that afford excellent and in several cases unprecedented enantioselectivities in the

  14. Ruthenium-catalyzed hydrogen isotope exchange of C(sp3)-H bonds directed by a sulfur atom. (United States)

    Gao, Longhui; Perato, Serge; Garcia-Argote, Sébastien; Taglang, Céline; Martínez-Prieto, Luis Miguel; Chollet, Céline; Buisson, David-Alexandre; Dauvois, Vincent; Lesot, Philippe; Chaudret, Bruno; Rousseau, Bernard; Feuillastre, Sophie; Pieters, Grégory


    We present here the first example of C(sp 3 )-H activation directed by a sulfur atom. Based on this transformation catalyzed by Ru/C, we have developed a hydrogen isotope exchange reaction for the deuterium and tritium labelling of thioether substructures in complex molecules.

  15. Synthesis of 2-substituted tetraphenylenes via transition-metal-catalyzed derivatization of tetraphenylene

    Directory of Open Access Journals (Sweden)

    Shulei Pan


    Full Text Available A new strategy for the synthesis of 2-substituted tetraphenylenes through a transition-metal-catalyzed derivatization has been developed. Three types of functionalities, including OAc, X (Cl, Br, I and carbonyl, were introduced onto tetraphenylene, which allows the easy access to a variety of monosubstituted tetraphenylenes. These reactions could accelerate research on the properties and application of tetraphenylene derivatives.

  16. Catalytic activity of noble metals promoting hydrogen uptake

    NARCIS (Netherlands)

    Borgschulte, A.; Westerwaal, R.J.; Rector, J.H.; Schreuders, H.; Dam, B.; Griessen, R.P.


    The engineering of pure and metal alloy catalysts for hydrogen absorption is needed to improve the kinetics of hydrogen-related devices. We introduce a new route to search for alloys that can yield superior catalytic behavior for hydrogen absorption, using an optical technique to measure the

  17. Anoxia stimulates microbially catalyzed metal release from Animas River sediments. (United States)

    Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J


    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  18. Anoxia stimulates microbially catalyzed metal release from Animas River sediments† (United States)

    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; Cerrato, José M.; Johnston, Michael D.


    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO42−-reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds. PMID:28301612

  19. Efficient hydrogen liberation from formic acid catalyzed by a well-defined iron pincer complex under mild conditions. (United States)

    Zell, Thomas; Butschke, Burkhard; Ben-David, Yehoshoa; Milstein, David


    Hydrogen liberation: An attractive approach to reversible hydrogen storage applications is based on the decomposition of formic acid. The efficient and selective hydrogen liberation from formic acid is catalyzed by an iron pincer complex in the presence of trialkylamine. Turnover frequencies up to 836 h⁻¹ and turnover numbers up to 100,000 were achieved at 40 °C. A mechanism including well-defined intermediates is suggested on the basis of experimental and computational data. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The use of phosphite-type ligands in the Ir-catalyzed asymmetric hydrogenation of heterocyclic compounds. (United States)

    Lyubimov, Sergey E; Ozolin, Dmitry V; Ivanov, Pavel Yu; Melman, Artem; Velezheva, Valeriya S; Davankov, Vadim A


    A series of chiral phosphite-type ligands was tested in asymmetric Ir-catalyzed hydrogenation of quinolines and 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-j,k)carbazole. Hydrogenation of quinaldine hydrochloride provided superior enantioselectivity up to 65% ee compared to quinaldine free base. The ligands were tested for the first time in the asymmetric Ir-Ircatalyzed hydrogenation of 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-j,k)carbazole yielding the antidepressant drug, pirlindole. © 2013 Wiley Periodicals, Inc.

  1. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.


    Full Text Available Liquid metallic hydrogen provides a compelling material for constructing a condensed matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might have the potential to be a metastable substance requiring high pressures for forma- tion. Once created, it would remain stable even at lower pressures. The metallic form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B. Huntington who indirectly anticipated its elevated critical temperature for liquefaction (Wigner E. and Huntington H.B. On the possibility of a metallic modification of hydro- gen. J. Chem. Phys. , 1935, v.3, 764–770. At that time, solid metallic hydrogen was hypothesized to exist as a body centered cubic, although a more energetically accessible layered graphite-like lattice was also envisioned. Relative to solar emission, this struc- tural resemblance between graphite and layered metallic hydrogen should not be easily dismissed. In the laboratory, metallic hydrogen remains an elusive material. However, given the extensive observational evidence for a condensed Sun composed primarily of hydrogen, it is appropriate to consider metallic hydrogen as a solar building block. It is anticipated that solar liquid metallic hydrogen should possess at least some layered order. Since layered liquid metallic hydrogen would be essentially incompressible, its invocation as a solar constituent brings into question much of current stellar physics. The central proof of a liquid state remains the thermal spectrum of the Sun itself. Its proper understanding brings together all the great forces which shaped modern physics. Although other proofs exist for a liquid photosphere, our focus remains solidly on the generation of this light.

  2. Revised Theoretical Model on Enantiocontrol in Phosphoric Acid Catalyzed H-Transfer Hydrogenation of Quinoline. (United States)

    Pastor, Julien; Rezabal, Elixabete; Voituriez, Arnaud; Betzer, Jean-François; Marinetti, Angela; Frison, Gilles


    The enantioselective H-transfer hydrogenation of quinoline by Hantzsch ester is a relevant example of Brønsted acid catalyzed cascade reactions, with phosphoric acid being a privileged catalyst. The generally accepted mechanism points out the hydride transfer step as the rate- and stereodetermining step, however computations based on these models do not totally fit with experimental observations. We hereby present a computational study that enlightens the stereochemical outcome and quantitatively reproduces the experimental enantiomeric excesses in a series of H-transfer hydrogenations. Our calculations suggest that the high stereocontrol usually attained with BINOL-derived phosphoric acids results mostly from the steric constraints generated by an aryl substituent of the catalyst, which hinders the access of the Hantzsch ester to the catalytic site and enforces approach through a specific way. It relies on a new model involving the preferential assembly of one of the stereomeric complexes formed by the chiral phosphoric acid and the two reaction partners. The stereodetermining step thus occurs prior to the H-transfer step.

  3. A Selective and Functional Group-Tolerant Ruthenium-Catalyzed Olefin Metathesis/Transfer Hydrogenation Tandem Sequence Using Formic Acid as Hydrogen Source. (United States)

    Zieliński, Grzegorz K; Majtczak, Jarosława; Gutowski, Maciej; Grela, Karol


    A ruthenium-catalyzed transfer hydrogenation of olefins utilizing formic acid as a hydrogen donor is described. The application of commercially available alkylidene ruthenium complexes opens access to attractive C(sp3)-C(sp3) bond formation in an olefin metathesis/transfer hydrogenation sequence under tandem catalysis conditions. High chemoselectivity of the developed methodology provides a remarkable synthetic tool for the reduction of various functionalized alkenes under mild reaction conditions. The developed methodology is applied for the formal synthesis of the drugs pentoxyverine and bencyclane.

  4. Oxygen Reduction Reaction Catalyzed by Noble Metal Clusters

    Directory of Open Access Journals (Sweden)

    Zhenghua Tang


    Full Text Available Highly-efficient catalysts for the oxygen reduction reaction (ORR have been extensively investigated for the development of proton exchange membrane fuel cells (PEMFCs. The state-of-the-art Pt/C catalysts suffer from high price, limited accessibility of Pt, sluggish reaction kinetics, as well as undesirable long-term durability. Engineering ultra-small noble metal clusters with high surface-to-volume ratios and robust stabilities for ORR represents a new avenue. After a simple introduction regarding the significance of ORR and the recent development of noble metal clusters, the general ORR mechanism in both acidic and basic media is firstly discussed. Subsequently, we will summarize the recent efforts employing Pt, Au, Ag, Pd and Ru clusters, as well as the alloyed bi-metallic clusters for acquiring highly efficient catalysts to enhance both the activity and stability of ORR. Molecular noble metal clusters with definitive composition to reveal the relevant ORR mechanism will be particularly highlighted. Finally, the current challenges, the future outlook, as well as the perspectives in this booming field will be proposed, featuring the great opportunities and potentials to engineering noble metal clusters as highly-efficient and durable cathodic catalysts for fuel cell applications.

  5. Noble metal-free hydrogen evolution catalysts for water splitting. (United States)

    Zou, Xiaoxin; Zhang, Yu


    Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

  6. Carbocyclization versus oxycyclization on the metal-catalyzed reactions of oxyallenyl C3-linked indoles. (United States)

    Alcaide, Benito; Almendros, Pedro; Alonso, José M; Fernández, Israel


    The preparation of previously unknown (indol-3-yl)-α-allenols and -allenones was accomplished from indole-3-carbaldehydes, through indium-mediated Barbier allenylation reaction taking advantage of the N-(2-pyridyl)sulfonyl group. Metal-catalyzed cyclizations of oxyallenyl C3-linked indoles proceeded in two ways depending on the presence or absence of the N-(2-pyridyl)sulfonyl group. For allenols, gold-catalyzed oxycyclization occurred in the presence of the protecting group; in the absence of the protecting group, palladium- and gold-catalyzed benzannulations operated. On the contrary, under gold catalysis furyl-indoles were obtained as exclusive products from NH-allenones, while 5-endo carbocyclization adducts were the major components starting from N-SO2py-protected allenones. These cyclization reactions have been developed experimentally, and their mechanisms have additionally been investigated by a computational study.

  7. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst (United States)

    Feder, Harold M.; Rathke, Jerome W.


    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  8. Dynamic kinetic resolution of allylic sulfoxides by Rh-catalyzed hydrogenation: a combined theoretical and experimental mechanistic study. (United States)

    Dornan, Peter K; Kou, Kevin G M; Houk, K N; Dong, Vy M


    A dynamic kinetic resolution (DKR) of allylic sulfoxides has been demonstrated by combining the Mislow [2,3]-sigmatropic rearrangement with catalytic asymmetric hydrogenation. The efficiency of our DKR was optimized by using low pressures of hydrogen gas to decrease the rate of hydrogenation relative to the rate of sigmatropic rearrangement. Kinetic studies reveal that the rhodium complex acts as a dual-role catalyst and accelerates the substrate racemization while catalyzing olefin hydrogenation. Scrambling experiments and theoretical modeling support a novel mode of sulfoxide racemization which occurs via a rhodium π-allyl intermediate in polar solvents. In nonpolar solvents, however, the substrate racemization is primarily uncatalyzed. Computational studies suggest that the sulfoxide binds to rhodium via O-coordination throughout the catalytic cycle for hydrogenation.

  9. Oxygen Reduction Reaction Catalyzed by Noble Metal Clusters


    Zhenghua Tang; Wen Wu; Kai Wang


    Highly-efficient catalysts for the oxygen reduction reaction (ORR) have been extensively investigated for the development of proton exchange membrane fuel cells (PEMFCs). The state-of-the-art Pt/C catalysts suffer from high price, limited accessibility of Pt, sluggish reaction kinetics, as well as undesirable long-term durability. Engineering ultra-small noble metal clusters with high surface-to-volume ratios and robust stabilities for ORR represents a new avenue. After a simple introduction ...

  10. Synergistic effect of polyoxometalate solution and TiO2 under UV irradiation to catalyze formic acid degradation and their application in the fuel cell and hydrogen evolution

    Directory of Open Access Journals (Sweden)

    Congmin Liu


    Full Text Available The synergistic effect of H3PMo12O40 or H3PW12O40 polyoxometalate solution (POM and TiO2 to catalyze formic acid oxidation was investigated. Under UV irradiation, hole and electron were photogenerated by TiO2. Formic acid was oxided by the photogenerated hole and photogenerated electron was transferred to reduce polyoxometalate. With this design, formic acid can be converted into electricity in the fuel cell and hydrogen can be generated in the electrolysis cell without noble metal catalyst. Unlike other noble metal catalysts applied in the fuel cells and electrolysis cell, POM and TiO2 are stable and low cost. The maximum output power density of liquid formic acid fuel cell after 12 h UV irradiation is 5.21 mW/cm2 for phosphmolybdic acid and 22.81 mW/cm2 for phosphotungstic acid respectively. The applied potential for the hydrogen evolution is as low as 0.8 V for phosphmolybdic acid and 0.6 V for phosphotungstic acid. Keywords: TiO2, UV, Polyoxometalate solution (POM, Fuel cell, Hydrogen evolution

  11. Hydrogen evolution by a metal-free electrocatalyst

    KAUST Repository

    Zheng, Yao


    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics. © 2014 Macmillan Publishers Limited. All rights reserved.

  12. Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires (United States)

    Potié, Alexis; Baron, Thierry; Dhalluin, Florian; Rosaz, Guillaume; Salem, Bassem; Latu-Romain, Laurence; Kogelschatz, Martin; Gentile, Pascal; Oehler, Fabrice; Montès, Laurent; Kreisel, Jens; Roussel, Hervé


    The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration ( x) in Si1- x Ge x NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.

  13. Hydrogen as a New Alloying Element in Metals

    International Nuclear Information System (INIS)

    Shapovalov, Vladimir


    Hydrogen was regarded as a harmful impurity in many alloys and particularly in steels where it gives rise to a specific type of embrittlement and forms various discontinuities like flakes and blowholes. For this reason, the researcher efforts were mainly focused on eliminating hydrogen's negative impacts and explaining its uncommonly high diffusivity in condensed phases. Meanwhile, positive characteristics of hydrogen as an alloying element remained unknown for quite a long time. Initial reports in this field did not appear before the early 1970s. Data on new phase diagrams are given for metal-hydrogen systems where the metal may or may not form hydrides. Various kinds of hydrogen impact on structure formation in solidification, melting and solid-solid transformations are covered. Special attention is given to the most popular alloys based on iron, aluminum, copper, nickel, magnesium and titanium. Detailed is what is called gas-eutectic reaction resulting in a special type of gas-solid structure named gasarite. Properties and applications of gasars - gasaritic porous materials - are dealt with. Various versions of solid-state alloying with hydrogen are discussed that change physical properties and fabrication characteristics of metals. Details are given on a unique phenomenon of anomalous spontaneous deformation due to combination of hydrogen environment and polymorphic transformation. All currently known versions of alloying with hydrogen are categorized for both hydride-forming and non-hydrid forming metals

  14. Tunable Metal-Catalyzed Heterocyclization Reactions of Allenic Amino Alcohols: An Experimental and Theoretical Study. (United States)

    Alcaide, Benito; Almendros, Pedro; Aragoncillo, Cristina; Gómez-Campillos, Gonzalo; Quirós, M Teresa; Soriano, Elena


    Controlled preparation of 2,5-dihydro-1H-pyrroles, 3,6-dihydro-2H-pyrans, and pyrroles has been achieved through switchable chemo- and regioselectivity in the metal-catalyzed heterocyclization reactions of allenic amino alcohols. The gold-catalyzed cycloisomerization reaction of α-amino-β-hydroxyallenes was effective as 5-endo cyclization by addition of amino functionality to the distal allene carbon to yield enantiopure 2,5-dihydro-1H-pyrroles, whereas their palladium-catalyzed cyclizative coupling reactions furnished 3,6-dihydro-2H-pyrans through a chemo- and regioselective 6-endo cycloetherification. Conversely, the gold-catalyzed heterocyclization reaction of β-amino-γ-hydroxyallenes generated exclusively pyrrole derivatives. These results could be explained through a chemo- and regioselective 5-exo aminocyclization to the central allene carbon followed by aromatization. Chemo- and regioselectivity depend on both linker elongation as well as the type of catalyst. This behavior can be justified by means of density functional theory calculations.

  15. Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks. (United States)

    Rojas-Buzo, Sergio; García-García, Pilar; Corma, Avelino


    A series of highly crystalline, porous, hafnium-based metal-organic frameworks (Hf-MOFs) have been shown to catalyze the transfer hydrogenation reaction of levulinic ester to produce γ-valerolactone by using isopropanol as a hydrogen donor. The results are compared with their zirconium-based counterparts. The role of the metal center in Hf-MOFs has been identified and reaction parameters optimized. NMR studies using isotopically labeled isopropanol provide evidence that the transfer hydrogenation occurs through a direct intermolecular hydrogen transfer route. The catalyst, Hf-MOF-808, can be recycled several times with only a minor decrease in catalytic activity. The generality of the procedure has been demonstrated by accomplishing the transformation with aldehydes, ketones, and α,β-unsaturated carbonyl compounds. The combination of Hf-MOF-808 with the Brønsted-acidic Al-Beta zeolite gives the four-step one-pot transformation of furfural to γ-valerolactone in good yield of 75 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. DWPF Hydrogen Generation Study-Form of Noble Metal SRAT Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C


    The Defense Waste Processing Facility, DWPF, has requested that the Savannah River National Laboratory, SRNL, investigate the factors that contribute to hydrogen generation to determine if current conservatism in setting the DWPF processing window can be reduced. A phased program has been undertaken to increase understanding of the factors that influence hydrogen generation in the DWPF Chemical Process Cell, CPC. The hydrogen generation in the CPC is primarily due to noble metal catalyzed decomposition of formic acid with a minor contribution from radiolytic processes. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Two sludge simulants were obtained, one with co-precipitated noble metals and one without noble metals. Co-precipitated noble metals were expected to better match real waste behavior than using trimmed noble metals during CPC simulations. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The two original and two heat-treated sludge simulants were then used as feeds to Sludge Receipt and Adjustment Tank, SRAT, process simulations. Testing was done at relatively high acid stoichiometries, {approx}175%, and without mercury in order to ensure significant hydrogen generation. Hydrogen generation rates were monitored during processing to assess the impact of the form of noble metals. The following observations were made on the data: (1) Co-precipitated noble metal simulant processed similarly to trimmed noble metal simulant in most respects, such as nitrite to nitrate conversion, formate destruction, and pH, but differently with respect to hydrogen generation: (A

  17. Recent Progress in Metal Borohydrides for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Craig M. Jensen


    Full Text Available The prerequisite for widespread use of hydrogen as an energy carrier is the development of new materials that can safely store it at high gravimetric and volumetric densities. Metal borohydrides M(BH4n (n is the valence of metal M, in particular, have high hydrogen density, and are therefore regarded as one such potential hydrogen storage material. For fuel cell vehicles, the goal for on-board storage systems is to achieve reversible store at high density but moderate temperature and hydrogen pressure. To this end, a large amount of effort has been devoted to improvements in their thermodynamic and kinetic aspects. This review provides an overview of recent research activity on various M(BH4n, with a focus on the fundamental dehydrogenation and rehydrogenation properties and on providing guidance for material design in terms of tailoring thermodynamics and promoting kinetics for hydrogen storage.

  18. Enantioselective Iridium Catalyzed Carbonyl Allylation from the Alcohol Oxidation Level via Transfer Hydrogenation: Minimizing Pre-Activation for Synthetic Efficiency (United States)

    Han, Soo Bong; Kim, In Su; Krische, Michael J.


    Existing methods for enantioselective carbonyl allylation, crotylation and tert-prenylation require stoichiometric generation of pre-metallated nucleophiles and often employ stoichiometric chiral modifiers. Under the conditions of transfer hydrogenation employing an ortho-cyclometallated iridium C,O-benzoate catalyst, enantioselective carbonyl allylations, crotylations and tert-prenylations are achieved in the absence of stoichiometric metallic reagents or stoichiometric chiral modifiers. Moreover, under transfer hydrogenation conditions, primary alcohols function dually as hydrogen donors and aldehyde precursors, enabling enantioselective carbonyl addition directly from the alcohol oxidation level. PMID:20024203

  19. Precipitation of metal sulphides using gaseous hydrogen sulphide : mathematical modelling

    NARCIS (Netherlands)

    Tarazi, Mousa Al-; Heesink, A. Bert M.; Versteeg, Geert F.


    A mathematical model has been developed that describes the precipitation of metal sulphides in an aqueous solution containing two different heavy metal ions. The solution is assumed to consist of a well-mixed bulk and a boundary layer that is contacted with hydrogen sulphide gas. The model makes use

  20. Precipitation of metal sulphides using gaseous hydrogen sulphide: mathematical modelling

    NARCIS (Netherlands)

    Al Tarazi, M.Y.M.; Heesink, Albertus B.M.; Versteeg, Geert


    A mathematical model has been developed that describes the precipitation of metal sulffides in an aqueous solution containing two different heavy metal ions. The solution is assumed to consist of a well-mixed bulk and a boundary layer that is contacted with hydrogen sulphide gas. The model makes use

  1. Transformation of triclosan by laccase catalyzed oxidation: The influence of humic acid-metal binding process. (United States)

    Lu, Junhe; Shi, Yuanyuan; Ji, Yuefei; Kong, Deyang; Huang, Qingguo


    Laccase is a widely present extracellular phenoloxidase excreted by fungi, bacteria, and high plants. It is able to catalyze one-electron oxidation of phenolic compounds into radical intermediates that can subsequently couple to each other via covalent bonds. These reactions are believed to play an important role in humification process and the transformation of contaminants containing phenolic functionalities in the environment. In this study, we investigated the kinetics of triclosan transformation catalyzed by laccase. It was found that the rate of triclosan oxidation was first order to the concentrations of both substrate and enzyme. Humic acid (HA) could inhibit the reaction by quenching the radical intermediate of triclosan generated by laccase oxidation. Such inhibition was more significant in the presence of divalent metal cations. This is because that binding to metal ions neutralized the negative charge of HA molecules, thus making them more accessible to laccase molecule that is also negatively charged. Therefore, it has greater chance to quench the radical intermediate that is very unstable and can only diffuse a limited distance after being released from the enzyme catalytic center. Based on these understandings, a reaction model was developed by integration of metal-HA binding equilibriums and kinetic equations. This model precisely predicted the transformation rate of triclosan in the presence of HA and divalent metal ions including Ca 2+ , Mg 2+ , Cd 2+ , Co 2+ , Mn 2+ , Ba 2+ , and Zn 2+ . Overall, this work reveals important insights into laccase catalyzed oxidative coupling process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Kinetics and mechanism of the heterogeneous catalyzed oxidative decolorization of Acid-Blue 92 using bimetallic metal-organic frameworks. (United States)

    El-sharkawy, Rehab G; El-din, Ahmed S Badr; El-din H Etaiw, Safaa


    The kinetics study of the oxidative decolorization of Acid-Blue 92 has been investigated by hydrogen peroxide catalyzed with bimetallic metal-organic frameworks. The used metal-organic frameworks (MOF) are [Ph3SnCu(CN)2·L] where L=pyrazine (pyz) 1, methylpyrazine (mepyz) 2, 4,4'-bipyridine (bpy) 3, trans-1,2-bis(4-pyridyl)ethene (tbpe) 4 or 1,2-bis(4-pyridyl)ethane (bpe) 5. The reaction was followed by conventional UV-Vis spectrophotometer at λmax=571 nm. The reaction exhibited first-order kinetics with respect to [dye] and [H2O2]. The reactivity of the catalysts depends on the type of the medium and thereafter decreases in strong alkaline media. Addition of NaCl enhances the reaction rate. Also, the irradiation of the reaction with UV-light enhanced the rate of AB-92 mineralization by about 86.9%. The reaction was entropy-controlled as confirmed by the isokinetic relationship. A reaction mechanism was proposed with the formation of free radicals as an oxidant. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Kasper T. Møller


    Full Text Available Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.

  4. Metallic cobalt nanoparticles imbedded into ordered mesoporous carbon: A non-precious metal catalyst with excellent hydrogenation performance. (United States)

    Liu, Jiangyong; Wang, Zihao; Yan, Xiaodong; Jian, Panming


    Ordered mesoporous carbon (OMC)-metal composites have attracted great attention owing to their combination of high surface area, controlled pore size distribution and physicochemical properties of metals. Herein, we report the cobalt nanoparticles/ordered mesoporous carbon (CoNPs@OMC) composite prepared by a one-step carbonization/reduction process assisted by a hydrothermal pre-reaction. The CoNPs@OMC composite presents a high specific surface area of 544m 2 g -1 , and the CoNPs are uniformly imbedded or confined in the ordered mesoporous carbon matrix. When used as a non-precious metal-containing catalyst for hydrogenation reduction of p-nitrophenol and nitrobenzene, it demonstrates high efficiency and good cycling stability. Furthermore, the CoNPs@OMC composite can be directly used to catalyze the Fischer-Tropsch synthesis for the high-pressure CO hydrogenation, and presents a good catalytic selectivity for C 5 + hydrocarbons. The excellent catalytic performance of the CoNPs@OMC composite can be ascribed to synergistic effect between the high specific surface area, mesoporous structure and well-imbedded CoNPs in the carbon matrix. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Heterometallic Metal-Organic Frameworks That Catalyze Two Different Reactions Sequentially. (United States)

    Saha, Debraj; Hazra, Dipak K; Maity, Tanmoy; Koner, Subratanath


    A series of copper- and alkaline-earth-metal-based multidimensional metal-organic frameworks, {[CuMg(pdc)2(H2O)4]·2H2O}n (1), [CuCa(pdc)2]n (2), [CuSr(pdc)2(H2O)3]n (3), and {[CuBa(pdc)2(H2O)5]·H2O}n (4), where H2Pdc = pyridine-2,5-dicarboxylic acid, were hydrothermally synthesized and characterized. Two different metals act as the active center to catalyze two kinds of reactions, viz., olefin to its epoxide followed by epoxide ring opening to afford the corresponding vicinal diol in a sequential manner.

  6. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective

    DEFF Research Database (Denmark)

    Møller, Ian Max; Rogowska-Wrzesinska, Adelina; Rao, Shyama Prasad


    Proteins can become oxidatively modified in many different ways, either by direct oxidation of amino acid side chains and protein backbone or indirectly by conjugation with oxidation products of polyunsaturated fatty acids and carbohydrates. While reversible oxidative modifications are thought...... to be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO) in vivo...... and in vitro with an emphasis on cellular metal ion homeostasis and metal binding. We then review proteomic methods currently used for identifying carbonylated proteins and their sites of modification. Finally, we discuss the identified carbonylated proteins and the pattern of carbonylation sites in relation...

  7. Hydrogen damage in metals, particularly in steels

    International Nuclear Information System (INIS)

    Funes, A.J.


    Hydrogen damage examples of practical interest for the engineer are presented, showing the scope of the problem and its importance in relation to technological development, particularly of CANDU reactor and of heavy water production plants. The fundamental triangle of the hydrogen embrittlement is established as follows: presence of hydrogen in the crystalline network, structure susceptible of damage, and effort. The initial collection of examples is classified in function of the observed effects. For the consideration of the causes of said effects three models of hydrogen interaction with the crystalline network are described, indicating their scopes and limitations. Then the use of the models is explained, both in order to obtain practical information (evaluation tests, acceptance and rejection criteria) and for the validation and improvement of the models themselves (study methods). Solutions for attenuating the hydrogen embrittlement and a programme of studies and tests are proposed to be carried out by the National Atomic Energy Commission. Among the latter, the local development of a microimpression method to detect the evaluation of absorbed hydrogen, comparable with the autoradiography of high resolution, and a mechanical test yielding results on fragility comparable with those obtained through the test of standard disks, are described. (M.E.L.) [es

  8. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.


    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  9. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization. (United States)

    Zell, Thomas; Milstein, David


    The substitution of expensive and potentially toxic noble-metal catalysts by cheap, abundant, environmentally benign, and less toxic metals is highly desirable and in line with green chemistry guidelines. We have recently discovered a new type of metal-ligand cooperation, which is based on the reversible dearomatization/aromatization of different heteroaromatic ligand cores caused by deprotonation/protonation of the ligand. More specifically, we have studied complexes of various transition metals (Ru, Fe, Co, Rh, Ir, Ni, Pd, Pt, and Re) bearing pyridine- and bipyridine-based PNP and PNN pincer ligands, which have slightly acidic methylene protons. In addition, we have discovered long-range metal-ligand cooperation in acridine-based pincer ligands, where the cooperation takes place at the electrophilic C-9 position of the acridine moiety leading to dearomatization of its middle ring. This type of metal-ligand cooperation was used for the activation of chemical bonds, including H-H, C-H (sp(2) and sp(3)), O-H, N-H, and B-H bonds. This unusual reactivity likely takes place in various catalytic hydrogenation, dehydrogenation, and related reactions. In this Account, we summarize our studies on novel bifunctional iron PNP and PNN pincer complexes, which were designed on the basis of their ruthenium congeners. Iron PNP pincer complexes serve as efficient (pre)catalysts for hydrogenation and dehydrogenation reactions under remarkably mild conditions. Their catalytic applications include atom-efficient and industrially important hydrogenation reactions of ketones, aldehydes, and esters to the corresponding alcohols. Moreover, they catalyze the hydrogenation of carbon dioxide to sodium formate in the presence of sodium hydroxide, the selective decomposition of formic acid to carbon dioxide and hydrogen, and the E-selective semihydrogenation of alkynes to give E-alkenes. These catalysts feature, compared to other iron-based catalysts, very high catalytic activities which in

  10. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Cortes-Concepcion, Jose A.; Anton, Donald L.


    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  11. Hydrogen formation in metals and alloys during fusion reactor operation

    International Nuclear Information System (INIS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji


    The results of neutron transport calculations of the hydrogen formation based on the JENDL gas-production cross section file are discussed for some metals and alloys, namely 51 V, Cr, Fe, Ni, Mo, austenitic stainless steel (Ti modified 316SS:PCA), ferritic steel (Fe-8Cr-2W:F82H) and the vanadium-base alloy (V-5Cr-5Ti). Impact of the steel fraction in steel/water homogeneous blanket/shield compositions on the hydrogen formation rate in above-mentioned metals and alloys is discussed both for the hydrogen formation in the first wall and the blanket/shield components. The results obtained for the first wall are compared with those for the helium formation obtained at JAERI by the same calculational conditions. Hydrogen formation rates at the first wall having 51 V, Cr, Fe, Ni and Mo are larger than those of helium by 3-8 times. (author)

  12. Technology for gelled liquid cryogenic propellants - Metallized hydrogen/aluminum (United States)

    Starkovich, John; Palaszewski, Bryan


    The theoretical basis for solid-loaded or densified liquid hydrogen propellants for advanced space applications is outlined. Metallized propellants make it possible to increase the safety of propulsion systems as well as the payloads of future vehicles. Nanogellant formulated liquid hydrogen gels and other fuel gels are characterized by excellent settling stability, low yield point, and a high shear thinning index which makes them attractive for propulsion applications.

  13. Quantum simulation of low-temperature metallic liquid hydrogen


    Chen, Ji; Xin-Zheng, Li; Zhang, Qianfan; Probert, Matt; Pickard, Chris J.; Needs, Richard J.; Michaelides, Angelos; Wang, Enge


    Experiments and computer simulations have shown that the melt-ing temperature of solid hydrogen drops with pressure above about 65 GPa, suggesting that a liquid state might exist at low temperatures. It has also been suggested that this low temperature liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Here, we report results for hydrogen at high pressures using ab initio path-integral molecular dynamics methods, which include a description of t...

  14. Analytical approximation formulae for hydrogen diffusion in a metal slab

    International Nuclear Information System (INIS)

    Pohl, F.; Bohdansky, J.


    This report treats hydrogen diffusion in the first wall of a fusion machine (INTOR, reactor, etc.), taking the thermal load into account. Analytical approximation formulae are given for the concentration and flux density of hydrogen diffusing through a plane metal slab. The re-emission flux, particularly during the dwell time(s) of machine operation, is also described with analytical formulae. The analytical formulae are compared with numerical calculations for steel as first wall material. (orig.)

  15. The temperature variation of hydrogen diffusion coefficients in metal alloys (United States)

    Danford, M. D.


    Hydrogen diffusion coefficients were measured as a function of temperature for a few metal alloys using an electrochemical evolution technique. Results from these measurements are compared to those obtained by the time-lag method. In all cases, diffusion coefficients obtained by the electrochemical method are larger than those by the time-lag method by an order of magnitude or more. These differences are attributed mainly to hydrogen trapping.

  16. Hydrogen-deuterium exchange reaction of 2-methylpyridine catalyzed by several fatty acids

    International Nuclear Information System (INIS)

    Hirata, Hirohumi; Fukuzumi, Kazuo.


    Hydrogen-deuterium exchange reaction of 2-methylpyridine has been studied by using several fatty acids as catalysts. The reaction was carried out in a sealed pyrex tube at 120 0 C, and the contents of the products were determined by mass spectrometry. Reaction of 2-methylpyridine with monodeuteroacetic acid (1 : 1, mol/mol) arrived at a equilibrium (d 0 reversible d 1 reversible d 2 reversible d 3 ) in 2 hr (d 0 41%, d 1 42%, d 2 15%, d 3 2%). No exchange was observed for the reaction of pyridine with monodeuteroacetic acid. The conversion-time curves of typical series reactions (d 0 → d 1 → d 2 → d 3 ) were obtained for the fatty acid catalyzed exchange in deuterium oxide. The effect of the fatty acid RCO 2 H (substrate : fatty acid : D 2 O=1 : 0.86 : 27.6, mol/mol/mol) on the conversion was in the order of R; C 1 --C 3 4 --C 10 , where the reaction mixtures were homogeneous in the case of C 1 --C 3 and were heterogeneous in the case of C 4 --C 10 . The effects of the initial concentration of the substrates and the catalysts (RCO 2 H) on the total conversion were studied by using some fatty acids (R; C 2 , C 4 and C 9 ) in deuterium oxide (for 2 hr). The total conversion of the substrate increases with increasing the concentration of the acids. The total conversion decreases in the case of R=C 9 , but, increases in the case of R=C 2 with increasing the concentration of the substrate. In the case of reactions with low concentrations of the substrate, the reactivity was in the order of C 9 >C 4 >C 2 , while with high concentrations, the reactivity was in the order of C 4 >C 2 >C 9 and C 9 >C 4 >C 2 with high and low concentrations of the acids, respectively. A possible reaction mechanism was proposed and discussed. (auth.)

  17. Direct observation and modelling of ordered hydrogen adsorption and catalyzed ortho-para conversion on ETS-10 titanosilicate material. (United States)

    Ricchiardi, Gabriele; Vitillo, Jenny G; Cocina, Donato; Gribov, Evgueni N; Zecchina, Adriano


    Hydrogen physisorption on porous high surface materials is investigated for the purpose of hydrogen storage and hydrogen separation, because of its simplicity and intrinsic reversibility. For these purposes, the understanding of the binding of dihydrogen to materials, of the structure of the adsorbed phase and of the ortho-para conversion during thermal and pressure cycles are crucial for the development of new hydrogen adsorbents. We report the direct observation by IR spectroscopic methods of structured hydrogen adsorption on a porous titanosilicate (ETS-10), with resolution of the kinetics of the ortho-para transition, and an interpretation of the structure of the adsorbed phase based on classical atomistic simulations. Distinct infrared signals of o- and p-H2 in different adsorbed states are measured, and the conversion of o- to p-H2 is monitored over a timescale of hours, indicating the presence of a catalyzed reaction. Hydrogen adsorption occurs in three different regimes characterized by well separated IR manifestations: at low pressures ordered 1:1 adducts with Na and K ions exposed in the channels of the material are formed, which gradually convert into ordered 2:1 adducts. Further addition of H2 occurs only through the formation of a disordered condensed phase. The binding enthalpy of the Na+-H2 1:1 adduct is of -8.7+/-0.1 kJ mol(-1), as measured spectroscopically. Modeling of the weak interaction of H2 with the materials requires an accurate force field with a precise description of both dispersion and electrostatics. A novel three body force field for molecular hydrogen is presented, based on the fitting of an accurate PES for the H2-H2 interaction to the experimental dipole polarizability and quadrupole moment. Molecular mechanics simulations of hydrogen adsorption at different coverages confirm the three regimes of adsorption and the structure of the adsorbed phase.

  18. Rhodium-catalyzed Asymmetric Hydrogenation of α-Dehydroamino Ketones: A General Approach to Chiral α-amino Ketones. (United States)

    Gao, Wenchao; Wang, Qingli; Xie, Yun; Lv, Hui; Zhang, Xumu


    Rhodium/DuanPhos-catalyzed asymmetric hydrogenation of aliphatic α-dehydroamino ketones has been achieved and afforded chiral α-amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β-amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α-amino ketones and chiral β-amino alcohols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electronic excitations and metallization of dense solid hydrogen. (United States)

    Cohen, R E; Naumov, Ivan I; Hemley, Russell J


    Theoretical calculations and an assessment of recent experimental results for dense solid hydrogen lead to a unique scenario for the metallization of hydrogen under pressure. The existence of layered structures based on graphene sheets gives rise to an electronic structure related to unique features found in graphene that are well studied in the carbon phase. The honeycombed layered structure for hydrogen at high density, first predicted in molecular calculations, produces a complex optical response. The metallization of hydrogen is very different from that originally proposed via a phase transition to a close-packed monoatomic structure, and different from simple metallization recently used to interpret recent experimental data. These different mechanisms for metallization have very different experimental signatures. We show that the shift of the main visible absorption edge does not constrain the point of band gap closure, in contrast with recent claims. This conclusion is confirmed by measured optical spectra, including spectra obtained to low photon energies in the infrared region for phases III and IV of hydrogen.

  20. Tethered Transition Metals Promoted Photocatalytic System for Efficient Hydrogen Evolutions

    KAUST Repository

    Takanabe, Kazuhiro


    The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni.sup.2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H.sub.2S.

  1. Two-dimensional metal dichalcogenides and oxides for hydrogen evolution

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Vojvodic, Aleksandra; Thygesen, Kristian Sommer


    We explore the possibilities of hydrogen evolution by basal planes of 2D metal dichalcogenides and oxides in the 2H and 1T class of structures using the hydrogen binding energy as a computational activity descriptor. For some groups of systems like the Ti, Zr, and Hf dichalcogenides the hydrogen...... bonding to the 2H structure is stronger than that to the 1T structure, while for the Cr, Mo, and W dichalcogenides the behavior is opposite. This is rationalized by investigating shifts in the chalcogenide p levels comparing the two structures. We find that usually for a given material only at most one...

  2. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.


    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....

  3. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.


    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....

  4. Tryptophanase-Catalyzed L-Tryptophan Synthesis from D-Serine in the Presence of Diammonium Hydrogen Phosphate

    Directory of Open Access Journals (Sweden)

    Fujii Noriko


    Full Text Available Tryptophanase, an enzyme with extreme absolute stereospecificity for optically active stereoisomers, catalyzes the synthesis of L-tryptophan from L-serine and indole through a β-substitution mechanism of the ping-pong type, and has no activity on D-serine. We previously reported that tryptophanase changed its stereospecificity to degrade D-tryptophan in highly concentrated diammonium hydrogen phosphate, (NH42HPO4 solution. The present study provided the same stereospecific change seen in the D-tryptophan degradation reaction also occurs in tryptophan synthesis from D-serine. Tryptophanase became active to D-serine to synthesize L-tryptophan in the presence of diammonium hydrogen phosphate. This reaction has never been reported before. D-serine seems to undergo β-replacement via an enzyme-bonded α-aminoacylate intermediate to yield L-tryptophan.

  5. Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993 - April 15, 1997

    International Nuclear Information System (INIS)

    Ruckman, M.W.; Strongin, M.; Weismann, H.


    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 μm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices

  6. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; Barger, Vernon; Berger, Joshua [Department of Physics, University of Wisconsin-Madison,1150 University Ave, Madison, WI 53706 (United States)


    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10{sup −11} M{sub ⊙}. In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. We study the properties of the HAS and find that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and the hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10{sup 13} W×(m{sub a}/5 meV){sup 4}, to make these objects luminous point sources. High resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.

  7. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    International Nuclear Information System (INIS)

    Bai, Yang; Barger, Vernon; Berger, Joshua


    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10"−"1"1 M_⊙. In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. We study the properties of the HAS and find that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and the hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10"1"3 W×(m_a/5 meV)"4, to make these objects luminous point sources. High resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.

  8. Insight into the mechanism of hydrogenation of amino acids to amino alcohols catalyzed by a heterogeneous MoO(x) -modified Rh catalyst. (United States)

    Tamura, Masazumi; Tamura, Riku; Takeda, Yasuyuki; Nakagawa, Yoshinao; Tomishige, Keiichi


    Hydrogenation of amino acids to amino alcohols is a promising utilization of natural amino acids. We found that MoOx -modified Rh/SiO2 (Rh-MoOx /SiO2 ) is an efficient heterogeneous catalyst for the reaction at low temperature (323 K) and the addition of a small amount of MoOx drastically increases the activity and selectivity. Here, we report the catalytic potential of Rh-MoOx /SiO2 and the results of kinetic and spectroscopic studies to elucidate the reaction mechanism of Rh-MoOx /SiO2 catalyzed hydrogenation of amino acids to amino alcohols. Rh-MoOx /SiO2 is superior to previously reported catalysts in terms of activity and substrate scope. This reaction proceeds by direct formation of an aldehyde intermediate from the carboxylic acid moiety, which is different from the reported reaction mechanism. This mechanism can be attributed to the reactive hydride species and substrate adsorption caused by MoOx modification of Rh metal, which results in high activity, selectivity, and enantioselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of composite metallic membranes for hydrogen purification

    International Nuclear Information System (INIS)

    Gaillard, F.


    Fuel cells are able to convert chemical energy into electric power. There are different types of cells; the best for automotive applications are Proton Exchange Membrane Fuel Cells. But, these systems need hydrogen of high purity. However, fuel reforming generates a mixture of gases, from which hydrogen has to be extracted before supplying the electrochemical cell. The best way for the purification of hydrogen is the membrane separation technology. Palladium is selectively permeable to hydrogen and this is the reason why this metal is largely used for the membrane development. This work deals with the development of hydrogen-selective membranes by deposition of a thin film of palladium onto a porous mechanical support. For this, we have used the electroless plating technique: a palladium salt and a reducing agent are mixed and the deposition takes place onto the catalytic surface of the substrate. After bibliographic investigations, experimental studies have been performed first with a dense metallic substrate in order to better understand the different parameters controlling the deposition. First of all, potentiometric measurements have been carried out to follow the electrochemical reactions in the bath. Then, kinetic measurements of the coating thickness have been recorded to understand the effect of the bath conditions on the yield and the adhesion of the film. Finally, the electroless plating method has been applied to deposit palladium membranes onto porous stainless steel substrates. After optimisation, the resulting membranes were tested for their hydrogen permeation properties. (author)

  10. Hydrogen evolution on nano-particulate transition metal sulfides

    DEFF Research Database (Denmark)

    Bonde, Jacob Lindner; Moses, Poul Georg; Jaramillo, Thomas F.


    The hydrogen evolution reaction (HER) on carbon supported MoS2 nanoparticles is investigated and compared to findings with previously published work on Au(111) supported MoS2. An investigation into MoS2 oxidation is presented and used to quantify the surface concentration of MoS2. Other metal...

  11. Transition Metal Sulfide Hydrogen Evolution Catalysts for Hydrobromic Acid Electrolysis

    NARCIS (Netherlands)

    Ivanovskaya, Anna; Singh, Nirala; Liu, Ru-Fen; Kreutzer, Haley; Baltrusaitis, Jonas; Nguyen, Trung Van; Metiu, Horia; McFarland, Eric


    Mixed metal sulfides containing combinations of W, Fe, Mo, Ni, and Ru were synthesized and screened for activity and stability for the hydrogen evolution reaction (HER) in aqueous hydrobromic acid (HBr). Co- and Ni-substituted RuS2 were identified as potentially active HER electrocatalysts by

  12. Biomass transition metal hydrogen-evolution electrocatalysts and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Fu; Iyer, Shweta; Iyer, Shilpa; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko


    A catalytic composition from earth-abundant transition metal salts and biomass is disclosed. A calcined catalytic composition formed from soybean powder and ammonium molybdate is specifically exemplified herein. Methods for making the catalytic composition are disclosed as are electrodes for hydrogen evolution reactions comprising the catalytic composition.

  13. Removal of heavy metal from industrial wastewater using hydrogen ...

    African Journals Online (AJOL)

    The batch removal of heavy metals lead (Pb), zinc (Zn) and copper (Cu) from industrial wastewater effluent under different experimental conditions using hydrogen peroxide was investigated. Experimental results indicated that at pH 6.5, pre-treatment analysis gave the following values: Pb 57.63 mg/l, Zn 18.9 mg/l and Cu ...

  14. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. (United States)

    Zhao, Meiting; Yuan, Kuo; Wang, Yun; Li, Guodong; Guo, Jun; Gu, Lin; Hu, Wenping; Zhao, Huijun; Tang, Zhiyong


    Owing to the limited availability of natural sources, the widespread demand of the flavouring, perfume and pharmaceutical industries for unsaturated alcohols is met by producing them from α,β-unsaturated aldehydes, through the selective hydrogenation of the carbon-oxygen group (in preference to the carbon-carbon group). However, developing effective catalysts for this transformation is challenging, because hydrogenation of the carbon-carbon group is thermodynamically favoured. This difficulty is particularly relevant for one major category of heterogeneous catalyst: metal nanoparticles supported on metal oxides. These systems are generally incapable of significantly enhancing the selectivity towards thermodynamically unfavoured reactions, because only the edges of nanoparticles that are in direct contact with the metal-oxide support possess selective catalytic properties; most of the exposed nanoparticle surfaces do not. This has inspired the use of metal-organic frameworks (MOFs) to encapsulate metal nanoparticles within their layers or inside their channels, to influence the activity of the entire nanoparticle surface while maintaining efficient reactant and product transport owing to the porous nature of the material. Here we show that MOFs can also serve as effective selectivity regulators for the hydrogenation of α,β-unsaturated aldehydes. Sandwiching platinum nanoparticles between an inner core and an outer shell composed of an MOF with metal nodes of Fe 3+ , Cr 3+ or both (known as MIL-101; refs 19, 20, 21) results in stable catalysts that convert a range of α,β-unsaturated aldehydes with high efficiency and with significantly enhanced selectivity towards unsaturated alcohols. Calculations reveal that preferential interaction of MOF metal sites with the carbon-oxygen rather than the carbon-carbon group renders hydrogenation of the former by the embedded platinum nanoparticles a thermodynamically favoured reaction. We anticipate that our basic design

  15. Kinetic and spectroscopic studies of the [palladium(Ar-bian)]-catalyzed semi-hydrogenation of 4-octyne. (United States)

    Kluwer, Alexander M; Koblenz, Tehila S; Jonischkeit, Thorsten; Woelk, Klaus; Elsevier, Cornelis J


    The kinetics of the stereoselective semi-hydrogenation of 4-octyne in THF by the highly active catalyst [Pd{(m,m'-(CF(3))(2)C(6)H(3))-bian}(ma)] (2) (bian = bis(imino)acenaphthene; ma = maleic anhydride) has been investigated. The rate law under hydrogen-rich conditions is described by r = k[4-octyne](0.65)[Pd][H(2)], showing first order in palladium and dihydrogen and a broken order in substrate. Parahydrogen studies have shown that a pairwise transfer of hydrogen atoms occurs in the rate-limiting step. In agreement with recent theoretical results, the proposed mechanism consists of the consecutive steps: alkyne coordination, heterolytic dihydrogen activation (hydrogenolysis of one Pd-N bond), subsequent hydro-palladation of the alkyne, followed by addition of N-H to palladium, reductive coupling of vinyl and hydride and, finally, substitution of the product alkene by the alkyne substrate. Under hydrogen-limiting conditions, side reactions occur, that is, formation of catalytically inactive palladacycles by oxidative alkyne coupling. Furthermore, it has been shown that (Z)-oct-4-ene is the primary reaction product, from which the minor product (E)-oct-4-ene is formed by an H(2)-assisted, palladium-catalyzed isomerization reaction.

  16. Diastereo- and enantioselective anti-selective hydrogenation of α-amino-β-keto ester hydrochlorides and related compounds using transition-metal-chiral-bisphosphine catalysts. (United States)

    Hamada, Yasumasa


    This review describes our recent works on the diastereo- and enantioselective synthesis of anti-β-hydroxy-α-amino acid esters using transition-metal-chiral-bisphosphine catalysts. A variety of transition metals, namely ruthenium (Ru), rhodium (Rh), iridium (Ir), and nickel (Ni), in combination with chiral bisphosphines, worked well as catalysts for the direct anti-selective asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides, yielding anti-β-hydroxy-α-amino acid esters via dynamic kinetic resolution (DKR) in excellent yields and diastereo- and enantioselectivities. The Ru-catalyzed asymmetric hydrogenation of α-amino-β-ketoesters via DKR is the first example of generating anti-β-hydroxy-α-amino acids. Complexes of iridium and axially chiral bisphosphines catalyze an efficient asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides via dynamic kinetic resolution. A homogeneous Ni-chiral-bisphosphine complex also catalyzes an efficient asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides in an anti-selective manner. As a related process, the asymmetric hydrogenation of the configurationally stable substituted α-aminoketones using a Ni catalyst via DKR is also described. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology. (United States)

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi


    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  18. Insulator-metal transition of fluid molecular hydrogen

    International Nuclear Information System (INIS)

    Ross, M.


    Dynamically compressed fluid hydrogen shows evidence for metallization at the relatively low pressure of 140 GPa (1.4 Mbar) while experiments on solid hydrogen made in a diamond-anvil cell have failed to detect any evidence for gap closure up to a pressure of 230 GPa (2.3 Mbar). Two possible mechanisms for metal- liclike resistivity are put forward. The first is that as a consequence of the large thermal disorder in the fluid (kT∼0.2 endash 0.3 eV) short-range molecular interactions lead to band tailing that extends the band edge into the gap, resulting in closure at a lower pressure than in the solid. The second mechanism argues that molecular dissociation creates H atoms that behave similar to n-type donors in a heavily doped semiconductor and undergo a nonmetal-metal Mott-type transition. copyright 1996 The American Physical Society

  19. Metallic nanostructure formation limited by the surface hydrogen on silicon. (United States)

    Perrine, Kathryn A; Teplyakov, Andrew V


    Constant miniaturization of electronic devices and interfaces needed to make them functional requires an understanding of the initial stages of metal growth at the molecular level. The use of metal-organic precursors for metal deposition allows for some control of the deposition process, but the ligands of these precursor molecules often pose substantial contamination problems. One of the ways to alleviate the contamination problem with common copper deposition precursors, such as copper(I) (hexafluoroacetylacetonato) vinyltrimethylsilane, Cu(hfac)VTMS, is a gas-phase reduction with molecular hydrogen. Here we present an alternative method to copper film and nanostructure growth using the well-defined silicon surface. Nearly ideal hydrogen termination of silicon single-crystalline substrates achievable by modern surface modification methods provides a limited supply of a reducing agent at the surface during the initial stages of metal deposition. Spectroscopic evidence shows that the Cu(hfac) fragment is present upon room-temperature adsorption and reacts with H-terminated Si(100) and Si(111) surfaces to deposit metallic copper. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to follow the initial stages of copper nucleation and the formation of copper nanoparticles, and X-ray energy dispersive spectroscopy (XEDS) confirms the presence of hfac fragments on the surfaces of nanoparticles. As the surface hydrogen is consumed, copper nanoparticles are formed; however, this growth stops as the accessible hydrogen is reacted away at room temperature. This reaction sets a reference for using other solid substrates that can act as reducing agents in nanoparticle growth and metal deposition.

  20. Photoionization microscopy of hydrogen atom near a metal surface

    International Nuclear Information System (INIS)

    Yang Hai-Feng; Wang Lei; Liu Xiao-Jun; Liu Hong-Ping


    We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterns of the electron radial distribution are calculated at different scaled energies above the classical saddle point and at various atom—surface distances. We find that different types of trajectories contribute predominantly to different manifolds in a certain interference pattern. As the scaled energy increases, the structure of the interference pattern evolves smoothly and more types of trajectories emerge. As the atom approaches the metal surface closer, there are more types of trajectories contributing to the interference pattern as well. When the Rydberg atom comes very close to the metal surface or the scaled energy approaches the zero field ionization energy, the potential induced by the metal surface will make atomic system chaotic. The results also show that atoms near a metal surface exhibit similar properties like the atoms in the parallel electric and magnetic fields. (atomic and molecular physics)

  1. Investigation of transition metal-catalyzed nitrene transfer reactions in water. (United States)

    Alderson, Juliet M; Corbin, Joshua R; Schomaker, Jennifer M


    Transition metal-catalyzed nitrene transfer is a powerful method for incorporating new CN bonds into relatively unfunctionalized scaffolds. In this communication, we report the first examples of site- and chemoselective CH bond amination reactions in aqueous media. The unexpected ability to employ water as the solvent in these reactions is advantageous in that it eliminates toxic solvent use and enables reactions to be run at increased concentrations with lower oxidant loadings. Using water as the reaction medium has potential to expand the scope of nitrene transfer to encompass a variety of biomolecules and highly polar substrates, as well as enable pH control over the site-selectivity of CH bond amination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Transition Metal Catalyzed Reactions of Carbohydrates: a Nonoxidative Approach to Oxygenated Organics

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Mark


    There is a critical need for new environmentally friendly processes in the United States chemical industry as legislative and economic pressures push the industry to zero-waste and cradle-to-grave responsibility for the products they produce. Carbohydrates represent a plentiful, renewable resource, which for some processes might economically replace fossil feedstocks. While the conversion of biomass to fuels, is still not generally economical, the selective synthesis of a commodity or fine chemical, however, could compete effectively if appropriate catalytic conversion systems can be found. Oxygenated organics, found in a variety of products such as nylon and polyester, are particularly attractive targets. We believe that with concerted research efforts, homogeneous transition metal catalyzed reactions could play a significant role in bringing about this future green chemistry technology.

  3. A neutronic method to determine low hydrogen concentrations in metals

    International Nuclear Information System (INIS)

    Bennun, Leonardo; Santisteban, Javier; Diaz-Valdes, J.; Granada, J.R.; Mayer, R.E.


    We propose a method for the non-destructive determination of low hydrogen content in metals. The method is based on measurements of neutron inelastic scattering combined with cadmium filters. Determination is simple and the method would allow to construct a mobile device, to perform the analysis 'in situ'. We give a brief description of the usual methods to determine low hydrogen contents in solids, paying special attention to those methods supported by neutron techniques. We describe the proposed method, calculations to achieve a better sensitivity, and experimental results

  4. Hot Hydrogen Testing of Refractory Metals and Ceramics (United States)

    Zee, Ralph; Chin, Bryan; Cohron, Jon


    The objective of this investigation is to develop a technique with which refractory metal carbide samples can be exposed to hydrogen containing gases at high temperatures, and to use various microstructural and analytical techniques to determine the chemical and rate processes involved in hydrogen degradation in these materials. Five types of carbides were examined including WC, NbC, HfC, ZrC, and TaC. The ceramics were purchased and were all monolithic in nature. The temperature range investigated was from 850 to 1600 C with a hydrogen pressure of one atmosphere. Control experiments, in vacuum, were also conducted for comparison so that the net effects due to hydrogen could be isolated. The samples were analyzed prior to and after exposure. Gas samples were collected in selected experiments and analyzed using gas chromography. Characterization of the resulting microstructure after exposure to hydrogen was conducted using optical microscopy, x-ray diffraction, scanning electron microscopy, and weight change. The ceramics were purchased and were all monolithic in nature. It was found that all samples lost weight after exposure, both in hydrogen and vacuum. Results from the microstructure analyses show that the degradation processes are different among the five types of ceramics involved. In addition, the apparent activation energy for the degradation process is a function of temperature even within the same material. This indicates that there are more than one mechanism involved in each material, and that the mechanisms are temperature dependent.

  5. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.


    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  6. Ruthenium-Catalyzed Selective Hydrogenation of bis-Arylidene Tetramic Acids. Application to the Synthesis of Novel Structurally Diverse Pyrrolidine-2,4-diones

    Directory of Open Access Journals (Sweden)

    Olga Igglessi-Markopoulou


    Full Text Available Catalytic hydrogenation of 3,5-bis-arylidenetetramic acids, known for their biological activity, has been developed. The chemoselective ruthenium-catalyzed reduction of the exocyclic carbon-carbon double bonds on pyrrolidine-2,4-dione ring system, containing other reducible functions, has been investigated. Depending on the substrate the yield of the hydrogenation process can reach up to 95%. The structural elucidation has been established using NMR and HRMS spectral data.

  7. Iridium-catalyzed hydrogen production from monosaccharides, disaccharide, cellulose, and lignocellulose. (United States)

    Li, Yang; Sponholz, Peter; Nielsen, Martin; Junge, Henrik; Beller, Matthias


    Hydrogen constitutes an important feedstock for clean-energy technologies as well as for production of bulk and fine chemicals. Hence, the development of novel processes to convert easily available biomass into H2 is of general interest. Herein, we demonstrate a one-pot protocol hydrogen generation from monosaccharides, disaccharide, and extremely demanding cellulose and lignocellulose substrates by using a pincer-type iridium catalyst. Applying ppm amounts of this catalyst, hydrogen is produced at temperatures lower than 120 °C. More specifically, catalyst turnover numbers (TONs) for lignocellulose from bamboo reached up to about 3000. Interestingly, even (used) cigarette filters, which are composed of cellulose acetate, produce hydrogen under optimized conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion

    International Nuclear Information System (INIS)

    Libert, M.F.; Sellier, R.; Marty, V.; Camaro, S.


    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H 2 production in a bituminized nuclear waste environment were simulated in the present study: - H 2 production by iron corrosion under anaerobic conditions was simulated by adding 10% of H 2 in the atmosphere; - H 2 production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H 2 in water allows the growth of hydrogen oxidizing bacteria leading to: - CO 2 and N 2 production; - H 2 consumption; - lower NO 3 - concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO 3 - release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H 2 instead of hydrocarbons. (authors)

  9. Iridium(I)-catalyzed regioselective C-H activation and hydrogen-isotope exchange of non-aromatic unsaturated functionality. (United States)

    Kerr, William J; Mudd, Richard J; Paterson, Laura C; Brown, Jack A


    Isotopic labelling is a key technology of increasing importance for the investigation of new CH activation and functionalization techniques, as well as in the construction of labelled molecules for use within both organic synthesis and drug discovery. Herein, we report for the first time selective iridium-catalyzed CH activation and hydrogen-isotope exchange at the β-position of unsaturated organic compounds. The use of our highly active [Ir(cod)(IMes)(PPh3 )][PF6 ] (cod=1,5-cyclooctadiene) catalyst, under mild reaction conditions, allows the regioselective β-activation and labelling of a range of α,β-unsaturated compounds with differing steric and electronic properties. This new process delivers high levels of isotope incorporation over short reaction times by using low levels of catalyst loading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design. (United States)

    Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng


    Density functional theory study of the hydrogenation of carbon dioxide to methanol catalyzed by iron, cobalt, and manganese cyclopentadienone complexes reveals a self-promoted mechanism, which features a methanol- or water-molecule-assisted proton transfer for the cleavage of H 2 . The total free energy barrier of the formation of methanol from CO 2 and H 2 catalyzed by Knölker's iron cyclopentadienone complex, [2,5-(SiMe 3 ) 2 -3,4-(CH 2 ) 4 (η 5 -C 4 COH)]Fe(CO) 2 H, is 26.0 kcal mol -1 in the methanol solvent. We also evaluated the catalytic activities of 8 other experimentally reported iron cyclopentadienone complexes and 37 iron, cobalt, and manganese cyclopentadienone complexes proposed in this study. In general, iron and manganese complexes have relatively higher catalytic activities. Among all calculated complexes, [2,5-(SiMe 3 ) 2 -3,4-CH 3 CHSCH 2 (η 5 -C 4 COH)]Fe(CO) 2 H (1 Fe-Casey-S-CH3 ) is the most active one with a total free energy barrier of 25.1 kcal mol -1 in the methanol solvent. Such a low barrier indicates that 1 Fe-Casey-S-CH3 is a very promising low-cost and high efficiency catalyst for the conversion of CO 2 and H 2 to methanol under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity.

    Directory of Open Access Journals (Sweden)

    Caitlin C Otto

    Full Text Available Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4-5, generate reactive oxygen species (ROS and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions.

  12. Palladium-Catalyzed Atom-Transfer Radical Cyclization at Remote Unactivated C(sp3 )-H Sites: Hydrogen-Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates. (United States)

    Ratushnyy, Maxim; Parasram, Marvin; Wang, Yang; Gevorgyan, Vladimir


    A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Tomassetti, G.


    Roč. 19, č. 7 (2014), s. 2313-2333 ISSN 1531-3492 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:61388998 Keywords : metal-hydrid phase transformation * hydrogen diffusion * swelling Subject RIV: BA - General Mathematics Impact factor: 0.768, year: 2014

  14. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Directory of Open Access Journals (Sweden)

    Cláudia M. B. Neves


    Full Text Available This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H2O2, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy.

  15. Monte Carlo Fitting Of Data From Muon Catalyzed Fusion Experiments In Solid Hydrogen

    Directory of Open Access Journals (Sweden)

    M. Filipowicz


    Full Text Available Applying the classical chi-square fitting procedure for multiparameter systems is in somecases extremely difficult due to the lack of an analytical expression for the theoretical functionsdescribing the system. This paper presents an analysis procedure for experimental datausing theoretical functions generated by Monte Carlo method, each corresponding to definitevalues of the minimization parameters. It was applied for the E742 experiment (TRIUMF,Vancouver, Canada data analysis with the aim to analyze data from Muon Catalyzed Fusionexperiments (extraction muonic atom scattering parameters and parameters of pd fusion inpdμ molecule.

  16. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Claudia M.B.; Simoes, Mario M.Q.; Domingues, Fernando M.J.; Neves, M. Graca P.M.S.; Cavaleiro, Jose A.S., E-mail: [Dept. de Quimica, QOPNA, Universidade de Aveiro (Portugal)


    This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H{sub 2}O{sub 2}, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy. (author)

  17. Metal-catalyzed hydrosilylation of alkenes and alkynes using dimethyl(pyridyl)silane. (United States)

    Itami, Kenichiro; Mitsudo, Koichi; Nishino, Akira; Yoshida, Jun-ichi


    Metal-catalyzed hydrosilylation of alkenes and alkynes using dimethyl(pyridyl)silane is described. The hydrosilylation of alkenes using dimethyl(2-pyridyl)silane (2-PyMe(2)SiH) proceeded well in the presence of a catalytic amount of RhCl(PPh(3))(3) with virtually complete regioselectivity. By taking advantage of the phase tag property of the 2-PyMe(2)Si group, hydrosilylation products were isolated in greater than 95% purity by simple acid-base extraction. Strategic catalyst recovery was also demonstrated. The hydrosilylation of alkynes using 2-PyMe(2)SiH proceeded with a Pt(CH(2)=CHSiMe(2))(2)O/P(t-Bu)(3) catalyst to give alkenyldimethyl(2-pyridyl)silanes in good yield with high regioselectivity. A reactivity comparison of 2-PyMe(2)SiH with other related hydrosilanes (3-PyMe(2)SiH, 4-PyMe(2)SiH, and PhMe(2)SiH) was also performed. In the rhodium-catalyzed reaction, the reactivity order of hydrosilane was 2-PyMe(2)SiH > 3-PyMe(2)SiH, 4-PyMe(2)SiH, PhMe(2)SiH, indicating a huge rate acceleration with 2-PyMe(2)SiH. In the platinum-catalyzed reaction, the reactivity order of hydrosilane was PhMe(2)SiH, 3-PyMe(2)SiH > 4-PyMe(2)SiH > 2-PyMe(2)SiH, indicating a rate deceleration with 2-PyMe(2)SiH and 4-PyMe(2)SiH. It seems that these reactivity differences stem primarily from the governance of two different mechanisms (Chalk-Harrod and modified Chalk-Harrod mechanisms). From the observed reactivity order, coordination and electronic effects of dimethyl(pyridyl)silanes have been implicated.

  18. Hydrogen storage by reaction between metallic amides and imides

    International Nuclear Information System (INIS)

    Eymery, J.B.; Cahen, S.; Tarascon, J.M.; Janot, R.


    This paper details the various metal-N-H systems reported in the literature as possible hydrogen storage materials. In a first part, we discuss the hydrogen storage performances of the Li-N-H system and the desorption mechanism of the LiH-LiNH 2 mixture is especially presented. The possibility of storing hydrogen using two other binary systems (Mg-N-H and Ca-N-H) is described in a second part. In the third part of the paper, we discuss about the performances of the highly promising Li-Mg-N-H system, for which a nice reversibility is obtained at 200 C with an experimental hydrogen capacity of about 5.0 wt.%. Other ternary systems, as Li-B-N-H and Li-Al-N-H, are presented in the last part of this review paper. We especially emphasize the performances obtained in our Laboratory at Amiens with a LiAl(NH 2 ) 4 -LiH mixture able to desorb around 6.0 wt.% of hydrogen at only 130 C. (authors)

  19. Mitigation of hydrogen by oxidation using nitrous oxide and noble metal catalysts

    International Nuclear Information System (INIS)

    Britton, M.D.


    This test studied the ability of a blend of nuclear-grade, noble-metal catalysts to catalyze a hydrogen/nitrous oxide reaction in an effort to mitigate a potential hydrogen (H 2 ) gas buildup in the Hanford Site Grout Disposal Facility. For gases having H 2 and a stoichiometric excess of either nitrous oxide or oxygen, the catalyst blend can effectively catalyze the H 2 oxidation reaction at a rate exceeding 380 μmoles of H 2 per hour per gram of catalyst (μmol/h/g) and leave the gas with less than a 0.15 residual H 2 Concentration. This holds true in gases with up to 2.25% water vapor and 0.1% methane. This should also hold true for gases with up to 0.1% carbon monoxide (CO) but only until the catalyst is exposed to enough CO to block the catalytic sites and stop the reaction. Gases with ammonia up to 1% may be slightly inhibited but can have reaction rates greater than 250 μmol/h/g with less than a 0.20% residual H 2 concentration. The mechanism for CO poisoning of the catalyst is the chemisorption of CO to the active catalyst sites. The CO sorption capacity (SC) of the catalyst is the total amount of CO that the catalyst will chemisorb. The average SC for virgin catalyst was determined to be 19.3 ± 2.0 μmoles of CO chemisorbed to each gram of catalyst (μmol/g). The average SC for catalyst regenerated with air was 17.3 ± 1.9 μmol/g

  20. Hydrogen storage and evolution catalysed by metal hydride complexes. (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi


    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  1. Ruthenium-Catalyzed Synthesis of Dialkoxymethane Ethers Utilizing Carbon Dioxide and Molecular Hydrogen. (United States)

    Thenert, Katharina; Beydoun, Kassem; Wiesenthal, Jan; Leitner, Walter; Klankermayer, Jürgen


    The synthesis of dimethoxymethane (DMM) by a multistep reaction of methanol with carbon dioxide and molecular hydrogen is reported. Using the molecular catalyst [Ru(triphos)(tmm)] in combination with the Lewis acid Al(OTf)3 resulted in a versatile catalytic system for the synthesis of various dialkoxymethane ethers. This new catalytic reaction provides the first synthetic example for the selective conversion of carbon dioxide and hydrogen into a formaldehyde oxidation level, thus opening access to new molecular structures using this important C1 source. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage (United States)

    Easter, R. W.


    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  3. Experimental studies on cold fusion and hydrogen-metal

    International Nuclear Information System (INIS)

    Locou, P.


    The cold fusion is a nuclear fusion realized in pervading conditions of temperature and pressure. My own process is parallel to that of the team of the University of Los Angeles, but shaped in 1996 within my personal and private Laboratory: A small cylinder in which we replace the air by some deuterium to the gas state in - 33 d egree (the deuterium is some hydrogen with a neutron, which we find in quantity in the sea water). We introduce a crystal there, extremely rare - the property of which is to emit continuously one thousand times dose of successful energy and it during several years without outside pyro, natural excitement - electric - that is it creates an electric field in the slightest change in temperature. We carry then the whole in + 7 d egree, what generates in some seconds a 200 000 volt electric field, an intense enough field to separate the pits of the deuterium of their electrons and to admit them to collide with those of the crystal. There is a fusion of protons between them (positive particles of the pit (core)) and a emission of neutrons, which do not merge. It is this emission which serves for measuring the quantity of energy produced by the fusion (merger). We so managed to produce some energy in unlimited quantity, allowing us to feed our installation with electric current in total autarky, and to reduce so our costs of functioning to divers domains. This crystal is exceptional in its applications and to give it the name would return has to break our current headway: the thorough problem, in this current period of takeover by the financial bodies of the possible patents, brought to us to the biggest caution as regards our results. And, as we look for no outside financing, we do not need to submit ourselves to the requirements lauded by the scientific Community, only our results are strictly estimated. For example we can make estimate our bars or patches of Hydrogen - Metal: a simple spectroscopy in YEW will give as result, only, the element H

  4. Metal and hydrogen catalysis in isotopic hydrogen exchange in some biologically important heterocyclic compounds

    International Nuclear Information System (INIS)

    Buncel, E.; Joly, H.A.; Jones, J.R.; Onyido, I.


    This study reports on the catalytic roles of metal and hydrogen ions in tritium exchange in some heterocyclic substrates which occur as residues in many biologically important molecules. We have found that detritiation of 1-methyl[2- 3 H]imidazole is inhibited by a number of metal ions. As well, inhibition of exchange rates was noted with Ag(I) and Cu(II) for [2- 3 H]thiazole and 1-methyl[8- 3 H]inosine, with Ag(I) for [2- 3 H]benzothiazole, and with Cu(II) for 1-methyl[8- 3 H]guanosine. A complete mechanistic description, which includes the various metal ion-coordinated species generated under the experimental conditions, is presented. The results demonstrate the reactivity order: protonated >> metal-coordinated >> neutral substrates. The differential catalytic effects of metal and hydrogen ions in these processes are discussed in terms of the extent of charge developed on the ligating heteroatom in the reaction intermediate. (author). 13 refs.; 1 fig

  5. Lewis Acid-Lewis Base Mediated Metal-Free Hydrogen Activation and Catalytic Hydrogenation


    Sumerin, Victor


    Organocatalysis, the use of organic molecules as catalysts, is attracting increasing attention as one of the most modern and rapidly growing areas of organic chemistry, with countless research groups in both academia and the pharmaceutical industry around the world working on this subject. The literature review of this thesis mainly focuses on metal-free systems for hydrogen activation and organocatalytic reduction. Since these research topics are relatively new, the literature review al...

  6. Understanding the role of water in aqueous ruthenium-catalyzed transfer hydrogenation of ketones

    NARCIS (Netherlands)

    Pavlova, A.; Meijer, E.J.


    We report an accurate computational study of the role of water in transfer hydrogenation of formaldehyde with a ruthenium-based catalyst using a water-specific model. Our results suggest that the reaction mechanism in aqueous solution is significantly different from that in the gas phase or in

  7. Hydrogenation of Low Molar Mass OH-Telechelic Polybutadienes Catalyzed by Homogeneous Ziegler Nickel Catalysts

    Czech Academy of Sciences Publication Activity Database

    Šabata, Stanislav; Hetflejš, Jiří


    Roč. 85, č. 6 (2002), s. 1185-1193 ISSN 0021-8995 R&D Projects: GA AV ČR IAA4072902 Keywords : telechelic OH-polybutadienes * homogeneous hydrogenation * liquid polybutadiene rubber Subject RIV: CC - Organic Chemistry Impact factor: 0.927, year: 2002

  8. Hydrogenation of esters catalyzed by ruthenium PN3-Pincer complexes containing an aminophosphine arm

    KAUST Repository

    Chen, Tao


    Hydrogenation of esters under mild conditions was achieved using air-stable ruthenium PN3-pincer complexes containing an aminophosphine arm. High efficiency was achieved even in the presence of water. DFT studies suggest a bimolecular proton shuttle mechanism which allows H2 to be activated by the relatively stable catalyst with a reasonably low transition state barrier. © 2014 American Chemical Society.

  9. Oxidative Esterification of Aldehydes with Urea Hydrogen Peroxide Catalyzed by Aluminum Chloride Hexahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sin-Ae; Kim, Yoon Mi; Lee, Jong Chan [Chung-Ang University, Seoul (Korea, Republic of)


    We have developed a new, environmentally benign and highly efficient oxidative preparation of methyl esters by the reaction of various aldehydes with UHP in methanol catalyzed by readily accessible aluminum(III) chloride hexahydrate. This new greener and cost effective direct esterification method can serve as a useful alternative to existing protocols. Esters are some of the most important functional groups in organic chemistry and have been found in the sub-structure of a variety of natural products, industrial chemicals, and pharmaceuticals. Numerous methods have been reported for the preparation of various esters. In particular, this method gives low yields for both aldehydes containing electron donating substituents in aromatic rings and heterocyclic aldehydes. Therefore, development of a more general, efficient, and greener protocol for the esterification of aldehydes with readily available catalyst is still desirable.

  10. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC


    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  11. Metal-hydrogen systems with an exceptionally large and tunable thermodynamic destabilization

    NARCIS (Netherlands)

    Ngene, Peter; Longo, Alessandro; Mooij, L.P.A.; Bras, Wim; Dam, B.


    Hydrogen is a key element in the energy transition. Hydrogen-metal systems have been studied for various energy-related applications, e.g., for their use in reversible hydrogen storage, catalysis, hydrogen sensing, and rechargeable batteries. These applications depend strongly on the

  12. Controlled delamination of metal films by hydrogen loading

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Eugen


    n this work we quantitatively determine the adhesion energy between metal films and their substrates. Therefore a new controlled buckling technique is established, applying the strong compressive in-plane stress that results in thin films clamped on rigid substrates during hydrogen loading. When the elastic energy stored in the H-loaded thin film exceeds the adhesion energy between film and substrate, delamination occurs. At the onset of delamination, a critical hydrogen concentration, a critical stress value and a critical bending of the substrate are present, which are quantitative measures for the adhesion energy and permit its calculation. As the critical values are determined at the onset of delamination, plastic deformation is negligible, which denies the quantitative determination of adhesion energies in conventional test setups. In multilayer-systems, adhesion energies between substrates and films that hardly absorb hydrogen can be measured by the controlled buckling technique, when the films of interest are coated with hydrogen absorbing films (active layer). The measurements are performed easily and can be repeated under the same test conditions, while variables such as the thickness of the coating materials or the boundary surface structure can be varied and optimized. In this work the adhesion energies of different materials on polycarbonate and niobium on sapphire are investigated. (orig.)

  13. Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium Borohydride-Water Reaction (United States)


    used. We believe that the chloramine in tap water and dissolved organics in seawater form complexes with the catalyst impeding its ability to...resulted in a very viscous sludge due to the precipitation of NaBO2 hydrate crystals, foaming, and reaction temperatures approaching 90 °C. We used...laced a hose connected to the outlet of the reaction vessel inside the cylinder from the bottom . As hydrogen gas is generated, it bubbles inside the

  14. Synthesis of (±)-myo-inositol 4-methylenephosphonate via Rh-Catalyzed hydrogenation of vinylphosphonate. (United States)

    Okauchi, Tatsuo; Nakamura, Shuya; Tsubaki, Kouta; Asakawa, Momoko; Kitamura, Mitsuru


    Phosphatidylinositol phosphate (PIP) synthetase is a promising target for the development of new anti-mycobacterium compounds. We previously reported that myo-inositol 1-methylenephosphonate showed inhibitory activity against PIP synthetase. Herein, we report the synthesis of unprotected myo-inositol 4-methylenephosphonate, a constitutional isomer of myo-inositol 1-methylenephosphonate and found that the stereoselective hydrogenation of vinylphosphonate proceeded via Rh catalysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Highly Efficient Carbon Dioxide Hydrogenation to Methanol Catalyzed by Zigzag Platinum-Cobalt Nanowires. (United States)

    Bai, Shuxing; Shao, Qi; Feng, Yonggang; Bu, Lingzheng; Huang, Xiaoqing


    Carbon dioxide (CO 2 ) hydrogenation is an effective strategy for CO 2 utilization, while unsatisfied conversion efficiencies remain great challenges. It is reported herein that zigzag Pt-Co nanowires (NWs) with Pt-rich surfaces and abundant steps/edges can perform as highly active and stable CO 2 hydrogenation catalysts. It is found that tuning the Pt/Co ratio of the Pt-Co NWs, solvents, and catalyst supports could well optimize the CO 2 hydrogenation to methanol (CH 3 OH) with the Pt 4 Co NWs/C exhibiting the best performance, outperforming all the previous catalysts. They are also very durable with limited activity decays after six catalytic cycles. The diffuse reflectance infrared Fourier transform spectroscopy result of CO 2 adsorption shows that the Pt 4 Co NWs/C undergoes the adsorption/activation of CO 2 by forming appropriate carboxylate intermediates, and thus enhancing the CH 3 OH production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Modeling hydrogen storage in boron-substituted graphene decorated with potassium metal atoms

    CSIR Research Space (South Africa)

    Tokarev, A


    Full Text Available Boron-substituted graphene decorated with potassium metal atoms was considered as a novel material for hydrogen storage. Density functional theory calculations were used to model key properties of the material, such as geometry, hydrogen packing...

  17. Electrocatalytic Hydrogenation of Oxygenates using Earth-Abundant Transition-Metal Nanoparticles under Mild Conditions. (United States)

    Carroll, Kyler J; Burger, Thomas; Langenegger, Lukas; Chavez, Steven; Hunt, Sean T; Román-Leshkov, Yuriy; Brushett, Fikile R


    Electrocatalytic hydrogenation (ECH) is a sustainable pathway for the synthesis of value-added organic compounds, provided affordable catalysts with high activity, selectivity and durability are developed. Here, we synthesize Cu/C, Ni/C, and CuNi/C nanoparticles and compare their performance to Pt/C, Ru/C, PtRu/C for the ECH of hydroxyacetone, a bio-derived feedstock surrogate containing a carbonyl and a hydroxyl functional group. The non-precious metal electrocatalysts show promising conversion-time behavior, product selectivities, and Faradaic efficiencies. Ni/C forms propylene glycol with a selectivity of 89 % (at 80 % conversion), while Cu/C catalyzes ECH (52 % selectivity) and hydrodeoxygenation (HDO, 48 % selectivity, accounting for evaporation). CuNi/C shows increased turnover frequencies but reduced ECH selectivity (80 % at 80 % conversion) as compared to the Ni/C catalyst. Importantly, stability studies show that the non-precious metal catalysts do not leach at operating conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Intermolecular hydrogen transfer catalyzed by a flavodehydrogenase, bakers' yeast flavocytochrome b2

    International Nuclear Information System (INIS)

    Urban, P.; Lederer, F.


    Bakers yeast flavocytochrome b2 is a flavin-dependent L-2-hydroxy acid dehydrogenase which also exhibits transhydrogenase activity. When a reaction takes place between [2- 3 H]lactate and a halogenopyruvate, tritium is found in water and at the halogenolactate C2 position. When the halogenopyruvate undergoes halide ion elimination, tritium is also found at the C3 position of the resulting pyruvate. The amount tau of this intermolecular tritium transfer depends on the initial keto acid-acceptor concentration. At infinite acceptor concentration, extrapolation yields a maximal transfer of 97 +/- 11%. This indicates that the hydroxy acid-derived hydrogen resides transiently on enzyme monoprotic heteroatoms and that exchange with bulk solvent occurs only at the level of free reduced enzyme. Using a minimal kinetic scheme, the rate constant for hydrogen exchange between Ered and solvent is calculated to be on the order of 10(2) M-1 S-1, which leads to an estimated pK approximately equal to 15 for the ionization of the substrate-derived proton while on the enzyme. It is suggested that this hydrogen could be shared between the active site base and Flred N5 anion. It is furthermore shown that some tritium is incorporated into the products when the transhydrogenation is carried out in tritiated water. Finally, with [2-2H]lactate-reduced enzyme, a deuterium isotope effect is observed on the rate of bromopyruvate disappearance. Extrapolation to infinite bromopyruvate concentration yields DV = 4.4. An apparent inverse isotope effect is determined for bromide ion elimination. These results strengthen the idea that oxidoreduction and elimination pathways involve a common carbanionic intermediate

  19. Application of Phosphine-Phosphite Ligands in the Iridium Catalyzed Enantioselective Hydrogenation of 2-Methylquinoline

    Directory of Open Access Journals (Sweden)

    Miguel Rubio


    Full Text Available The hydrogenation of 2-methylquinoline with Ir catalysts based on chiral phosphine-phosphites has been investigated. It has been observed that the reaction is very sensitive to the nature of the ligand. Optimization of the catalyst, allowed by the highly modular structure of these phosphine-phosphites, has improved the enantioselectivity of the reaction up to 73% ee. The influence of additives in this reaction has also been investigated. Contrary to the beneficial influence observed in related catalytic systems, iodine has a deleterious effect in the present case. Otherwise, aryl phosphoric acids produce a positive impact on catalyst activity without a decrease on enantioselectivity.

  20. Hydrogen isotope exchange in a metal hydride tube

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)


    This report describes a model of the displacement of one hydrogen isotope within a metal hydride tube by a different isotope in the gas phase that is blown through the tube. The model incorporates only the most basic parameters to make a clear connection to the theory of open-tube gas chromatography, and to provide a simple description of how the behavior of the system scales with controllable parameters such as gas velocity and tube radius. A single tube can be seen as a building block for more complex architectures that provide higher molar flow rates or other advanced design goals.

  1. Remediation of diesel-contaminated soils using catalyzed hydrogen peroxide: a laboratory evaluation

    International Nuclear Information System (INIS)

    Xu, P.; Achari, G.; Mahmoud, M.; Joshi, R.C.


    This paper presents the results of a laboratory investigation conducted to determine the optimum amount of Fenton's reagent that allows for effective treatment of diesel-contaminated soils. Two types of soils spiked with 5,000 mg/kg diesel fuel were treated in vial reactors with varying concentrations and volumes of hydrogen peroxide. Additionally, Ottawa sand spiked with 5,000 mg/kg of diesel was treated with different H 2 O 2 to iron ratios. The gases produced during the remediation process were measured and analyzed to evaluate the oxidation of diesel range organics. As much as 40 % of diesel range organics was removed when 5 grams of silty clay were treated with 20 mL of 20 % H 2 O 2 . The same concentration and volume of hydrogen peroxide removed about 63 % of diesel range organics from sandy silt. The optimal molar ratio of H 2 O 2 : iron catalyst was found to vary between 235:1 to 490:1. (author)

  2. Inverted supercritical carbon dioxide/aqueous biphasic media for rhodium-catalyzed hydrogenation reactions. (United States)

    Burgemeister, Katja; Franciò, Giancarlo; Gego, Volker H; Greiner, Lasse; Hugl, Herbert; Leitner, Walter


    An inverted supercritical carbon dioxide (scCO(2))/aqueous biphasic system has been used as reaction media for Rh-catalysed hydrogenation of polar substrates. Chiral and achiral CO(2)-philic catalysts were efficiently immobilised in scCO(2) as the stationary phase, while the polar substrates and products were contained in water as the mobile phase. Notably, product separation and catalyst recycling were conducted without depressurisation of the autoclave. The catalyst phase was reused several times with high conversion and product recovery of more than 85 %. Loss of rhodium and phosphorus by leaching were found to be below the detection limit after the first two cycles in the majority of repetitive experiments. The reaction conditions were optimised with a minimum of experiments by using a simplex algorithm in a sequential optimisation. Total turnover numbers (TTNs) of up to 1600, turnover frequencies (TOFs) of up to 340 h(-1) and ee's up to 99 % were obtained in repetitive batch operations. The scope of the devised catalytic system has been investigated and a semicontinuous reaction setup has been implemented. The chiral ligand (R,S)-3-H(2)F(6)-BINAPHOS allowed highly enantioselective hydrogenation of itaconic acid and methyl-2-acetamidoacrylate combined with a considerable catalyst stability in these reaction media.

  3. Metal-Hydrogen Phase Diagrams in the Vicinity of Melting Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, V.I.


    Hydrogen-metal interaction phenomena belong to the most exciting challenges of today's physical metallurgy and physics of solids due to the uncommon behavior of hydrogen in condensed media and to the need for understanding hydrogen's strong negative impact on properties of some high-strength steels and.alloys. The paper cites and summarizes research data on fundamental thermodynamic characteristics of hydrogen in some metals that absorb it endothermally at elevated temperatures. For a number of metal-hydrogen systems, information on some phase diagrams previously not available to the English-speaking scientific community is presented.

  4. Neutron powder diffraction of metal-organic frameworks for hydrogen storage

    International Nuclear Information System (INIS)

    Brown, Craig M.; Liu, Yun; Neumann, Dan A.


    We review recent structural studies that we have undertaken aimed at elucidating the fundamental properties of metal-organic framework materials and their interactions with hydrogen. We have shown that exposing coordinatively unsaturated metal centers can greatly enhance the hydrogen binding energy and that they result in a significant increase of the surface packing density of adsorbed hydrogen molecules on materials surface. We will review some of the structural aspects of these materials, especially the adsorbed hydrogen molecule surface packing density in one type of metal-organic framework, MOF-74, which can be packed even denser than that in solid hydrogen. (author)

  5. Transfer Hydrogenation of Alkenes Using Ethanol Catalyzed by a NCP Pincer Iridium Complex: Scope and Mechanism. (United States)

    Wang, Yulei; Huang, Zhidao; Leng, Xuebing; Zhu, Huping; Liu, Guixia; Huang, Zheng


    The first general catalytic approach to effecting transfer hydrogenation (TH) of unactivated alkenes using ethanol as the hydrogen source is described. A new NCP-type pincer iridium complex ( BQ -NC O P)IrHCl containing a rigid benzoquinoline backbone has been developed for efficient, mild TH of unactivated C-C multiple bonds with ethanol, forming ethyl acetate as the sole byproduct. A wide variety of alkenes, including multisubstituted alkyl alkenes, aryl alkenes, and heteroatom-substituted alkenes, as well as O- or N-containing heteroarenes and internal alkynes, are suitable substrates. Importantly, the ( BQ -NC O P)Ir/EtOH system exhibits high chemoselectivity for alkene hydrogenation in the presence of reactive functional groups, such as ketones and carboxylic acids. Furthermore, the reaction with C 2 D 5 OD provides a convenient route to deuterium-labeled compounds. Detailed kinetic and mechanistic studies have revealed that monosubstituted alkenes (e.g., 1-octene, styrene) and multisubstituted alkenes (e.g., cyclooctene (COE)) exhibit fundamental mechanistic difference. The OH group of ethanol displays a normal kinetic isotope effect (KIE) in the reaction of styrene, but a substantial inverse KIE in the case of COE. The catalysis of styrene or 1-octene with relatively strong binding affinity to the Ir(I) center has ( BQ -NC O P)Ir I (alkene) adduct as an off-cycle catalyst resting state, and the rate law shows a positive order in EtOH, inverse first-order in styrene, and first-order in the catalyst. In contrast, the catalysis of COE has an off-cycle catalyst resting state of ( BQ -NC O P)Ir III (H)[O(Et)···HO(Et)···HOEt] that features a six-membered iridacycle consisting of two hydrogen-bonds between one EtO ligand and two EtOH molecules, one of which is coordinated to the Ir(III) center. The rate law shows a negative order in EtOH, zeroth-order in COE, and first-order in the catalyst. The observed inverse KIE corresponds to an inverse equilibrium

  6. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore


    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  7. Towards hydrogen metallization: an Ab initio approach; Vers la metallisation de l`hydrogene: approche AB initio

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, St


    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.

  8. Hydrogen release at metal-oxide interfaces: A first principle study of hydrogenated Al/SiO{sub 2} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianqiu, E-mail: [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Tea, Eric; Li, Guanchen [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Hin, Celine [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Department of Material Science and Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road-MC 0238, Blacksburg, VA 24061 (United States)


    Highlights: • Hydrogen release process at the Al/SiO{sub 2} metal-oxide interface has been investigated. • A mathematical model that estimates the hydrogen release potential has been proposed. • Al atoms, Al−O bonds, and Si−Al bonds are the major hydrogen traps at the Al/SiO{sub 2} interface. • Hydrogen atoms are primarily release from Al−H and O−H bonds at the Al/SiO{sub 2} metal-oxide interface. - Abstract: The Anode Hydrogen Release (AHR) mechanism at interfaces is responsible for the generation of defects, that traps charge carriers and can induce dielectric breakdown in Metal-Oxide-Semiconductor Field Effect Transistors. The AHR has been extensively studied at Si/SiO{sub 2} interfaces but its characteristics at metal-silica interfaces remain unclear. In this study, we performed Density Functional Theory (DFT) calculations to study the hydrogen release mechanism at the typical Al/SiO{sub 2} metal-oxide interface. We found that interstitial hydrogen atoms can break interfacial Al−Si bonds, passivating a Si sp{sup 3} orbital. Interstitial hydrogen atoms can also break interfacial Al−O bonds, or be adsorbed at the interface on aluminum, forming stable Al−H−Al bridges. We showed that hydrogenated O−H, Si−H and Al−H bonds at the Al/SiO{sub 2} interfaces are polarized. The resulting bond dipole weakens the O−H and Si−H bonds, but strengthens the Al−H bond under the application of a positive bias at the metal gate. Our calculations indicate that Al−H bonds and O−H bonds are more important than Si−H bonds for the hydrogen release process.

  9. Metal dependent catalytic hydrogenation of nitroarenes over water-soluble glutathione capped metal nanoparticles. (United States)

    Sharma, Sachil


    The water soluble glutathione capped metal nanoparticles (M-GS, where M=Pd, Pt, Au and Ag; GS=glutathione) with size 2.4±0.2 nm were synthesized by borohydride reduction of metal ions in the presence of glutathione as capping ligand and used as catalyst for the hydrogenation of nitroaniline in aqueous phase. The rate of catalytic hydrogenation was dependent on metal type and the trend of catalytic activity over these M-GS nanoparticles was found to be Pd-GS (k(app)=0.0227 (±3×10(-4)))s(-1)≫Pt-GS (k(app)=0.0043 (±1×10(-4)))s(-1)>Au-GS (k(app)=0.0015 (±0.2×10(-4)))s(-1)>Ag-GS (k(app)=0.0008 (±0.2×10(-4)))s(-1). The similar trend of catalytic activity was found for the hydrogenation of nitrobenzene. Our experimental results, along taking into account the theoretical calculations done by other research groups, suggest that the observed catalytic activity trend is attributed to the "different rates of H2 molecule adsorption and dissociation" on the M-GS nanoparticles. The "high rate of H2 molecule adsorption" and "highly oxidized surface" make Pd-GS nanoparticles an ideal candidate for the rapid hydrogenation. On the basis of our experimental results, we proposed that small gaps between less densely packed branched thiol "glutathione molecules" provide the access to metal nanoparticle surface for the hydrogenation reaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Metal-Catalyzed Cyclization Reactions of 2,3,4-Trien-1-ols: A Joint Experimental-Computational Study. (United States)

    Alcaide, Benito; Almendros, Pedro; Cembellín, Sara; Fernández, Israel; Martínez Del Campo, Teresa


    Controlled preparation of tri- and tetrasubstituted furans, as well as carbazoles has been achieved through chemo- and regioselective metal-catalyzed cyclization reactions of cumulenic alcohols. The gold- and palladium-catalyzed cycloisomerization reactions of cumulenols, including indole-tethered 2,3,4-trien-1-ols, to trisubstituted furans was effective, due to a 5-endo-dig oxycyclization by attack of the hydroxy group onto the central cumulene double bond. In contrast, palladium-catalyzed heterocyclization/coupling reactions with 3-bromoprop-1-enes furnished tetrasubstituted furans. Also studied was the palladium-catalyzed cyclization/coupling sequence involving protected indole-tethered 2,3,4-trien-1-ols and 3-bromoprop-1-enes that exclusively generated trisubstituted carbazole derivatives. These results could be explained through a selective 6-endo-dig cumulenic hydroarylation, followed by aromatization. DFT calculations were carried out to understand this difference in reactivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nuclear quantum effects induce metallization of dense solid molecular hydrogen. (United States)

    Azadi, Sam; Singh, Ranber; Kühne, Thomas D


    We present an accurate computational study of the electronic structure and lattice dynamics of solid molecular hydrogen at high pressure. The band-gap energies of the C2/c, Pc, and P63/m structures at pressures of 250, 300, and 350 GPa are calculated using the diffusion quantum Monte Carlo (DMC) method. The atomic configurations are obtained from ab initio path-integral molecular dynamics (PIMD) simulations at 300 K and 300 GPa to investigate the impact of zero-point energy and temperature-induced motion of the protons including anharmonic effects. We find that finite temperature and nuclear quantum effects reduce the band-gaps substantially, leading to metallization of the C2/c and Pc phases via band overlap; the effect on the band-gap of the P63/m structure is less pronounced. Our combined DMC-PIMD simulations predict that there are no excitonic or quasiparticle energy gaps for the C2/c and Pc phases at 300 GPa and 300 K. Our results also indicate a strong correlation between the band-gap energy and vibron modes. This strong coupling induces a band-gap reduction of more than 2.46 eV in high-pressure solid molecular hydrogen. Comparing our DMC-PIMD with experimental results available, we conclude that none of the structures proposed is a good candidate for phases III and IV of solid hydrogen. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Molecular metal-Oxo catalysts for generating hydrogen from water (United States)

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I


    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  13. A theoretically-guided optimization of a new family of modular P,S-ligands for iridium-catalyzed hydrogenation of minimally functionalized olefins. (United States)

    Margalef, Jèssica; Caldentey, Xisco; Karlsson, Erik A; Coll, Mercè; Mazuela, Javier; Pàmies, Oscar; Diéguez, Montserrat; Pericàs, Miquel A


    A library of modular iridium complexes derived from thioether-phosphite/phosphinite ligands has been evaluated in the asymmetric iridium-catalyzed hydrogenation of minimally functionalized olefins. The modular ligand design has been shown to be crucial in finding highly selective catalysts for each substrate. A DFT study of the transition state responsible for the enantiocontrol in the Ir-catalyzed hydrogenation is also described and used for further optimization of the crucial stereodefining moieties. Excellent enantioselectivities (enantiomeric excess (ee) values up to 99 %) have been obtained for a range of substrates, including E- and Z-trisubstituted and disubstituted olefins, α,β-unsaturated enones, tri- and disubstituted alkenylboronic esters, and olefins with trifluoromethyl substituents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  15. Radiative proton-capture nuclear processes in metallic hydrogen

    International Nuclear Information System (INIS)

    Ichimaru, Setsuo


    Protons being the lightest nuclei, metallic hydrogen may exhibit the features of quantum liquids most relevant to enormous enhancement of nuclear reactions; thermonuclear and pycnonuclear rates and associated enhancement factors of radiative proton captures of high-Z nuclei as well as of deuterons are evaluated. Atomic states of high-Z impurities are determined in a way consistent with the equations of state and screening characteristics of the metallic hydrogen. Rates of pycnonuclear p-d reactions are prodigiously high at densities ≥20 g/cm 3 , pressures ≥1 Gbar, and temperatures ≥950 K near the conditions of solidification. It is also predicted that proton captures of nuclei such as C, N, O, and F may take place at considerable rates, owing to strong screening by K-shell electrons, if the densities ≥60-80 g/cm 3 , the pressures ≥7-12 Gbar, and the temperatures just above solidification. The possibilities and significance of pycnonuclear p-d fusion experiments are specifically remarked

  16. DFT Methods to Study the Reaction Mechanism of Iridium-Catalyzed Hydrogenation of Olefins: Which Functional Should be Chosen? (United States)

    Sun, Yihua; Chen, Hui


    To enable the selection of more accurate computational methods for the future theoretical exploration of the reaction mechanism of Ir-catalyzed olefin hydrogenation, we compared high-level ab initio coupled cluster and DFT calculations with a simplified model of Pfaltz's Ir/P,N-type catalyst for all four previously proposed Ir(I) /Ir(III) and Ir(III) /Ir(V) mechanisms. Through the systematic assessment of the DFT performances, the DFT empirical dispersion correction (DFT-D3) is found to be indispensable for improving the accuracy of relative energies between the Ir(I) /Ir(III) and Ir(III) /Ir(V) mechanisms. After including the DFT-D3 correction, the three best performing density functionals (DFs) are B2-PLYP, BP86, and TPSSh. In these recommended DFs, the computationally more expensive double-hybrid functional B2-PLYP-D3 has a balanced and outstanding performance for calculations of the reaction barriers, reaction energies, and energy gaps between different mechanisms, whereas the less costly BP86-D3 and TPSSh-D3 methods have outstanding, but relatively less uniform performances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments (United States)

    Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.


    Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number

  18. Hydrogen Production from a Methanol-Water Solution Catalyzed by an Anionic Iridium Complex Bearing a Functional Bipyridonate Ligand under Weakly Basic Conditions. (United States)

    Fujita, Ken-ichi; Kawahara, Ryoko; Aikawa, Takuya; Yamaguchi, Ryohei


    An efficient catalytic system for the production of hydrogen from a methanol-water solution has been developed using a new anionic iridium complex bearing a functional bipyridonate ligand as a catalyst. This system can be operated under mild conditions [weakly basic solution (0.046 mol L(-1) NaOH) below 100 °C] without the use of an additional organic solvent. Long-term continuous hydrogen production from a methanol-water solution catalyzed by the anionic iridium complex was also achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pd Nanoparticle-Catalyzed Isomerization vs Hydrogenation of Allyl Alcohol: Solvent-Dependent Regioselectivity. (United States)

    Sadeghmoghaddam, Elham; Gu, Hanmo; Shon, Young-Seok


    Our previous work has shown that alkanethiolate-capped Pd nanoparticles generated from sodium S -dodecylthiosulfate are excellent catalysts for selective isomerization of various allyl alcohols to the carbonyl analogues. The present work focuses on understanding the mechanism and the regioselectivity of Pd nanoparticles in different environments. First, the presence of H 2 gas has turned out to be essential for the efficient catalytic isomerization reaction. This suggests that the mechanism likely involves the Pd-alkyl intermediate rather than the η 3 π-allyl Pd hydride intermediate. Second, the Pd nanoparticles are found to convert allyl alcohol selectively to either propanal or 1-propanol depending on the type of solvent used for the catalytic reactions. The reaction pathway is most likely determined by steric hindrance, which is the result of the interaction between substrate and alkylthiolate ligands on Pd nanoparticles. Presumably, the conformation of alkylthiolate ligands changes upon the type of solvents, resulting in varying degree of available space close to the nanoparticle surface. In general, nonpolar or weakly polar solvents such as benzene and chloroform, respectively, promote the isomerization of allyl alcohol to propanal via the formation of the branched Pd-alkyl intermediate. On the other hand, polar protic solvents such as methanol and water foster the hydrogenation of allyl alcohol to 1-propanol involving the steric induced formation of a linear Pd-alkyl intermediate. Third, the use of sodium S -hexylthiosulfate instead of sodium S -dodecylthiosulfate for the synthesis of Pd nanoparticles results in nanoparticle catalysts with a lower regioselectivity toward isomerization over hydrogenation. This is due to the higher surface ligand density of hexanethiolate-capped Pd nanoparticles, which negatively impacts the formation of branched Pd-alkyl intermediate. The results clearly indicate that controlling the structure and surface density of

  20. Hydrogen sensors using nitride-based semiconductor diodes: the role of metal/semiconductor interfaces. (United States)

    Irokawa, Yoshihiro


    In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C-V) characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C-V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C-V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I-V) characterization, suggesting that low-frequency C-V method would be effective in detecting very low hydrogen concentrations.

  1. Hydrogen Sensors Using Nitride-Based Semiconductor Diodes: The Role of Metal/Semiconductor Interfaces

    Directory of Open Access Journals (Sweden)

    Yoshihiro Irokawa


    Full Text Available In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C-V characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C-V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C-V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I-V characterization, suggesting that low-frequency C-V method would be effective in detecting very low hydrogen concentrations.

  2. Understanding the role of water in aqueous ruthenium-catalyzed transfer hydrogenation of ketones. (United States)

    Pavlova, Anna; Meijer, Evert Jan


    We report an accurate computational study of the role of water in transfer hydrogenation of formaldehyde with a ruthenium-based catalyst using a water-specific model. Our results suggest that the reaction mechanism in aqueous solution is significantly different from that in the gas phase or in methanol solution. Previous theoretical studies have shown a concerted hydride and proton transfer in the gas phase (M. Yamakawa, H. Ito, R. Noyori, J. Am. Chem. Soc. 2000, 122, 1466-1478;J.-W. Handgraaf, J. N. H. Reek, E. J. Meijer, Organometallics 2003, 22, 3150-3157; D. A. Alonso, P. Brandt, S. J. M. Nordin, P. G. Andersson, J. Am. Chem. Soc. 1999, 121, 9580-9588; D. G. I. Petra, J. N. H. Reek, J.-W. Handgraaf, E. J. Meijer, P. Dierkes, P. C. J. Kamer, J. Brussee, H. E. Schoemaker, P. W. N. M. van Leeuwen, Chem. Eur. J. 2000, 6, 2818-2829), whereas a delayed, solvent-mediated proton transfer has been observed in methanol solution (J.-W. Handgraaf, E. J. Meijer, J. Am. Chem. Soc. 2007, 129, 3099-3103). In aqueous solution, a concerted transition state is observed, as in the previous studies. However, only the hydride is transferred at that point, whereas the proton is transferred later by a water molecule instead of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interaction of hydrogen and oxygen with bulk defects and surfaces of metals

    International Nuclear Information System (INIS)

    Besenbacher, F.


    The thesis deals with the interaction of hydrogen with defects in metals and the interaction of hydrogen and oxygen with metal surfaces studied by ion-beam techniques and scanning tunneling microscopy (STM), respectively. The first part of the thesis discusses the interaction of hydrogen with simple defects in transition metals. The trap-binding enthalpies and the lattice location of hydrogen trapped to vacancies have been determined, and an extremely simple and versatile picture of the hydrogen-metal interaction has evolved, in which the trap strength is mainly determined by the local electron density. Any dilution of the lattice will lead to a trap, vacancies and voids being the strongest trap. It is found that hydrogen trapped to vacancies in fcc metals is quantum-mechanically delocalized, and the excitation energies for the hydrogen in the vacancy potential are a few MeV only. The interaction of hydrogen with metal surfaces is studied by the transmission channeling (TC) technique. It is found that hydrogen chemisorbs in the highest-coordinated sites on the surfaces, and that there is a direct relationship between the hydrogen-metal bond length and the coordination number for the hydrogen. In the final part of the thesis the dynamics of the chemisorption process for oxygen and hydrogen on metal surfaces is studied by STM, a fascinating and powerful technique for exploring the atomic-scale realm of surfaces. It is found that there is a strong coupling between the chemisorption process and the distortion of the metal surface. The adsorbates induce a surface reconstruction, i.e. metal-metal bond breaks and metal-adsorbate bounds form. Whereas hydrogen interacts weakly with the metals and induces reconstructions where only nnn metals bonds are broken, oxygen interacts strongly with the metal, and the driving force for the O-induced reconstructions appears to be the formation of low-coordinated metal-O rows, formed by breaking of nn metal bonds. Finally it is shown

  4. Hydrogen chemisorption and oxidation of transition metal carbides

    International Nuclear Information System (INIS)

    Bethin, J.R.


    A study was made of the catalytic activity of WC, focusing on the possible influence of point defects. The chemisorption of H on WC and titanium oxycarbides was studied with differential scanning calorimetry. The catalytic activity of these materials for oxidation of H was determined by potentiostatic steady-state and potentiodynamic measurements in acid electrolyte. Compositions of WC surfaces were determined by x-ray photoemission and related to the catalytic behavior. Titanium oxycarbide surfaces were analyzed by Auger electron spectroscopy. Of the carbides tested only one WC preparation was able to chemisorb H. Both WC powders investigated catalyzed H oxidation with similar specific activities. Spectroscopic studies showed that the active surface of WC was a mixture of WO 3 and a carbon-deficient WC phase. This result indicates that carbon vacancies are the active sites in tungsten carbide. Theoretical models of a carbon vacancy surrounded by metal atoms suggested by calculations by other workers support this assignment and identify the important role of the W6s level. The measured value of the heat of chemisorption is consistent with the proposed model

  5. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene

    DEFF Research Database (Denmark)

    Studt, Felix; Abild-Pedersen, Frank; Bligaard, Thomas


    The removal of trace acetylene from ethylene is performed industrially by palladium hydrogenation catalysts ( often modified with silver) that avoid the hydrogenation of ethylene to ethane. In an effort to identify catalysts based on less expensive and more available metals, density functional...... dispersed on an oxide support were selective for acetylene hydrogenation at low pressures....

  6. An electrochemical method for determining hydrogen concentrations in metals and some applications (United States)

    Danford, M. D.


    An electrochemical method was developed for the determination of hydrogen in metals using the EG&G-PARC Model 350A Corrosion Measurement Console. The method was applied to hydrogen uptake, both during electrolysis and electroplating, and to studies of hydrogen elimination and the effect of heat treatment on elimination times. Results from these studies are presented.

  7. Method and Apparatus for the Detection of Hydrogen Using a Metal Alloy (United States)

    Hunter, Gary W. (Inventor)


    A hydrogen sensitive metal alloy contains palladium and titanium to provide a larger change in electrical resistance when exposed to the presence of hydrogen. The alloy is deposited on a substrate and a thin film and connected across electrical circuitry to provide a sensor device that can be used for improved sensitivity and accuracy of hydrogen detection.

  8. New Trends in Oxidative Functionalization of Carbon–Hydrogen Bonds: A Review

    Directory of Open Access Journals (Sweden)

    Georgiy B. Shul’pin


    Full Text Available This review describes new reactions catalyzed by recently discovered types of metal complexes and catalytic systems (catalyst + co-catalyst. Works of recent years (mainly 2010–2016 devoted to the oxygenations of saturated, aromatic hydrocarbons and other carbon–hydrogen compounds are surveyed. Both soluble metal complexes and solid metal compounds catalyze such transformations. Molecular oxygen, hydrogen peroxide, alkyl peroxides, and peroxy acids were used in these reactions as oxidants.

  9. NATO International Symposium on the Electronic Structure and Properties of Hydrogen in Metals

    CERN Document Server

    Satterthwaite, C


    Hydrogen is the smallest impurity atom that can be implanted in a metallic host. Its small mass and strong interaction with the host electrons and nuclei are responsible for many anomalous and interesting solid state effects. In addition, hydrogen in metals gives rise to a number of technological problems such as hydrogen embrittlement, hydrogen storage, radiation hardening, first wall problems associated with nuclear fusion reactors, and degradation of the fuel cladding in fission reactors. Both the fundamental effects and applied problems have stimulated a great deal of inter­ est in the study of metal hydrogen systems in recent years. This is evident from a growing list of publications as well as several international conferences held in this field during the past decade. It is clear that a fundamental understanding of these problems re­ quires a firm knowledge of the basic interactions between hydrogen, host metal atoms, intrinsic lattice defects and electrons. This understanding is made particularly di...

  10. Standard practice for evaluation of hydrogen uptake, permeation, and transport in metals by an electrochemical technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This practice gives a procedure for the evaluation of hydrogen uptake, permeation, and transport in metals using an electrochemical technique which was developed by Devanathan and Stachurski. While this practice is primarily intended for laboratory use, such measurements have been conducted in field or plant applications. Therefore, with proper adaptations, this practice can also be applied to such situations. 1.2 This practice describes calculation of an effective diffusivity of hydrogen atoms in a metal and for distinguishing reversible and irreversible trapping. 1.3 This practice specifies the method for evaluating hydrogen uptake in metals based on the steady-state hydrogen flux. 1.4 This practice gives guidance on preparation of specimens, control and monitoring of the environmental variables, test procedures, and possible analyses of results. 1.5 This practice can be applied in principle to all metals and alloys which have a high solubility for hydrogen, and for which the hydrogen permeation is ...

  11. Metal Ion-Catalyzed Alcoholysis as a Strategy for the High Loading Destruction of Chemical Warfare Organophosphorus Agents (United States)


    13283. 21. Cleland, W.W.; Frey, P.A.; Gerlt, J.A. The Low Barrier Hydrogen Bond in Enzymic Catalysis . Biol. Chem. 1998, 273, pp 25529–25532. 22...fluoride- releasing agents. Variation of the alcohol solvent indicated that ethanol and monoethylamine are equally effective in this system. Synthetic...1 3. EFFECTS OF METAL ION CATALYSIS OF PHOSPHORYL TRANSFER IN METHANOL MEDIUM

  12. Noble metal ionic sites for catalytic hydrogen combustion: spectroscopic insights. (United States)

    Deshpande, Parag A; Madras, Giridhar


    A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO(2) and TiO(2) in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO(2) was comparable and was higher than Pd and Pt ion substituted ZrO(2). The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO(2) supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO(2) supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen.

  13. Modeling of hydrogen isotopes separation in a metal hydride bed

    International Nuclear Information System (INIS)

    Charton, S.; Corriou, J.P.; Schweich, D.


    A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption-dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300 K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. (United States)

    Zhang, Wei; Lai, Wenzhen; Cao, Rui


    Globally increasing energy demands and environmental concerns related to the use of fossil fuels have stimulated extensive research to identify new energy systems and economies that are sustainable, clean, low cost, and environmentally benign. Hydrogen generation from solar-driven water splitting is a promising strategy to store solar energy in chemical bonds. The subsequent combustion of hydrogen in fuel cells produces electric energy, and the only exhaust is water. These two reactions compose an ideal process to provide clean and sustainable energy. In such a process, a hydrogen evolution reaction (HER), an oxygen evolution reaction (OER) during water splitting, and an oxygen reduction reaction (ORR) as a fuel cell cathodic reaction are key steps that affect the efficiency of the overall energy conversion. Catalysts play key roles in this process by improving the kinetics of these reactions. Porphyrin-based and corrole-based systems are versatile and can efficiently catalyze the ORR, OER, and HER. Because of the significance of energy-related small molecule activation, this review covers recent progress in hydrogen evolution, oxygen evolution, and oxygen reduction reactions catalyzed by porphyrins and corroles.

  15. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    Botzung, M.


    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author) [fr

  16. Structural and Mechanistic Insights into Hemoglobin-catalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products

    Energy Technology Data Exchange (ETDEWEB)

    Vitvitsky, Victor; Yadav, Pramod K.; An, Sojin; Seravalli, Javier; Cho, Uhn-Soo; Banerjee, Ruma (Michigan-Med); (UNL)


    Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.

  17. New vistas in the determination of hydrogen in aerospace engine metal alloys (United States)

    Danford, M. D.


    The application of diffusion theory to the analysis of hydrogen desorption data has been studied. From these analyses, important information concerning hydrogen solubilities and the nature of the hydrogen distributions in the metal has been obtained. Two nickel base alloys, Rene' 41 and Waspaloy, and one ferrous alloy, 4340 steel, were studied in this work. For the nickel base alloys, it was found that the hydrogen distributions after electrolytic charging conformed closely to those which would be predicted by diffusion theory. The hydrogen distributions in electrolytically charged 4340 steel, on the other hand, were essentially uniform in nature, which would not be predicted by diffusion theory. Finally, it has been found that the hydrogen desorption is completely explained by the nature of the hydrogen distribution in the metal, and that the 'fast' hydrogen is not due to surface and subsurface hydride formation, as was originally proposed.

  18. Transition-Metal-Catalyzed Cyanation by Using an Electrophilic Cyanating Agent, N-Cyano-N-phenyl-p-toluenesulfonamide (NCTS). (United States)

    Cui, Jie; Song, Jian; Liu, Qing; Liu, Hui; Dong, Yunhui


    The ability to introduce a nitrile group into a biologically active compound is very useful in organic synthesis, owing to the importance of nitrile groups in transformations and tuning molecular properties. To date, nucleophilic cyanation has been the most used strategy for this purpose, whilst electrophilic cyanation reactions are less developed. Recently, the electrophilic cyanation reagent N-cyano-N-phenyl-p-toluenesulfonamide (NCTS) has received increasing attention, owing to its superior properties in terms of safety and practicality. This Focus Review summarizes recent progress in transition-metal-catalyzed cyanation reactions that use NCTS. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrogen incorporation in Zintl phases and transition metal oxides- new environments for the lightest element in solid state chemistry


    Nedum Kandathil, Reji


    This PhD thesis presents investigations of hydrogen incorporation in Zintl phases and transition metal oxides. Hydrogenous Zintl phases can serve as important model systems for fundamental studies of hydrogen-metal interactions, while at the same time hydrogen-induced chemical structure and physical property changes provide exciting prospects for materials science. Hydrogen incorporation in transition metal oxides leads to oxyhydride systems in which O and H together form an anionic substruct...

  20. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts. (United States)

    Bernskoetter, Wesley H; Hazari, Nilay


    New and sustainable energy vectors are required as a consequence of the environmental issues associated with the continued use of fossil fuels. H 2 is a potential clean energy source, but as a result of problems associated with its storage and transport as a gas, chemical H 2 storage (CHS), which involves the dehydrogenation of small molecules, is an attractive alternative. In principle, formic acid (FA, 4.4 wt % H 2 ) and methanol (MeOH, 12.6 wt % H 2 ) can be obtained renewably and are excellent prospective liquid CHS materials. In addition, MeOH has considerable potential both as a direct replacement for gasoline and as a fuel cell input. The current commercial syntheses of FA and MeOH, however, use nonrenewable feedstocks and will not facilitate the use of these molecules for CHS. An appealing option for the sustainable synthesis of both FA and MeOH, which could be implemented on a large scale, is the direct metal catalyzed hydrogenation of CO 2 . Furthermore, given that CO 2 is a readily available, nontoxic and inexpensive source of carbon, it is expected that there will be economic and environmental benefits from using CO 2 as a feedstock. One strategy to facilitate both the dehydrogenation of FA and MeOH and the hydrogenation of CO 2 and H 2 to FA and MeOH is to utilize a homogeneous transition metal catalyst. In particular, the development of catalysts based on first row transition metals, which are cheaper, and more abundant than their precious metal counterparts, is desirable. In this Account, we describe recent advances in the development of iron and cobalt systems for the hydrogenation of CO 2 to FA and MeOH and the dehydrogenation of FA and MeOH and provide a brief comparison between precious metal and base metal systems. We highlight the different ligands that have been used to stabilize first row transition metal catalysts and discuss the use of additives to promote catalytic activity. In particular, the Account focuses on the crucial role that

  1. Hydrogenation vs. H-D isotope scrambling during the conversion of ethylene with hydrogen/deuterium catalyzed by platinum under single-collision conditions. (United States)

    Dong, Yujung; Ebrahimi, Maryam; Tillekaratne, Aashani; Simonovis, Juan Pablo; Zaera, Francisco


    The catalytic hydrogenation of olefins promoted by transition metals, represented here by the conversion of ethylene with platinum, was studied under a unique regime representing pressures in the mTorr range and single-collision conditions. Isotope labeling was used to follow the concurrent H-D exchange steps that occur during this conversion. Multiple isotope substitutions were observed in the resulting ethane products, reflecting the operability of the reversible stepwise mechanism proposed a long time ago by Horiuti and Polanyi. In fact, the ethane isotopologue distributions obtained in these experiments reflect a much higher probability for the dehydrogenation of ethyl intermediates back to the olefin, relative to the hydrogenation to ethane, than typically seen in this catalysis. In addition, a second mechanistic pathway was clearly identified, responsible for most of the dideuteroethane produced. Based on the dependence of the rates of formation of each isotopologue on the fluxes of deuterium and ethylene, it is argued that this second route may be a "reverse" Eley-Rideal step between gas-phase ethylene and two deuterium atoms adsorbed on adjacent sites of the platinum surface. The clear identification of this second pathway is new, and was possible thanks to our ability to explore a new single-collision intermediate pressure regime.

  2. Review of thermodinamic and mechanical properties of hydrogen-transition metal systems

    International Nuclear Information System (INIS)

    Mathias, H.; Katz, Y.


    A large body of fundamental and empirical knowledge has been acquired during many years of research concerning the interactions between hydrogen and metals, the location of hydrogen in metal structures, its mobility in metals and its influence on mechanical properties of metals. Much progress has been made in the understanding of related phenomena, and various theories have been proposed, but considerable disagreement still exist about basic mechanisms involved. The growing interest in these subjects and their important role in science and technology are well documented by many reviews and symposia. A general survey of these topics with reference to experimental results and theories related to thermodynamic and mechanical properties of hydrogen-transition metal systems, such as H-Pd, H-Ti, H-Fe etc. is given in the present review. Special emphasis is given to hydrogen embrittlement of metals

  3. Electronic specific heats in metal--hydrogen systems

    International Nuclear Information System (INIS)

    Flotow, H.E.


    The electronic specific heats of metals and metal--hydrogen systems can in many cases be evaluated from the measured specific heats at constant pressure, C/sub p/, in the temperature range 1 to 10 K. For the simplest case, C/sub p/ = γT + βT 3 , where γT represents the specific heat contribution associated with the conduction electrons, and βT 3 represents lattice specific heat contribution. The electronic specific heat coefficient, γ, is important because it is proportional to electron density of states at the Fermi surface. A short description of a low temperature calorimetric cryostat employing a 3 He/ 4 He dilution refrigeration is given. Various considerations and complications encountered in the evaluation of γ from specific heat data are discussed. Finally, the experimental values of γ for the V--Cr--H system and for the Lu--H system are summarized and the variations of γ as function of alloy composition are discussed

  4. Chemical bonding of hydrogen molecules to transition metal complexes

    International Nuclear Information System (INIS)

    Kubas, G.J.


    The complex W(CO) 3 (PR 3 ) 2 (H 2 ) (CO = carbonyl; PR 3 = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H 2 exchanges easily with D 2 . This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H 2 bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H 2 )(R 2 PCH 2 CH 2 PR 2 ) 2 were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig

  5. Chemical bonding of hydrogen molecules to transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kubas, G.J.


    The complex W(CO){sub 3}(PR{sub 3}){sub 2}(H{sub 2}) (CO = carbonyl; PR{sub 3} = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H{sub 2} exchanges easily with D{sub 2}. This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H{sub 2} bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H{sub 2})(R{sub 2}PCH{sub 2}CH{sub 2}PR{sub 2}){sub 2} were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig.


    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.


    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  7. Manganese Catalyzed α-Olefination of Nitriles by Primary Alcohols. (United States)

    Chakraborty, Subrata; Das, Uttam Kumar; Ben-David, Yehoshoa; Milstein, David


    Catalytic α-olefination of nitriles using primary alcohols, via dehydrogenative coupling of alcohols with nitriles, is presented. The reaction is catalyzed by a pincer complex of an earth-abundant metal (manganese), in the absence of any additives, base, or hydrogen acceptor, liberating dihydrogen and water as the only byproducts.

  8. Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys. (United States)

    Greeley, Jeff; Mavrikakis, Manos


    Periodic, self-consistent DFT-GGA calculations are used to study the thermochemical properties of both surface and subsurface atomic hydrogen on a variety of pure metals and near-surface alloys (NSAs). For surface hydrogen on pure metals, calculated site preferences, adsorption geometries, vibrational frequencies, and binding energies are reported and are found to be in good agreement with available experimental data. On NSAs, defined as alloys wherein a solute is present near the surface of a host metal in a composition different from the bulk composition, surface hydrogen generally binds more weakly than it binds to the pure-metal components composing the alloys. Some of the NSAs even possess the unusual property of binding hydrogen as weakly as the noble metals while, at the same time, dissociating H(2) much more easily. On both NSAs and pure metals, formation of surface hydrogen is generally exothermic with respect to H(2)(g). In contrast, formation of subsurface hydrogen is typically endothermic with respect to gas-phase H(2) (the only exception to this general statement is found for pure Pd). As with surface H, subsurface H typically binds more weakly to NSAs than to the corresponding pure-metal components of the alloys. The diffusion barrier for hydrogen from surface to subsurface sites, however, is usually lower on NSAs compared to the pure-metal components, suggesting that population of subsurface sites may occur more rapidly on NSAs.

  9. The Manganese-Catalyzed Cross-Coupling Reaction and the Influence of Trace Metals

    DEFF Research Database (Denmark)

    Santilli, Carola; Beigbaghlou, Somayyeh Sarvi; Ahlburg, Andreas


    The substrate scope of the MnCl2-catalyzed cross-coupling between aryl halides and Grignard reagents has been extended to several methyl-substituted aryl iodides by performing the reaction at elevated temperature in a microwave oven. A radical clock experiment revealed the presence of an aryl...

  10. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei [Cathy


    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  11. Feasibility study of a metal hydride hydrogen store for a self-sufficient solar hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Lund, P.D.; Hagstroem, M.T. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics


    The feasibility of using metal hydride-hydrogen storage in a self-sufficient solar hydrogen energy system is studied. Several potential commercial and non-commercial metal hydrides are considered to find a material having a low {Delta}H value, a low hysteresis effect, gentle P-C -T, plateau slopes and a high hydrogen storage capacity. A 1 N m{sup 3} metal hydride container employing a commercial Hydralloy C15 metal hydride with the proper P-C-T curves is analysed in more detail. As the thermal behaviour of the container is crucial in our application, steady-state and time-dependent thermal properties of the container are measured and the respective models are derived. The metal hydride container is also tested under realistic conditions to get further operational experience on its technical feasibility. Based on this study, low-temperature metal hydrides seem to be technically and economically feasible for small-scale self-sufficient solar hydrogen systems in which high volumetric energy density is needed due to limited space. (Author)

  12. Heat of solution and site energies of hydrogen in disordered transition-metal alloys

    International Nuclear Information System (INIS)

    Brouwer, R.C.; Griessen, R.


    Site energies, long-range effective hydrogen-hydrogen interactions, and the enthalpy of solution in transition-metal alloys are calculated by means of an embedded-cluster model. The energy of a hydrogen atom is assumed to be predominantly determined by the first shell of neighboring metal atoms. The semiempirical local band-structure model is used to calculate the energy of the hydrogen atoms in the cluster, taking into account local deviations from the average lattice constant. The increase in the solubility limit and the weak dependence of the enthalpy of solution on hydrogen concentration in disordered alloys are discussed. Calculated site energies and enthalpies of solution in the alloys are compared with experimental data, and good agreement is found. Due to the strong interactions with the nearest-neighbor metal atoms, hydrogen atoms can be used to determine local lattice separations and the extent of short-range order in ''disordered'' alloys

  13. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    Energy Technology Data Exchange (ETDEWEB)

    T. Brent Gunnoe


    Catalysts provide foundational technology for the development of new materials and can enhance the efficiency of routes to known materials. New catalyst technologies offer the possibility of reducing energy and raw material consumption as well as enabling chemical processes with a lower environmental impact. The rising demand and expense of fossil resources has strained national and global economies and has increased the importance of accessing more efficient catalytic processes for the conversion of hydrocarbons to useful products. The goals of the research are to develop and understand single-site homogeneous catalysts for the conversion of readily available hydrocarbons into useful materials. A detailed understanding of these catalytic reactions could lead to the development of catalysts with improved activity, longevity and selectivity. Such transformations could reduce the environmental impact of hydrocarbon functionalization, conserve energy and valuable fossil resources and provide new technologies for the production of liquid fuels. This project is a collaborative effort that incorporates both experimental and computational studies to understand the details of transition metal catalyzed C-H activation and C-C bond forming reactions with olefins. Accomplishments of the current funding period include: (1) We have completed and published studies of C-H activation and catalytic olefin hydroarylation by TpRu{l_brace}P(pyr){sub 3}{r_brace}(NCMe)R (pyr = N-pyrrolyl) complexes. While these systems efficiently initiate stoichiometric benzene C-H activation, catalytic olefin hydroarylation is hindered by inhibition of olefin coordination, which is a result of the steric bulk of the P(pyr){sub 3} ligand. (2) We have extended our studies of catalytic olefin hydroarylation by TpRu(L)(NCMe)Ph systems to L = P(OCH{sub 2}){sub 3}CEt. Thus, we have now completed detailed mechanistic studies of four systems with L = CO, PMe{sub 3}, P(pyr){sub 3} and P(OCH{sub 2}){sub 3}CEt

  14. Metallic glassy Zr70Ni20Pd10 powders for improving the hydrogenation/dehydrogenation behavior of MgH2 (United States)

    El-Eskandarany, M. Sherif


    Because of its low density, storage of hydrogen in the gaseous and liquids states possess technical and economic challenges. One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides. Magnesium hydride (MgH2) remains the best hydrogen storage material due to its high hydrogen capacity and low cost of production. Due to its high activation energy and poor hydrogen sorption/desorption kinetics at moderate temperatures, the pure form of MgH2 is usually mechanically treated by high-energy ball mills and catalyzed with different types of catalysts. These steps are necessary for destabilizing MgH2 to enhance its kinetics behaviors. In the present work, we used a small mole fractions (5 wt.%) of metallic glassy of Zr70Ni20Pd10 powders as a new enhancement agent to improve its hydrogenation/dehydrogenation behaviors of MgH2. This short-range ordered material led to lower the decomposition temperature of MgH2 and its activation energy by about 121 °C and 51 kJ/mol, respectively. Complete hydrogenation/dehydrogenation processes were successfully achieved to charge/discharge about 6 wt.%H2 at 100 °C/200 °C within 1.18 min/3.8 min, respectively. In addition, this new nanocomposite system shows high performance of achieving continuous 100 hydrogen charging/discharging cycles without degradation. PMID:27220994

  15. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. (United States)

    Corma, Avelino; Serna, Pedro; Concepción, Patricia; Calvino, José Juan


    It is generally accepted that good hydrogenation noble and nonnoble metal catalysts such as Pt, Ru, or Ni are not chemoselective for hydrogenation of nitro groups in substituted aromatic molecules. We have found that it is possible to transform nonchemoselective into highly chemoselective metal catalysts by controlling the coordination of metal surface atoms while introducing a cooperative effect between the metal and a properly selected support. Thus, highly chemoselective and general hydrogenation Pt, Ru, and Ni catalysts can be prepared by generating nanosized crystals of the metals on the surface of a TiO 2 support and decorating the exposed (111) and (100) crystal faces by means of a simple catalyst activation procedure. By doing this, it has been possible to change the relative rate for hydrogenating competitive groups present in the molecule by almost 2 orders of magnitude, increasing the chemoselectivity from less than 1% to more than 95%.

  16. Miniaturized Metal (Metal Alloy)/PdO(x)/SiC Hydrogen and Hydrocarbon Gas Sensors (United States)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)


    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO(x)). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600 C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sided sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  17. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors (United States)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)


    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x ). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  18. Ir-Catalyzed Asymmetric and Regioselective Hydrogenation of Cyclic Allylsilanes and Generation of Quaternary Stereocenters via the Hosomi-Sakurai Allylation. (United States)

    Rabten, Wangchuk; Margarita, Cristiana; Eriksson, Lars; Andersson, Pher G


    A number of cyclic dienes containing the allylsilane moiety were prepared by a Birch reduction and subjected to iridium-catalyzed regioselective and asymmetric hydrogenation, which provided chiral allylsilanes in high conversion and enantiomeric excess (up to 99 % ee). The compounds were successively used in the Hosomi-Sakurai allylation with various aldehydes employing TiCl 4 as Lewis acid, providing adducts with two additional stereogenic centers in excellent diastereoselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters. (United States)

    Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin


    A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps.

  20. Iron-catalyzed oxidative sp3carbon-hydrogen bond functionalization of 3,4-dihydro-1,4-benzoxazin-2-ones. (United States)

    Huo, Congde; Dong, Jie; Su, Yingpeng; Tang, Jing; Chen, Fengjuan


    A novel and efficient iron-catalyzed sp 3 carbon-hydrogen bond functionalization of benzoxazinone derivatives has been developed. For the first time, benzoxazin-2-ones were used as substrates in an oxidative dehydrogenative coupling reaction. The experiments were performed under mild reaction conditions to construct alkyl-aryl C(sp 3 )-C(sp 2 ) bonds. The application of this method to the gram-scale synthesis of natural product cephalandole A has been accomplished in a 3-step sequence. A plausible one electron oxidation involved mechanism is proposed.

  1. Cross-Coupling Hydrogen Evolution by Visible Light Photocatalysis Toward C(sp(2))-P Formation: Metal-Free C-H Functionalization of Thiazole Derivatives with Diarylphosphine Oxides. (United States)

    Luo, Kai; Chen, Yao-Zhong; Yang, Wen-Chao; Zhu, Jie; Wu, Lei


    Visible light along with 5 mol % eosin B catalyzed the first direct C-H phosphorylation of thiazole derivatives with diarylphosphine oxides by a photoredox process in the absence of an external oxidant. The scope of thiazoles and phosphine oxides was further investigated, as was functional group tolerance. The general and operational simplicity provides a novel metal and oxidant-free alternative for the formation of heteroaryl-P bonds, and only molecular hydrogen is generated as a byproduct.

  2. Optimization of neutron tomography for rapid hydrogen concentration inspection of metal castings

    CERN Document Server

    Gibbons, M R; Shields, K


    Hydrogen embrittlement describes a group of phenomena leading to the degradation of metal alloy properties. The hydrogen concentration in the alloy can be used as an indicator for the onset of embrittlement. A neutron tomography system has been optimized to perform nondestructive detection of hydrogen concentration in titanium aircraft engine compressor blades. Preprocessing of backprojection images and postprocessing of tomographic reconstructions are used to achieve hydrogen concentration sensitivity below 200 ppm weight. This paper emphasizes the postprocessing techniques which allow automated reporting of hydrogen concentration.

  3. Heat energy from hydrogen-metal nuclear interactions (United States)

    Hadjichristos, John; Gluck, Peter


    The discovery of the Fleischmann-Pons Effect in 1989, a promise of an abundant, cheap and clean energy source was premature in the sense that theoretical knowledge, relative technologies and the experimental tools necessary for understanding and for scale-up still were not available. Therefore the field, despite efforts and diversification remained quasi-stagnant, the effect (a scientific certainty) being of low intensity leading to mainstream science to reject the phenomenon and not supporting its study. Recently however, the situation has changed, a new paradigm is in statunascendi and the obstacles are systematically removed by innovative approaches. Defkalion, a Greek company (that recently moved in Canada for faster progress) has elaborated an original technology for the Ni-H system [1-3]. It is about the activation of hydrogen and creation of nuclear active nano-cavities in the metal through a multi-stage interaction, materializing some recent breakthrough announcements in nanotechnology, superconductivity, plasma physics, astrophysics and material science. A pre-industrial generator and a novel mass-spectrometry instrumentations were created. Simultaneously, a meta-theory of phenomena was sketched in collaboration with Prof. Y. Kim (Purdue U).

  4. Tailoring the Hydrogen Detection Properties of Metal Hydrides

    NARCIS (Netherlands)

    Boelsma, C.


    Hydrogen plays an essential role in many sectors of the industry. For example, hydrogen is necessary to produce ammonia, it can be used to determine the quality of products (hydrogen is produced during food ageing), or it can result in medical diagnostics (e.g. lactose intolerance). In addition,

  5. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries. (United States)

    Li, M M; Yang, C C; Wang, C C; Wen, Z; Zhu, Y F; Zhao, M; Li, J C; Zheng, W T; Lian, J S; Jiang, Q


    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  6. In tandem or alone: a remarkably selective transfer hydrogenation of alkenes catalyzed by ruthenium olefin metathesis catalysts. (United States)

    Zieliński, Grzegorz Krzysztof; Samojłowicz, Cezary; Wdowik, Tomasz; Grela, Karol


    A system for transfer hydrogenation of alkenes, composed of a ruthenium metathesis catalyst and HCOOH, is presented. This operationally simple system can be formed directly after a metathesis reaction to effect hydrogenation of the metathesis product in a single-pot. These hydrogenation conditions are applicable to a wide range of alkenes and offer remarkable selectivity.

  7. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.


    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  8. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions (United States)

    Lennon, David; Warringham, Robbie; Guidi, Tatiana; Parker, Stewart F.


    The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al2O3 catalyst. Inelastic neutron scattering studies show that the C-H stretching mode ranges from 2850 to 3063 cm-1, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al2O3 catalysts during methane reforming.

  9. Analysis of hydrogen storage in metal hydride tanks introducing an induced phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Gondor, Germain; Lexcellent, Christian [Institut FEMTO-ST, Departement de Mecanique Appliquee (LMARC), Universite de Franche-Comte, UMR CNRS 6174, 24 Chemin de l' Epitaphe, 25000 Besancon (France)


    Hydrogen absorption in a metal hydride tank is generally studied based on a heat and mass transfer analysis. The originality of this investigation is that the phase transformation from a solid ({alpha} phase) to hydride ({beta} phase) solution is included in the hydrogen absorption mechanism. Toward this end, a modelling of the equilibrium pressure, composition (absorbed or desorbed hydrogen atoms per metal atoms), and isothermal curves of a LaNi{sub 5} alloy is performed. Moreover, a kinetic model is developed taking into account the steps of hydrogen absorption and desorption (i.e., physisorption, chemisorption, surface penetration, nucleation and growth of the hydride phase and diffusion). Simulations are then performed to show the impact of external conditions (hydrogen gas pressure and temperature) and parameter values (wall heat transfer, conductivities of gas and solid, viscosity, porosity, etc.) on refilling time. The physical nature of the phase transformation associated to the hydrogen storage remains an open problem. (author)

  10. Total Synthesis and Stereochemical Assignment of Delavatine A: Rh-Catalyzed Asymmetric Hydrogenation of Indene-Type Tetrasubstituted Olefins and Kinetic Resolution through Pd-Catalyzed Triflamide-Directed C-H Olefination. (United States)

    Zhang, Zhongyin; Wang, Jinxin; Li, Jian; Yang, Fan; Liu, Guodu; Tang, Wenjun; He, Weiwei; Fu, Jian-Jun; Shen, Yun-Heng; Li, Ang; Zhang, Wei-Dong


    Delavatine A (1) is a structurally unusual isoquinoline alkaloid isolated from Incarvillea delavayi. The first and gram-scale total synthesis of 1 was accomplished in 13 steps (the longest linear sequence) from commercially available starting materials. We exploited an isoquinoline construction strategy and developed two reactions, namely Rh-catalyzed asymmetric hydrogenation of indene-type tetrasubstituted olefins and kinetic resolution of β-alkyl phenylethylamine derivatives through Pd-catalyzed triflamide-directed C-H olefination. The substrate scope of the first reaction covered unfunctionalized olefins and those containing polar functionalities such as sulfonamides. The kinetic resolution provided a collection of enantioenriched indane- and tetralin-based triflamides, including those bearing quaternary chiral centers. The selectivity factor (s) exceeded 100 for a number of substrates. These reactions enabled two different yet related approaches to a key intermediate 28 in excellent enantiopurity. In the synthesis, the triflamide served as not only an effective directing group for C-H bond activation but also a versatile functional group for further elaborations. The relative and absolute configurations of delavatine A were unambiguously assigned by the syntheses of the natural product and its three stereoisomers. Their cytotoxicity against a series of cancer cell lines was evaluated.

  11. An overview of hydrogen storage materials: Making a case for metal organic frameworks

    CSIR Research Space (South Africa)

    Langmi, Henrietta W


    Full Text Available attention. In the past decade, there has been growing interest in metal organic frameworks (MOFs) as hydrogen storage materials due to their well-defined structure, tunability, high porosity and large specific surface area. This presentation provides...

  12. High Density Hydrogen Storage in Metal Hydride Composites with Air Cooling


    Dieterich, Mila; Bürger, Inga; Linder, Marc


    INTRODUCTION In order to combine fluctuating renewable energy sources with the actual demand of electrical energy, storages are essential. The surplus energy can be stored as hydrogen to be used either for mobile use, chemical synthesis or reconversion when needed. One possibility to store the hydrogen gas at high volumetric densities, moderate temperatures and low pressures is based on a chemical reaction with metal hydrides. Such storages must be able to absorb and desorb the hydrogen qu...

  13. The impact of carbon materials on the hydrogen storage properties of light metal hydrides

    NARCIS (Netherlands)

    Adelhelm, P.A.|info:eu-repo/dai/nl/313907854; de Jongh, P.E.|info:eu-repo/dai/nl/186125372


    The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the

  14. Current Compensation of Hydrogen Ion Beam Extracted from PIG with Metal-Hydride Cathode

    International Nuclear Information System (INIS)

    Borisko, V.N.; Sereda, I.N.; Klochko, E.V.; Tseluyko, A.F.; Afanas'eva, I.A.


    The effect of extracted hydrogen ion beam compensation from reflective discharge with metal-hydride cathode that sufficiently widens the possible field of applying plasma sources of such type is found. The evolution of energy distribution function of ions extracted along the axial direction from reflective discharge with metal-hydride cathode depending on external parameters of the discharge is investigated. The electron distribution functions which compensate hydrogen ion beam are determined

  15. Microstructural Effects on Hydrogen Delayed Fracture of 600 MPa and 800 MPa grade Deposited Weld Metal

    International Nuclear Information System (INIS)

    Kang, Hee Jae; Lee, Tae Woo; Cho, Kyung Mox; Kang, Namhyun; Yoon, Byung Hyun; Park, Seo Jeong; Chang, Woong Seong


    Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

  16. Stereo-specificity for pro-(R) hydrogen of NAD(P)H during enzyme-catalyzed hydride transfer to CL-20

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal


    A dehydrogenase from Clostridium sp. EDB2 and a diaphorase from Clostridium kluyveri were reacted with CL-20 to gain insights into the enzyme-catalyzed hydride transfer to CL-20, and the enzyme's stereo-specificity for either pro-R or pro-S hydrogens of NAD(P)H. Both enzymes biotransformed CL-20 at rates of 18.5 and 24 nmol/h/mg protein, using NADH and NADPH as hydride-source, respectively, to produce a N-denitrohydrogenated product with a molecular weight of 393 Da. In enzyme kinetics studies using reduced deuterated pyridine nucleotides, we found a kinetic deuterium isotopic effect of 2-fold on CL-20 biotransformation rate using dehydrogenase enzyme against (R)NADD as a hydride-source compared to either (S)NADD or NADH. Whereas, in case of diaphorase, the kinetic deuterium isotopic effect of about 1.5-fold was observed on CL-20 biotransformation rate using (R)NADPD as hydride-source. In a comparative study with LC-MS, using deuterated and non-deuterated NAD(P)H, we found a positive mass-shift of 1 Da in the N-denitrohydrogenated product suggesting the involvement of a deuteride (D - ) transfer from NAD(P)D. The present study thus revealed that both dehydrogenase and diaphorase enzymes from the two Clostridium species catalyzed a hydride transfer to CL-20 and showed stereo-specificity for pro-R hydrogen of NAD(P)H

  17. Oxidation by hydrogen in the chemistry and physics of the rare-earth metals. (United States)

    Simon, Arndt


    Rare-earth metals (RE) easily react with hydrogen. For decades the bonding of hydrogen has been discussed controversially in terms of either the "proton model" or the "anion model". Detailed investigations of metal-rich compounds of the rare-earth metals provide clear evidence for the incorporation of hydrogen as a hydride anion. Several categories of compounds can be distinguished regarding their behavior towards hydrogen. Low-valence compounds with metal-metal bonding frequently provide their excess electrons to form hydride ions as found with the halide hydrides REXH(n). However, there are exceptions, such as, LaI which does not react with hydrogen as a result of special electronic and electrostatic conditions. The opposite is true with La(2)C(3) although this compound does not provide excess metal valence electrons. An amorphous phase La(2)C(3)H(1.5) forms at very low temperature, around 450 K. The presence of hydrogen strongly influences the electrical and magnetic properties, for example, spin-glass formation and colossal magneto resistance arising in the presence of 4f(n) cores with the lanthanoid elements. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enhancing the Hydrogen Activation Reactivity of Nonprecious Metal Substrates via Confined Catalysis Underneath Graphene. (United States)

    Zhou, Yinong; Chen, Wei; Cui, Ping; Zeng, Jiang; Lin, Zhuonan; Kaxiras, Efthimios; Zhang, Zhenyu


    In the hydrogen evolution reaction (HER), the reactivity as a function of the hydrogen adsorption energy on different metal substrates follows a well-known volcano curve, peaked at the precious metal Pt. The goal of turning nonprecious metals into efficient catalysts for HER and other important chemical reactions is a fundamental challenge; it is also of technological significance. Here, we present results toward achieving this goal by exploiting the synergistic power of marginal catalysis and confined catalysis. Using density functional theory calculations, we first show that the volcano curve stays qualitatively intact when van der Waals attractions between a hydrogen adatom and different metal (111) surfaces are included. We further show that the hydrogen adsorption energy on the metal surfaces is weakened by 0.12-0.23 eV when hydrogen is confined between graphene and the metal surfaces, with Ni exhibiting the largest change. In particular, we find that the graphene-modified volcano curve peaks around Ni, whose bare surface already possesses moderate (or marginal) reactivity, and the corresponding HER rate of graphene-covered Ni is comparable to that of bare Pt. A hydrogen adatom has high mobility within the confined geometry. These findings demonstrate that graphene-covered Ni is an appealing effective, stable, and economical catalytic platform for HER.

  19. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change. (United States)

    Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain; Haiges, Ralf; Jones, John-Paul; May, Robert B; Prakash, G K Surya; Olah, George A


    Due to the intermittent nature of most renewable energy sources, such as solar and wind, energy storage is increasingly required. Since electricity is difficult to store, hydrogen obtained by electrochemical water splitting has been proposed as an energy carrier. However, the handling and transportation of hydrogen in large quantities is in itself a challenge. We therefore present here a method for hydrogen storage based on a CO2 (HCO3 (-) )/H2 and formate equilibrium. This amine-free and efficient reversible system (>90 % yield in both directions) is catalyzed by well-defined and commercially available Ru pincer complexes. The formate dehydrogenation was triggered by simple pressure swing without requiring external pH control or the change of either the solvent or the catalyst. Up to six hydrogenation-dehydrogenation cycles were performed and the catalyst performance remained steady with high selectivity (CO free H2 /CO2 mixture was produced). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Metal-catalyzed oxidation of Aβ and the resulting reorganization of Cu binding sites promote ROS production† (United States)

    Cheignon, Clémence; Faller, Peter; Testemale, Denis; Hureau, Christelle; Collin, Fabrice


    In the context of Alzheimer’s disease (AD), the production of HO• by copper–amyloid beta (Aβ) in the presence of ascorbate is known to be deleterious for the Aβ peptide itself and also for the surrounding molecules, thus establishing a direct link between AD and oxidative stress. The metal-catalyzed oxidation (MCO) of Aβ primarily targets the residues involved in copper coordination during HO• production. In the present work, we demonstrate that the oxidative damage undergone by Aβ during MCO lead to a change in copper coordination, with enhanced catalytic properties that increases the rates of ascorbate consumption and HO• production, and the amount of HO• released by the system. This phenomenon is observed after the peptide has been sufficiently oxidized. PMID:27730227

  1. Powered by DFT: Screening methods that accelerate materials development for hydrogen in metals applications. (United States)

    Nicholson, Kelly M; Chandrasekhar, Nita; Sholl, David S


    CONSPECTUS: Not only is hydrogen critical for current chemical and refining processes, it is also projected to be an important energy carrier for future green energy systems such as fuel cell vehicles. Scientists have examined light metal hydrides for this purpose, which need to have both good thermodynamic properties and fast charging/discharging kinetics. The properties of hydrogen in metals are also important in the development of membranes for hydrogen purification. In this Account, we highlight our recent work aimed at the large scale screening of metal-based systems with either favorable hydrogen capacities and thermodynamics for hydrogen storage in metal hydrides for use in onboard fuel cell vehicles or promising hydrogen permeabilities relative to pure Pd for hydrogen separation from high temperature mixed gas streams using dense metal membranes. Previously, chemists have found that the metal hydrides need to hit a stability sweet spot: if the compound is too stable, it will not release enough hydrogen under low temperatures; if the compound is too unstable, the reaction may not be reversible under practical conditions. Fortunately, we can use DFT-based methods to assess this stability via prediction of thermodynamic properties, equilibrium reaction pathways, and phase diagrams for candidate metal hydride systems with reasonable accuracy using only proposed crystal structures and compositions as inputs. We have efficiently screened millions of mixtures of pure metals, metal hydrides, and alloys to identify promising reaction schemes via the grand canonical linear programming method. Pure Pd and Pd-based membranes have ideal hydrogen selectivities over other gases but suffer shortcomings such as sensitivity to sulfur poisoning and hydrogen embrittlement. Using a combination of detailed DFT, Monte Carlo techniques, and simplified models, we are able to accurately predict hydrogen permeabilities of metal membranes and screen large libraries of candidate alloys

  2. Rupture mechanics of metallic alloys for hydrogen transport

    International Nuclear Information System (INIS)

    Moro, I.; Briottet, L.; Lemoine, P.; Andrieu, E.; Blanc, C.


    With the aim to establish a cheap hydrogen distribution system, the transport by pipelines is a solution particularly interesting. Among the high limit of elasticity steels, the X80 has been chosen for hydrogen transport. Its chemical composition and microstructure are given. Important microstructural changes have been revealed in the sheet thickness: the microstructure is thinner and richer in perlite in surface than in bulk. In parallel to this microstructural evolution, a microhardness gradient has been observed: the material microhardness is stronger in surface than in bulk of the sheet. The use of this material for hydrogen transport requires to study its resistance to hydrogen embrittlement. The main aim of this work is to develop an easy rupture mechanics test allowing to qualify the studied material in a gaseous hydrogen environment, to determine the sensitivity of the studied material to the hydrogen embrittlement and to better understand the mechanisms of the hydrogen embrittlement for ferritic materials. Two experimental tests have been used for: the first one is a traction machine coupled to an autoclave; the second one allows to carry out disk rupture tests. The toughness of the material in a gaseous hydrogen environment has thus been determined. The resistance of the material to hydrogen embrittlement has been characterized and by simulation, it has been possible to identify the areas with a strong concentration in hydrogen. The second aim of this work is to study the influence of the steel microstructure on the hydrogen position in the material and on the resistance of the material to the hydrogen embrittlement. The preferential trapping sites on the material not mechanically loaded have at first been identified, as well as the hydrogen position on the different phases and at the ferrite/cementite interface. The interaction between the mechanical loads, the position and the trapping of the hydrogen have been studied then. At last, has been

  3. A metal-catalyzed enyne-cyclization step for the synthesis of bi- and tricyclic scaffolds amenable to molecular library production

    DEFF Research Database (Denmark)

    Wu, Peng; Cohrt, Anders Emil O'Hanlon; Petersen, Rico


    A facile metal-catalyzed diversification step for the synthesis of novel bi- and tricyclic scaffolds from enyne substrates is reported in this study. From a single starting material, topologically diverse scaffolds for library synthesis can be generated and decorated in a few steps. The methodology...... was used to produce a library of 490 compounds within the European Lead Factory (ELF) Consortium....

  4. Development of deuterium labeling method based on the heterogeneous platinum group metal-catalyzed C-H activation. (United States)

    Sajiki, Hironao


    Deuterium (D) labeled compounds are utilized in various scientific fields such as mechanistic elucidation of reactions, preparation of new functional materials, tracers for microanalysis, deuterium labeled heavy drugs and so on. Although the H-D exchange reaction is a straightforward method to produce deuterated organic compounds, many precedent methods require expensive deuterium gas and/or harsh reaction conditions. A part of our leading research agendas is intended to the development of novel and functional heterogeneous platinum-group catalysts and the reclamation of unknown functionalities of existing heterogeneous platinum-group catalysts. During the course of the study, benzylic positions of substrates were site-selectively deuterated under mild and palladium-on-carbon (Pd/C)-catalyzed hydrogenation conditions in heavy water (D2O). Heat conditions promoted the H-D exchange reactivity and facilitated the H-D exchange reaction at not only the benzylic sites but also inactive C-H bonds and heterocyclic nuclei. It is noteworthy that platinum-on-carbon (Pt/C) indicated a quite high affinity toward aromatic nuclei, and the H-D exchange reaction was strongly enhanced by the use of Pt/C as a catalyst under milder conditions. The mixed use of Pd/C and Pt/C was found to be more efficient in the H-D exchange reaction compared to the independent use of Pd/C or Pt/C. Furthermore, simple alkanes could also be efficiently deuterated under rhodium-on-carbon (Rh/C)-catalyzed conditions. The use of ruthenium-on-carbon (Ru/C) enabled the regiospecific and efficient deuterium incorporation at α-positions of alcohols and results were applied as a regio- and stereoselective multi-deuteration method of sugar derivatives.

  5. Rh-Catalyzed Asymmetric Hydrogenation of Prochiral Olefins with a Dynamic Library of Chiral TROPOS Phosphorus Ligands

    NARCIS (Netherlands)

    Monti, Chiara; Gennari, Cesare; Piarulli, Umberto; Vries, Johannes G. de; Vries, André H.M. de; Lefort, Laurent


    A library of 19 chiral tropos phosphorus ligands, based on a flexible (tropos) biphenol unit and a chiral P-bound alcohol (11 phosphites) or secondary amine (8 phosphoramidites), was synthesized. These ligands were screened, individually and as a combination of two, in the rhodium-catalyzed

  6. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.


    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  7. Texture-geometric deformational effects in some metal-hydrogen systems

    International Nuclear Information System (INIS)

    Spivak, L.V.; Kats, M.Ya.


    Possible deformation effects were studied in vanadium, tantalum, niobium, palladium and iron which occurred during electrolytic hydrogenation of specimens preliminarily deformed by torsion and then annealed. Noticeable texture-geometric effects were observed and related to the system tendency to enhance the degree of specimen form symmetry during hydrogenation. The latter was an off-beat realization of Le-Chatelier principle. It was assumed that the nature of deformation effects was connected with one of minimization channels for overall elastic stress fields in metals being hydrogenated. Some distinction was revealed in behaviour of 5a group metal, palladium and iron

  8. Nanoconfined Alkali-metal borohydrides for Reversible Hydrogen Storage

    NARCIS (Netherlands)

    Ngene, P.


    Hydrogen has been identified as a promising energy carrier. Its combustion is not associated with pollution when generated from renewable energy sources like solar and wind. The large-scale use of hydrogen for intermittent energy storage and as a fuel for cars can contribute to the realization of a

  9. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.


    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  10. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Susan K.; Zhang, Guoqi; Vasudevan, Kalyan V.


    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions ( C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  11. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Kalyan V.; Zhang, Guoqi; Hanson, Susan K.


    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions ( C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  12. Research on the surface chemical behavior of uranium metal in hydrogen atmosphere by XPS

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Yu Yong; Zhao Zhengping


    The surface chemical behavior clean uranium metal in hydrogen atmosphere at 100 and 200 degree C is studied by X-ray photoelectron spectroscopy (XPS), respectively. It leads to hydriding reaction when the hydrogen exposure is 12.0 Pa·s, and the U4f 7/2 binding energy of UH 3 is found to be 378.7 eV. The higher temperature (200 degree C) is beneficial to UH 3 formation at the same hydrogen exposures. XPS elemental depth profiles indicate that the distribution of uranium surface layer is UO 2 , UH 3 and U after exposure to 174.2 Pa·s hydrogen

  13. Complex Metal Hydrides for hydrogen storage and solid-state ion conductors

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein

    Renewable energy, such as sun and wind, are sustainable and clean sources of energy for the future but are unevenly distributed both over time and geographically. Therefore, this type of energy must be converted to a form that can be stored and two of the most promising options are hydrogen...... and electricity in batteries. However, both hydrogen and electricity must be stored in a very dense way to be useful, e.g. for mobile applications. Complex metal hydrides have high hydrogen density and have been studied during the past twenty years in hydrogen storage systems. Moreover, they have shown high ionic...... conductivities which promote their application as solid electrolytes in batteries. This dissertation presents the synthesis and characterization of a variety of complex metal hydrides and explores their hydrogen storage properties and ionic conductivity. Five halide free rare earth borohydrides RE(BH4)3, (RE...

  14. In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles (United States)

    El-Eskandarany, M. Sherif; Shaban, Ehab; Ali, Naser; Aldakheel, Fahad; Alkandary, Abdullah


    One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restricting its usage in real applications. Amongst the several methods used for enhancing the kinetics behaviors of MgH2 powders, mechanically milling the powders with one or more catalyst species has shown obvious advantages. Here we are proposing a new approach for gradual doping MgH2 powders with Ni particles upon ball milling the powders with Ni-balls milling media. This proposed is-situ method showed mutually beneficial for overcoming the agglomeration of catalysts and the formation of undesired Mg2NiH4 phase. Moreover, the decomposition temperature and the corresponding activation energy showed low values of 218 °C and 75 kJ/mol, respectively. The hydrogenation/dehydrogenation kinetics examined at 275 °C of the powders milled for 25 h took place within 2.5 min and 8 min, respectively. These powders containing 5.5 wt.% Ni performed 100-continuous cycle-life time of hydrogen charging/discharging at 275 °C within 56 h without failure or degradation. PMID:27849033

  15. Hydrogen interaction with GaN metal-insulator-semiconductor diodes

    International Nuclear Information System (INIS)

    Irokawa, Y.


    Interaction mechanism of hydrogen with GaN metal-insulator-semiconductor (MIS) diodes is investigated, focusing on the metal/semiconductor interfaces. For MIS Pt-GaN diodes with a SiO 2 dielectric, the current-voltage (I-V) characteristics reveal that hydrogen changes the conduction mechanisms from Fowler-Nordheim tunneling to Poole-Frenkel emission. In sharp contrast, Pt-Si x N y -GaN diodes exhibit Poole-Frenkel emission in nitrogen and do not show any change in the conduction mechanism upon exposure to hydrogen. The capacitance-voltage (C-V) study suggests that the work function change of the Schottky metal is not responsible mechanism for the hydrogen sensitivity.

  16. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative. (United States)

    de Berg, Kevin; Chapman, Ken


    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  17. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Olcay, Hakan [University of Massachusetts, Amherst; Xu, Lijun [ORNL; Xu, Ye [ORNL; Huber, George [University of Massachusetts, Amherst


    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  18. Experimental and Computational Study of an Unexpected Iron-Catalyzed Carboetherification by Cooperative Metal and Ligand Substrate Interaction and Proton Shuttling

    KAUST Repository

    El-Sepelgy, Osama


    An iron-catalyzed cycloisomerization of allenols to deoxygenated pyranose glycals has been developed. Combined experimental and computational studies show that the iron complex exhibits a dual catalytic role in that the non-innocent cyclopentadienone ligand acts as proton shuttle by initial hydrogen abstraction from the alcohol and by facilitating protonation and deprotonation events in the isomerization and demetalation steps. Molecular orbital analysis provides insight into the unexpected and selective formation of the 3,4-dihydro-2H-pyran.

  19. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. (United States)

    Rausch, Benjamin; Symes, Mark D; Chisholm, Greig; Cronin, Leroy


    The electrolysis of water using renewable energy inputs is being actively pursued as a route to sustainable hydrogen production. Here we introduce a recyclable redox mediator (silicotungstic acid) that enables the coupling of low-pressure production of oxygen via water oxidation to a separate, catalytic hydrogen production step outside the electrolyzer that requires no post-electrolysis energy input. This approach sidesteps the production of high-pressure gases inside the electrolytic cell (a major cause of membrane degradation) and essentially eliminates the hazardous issue of product gas crossover at the low current densities that characterize renewables-driven water-splitting devices. We demonstrated that a platinum-catalyzed system can produce pure hydrogen over 30 times faster than state-of-the-art proton exchange membrane electrolyzers at equivalent platinum loading. Copyright © 2014, American Association for the Advancement of Science.

  20. Effects of Alkali-Metal Ions and Counter Ions in Sn-Beta-Catalyzed Carbohydrate Conversion. (United States)

    Elliot, Samuel G; Tolborg, Søren; Madsen, Robert; Taarning, Esben; Meier, Sebastian


    Alkali-metal ions have recently been shown to strongly influence the catalytic behavior of stannosilicates in the conversion of carbohydrates. An effect of having alkali-metal ions present is a pronounced increase in selectivity towards methyl lactate. Mechanistic details of this effect have remained obscure and are herein addressed experimentally through kinetic experiments and isotope tracking. The presence of alkali-metal ions has a differential effect in competing reaction pathways and promotes the rate of carbon-carbon bond breakage of carbohydrate substrates, but decreases the rates of competing dehydration pathways. Further addition of alkali-metal ions inhibits the activity of Sn-Beta in all major reaction pathways. The alkali-metal effects on product distribution and on the rate of product formation are similar, thus pointing to a kinetic reaction control and to irreversible reaction steps in the main pathways. Additionally, an effect of the accompanying basic anions is shown, supposedly facilitating the cation exchange and eliciting a different concentration-dependent effect to that of neutral alkali-metal salts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Partial Hydrogenation of Sunflower Oil-derived FAMEs Catalyzed by the Efficient and Recyclable Palladium Nanoparticles in Polyethylene Glycol. (United States)

    Liu, Wei; Lu, Guanghui


    One approach to improve the oxidative stability of biodiesel is the partial hydrogenation of carbon-carbon double bonds. In the current work, an efficient catalytic system using Pd(OAc) 2 dissolved in polyethylene glycol (PEG) which in situ generates palladium nanoparticles was developed in order to promote a selective partial hydrogenation reaction of sunflower oil FAMEs into mono-hydrogenated products avoiding the formation of saturated compounds or trans-isomers. High content of methyl oleate (85.0±1.4%) was obtained by hydrogenation of sunflower oil biodiesel with only 7.0±0.2% stearic acid. Through evaluating the palladium nanoparticles by TEM analysis, it is observed that 4 nm palladium nanoparticles generated in situ in PEG4000 are highly selective for the partial hydrogenation of sunflower oil biodiesel. And the Pd-PEG4000 catalyst can be resued for five times without obvious loss of activity or methyl oleate selectivity.

  2. Zirconium-Based metal organic framework (Zr-MOF) material with high hydrostability for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei


    Full Text Available Material-based solutions, such as metal organic frameworks (MOFs), continue to attract increasing attention as viable options for hydrogen storage applications. MOFs are widely regarded as promising materials for hydrogen storage due to their high...

  3. Method of CO and/or CO.sub.2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides (United States)

    Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.


    A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a pyrochlore, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises olefins, paraffins, or mixtures thereof.

  4. Method of CO and/or CO.sub.2 hydrogenation using doped mixed-metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.


    A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a perovskite, a pyrochlore, a fluorite, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises an alcohol, an olefin, an aldehyde, a ketone, an ester, an oxo-product, or mixtures thereof.

  5. Multiscale study on hydrogen mobility in metallic fusion divertor material

    International Nuclear Information System (INIS)

    Heinola, K.


    For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reaction. The amount of tritium retained in the wall materials should be minimized and its recycling back to the plasma must be unrestrained, otherwise it cannot be used for fueling the plasma. A very expensive and thus economically not viable solution is to replace the first walls quite often. A better solution is to heat the walls to temperatures where tritium is released. Unfortunately, the exact mechanisms of hydrogen release in tungsten are not known. In this thesis both experimental and computational methods have been used for studying the release and retention of hydrogen in tungsten. The experimental work consists of hydrogen implantations into pure polycrystalline tungsten, the determination of the hydrogen concentrations using ion beam analyses (IBA) and monitoring the out-diffused hydrogen gas with thermodesorption spectrometry (TDS) as the tungsten samples are heated at elevated temperatures. Combining IBA methods with TDS, the retained amount of hydrogen is obtained as well as the temperatures needed for the hydrogen release. With computational methods the hydrogen-defect interactions and implantation-induced irradiation damage can be examined at the atomic level. The method of multiscale modelling combines the results obtained from computational methodologies applicable at different length and time scales. Electron density functional theory calculations were used for determining the energetics of the elementary processes of hydrogen in tungsten, such as diffusivity and

  6. Tunable differentiation of tertiary C-H bonds in intramolecular transition metal-catalyzed nitrene transfer reactions. (United States)

    Corbin, Joshua R; Schomaker, Jennifer M


    Metal-catalyzed nitrene transfer reactions are an appealing and efficient strategy for accessing tetrasubstituted amines through the direct amination of tertiary C-H bonds. Traditional catalysts for these reactions rely on substrate control to achieve site-selectivity in the C-H amination event; thus, tunability is challenging when competing C-H bonds have similar steric or electronic features. One consequence of this fact is that the impact of catalyst identity on the selectivity in the competitive amination of tertiary C-H bonds has not been well-explored, despite the potential for progress towards predictable and catalyst-controlled C-N bond formation. In this communication, we report investigations into tunable and site-selective nitrene transfers between tertiary C(sp 3 )-H bonds using a combination of transition metal catalysts, including complexes based on Ag, Mn, Rh and Ru. Particularly striking was the ability to reverse the selectivity of nitrene transfer by a simple change in the identity of the N-donor ligand supporting the Ag(i) complex. The combination of our Ag(i) catalysts with known Rh 2 (ii) complexes expands the scope of successful catalyst-controlled intramolecular nitrene transfer and represents a promising springboard for the future development of intermolecular C-H N-group transfer methods.

  7. Transition metal catalyzed polymerization of butadiene in supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Borkowsky, S. [Los Alamos National Lab., NM (United States)]|[Stanford Univ., CA (United States); Tumas, W. [Los Alamos National Lab., NM (United States); Waymouth, R.M. [Stanford Univ., CA (United States)


    A class of Ni(II) catalysts has been shown to stereoselectively catalyze the 1,4-polymerization of butadiene. The authors have been investigating the use of supercritical CO{sub 2} as an environmentally benign replacement solvent for conventional hydrocarbon and halocarbon solvents for a variety of chemical transformations. Above 31 C, CO{sub 2} enters a supercritical phase, where its physical properties are both liquid-like and gas-like. Importantly, the solvent properties such as dielectric constant for supercritical fluids can be varied by changing the pressure of the fluid. In this report, the authors present results of an investigation of the polymerization of 1,3-butadiene using [({pi}-allyl) Ni(CF{sub 3}CO{sub 2})]{sub 2} in supercritical CO{sub 2}. They conducted 1,3-butadiene polymerizations in CO{sub 2} to determine whether or not they could systematically and predictably adjust the regiochemistry/stereochemistry of the polybutadiene product by varying the solution properties at different pressures. They also mention experiments with CO catalysts that are known to give 1,2-syndiotactic polybutadiene, and with a Pd catalyst system that is known to copolymerize olefin with CO to give perfectly alternating copolymers.

  8. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor (United States)

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.


    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  9. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature (United States)

    Lee, Jonathan A.


    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  10. Transition Metal Catalyzed Reactions for Forming Carbon–Oxygen and Carbon–Carbon Bonds

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte

    of ether and hydrocarbon radicals with -bromostyrenes was serendipitously discovered and subsequently optimized. By screening of various radical initiators and transition metal salts the best conditions were found to involve addition of three to four equivalents of Me2Zn to a solution of -bromostyrene...

  11. Metal-catalyzed growth of In2O3 nanotowers using thermal evaporation and oxidation method (United States)

    Jian, Liu; Shihua, Huang; Lü, He


    Large-scale In2O3 nanotowers with different cross sections were synthesized by a thermal evaporation and oxidation technique using metal as the catalyst. The morphologies and structural characterizations of In2O3 nanotowers are dependent on growth processes, such as different metal (Au, Ag or Sn) catalysts, the relative position of the substrate and evaporation source, growth temperature, gas flow rate, and growth time. In2O3 nanotowers cannot be observed using Sn as the catalyst, which indicates that metal liquid droplets play an important role in the initial stages of the growth of In2O3 nanotowers. The formation of an In2O3 nanotower is attributed to the competitive growth model between a lateral growth controlled by vapor-solid mechanism and an axial vapor-liquid-solid growth mechanism mediated by metal liquid nanodroplets. The synthesized In2O3 nanostructures with novel tower-shaped morphology may have potential applications in optoelectronic devices and gas sensors. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  12. Transition-Metal-Mediated or -Catalyzed Syntheses of Steroids and Steroid-Like Compounds

    Czech Academy of Sciences Publication Activity Database

    Kotora, Martin; Hessler, F.; Eignerová, B.

    -, č. 1 (2012), s. 29-42 ISSN 1434-193X R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : steroids * synthesis design * synthetic methods * asymmetric synthesis * transition metals Subject RIV: CC - Organic Chemistry Impact factor: 3.344, year: 2012

  13. Lipase-supported metal-organic framework bioreactor catalyzes warfarin synthesis. (United States)

    Liu, Wan-Ling; Yang, Ni-Shin; Chen, Ya-Ting; Lirio, Stephen; Wu, Cheng-You; Lin, Chia-Her; Huang, Hsi-Ya


    A green and sustainable strategy synthesizes clinical medicine warfarin anticoagulant by using lipase-supported metal-organic framework (MOF) bioreactors (see scheme). These findings may be beneficial for future studies in the industrial production of chemical, pharmaceutical, and agrochemical precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electroreduction of CO2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center (United States)


    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO2 reduction. Here we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site–1 s–1 and a Faradaic efficiency as high as 95% for CO2 electroreduction to CO at −1.7 V vs the standard hydrogen electrode in an organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO2. This represents the first example of a transition-metal complex for CO2 electroreduction catalysis with its metal center being redox-innocent under working conditions. PMID:28852698

  15. Use of Alkyl Ethers as Traceless Hydride Donors in Brønsted Acid-Catalyzed Intramolecular Hydrogen Atom Transfer. (United States)

    Gandamana, Dhika Aditya; Wang, Bin; Tejo, Ciputra; Bolte, Benoit; Gagosz, Fabien; Chiba, Shunsuke


    A new protocol for the deoxygenation of alcohols and the hydrogenation of alkenes under Brønsted acid catalysis has been developed. The method is based on the use of a benzyl or an isopropyl ether as a traceless hydrogen atom donor and involves an intramolecular hydride transfer as a key step that can be achieved in regio- and stereoselective manners. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hydrogen molecule binding to unsaturated metal sites in metal-organic frameworks studied by neutron powder diffraction and inelastic neutron scattering (United States)

    Liu, Yun; Brown, Craig; Neumann, Dan; Dinca, Mircea; Long, Jeffrey; Peterson, Vanessa; Kepert, Cameron


    Metal organic framework (MOF) materials have shown considerable potential for hydrogen storage arising from very large surface areas. However, the low binding energy of hydrogen molecules limits its storage capability to very low temperatures (industrial applications. Using neutron powder diffraction (NPD), we have characterized the hydrogen adsorption sites in a selected series of MOF materials with exposed unsaturated metal ions. Direct binding between the unsaturated metal ions and hydrogen molecules is observed and responsible for the enhanced initial hydrogen adsorption enthalpy. The different metals centers in these MOFs show different binding strength and interaction distances between the hydrogen molecule and metal ions. The organic linker also affects the overall H2 binding strength. Inelastic neutron scattering spectra of H2 in these MOFs are also discussed.

  17. Transglutaminase-Catalyzed Bioconjugation Using One-Pot Metal-Free Bioorthogonal Chemistry. (United States)

    Rachel, Natalie M; Toulouse, Jacynthe L; Pelletier, Joelle N


    General approaches for controlled protein modification are increasingly sought-after in the arena of chemical biology. Here, using bioorthogonal reactions, we present combinatorial chemoenzymatic strategies to effectuate protein labeling. A total of three metal-free conjugations were simultaneously or sequentially incorporated in a one-pot format with microbial transglutaminase (MTG) to effectuate protein labeling. MTG offers the particularity of conjugating residues within a protein sequence rather than at its extremities, providing a route to labeling the native protein. The reactions are rapid and circumvent the incompatibility posed by metal catalysts. We identify the tetrazine ligation as most-reactive for this purpose, as demonstrated by the fluorescent labeling of two proteins. The Staudinger ligation and strain-promoted azide-alkyne cycloaddition are alternatives. Owing to the breadth of labels that MTG can use as a substrate, our results demonstrate the versatility of this system, with the researcher being able to combine specific protein substrates with a variety of labels.

  18. Metal-catalyzed double migratory cascade reactions of propargylic esters and phosphates. (United States)

    Kazem Shiroodi, Roohollah; Gevorgyan, Vladimir


    Propargylic esters and phosphates are easily accessible substrates, which exhibit rich and tunable reactivities in the presence of transition metal catalysts. π-Acidic metals, mostly gold and platinum salts, activate these substrates for an initial 1,2- or 1,3-acyloxy and phosphatyloxy migration process to form reactive intermediates. These intermediates are able to undergo further cascade reactions leading to a variety of diverse structures. This tutorial review systematically introduces the double migratory reactions of propargylic esters and phosphates as a novel synthetic method, in which further cascade reaction of the reactive intermediate is accompanied by a second migration of a different group, thus offering a rapid route to a wide range of functionalized products. The serendipitous observations, as well as designed approaches involving the double migratory cascade reactions, will be discussed with emphasis placed on the mechanistic aspects and the synthetic utilities of the obtained products.

  19. Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions. (United States)

    Nishibayashi, Yoshiaki


    This paper describes our recent progress in catalytic nitrogen fixation by using transition-metal-dinitrogen complexes as catalysts. Two reaction systems for the catalytic transformation of molecular dinitrogen into ammonia and its equivalent such as silylamine under ambient reaction conditions have been achieved by the molybdenum-, iron-, and cobalt-dinitrogen complexes as catalysts. Many new findings presented here may provide new access to the development of economical nitrogen fixation in place of the Haber-Bosch process.

  20. Cycloadditions to Epoxides Catalyzed by GroupIII-V Transition-Metal Complexes

    KAUST Repository

    D'Elia, Valerio


    Complexes of groupIII-V transition metals are gaining increasing importance as Lewis acid catalysts for the cycloaddition of dipolarophiles to epoxides. This review examines the latest reports, including homogeneous and heterogeneous applications. The pivotal step for the cycloaddition reactions is the ring opening of the epoxide following activation by the Lewis acid. Two modes of cleavage (C-C versus C-O) have been identified depending primarily on the substitution pattern of the epoxide, with lesser influence observed from the Lewis acid employed. The widely studied cycloaddition of CO2 to epoxides to afford cyclic carbonates (C-O bond cleavage) has been scrutinized in terms of catalytic efficiency and reaction mechanism, showing that unsophisticated complexes of groupIII-V transition metals are excellent molecular catalysts. These metals have been incorporated, as well, in highly performing, recyclable heterogeneous catalysts. Cycloadditions to epoxides with other dipolarophiles (alkynes, imines, indoles) have been conducted with scandium triflate with remarkable performances (C-C bond cleavage). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. (United States)

    Trandafir, Mihaela-Mirela; Florea, Mihaela; Neaţu, Florentina; Primo, Ana; Parvulescu, Vasile I; García, Hermenegildo


    Graphene obtained by pyrolysis of alginate at 900 °C under inert atmosphere and exfoliation is used as a metal-free catalyst for reduction of nitro to amino groups with hydrogen as a reagent. The process is general for aromatic and aliphatic, conjugated and isolated nitro groups, and occurs with low selectivity over hydrogenation of carbon-carbon double bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stability of noble metal catalysts for the hydrogen-oxygen reaction. (United States)

    Armstrong, W. E.; Jennings, T. J.; Voge, H. H.


    Stability of various supported noble metal catalysts for initiation of the hydrogen-oxygen reaction was tested by means of steam-hydrogen treatment at 1000-1200 C followed by a simple activity test. Many catalysts were stable to 1100 C, but all lost some activity at 1200 C. The most active with very good stability was an iridium/alumina catalyst of high iridium content.

  3. Standardized hydrogen storage module with high utilization factor based on metal hydride-graphite composites


    Bürger, Inga; Dieterich, Mila; Pohlmann, Carsten; Röntzsch, Lars; Linder, Marc


    In view of hydrogen based backup power systems or small-scale power2gas units, hydrogen storages based on metal hydrides offer a safe and reliable solution. By using Hydralloy C5 as suitable hydride forming alloy, the present tank design guarantees very simple operating conditions: pressures between 4 bar and 30 bar, temperatures between 15 C and 40 C and minimal efforts for thermal management in combination with fast and constant charging and discharging capabilities. The modular...

  4. Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory

    DEFF Research Database (Denmark)

    Valdes, Alvaro; Brillet, Jeremie; Graetzel, Michael


    An overview of a collaborative experimental and theoretical effort toward efficient hydrogen production via photoelectrochemical splitting of water into di-hydrogen and di-oxygen is presented here. We present state-of-the-art experimental studies using hematite and TiO2 functionalized with gold...... nanoparticles as photoanode materials, and theoretical studies on electro and photo-catalysis of water on a range of metal oxide semiconductor materials, including recently developed implementation of self-interaction corrected energy functionals....

  5. A Biomimetic Approach to New Adsorptive Hydrogen Storage Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongcai J [Texas A& M University


    In the past decades, there has been an escalation of interest in the study of MOFs due to their fascinating structures and intriguing application potentials. Their exceptionally high surface areas, uniform yet tunable pore sizes, and well-defined adsorbate-MOF interaction sites make them suitable for hydrogen storage. Various strategies to increase the hydrogen capacity of MOFs, such as constructing pore sizes comparable to hydrogen molecules, increasing surface area and pore volume, utilizing catenation, and introducing coordinatively unsaturated metal centers (UMCs) have been widely explored to increase the hydrogen uptake of the MOFs. MOFs with hydrogen uptake approaching the DOE gravimetric storage goal under reasonable pressure but cryo- temperature (typically 77 K) were achieved. However, the weak interaction between hydrogen molecules and MOFs has been the major hurdle limiting the hydrogen uptake of MOFs at ambient temperature. Along the road, we have realized both high surface area and strong interaction between framework and hydrogen are equally essential for porous materials to be practically applicable in Hydrogen storage. Increasing the isosteric heats of adsorption for hydrogen through the introduction of active centers into the framework could have great potential on rendering the framework with strong interaction toward hydrogen. Approaches on increasing the surface areas and improving hydrogen affinity by optimizing size and structure of the pores and the alignment of active centers around the pores in frameworks have been pursued, for example: (a) the introduction of coordinatively UMC (represents a metal center missing multiple ligands) with potential capability of multiple dihydrogen-binding (Kubas type, non-dissociative) per UMC, (b) the design and synthesis of proton-rich MOFs in which a + H3 binds dihydrogen just like a metal ion does, and (c) the preparation of MOFs and PPNs with well aligned internal electric fields. We believe the

  6. A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face (United States)

    Yan, Haitao; Zhao, Xiaoyan; Zhang, Chao; Li, Qiu-Ze; Cao, Jingxiao; Han, Dao-Fu; Hao, Hui; Wang, Ming


    We demonstrated an integrated hydrogen sensor with Pd metallic grating fabricated on a fiber end-face. The grating consists of three thin metal layers in stacks, Au, WO3 and Pd. The WO3 is used as a waveguide layer between the Pd and Au layer. The Pd layer is etched by using a focused ion beam (FIB) method, forming a Pd metallic grating with period of 450 nm. The sensor is experimentally exposed to hydrogen gas environment. Changing the concentration from 0% to 4% which is the low explosive limit (LEL), the resonant wavelength measured from the reflection experienced 28.10 nm spectral changes in the visible range. The results demonstrated that the sensor is sensitive for hydrogen detection and it has fast response and low temperature effect.

  7. The dynamics of hydrogen in metals studied by inelastic neutron scattering

    International Nuclear Information System (INIS)

    Anderson, Ian


    The study of H vibrations in metals provides valuable information on metal-hydrogen and hydrogen-hydrogen interactions essential for the understanding of many physical properties ranging from lattice expansion to electronic effects. Most information on H vibrations comes from inelastic neutron scattering (INS). Furthermore due to the large incoherent scattering cross section of H, INS turns out to be an extremely sensitive probe for H site occupation in high dilution conditions where, for instance, neutron diffraction would be insensitive. The results described give a general overview of the valuable information that can be obtained on the interactions of H in metals from inelastic neutron scattering experiments. 38 refs., 18 figs., 3 tabs

  8. Synthesis and Characterization of Metal Hydride/Carbon Aerogel Composites for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin


    Full Text Available Two materials currently of interest for onboard lightweight hydrogen storage applications are sodium aluminum hydride (NaAlH4, a complex metal hydride, and carbon aerogels (CAs, a light porous material connected by several spherical nanoparticles. The objectives of the present work have been to investigate the synthesis, characterization, and hydrogenation behavior of Pd-, Ti- or Fe-doped CAs, NaAlH4, and MgH2 nanocomposites. The diameters of Pd nanoparticles onto CA’s surface and BET surface area of CAs were 3–10 nm and 700–900 m2g−1, respectively. The H2 storage capacity of metal hydrides has been studied using high-pressure TGA microbalance and they were 4.0, 2.7, 2.1, and 1.2 wt% for MgH2-FeTi-CAs, MgH2-FeTi, CAs-Pd, and 8 mol% Ti-doped NaAlH4, respectively, at room temperature. Carbon aerogels with higher surface area and mesoporous structures facilitated hydrogen diffusion and adsorption, which accounted for its extraordinary hydrogen storage phenomenon. The hydrogen adsorption abilities of CAs notably increased after inclusion of metal hydrides by the “hydrogen spillover” mechanisms.

  9. Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Phoebe K; Wheatley, Paul S; Aldous, David; Mohideen, M Infas; Tang, Chiu; Hriljac, Joseph A; Megson, Ian L; Chapman, Karena W; De Weireld, Guy; Vaesen, Sebastian; Morris, Russell E [St Andrews


    Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.

  10. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage (United States)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.


    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  11. The storage of hydrogen in the form of metal hydrides: An application to thermal engines (United States)

    Gales, C.; Perroud, P.


    The possibility of using LaNi56, FeTiH2, or MgH2 as metal hydride storage sytems for hydrogen fueled automobile engines is discussed. Magnesium copper and magnesium nickel hydrides studies indicate that they provide more stable storage systems than pure magnesium hydrides. Several test engines employing hydrogen fuel have been developed: a single cylinder motor originally designed for use with air gasoline mixture; a four-cylinder engine modified to run on an air hydrogen mixture; and a gas turbine.

  12. The motion of hydrogen isotopes in metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Drexel, W.; Murani, A.; Tocchetti, D.; Kley, W.


    The existence of local and band modes of hydrogen and deuterium impurities in α-palladium hydride was observed by inelastic scattering of thermal neutrons of 12.6 meV. The first and second harmonic of the hydrogen local mode could be observed at Esub(1)sup(H)=(66+-4)meV and Esub(2)sup(H)=(135+-15)meV. For deuterium the first harmonics appears at Esub(1)sup(D)=(48+-4)meV. The width of the hydrogen local mode Esub(1)sup(H) is changing from 30 to 20 meV and its position from 63 to 66meV if the hydrogen concentration is altered from 2.7 to 0.2 atom percent. The intensity of the Esub(1)sup(H) mode, integrated for scattering angles from 11 0 till 68 0 and a mean k-vector pointing in the [210]-direction, is decreasing by a factor of 5 with respect to harmonic oscillator while the intensity of the second harmonic Esub(2)sup(H) and of the band modes stays almost constant if the temperature is changed from 423 0 K till 673 0 K. The behavior of this intensity distributions with temperature indicates a partition of the proton motions in diffusive and localized motions and supports the assumption of an anharmonic periodic potential along the [110] direction. The frequency distribution function of the hydrogen band modes has a shape as expected from measured dispersion curves. For [Pdsub(0.018)sup(D)-Pd] a broad quasielastic line is observed that indicates the existence of overdamped phonons in the vicinity of the impurity atom

  13. Chemical Reactions Catalyzed by Metalloporphyrin-Based Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Kelly Aparecida Dias de Freitas Castro


    Full Text Available The synthetic versatility and the potential application of metalloporphyrins (MP in different fields have aroused researchers’ interest in studying these complexes, in an attempt to mimic biological systems such as cytochrome P-450. Over the last 40 years, synthetic MPs have been mainly used as catalysts for homogeneous or heterogeneous chemical reactions. To employ them in heterogeneous catalysis, chemists have prepared new MP-based solids by immobilizing MP onto rigid inorganic supports, a strategy that affords hybrid inorganic-organic materials. More recently, materials obtained by supramolecular assembly processes and containing MPs as building blocks have been applied in a variety of areas, like gas storage, photonic devices, separation, molecular sensing, magnets, and heterogeneous catalysis, among others. These coordination polymers, known as metal-organic frameworks (MOFs, contain organic ligands or complexes connected by metal ions or clusters, which give rise to a 1-, 2- or 3-D network. These kinds of materials presents large surface areas, Brønsted or redox sites, and high porosity, all of which are desirable features in catalysts with potential use in heterogeneous phases. Building MOFs based on MP is a good way to obtain solid catalysts that offer the advantages of bioinspired systems and zeolitic materials. In this mini review, we will adopt a historical approach to present the most relevant MP-based MOFs applicable to catalytic reactions such as oxidation, reduction, insertion of functional groups, and exchange of organic functions.

  14. High-Performance Black Multicrystalline Silicon Solar Cells by a Highly Simplified Metal-Catalyzed Chemical Etching Method

    KAUST Repository

    Ying, Zhiqin


    A wet-chemical surface texturing technique, including a two-step metal-catalyzed chemical etching (MCCE) and an extra alkaline treatment, has been proven as an efficient way to fabricate high-efficiency black multicrystalline (mc) silicon solar cells, whereas it is limited by the production capacity and the cost cutting due to the complicated process. Here, we demonstrated that with careful control of the composition in etching solution, low-aspect-ratio bowl-like nanostructures with atomically smooth surfaces could be directly achieved by improved one-step MCCE and with no posttreatment, like alkali solution. The doublet surface texture of implementing this nanobowl structure upon the industrialized acidic-textured surface showed concurrent improvement in optical and electrical properties for realizing 18.23% efficiency mc-Si solar cells (156 mm × 156 mm), which is sufficiently higher than 17.7% of the solely acidic-textured cells in the same batch. The one-step MCCE method demonstrated in this study may provide a cost-effective way to manufacture high-performance mc-Si solar cells for the present photovoltaic industry. © 2016 IEEE.

  15. In-situ hydrogen in metal determination using a minimum neutron source strength and exposure time. (United States)

    Hatem, M; Agamy, S; Khalil, M Y


    Water is frequently present in the environment and is a source of hydrogen that can interact with many materials. Because of its small atomic size, a hydrogen atom can easily diffuse into a host metal, and though the metal may appear unchanged for a time, the metal will eventually abruptly lose its strength and ductility. Thus, measuring the hydrogen content in metals is important in many fields, such as in the nuclear industry, in automotive and aircraft fabrication, and particularly, in offshore oil and gas fields. It has been demonstrated that the use of nuclear methods to measure the hydrogen content in metals can achieve sensitivity levels on the order of parts per million. However, the use of nuclear methods in the field has not been conducted for two reasons. The first reason is due to exposure limitations. The second reason is due to the hi-tech instruments required for better accuracy. In this work, a new method using a low-strength portable neutron source is explored in conjunction with detectors based on plastic nuclear detection films. The following are the in-situ requirements: simplicity in setup, high reliability, minimal exposure dose, and acceptable accuracy at an acceptable cost. A computer model of the experimental setup is used to reproduce the results of a proof-of-concept experiment and to predict the sensitivity levels under optimised experimental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    NARCIS (Netherlands)

    Álvarez, Andrea; Bansode, Atul; Urakawa, Atsushi; Bavykina, A.V.; Wezendonk, T.A.; Makkee, M.; Gascon Sabate, J.; Kapteijn, F.


    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main

  17. Precipitation of UO2 in sodium carbonate solutions by electrolytic hydrogen and catalyzed by Ni-Raney - Bibliography

    International Nuclear Information System (INIS)

    Pottier, P.


    This report proposes abstracts and short versions of a set of documents (studies, patents) dealing with the precipitation of uranium (notably in its oxide form, UO 2 ) in solutions of sodium carbonate. The main objective is to identify the interest of a chemical reduction by electrolytic hydrogen. The author makes a distinction between the most relevant documents and those relatively relevant ones [fr

  18. The hydrolysis of epoxides catalyzed by inorganic ammonium salts in water: kinetic evidence for hydrogen bond catalysis. (United States)

    Nozière, B; Fache, F; Maxut, A; Fenet, B; Baudouin, A; Fine, L; Ferronato, C


    Naturally-occurring inorganic ammonium ions have been recently reported as efficient catalysts for some organic reactions in water, which contributes to the understanding of the chemistry in some natural environments (soils, seawater, atmospheric aerosols, …) and biological systems, and is also potentially interesting for green chemistry as many of their salts are cheap and non-toxic. In this work, the effect of NH 4 + ions on the hydrolysis of small epoxides in water was studied kinetically. The presence of NH 4 + increased the hydrolysis rate by a factor of 6 to 25 compared to pure water and these catalytic effects were shown not to result from other ions, counter-ions or from acid or base catalysis, general or specific. The small amounts of amino alcohols produced in the reactions were identified as the actual catalysts by obtaining a strong acceleration of the reactions when adding these compounds directly to the epoxides in water. Replacing the amino alcohols by other strong hydrogen-bond donors, such as trifluoroethanol (TFE) or hexafluoroisopropanol (HFIP) gave the same results, demonstrating that the kinetics of these reactions was driven by hydrogen-bond catalysis. Because of the presence of many hydrogen-bond donors in natural environments (for instance amines and hydroxy-containing compounds), hydrogen-bond catalysis is likely to contribute to many reaction rates in these environments.

  19. Activation of aqueous hydrogen peroxide for non-catalyzed dihydroperoxidation of ketones by azeotropic removal of water. (United States)

    Starkl Renar, K; Pečar, S; Iskra, J


    Cyclic and acyclic ketones were selectively converted to gem-dihydroperoxides in 72-99% yield with 30% aq. hydrogen peroxide by azeotropic distillation of water from the reaction mixture without any catalyst. The reactions were more selective than with 100% H2O2 and due to neutral conditions also less stable products could be obtained.

  20. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values

    Czech Academy of Sciences Publication Activity Database

    Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, Eliška; Asefa, T.


    Roč. 53, č. 17 (2014), s. 4372-4376 ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : carbon nanotubes * cobalt nanoparticles * electrocatalysis * hydrogen evolution reaction * water splitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 11.261, year: 2014

  1. Insights into the Metal Salt Catalyzed 5-Ethoxymethylfurfural Synthesis from Carbohydrates

    Directory of Open Access Journals (Sweden)

    Xin Yu


    Full Text Available The use of common metal salts as catalysts for 5-ethoxymethylfurfural (EMF synthesis from carbohydrate transformation was performed. Initial screening suggested AlCl3 as an efficient catalyst for EMF synthesis (45.0% from fructose at 140 °C. Interestingly, CuSO4 and Fe2(SO43 were found to yield comparable EMF at lower temperature of 110 to 120 °C, and high yields of ethyl levulinate (65.4–71.8% were obtained at 150 °C. However, these sulfate salts were inactive in EMF synthesis from glucose and the major product was ethyl glucoside with around 80% yield, whereas EMF of 15.2% yield could be produced from glucose using CrCl3. The conversion of sucrose followed the accumulation of the reaction pathways of fructose and glucose, and a moderate yield of EMF could be achieved.

  2. Influence of gamma radiation reaction on the hydroesterification of butenes catalyzed by metal carbonyls

    International Nuclear Information System (INIS)

    Velde, J. van der.


    In the hydro carboxylation reaction, which first has been studied by Reppe, olefine and acetylene compounds are processed with carbon monoxide and water at high pressures and high temperatures in the presence of metal carbonyls. This reaction can be enhanced considerably by application of ionizing radiation. Lower pressures and in particular lower temperatures can be used if gamma irradiation is performed during carboxylation. For the experiments a mixture of buten-1 and buten-2 as well as pure buten-1 and pure buten-2 has been used to study the behaviour of these olefines with respect to the isomerization of the reaction products and to the olefines not transformed in the reaction process. Replacing water, methanol has been used as a reaction component, thus obtaining directly the respective carbonyl acid esters, which can be analysed quantitatively and qualitatively with respect to their isomeric composition by gaschromatography. (orig./HK) [de

  3. Gas phase hydrogen/deuterium exchange of arginine and arginine dipeptides complexed with alkali metals. (United States)

    Mertens, Laura A; Marzluff, Elaine M


    The hydrogen/deuterium (H/D) exchange of protonated and alkali-metal cationized Arg-Gly and Gly-Arg peptides with D(2)O in the gas phase was studied using electrospray ionization quadropole ion trap mass spectrometry. The Arg-Gly and Gly-Arg alkali metal complexes exchange significantly more hydrogens than protonated Arg-Gly and Gly-Arg. We propose a mechanism where the peptide shifts between a zwitterionic salt bridge and nonzwitterionic charge solvated conformations. The increased rate of H/D exchange of the alkali metal complexes is attributed to the peptide metal complexes' small energy difference between the salt-bridge conformation and the nonzwitterionic charge-solvated conformation. Implications for the applicability of this mechanism to other zwitterionic systems are discussed. © 2011 American Chemical Society

  4. Tunnelling of hydrogen in alkali metal intercalation compounds (United States)

    Beaufils, J. P.; Crowley, T.; Rayment, T.; Thomas, R. K.; White, J. W.

    Rotational tunnelling spectroscopy for hydrogen absorbed in the second stage graphite intercalation compounds C24M(H2)x where M = Rb and Cs, 0·5 < x < 2 is reported in the energy range 100 μeV < ΔE < 1400 μeV (0·8 cm-1 ˜ 11 cm-1). Two distinct sites, A and B, for the hydrogen uptake can be deduced from the spectra which are consistent with site symmetries A, tetrahedral; B octahedral. The spectra of HD calculated using the crystal field parameters for H2 agree well with measurements and indicate molecular motion about the molecular centre of mass rather than the bond centre. The sites can be preferentially blocked by co-absorbing deuterium or methane. The tunnelling spectra disappear in the temperature range 90 K < T < 150 K becoming broader with the simultaneous appearance of quasielastic scattering.

  5. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buxbaum, Robert


    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.


    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D


    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  7. Hydrogen-on-demand using metallic alloy nanoparticles in water. (United States)

    Shimamura, Kohei; Shimojo, Fuyuki; Kalia, Rajiv K; Nakano, Aiichiro; Nomura, Ken-Ichi; Vashishta, Priya


    Hydrogen production from water using Al particles could provide a renewable energy cycle. However, its practical application is hampered by the low reaction rate and poor yield. Here, large quantum molecular dynamics simulations involving up to 16,611 atoms show that orders-of-magnitude faster reactions with higher yields can be achieved by alloying Al particles with Li. A key nanostructural design is identified as the abundance of neighboring Lewis acid-base pairs, where water-dissociation and hydrogen-production require very small activation energies. These reactions are facilitated by charge pathways across Al atoms that collectively act as a "superanion" and a surprising autocatalytic behavior of bridging Li-O-Al products. Furthermore, dissolution of Li atoms into water produces a corrosive basic solution that inhibits the formation of a reaction-stopping oxide layer on the particle surface, thereby increasing the yield. These atomistic mechanisms not only explain recent experimental findings but also predict the scalability of this hydrogen-on-demand technology at industrial scales.

  8. Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Jensen, Jens Oluf; Bjerrum, Niels J.


    Alternative catalysts based on carbides of Group 5 (niobium and tantalum) and 6 (chromium, molybdenum and tungsten) metals were prepared as films on the metallic substrates. The electrochemical activities of these carbide electrodes towards the hydrogen evolution reaction (HER) in concentrated......, attributable to the different electronic structures. Tungsten carbide among the studied electrode samples exhibited the highest HER activity. Upon anodic potential scans in the presence of oxygen, chromium, tantalum and tungsten carbides displayed passivation due to the formation of stable surface layers...

  9. Use of Heterogenized Metal Complexes in Hydrogenation Reactions: Comparison of Hydrogenation and CTH Reactions.

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Zsigmond, A.; Gyémánt, M.; Czeglédi, A.; Klusoň, Petr


    Roč. 41, č. 12 (2015), s. 9281-9294 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Castle Trest, 16.09.2014-20.09.2014] Institutional support: RVO:67985858 Keywords : catalytic transfer hydrogenation * iron- phthalocyanine catalyst * chemoselectivity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.833, year: 2015

  10. Wigner and Huntington: the long quest for metallic hydrogen (United States)

    Nellis, W. J.


    In 1935, Wigner and Huntington (WH) predicted that at a density D Met=0.62 mole H/cm3, 'very low temperatures', and a pressure greater than 25 GPa, body-centered cubic H2 would undergo an isostructural phase transition directly to H with an associated insulator-metal transition (IMT). WH also predicted an H2 structure type that might occur if the simple H2/H dissociative IMT does not exist: 'It is possible … that a layer-like lattice … is obtainable under high pressure'. In 1991, Ashcroft predicted that the 'geometric and dynamic nature of the (H-H) pairing', possibly in a layered graphite-like structure, would substantially impede achieving metallic H2. In 1996, metallic fluid H was made under dynamic compression at 0.64 mole H/cm3, 140 GPa and T/T F≪1, where T F is Fermi temperature. In 2012, a layer-like lattice, called Phase IV, was discovered above ∼220 GPa static pressure. Phase IV is insulating and possibly semi-metallic up to ∼360 GPa, above which it has been predicted to become metallic. This paper is a historical perspective - a comparison of WH's predictions with recent dynamic, static and theoretical high pressure results. WH did extremely well.

  11. Understanding the Mechanism of the Hydrogen Abstraction from Arachidonic Acid Catalyzed by the Human Enzyme 15-Lipoxygenase-2. A Quantum Mechanics/Molecular Mechanics Free Energy Simulation. (United States)

    Suardíaz, Reynier; Jambrina, Pablo G; Masgrau, Laura; González-Lafont, Àngels; Rosta, Edina; Lluch, José M


    Lipoxygenases (LOXs) are a family of enzymes involved in the biosynthesis of several lipid mediators. In the case of human 15-LOX, the 15-LOX-1 and 15-LOX-2 isoforms show slightly different reaction regiospecificity and substrate specificity, indicating that substrate binding and recognition may be different, a fact that could be related to their different biological role. Here, we have used long molecular dynamics simulations, QM(DFT)/MM potential energy and free energy calculations (using the newly developed DHAM method), to investigate the binding mode of the arachidonic acid (AA) substrate into 15-LOX-2 and the rate-limiting hydrogen-abstraction reaction 15-LOX-2 catalyzes. Our results strongly indicate that hydrogen abstraction from C13 in 15-LOX-2 is only consistent with the "tail-first" orientation of AA, with its carboxylate group interacting with Arg429, and that only the pro-S H13 hydrogen will be abstracted (being the pro-R H13 and H10 too far from the acceptor oxygen atom). At the B3LYP/6-31G(d) level the potential and free energy barriers for the pro-S H13 abstraction of AA by 15-LOX-2 are 18.0 and 18.6 kcal/mol, respectively. To analyze the kinetics of the hydrogen abstraction process, we determined a Markov model corresponding to the unbiased simulations along the state-discretized reaction coordinate. The calculated rates based on the second largest eigenvalue of the Markov matrices agree well with experimental measurements, and also provide the means to directly determine the pre-exponential factor for the reaction by comparing with the free energy barrier height. Our calculated pre-exponential factor is close to the value of kBT/h. On the other hand, our results suggest that the spin inversion of the complete system (including the O2 molecule) that is required to happen at some point along the full process to lead to the final hydroperoxide product, is likely to take place during the hydrogen transfer, which is a proton coupled electron transfer

  12. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    KAUST Repository

    Álvarez, Andrea


    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions.

  13. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes (United States)


    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions. PMID:28656757

  14. The polymerizations of alkylsilane and bis-(γ-triethoxysilylpropyl)-tetrasulfide catalyzed by copper nanoparticles and the effects of transition metal ions on the polymerizations of alkylsilane catalyzed by silver nanoparticles

    International Nuclear Information System (INIS)

    Yan Jiangmei; Zi Guoli; Yang Feng; Mi Yangli; Yang Xikun; Wang Wei; Zou Qinpeng; Wang Jiaqiang


    Poly(vinylpyrrolidone) (PVP)-capped copper nanoparticles synthesized by solvent-based polyol reduction were found to be effective catalysts for the polymerization of octadecylsilane and bis-(γ-triethoxysilylpropyl)-tetrasulfide. Comparing with PVP-capped silver nanoparticles, copper nanoparticles exhibited different catalytic activity, and the polymerization products also showed different morphologies. The effects of transition metal ions on the polymerization of octadecylsilane catalyzed by PVP-capped silver nanoparticles were also investigated. It was found that transition of metal ions not only had strong effects on the morphologies of the products of polymerizations, but also resulted in the disappearance of silver oxide. The products were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and X-ray powder diffraction (XRD).

  15. Highly efficient hydrogenation of carbon dioxide to formate catalyzed by iridium(iii) complexes of imine-diphosphine ligands. (United States)

    Liu, Chong; Xie, Jian-Hua; Tian, Gui-Long; Li, Wei; Zhou, Qi-Lin


    A new iridium catalyst containing an imine-diphosphine ligand has been developed, which showed high efficiency for the hydrogenation of CO 2 to formate (yield up to 99%, TON up to 450 000). A possible catalytic mechanism is proposed, in which the imine group of the catalyst plays a key role in the cleavage of H 2 and the activation of CO 2 .

  16. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    Silva, E.P. da.


    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  17. Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH (United States)

    Song, Jian-zheng; Zhao, Zi-yang; Zhao, Xin; Fu, Rui-dong; Han, Shu-min


    To improve the hydrogen storage properties of Mg-based alloys, a composite material of MgH2 + 10wt%LaH3 + 10wt%NbH was prepared by a mechanical milling method. The composite exhibited favorable hydrogen desorption properties, releasing 0.67wt% H2 within 20 min at 548 K, which was ascribed to the co-catalytic effect of LaH3 and NbH upon dehydriding of MgH2. By contrast, pure MgH2, an MgH2 + 20wt%LaH3 composite, and an MgH2 + 20wt%NbH composite only released 0.1wt%, 0.28wt%, and 0.57wt% H2, respectively, under the same conditions. Analyses by X-ray diffraction and scanning electron microscopy showed that the composite particle size was small. Energy-dispersive X-ray spectroscopic mapping demonstrated that La and Nb were distributed homogeneously in the matrix. Differential thermal analysis revealed that the dehydriding peak temperature of the MgH2 + 10wt%LaH3 + 10wt%NbH composite was 595.03 K, which was 94.26 K lower than that of pure MgH2. The introduction of LaH3 and NbH was beneficial to the hydrogen storage performance of MgH2.

  18. Muon Catalyzed Fusion (United States)

    Armour, Edward A.G.


    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  19. Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption (United States)

    Dorenkamp, Yvonne; Jiang, Hongyan; Köckert, Hansjochen; Hertl, Nils; Kammler, Marvin; Janke, Svenja M.; Kandratsenka, Alexander; Wodtke, Alec M.; Bünermann, Oliver


    Inelastic scattering of H and D atoms from the (111) surfaces of six fcc transition metals (Au, Pt, Ag, Pd, Cu, and Ni) was investigated, and in each case, excitation of electron-hole pairs dominates the inelasticity. The results are very similar for all six metals. Differences in the average kinetic energy losses between metals can mainly be attributed to different efficiencies in the coupling to phonons due to the different masses of the metal atoms. The experimental observations can be reproduced by molecular dynamics simulations based on full-dimensional potential energy surfaces and including electronic excitations by using electronic friction in the local density friction approximation. The determining factors for the energy loss are the electron density at the surface, which is similar for all six metals, and the mass ratio between the impinging atoms and the surface atoms. Details of the electronic structure of the metal do not play a significant role. The experimentally validated simulations are used to explore sticking over a wide range of incidence conditions. We find that the sticking probability increases for H and D collisions near normal incidence—consistent with a previously reported penetration-resurfacing mechanism. The sticking probability for H or D on any of these metals may be represented as a simple function of the incidence energy, Ein, metal atom mass, M, and incidence angle, 𝜗i n. S =(S0+a ṡEi n+b ṡM ) *(1 -h (𝜗i n-c ) (1 -cos(𝜗 i n-c ) d ṡh (Ei n-e ) (Ei n-e ) ) ) , where h is the Heaviside step function and for H, S0 = 1.081, a = -0.125 eV-1, b =-8.40 ṡ1 0-4 u-1, c = 28.88°, d = 1.166 eV-1, and e = 0.442 eV; whereas for D, S0 = 1.120, a = -0.124 eV-1, b =-1.20 ṡ1 0-3 u-1, c = 28.62°, d = 1.196 eV-1, and e = 0.474 eV.

  20. Hydrogen Mobility in Disordered Metals Studied by $\\mu$SR

    CERN Multimedia


    A few studies of the behaviour of positive muons in metal hydrides have been made during the last three years under the code SC76, although this code is intended primarily for ``diffusion and trapping of positive muons`` in pure or very weakly doped metals. It has been shown in these studies that $\\mu$SR can provide important information even in concentrated hydrides like $ NbH _{,} _{0},7 - _{0} _{,} _{9} $ and $ Zr V _{2} H _{2} _{m}inus _{3} $ especially concerning mutual $\\mu

  1. Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ouargli-Saker, R. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Bouazizi, N. [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Unité de recherche, Electrochimie, Matériaux et Environnement, Faculté des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072 Gabès (Tunisia); Boukoussa, B. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Lqamb, Laboratório de Química Analítica Ambiental, Faculdade de Química, Pontifícia Universidade Católica do Rio Grande do Sul (Brazil); Barrimo, Diana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Paola-Nunes-Beltrao, Ana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Laboratory of Materials Chemistry L.C.M, University of Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran (Algeria); Azzouz, A., E-mail: [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada)


    Highlights: • Metal dispersion in longitudinal channels confers adsorption properties to SBA-16. • Both Fe{sup 0}-NPs and Cu{sup 0}-NPs seem to be responsible of this effect. • Effect of the repetitive adsorption-desorption cycles on CO{sub 2} and water sorption. • Hydrogen storage on the functionalized materials. - Abstract: Nanoparticles of Cu{sup o} (CuNPs) and Fe{sup o} (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO{sub 2} retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  2. Hydrogen-water deuterium exchange over metal oxide promoted nickel catalysts

    International Nuclear Information System (INIS)

    Sagert, N.H.; Shaw-Wood, P.E.; Pouteau, R.M.L.


    Specific rates have been measured for hydrogen-water deuterium isotope exchange over unsupported nickel promoted with about 20 percent of various metal oxides. The oxides used were Cr 2 O 3 , MoO 2 , MnO, WO 2 -WO 3 , and UO 2 . Nickel surface areas, which are required to measure the specific rates, were determined by hydrogen chemisorption. Specific rates were measured as a function of temperature in the range 353 to 573 K and as a function of the partial pressure of hydrogen and water over a 10-fold range of partial pressure. The molybdenum and tungsten oxides gave the highest specific rates, and manganese and uranium oxides the lowest. Chromium oxide was intermediate, although it gave the highest rate per gram of catalyst. The orders with respect to hydrogen and water over molybdenum oxide and tungsten oxide promoted nickel were consistent with a mechanism in which nickel oxide is formed from the reaction of water with the catalyst, and then is reduced by hydrogen. Over manganese and uranium oxide promoted catalysts, these orders are consistent with a mechanism in which adsorbed water exchanges with chemisorbed hydrogen atoms on the nickel surface. Chromium oxide is intermediate. It was noted that those oxides which favored the nickel oxide route had electronic work functions closest to those of metallic nickel and nickel oxide. (author)

  3. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Directory of Open Access Journals (Sweden)

    Son-Jong Hwang


    Full Text Available Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of 11B MAS NMR in studies of metal borohydrides (BH4 is mainly focused, revisiting the issue of dodecaborane formation and observation of 11B{1H} Nuclear Overhauser Effect.

  4. Method for hydrogen production and metal winning, and a catalyst/cocatalyst composition useful therefor (United States)

    Dhooge, Patrick M.


    A catalyst/cocatalyst/organics composition of matter is useful in electrolytically producing hydrogen or electrowinning metals. Use of the catalyst/cocatalyst/organics composition causes the anode potential and the energy required for the reaction to decrease. An electrolyte, including the catalyst/cocatalyst composition, and a reaction medium composition further including organic material are also described.

  5. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei


    Full Text Available A modulated synthesis of Zr-metal organic framework (Zr-MOF) with improved ease of handling and decreased reaction time is reported to yield highly crystalline Zr-MOF with well-defined octahedral shaped crystals for practical hydrogen storage...

  6. Catalytic Ring Hydrogenation of Benzoic Acid with Supported Transition Metal Catalysts in scCO2

    Directory of Open Access Journals (Sweden)

    Fengyu Zhao


    Full Text Available The ring hydrogenation of benzoic acid to cyclohexanecarboxylic acid overcharcoal-supported transition metal catalysts in supercritical CO2 medium has been studiedin the present work. The cyclohexanecarboxylic acid can be produced efficiently insupercritical CO2 at the low reaction temperature of 323 K. The presence of CO2 increasesthe reaction rate and several parameters have been discussed.

  7. Hydrogenation of nitrocompounds with supported palladium catalysts: influence of metal dispersion and nitrocompound nature

    Energy Technology Data Exchange (ETDEWEB)

    Carturan, G.; Facchin, G.; Cocco, G.; Navazio, G.; Gubitosa, G.


    Nitrobenzene, Et-NO/sub 2/, and t-Bu-NO/sub 2/ are hydrogenated to corresponding amines using Pd catalysts in n-octane suspension at 90/sup 0/C and at constant H/sub 2/ pressure. Nitrobenzene reduction to aniline has been studied with several Pd catalysts having a different degree of metal dispersion determined by X-ray methods and chemisorption analysis. Results indicate that the process is a structure sensitive reaction; a peculiar lowering in catalytic activity as the degree of Pd dispersion increases is observed. This fact is discussed in terms of metallic surface oxidation due to the sorbed nitrocompound. Hydrogenation kinetic patterns change with the nature of the nitrocompound. Reduction of Et-NO/sub 2/ and t-Bu-NO/sub 2/ depends on substrate concentration, while nitrobenzene hydrogenation is independent of this parameter. The relevant kinetic experiments allow the formulation of a general reaction mechanism accounting for the different kinetic patterns observed on changing the substrate. The discussion illustrates the possibility that in nitrocompound reduction with metal catalysts the rate determining step may be hydrogenation of the metallic surface oxidized by the sorbed nitrocompound.

  8. Nuclear Quantum Effects Induce Metallization of Dense Solid Molecular Hydrogen


    Azadi, Sam; Singh, Ranber; Kühne, T. D.


    We present an accurate computational study of the electronic structure and lattice dynamics of solid molecular hydrogen at high pressure. The band-gap energies of the $C2/c$, $Pc$, and $P6_3/m$ structures at pressures of 250, 300, and 350 GPa are calculated using the diffusion quantum Monte Carlo (DMC) method. The atomic configurations are obtained from ab-initio path-integral molecular dynamics (PIMD) simulations at 300 K and 300 GPa to investigate the impact of zero-point energy and tempera...

  9. The hydrogenation of metals upon interaction with water (United States)

    Andreyev, L. A.; Gelman, B. G.; Zhukhovitskiy, A. A.; Polosina, Y. Y.


    Hydrogen evolution at 600 deg and 5 x 10 to the 7th power - 10 to the 6th power torr from AVOOO Al samples, which were pickled in 10 percent NaOH, is discussed. An H evolution kinetic equation is derived for samples of equal vol. and different surfaces (5 and 20 sq cm). The values of the H evolution coefficient K indicated an agreement with considered H diffusion mechanism through an oxide layer. The activation energy for the H evolution process, obtained from the K-temp. relation, was 13,000 2000 cal/g-atom.

  10. Electrocatalysis of Hydrogen Evolution by Transition Metal Complexes

    Czech Academy of Sciences Publication Activity Database

    Heyrovský, Michael


    Roč. 66, č. 1 (2001), s. 67-80 ISSN 0010-0765 R&D Projects: GA ČR GV204/97/K084 Institutional research plan: CEZ:AV0Z4040901 Keywords : transition metals * thiocyanate complexes * electroreduction Subject RIV: CG - Electrochemistry Impact factor: 0.778, year: 2001

  11. Graphene on metal surfaces and its hydrogen adsorption

    DEFF Research Database (Denmark)

    Andersen, Mie; Hornekær, L.; Hammer, B.


    The interaction of graphene with various metal surfaces is investigated using density functional theory and the meta-generalized gradient approximation (MGGA) M06-L functional. We demonstrate that this method is of comparable accuracy to the random-phase approximation (RPA). With M06-L we study l...

  12. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes (United States)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline

  13. Hydrogenation of cyclohexene with LaNi5−xAlxHn metal hydrides suspended in cyclohexane or ethanol

    NARCIS (Netherlands)

    Snijder, E.D.; Versteeg, G.F.; Swaaij, W.P.M. van


    The hydrogenation of cyclohexene on the metal hydride forming alloys LaNi4.8Al0.2, LaNi4.9Al0.1 and LaNi5, all suspended in cyclohexane and LaNi5 suspended in ethanol, has been investigated. Two sources for hydrogen are recognized: hydrogen supplied by the gas phase and hydrogen which is available

  14. Hydrogenation of cyclohexene with LaNi@#5@#-@#x@#Al@#x@#Hn metal hydrides, suspended in cyclohexane or ethanol

    NARCIS (Netherlands)

    Snijder, E.D.; Snijder, E.D.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria


    The hydrogenation of cyclohexene on the metal hydride forming alloys LaNi4.8Al0.2, LaNi4.9Al0.1 and LaNi5, all suspended in cyclohexane and LaNi5 suspended in ethanol, has been investigated. Two sources for hydrogen are recognized: hydrogen supplied by the gas phase and hydrogen which is available

  15. Partially Hydrogenated Graphene Materials Exhibit High Electrocatalytic Activities Related to Unintentional Doping with Metallic Impurities. (United States)

    Jankovský, Ondřej; Libánská, Alena; Bouša, Daniel; Sedmidubský, David; Matějková, Stanislava; Sofer, Zdeněk


    Partially hydrogenated graphene materials, synthesized by the chemical reduction/hydrogenation of two different graphene oxides using zinc powder in acidic environment or aluminum powder in alkaline environment, exhibit high electrocatalytic activities, as well as electrochemical sensing properties. The starting graphene oxides and the resultant hydrogenated graphenes were characterized in detail. Their electrocatalytic activity was examined in the oxygen reduction reaction, whereas sensing properties towards explosives were tested by using picric acid as a redox probe. Findings indicate that the high electrocatalytic performance originates not only from the hydrogenation of graphene, but also from unintentional contamination of graphene with manganese and other metals during synthesis. A careful evaluation of the obtained data and a detailed chemical analysis are necessary to identify the origin of this anomalous electrocatalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Improved synthesis and hydrogen storage of a microporous metal-organic framework material

    International Nuclear Information System (INIS)

    Cheng Shaojuan; Liu Shaobing; Zhao Qiang; Li Jinping


    A microporous metal-organic framework MOF-5 [Zn 4 O(BDC) 3 , BDC = 1,4-benzenedicarboxylic] was synthesized with and without H 2 O 2 by improved methods based on the previous studies. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption, and their hydrogen storage capacities were measured. The synthesis experiments showed that H 2 O 2 favored the growth of high quality sample, large pore volume and high specific surface area. The measurements of hydrogen storage indicated that the sample with higher specific surface area and large pore volume showed better hydrogen storage behavior than other samples. It was suggested that specific surface area and pore volume influenced the capacity of hydrogen storage for MOF-5 material.

  17. Selective Catalytic Hydrogenation of Arenols by a Well-Defined Complex of Ruthenium and Phosphorus–Nitrogen PN3–Pincer Ligand Containing a Phenanthroline Backbone

    KAUST Repository

    Li, Huaifeng


    Selective catalytic hydrogenation of aromatic compounds is extremely challenging using transition-metal catalysts. Hydrogenation of arenols to substituted tetrahydronaphthols or cyclohexanols has been reported only with heterogeneous catalysts. Herein, we demonstrate the selective hydrogenation of arenols to the corresponding tetrahydronaphthols or cyclohexanols catalyzed by a phenanthroline-based PN3-ruthenium pincer catalyst.

  18. Metal-Carbon Hybrid Electrocatalysts Derived from Ion-Exchange Resin Containing Heavy Metals for Efficient Hydrogen Evolution Reaction. (United States)

    Zhou, Yucheng; Zhou, Weijia; Hou, Dongman; Li, Guoqiang; Wan, Jinquan; Feng, Chunhua; Tang, Zhenghua; Chen, Shaowei


    Transition metal-carbon hybrids have been proposed as efficient electrocatalysts for hydrogen evolution reaction (HER) in acidic media. Herein, effective HER electrocatalysts based on metal-carbon composites are prepared by controlled pyrolysis of resin containing a variety of heavy metals. For the first time, Cr2 O3 nanoparticles of 3-6 nm in diameter homogeneously dispersed in the resulting porous carbon framework (Cr-C hybrid) is synthesized as efficient HER electrocatalyst. Electrochemical measurements show that Cr-C hybrids display a high HER activity with an onset potential of -49 mV (vs reversible hydrogen electrode), a Tafel slope of 90 mV dec(-1) , a large catalytic current density of 10 mA cm(-2) at -123 mV, and the prominent electrochemical durability. X-ray photoelectron spectroscopic measurements confirm that electron transfer occurs from Cr2 O3 into carbon, which is consistent with the reported metal@carbon systems. The obtained correlation between metals and HER activities may be exploited as a rational guideline in the design and engineering of HER electrocatalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The influence of anionic vesicles on the oligomerization of p-leaminodiphenylamine catalyzed by horseradish peroxidase and hydrogen peroxide


    Luginbuehl Sandra; Milojevic-Rakic Maja; Junker Katja; Bajuk-Bogdanovic Danica; Pasti Igor; Kissner Reinhard; Ciric-Marjanovic Gordana; Walde Peter


    The aniline dimer N phenyl 14 phenylenediamine (=p aminodiphenylamine PADPA) was oxidized with horseradish peroxidase isoenzyme C (HRPC) and hydrogen peroxide (H2O2) to oligo(PADPA) in an aqueous suspension of 80–100 nm sized anionic vesicles at pH = 4.3 and at T ˜ 25 °C. The vesicles were formed from AOT (=sodium bis(2 ethylhexyl) sulfosuccinate) and served as templates for obtaining oligo(PADPA) as emeraldine salt form of polyaniline (PANI ES) in the polaron form. The optimal reaction condi...

  20. A Bimetallic Nickel–Gallium Complex Catalyzes CO 2 Hydrogenation via the Intermediacy of an Anionic d 10 Nickel Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Cammarota, Ryan C. [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Vollmer, Matthew V. [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Xie, Jing [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Supercomputing; Ye, Jingyun [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Supercomputing; Linehan, John C. [Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, Washington 99352, United States; Burgess, Samantha A. [Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, Washington 99352, United States; Appel, Aaron M. [Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, Washington 99352, United States; Gagliardi, Laura [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Supercomputing; Lu, Connie C. [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States


    Large-scale CO2 hydrogenation could offer a renewable stream of industrially important C1 chemicals while reducing CO2 emissions. Critical to this opportunity is the requirement for inexpensive catalysts based on earth-abundant metals instead of precious metals. We report a nickel-gallium complex featuring a Ni(0)→Ga(III) bond that shows remarkable catalytic activity for hydrogenating CO2 to formate at ambient temperature (3150 turnovers, turnover frequency = 9700 h-1), compared with prior homogeneous Ni-centred catalysts. The Lewis acidic Ga(III) ion plays a pivotal role by stabilizing reactive catalytic intermediates, including a rare anionic d10 Ni hydride. The structure of this reactive intermediate shows a terminal Ni-H, for which the hydride donor strength rivals those of precious metal-hydrides. Collectively, our experimental and computational results demonstrate that modulating a transition metal center via a direct interaction with a Lewis acidic support can be a powerful strategy for promoting new reactivity paradigms in base-metal catalysis. The work was supported as part of the Inorganometallic Catalysis Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences under Award DE-SC0012702. R.C.C. and M.V.V. were supported by DOE Office of Science Graduate Student Research and National Science Foundation Graduate Research Fellowship programs, respectively. J.C.L., S.A.B., and A.M.A. were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  1. Development of a methodology based on metal-catalyzed oxidation reactions and mass spectrometry to determine the metal binding sites in copper metalloproteins. (United States)

    Lim, Jihyeon; Vachet, Richard W


    Efforts have been made to develop a method that uses metal-catalyzed oxidation (MCO) reactions and mass spectrometry (MS) to identify the binding site of copper in metalloproteins. This method uses MCO reactions to oxidize the amino acids in the metal-binding site and MS to identify the amino acids that have been oxidized. Several reaction conditions, including Cu(II)/ascorbate/O2, Cu(II)/O2/H2O2, and Cu(II)/ascorbate/O2/H2O2, have been tested at varying concentrations to find the optimum conditions for specific oxidation of only the amino acids bound to copper. For small peptides, such as angiotensin I (Agt I) and [Gln11]-amyloid-beta-protein fragment 1-16 (A beta(1-16)), the optimum conditions for specific modification involve the use of Cu(II)/ascorbate/O2. For a larger protein, azurin, the speed and specificity of the MCO reactions are enhanced by the presence of a relatively high concentration of ascorbate (100 mM) and a small concentration of H2O2 (1 mM). Optimized reaction conditions combined with MS/MS and MSn analysis on a quadrupole ion trap mass spectrometer allow the copper-binding sites to be specifically identified. For Agt I and A beta(1-16), the amino acids bound to copper can be identified without any false positives. For azurin, four of the five amino acids bound to copper are identified with one false positive. This false positive, however, corresponds to the oxidation of Met44, which is probably due to its susceptibility to oxidation and its proximity to the only residue not identified (i.e., Gly45). The results altogether suggest that MCO reactions and MS provide a very promising approach for identifying the amino acid residues bound to copper in metalloproteins.

  2. Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. (United States)

    Shi, Jianping; Wang, Xina; Zhang, Shuai; Xiao, Lingfeng; Huan, Yahuan; Gong, Yue; Zhang, Zhepeng; Li, Yuanchang; Zhou, Xiebo; Hong, Min; Fang, Qiyi; Zhang, Qing; Liu, Xinfeng; Gu, Lin; Liu, Zhongfan; Zhang, Yanfeng


    Two-dimensional metallic transition metal dichalcogenides are emerging as prototypes for uncovering fundamental physical phenomena, such as superconductivity and charge-density waves, as well as for engineering-related applications. However, the batch production of such envisioned transition metal dichalcogenides remains challenging, which has hindered the aforementioned explorations. Herein, we fabricate thickness-tunable tantalum disulfide flakes and centimetre-sized ultrathin films on an electrode material of gold foil via a facile chemical vapour deposition route. Through temperature-dependent Raman characterization, we observe the transition from nearly commensurate to commensurate charge-density wave phases with our ultrathin tantalum disulfide flakes. We have obtained high hydrogen evolution reaction efficiency with the as-grown tantalum disulfide flakes directly synthesized on gold foils comparable to traditional platinum catalysts. This work could promote further efforts for exploring new efficient catalysts in the large materials family of metallic transition metal dichalcogenides, as well as exploiting their applications towards more versatile applications.Metallic transition metal dichalcogenides are important materials for catalysis, but scalable and controllable preparation methods are scarce. Here, the authors synthesize 2H-TaS 2 as centimetre-scale films of tunable thickness and show they are an efficient catalyst for hydrogen evolution.

  3. Low temperature isotope effects of hydrogen diffusion in metallic glasses

    International Nuclear Information System (INIS)

    Hofmann, A.; Kronmueller, H.


    Snoek-like relaxation peaks of Hydrogen and Deuterium in amorphous Fe 80 B 20 , Fe 40 Ni 40 P 14 B 6 and Fe 91 Zr 9 are detected. At low H, D concentrations the peaks are near 200 K and show small isotope effects of the average activation energies (anti Q H ≅ 0.6 eV, anti Q D - anti Q H ≤ 10 meV). For higher H, D-contents the peaks shift to lower temperatures around to 120 K and show distinct isotope effects in the activation energies (anti Q H ≅ 0.3 eV, anti Q D - anti Q H ≅ 30 meV) and in the amplitude of the low temperature tails of the relaxation peaks. This points to isotope mass dependent deviations from the Arrhenius law due to nonthermal tunneling processes. (orig.)

  4. Metal-catalyzed oxidation and cleavage of octopus glutathione transferase by the Cu(II)-ascorbate system. (United States)

    Tang, S S; Lin, C C; Chang, G G


    Glutathione transferase (GST) from octopus hepatopancreas was rapidly inactivated by micromolar concentration of Cu(II) in the presence of ascorbate at neutral pH and 0 degree C. Omitting the metal ion or ascorbate, or replacing the Cu(II) with Fe(II) did not result in any inactivation. Glutathione or the conjugation product of glutathione and 1-chloro-2,4-dinitrobenzene offered complete protection of the enzyme from Cu(II)-induced inactivation. 1-Chloro-2,4-dinitrobenzene, however, did not provide any protection. The inactivation was time and Cu(II) concentration dependent. The dependence of inactivation rate on Cu(II) concentration displayed saturation kinetics, which suggests that the inactivation occurs in two steps with Cu(II) binding with the enzyme first (KdCu = 260 microM), then the locally generated free radicals modify the essential amino acid residues in the active center, which results in enzyme inactivation. The Cu(II)-ascorbate system is, thus, an affinity reagent for the octopus GST. The enzyme inactivation was demonstrated to be followed by protein cleavage. Native octopus GST has a subunit M(r) of 24,000. The inactivated enzyme was cleaved at the C-terminal domain (domain II) of the enzyme molecule and resulted in the formation of peptide fragment of M(r) 15,300, which has the identical N-terminal amino acid sequence as the native enzyme. The other half of the peptide with M(r) approximately 7700 was visible in the gels only after silver staining, which also revealed a minor cleavage site, also located at the domain II, to produce peptide fragments of M(r) approximately 11,300 and 8300. The oxygen carrier molecule in the cephalopods' blood is the copper-containing hemocyanin, which during turnover will release Cu(II). Our results indicate that Cu(II) catalyzes a site-specific oxidation of the essential amino acid residues at the C-terminus of GST causing enzyme inactivation. The modified-enzyme is then affinity cleaved at the putative metal binding

  5. On the Hydrogen Cyanide Removal from Air using Metal loaded Polyacrylonitrile Composite Nanofibers

    Directory of Open Access Journals (Sweden)

    Bozorgmehr Maddah


    Full Text Available The present study highlights the potential application of electrospun polyacrylonitrile/metal salts (CrO3, CuCO3 nanofibrous filter media impregnated with TEDA (PAN-M-TEDA as an efficient adsorbent for hydrogen cyanide removal from air. The PAN-M-TEDA nanofiber before and after adsorption of hydrogen cyanide was characterized with Fourier transform infrared microscopy (FTIR. The concentration of hydrogen cyanide passes through the samples was determined by measuring the absorption of hydrogen cyanide in the solution containing indicator via UV-Vis spectroscopy. The results showed that introducing metal salts to PAN nanofiber along with their impregnation with TEDA, significantly increases the adsorption capacity of nanofibrous filter media. The adsorption of hydrogen cyanide over PAN-M-TEDA nanofiber was also studied as a function of thickness, PAN concentration and TEDA concentration by response surface methodology (RSM based on central composite design. It is found that the highest adsorption capacity can be achieved at thickness 28.42 mm, PAN concentration 16.19 w/v % and TEDA concentration 14.80 w/v %.

  6. Rare metal fission products in nuclear spent fuel as catalysts for hydrogen production by water electrolysis

    International Nuclear Information System (INIS)

    Ozawa, Masaki


    Separation and utilization of rare metal fission products (RMFP) in nuclear spent fuel were studied to apply them as a catalyst for hydrogen generation by water electrolysis. The RMFP, namely Pd, Ru, Rh and Tc, etc, are abundant, more than ca. 30kg per metric ton of a typical fast reactor spent fuel. The RMFP can be selectively separated from high level liquid waste (HLLW) by catalytic electrolytic extraction (CEE) method. Specific metallic cations such as Pd 2+ , which originate in the solutions, may act as promoters (i.e., Pd adatom ) or mediators, thereby accelerating electrochemical deposition of RuNO 3+ , Rh 3+ and ReO 4 - (simulator TcO 4 - ). In utilizing CEE method, electrodeposited electrodes were prepared, and successively dedicated to the water (alkaline or artificial sea water) electrolysis tests. Among the RMFP deposited electrodes, maximum potential shifting for hydrogen evolution to noble side was observed for the quaternary, Pd-Ru-Rh-Re (3.5:4:1:1), deposit Pt electrode, with suggesting the highest cathodic currents for hydrogen evolution both in alkaline solution and artificial sea water. The electro analytic activity of quaternary, Pd-Ru-Rh-Re (3.5:4:1:1), deposit Pt electrode exceeded that of Pt electrode by ca. twice both in alkaline solution and artificial sea water. The paper conclusively proposes RMFP generated by nuclear fission to utilize as an alternative material for hydrogen production with a novel vision to bridge nuclear and hydrogen energy systems. (author)

  7. In situ diffraction study of catalytic hydrogenation of VO₂: stable phases and origins of metallicity. (United States)

    Filinchuk, Yaroslav; Tumanov, Nikolay A; Ban, Voraksmy; Ji, Heng; Wei, Jiang; Swift, Michael W; Nevidomskyy, Andriy H; Natelson, Douglas


    Controlling electronic population through chemical doping is one way to tip the balance between competing phases in materials with strong electronic correlations. Vanadium dioxide exhibits a first-order phase transition at around 338 K between a high-temperature, tetragonal, metallic state (T) and a low-temperature, monoclinic, insulating state (M1), driven by electron-electron and electron-lattice interactions. Intercalation of VO2 with atomic hydrogen has been demonstrated, with evidence that this doping suppresses the transition. However, the detailed effects of intercalated H on the crystal and electronic structure of the resulting hydride have not been previously reported. Here we present synchrotron and neutron diffraction studies of this material system, mapping out the structural phase diagram as a function of temperature and hydrogen content. In addition to the original T and M1 phases, we find two orthorhombic phases, O1 and O2, which are stabilized at higher hydrogen content. We present density functional calculations that confirm the metallicity of these states and discuss the physical basis by which hydrogen stabilizes conducting phases, in the context of the metal-insulator transition.

  8. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter


    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and

  9. Efficient transfer hydrogenation reaction Catalyzed by a dearomatized PN 3P ruthenium pincer complex under base-free Conditions

    KAUST Repository

    He, Lipeng


    A dearomatized complex [RuH(PN 3P)(CO)] (PN 3PN, N′-bis(di-tert-butylphosphino)-2,6-diaminopyridine) (3) was prepared by reaction of the aromatic complex [RuH(Cl)(PN 3P)(CO)] (2) with t-BuOK in THF. Further treatment of 3 with formic acid led to the formation of a rearomatized complex (4). These new complexes were fully characterized and the molecular structure of complex 4 was further confirmed by X-ray crystallography. In complex 4, a distorted square-pyramidal geometry around the ruthenium center was observed, with the CO ligand trans to the pyridinic nitrogen atom and the hydride located in the apical position. The dearomatized complex 3 displays efficient catalytic activity for hydrogen transfer of ketones in isopropanol. © 2011 Elsevier B.V. All rights reserved.

  10. The behaviour of uranium metal in hydrogen atmospheres

    International Nuclear Information System (INIS)

    Allen, G.C.; Stevens, J.C.H.


    The reaction between commercial H 2 and uranium metal leads to the formation of UO 2 due to traces of water vapour or oxygen. When extremely pure H 2 is used uranium hydride may be formed but, even with 99.9999% H 2 , uranium dioxide forms preferentially. The present work identifies the presence of UH 3 in the X-ray photoelectron spectrum of a uranium sample which has been exposed to ca. 10 10 L† H 2 at ca. 200 0 C. This spectrum indicates that the hydride possesses a high degree of covalency, since the oxidation state of uranium in UH 3 appears to be ca. 1.4. (author)

  11. Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.; Zacher, Alan H.


    Biomass fast pyrolysis integrated with bio-oil upgrading represents a very attractive approach for converting biomass to hydrocarbon transportation fuels. However, the thermal and chemical instability of bio-oils presents significant problems when they are being upgraded, and development of effective approaches for stabilizing bio-oils is critical to the success of the technology. Catalytic hydrogenation to remove reactive species in bio-oil has been considered as one of the most efficient ways to stabilize bio-oil. This paper provides a fundamental understanding of hydrogenation of actual bio-oils over a Ru/TiO2 catalyst under conditions relevant to practical bio-oil hydrotreating processes. Bio-oil feed stocks, bio-oils hydrogenated to different extents, and catalysts have been characterized to provide insights into the chemical and physical properties of these samples and to understand the correlation of the properties with the composition of the bio-oil and catalysts. The results indicated hydrogenation of various components of the bio-oil, including sugars, aldehydes, ketones, alkenes, aromatics, and carboxylic acids, over the Ru/TiO2 catalyst and 120 to 160oC. Hydrogenation of these species significantly changed the chemical and physical properties of the bio-oil and overall improved its thermal stability, especially by reducing the carbonyl content, which represented the content of the most reactive species (i.e., sugar, aldehydes, and ketones). The change of content of each component in response to increasing hydrogen additions suggests the following bio-oil hydrogenation reaction sequence: sugar conversion to sugar alcohols, followed by ketone and aldehyde conversion to alcohols, followed by alkene and aromatic hydrogenation, and then followed by carboxylic acid hydrogenation to alcohols. Hydrogenation of bio-oil samples with different sulfur contents or inorganic material contents suggested that sulfur poisoning of the reduced Ru metal catalysts was

  12. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Börries, S., E-mail: [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Metz, O.; Pranzas, P.K. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Bücherl, T. [ZTWB Radiochemie München (RCM), Technische Universität München (TUM), Walther-Meissner-Str. 3, D-85748 Garching (Germany); Söllradl, S. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII), Technische Universität München (TUM), Lichtenbergstr. 1, D-85748 Garching (Germany); Dornheim, M.; Klassen, T.; Schreyer, A. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany)


    In situ neutron radiography allows for the time-resolved study of hydrogen distribution in metal hydrides. However, for a precise quantitative investigation of a time-dependent hydrogen content within a host material, an exact knowledge of the corresponding attenuation coefficient is necessary. Additionally, the effect of scattering has to be considered as it is known to violate Beer's law, which is used to determine the amount of hydrogen from a measured intensity distribution. Within this study, we used a metal hydride inside two different hydrogen storage tanks as host systems, consisting of steel and aluminum. The neutron beam attenuation by hydrogen was investigated in these two different setups during the hydrogen absorption process. A linear correlation to the amount of absorbed hydrogen was found, allowing for a readily quantitative investigation. Further, an analysis of scattering contributions on the measured intensity distributions was performed and is described in detail.

  13. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides (United States)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bücherl, T.; Söllradl, S.; Dornheim, M.; Klassen, T.; Schreyer, A.


    In situ neutron radiography allows for the time-resolved study of hydrogen distribution in metal hydrides. However, for a precise quantitative investigation of a time-dependent hydrogen content within a host material, an exact knowledge of the corresponding attenuation coefficient is necessary. Additionally, the effect of scattering has to be considered as it is known to violate Beer's law, which is used to determine the amount of hydrogen from a measured intensity distribution. Within this study, we used a metal hydride inside two different hydrogen storage tanks as host systems, consisting of steel and aluminum. The neutron beam attenuation by hydrogen was investigated in these two different setups during the hydrogen absorption process. A linear correlation to the amount of absorbed hydrogen was found, allowing for a readily quantitative investigation. Further, an analysis of scattering contributions on the measured intensity distributions was performed and is described in detail.

  14. Effect of Microstructure on Hydrogen Diffusion in Weld and API X52 Pipeline Steel Base Metals under Cathodic Protection

    Directory of Open Access Journals (Sweden)

    R. C. Souza


    Full Text Available The aim of this research was to evaluate the influence of microstructure on hydrogen permeation of weld and API X52 base metal under cathodic protection. The microstructures analyzed were of the API X52, as received, quenched, and annealed, and the welded zone. The test was performed in base metal (BM, quenched base metal (QBM, annealed base metal (ABM, and weld metal (WM. Hydrogen permeation flows were evaluated using electrochemical tests in a Devanathan cell. The potentiodynamic polarization curves were carried out to evaluate the corrosion resistance of each microstructure. All tests were carried out in synthetic soil solutions NS4 and NS4 + sodium thiosulfate at 25°C. The sodium thiosulfate was used to simulate sulfate reduction bacteria (SRB. Through polarization, assays established that the microstructure does not influence the corrosion resistance. The permeation tests showed that weld metal had lower hydrogen flow than base metal as received, quenched, and annealed.

  15. Highly efficient redox-driven reversible color switching of dye molecules via hydrogenation/oxygenation. (United States)

    Jiang, Yi-Fan; Yuan, Cheng-Zong; Zhou, Xiao; Guo, Hong-Li; Liu, Ya-Nan; Jiang, Nan; Xu, An-Wu


    We report a novel reversible color switching system based on one-pot hydrogenation/oxygenation reactions over Pd/CeO 2-x catalysts and fast interconversion of thionine (TH + ) and leuco thionine (LTH). Oxygen vacancies produced by Pd-catalyzed instant hydrogenation of CeO 2 and strong metal-support interaction (SMSI) could lead to fast color switching.

  16. Considerations for Storage of High Test Hydrogen Peroxide (HTP) Utilizing Non-Metal Containers (United States)

    Moore, Robin E.; Scott, Joseph P.; Wise, Harry


    When working with high concentrations of hydrogen peroxide, it is critical that the storage container be constructed of the proper materials, those which will not degrade to the extent that container breakdown or dangerous decomposition occurs. It has been suggested that the only materials that will safely contain the peroxide for a significant period of time are metals of stainless steel construction or aluminum use as High Test Hydrogen Peroxide (HTP) Containers. The stability and decomposition of HTP will be also discussed as well as various means suggested in the literature to minimize these problems. The dangers of excess oxygen generation are also touched upon.

  17. Conductivity and dissociation in liquid metallic hydrogen and implications for planetary interiors. (United States)

    Zaghoo, Mohamed; Silvera, Isaac F


    Liquid metallic hydrogen (LMH) is the most abundant form of condensed matter in our solar planetary structure. The electronic and thermal transport properties of this metallic fluid are of fundamental interest to understanding hydrogen's mechanism of conduction, atomic or pairing structure, as well as the key input for the magnetic dynamo action and thermal models of gas giants. Here, we report spectrally resolved measurements of the optical reflectance of LMH in the pressure region of 1.4-1.7 Mbar. We analyze the data, as well as previously reported measurements, using the free-electron model. Fitting the energy dependence of the reflectance data yields a dissociation fraction of 65 ± 15%, supporting theoretical models that LMH is an atomic metallic liquid. We determine the optical conductivity of LMH and find metallic hydrogen's static electrical conductivity to be 11,000-15,000 S/cm, substantially higher than the only earlier reported experimental values. The higher electrical conductivity implies that the Jovian and Saturnian dynamo are likely to operate out to shallower depths than previously assumed, while the inferred thermal conductivity should provide a crucial experimental constraint to heat transport models. Published under the PNAS license.

  18. Conductivity and dissociation in liquid metallic hydrogen and implications for planetary interiors (United States)

    Zaghoo, Mohamed; Silvera, Isaac F.


    Liquid metallic hydrogen (LMH) is the most abundant form of condensed matter in our solar planetary structure. The electronic and thermal transport properties of this metallic fluid are of fundamental interest to understanding hydrogen's mechanism of conduction, atomic or pairing structure, as well as the key input for the magnetic dynamo action and thermal models of gas giants. Here, we report spectrally resolved measurements of the optical reflectance of LMH in the pressure region of 1.4–1.7 Mbar. We analyze the data, as well as previously reported measurements, using the free-electron model. Fitting the energy dependence of the reflectance data yields a dissociation fraction of 65 ± 15%, supporting theoretical models that LMH is an atomic metallic liquid. We determine the optical conductivity of LMH and find metallic hydrogen's static electrical conductivity to be 11,000–15,000 S/cm, substantially higher than the only earlier reported experimental values. The higher electrical conductivity implies that the Jovian and Saturnian dynamo are likely to operate out to shallower depths than previously assumed, while the inferred thermal conductivity should provide a crucial experimental constraint to heat transport models.

  19. Application of a new amidophosphite ligand to Rh-catalyzed asymmetric hydrogenation of β-dehydroamino acid derivatives in supercritical carbon dioxide: activation effect of protic Co-solvents. (United States)

    Lyubimov, Sergey E; Rastorguev, Eugenie A; Davankov, Vadim A


    New chiral amidophosphite ligand was synthesized and tested in the Rh-catalyzed asymmetric hydrogenation of (Z)-β-(acylamino)acrylates in protic solvents and supercritical carbon dioxide (scCO(2) ) The catalytic performance is affected greatly by the acidity of the solvents. Better enantioselectivity (up to 88% ee) was achieved in scCO(2) containing 1,1,1,3,3,3-hexafluoro-2-propanol, compared to neat protic solvents. Copyright © 2011 Wiley-Liss, Inc.

  20. Single electron transistors with hydrogen treatment of ALD SiO2 in nanoscale metal-insulator-metal tunnel junctions (United States)

    Karbasian, Golnaz; McConnell, Michael S.; Orlov, Alexei O.; Nazarov, Alexei N.; Snider, Gregory L.


    Over the past five years, fabrication of metal-insulator-metal (MIM) single electron transistors (SET) featuring atomic layer deposition (ALD) of ultrathin tunnel barrier dielectrics (SiO2, Al2O3) has been reported. However, the performance of fabricated devices was significantly compromised by the presence of native metal oxide and problems associated with the nucleation of ALD dielectrics on metal substrates. To overcome the difficulty of dielectric ALD nucleation on metal substrates, we recently developed a fabrication technique in which the native metal oxide naturally forming in the presence of the ALD oxidant precursor is first used to promote the nucleation of ALD dielectrics, and then is chemically reduced by forming gas anneal (FGA) at temperatures near 400 °C. However, despite the elimination of native oxide, low temperature characterization of the devices fabricated using FGA reveals excess ‘switching’ noise of a very large magnitude resulting from charged defects within the junctions. It has been previously reported that remote hydrogen plasma (RHP) treatment of SiO2 thin films effectively eradicates fabrication defects. This work reports a comparative study of Ni-based MIM SET treated with FGA and/or RHP. We show that, using a combination of FGA and RHP treatments, it is possible to obtain MIM junctions free of switching noise and without a detectable contribution of native oxide.

  1. Investigation of the Hydrogenation of 5-Methylfurfural by Noble Metal Nanoparticles in a Microcapillary Reactor. (United States)

    Gmeiner, Julia; Seibicke, Max; Behrens, Silke; Spliethoff, Bernd; Trapp, Oliver


    On-column reaction gas chromatography (ocRGC) was successfully utilized as high-throughput platform for monitoring of the conversion and selectivity of hydrogenation of 5-methylfurfural catalyzed by polymer-stabilized Ru and Pd nanoparticles. We were able to elucidate the effect of various reaction conditions, mainly together with the catalyst loading on the conversion rate and the selectivity of the reaction. Our strategy yields significant improvements in reaction analysis times and cost effectiveness in comparison to standard methods. We are able to demonstrate that ocRGC approach provides valuable information about the reaction system that gives scientists a tool to design suitable catalytic systems for enhanced sustainable chemistry in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metal-organic framework based on copper(I) sulfate and 4,4'-bipyridine catalyzes the cyclopropanation of styrene

    International Nuclear Information System (INIS)

    Shi Fanian; Silva, Ana Rosa; Rocha, Joao


    The hydrothermal synthesis of a new metal-organic framework (MOF) formulated as Cu 2 (4,4'-bpy) 2 SO 4 .6(H 2 O), [abbreviation: (1); bpy or 4,4'-bpy=4,4'-bipyridine; SO 4 2- =sulfate group] has been reported. The structure of this MOF consists of Cu + nodes connected via 4,4'-bpy to form infinite chains, with two neighboring chains further bridged on the nodes by SO 4 2- , resulting in a 1-D double chain network. Guest water molecules reside in between the chains and are hydrogen-bonded to the O and S atoms from the nearest sulfate groups, leading to the formation of a 3-D supramolecular framework. This MOF is good heterogeneous catalyst for the cyclopropanation of styrene, with high trans cyclopropane diastereoselectivity and was recycled and reused for three consecutive cycles without a significant loss of catalytic activity. - Graphical Abstract: A new MOF structure built up of 4,4 ' -bipyridine, sulphate and Cu(I), is an active heterogeneous catalyst for cyclopropanation of styrene with ethyldiazoacetate. Highlights: → The synthesis is different from solvothermal synthesis for other Cu(I) compounds. → The compound and the structure are new. → H bonds form infinite planes among water molecules and sulphate species. → H bonding interaction makes the structure into a 3D supramolecular framework. → Active catalytic property as heterogeneous catalyst for cyclopropanation of styrene.

  3. Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO 2

    Energy Technology Data Exchange (ETDEWEB)

    Resende, Karen A.; Hori, Carla E.; Noronha, Fabio B.; Shi, Hui; Gutierrez, Oliver Y.; Camaioni, Donald M.; Lercher, Johannes A.


    Hydrogenation of phenol in aqueous phase was studied over a series of ZrO2-supported Pd catalysts in order to explore the effects of particle size and of Ag addition on the activity of Pd. Kinetic assessments were performed in a batch reactor, on monometallic Pd/ZrO2 samples with different Pd loadings (0.5%, 1% and 2%), as well as on a 1% PdAg/ZrO2 sample. The turnover frequency (TOF) increases with the Pd particle size. The reaction orders in phenol and H2 indicate that the surface coverages by phenol, H2 and their derived intermediates are higher on 0.5% Pd/ZrO2 than on other samples. The activation energy was the lowest on the least active sample (0.5% Pd/ZrO2), while being identical on 1% and 2% Pd/ZrO2 catalysts. Thus, the significantly lower activity of the small Pd particles (1-2 nm on average) in 0.5%Pd/ZrO2 is explained by the unfavorable activation entropies for the strongly bound species. The presence of Ag increases considerably the TOF of the reaction by decreasing the Ea and increasing the coverages of phenol and H2.

  4. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination. (United States)

    Shin, Kwangmin; Kim, Hyunwoo; Chang, Sukbok


    Owing to the prevalence of nitrogen-containing compounds in functional materials, natural products and important pharmaceutical agents, chemists have actively searched for the development of efficient and selective methodologies allowing for the facile construction of carbon-nitrogen bonds. While metal-catalyzed C-N cross-coupling reactions have been established as one of the most general protocols for C-N bond formation, these methods require starting materials equipped with functional groups such as (hetero)aryl halides or their equivalents, thus generating stoichiometric amounts of halide salts as byproducts. To address this aspect, a transition-metal-catalyzed direct C-H amination approach has emerged as a step- and atom-economical alternative to the conventional C-N cross-coupling reactions. However, despite the significant recent advances in metal-mediated direct C-H amination reactions, most available procedures need harsh conditions requiring stoichiometric external oxidants. In this context, we were curious to see whether a transition-metal-catalyzed mild C-H amination protocol could be achieved using organic azides as the amino source. We envisaged that a dual role of organic azides as an environmentally benign amino source and also as an internal oxidant via N-N2 bond cleavage would be key to develop efficient C-H amination reactions employing azides. An additional advantage of this approach was anticipated: that a sole byproduct is molecular nitrogen (N2) under the perspective catalytic conditions. This Account mainly describes our research efforts on the development of rhodium- and iridium-catalyzed direct C-H amination reactions with organic azides. Under our initially optimized Rh(III)-catalyzed amination conditions, not only sulfonyl azides but also aryl- and alkyl azides could be utilized as facile amino sources in reaction with various types of C(sp(2))-H bonds bearing such directing groups as pyridine, amide, or ketoxime. More recently, a new

  5. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)


    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo2C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo2C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft2 at a feed pressure of only 20 psig. The highest H2/N2 selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo2C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo2C catalyst layers. We have fabricated a Mo2C/V composite membrane that in pure gas testing delivered a H2 flux of 238 SCFH/ft2 at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft2.psi. However, during testing of a Mo2C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft2.psi was obtained which was stable during the entire test, meeting the permeance associated with

  6. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture. (United States)

    Li, Wei; Thirumurugan, A; Barton, Phillip T; Lin, Zheshuai; Henke, Sebastian; Yeung, Hamish H-M; Wharmby, Michael T; Bithell, Erica G; Howard, Christopher J; Cheetham, Anthony K


    Two analogous metal-organic frameworks (MOFs) with the perovskite architecture, [C(NH2)3][Mn(HCOO)3] (1) and [(CH2)3NH2][Mn(HCOO)3] (2), exhibit significantly different mechanical properties. The marked difference is attributed to their distinct modes of hydrogen bonding between the A-site amine cation and the anionic framework. The stronger cross-linking hydrogen bonding in 1 gives rise to Young's moduli and hardnesses that are up to twice those in 2, while the thermal expansion is substantially smaller. This study presents clear evidence that the mechanical properties of MOF materials can be substantially tuned via hydrogen-bonding interactions.

  7. Simultaneous Deep Tunneling and Classical Hopping for Hydrogen Diffusion on Metals (United States)

    Fang, Wei; Richardson, Jeremy O.; Chen, Ji; Li, Xin-Zheng; Michaelides, Angelos


    Hydrogen diffusion on metals exhibits rich quantum behavior, which is not yet fully understood. Using simulations, we show that many hydrogen diffusion barriers can be categorized into those with parabolic tops and those with broad tops. With parabolic-top barriers, hydrogen diffusion evolves gradually from classical hopping, to shallow tunneling, to deep tunneling as the temperature (T ) decreases, and noticeable quantum effects persist at moderate T . In contrast, with broad-top barriers quantum effects become important only at low T and the classical-to-quantum transition is sharp, at which classical hopping and deep tunneling both occur. This coexistence indicates that more than one mechanism contributes to the quantum reaction rate. The conventional definition of the classical-to-quantum crossover T is invalid for the broad tops, and we give a new definition. Extending this, we propose a model to predict the transition T for broad-top diffusion, providing a general guide for theory and experiment.

  8. Retention of hydrogen in fcc metals irradiated at temperatures leading to high densities of bubbles or voids (United States)

    Garner, F. A.; Simonen, E. P.; Oliver, B. M.; Greenwood, L. R.; Grossbeck, M. L.; Wolfer, W. G.; Scott, P. M.


    Large amounts of hydrogen and helium are generated in structural metals in accelerator-driven systems. It is shown that under certain conditions, hydrogen can be stored in irradiated nickel and stainless steels at levels strongly in excess of that predicted by Sieverts' law. These conditions are first, the availability of hydrogen from various radiolytic and environmental sources and second, the formation of radiation-induced cavities to store hydrogen. These cavities can be highly pressurized bubbles or under-pressurized voids, with concurrent helium in the cavities at either low or very high levels. Transmutant sources of hydrogen are often insufficient to pressurize these cavities, and therefore environmental sources are required. The stored hydrogen appears to be stable for many years at room temperature. A conceptual model to describe such behavior requires the continuous generation of hydrogen from (n,p) reactions and possibly other radiolytic sources which can create a supersaturation of hydrogen in the metal, leading to the pressurization of voids and helium bubbles. Once captured in a bubble, the hydrogen is assumed to be in molecular form. Dissolution back into the metal requires chemisorption and dissociation on the bubble surface. Both of these processes have large activation barriers, particularly when oxygen, carbon, and other impurities poison the bubble surface. However, these chemisorbed poisons may reduce but not entirely restrict the ingress or egress of atomic hydrogen.

  9. Molecular beam study of the mechanism of catalyzed hydrogen--deuterium exchange on platinum single crystal surfaces

    International Nuclear Information System (INIS)

    Bernasek, S.L.; Somorjai, G.A.


    The hydrogen--deuterium exchange reaction was studied by molecular beam scattering on low and high Miller index crystal faces of platinum in the surface temperature range of 300--1300degreeK. Under the condition of the experiments which put strict limitation on the residence time of the detected molecules, the reaction product, HD, was readily detectable from the high Miller index, stepped surfaces (integrated reaction probability, defined as total desorbed HD flux divided by D 2 flux, is approx.10/sup -1/) while HD formation was below the limit of detectability on the Pt(111) low Miller index surface (reaction probability 2 beam pressure and half-order in H 2 background pressure. The absence of beam kinetic energy dependence of the rate indicates that the molecular adsorption does not require activation energy. The surface is able to store a sufficiently large concentration of atoms which react with the molecules by a two-branch mechanism. The rate constants for this two-branch mechanism were determined under conditions of constant H atom coverage, reducing the bimolecular reaction to a pseudo-first-order reaction. At lower temperatures ( 1 = (2plus-or-minus1) times10 5 exp(-4.5plus-or-minus0.5 kcal/RT) sec/sup -1/. The rate determining step appears to be the diffusion of the D 2 molecule on the surface to a step site where HD is formed via a three-center (atom--molecule) reaction, or via a two-center (atom--atom) reaction subsequent to D 2 dissociation at the step. At higher temperatures (>600degreeK) the reaction between an adsorbed H atom and an incident D 2 gas molecule competes with the low temperature branch. The rate constant for this branch is k 2 = (1plus-or-minus2) times10 2 exp(-0.6plus-or-minus0.3 kcal/RT) sec/sup -1/

  10. Low-temperature metallic liquid hydrogen: an ab-initio path-integral molecular dynamics perspective (United States)

    Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew; Pickard, Chris; Needs, Richard; Michaelides, Angelos; Wang, Enge


    Experiments and computer simulations have shown that the melting temperature of solid hydrogen drops with pressure above about 65 GPa, suggesting that a low temperature liquid state might exist. It has also been suggested that this liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Using a combination of ab initio path-integral molecular dynamics and the two-phase methods, we have simulated the melting of solid hydrogen under finite temperatures. We found an atomic solid phase from 500 to 800 GPa which melts at < 200 K. Beyond this and up to pressures of 1,200 GPa a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature in this system as ab initio simulations with classical nuclei lead to a considerably higher melting temperature of ~300 K across the entire pressure range considered.

  11. Effect of preparation method of metal hydride electrode on efficiency of hydrogen electrosorption process

    Energy Technology Data Exchange (ETDEWEB)

    Giza, Krystyna [Czestochowa University of Technology (Poland). Faculty of Production Engineering and Materials Technology; Drulis, Henryk [Trzebiatowski Institute of Low Temperatures and Structure Research PAS, Wroclaw (Poland)


    The preparation of negative electrodes for nickel-metal hydride batteries using LaNi{sub 4.3}Co{sub 0.4}Al{sub 0.3} alloy is presented. The constant current discharge technique is employed to determine the discharge capacity, the exchange current density and the hydrogen diffusion coefficient of the studied electrodes. The electrochemical performance of metal hydride electrode is strongly affected by preparation conditions. The results are compared and the advantages and disadvantages of preparation methods of the electrodes are also discussed.

  12. Hydrogen-induced metallicity and strengthening of MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yakovkin, I.N., E-mail:; Petrova, N.V.


    Highlights: • Hydrogen inserted into MoS{sub 2} bilayers increases the interlayer interaction. • Adsorbed or intercalated H monolayer makes the surface metallic. • Fermi surface of the H/MoS{sub 2} shows a significant nesting. - Abstract: The performed DFT calculations for MoS{sub 2} layers with adsorbed and intercalated hydrogen indicate that the atomic hydrogen monolayer makes the surface metallic. The physisorbed H{sub 2} does not affect electronic properties of the MoS{sub 2} monolayer, which remains a direct gap semiconductor. Due to forming S–H–S bonds, hydrogen atoms, intercalated into the space between MoS{sub 2} layers, increase the interlayer interaction from 0.12 eV to 0.60 eV. The related increase of the stiffness of the Mo–H–Mo layered system is of a primary importance for the interpretation of images of the surface obtained with the Ultrasonic Force Microscopy (Kolosov and Yamanaka, 1993) [42].

  13. Standardized hydrogen storage module with high utilization factor based on metal hydride-graphite composites (United States)

    Bürger, Inga; Dieterich, Mila; Pohlmann, Carsten; Röntzsch, Lars; Linder, Marc


    In view of hydrogen based backup power systems or small-scale power2gas units, hydrogen storages based on metal hydrides offer a safe and reliable solution. By using Hydralloy C5 as suitable hydride forming alloy, the present tank design guarantees very simple operating conditions: pressures between 4 bar and 30 bar, temperatures between 15 °C and 40 °C and minimal efforts for thermal management in combination with fast and constant charging and discharging capabilities. The modular tank consists of 4 layers with 5 reactor tubes each that are filled with metal hydride-graphite composites of a diameter of 21 mm. Experiments show that each layer of this tank is able to desorb the desired amount of hydrogen for a fuel cell operation at electrical power of 160 Wel for 100 min reaching a utilization factor of 93% of the stored hydrogen at RC. Furthermore, the experimental results of modularity, increasing loads and the electric air ventilation are presented.

  14. Application of Proton Conductors to Hydrogen Monitoring for Liquid Metal and Molten Salt Systems (United States)

    Kondo, Masatoshi; Muroga, Takeo; Katahira, Koji; Oshima, Tomoko

    The chemical control of impurity such as hydrogen and oxygen in coolants is one of the critical issues for the development of liquid metal cooled fast reactors and self-cooled liquid breeder blankets for fusion reactors. Especially, hydrogen (isotopes) level is the key parameter for corrosion and mechanical properties of the in-reactor components. For fission reactors, the monitor of hydrogen level in the melt is important for safety operation. The control of tritium is essential for the tritium breeding performance of the fusion reactors. Therefore, on-line hydrogen sensing is a key technology for these systems. In the present study, conceptual design for the on-line hydrogen sensor to be used in liquid sodium (Na), lead (Pb), lead-bismuth (Pb-Bi), lithium (Li), lead-lithium (Pb-17Li) and molten salt LiF-BeF2 (Flibe) was performed. The cell of hydrogen sensor is made of a solid electrolyte. The solid electrolyte proposed in this study is the CaZrO3-based ceramics, which is well-known as proton conducting ceramics. In this concept, the cell is immersed into the melt which is containing the hydrogen at the activity of PH1 of ambient atmosphere. Then, the cell is filled with Ar-H2 mixture gas at regulated hydrogen activity of PH2. The electromotive force (EMF) is obtained by the proton conduction in the electro chemical system expressed as Pt, Melt(PH1) | Proton conductor | PH2, Pt. The Nernst equation is used for the evaluation of the hydrogen activity from the obtained EMF. The evaluations of expected performance of the sensor in liquid Na, Pb, Pb-Bi, Pb-17Li, Li and Flibe were carried out by means of the measurement test in gas atmosphere at hydrogen activities equivalent to those for the melts in the reactor conditions. In the test, the hydrogen activity in the gas varied from 2.2x10-14 to 1. The sensor exhibited good response, stability and reproducibility.

  15. Metal-insulator phase transition in hydrogenated thin films of V2O3 (United States)

    Andreev, V. N.; Klimov, V. A.; Kompan, M. E.


    Temperature dependences of the electrical conductivity of thin vanadium sesquioxide V2O3 films obtained by using the laser sputtering technique have been studied. A significant decrease (by four-five orders of magnitude) in the electrical conductivity has been observed below 150 K as a result of a metal-insulator phase transition. It is shown that hydrogenation of films lowers the temperature of this phase transition.

  16. Regioselective hydrogen isotope exchange reaction in benzoic acid and its alkali metal salts

    International Nuclear Information System (INIS)

    Nakagawa, Akiko; Hasegawa, Hideaki; Oohashi, Kunio; Seki, Hiroko.


    The hydrogen isotope exchange reaction of benzoic and acid its alkali metal salts with deuterium oxide was studied in the presence of RhCl 3 ·3H 2 O. The products were analyzed by 1 H- and 13 C-NMR spectroscopies. High regioselectivity of the exchange at the ortho positions was established, and the extent of deuterium labeling and the distribution of d 0 , d 1 , and d 2 were determined. The reaction mechanism was briefly discussed. (author)

  17. Phase transitions and radiative proton-capture nuclear reactions in metallic hydrogen

    International Nuclear Information System (INIS)

    Setsuo, Ichimaru


    Protons being the lightest nuclei, metallic hydrogen exhibits the features of the quantum liquids most relevant to the enormously enhanced nuclear reactions; thermonuclear and pycno-nuclear rates and associated enhancement factors of radiative proton captures of high-Z nuclei as well as of deuterons are evaluated. Atomic states of high-Z impurities are determined in a way consistent with the equations of state and screening characteristics of the metallic hydrogen. Rates of pycno-nuclear p-d reactions are prodigiously high at densities ≥ 20 g/cm 3 , pressures ≥ 1 Gbar, and temperatures ≥ 950 K near the conditions of solidification. It is also predicted that proton captures of nuclei such as C, N, O, and F may take place at considerable rates owing to strong screening by K-shell electrons, if the densities ≥ 60-80 g/cm 3 , the pressures ≥ 7-12 Gbar, and the temperatures just above solidification. Phase diagrams of metallic hydrogen describing solidification thus count essentially in the pycno-nuclear processes. A novel scheme of pycno-nuclear fusion reactors that utilizes p-d reactions in metallic hydrogen is presented; it eliminates those ferocious problems inherent in the conventional thermonuclear-fusion reactors employing d-t reactions: The fusion yields of p-d reactions, i.e., stable 3 He and γ -rays (at 5.494 MeV), would not produce hazardous radioactive byproducts; absent likewise are the instabilities associated with confinement of the plasmas at ultrahigh temperatures. (author)

  18. Teaching - methodical and research center of hydrogen power engineering and platinum group metals in the former Soviet Union countries

    International Nuclear Information System (INIS)

    Evdokimov, A.A; Sigov, A.S; Shinkarenko, V.V.


    Full text: Teaching - Methodical and Research Center (TMRC) 'Sokolinaja Gora' is founded in order to provide methodical-information and scientific support of institutes of higher education in the field of hydrogen power engineering and platinum group metals in Russia and in the countries of the Former Soviet union. It is independent association of creative communities of scientist of higher educational specialists. The main directions of the Center activity are: 1. Teaching-methodological support and development of teaching in the field of hydrogen power engineering and platinum group metals in Russia in the countries of the Former Soviet Union. Themes of teaching includes the basic of safe using of hydrogen technologies and devices, ecological, economic and law aspects of new hydrogen power engineering, transition to which in 21 century is one of the central problems of mankind survival; 2. Organizing of joint researches by independent creative communities of scientists in the field of hydrogen power engineering and platinum group metal; 3. Independent scientific examination, which is made by Advisory Committee of High Technologies consisting of representatives of the countries of Former Soviet Union, which are standing participants of an Annual International Symposia 'Hydrogen Power Engineering and Platinum Group Metals in the Former Soviet Union Countries'. Structure of the Center: 1. Center of strategic development in the field of high technologies; 2. Scientific Research Institute of Hydrogen Power Engineering and Platinum Group Metals; 3. Teaching-Methodical Association in specialization 'Hydrogen Power Engineering and economics' and hydrogen wide spread training; 4. Media Center 'Hydrogen Power Engineering and Platinum Group Metals', 5. Organizational Center; 6. Administrative Center. The Center will be established step-by-step in 2005-2010 on the basis of the following programs: Teaching-methodological program. On the basis of this program it is planned to

  19. Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications. (United States)

    Wang, Jing; Xu, Fan; Jin, Haiyan; Chen, Yiqing; Wang, Yong


    Hydrogen has been hailed as a clean and sustainable alternative to finite fossil fuels in many energy systems. Water splitting is an important method for hydrogen production in high purity and large quantities. To accelerate the hydrogen evolution reaction (HER) rate, it is highly necessary to develop high efficiency catalysts and to select a proper electrolyte. Herein, the performances of non-noble metal-based carbon composites under various pH values (acid, alkaline and neutral media) for HER in terms of catalyst synthesis, structure and molecular design are systematically discussed. A detailed analysis of the structure-activity-pH correlations in the HER process gives an insight on the origin of the pH-dependence for HER, and provide guidance for future HER mechanism studies on non-noble metal-based carbon composites. Furthermore, this Review gives a fresh impetus to rational design of high-performance noble-metal-free composites catalysts and guide researchers to employ the established electrocatalysts in proper water electrolysis technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment

    KAUST Repository

    Jang, Ji-Wook


    Widespread application of solar water splitting for energy conversion is largely dependent on the progress in developing not only efficient but also cheap and scalable photoelectrodes. Metal oxides, which can be deposited with scalable techniques and are relatively cheap, are particularly interesting, but high efficiency is still hindered by the poor carrier transport properties (i.e., carrier mobility and lifetime). Here, a mild hydrogen treatment is introduced to bismuth vanadate (BiVO4), which is one of the most promising metal oxide photoelectrodes, as a method to overcome the carrier transport limitations. Time-resolved microwave and terahertz conductivity measurements reveal more than twofold enhancement of the carrier lifetime for the hydrogen-treated BiVO4, without significantly affecting the carrier mobility. This is in contrast to the case of tungsten-doped BiVO4, although hydrogen is also a donor type dopant in BiVO4. The enhancement in carrier lifetime is found to be caused by significant reduction of trap-assisted recombination, either via passivation or reduction of deep trap states related to vanadium antisite on bismuth or vanadium interstitials according to density functional theory calculations. Overall, these findings provide further insights on the interplay between defect modulation and carrier transport in metal oxides, which benefit the development of low-cost, highly-efficient solar energy conversion devices.

  1. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.


    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  2. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.


    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  3. Method and apparatus for hydrogen production from water (United States)

    Muradov, Nazim Z. (Inventor)


    A method, apparatuses and chemical compositions are provided for producing high purity hydrogen from water. Metals or alloys capable of reacting with water and producing hydrogen in aqueous solutions at ambient conditions are reacted with one or more inorganic hydrides capable of releasing hydrogen in aqueous solutions at ambient conditions, one or more transition metal compounds are used to catalyze the reaction and, optionally, one or more alkali metal-based compounds. The metal or alloy is preferably aluminum. The inorganic hydride is from a family of complex inorganic hydrides; most preferably, NaBH.sub.4. The transition metal catalyst is from the groups VIII and IB; preferably, Cu and Fe. The alkali metal-based compounds are preferably NaOH, KOH, and the like. Hydrogen generated has a purity of at least 99.99 vol. % (dry basis), and is used without further purification in all types of fuel cells, including the polymer electrolyte membrane (PEM) fuel cell.

  4. Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal-Organic Frameworks. (United States)

    Gómez-Gualdrón, Diego A; Wang, Timothy C; García-Holley, Paula; Sawelewa, Ruth M; Argueta, Edwin; Snurr, Randall Q; Hupp, Joseph T; Yildirim, Taner; Farha, Omar K


    Metal-organic frameworks (MOFs) are porous crystalline materials that are promising for adsorption-based, on-board storage of hydrogen in fuel-cell vehicles. Volumetric and gravimetric hydrogen capacities are the key factors that determine the size and weight of the MOF-filled tank required to store a certain amount of hydrogen for reasonable driving range. Therefore, they must be optimized so the tank is neither too large nor too heavy. Because the goals of maximizing MOF volumetric and gravimetric hydrogen adsorption loadings individually are incompatible, an in-depth understanding of the trade-off between MOF volumetric and gravimetric loadings is necessary to achieve the best compromise between these properties. Here we study, both experimentally and computationally, the trade-off between volumetric and gravimetric cryo-adsorbed hydrogen deliverable capacity by taking an isoreticular series of highly stable zirconium MOFs, NU-1101, NU-1102, and NU-1103 as a case study. These MOFs were studied under recently proposed operating conditions: 77 K/100 bar →160 K/5 bar. We found the difference between highest and lowest measured deliverable capacity in the MOF series to be ca. 40% gravimetrically, but only ca. 10% volumetrically. From our molecular simulation results, we found hydrogen "monolayer" adsorption to be proportional to the surface area, whereas hydrogen "pore filling" adsorption is proportional to the pore volume. Thus, we found that the higher variability in gravimetric deliverable capacity in contrast to the volumetric capacity, occurs due to the proportional relation between gravimetric surface area and pore volume in the NU-110x series in contrast to the inverse relation between volumetric surface area and void fraction. Additionally, we find better correlations with geometric surface areas than with BET areas. NU-1101 presents the highest measured volumetric performance with 46.6 g/L (9.1 wt %), whereas NU-1103 presents the highest gravimetric one

  5. Leaching of metals from large pieces of printed circuit boards using citric acid and hydrogen peroxide. (United States)

    Jadhav, Umesh; Su, C; Hocheng, Hong


    In the present study, the leaching of metals from large pieces of computer printed circuit boards (CPCBs) was studied. A combination of citric acid (0.5 M) and 1.76 M hydrogen peroxide (H 2 O 2 ) was used to leach the metals from CPCB piece. The influence of system variables such as H 2 O 2 concentration, concentration of citric acid, shaking speed, and temperature on the metal leaching process was investigated. The complete metal leaching was achieved in 4 h from a 4 × 4 cm CPCB piece. The presence of citric acid and H 2 O 2 together in the leaching solution is essential for complete metal leaching. The optimum addition amount of H 2 O 2 was 5.83 %. The citric acid concentration and shaking speed had an insignificant effect on the leaching of metals. The increase in the temperature above 30 °C showed a drastic effect on metal leaching process.

  6. Graphene–Noble Metal Nano-Composites and Applications for Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar Basu


    Full Text Available Graphene based nano-composites are relatively new materials with excellent mechanical, electrical, electronic and chemical properties for applications in the fields of electrical and electronic devices, mechanical appliances and chemical gadgets. For all these applications, the structural features associated with chemical bonding that involve other components at the interface need in-depth investigation. Metals, polymers, inorganic fibers and other components improve the properties of graphene when they form a kind of composite structure in the nano-dimensions. Intensive investigations have been carried out globally in this area of research and development. In this article, some salient features of graphene–noble metal interactions and composite formation which improve hydrogen gas sensing properties—like higher and fast response, quick recovery, cross sensitivity, repeatability and long term stability of the sensor devices—are presented. Mostly noble metals are effective for enhancing the sensing performance of the graphene–metal hybrid sensors, due to their superior catalytic activities. The experimental evidence for atomic bonding between metal nano-structures and graphene has been reported in the literature and it is theoretically verified by density functional theory (DFT. Multilayer graphene influences gas sensing performance via intercalation of metal and non-metal atoms through atomic bonding.

  7. A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei


    Full Text Available of Hydrogen Energy Vol. 40(13) A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications Jianwei Ren*, Nicholas M. Musyoka, Henrietta W. Langmi, Ashton Swartbooi, Brian C. North, Mkhulu Mathe Hy...

  8. Selectivity of layered double hydroxides and their derivative mixed metal oxides as sorbents of hydrogen sulfide. (United States)

    Othman, Mohamed A; Zahid, Waleed M; Abasaeed, Ahmed E


    In the context of finding high efficient sorbent materials for removing hydrogen sulfide (H2S) from air stream, a screening study was performed to find the best combination of metals for the synthesis of layered double hydroxides (LDHs) and their derivative mixed metal oxides. Based on selectivity of 998 natural mineral species of sulfur-containing compounds, Cu(2+), Ni(2+) and Zn(2+) were selected as divalent metals, and Fe(3+), Al(3+) and Cr(3+) as trivalent metals to synthesis the LDHs sorbents. 10 LDHs materials and their calcined mixed metal oxides, Ni(0.66)Al(0.34), Cu(0.35)Ni(0.32)Al(0.33), Zn(0.66)Al(0.34), Cu(0.36)Zn(0.32)Al(0.32), Ni(0.64)Fe(0.36), Cu(0.35)Ni(0.31)Fe(0.34), Ni(0.66)Cr(0.34), Cu(0.35)Ni(0.31)Cr(0.34), Zn(0.66)Cr(0.34), Cu(0.33)Zn(0.32)Cr(0.35) were synthesized, characterized chemically and physically, and then tested using breakthrough test to determine their sulfur uptake. Ni(0.64)Fe(0.36) mixed metal oxides was found to have the best uptake of hydrogen sulfide (136 mg H₂S/g). Regeneration of spent Ni(0.64)Fe(0.36) mixed metal oxides was studied using two different mixture solutions, NaCl/NaOH and acetate-buffer/NaCl/NaOH. The latter mixture successfully desorbed the sulfur from the Ni0.64Fe0.36 sorbent for 2 cycles of regeneration/sorption. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal-Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Pullen, Sonja; Fei, Honghan; Orthaber, Andreas; Cohen, Seth M.; Ott, Sascha [Uppsala; (UCSD)


    A molecular proton reduction catalyst [FeFe](dcbdt)(CO)6 (1, dcbdt = 1,4-dicarboxylbenzene-2,3-dithiolate) with structural similarities to [FeFe]-hydrogenase active sites has been incorporated into a highly robust Zr(IV)-based metal–organic framework (MOF) by postsynthetic exchange (PSE). The PSE protocol is crucial as direct solvothermal synthesis fails to produce the functionalized MOF. The molecular integrity of the organometallic site within the MOF is demonstrated by a variety of techniques, including X-ray absorption spectroscopy. In conjunction with [Ru(bpy)3]2+ as a photosensitizer and ascorbate as an electron donor, MOF-[FeFe](dcbdt)(CO)6 catalyzes photochemical hydrogen evolution in water at pH 5. The immobilized catalyst shows substantially improved initial rates and overall hydrogen production when compared to a reference system of complex 1 in solution. Improved catalytic performance is ascribed to structural stabilization of the complex when incorporated in the MOF as well as the protection of reduced catalysts 1 and 12– from undesirable charge recombination with oxidized ascorbate.

  10. Hydrogen Generation from Photocatalytic Silver|Zinc Oxide Nanowires: Towards Multifunctional Multisegmented Nanowire Devices

    NARCIS (Netherlands)

    Maijenburg, A.W.; Rodijk, E.J.B.; Maas, M.G.; Enculescu, Monica; Blank, David H.A.; ten Elshof, Johan E.


    Photoactive nanowires: A novel photo-electrochemical nanowire diode that catalyzes the conversion of methanol and water to hydrogen under UV light is demonstrated. The wire consists of a metal and a metal oxide segment that are connected via a Schottky barrier. Other functions, such as remote-

  11. Estudio cinético de la descomposición catalizada de peróxido de hidrógeno sobre carbón activado Kinetic study of the catalyzed decomposition of hydrogen peroxide on activated carbon

    Directory of Open Access Journals (Sweden)

    Elihu Paternina


    Full Text Available The kinetic study of decomposition of hydrogen peroxide catalyzed by activated carbon was carried out. The effect of concentrations of reactants and temperature were experimentally studied. Kinetic data were evaluated using differential method of initial rates of reaction. When a typical kinetic law for reactions in homogeneous phase is used, first order of reaction is obtained for hydrogen peroxide and activated carbon, and activation energy of 27 kJ mol-1 for the reaction was estimated. Experimentally was observed that surface of activated carbon is chemically modified during decomposition of hydrogen peroxide, based on this result a scheme of reaction was proposed and evaluated. Experimental data fits very well to a Langmuir- Hinshelwood kinetic model and activation energy of 40 kJ mol-1 was estimated for reaction in heterogeneous phase.

  12. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Breen, J.P.; Burch, R.; Coleman, H.M. [School of Chemistry, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG N. Ireland (United Kingdom)


    A range of oxide-supported metal catalysts have been investigated for the steam reforming of ethanol/water mixtures for the production of hydrogen. Alumina-supported catalysts are very active at lower temperatures for the dehydration of ethanol to ethene which, at higher temperatures, is converted into H{sub 2}, CO, and CO{sub 2} as the major products and CH{sub 4} as a minor product. The order of activity of the metals is Rh>Pd>Ni=Pt. With ceria/zirconia-supported catalysts, the formation of ethene is not observed and the order of activity at higher temperatures is Pt{>=}Rh>Pd. By using combinations of a ceria/zirconia-supported metal catalyst with the alumina support it is shown that the formation of ethene does not inhibit the steam reforming reaction at higher temperatures. It is concluded that the support plays a significant role in the steam reforming of ethanol.

  13. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili


    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Study on the surface reaction of uranium metal in hydrogen atmosphere with XPS

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong


    The surface reactions of uranium metal in hydrogen atmosphere at 25 degree C and 200 degree C and effects of temperature and carbon monoxide to the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between H 2 and uranium metal at 25 degree C leads to the further oxidation of surface layer of metal due to traces of water vapor. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing exposure to H 2 in the initial stages. The U4f 7/2 binding energy of UH 3 has been found to be 378.6 eV. Investigation indicates carbon monoxide inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmosphere

  15. Understanding hydrogen sorption in a metal-organic framework with open-metal sites and amide functional groups

    KAUST Repository

    Pham, Tony T.


    Grand canonical Monte Carlo (GCMC) studies of the mechanism of hydrogen sorption in an rht-MOF known as Cu-TPBTM are presented. The MOF is a decorated/substituted isostructural analogue to the unembellished rht-MOF, PCN-61, that was studied previously [ Forrest, K. A.J. Phys. Chem. C 2012, 116, 15538-15549. ]. The simulations were performed using three different hydrogen potentials of increasing complexity. Simulated hydrogen sorption isotherms and calculated isosteric heat of adsorption, Qst, values were in excellent agreement with the reported experimental data for only a polarizable model in one of four experimentally observed crystal structure configurations. The study demonstrates the ability of modeling to distinguish the differential sorption of distinct strucures; one configuration is found to be dominant due to favorable interactions with substrates. In addition, it was discovered that the presence of polar amide groups had a significant effect on the electrostatics of the Cu2+ ions and directs the low-pressure physisorption of hydrogen in the MOF. This is in contrast to what was observed in PCN-61, where an exterior copper ion had a higher relative charge and was the favored loading site. This tunability of the electrostatics of the copper ions via chemical substitution on the MOF framework can be explained by the presence of the negatively charged oxygen atom of the amide group that causes the interior Cu2+ ion to exhibit a higher positive charge through an inductive effect. Further, control simulations, taking advantage of the flexibility afforded by theoretical modeling, include artificially modified charges for both Cu2+ ions chosen equal to or with a higher charge on the exterior Cu2+ ion. This choice resulted in distinctly different hydrogen sorption characteristics in Cu-TPBTM with no direct sorption on the open-metal sites. Thus, this study demonstrates both the tunable nature of MOF platforms and the possibility for rational design of sorption

  16. On physics of the hydrogen plasticization and embrittlement of metallic materials, relevance to the safety and standards' problems

    International Nuclear Information System (INIS)

    Yury S Nechaev; Georgy A Filippov; T Nejat Veziroglu


    In the present contribution, some related fundamental problems of revealing micro mechanisms of hydrogen plasticization, superplasticity, embrittlement, cracking, blistering and delayed fracture of some technologically important industrial metallic materials are formulated. The ways are considered of these problems' solution and optimizing the technological processes and materials, particularly in the hydrogen and gas-petroleum industries, some aircraft, aerospace and automobile systems. The results are related to the safety and standardization problems of metallic materials, and to the problem of their compatibility with hydrogen. (authors)

  17. The role of atomic hydrogen in regulating the scatter of the mass-metallicity relation (United States)

    Brown, Toby; Cortese, Luca; Catinella, Barbara; Kilborn, Virginia


    In this paper, we stack neutral atomic hydrogen (H I) spectra for 9720 star-forming galaxies along the mass-metallicity relation. The sample is selected according to stellar mass (109 ≤ M⋆/M⊙ ≤ 1011) and redshift (0.02 ≤ z ≤ 0.05) from the overlap of the Sloan Digital Sky Survey and Arecibo Legacy Fast ALFA survey. We confirm and quantify the strong anticorrelation between H I mass and gas-phase metallicity at fixed stellar mass. Furthermore, we show for the first time that the relationship between gas content and metallicity is consistent between different metallicity estimators, contrary to the weaker trends found with star formation which are known to depend on the observational techniques used to derive oxygen abundances and star formation rates. When interpreted in the context of theoretical work, this result supports a scenario where galaxies exist in an evolving equilibrium between gas, metallicity and star formation. The fact that deviations from this equilibrium are most strongly correlated with gas mass suggests that the scatter in the mass-metallicity relation is primarily driven by fluctuations in gas accretion.

  18. Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang; Sanyal, Udishnu; Pangotra, Dhananjai; Holladay, Jamie D.; Camaioni, Donald M.; Gutiérrez, Oliver Y.; Lercher, Johannes A.


    Abstract Selective reduction of benzaldehyde to benzyl alcohol on C-supported Pt, Rh, Pd, and Ni in aqueous phase was conducted using either directly H2 (thermal catalytic hydrogenation, TCH) or in situ electrocatalytically generated hydrogen (electrocatalytic hydrogenation, ECH). In TCH, the intrinsic activity of the metals at room temperature and 1 bar H2 increased in the sequence Rh/C < Pt/C < Pd/C, while Ni/C is inactive at these conditions due to surface oxidation in the absence of cathodic potential. The reaction follows a Langmuir-Hinshelwood mechanism with the second hydrogen addition to the adsorbed hydrocarbon being the rate-determining step. All tested metals were active in ECH of benzaldehyde, although hydrogenation competes with the hydrogen evolution reaction (HER). The minimum cathodic potentials to obtain appreciable ECH rates were identical to the onset potentials of HER. Above this onset, the relative rates of H reacting to H2 and H addition to the hydrocarbon determines the selectivity to ECH and TCH. Accordingly, the selectivity of the metals towards ECH increases in the order Ni/C < Pt/C < Rh/C < Pd/C. Pd/C shows exceptionally high ECH selectivity due to its surprisingly low HER reactivity under the reaction conditions. Acknowledgements The authors would like to thank the groups of Hubert A. Gasteiger at the Technische Universität München of Jorge Gascon at the Delft University of Technology for advice and valuable discussions. The authors are grateful to Nirala Singh, Erika Ember, Gary Haller, and Philipp Rheinländer for fruitful discussions. We are also grateful to Marianne Hanzlik for TEM measurements and to Xaver Hecht and Martin Neukamm for technical support. Y.S. would like to thank the Chinese Scholarship Council for the financial support. The research described in this paper is part of the Chemical Transformation Initiative at Pacific Northwest National Laboratory (PNNL), conducted under the Laboratory Directed Research and

  19. Liquid Metallic Hydrogen II. A Critical Assessment of Current and Primordial Helium Levels in the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.


    Full Text Available Before a solar model becomes viable in astrophysics, one mus t consider how the ele- mental constitution of the Sun was ascertained, especially relative to its principle com- ponents: hydrogen and helium. Liquid metallic hydrogen has been proposed as a solar structural material for models based on condensed matter (e .g. Robitaille P.-M. Liq- uid Metallic Hydrogen: A Building Block for the Liquid Sun. Progr. Phys. , 2011, v. 3, 60–74. There can be little doubt that hydrogen plays a d ominant role in the uni- verse and in the stars; the massive abundance of hydrogen in t he Sun was established long ago. Today, it can be demonstrated that the near isointe nse nature of the Sun’s Balmer lines provides strong confirmatory evidence for a dis tinct solar surface. The situation relative to helium remains less conclusive. Stil l, helium occupies a prominent role in astronomy, both as an element associated with cosmol ogy and as a byproduct of nuclear energy generation, though its abundances within the Sun cannot be reliably estimated using theoretical approaches. With respect to th e determination of helium lev- els, the element remains spectroscopically silent at the le vel of the photosphere. While helium can be monitored with ease in the chromosphere and the prominences of the corona using spectroscopic methods, these measures are hig hly variable and responsive to elevated solar activity and nuclear fragmentation. Dire ct assays of the solar winds are currently viewed as incapable of providing definitive in formation regarding solar helium abundances. As a result, insight relative to helium r emains strictly based on the- oretical estimates which couple helioseismological appro aches to metrics derived from solar models. Despite their “state of the art” nature, heliu m estimates based on solar models and helioseismology are suspect on several fronts, i ncluding their reliance on solar opacities. The best knowledge can only come from the so

  20. Ultrahigh figure-of-merit for hydrogen generation from sodium borohydride using ternary metal catalysts (United States)

    Hu, Lunghao; Ceccato, R.; Raj, R.

    We report further increase in the figure-of-merit (FOM) for hydrogen generation from NaBH 4 than reported in an earlier paper [1], where a sub-nanometer layer of metal catalysts are deposited on carbon nanotube paper (CNT paper) that has been functionalized with polymer-derived silicon carbonitride (SiCN) ceramic film. Ternary, Ru-Pd-Pt, instead of the binary Pd-Pt catalyst used earlier, together with a thinner CNT paper is shown to increase the figure-of-merit by up to a factor of six, putting is above any other known catalyst for hydrogen generation from NaBH 4. The catalysts are prepared by first impregnating the functionalized CNT-paper with solutions of the metal salts, followed by reduction in a sodium borohydride solution. The reaction mechanism and the catalyst efficiency are described in terms of an electric charge transfer, whereby the negative charge on the BH 4 - ion is exchanged with hydrogen via the electronically conducting SiCN/CNT substrate [1].

  1. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)


    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  2. Study on Doppler coefficient for metallic fuel fast reactor added hydrogeneous moderator

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Naohiro; Iwasaki, Tomohiko; Tsujimoto, Kazuhumi [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Osugi, Toshitaka; Okajima, Shigeaki; Andoh, Masaki; Nemoto, Tatsuo; Mukaiyama, Takehiko


    A series of mock-up experiments for moderator added metallic fast reactor core was carried out at FCA to obtain the experimental verification for improvement of reactivity coefficients. Softened neutron spectrum increases Doppler effect by a factor of 2, and flatter adjoint neutron spectrum decreases Na void effect by a factor of 0.6 when hydrogen to heavy metal atomic number ratio is increased from 0.02 to 0.13. The experimental results are analyzed with SLALOM and CITATION-FBR, which is the standard design code system for a fast reactor at JAERI, and SRAC95 and CITATION-FBR. The present code system gives generally good agreement with the experimental results, especially by the use of the latter, the dependence of the Doppler effect to the hydrogen to fuel element atomic number density ratio is disappeared. Therefore, it looks possible to use the present code system for the conceptual design of a fast reactor system with hydrogeneous materials. (author)


    International Nuclear Information System (INIS)

    Wahl, Sean M.; Wilson, Hugh F.; Militzer, Burkhard


    The formation of the giant planets in our solar system, and likely a majority of giant exoplanets, is most commonly explained by the accretion of nebular hydrogen and helium onto a large core of terrestrial-like composition. The fate of this core has important consequences for the evolution of the interior structure of the planet. It has recently been shown that H 2 O, MgO, and SiO 2 dissolve in liquid metallic hydrogen at high temperature and pressure. In this study, we perform ab initio calculations to study the solubility of an innermost metallic core. We find dissolution of iron to be strongly favored above 2000 K over the entire pressure range (0.4-4 TPa) considered. We compare with and summarize the results for solubilities on other probable core constituents. The calculations imply that giant planet cores are in thermodynamic disequilibrium with surrounding layers, promoting erosion and redistribution of heavy elements. Differences in solubility behavior between iron and rock may influence evolution of interiors, particularly for Saturn-mass planets. Understanding the distribution of iron and other heavy elements in gas giants may be relevant in understanding mass-radius relationships, as well as deviations in transport properties from pure hydrogen-helium mixtures

  4. Electrostatically enhanced FF interactions through hydrogen bonding, halogen bonding and metal coordination: an ab initio study. (United States)

    Bauzá, Antonio; Frontera, Antonio


    In this manuscript the ability of hydrogen and halogen bonding interactions, as well as metal coordination to enhance FF interactions involving fluorine substituted aromatic rings has been studied at the RI-MP2/def2-TZVPD level of theory. We have used 4-fluoropyridine, 4-fluorobenzonitrile, 3-(4-fluorophenyl)propiolonitrile and their respective meta derivatives as aromatic compounds. In addition, we have used HF and IF as hydrogen and halogen bond donors, respectively, and Ag(i) as the coordination metal. Furthermore, we have also used HF as an electron rich fluorine donor entity, thus establishing FF interactions with the above mentioned aromatic systems. Moreover, a CSD (Cambridge Structural Database) search has been carried out and some interesting examples have been found, highlighting the impact of FF interactions involving aromatic fluorine atoms in solid state chemistry. Finally, cooperativity effects between FF interactions and both hydrogen and halogen bonding interactions have been analyzed and compared. We have also used Bader's theory of "atoms in molecules" to further describe the cooperative effects.

  5. Transition Metal-Promoted V2CO2 (MXenes): A New and Highly Active Catalyst for Hydrogen Evolution Reaction. (United States)

    Ling, Chongyi; Shi, Li; Ouyang, Yixin; Chen, Qian; Wang, Jinlan


    Developing alternatives to precious Pt for hydrogen production from water splitting is central to the area of renewable energy. This work predicts extremely high catalytic activity of transition metal (Fe, Co, and Ni) promoted two-dimensional MXenes, fully oxidized vanadium carbides (V 2 CO 2 ), for hydrogen evolution reaction (HER). The first-principle calculations show that the introduction of transition metal can greatly weaken the strong binding between hydrogen and oxygen and engineer the hydrogen adsorption free energy to the optimal value ≈0 eV by choosing the suitable type and coverage of the promoters as well as the active sites. Strain engineering on the performance of transition metal promoted V 2 CO 2 further reveals that the excellent HER activities can maintain well while those poor ones can be modulated to be highly active. This study provides new possibilities for cost-effective alternatives to Pt in HER and for the application of 2D MXenes.

  6. Numerical simulation of coupled heat and mass transfer in metal hydride-based hydrogen storage reactor

    International Nuclear Information System (INIS)

    Muthukumar, P.; Ramana, S. Venkata


    In this paper, a numerical investigation of two-dimensional heat and mass transfer during absorption of hydrogen in a cylindrical metal hydride bed containing MmNi 6.4 Al 0.4 is presented. By considering the variation in cooling fluid temperature along the axial direction (variable wall temperature), the changes in hydrogen concentration, hydride equilibrium pressure, and average hydride bed temperature at different axial locations are presented. The average bed temperature profiles and hydrogen storage capacities at different supply pressures showed good agreement with the experimental data reported in the literature. As the absorption progresses, the change in cooling fluid temperature along the axial direction is found to decrease and becomes unchanged at the end of the absorption process. The effect of variable wall temperature on hydrogen absorption rate for different supply pressures and hydride bed thicknesses are presented. The effect of variable wall temperature on absorption time is found to be significant for the hydride beds of thickness of above 7.5 mm. For a supply pressure of 20 bar, the maximum difference in absorption time between variable wall temperature and constant wall temperature boundary conditions is about 300 s for 17.5 mm bed thickness


    Energy Technology Data Exchange (ETDEWEB)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.


    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  8. Homogeneous catalysis by transition metals

    International Nuclear Information System (INIS)

    Masters, K.


    Fundamentals of homogeneous catalysis by metal complex aAe presented in the monograph along with the mechanisms of practically all types of catalytic reactions proceeding in the presence of transition metal complexes. In particular, considered are: catalytic cycles for olefin hydrogenation in the presence of Ru(2) complex; for alkene epoxidation catalyzed by Mo(6); for alkene metathesis reaction catalyzed by Ta and W compounds. Catalytic systems on the basis of Zr, Mo, W, Ru complexes being in the stage of development of the processes of nitrogen fixation reductive oligomerization alkene activation are described. Bibliography contains more than 400 references

  9. Dynamics of a Rydberg hydrogen atom near a metal surface in the electron-extraction scheme

    Energy Technology Data Exchange (ETDEWEB)

    Iñarrea, Manuel [Área de Física Aplicada, Universidad de La Rioja, Logroño (Spain); Lanchares, Víctor [Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, La Rioja (Spain); Palacián, Jesús [Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, Pamplona (Spain); Pascual, Ana I. [Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, La Rioja (Spain); Salas, J. Pablo, E-mail: [Área de Física Aplicada, Universidad de La Rioja, Logroño (Spain); Yanguas, Patricia [Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, Pamplona (Spain)


    We study the classical dynamics of a Rydberg hydrogen atom near a metal surface in the presence of a constant electric field in the electron-extraction situation [1], e.g., when the field attracts the electron to the vacuum. From a dynamical point of view, this field configuration provides a dynamics richer than in the usual ion-extraction scheme, because, depending on the values of field and the atom–surface distance, the atom can be ionized only towards the metal surface, only to the vacuum or to the both sides. The evolution of the phase space structure as a function of the atom–surface distance is explored in the bound regime of the atom. In the high energy regime, the ionization mechanism is also investigated. We find that the classical results of this work are in good agreement with the results obtained in the wave-packet propagation study carried out by So et al. [1]. - Highlights: • We study a classical hydrogen atom near a metal surface plus a electric field. • We explore the phase space structure as a function of the field strength. • We find most of the electronic orbits are oriented along the field direction. • We study the ionization of the atom for several atom–surface distances. • This classical study is in good agreement with the quantum results.

  10. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui


    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  11. [Noncompetitive immunochemical determination of ribonuclease using transition metal ions and the effect of catalytic hydrogen release]. (United States)

    Dykhal, Iu I; Mediantseva, E P; Murtazina, N R; Safina, G R; Budnikov, G K; Kalacheva, N V


    A noncompetitive variant of immunochemical ribonuclease (RNase) determination has been developed, involving the use of Co(II) as a label. A variety of approaches to labeling the immunological reagent with the metal have been assessed. In the variant proposed, catalytic hydrogen release was used as a means of detecting the label, the amount of which was proportional to RNase concentration. Conditions making it possible to record catalytic hydrogen release fluxes were determined. In the presence of RNase, the electrocatalytic effect was maximum at a concentration of Co(II) in the ammoniac buffer, equal to 2 x 10(-4) M (pH 10.0). The dependence was linear in the range 4-2000 ng/ml RNase concentrations (threshold concentration, 2 ng/ml).

  12. A high-efficiency power cycle in which hydrogen is compressed by absorption in metal hydrides. (United States)

    Powell, J R; Salzano, F J; Yu, W S; Milau, J S


    A high-efficiency power cycle is proposed in which molecular hydrogen gas is used as a working fluid in a regenerative closed Brayton cycle. The hydrogen gas is compressed by an absorption-desorption cycle on metal hydride (FeTiH(x)) beds. Low-temperature solar or geothermal heat (temperature about 100 degrees C) is used for the compression process, and high-temperature fossil fuel or nuclear heat (temperature about 700 degrees C) supplies the expansion work in the turbine. Typically, about 90 percent of the high-temperature heat input is converted to electricity, while about 3 kilowatts of low-temperature heat is required per kilowatt of electrical output.

  13. Phosphate-Catalyzed Hydrogen Peroxide Formation from Agar, Gellan, and κ-Carrageenan and Recovery of Microbial Cultivability via Catalase and Pyruvate. (United States)

    Kawasaki, Kosei; Kamagata, Yoichi


    Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H 2 O 2 ) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659-7666, 2014, However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H 2 O 2 formation in agar. The H 2 O 2 formation was pH dependent: H 2 O 2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H 2 O 2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H 2 O 2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H 2 O 2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H 2 O 2 from PT medium, these observations indicate that although H 2 O 2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H 2 O

  14. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests (United States)

    Experimental and modeling investigations were conducted to examine the effect of hydrogen peroxide treatment on hydrothermally produced biochar (hydrochar) from peanut hull to remove aqueous heavy metals. Characterization measurements showed that hydrogen peroxide modification increased the oxygen-c...

  15. The effect of hydrogen peroxide concentration on metal ion release from dental amalgam. (United States)

    Al-Salehi, S K; Hatton, P V; McLeod, C W; Cox, A G


    The aim of this study was to investigate the effect of hydrogen peroxide (HP) concentration on metal ion release from dental amalgam. Dental amalgam discs (n=25) were prepared by packing amalgam into cylindrical plastic moulds (10 mm diameter and 2 mm height). The discs were divided into five equal groups and each group was immersed in 20 ml of either 0%, 1%, 3%, 10% or 30% HP solution for 24 h at 37 degrees C. Samples were taken for metal ion release determination (Hg, Ag, Sn and Cu) using inductively coupled plasma mass spectrometry (ICP-MS). The surface roughness of each disc was measured before and after bleaching. The differences in concentration of metal ions released after treatment with 0% (control) and each of 1%, 3%, 10% and 30% HP were statistically significant (pp>0.05). Exposure to HP bleaching agent was associated with increased metal ion released from dental amalgams compared to treatment with a control solution. Ion release was in proportion to the peroxide concentration tested, with the highest concentration associated with the greatest metal ion release for all elements investigated.

  16. Influence of metal doping of a MOF-74 framework on hydrogen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Botas, J.A.; Calleja, G.; Orcajo, M.G. [Rey Juan Carlos Univ., Madrid (Spain). Dept. of Chemical and Energy Technology; Sanchez-Sanchez, M. [CSIC, Madrid (Spain). Inst. de Catalisis y Petroleoquimica


    Microporous Metal-Organic Framework (MOF) adsorbents are considered an interesting option for hydrogen storage. Due to their porous nature and unusually high surface areas, these materials show an exceptional H{sub 2} uptake. Unfortunately, their interaction with H{sub 2} molecules is weak, so cryogenic temperatures are required to reach competitive H{sub 2} storage capacities. In this sense, the presence of coordinatively unsaturated and exposed metal centers in some MOF frameworks could increase the affinity for H{sub 2} through stronger metal-H{sub 2} interactions. In this preliminary work, the effect of doping a Zn{sup 2+}-MOF-74 framework with Co{sup 2+}, Cu{sup 2+} and Mg{sup 2+} on its adsorption properties for H{sub 2} has been studied. Characterization studies suggest that the samples prepared have actually the MOF-74 structure, in which the different tested heteroatom ions have been successfully incorporated. The differences in H{sub 2} adsorption at 77 K and 87 K between the MOF-74 samples doped with the mentioned divalent metal ions were discussed as a function of their free pore volume and amount of metal incorporation. (orig.)

  17. Mesoscopic quantum effects in a bad metal, hydrogen-doped vanadium dioxide (United States)

    Hardy, Will J.; Ji, Heng; Paik, Hanjong; Schlom, Darrell G.; Natelson, Douglas


    The standard treatment of quantum corrections to semiclassical electronic conduction assumes that charge carriers propagate many wavelengths between scattering events, and succeeds in explaining multiple phenomena (weak localization magnetoresistance (WLMR), universal conductance fluctuations, Aharonov-Bohm oscillations) observed in polycrystalline metals and doped semiconductors in various dimensionalities. We report apparent WLMR and conductance fluctuations in H x VO2, a poor metal (in violation of the Mott-Ioffe-Regel limit) stabilized by the suppression of the VO2 metal-insulator transition through atomic hydrogen doping. Epitaxial thin films, single-crystal nanobeams, and nanosheets show similar phenomenology, though the details of the apparent WLMR seem to depend on the combined effects of the strain environment and presumed doping level. Self-consistent quantitative analysis of the WLMR is challenging given this and the high resistivity of the material, since the quantitative expressions for WLMR are derived assuming good metallicity. These observations raise the issue of how to assess and analyze mesoscopic quantum effects in poor metals.

  18. The effect of hydrogen peroxide concentration on metal ion release from dental casting alloys. (United States)

    Al-Salehi, S K; Hatton, P V; Johnson, A; Cox, A G; McLeod, C


    There are concerns that tooth bleaching agents may adversely affect dental materials. The aim of this study was to test the hypothesis that increasing concentrations of hydrogen peroxide (HP) are more effective than water at increasing metal ion release from two typical dental casting alloys during bleaching. Discs (n = 28 for each alloy) were prepared by casting and heat treated to simulate a typical porcelain-firing cycle. Discs (n = 7) of each alloy were immersed in either 0%, 3%, 10% or 30% (w/v) HP solutions for 24 h at 37 degrees C. Samples were taken for metal ion release determination using inductively coupled plasma-mass spectrometry and the data analysed using a two-way anova followed by a one-way anova. The surface roughness of each disc was measured using a Talysurf contact profilometer before and after bleaching and the data analysed using a paired t-test. With the exception of gold, the differences in metal ion concentration after treatment with 0% (control) and each of 3%, 10% and 30% HP (w/v) were statistically significant (P Metal ion release from the two alloys increased with increasing HP concentrations (over 3000% increase in Ni and 1400% increase in Pd ions were recorded when HP concentration increased from 0% to 30%). Surface roughness values of the samples before and after bleaching were not significantly different (P > 0.05) Exposure of the two dental casting alloys to HP solutions increased metal ion release of all the elements except gold.

  19. Surface science and electrochemical studies of metal-modified carbides for fuel cells and hydrogen production (United States)

    Kelly, Thomas Glenn

    Carbides of the early transition metals have emerged as low-cost catalysts that are active for a wide range of reactions. The surface chemistry of carbides can be altered by modifying the surface with small amounts of admetals. These metal-modified carbides can be effective replacements for Pt-based bimetallic systems, which suffer from the drawbacks of high cost and low thermal stability. In this dissertation, metal-modified carbides were studied for reactions with applications to renewable energy technologies. It is demonstrated that metal-modified carbides possess high activity for alcohol reforming and electrochemical hydrogen production. First, the surface chemistry of carbides towards alcohol decomposition is studied using density functional theory (DFT) and surface science experiments. The Vienna Ab initio Simulation Package (VASP) was used to calculate the binding energies of alcohols and decomposition intermediates on metal-modified carbides. The calculated binding energies were then correlated to reforming activity determined experimentally using temperature programmed desorption (TPD). In the case of methanol decomposition, it was found that tungsten monocarbide (WC) selectively cleaved the C-O bond to produce methane. Upon modifying the surface with a single layer of metal such as Ni, Pt, or Rh, the selectivity shifted towards scission of the C-H bonds while leaving the C-O bond intact, producing carbon monoxide (CO) and H2. High resolution energy loss spectroscopy (HREELS) was used to examine the bond breaking sequence as a function of temperature. From HREELS, it was shown that the surfaces followed an activity trend of Rh > Ni > Pt. The Au-modified WC surface possessed too low of a methanol binding energy, and molecular desorption of methanol was the most favorable pathway on this surface. Next, the ability of Rh-modified WC to break the C-C bond of C2 and C3 alcohols was demonstrated. HREELS showed that ethanol decomposed through an acetaldehyde

  20. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C–H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants (United States)


    catalyst via a coupled electron transfer (ET) process. Here we describe our first successful endeavors to address the above challenges by combining visible light photoredox catalysis with different ruthenium, rhodium, or palladium catalyzed C–H activations. Since only small amounts of the oxidant are generated and are immediately consumed in these transformations, side reactions of substrates or products can be avoided. Thus, usually oxidant-sensible substrates can be used, which makes these methods highly suitable for complex molecular structure syntheses. Moreover, mechanistic studies shed light on new reaction pathways, intermediates, and in situ generated species. The successful development of our dual catalysis concept, consisting of combined visible light photoredox catalysis and metal catalyzed C–H functionalization, provides many new opportunities for further explorations in the field of C–H functionalization. PMID:27556812

  1. High pressure in situ diffraction studies of metal-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Yartys, V.A., E-mail: [Institute for Energy Technology, Kjeller NO 2027 (Norway); Norwegian University of Science and Technology, Trondheim NO 7491 (Norway); Denys, R.V. [Institute for Energy Technology, Kjeller NO 2027 (Norway); Karpenko Physico-Mechanical Institute, NAS of Ukraine, Lviv 79601 (Ukraine); Webb, C.J. [Queensland Micro- and Nanotechnology Centre, Griffith University (Australia); Maehlen, J.P. [Institute for Energy Technology, Kjeller NO 2027 (Norway); Gray, E. MacA.; Blach, T. [Queensland Micro- and Nanotechnology Centre, Griffith University (Australia); Isnard, O. [Institute Neel, CNRS/UJF, 38042 Grenoble (France); Barnsley, L.C. [Queensland Micro- and Nanotechnology Centre, Griffith University (Australia)


    Research highlights: > CeNi{sub 5}-D{sub 2} and Zr(Fe,Al){sub 2}-D{sub 2} systems were studied by in situ NPD at P up to 1000 bar. > In the hexagonal CeNi{sub 5}D{sub 6.3} deuterium atoms fill three types of interstices. > In the Zr(Fe,Al){sub 2}-based deuterides D atoms occupy the Zr(Fe,Al){sub 2} tetrahedra only D/Zr(Fe,Al){sub 2}, hysteresis and hydrides stability systematically change with Al content. - Abstract: 'Hybrid' hydrogen storage, where hydrogen is stored in both the solid material and as a high pressure gas in the void volume of the tank can improve overall system efficiency by up to 50% compared to either compressed hydrogen or solid materials alone. Thermodynamically, high equilibrium hydrogen pressures in metal-hydrogen systems correspond to low enthalpies of hydrogen absorption-desorption. This decreases the calorimetric effects of the hydride formation-decomposition processes which can assist in achieving high rates of heat exchange during hydrogen loading-removing the bottleneck in achieving low charging times and improving overall hydrogen storage efficiency of large hydrogen stores. Two systems with hydrogenation enthalpies close to -20 kJ/mol H{sub 2} were studied to investigate the hydrogenation mechanism and kinetics: CeNi{sub 5}-D{sub 2} and ZrFe{sub 2-x}Al{sub x} (x = 0.02; 0.04; 0.20)-D{sub 2}. The structure of the intermetallics and their hydrides were studied by in situ neutron powder diffraction at pressures up to 1000 bar and complementary X-ray diffraction. The deuteration of the hexagonal CeNi{sub 5} intermetallic resulted in CeNi{sub 5}D{sub 6.3} with a volume expansion of 30.1%. Deuterium absorption filled three different types of interstices, Ce{sub 2}Ni{sub 2} and Ni{sub 4} tetrahedra, and Ce{sub 2}Ni{sub 3} half-octahedra and was accompanied by a valence change for Ce. Significant hysteresis was observed between deuterium absorption and desorption which profoundly decreased on a second absorption cycle. For the Al

  2. High pressure in situ diffraction studies of metal-hydrogen systems

    International Nuclear Information System (INIS)

    Yartys, V.A.; Denys, R.V.; Webb, C.J.; Maehlen, J.P.; Gray, E. MacA.; Blach, T.; Isnard, O.; Barnsley, L.C.


    Research highlights: → CeNi 5 -D 2 and Zr(Fe,Al) 2 -D 2 systems were studied by in situ NPD at P up to 1000 bar. → In the hexagonal CeNi 5 D 6.3 deuterium atoms fill three types of interstices. → In the Zr(Fe,Al) 2 -based deuterides D atoms occupy the Zr(Fe,Al) 2 tetrahedra only D/Zr(Fe,Al) 2 , hysteresis and hydrides stability systematically change with Al content. - Abstract: 'Hybrid' hydrogen storage, where hydrogen is stored in both the solid material and as a high pressure gas in the void volume of the tank can improve overall system efficiency by up to 50% compared to either compressed hydrogen or solid materials alone. Thermodynamically, high equilibrium hydrogen pressures in metal-hydrogen systems correspond to low enthalpies of hydrogen absorption-desorption. This decreases the calorimetric effects of the hydride formation-decomposition processes which can assist in achieving high rates of heat exchange during hydrogen loading-removing the bottleneck in achieving low charging times and improving overall hydrogen storage efficiency of large hydrogen stores. Two systems with hydrogenation enthalpies close to -20 kJ/mol H 2 were studied to investigate the hydrogenation mechanism and kinetics: CeNi 5 -D 2 and ZrFe 2-x Al x (x = 0.02; 0.04; 0.20)-D 2 . The structure of the intermetallics and their hydrides were studied by in situ neutron powder diffraction at pressures up to 1000 bar and complementary X-ray diffraction. The deuteration of the hexagonal CeNi 5 intermetallic resulted in CeNi 5 D 6.3 with a volume expansion of 30.1%. Deuterium absorption filled three different types of interstices, Ce 2 Ni 2 and Ni 4 tetrahedra, and Ce 2 Ni 3 half-octahedra and was accompanied by a valence change for Ce. Significant hysteresis was observed between deuterium absorption and desorption which profoundly decreased on a second absorption cycle. For the Al-modified Laves-type C15 ZrFe 2-x Al x intermetallics, deuteration showed very fast kinetics of H/D exchange

  3. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.


    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  4. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don; Harmon, Laurel


    UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. The assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 LiAlH4Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the

  5. Quasi-two-dimensional metallic hydrogen in diphosphide at a high pressure

    International Nuclear Information System (INIS)

    Degtyarenko, N. N.; Mazur, E. A.


    The structural, electronic, phonon, and other characteristics of the normal phases of phosphorus hydrides with stoichiometry PH k are analyzed. The properties of the initial substance, namely, diphosphine are calculated. In contrast to phosphorus hydrides with stoichiometry PH 3 , a quasi-two-dimensional phosphorus-stabilized lattice of metallic hydrogen can be formed in this substance during hydrostatic compression at a high pressure. The formed structure with H–P–H elements is shown to be locally stable in phonon spectrum, i.e., to be metastable. The properties of diphosphine are compared with the properties of similar structures of sulfur hydrides.

  6. Quasi-two-dimensional metallic hydrogen inside di-phosphide at high pressure

    International Nuclear Information System (INIS)

    Degtyarenko, N N; Mazur, E A


    The method of mathematical modelling was used for the calculation of the structural, electronic, phononic, and other characteristics of various normal phases of phosphorus hydrides with stoichiometry PH k . It was shown that the di-phosphine may form 2D lattice of the metallic hydrogen in it, stabilized by phosphorus atoms under high hydrostatic pressure. The resulting structure with the elements of H-P-H has a locally stable (or metastable) phonon spectrum. The properties of di-phosphine were compared with the properties of similar structures such as the sulphur hydrides. (paper)

  7. Quasi-two-dimensional metallic hydrogen in diphosphide at a high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Degtyarenko, N. N.; Mazur, E. A., E-mail: [National Research Nuclear University MEPhI (Russian Federation)


    The structural, electronic, phonon, and other characteristics of the normal phases of phosphorus hydrides with stoichiometry PH{sub k} are analyzed. The properties of the initial substance, namely, diphosphine are calculated. In contrast to phosphorus hydrides with stoichiometry PH{sub 3}, a quasi-two-dimensional phosphorus-stabilized lattice of metallic hydrogen can be formed in this substance during hydrostatic compression at a high pressure. The formed structure with H–P–H elements is shown to be locally stable in phonon spectrum, i.e., to be metastable. The properties of diphosphine are compared with the properties of similar structures of sulfur hydrides.

  8. Coating for components requiring hydrogen peroxide compatibility (United States)

    Yousefiani, Ali (Inventor)


    The present invention provides a heretofore-unknown use for zirconium nitride as a hydrogen peroxide compatible protective coating that was discovered to be useful to protect components that catalyze the decomposition of hydrogen peroxide or corrode when exposed to hydrogen peroxide. A zirconium nitride coating of the invention may be applied to a variety of substrates (e.g., metals) using art-recognized techniques, such as plasma vapor deposition. The present invention further provides components and articles of manufacture having hydrogen peroxide compatibility, particularly components for use in aerospace and industrial manufacturing applications. The zirconium nitride barrier coating of the invention provides protection from corrosion by reaction with hydrogen peroxide, as well as prevention of hydrogen peroxide decomposition.

  9. Precipitation of heavy metals from coal ash leachate using biogenic hydrogen sulfide generated from FGD gypsum. (United States)

    Jayaranjan, Madawala Liyanage Duminda; Annachhatre, Ajit P


    Investigations were undertaken to utilize flue gas desulfurization (FGD) gypsum for the treatment of leachate from the coal ash (CA) dump sites. Bench-scale investigations consisted of three main steps namely hydrogen sulfide (H(2)S) production by sulfate reducing bacteria (SRB) using sulfate from solubilized FGD gypsum as the electron acceptor, followed by leaching of heavy metals (HMs) from coal bottom ash (CBA) and subsequent precipitation of HMs using biologically produced sulfide. Leaching tests of CBA carried out at acidic pH revealed the existence of several HMs such as Cd, Cr, Hg, Pb, Mn, Cu, Ni and Zn. Molasses was used as the electron donor for the biological sulfate reduction (BSR) process which produced sulfide rich effluent with concentration up to 150 mg/L. Sulfide rich effluent from the sulfate reduction process was used to precipitate HMs as metal sulfides from CBA leachate. HM removal in the range from 40 to 100% was obtained through sulfide precipitation.

  10. Hydrogen Storage in metal-modified single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ahn


    It has been known for over thirty years that potassium-intercalated graphites can readily adsorb and desorb hydrogen at {approx}1 wt% at 77 K. These levels are much higher than can be attained in pure graphite, owing to a larger thermodynamic enthalpy of adsorption. This increased enthalpy may allow hydrogen sorption at higher temperatures. Potassium has other beneficial effects that enable the design of a new material: (a) Increased adsorption enthalpy in potassium-intercalated graphite compared to pure graphite reduces the pressure and increases the temperature required for a given fractional coverage of hydrogen adsorption. We expect the same effects in potassium-intercalated SWNTs. (b) As an intercalant, potassium separates c-axis planes in graphite. Potassium also separates the individual tubes of SWNTs ropes producing swelling and increased surface area. Increased surface area provides more adsorption sites, giving a proportionately higher capacity. The temperature of adsorption depends on the enthalpy of adsorption. The characteristic temperature is roughly the adsorption enthalpy divided by Boltzmann's constant, k{sub B}. For the high hydrogen storage capacity of SWNTs to be achieved at room temperature, it is necessary to increase the enthalpy of adsorption. Our goal for this project was to use metal modifications to the carbon surface of SWNTs in order to address both enhanced adsorption and surface area. For instance, the enthalpy of sorption of hydrogen on KC8 is 450 meV/H{sub 2}, whereas it is 38 meV/H{sub 2} for unmodified SWNTs. By adsorption thermodynamics we expect approximately that the same performance of SWNTs at 77 K will be achieved at a temperature of [450/38] 77 K = 900 K. This is a high temperature, so we expect that adsorption on nearly all the available sites for hydrogen will occur at room temperature under a much lower pressure. This pressure can be estimated conveniently, since the chemical potential of hydrogen is approximately

  11. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)


    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  12. Emerging approaches for the synthesis of triazoles: beyond metal-catalyzed and strain-promoted azide-alkyne cycloaddition. (United States)

    Lima, Carolina G S; Ali, Akbar; van Berkel, Sander S; Westermann, Bernhard; Paixão, Márcio W


    Metal-free 1,3-dipolar cycloaddition reactions have proven to be a powerful tool for the assembly of key heterocycles, in particular diversely functionalized 1,2,3-triazoles. A number of metal-free (3+2)-cycloaddition approaches have been developed up to date with the aim to circumvent the use of metal catalysts allowing these reactions to take place in biological systems without perturbation of the naturally occurring processes. This feature article specifically provides an overview of emerging metal-free synthetic routes, and their mechanistic features, in the formation of functionalized 1,2,3-triazoles.

  13. Highly Dispersed Metal Carbide on ZIF-Derived Pyridinic-N-Doped Carbon for CO2Enrichment and Selective Hydrogenation. (United States)

    Li, Yunhua; Cai, Xiaohu; Chen, Sijing; Zhang, Hua; Zhang, Kevin H L; Hong, Jinqing; Chen, Binghui; Kuo, Dong-Hau; Wang, Wenju


    Catalytic conversion of CO 2 into chemicals is a critical issue for energy and environmental research. Among such reactions, converting CO 2 into CO has been regarded as a significant foundation to generate a liquid fuels and chemicals on a large scale. In this work, zeolitic imidazolate framework-derived N-doped carbon-supported metal carbide catalysts (M/ZIF-8-C; M=Ni, Fe, Co and Cu) with highly dispersed metal carbide were prepared for selective CO 2 hydrogenation. Under the same metal loadings, catalytic activity for CO 2 hydrogenation to CO follows the order: Ni/ZIF-8-C≈Fe/ZIF-8-C>Co/ZIF-8-C>Cu/ZIF-8-C. These catalysts are composed of carbide or metal supported on pyridinic N sites within the N-doped carbon structure. ZIF-8-derived pyridinic nitrogen and carbide effect CO 2 adsorption, whereas dispersed Ni or Fe carbide and metal species serve as an active site for CO 2 hydrogenation. The supported Ni catalyst exhibits extraordinary catalytic performance, which results from high dispersion of the metal and exposure of the carbide. Based on high-sensitivity low-energy ion scattering (HS-LEIS) and line scan results, density functional theory (DFT) was used to understand reaction mechanism of selective CO 2 hydrogenation over Ni/ZIF-8-C. The product CO is derived mainly from the direct cleavage of C-O bonds in CO 2 * rather than decomposition of COOH*. The CO* desorption energy on Ni/ZIF-8-C is lower than that for further hydrogenation and dissociation. Comparison of Ni/ZIF-8-C with ZIF-8-C indicates that the combined effects of the highly dispersed metal or carbide and weak CO adsorption result in high CO selectivity for CO 2 hydrogenation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrogen. (United States)

    Bockris, John O'M


    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  15. Metal doped carbon nanoneedles and effect of carbon organization with activity for hydrogen evolution reaction (HER). (United States)

    Araujo, Rafael A; Rubira, Adley F; Asefa, Tewodros; Silva, Rafael


    Cellulose nanowhiskers (CNW) from cotton, was prepared by acid hydrolysis and purified using a size selection process to obtain homogeneous samples with average particle size of 270 nm and 85.5% crystallinity. Purified CNW was used as precursor to carbon nanoneedles (CNN) synthesis. The synthesis of CNN loaded with different metals dopants were carried out by a nanoreactor method and the obtained CNNs applied as electrocatalysts for hydrogen evolution reaction (HER). In the carbon nanoneedles synthesis, Ni, Cu, or Fe worked as graphitization catalyst and the metal were found present as dopants in the final material. The used metal appeared to have direct influence on the degree of organization of the particles and also in the surface density of polar groups. It was evaluated the influence of the graphitic organization on the general properties and nickel was found as the more appropriate metal since it leads to a more organized material and also to a high activity toward HER. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Stability and Activity of Non-Noble-Metal-Based Catalysts Toward the Hydrogen Evolution Reaction. (United States)

    Ledendecker, Marc; Mondschein, Jared S; Kasian, Olga; Geiger, Simon; Göhl, Daniel; Schalenbach, Max; Zeradjanin, Aleksandar; Cherevko, Serhiy; Schaak, Raymond E; Mayrhofer, Karl


    A fundamental understanding of the behavior of non-noble based materials toward the hydrogen evolution reaction is crucial for the successful implementation into practical devices. Through the implementation of a highly sensitive inductively coupled plasma mass spectrometer coupled to a scanning flow cell, the activity and stability of non-noble electrocatalysts is presented. The studied catalysts comprise a range of compositions, including metal carbides (WC), sulfides (MoS 2 ), phosphides (Ni 5 P 4 , Co 2 P), and their base metals (W, Ni, Mo, Co); their activity, stability, and degradation behavior was elaborated and compared to the state-of-the-art catalyst platinum. The non-noble materials are stable at HER potentials but dissolve substantially when no current is flowing. Through pre- and post-characterization of the catalysts, explanations of their stability (thermodynamics and kinetics) are discussed, challenges for the application in real devices are analyzed, and strategies for circumventing dissolution are suggested. The precise correlation of metal dissolution with applied potential/current density allows for narrowing down suitable material choices as replacement for precious group metals as for example, platinum and opens up new ways in finding cost-efficient, active, and stable new-generation electrocatalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Photo-electrocatalytic hydrogen generation at dye-sensitised electrodes functionalised with a heterogeneous metal catalyst

    International Nuclear Information System (INIS)

    Hoogeveen, Dijon A.; Fournier, Maxime; Bonke, Shannon A.; Fang, Xi-Ya; Mozer, Attila J.; Mishra, Amaresh; Bäuerle, Peter; Simonov, Alexandr N.; Spiccia, Leone


    Dye-sensitised photocathodes promoting hydrogen evolution are usually coupled to a catalyst to improve the reaction rate. Herein, we report on the first successful integration of a heterogeneous metal particulate catalyst, viz., Pt aggregates electrodeposited from acidic solutions on the surface of a NiO-based photocathode sensitised with a p-type perylenemonoimid-sexithiophene-triphenylamine dye (PMI-6T-TPA). The platinised dye-NiO electrodes generate photocurrent density of ca −0.03 mA cm −2 (geom.) with 100% faradaic efficiency for the H 2 evolution at 0.059 V vs. reversible hydrogen electrode under 1 sun visible light irradiation (AM1.5G, 100 mW cm −2 , λ > 400 nm) for more than 10 hours in 0.1 M H 2 SO 4 (aq.). The Pt-free dye-NiO and dye-free Pt-modified NiO cathodes show no photo-electrocatalytic hydrogen evolution under these conditions. The performance of these Pt-modified PMI-6T-TPA-based photoelectrodes compares well to that of previously reported dye-sensitised photocathodes for H 2 evolution.

  18. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells. (United States)

    Yuan, Heyang; He, Zhen


    Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS 2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. Karl Johnson


    The objective of this project is to complement experimental efforts of MHoCE partners by using state-of-the-art theory and modeling to study the structure, thermodynamics, and kinetics of hydrogen storage materials. Specific goals include prediction of the heats of formation and other thermodynamic properties of alloys from first principles methods, identification of new alloys that can be tested experimentally, calculation of surface and energetic properties of nanoparticles, and calculation of kinetics involved with hydrogenation and dehydrogenation processes. Discovery of new metal hydrides with enhanced properties compared with existing materials is a critical need for the Metal Hydride Center of Excellence. New materials discovery can be aided by the use of first principles (ab initio) computational modeling in two ways: (1) The properties, including mechanisms, of existing materials can be better elucidated through a combined modeling/experimental approach. (2) The thermodynamic properties of novel materials that have not been made can, in many cases, be quickly screened with ab initio methods. We have used state-of-the-art computational techniques to explore millions of possible reaction conditions consisting of different element spaces, compositions, and temperatures. We have identified potentially promising single- and multi-step reactions that can be explored experimentally.

  20. Hydrogen Assisted Crack in Dissimilar Metal Welds for Subsea Service under Cathodic Protection (United States)

    Bourgeois, Desmond

    Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high strength steels in order to eliminate the need for post weld heat treatment (PWHT) after field welding. There have been reported catastrophic failures in these DMWs, particularly the AISI 8630 steel - Alloy 625 DMW combination, during subsea service while under cathodic protection (CP). This is due to local embrittlement that occurs in susceptible microstructures that are present at the weld fusion boundary region. This type of cracking is known as hydrogen assisted cracking (HAC) and it is influenced by base/filler metal combination, and welding and PWHT procedures. DMWs of two material combinations (8630 steel -- Alloy 625 and F22 steel -- Alloy 625), produced with two welding procedures (BS1 and BS3) in as welded and PWHT conditions were investigated in this study. The main objectives included: 1) evaluation of the effect of materials composition, welding and PWHT procedures on the gradients of composition, microstructure, and properties in the dissimilar transition region and on the susceptibility to HAC; 2) investigation of the influence of microstructure on the HAC failure mechanism and identification of microstructural constituents acting as crack nucleation and propagation sites; 3) assessment of the applicability of two-step PWHT to improve the resistance to HAC in DMWs; 4) establishment of non-failure criterion for the delayed hydrogen cracking test (DHCT) that is applicable for qualification of DMWs for subsea service under cathodic protection (CP).