WorldWideScience

Sample records for metal bearings technology

  1. Changes in plain bearing technology

    CERN Document Server

    Koring, Rolf

    2012-01-01

    A unique fusion of theoretical and practical knowledge, Changes in Plain Bearing Technology, by Rolf Koring, covers a meaningful range of expertise in this field.Drawing from years of experience in design development, materials selection, and their correlation to real-life part failure, this title, co-published by SAE International and expert Verlag (Germany), concentrates on hydrodynamic bearings lined with white metals, also known as Babbits.Written under the assumption that even the most mature body of knowledge can be revisited and improved, Changes in Plain Bearing Technology is a courageous and focused approach to questioning accepted test results and looking at alternative material compounds, and their application suitability.The process, which leads to innovative answers on how the technology is transforming itself to respond to new market requirements, shows how interdisciplinary thinking can recognize new potential in long-established industrial modus operandi.Tackling the highly complex issue of co...

  2. Liquid Metal Engineering and Technology. Volume 1

    International Nuclear Information System (INIS)

    1988-01-01

    These proceedings of the fourth international conference on liquid metal engineering and technology volume 1, are devided into 3 sections bearing on: - Apparatus and components for liquid metal (29 papers) - Liquid metal leaks, fires and fumes (10 papers) - Cleaning, decontamination, waste disposal (14 papers) [fr

  3. Bearing for liquid metal pump

    International Nuclear Information System (INIS)

    Dickinson, R.J.; Pennell, W.E.; Wasko, J.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance

  4. The technology of the bearings used in the nuclear power generation system turbine generator units

    International Nuclear Information System (INIS)

    Vialettes, J.M.; Rossato, M.

    1997-01-01

    A bearing consists of all the stationary part which allow the relative motion in rotation or in translation, of a shaft line. Inside the bearing there is a journal bearing with a metallic anti-friction coating (the babbitt metal). The high power turbine generator unit rotors are supported by smooth transversal journal bearings fed with oil which fills the empty space and runs along the shaft. The technologies used for the bearings and the thrust bearings of the turbine generator units and the various shaft lines of the French CP0/CP1- and CP2/1300 MW-type nuclear power plants are described. The experience feedback is then discussed in terms of the dynamics of the shaft line, i.e. vibrational problems, the influence of the alignment and the babbitt metal incidents. (author)

  5. Experimental Study and Dynamic Modeling of Metal Rubber Isolating Bearing

    International Nuclear Information System (INIS)

    Zhang, Ke; Zhou, Yanguo; Jiang, Jian

    2015-01-01

    In this paper, dynamic shear mechanical properties of a new metal rubber isolating bearing is tested and studied. The mixed damping model is provided for theoretical modeling of MR isolating bearing, the shear stiffness and damping characteristics of the MR bearing can be analyzed separately and easily discussed, and the mixed damping model is proved to be an rather effective approach. The test results indicate that loading frequency bears little impact over shear property of metal rubber isolating bearing, the total energy consumption of metal rubber isolating bearing increases with the increase in loading amplitude. With the increase in loading amplitude, the stiffness of the isolating bearing will reduce showing its “soft property”; and the type of damping force gradually changes to be close to dry friction. The features of “soft property” and dry friction energy consumption of metal rubber isolating bearing are very useful in practical engineering application. (paper)

  6. The acting wear mechanisms on metal-on-metal hip joint bearings: in-vitro results

    NARCIS (Netherlands)

    Wimmer, M.A.; Loos, J.; Nassutt, R.; Heitkemper, M.; Fischer, A.

    2001-01-01

    Metal-on-metal (MOM) hip joint bearings are currently under discussion as alternatives to metal-on-polymer (MOP) bearings. Some criteria under scrutiny are the wear resistance, the influence of wear particles on the surrounding tissue, as well as the frictional torque. In order to understand and

  7. Effect of carbon ion implantation on the tribology of metal-on-metal bearings for artificial joints

    Directory of Open Access Journals (Sweden)

    Koseki H

    2017-05-01

    Full Text Available Hironobu Koseki,1 Masato Tomita,2 Akihiko Yonekura,2 Takashi Higuchi,1 Sinya Sunagawa,2 Koumei Baba,3,4 Makoto Osaki2 1Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, 2Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan; 3Industrial Technology Center of Nagasaki, Ikeda, Omura, Nagasaki, Japan; 4Affiliated Division, Nagasaki University School of Engineering, Bunkyo, Nagasaki, Japan Abstract: Metal-on-metal (MoM bearings have become popular due to a major advantage over metal-on-polymer bearings for total hip arthroplasty in that the larger femoral head and hydrodynamic lubrication of the former reduce the rate of wear. However, concerns remain regarding adverse reactions to metal debris including metallosis caused by metal wear generated at the taper-head interface and another modular junction. Our group has hypothesized that carbon ion implantation (CII may improve metal wear properties. The purpose of this study was to investigate the wear properties and friction coefficients of CII surfaces with an aim to ultimately apply these surfaces to MoM bearings in artificial joints. CII was applied to cobalt-chromium-molybdenum (Co-Cr-Mo alloy substrates by plasma source ion implantation. The substrates were characterized using scanning electron microscopy and a 3D measuring laser microscope. Sliding contact tests were performed with a simple geometry pin-on-plate wear tester at a load of 2.5 N, a calculated contact pressure of 38.5 MPa (max: 57.8 MPa, a reciprocating velocity of 30 mm/s, a stroke length of 60 mm, and a reciprocating cycle count of 172,800 cycles. The surfaces of the CII substrates were generally featureless with a smooth surface topography at the same level as untreated Co-Cr-Mo alloy. Compared to the untreated Co-Cr-Mo alloy, the CII-treated bearings had lower friction coefficients, higher resistance to catastrophic damage, and

  8. Infection or metal hypersensitivity? The diagnostic challenge of failure in metal-on-metal bearings.

    LENUS (Irish Health Repository)

    Galbraith, John G

    2011-04-01

    The use of second generation metal-on-metal hip articulations has gained favour in the past few years. A hypersensitivity reaction to the metal-on-metal bearing, although rare, is a reported complication and is a novel mode of failure of these implants. Differentiating failure secondary to infection from failure secondary to metal hypersensitivity represents a significant diagnostic challenge. A retrospective review of all cases of hip arthroplasty using metal-on-metal bearings over a 5-year period at a tertiary referral centre identified 3 cases of failure secondary to metal hypersensitivity. Clinical presentation, serological markers, radiological imaging and histological analysis of all cases identified were evaluated. Histological analysis of periprosthetic tissue in all 3 cases identified characteristic features such as perivascular lymphocytic aggregates and chronic inflammation consistent with aseptic lymphocytic vasculitis-associated lesions (ALVAL). This study highlights that failure secondary to metal hypersensitivity must be considered in patients presenting with the reappearance of persistent pain, marked joint effusion, and the development of early osteolysis in the absence of infection.

  9. Progress of liquid metal technology and application in energy industries

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kamei, Mitsuru; Nei, Hiromichi.

    1990-01-01

    Liquid metals are excellent energy transport media, and recently remarkable development has been observed in the technology of handling sodium and the machinery and equipment. In nuclear fusion, the development of the use of lithium as the coolant is advanced. For space technology, attention has been paid from the early stage to various liquid metals. For general industries, liquid metals have been used for high temperature heat pipes and the utilization of solar heat, and mercury vapor turbines were manufactured for trial. Besides, attention is paid anew to liquid metal MHD electric power generation. The development of the NaS batteries for electric cars and electric power storage and the interchange of liquid metal technology with the fields of iron and steel, metallurgy and so on advance. It is expected that liquid metal technology bears future advanced energy engineering while deepening the interchange with other advanced fields also in order to reactivate atomic energy technology. Liquid metals have the features of high electric and thermal conductivities, chemical activity and opaque property as metals, and fluidity and relatively high boiling point and melting point as liquids. FBRs, fusion reactors and the power sources for space use are described. (K.I.)

  10. 41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Recovery of silver from precious metals bearing materials. 109-45.1003 Section 109-45.1003 Public Contracts and Property Management... of Precious Metals § 109-45.1003 Recovery of silver from precious metals bearing materials. The...

  11. Closing the Loop: Key Role of Iron in Metal-Bearing Waste Recycling

    Directory of Open Access Journals (Sweden)

    Sedlakova-Kadukova J.

    2017-09-01

    Full Text Available The role of iron in metal-bearing waste bioleaching was studied. Four various types of waste (printed circuit boards (PCBs, Ni-Cd batteries, alkaline batteries and Li-ion batteries were treated by bioleaching using the acidophilic bacteria A. ferrooxidans and A. thiooxidans (separately or in mixture. Role of main leaching agents (Fe3+ ions or sulphuric acid was simulated in abiotic experiments. Results showed that oxidation abilities of Fe3+ ions were crucial for recovery of Cu and Zn from PCBs, with the efficiencies of 88% and 100%, respectively. To recover 68% of Ni from PCBs, and 55% and 100% of Ni and Cd, respectively, from Ni-Cd batteries both oxidation action and hydrolysis of Fe3+ were required. The importance of Fe2+ ions as a reducing agent was showed in bioleaching of Co from Li-ion batteries and Mn from alkaline batteries. The efficiency of the processes has increased by 70% and 40% in Co and Mn bioleaching, respectively, in the presence of Fe2+ ions. Based on the results we suggest the integrated biometallurgical model of metal-bearing waste recycling in the effort to develop zero-waste and less energy-dependent technologies.

  12. A simulator study of adverse wear with metal and cement debris contamination in metal-on-metal hip bearings.

    Science.gov (United States)

    Halim, T; Clarke, I C; Burgett-Moreno, M D; Donaldson, T K; Savisaar, C; Bowsher, J G

    2014-03-01

    Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt-chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA). Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test. In a clean test phase (0 Mc to 0.8 Mc), lubricants retained their yellow colour. Addition of metal particles at 0.8 Mc turned lubricants black within the first hour of the test and remained so for the duration, while PMMA particles did not change the colour of the lubricant. Rates of wear with PMMA, CoCr and Ti6Al4V debris averaged 0.3 mm(3)/Mc, 4.1 mm(3)/Mc and 6.4 mm(3)/Mc, respectively. Metal particles turned simulator lubricants black with rates of wear of MOM bearings an order of magnitude higher than with control PMMA particles. This appeared to model the findings of black, periarticular joint tissues and high CoCr wear in failed MOM replacements. The amount of wear debris produced during a 500 000-cycle interval of gait was 30 to 50 times greater than the weight of triggering particle allotment, indicating that MOM bearings were extremely sensitive to third-body wear. Cite this article: Bone Joint Res 2015;4:29-37. ©2015 The British Editorial Society of Bone & Joint Surgery.

  13. Effect of carbon ion implantation on the tribology of metal-on-metal bearings for artificial joints.

    Science.gov (United States)

    Koseki, Hironobu; Tomita, Masato; Yonekura, Akihiko; Higuchi, Takashi; Sunagawa, Sinya; Baba, Koumei; Osaki, Makoto

    2017-01-01

    Metal-on-metal (MoM) bearings have become popular due to a major advantage over metal-on-polymer bearings for total hip arthroplasty in that the larger femoral head and hydrodynamic lubrication of the former reduce the rate of wear. However, concerns remain regarding adverse reactions to metal debris including metallosis caused by metal wear generated at the taper-head interface and another modular junction. Our group has hypothesized that carbon ion implantation (CII) may improve metal wear properties. The purpose of this study was to investigate the wear properties and friction coefficients of CII surfaces with an aim to ultimately apply these surfaces to MoM bearings in artificial joints. CII was applied to cobalt-chromium-molybdenum (Co-Cr-Mo) alloy substrates by plasma source ion implantation. The substrates were characterized using scanning electron microscopy and a 3D measuring laser microscope. Sliding contact tests were performed with a simple geometry pin-on-plate wear tester at a load of 2.5 N, a calculated contact pressure of 38.5 MPa (max: 57.8 MPa), a reciprocating velocity of 30 mm/s, a stroke length of 60 mm, and a reciprocating cycle count of 172,800 cycles. The surfaces of the CII substrates were generally featureless with a smooth surface topography at the same level as untreated Co-Cr-Mo alloy. Compared to the untreated Co-Cr-Mo alloy, the CII-treated bearings had lower friction coefficients, higher resistance to catastrophic damage, and prevented the adhesion of wear debris. The results of this study suggest that the CII surface stabilizes the wear status due to the low friction coefficient and low infiltration of partner materials, and these properties also prevent the adhesion of wear debris and inhibit excessive wear. Carbon is considered to be biologically inert; therefore, CII is anticipated to be applicable to the bearing surfaces of MoM prostheses.

  14. 40 CFR Appendix B to Part 414 - Complexed Metal-Bearing Waste Streams

    Science.gov (United States)

    2010-07-01

    ... 414—Complexed Metal-Bearing Waste Streams Chromium Azo dye intermediates/Substituted diazonium salts + coupling compounds Vat dyes Acid dyes Azo dyes, metallized/Azo dye + metal acetate Acid dyes, Azo...

  15. 21 CFR 888.3380 - Hip joint femoral (hemi-hip) trunnion-bearing metal/polyacetal cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint femoral (hemi-hip) trunnion-bearing... Devices § 888.3380 Hip joint femoral (hemi-hip) trunnion-bearing metal/polyacetal cemented prosthesis. (a) Identification. A hip joint femoral (hemi-hip) trunnion-bearing metal/polyacetal cemented prosthesis is a two...

  16. Sexual Maturity and Life Stage Influences Toxic Metal Accumulation in Croatian Brown Bears.

    Science.gov (United States)

    Lazarus, Maja; Sekovanić, Ankica; Orct, Tatjana; Reljić, Slaven; Jurasović, Jasna; Huber, Đuro

    2018-02-01

    The influence of reproductive and (early) life stages on toxic metal levels was investigated in the brown bear (Ursus arctos), the largest mammalian predator species in Croatia. The purpose was to examine critical clusters in a population that might be at a higher risk of adverse health effects caused by metals as environmental contaminants. Levels of cadmium, mercury and lead in muscle, liver and kidney cortex of 325 male and 139 female bears, quantified by inductively coupled plasma mass spectrometry, were analysed according to distinct bear life stages (young: cub, yearling, subadult; mature: adult). Metal levels did not differ among sexes in young animals (< 4 years), except for mercury in muscles (higher in females), and adult females had higher cadmium and mercury. A trend of renal cadmium accumulation with age in immature male animals disappeared once they reached maturity, whereas for females this trend has only slowly declined in mature compared to immature bears. In early life stage (< 1 year), bear cubs had lower cadmium, comparable mercury, and higher lead in the kidneys than the bears of the following age category (yearlings). Due to a higher proportion of renal lead transfer from the mother to the cub compared with cadmium, it may be that the high burden of cadmium found in kidneys of older females has lower toxicological concern for their cubs than the lead content. Sex, reproductive, and life stages of bears were confirmed as important in assessing toxic metal burden.

  17. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing--systematic review of clinical and epidemiological studies.

    Directory of Open Access Journals (Sweden)

    Albrecht Hartmann

    Full Text Available INTRODUCTION: The use of metal-on-metal (MoM total hip arthroplasty (THA increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. OBJECTIVE: To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. METHODS: Systematic review of clinical trials (RCTs and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor, patient characteristics as well as study quality characteristics (secondary explanatory factors. RESULTS: Overall, 104 studies (11 RCTs, 93 epidemiological studies totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L. Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. DISCUSSION: Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed "time out" for stemmed large-head MoM-THA and recommend a restricted

  18. Bearing Change to Metal-On-Polyethylene for Ceramic Bearing Fracture in Total Hip Arthroplasty; Does It Work?

    Science.gov (United States)

    Lee, Soong Joon; Kwak, Hong Suk; Yoo, Jeong Joon; Kim, Hee Joong

    2016-01-01

    We evaluated the short-term to midterm results of reoperation with bearing change to metal-on-polyethylene (MoP) after ceramic bearing fracture in ceramic-on-ceramic total hip arthroplasty. Nine third-generation ceramic bearing fractures (6 heads and 3 liners) were treated with bearing change to MoP. Mean age at reoperation was 52.7 years. Mean follow-up was 4.3 years. During follow-up, 2 of 3 liner-fractured hips and 1 of 6 head-fractured hips showed radiologic signs of metallosis and elevated serum chromium levels. Re-reoperation with bearing rechange to a ceramic head was performed for the hips with metallosis. One liner-fractured hip had periprosthetic joint infection. Dislocation occurred in 3 hips. From our experience, bearing change to MoP is not a recommended treatment option for ceramic bearing fracture in total hip arthroplasty. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Sodium-Bearing Waste Treatment, Applied Technology Plan

    International Nuclear Information System (INIS)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-01-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology

  20. Sodium-Bearing Waste Treatment, Applied Technology Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  1. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    Science.gov (United States)

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip

  2. The current state of bearing surfaces in total hip replacement.

    Science.gov (United States)

    Rajpura, A; Kendoff, D; Board, T N

    2014-02-01

    We reviewed the literature on the currently available choices of bearing surface in total hip replacement (THR). We present a detailed description of the properties of articulating surfaces review the understanding of the advantages and disadvantages of existing bearing couples. Recent technological developments in the field of polyethylene and ceramics have altered the risk of fracture and the rate of wear, although the use of metal-on-metal bearings has largely fallen out of favour, owing to concerns about reactions to metal debris. As expected, all bearing surface combinations have advantages and disadvantages. A patient-based approach is recommended, balancing the risks of different options against an individual's functional demands.

  3. Heavy Metals in Brown Bears from the Central European Carpathians

    Directory of Open Access Journals (Sweden)

    O. Čelechovská

    2006-01-01

    Full Text Available The aim of the present study was to assess heavy metal load in the brown bear (Ursus arctos living in the central European Carpathians. Between 2002 and 2004, fifteen bears were examined to evaluate the distribution of cadmium, lead, mercury and copper in the animals' muscles (diaphragm, spleen, liver and kidney. The highest content of cadmium, lead and mercury was found in the kidney (17.4 ± 5.2 mg kg-1, 1.16 ± 0.39 mg kg-1, 0.39 ± 0.25 mg kg-1, whereas the lowest content of the metals was observed in the muscles (0.017 ± 0.009 mg kg-1, 0.299 ± 0.308 mg kg-1, 0.013 ± 0.011 mg kg-1. Second highest concentration of cadmium, lead and mercury was detected in the liver (0.83 ± 0.24 mg kg-1, 0.99 ± 0.61 mg kg-1, 0.11 ± 0.05 mg kg-1. Copper distributions and concentrations in bear tissues were as follows (in descending order: liver (23.9 ± 6.7 mg kg-1, > kidneys (9.0 ± 3.3 mg kg-1, > muscles (1.9 ± 1.6 mg kg-1 and > spleen (1.0 ± 0.2 mg kg-1. As compared with heavy metal load observed in bear tissues between 1988 and 1990, the concentration of cadmium in the muscles and liver was significantly lower (p p p < 0.01. Lead and copper tissue concentrations did not change substantially.

  4. Experimental research and development of main circulation pump bearings in reactor plants using heavy liquid-metal coolants

    International Nuclear Information System (INIS)

    Zudin, A.; Beznosov, A.; Chernysh, A.; Prikazchikov, G.

    2015-01-01

    At the present time, specialists in Russia are engaged in designing the BREST-OD-300 fast neutron lead-coolant reactor plant. There is currently no experience in designing and operating axial pumps of lead-coolant reactor plants, including one of their major units – bearing unit. Selection and substantiation of operating and structural parameters of plain friction bearings used in main circulation pumps of reactor plants running on heavy liquid-metal coolants are important tasks that are solved at the NNSTU. Development of a feasible procedure for designing bearings and its components operating within the structure of the main circulation pump of a reactor plant running on a heavy liquid-metal coolant as well as guidelines for an optimized structural scheme of such bearings set a goal of performing a range of theoretically-calculated and experimental works. The report contains testing data of a hydrostatic bearing with reciprocal fricative choking tested on the NNSTU FT-4 bench running on a lead coolant within the range of 420-500degC. There have been presented a scheme of a bench for testing a contact friction bearing on a high-temperature coolant and the results of investigation tests of bearings of such type at T = 450 ÷ 500degC. Material of the bearing sleeve is steel 08X18H10T, and a possibility is provided with regard to installation of the bearing sleeves and shaft made of non-metal materials (ceramic materials, silicified graphite, etc.). The presented testing data of plain friction bearings operating in a high-temperature heavy liquid-metal coolant will serve as a ground for making an alternative choice of a plain friction bearing for the main circulation pump of a reactor plant running on a heavy liquid-metal coolant. (author)

  5. Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.

    Science.gov (United States)

    Pavlović, Jelena; Stopić, Srećko; Friedrich, Bernd; Kamberović, Zeljko

    2007-11-01

    reactor, the difference between maximum and minimum temperature was as low as 6 degrees C. The quantity of solid residue in reactors respectively was 0.62 g, 2.05 g and 3.91 g. In the case of copper, minimum achieved concentration was 0.62 mg/dm3 at pH = 10.4. At pH = 4.50 content of iron has rapidly decreased to water standard according to The Council Directive 76/464/EEC on pollution caused by certain dangerous substances into the aquatic environment of the Community. Maximum changing of temperature during the whole process was 6 degrees C. This technology, which was based on inducing chemical precipitation of heavy metals is viable for selective removal of heavy metals from metal-bearing effluents in three reactor systems in a cascade line. The worldwide increasing concern for the environment and guidelines regarding effluent discharge make their treatment necessary for safe discharge in water receivers. In the case where the effluents contain valuable metals, there is also an additional economic interest to recover these metals and to recycle them as secondary raw materials in different production routes.

  6. Research and Application of Virtual Simulation Technology in the Aerospace Bearing Design and Manufacture

    Directory of Open Access Journals (Sweden)

    Jiangshan Liu

    2018-01-01

    Full Text Available Bearings are widely used in aerospace and other fields, its performance directly affects the production efficiency and safety. Nowadays, virtual simulation technology has become an indispensable part of intelligent manufacturing field. As a virtual simulation technology, FEA has been widely used in bearing design. China needs to import many aerospace bearings every year in aerospace area, Chinese national defense and other high precision technology is limited because the blockade of advanced bearing technology. We can use dynamics modeling and virtual simulation technology to achieve the predictive design, and strive to achieve foreign level. In this paper, the author proposed a method of bearing design based on virtual simulation technology. The factors of bearing which affect the dynamic characteristics are considered, the process of design bearing based on virtual simulation is also considered. According to the different design parameters, the simulation results are used to verify the rationality, these can reduce the cost and improve the reliability. The virtual simulation technology is applied to design the 7016C angular contact ball bearing which used in aerospace area, and supported decision-making in structure design and data analyze. Finally, The feasibility of this method is verified by experiments..

  7. Mapping the Spatial Distribution of Metal-Bearing Oxides in VY Canis Majoris

    Science.gov (United States)

    Burkhardt, Andrew; Booth, S. Tom; Remijan, Anthony; Carroll, Brandon; Ziurys, Lucy M.

    2015-06-01

    The formation of silicate-based dust grains is not well constrained. Despite this, grain surface chemistry is essential to modern astrochemical formation models. In carbon-poor stellar envelopes, such as the red hypergiant VY Canis Majoris (VY CMa), metal-bearing oxides, the building blocks of silicate grains, dominate the grain formation, and thus are a key location to study dust chemistry. TiO_2, which was only first detected in the radio recently (Kaminski et al., 2013a), has been proposed to be a critical molecule for silicate grain formation, and not oxides containing more abundant metals (eg. Si, Fe, and Mg) (Gail and Sedlmayr, 1998). In addition, other molecules, such as SO_2, have been found to trace shells produced by numerous outflows pushing through the expanding envelope, resulting in a complex velocity structure (Ziurys et al., 2007). With the advanced capabilities of ALMA, it is now possible to individually resolve the velocity structure of each of these outflows and constrain the underlying chemistry in the region. Here, we present high resolution maps of rotational transitions of several metal-bearing oxides in VY CMa from the ALMA Band 7 and Band 9 Science Verification observations. With these maps, the physical parameters of the region and the formation chemistry of metal-bearing oxides will be studied.

  8. Hard chrome-coated and fullerene-doped metal surfaces in orthopedic bearings

    OpenAIRE

    Sonntag, Robert; Feige, Katja; Santos, Claudia Beatriz dos; Kretzer, Jan Philippe

    2017-01-01

    Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an ...

  9. Natural Remission of Major Periprosthetic Osteolysis following Total Hip Arthroplasty with Metal-on-Metal Bearings

    Directory of Open Access Journals (Sweden)

    Tatsuya Tamaki

    2017-01-01

    Full Text Available The natural course of adverse events following the use of metal-on-metal (MoM bearings in total hip arthroplasty (THA is not well known. In this article, we report the case of a patient with asymptomatic major acetabular osteolysis following MoM THA that diminished gradually without any surgical intervention. A 58-year-old male underwent one-stage bilateral MoM THA for bilateral osteoarthritis. Four years after THA, major acetabular osteolysis developed in his right hip without any local or systemic symptoms. The patient underwent a careful radiographic and clinical observation without any surgical intervention because he did not want to undergo revision surgery. The lesion gradually diminished after 7 years, and most of the osteolytic area was replaced by newly formed bone at 10 years. He continues to be followed with no evidence of cup loosening or migration. Our observation suggests that a periprosthetic osteolytic change related to the use of MoM bearings has the potential for natural remission.

  10. Testing of seismic isolation bearings for advanced liquid metal reactor prism

    International Nuclear Information System (INIS)

    Tajirian, F.F.; Kelly, J.M.

    1988-01-01

    Seismic isolation can significantly mitigate earthquake loads on liquid metal reactors (LMR), thus reducing the impact of seismic loads on design. This improves plant safety margins for beyond-design basis seismic events and enhances adaptability of a standardized design to a variety of sites, with potential cost benefits. The PRISM (Power Reactor Inherently Safe Module) LMR incorporates a horizontal isolation system which consists of high damping steel laminated rubber bearings. The results of an experimental program to determine the mechanical properties of the rubber compound and the bearing performance under different loading conditions are presented. The test results demonstrate the excellent performance of the bearings and their suitability for isolating compact LMR plants

  11. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings.

    Science.gov (United States)

    Sonntag, Robert; Feige, Katja; Dos Santos, Claudia Beatriz; Kretzer, Jan Philippe

    2017-12-20

    Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an industrial standard chromium electrolyte; (b) a custom-made hexavalent chromium (Cr 6+ ) electrolyte with a reduced chromium trioxide (CrO₃) content, both without solid additives and (c) with the addition of fullerene (C 60 ) nanoparticles; and (d) a trivalent chromium (Cr 3+ ) electrolyte with C 60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm) than the hexavalent coatings (23-40 µm) and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70-84% compared with the CoCr-CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect.

  12. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    2017-12-01

    Full Text Available Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a an industrial standard chromium electrolyte; (b a custom-made hexavalent chromium (Cr6+ electrolyte with a reduced chromium trioxide (CrO3 content, both without solid additives and (c with the addition of fullerene (C60 nanoparticles; and (d a trivalent chromium (Cr3+ electrolyte with C60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm than the hexavalent coatings (23–40 µm and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70–84% compared with the CoCr–CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect.

  13. Treatment technology of low concentration uranium-bearing wastewater and its research progress

    International Nuclear Information System (INIS)

    Wei Guangzhi; Xu Lechang

    2007-01-01

    With growth of the discharged uranium-bearing wastewater capacity, a low cost and effective treatment technology is required to avoid transferring and diffusion of the radioactive nuclides. On the basis of analyses of the source and characteristics of the low-concentration uranium-bearing wastewater, the conventional treatment technologies, such as, flocculating settling, ion exchange, concentration, adsorption, and some innovatory technologies, such as, membrane, microorganism, phytoremediation and zero-valent iron technology are introduced. (authors)

  14. What Are Normal Metal Ion Levels After Total Hip Arthroplasty? A Serologic Analysis of Four Bearing Surfaces.

    Science.gov (United States)

    Barlow, Brian T; Ortiz, Philippe A; Boles, John W; Lee, Yuo-Yu; Padgett, Douglas E; Westrich, Geoffrey H

    2017-05-01

    The recent experiences with adverse local tissue reactions have highlighted the need to establish what are normal serum levels of cobalt (Co), chromium (Cr), and titanium (Ti) after hip arthroplasty. Serum Co, Cr, and Ti levels were measured in 80 nonconsecutive patients with well-functioning unilateral total hip arthroplasty and compared among 4 bearing surfaces: ceramic-on-ceramic (CoC); ceramic-on-polyethylene (CoP); metal-on-polyethylene (MoP), and dual mobility (DM). The preoperative and most recent University of California, Los Angeles (UCLA) and Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores were compared among the different bearing surfaces. No significant difference was found among serum Co and Cr levels between the 4 bearing surface groups (P = .0609 and P = .1577). Secondary analysis comparing metal and ceramic femoral heads demonstrated that the metal group (MoP, modular dual mobility (Stryker Orthopedics, Mahwah, NJ) [metal]) had significant higher serum Co levels compared with the ceramic group (CoC, CoP, MDM [ceramic]) (1.05 mg/L ± 1.25 vs 0.59 mg/L ± 0.24; P = .0411). Spearman coefficient identified no correlation between metal ion levels and patient-reported outcome scores. No serum metal ion level differences were found among well-functioning total hip arthroplasty with modern bearing couples. Significantly higher serum Co levels were seen when comparing metal vs ceramic femoral heads in this study and warrants further investigation. Metal ion levels did not correlate with patient-reported outcome measures. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Direct Metal Laser Sintering: A Digitised Metal Casting Technology

    OpenAIRE

    Venkatesh, K. Vijay; Nandini, V. Vidyashree

    2013-01-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  16. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  17. Incineration technology for alpha-bearing radioactive waste in Germany

    International Nuclear Information System (INIS)

    Dirks, Friedlich; Pfeiffer, Reinhard

    1997-01-01

    Since 1971 the Karlsruhe Research Center has developed and operated plants for the incineration of radioactive waste. Three incineration plants for pure β/γ solid, α-bearing solid and radioactive liquid waste have been successfully utilized during last two decades. Recently more than 20 year-old β/γ plant was shut down with the economic point of view, mainly due to the recently reduced volume of burnable β/γ waste. Burnable β/γ solid waste is now being treated with α-bearing waste in a α solid incineration plant. The status of incineration technology for α-bearing waste and other radioactive waste treatment technologies, which are now utilized in Karlsruhe Research Center, such as conditioning of incineration ash, supercompaction, scrapping, and decontamination of solid radioactive waste, etc. are introduced in this presentation. Additionally, operational results of the recently installed new dioxin adsorber and fluidized-bed drier for scrubber liquid in α incineration plant are also described in this presentation. (author) 1 tab., 13 figs

  18. Management of metal-bearing industrial solid waste by stabilization/solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Sunitha, C.; Palanivelu, K. [Anna University, Chennai (India). Centre for Environmental Studies

    2005-07-01

    Metal-bearing sludge from an electroplating industry was immobilised by the solidification stabilisation treatment method. Reduction of the leachability of metals from the waste was studied in different combinations of waste and additives - cement, lime and fly ash. The study revealed that the optimum proportion for cement: metal hydroxide sludge: fly ash as 1:2:2 is the best. The encapsulation efficiency calculated for the metals such as Cu, Cr, Ni, Pb, and Zn was above 92%. The unconfined compressive strength (UCS) for the developed block was found to be 11.5 kg/cm{sup 2} after curing. The toxicity characteristic leach test (TCLP) test reveals that the heavy metal content in the leachate was well below the maximum permissible limit of WHO drinking water standard. 10 refs., 6 tabs.

  19. Tribology of alternative bearings.

    Science.gov (United States)

    Fisher, John; Jin, Zhongmin; Tipper, Joanne; Stone, Martin; Ingham, Eileen

    2006-12-01

    The tribological performance and biological activity of the wear debris produced has been compared for highly cross-linked polyethylene, ceramic-on-ceramic, metal-on-metal, and modified metal bearings in a series of in vitro studies from a single laboratory. The functional lifetime demand of young and active patients is 10-fold greater than the estimated functional lifetime of traditional polyethylene. There is considerable interest in using larger diameter heads in these high demand patients. Highly cross-linked polyethylene show a four-fold reduction in functional biological activity. Ceramic-on-ceramic bearings have the lowest wear rates and least reactive wear debris. The functional biological activity is 20-fold lower than with highly cross-linked polyethylene. Hence, ceramic-on-ceramic bearings address the tribological lifetime demand of highly active patients. Metal-on-metal bearings have substantially lower wear rates than highly cross-linked polyethylene and wear decreases with head diameter. Bedding in wear is also lower with reduced radial clearance. Differential hardness ceramic-on-metal bearings and the application of ceramic-like coatings reduce metal wear and ion levels.

  20. Optimization of rock-bit life based on bearing failure criteria

    International Nuclear Information System (INIS)

    Feav, M.J.; Thorogood, J.L.; Whelehan, O.P.; Williamson, H.S.

    1992-01-01

    This paper reports that recent advances in rock-bit seal technology have allowed greater predictability of bearing life. Cone loss following bearing failure incurs costs related to remedial activities. A risk analysis approach, incorporating bearing-life relationships and the inter-dependence of drilling events, is used to formulate a bit-run cost-optimization method. The procedure enables a choice to be made between elastomeric and metal seals on a lowest-replacement-cost basis. The technique also provides a formal method for assessing the opportunity cost for using a device to detect bit-bearing failures downhole

  1. Characterisation of heavy metal-bearing phases in stream sediments of the Meza River Valley, Slovenia, by means of SEM/EDS analysis

    International Nuclear Information System (INIS)

    Miler, M; Gosar, M

    2010-01-01

    Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Mez'a River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.

  2. Characterization study of heavy metal-bearing phases in MSW slag

    International Nuclear Information System (INIS)

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Motomura, Yoshinobu; Watanabe, Koichiro

    2009-01-01

    Slag products derived from the pyrolysis/melting and plasma/melting treatment of municipal solid waste (MSW) in Japan were examined for the characterization study of heavy metal-bearing phases using petrographic techniques. Detailed microscopic observations revealed that the shapes of heavy metal-rich inclusions are generally spherical to semi-spherical and their sizes range from submicron to scarcely large size spheres (over 100 μm). The experiments (both optical microscopy and electron probe microanalysis) indicated that Fe and Cu participate in mutual substitution and different proportions, and form mainly two-phase Fe-Cu alloys that bound in the silicate glass. This alloy characterizes the composition of more than 80% of the metal-rich inclusions. Other metals and non-metals (such as Pb, Ni, Sb, Sn, P, Si, Al and S) with variable amounts and uneven distributions are also incorporated in the Fe-Cu alloy. In average, the bulk concentration of heavy metals in samples from pyrolysis/melting type is almost six times greater than samples treated under plasma/arc processing. The observations also confirmed that slag from pyrolysis origin contains remarkably higher concentration of metallic inclusions than slag from plasma treatment. In the latter, the metallic compounds are separately tapped from molten slag during the melting treatment that might lead to the generation of safer slag product for end users from environmental viewpoint.

  3. UPTAKE OF HEAVY METALS IN BATCH SYSTEMS BY A RECYCLED IRON-BEARING MATERIAL

    Science.gov (United States)

    An iron-bearing material deriving from surface finishing operations in the manufacturing of cast-iron components demonstrates potential for removal of heavy metals from aqueous waste streams. Batch isotherm and rate experiments were conducted for uptake of cadmium, zinc, and lead...

  4. Shock Hazard Prevention through Self-Healing Insulative Coating on SSA Metallic Bearings, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The space suit assembly (SSA) contains metallic bearings at the wrist, neck, and waist, which are exposed to space environment, and pose a potential shock hazard....

  5. Adaptive Technology Application for Vibration-Based Diagnostics of Roller Bearings on Industrial Plants

    Directory of Open Access Journals (Sweden)

    Mironov Aleksey

    2014-09-01

    Full Text Available Roller bearings are widely used in equipment of different applications; therefore, the issues related to the assessment of bearing technical state and localization of bearing faults are quite important and relevant. The reason is that technical state of a bearing is a critical component, which determines efficiency of a mechanism or equipment. For bearings inspection and diagnostics, various methods of vibration-based diagnostics are used. The adaptive technology for vibration-based diagnostics developed in „D un D centrs” is an effective tool for evaluation of technical state of bearings in operation compared to the existing SKF method.

  6. New Joining Technology for Optimized Metal/Composite Assemblies

    Directory of Open Access Journals (Sweden)

    Holger Seidlitz

    2014-01-01

    Full Text Available The development of a new joining technology, which is used to manufacture high strength hybrid constructions with thermoplastic composites (FRP and metals, is introduced. Similar to natural regulation effects at trees, fibers around the FRP joint become aligned along the lines of force and will not be destroyed by the joining process. This is achieved by the local utilization of the specific plastic flow properties of the FRT and metal component. Compared with usual joining methods—such as flow drill screws, blind and self-piercing rivets—noticeably higher tensile properties can be realized through the novel process management. The load-bearing capability increasing effect could be proved on hybrid joints with hot-dip galvanized steel HX420LAD and orthotropic glass—as well as carbon—fiber reinforced plastics. The results, which were determined in tensile-shear and cross-shear tests according to DIN EN ISO 14273 and DIN EN ISO 14272, are compared with holding loads of established joining techniques with similar joining point diameter and material combinations.

  7. Shock Hazard Prevention through Self-Healing Insulative Coating on SSA Metallic Bearings, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The space suit contains metallic bearings at the wrist, neck, and waist, which are exposed to the space environment. There is a need to maintain a high degree of...

  8. Analysis of Ling'ao nuclear power station unit 1 exciter No.11 bearing white metal damage and its operating temperature abnormally high

    International Nuclear Information System (INIS)

    Jia Kaili

    2005-01-01

    On the base of analyzing the type of exciter No.11 bearing white metal damage, the root cause and its solution are found. No damage was found on bearing white metal in the later time. On the base of analyzing the structure of the generator end bracket, it is pointed out that when the generator frame is full of pressed gas, the end bracket will deform, that result in the load on No.11 bearing increase, as a result causes the bearing temperature high. A proposal to this problem is presented. (author)

  9. Solid lubricant mass contact transfer technology usage for vacuum ball bearings longevity increasing

    Science.gov (United States)

    Arzymatov, B.; Deulin, E.

    2016-07-01

    A contact mass transfer technological method of solid lubricant deposition on components of vacuum ball bearings is presented. Physics-mathematical model of process contact mass transfer is being considered. The experimental results of ball bearings covered with solid lubricant longevity in vacuum are presented. It is shown that solid lubricant of contact mass transfer method deposition is prospective for ball bearing longevity increasing.

  10. The Infection Rate of Metal-on-Metal Total Hip Replacement Is Higher When Compared to Other Bearing Surfaces as Documented by the Australian Orthopaedic Association National Joint Replacement Registry.

    Science.gov (United States)

    Huang, Phil; Lyons, Matt; O'Sullivan, Michael

    2018-02-01

    Despite the well-documented decline in the use of metal-on-metal (MoM) implants over the last decade, there are still controversies regarding whether all MoM implants are created equally. Complications such as elevated serum metal ion levels, aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) and pseudotumours have all been well documented, but recent studies suggest increased risk of infection with MoM bearing surfaces. Most of these studies however have small patient numbers. The purpose of this study was to examine the cumulative incidence of revision for infection of MoM bearing surfaces in primary hip arthroplasty at a national and single-surgeon level. Data was collected from the Australian Orthopaedic Association National Joint Replacement Registry, which contains over 98% of all arthroplasties performed in Australia since 2001. The cumulative incidence of revision for infection was extracted at a national level and single-surgeon level. Two hundred seventy-six thousand eight hundred seventy-eight subjects were documented in the Australian registry. The 10-year cumulative percent revision for infection of MoM bearing surfaces in primary total hip replacement (THR) was 2.5% at a national level, compared to 0.8% for other bearing surfaces. The senior author contributed 1755 subjects with 7-year follow-up and a cumulative percent revision for infection of MoM bearing surfaces in primary THR of 36.9%, compared to 2.0% for other bearing surfaces. The cumulative percent of revision of MoM bearing surfaces is higher compared to other bearing surfaces; this is especially pronounced in cumulative percent of revision for infection. There was a higher cumulative percent of revision for infection in MoM bearings surfaces (in particular, large-head MoM) compared to other bearing surfaces at both the national and individual-surgeon level.

  11. Characterisation of heavy metal-bearing phases in stream sediments of the Meža River Valley, Slovenia, by means of SEM/EDS analysis

    Science.gov (United States)

    Miler, M.; Gosar, M.

    2010-02-01

    Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Meža River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.

  12. A Weldability Study of Structural Materials for Manufacturing Bearing Separators

    Directory of Open Access Journals (Sweden)

    V. S. Drizhov

    2016-01-01

    Full Text Available The aim is to analyze the possibility for using the 08YUT steel separator tape to manufacture separators, which are to be further applied to the bearing assembly via projection welding.Reliability of rolling bearings is determined by many factors such as surface quality of balls and rings and assembly precision, including the seal strength of hemiseparators.The technology based on the double-pulsed condenser projection welding belongs to one of the most efficient technologies to provide the assembly of bearing, for it allows welding of separator simultaneously in all currents. The paper shows that the required condition to assure high reliability of the bearing is induastial development and implementation of an effective and positive quality control system, which will reduce the probability of damages occurring both when welding and in the course of operation.The work used the static tensile test methods, as well as metallographic analysis.The experimental study used the 08YUT steel hemiseparators. A tape thickness of the hemiseparators was of 1.5mm. The number of simultaneously welded points were 8. The experimental studies of the metal damage of welding joints of the the 08YUT steel separator have shown that with a wide range of the changing welding current and compressed electrode force the quality assurance of welding points at the parent metal level could not be retrieved.The metallographic analysis of the metal damage nature of a welded joint revealed that between the atoms on the surfaces of hemiseparators there are no strong bonds – a bond was formed in the contact zone. This phenomenon leads to reduced tensile seal strength.The study has shown that aluminum and titanium added to the low-carbon steel in order to have a more fine-grained metal structure has a negative effect on the quality of welded joint via projection welding.

  13. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  14. State of the art in hard-on-hard bearings: how did we get here and what have we achieved?

    Science.gov (United States)

    Zywiel, Michael G; Sayeed, Siraj A; Johnson, Aaron J; Schmalzried, Thomas P; Mont, Michael A

    2011-03-01

    Total hip arthroplasty has shown excellent results in decreasing pain and improving function in patients with degenerative disease of the hip. Improvements in prosthetic materials, designs and implant fixation have now resulted in wear of the bearing surface being the limitation of this technology, and a number of hard-on-hard couples have been introduced to address this concern. The purpose of this article is to review the origins, development, survival rates and potential advantages and disadvantages of the following hard-on-hard bearings for total hip arthroplasty: metal-on-metal standard total hip arthroplasty; metal-on-metal hip resurfacing arthroplasty, ceramic-on-ceramic total hip arthroplasty; and ceramic-on-metal bearings. Improvements in the manufacturing of metal-on-metal bearings over the past 50 years have resulted in implants that provide low wear rates and allow for the use of large femoral heads. However, concerns remain regarding elevated serum metal ion levels, potential teratogenic effects and potentially devastating adverse local tissue reactions, whose incidence and pathogenesis remains unclear. Modern total hip resurfacing has shown excellent outcomes over 10 years in the hands of experienced surgeons. Current ceramic-on-ceramic bearings have demonstrated excellent survival with exceptionally low wear rates and virtually no local adverse effects. Concerns remain for insertional chipping, in vivo fracture and the variable incidence of squeaking. Contemporary ceramic-on-metal interfaces are in the early stages of clinical use, with little data reported to date. Hard-on-hard bearings for total hip arthroplasty have improved dramatically over the past 50 years. As bearing designs continue to improve with new and modified materials and improved manufacturing techniques, it is likely that the use of hard-on-hard bearings will continue to increase, especially in young and active patients.

  15. Non-fuel bearing hardware melting technology

    International Nuclear Information System (INIS)

    Newman, D.F.

    1993-01-01

    Battelle has developed a portable hardware melter concept that would allow spent fuel rod consolidation operations at commercial nuclear power plants to provide significantly more storage space for other spent fuel assemblies in existing pool racks at lower cost. Using low pressure compaction, the non-fuel bearing hardware (NFBH) left over from the removal of spent fuel rods from the stainless steel end fittings and the Zircaloy guide tubes and grid spacers still occupies 1/3 to 2/5 of the volume of the consolidated fuel rod assemblies. Melting the non-fuel bearing hardware reduces its volume by a factor 4 from that achievable with low-pressure compaction. This paper describes: (1) the configuration and design features of Battelle's hardware melter system that permit its portability, (2) the system's throughput capacity, (3) the bases for capital and operating estimates, and (4) the status of NFBH melter demonstration to reduce technical risks for implementation of the concept. Since all NFBH handling and processing operations would be conducted at the reactor site, costs for shipping radioactive hardware to and from a stationary processing facility for volume reduction are avoided. Initial licensing, testing, and installation in the field would follow the successful pattern achieved with rod consolidation technology

  16. Baropodometric technology used to analyze types of weight-bearing during hemiparetic upright position

    Directory of Open Access Journals (Sweden)

    Lidiane Teles de Menezes

    Full Text Available INTRODUCTION: Although baropodometric analysis has been published since the 1990s, only now it is found a considerable number of studies showing different uses in the rehabilitation. OBJECTIVE: To amplify the use of this technology, this research aimed to analyze baropodometric records during upright position of subjects with hemiparesis, describing a way to define weight-bearing profiles in this population. METHOD: 20 healthy subjects were matched by gender and age with 12 subjects with chronic spastic hemiparesis. This control group was formed to establish the limits of symmetry during weight-bearing distribution in the hemiparesis group. Next, hemiparesis group was submitted to procedures to measure baropodometric records used to provide variables related to the weight-bearing distribution, the arch index and the displacements in the center of pressure (CoP. Data were used to compare differences among kinds of weight-bearing distribution (symmetric, asymmetric toward non-paretic or paretic foot and coordination system for CoP displacements. RESULTS: Hemiparesis group was compounded by eight symmetrics, eight asymmetrics toward non-paretic foot and four asymmetric toward paretic foot. Significant differences in the weight-bearing distributions between non-predominantly and predominantly used foot did not promote differences in the other baropodometric records (peak and mean of pressure, and support area. Mainly in the asymmetry toward non-paretic foot it was observed significant modifications of the baropodometric records. CONCLUSION: Baropodometric technology can be used to analyze weight-bearing distribution during upright position of subjects with hemiparesis, detecting different kinds of weight-bearing profiles useful to therapeutic programs and researches involving subjects with this disability.

  17. Critical Metals in Strategic Energy Technologies. Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies

    International Nuclear Information System (INIS)

    Moss, R.L.; Tzimas, E.; Kara, H.; Willis, P.; Kooroshy, J.

    2011-11-01

    Due to the rapid growth in demand for certain materials, compounded by political risks associated with the geographical concentration of the supply of them, a shortage of these materials could be a potential bottleneck to the deployment of low-carbon energy technologies. In order to assess whether such shortages could jeopardise the objectives of the EU's Strategic Energy Technology Plan (SET-Plan), an improved understanding of these risks is vital. In particular, this report examines the use of metals in the six low-carbon energy technologies of SET-Plan, namely: nuclear, solar, wind, bioenergy, carbon capture and storage (CCS) and electricity grids. The study looks at the average annual demand for each metal for the deployment of the technologies in Europe between 2020 and 2030. The demand of each metal is compared to the respective global production volume in 2010. This ratio (expressed as a percentage) allows comparing the relative stress that the deployment of the six technologies in Europe is expected to create on the global supplies for these different metals. The study identifies 14 metals for which the deployment of the six technologies will require 1% or more (and in some cases, much more) of current world supply per annum between 2020 and 2030. These 14 metals, in order of decreasing demand, are tellurium, indium, tin, hafnium, silver, dysprosium, gallium, neodymium, cadmium, nickel, molybdenum, vanadium, niobium and selenium. The metals are examined further in terms of the risks of meeting the anticipated demand by analysing in detail the likelihood of rapid future global demand growth, limitations to expanding supply in the short to medium term, and the concentration of supply and political risks associated with key suppliers. The report pinpoints 5 of the 14 metals to be at high risk, namely: the rare earth metals neodymium and dysprosium, and the by-products (from the processing of other metals) indium, tellurium and gallium. The report explores a

  18. An Overview of the Thermal Calculation and the Cooling Technology for Active Magnetic Bearing

    Science.gov (United States)

    Zhang, Li; Yu, Meiyun; Luo, Yanyan; Liu, Jun; Ren, Yafeng

    2017-10-01

    The cooling process of AMB is that the energy loss is sent out to the outside world when the system is operating. The energy loss transfers to the surrounding medium in the form of heat, which leads to raise the temperature of system components and influences the performance of the system. So it is necessary to study the internal loss of the magnetic bearing system and thermal calculation method. Three kinds of thermal calculation methods are compared, which is important for the design and calculation of cooling. At the same time, the cooling way, the cooling method, and the cooling system is summarized on the basis of cooling technology of active magnetic bearing, and the design method of the cooling system is studied. But for the active magnetic bearing system, when designing the cooling system, heat dissipation of the motor can not be ignored. It is important not only for the performance of the active magnetic bearing system and stable operation, and but also for the improvement of the cooling technology.

  19. Determination of metallo-organic and particulate wear metals in lubricating oils associated with hybrid ceramic bearings by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Russell, Robin Ann

    It is possible to increase both the performance and operating environment of jet engines by using hybrid ceramic bearings. Our laboratory is concerned with investigating lubricating fluids for wear metals associated with silicon nitride ball bearings and steel raceways. Silicon nitride is characterized by low weight, low thermal expansion, high strength, and corrosion resistance. These attributes result in longer engine lifetimes than when metallic ball bearings are used. Before the routine use of ceramic ball bearings can be realized, the wear mechanisms of the materials should be thoroughly understood. One important variable in determining wear degradation is the concentration of metal present in the lubricating oils used with the bearings. A complete method for analyzing used lubricating oils for wear metal content must accurately determine all metal forms present. Oil samples pose problems for routine analysis due to complex organic matrices. Nebulizing these types of samples into an Inductively Coupled Plasma - Mass Spectrometer introduces many problems including clogging of the sample cone with carbon and increasing interferences. In addition, other techniques such as Atomic Absorption Spectrometry and Atomic Emission Spectrometry are particle size dependent. They are unable to analyze particles greater than 10 mum in size. This dissertation describes a method of analyzing lubricating oils for both metallo-organic and particulate species by ICP-MS. Microwave digestion of the oil samples eliminates the need for elaborate sample introduction schemes as well as the use of a modified carrier gas. Al, Cr, Fe, Mg, Mo, Ni, Ti, and Y have been determined in both aqueous and organic media. Metallo-organic solutions of these metals were successfully digested, nebulized into the ICP, and the singly charged ions measured by mass spectrometry. Metal particulates in oil matrices have also been quantitatively determined by the above method. Linear analytical curves were

  20. Additive manufacturing technologies of porous metal implants

    Directory of Open Access Journals (Sweden)

    Yang Quanzhan

    2014-06-01

    Full Text Available Biomedical metal materials with good corrosion resistance and mechanical properties are widely used in orthopedic surgery and dental implant materials, but they can easily cause stress shielding due to the significant difference in elastic modulus between the implant and human bones. The elastic modulus of porous metals is lower than that of dense metals. Therefore, it is possible to adjust the pore parameters to make the elastic modulus of porous metals match or be comparable with that of the bone tissue. At the same time, the open porous metals with pores connected to each other could provide the structural condition for bone ingrowth, which is helpful in strengthening the biological combination of bone tissue with the implants. Therefore, the preparation technologies of porous metal implants and related research have been drawing more and more attention due to the excellent features of porous metals. Selective laser melting (SLM and electron beam melting technology (EBM are important research fields of additive manufacturing. They have the advantages of directly forming arbitrarily complex shaped metal parts which are suitable for the preparation of porous metal implants with complex shape and fine structure. As new manufacturing technologies, the applications of SLM and EBM for porous metal implants have just begun. This paper aims to understand the technology status of SLM and EBM, the research progress of porous metal implants preparation by using SLM and EBM, and the biological compatibility of the materials, individual design and manufacturing requirements. The existing problems and future research directions for porous metal implants prepared by SLM and EBM methods are discussed in the last paragraph.

  1. Technology development for indigenous water lubricated bearings

    International Nuclear Information System (INIS)

    Limaye, P.K.; Soni, N.L.; Agrawal, R.G.

    2010-01-01

    Water Lubricated Bearings (WLB) are used in various mechanisms of fuel handling systems of PHWRs and AHWR. Availability and random failures of these bearings was a major factor in refuelling operations. Indigenous development of these bearings was taken up and 7 types of antifriction bearings in various sizes (totaling 37 variants) for PHWR, AHWR and Dhruva applications were successfully developed. This paper deals with various aspects of WLB development. (author)

  2. Synthesis of Hydrophilic Sulfur-Containing Adsorbents for Noble Metals Having Thiocarbonyl Group Based on a Methacrylate Bearing Dithiocarbonate Moieties

    Directory of Open Access Journals (Sweden)

    Haruki Kinemuchi

    2018-01-01

    Full Text Available Novel hydrophilic sulfur-containing adsorbents for noble metals were prepared by the radical terpolymerization of a methacrylate bearing dithiocarbonate moieties (DTCMMA, hydrophilic monomers, and a cross-linker. The resulting adsorbents efficiently and selectively adsorbed noble metals (Au, Ag, and Pd from various multielement aqueous solutions at room temperature owing to the thiocarbonyl group having high affinity toward noble metals. The metal adsorption by the adsorbents was proceeded by simple mixing followed by filtration. The noble metal selectivity of the adsorbent obtained from DTCMMA and N-isopropylacrylamide was higher than that of the adsorbent obtained from DTCMMA and N,N-dimethylacrylamide due to the lower nonspecific adsorption.

  3. Sodium-bearing Waste Treatment Technology Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

    2004-05-01

    Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

  4. Implementation of Ultrasonic Immersion Technique for Babbitt Metal Debonding in Turbine Bearing

    International Nuclear Information System (INIS)

    Jung, Gye Jo; Park, Sang Ki; Cho, Yong Sang; Park, Byung Cheol; Kil, Doo Song

    2004-01-01

    This study is aimed for the implementation of ultrasonic method to assess the reliability of turbine bearings. A modified ultrasonic immersion technique was carried out in both laboratory experiment and field application. From the laboratory results, we confirmed that the condition of interface layer between the babbitt and base metal be monitored by the C-Scan. The C-scan image by the ultrasonic immersion test can be used successfully to observe the condition of interface layer. The testing with a focused transducer provides a promising approach for estimating the extent of the damaged region and observing the interface layer effectively. The difference of the ultrasonic reflection ratio between the bonding and debonding area at the interface layer is one of the key parameters for assessing the extent of the damaged area; additionally, the reflection amplitude exhibits a favorable correlation with the overall damage level. The technique developed in this study was applied to the inspection of the turbine bearings at several power plants in Korea whereby the applicability in the field can be ascertained

  5. Implementation of Ultrasonic Immersion Technique for Babbitt Metal Debonding in Turbine Bearing

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Gye Jo; Park, Sang Ki; Cho, Yong Sang; Park, Byung Cheol; Kil, Doo Song [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2004-08-15

    This study is aimed for the implementation of ultrasonic method to assess the reliability of turbine bearings. A modified ultrasonic immersion technique was carried out in both laboratory experiment and field application. From the laboratory results, we confirmed that the condition of interface layer between the babbitt and base metal be monitored by the C-Scan. The C-scan image by the ultrasonic immersion test can be used successfully to observe the condition of interface layer. The testing with a focused transducer provides a promising approach for estimating the extent of the damaged region and observing the interface layer effectively. The difference of the ultrasonic reflection ratio between the bonding and debonding area at the interface layer is one of the key parameters for assessing the extent of the damaged area; additionally, the reflection amplitude exhibits a favorable correlation with the overall damage level. The technique developed in this study was applied to the inspection of the turbine bearings at several power plants in Korea whereby the applicability in the field can be ascertained

  6. TECHNOLOGY OF PRODUCTION OF METAL-CONTAINING SLAGS

    Directory of Open Access Journals (Sweden)

    O. M. Djakonov

    2011-01-01

    Full Text Available Technological operations of mechanical squeezing of water-based final tailings from lubricoolants, washing of metal-abrasive final tailings on oil lubricoolants and their magnetic separation are offered and investigated. Advantages of technology washing and magnetic separation of final tailings are ecological cleanliness of the process, high degree of clearing of metal powder and qualitative division of mixture component.

  7. Laser Processing Technology using Metal Powders

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jeong-Hwan; Moon, Young-Hoon [Pusan National University, Busan (Korea, Republic of)

    2012-03-15

    The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

  8. Preparation and Characterization of Styrene Bearing Diethanolamine Side Group, Styrene Copolymer Systems, and Their Metal Complexes

    Directory of Open Access Journals (Sweden)

    Aslışah Açıkses

    2018-01-01

    Full Text Available The two copolymer systems of styrene bearing diethanol amine side group and styrene were prepared by free radical polymerization method at 60°C in presence of 1,4-dioxane as solvent and AIBN as initiator. Their metal complexes were prepared by reaction of the copolymer used as ligand P(DEAMSt-co-StL′′ and Ni(II and Co(II metal ions, which was carried out in presence of ethanol and NaOH at 65°C for 48 h in pH = 7.5. The structures of the copolymers used as ligand and metal complexes were identified by FT-IR, 1H-NMR spectra, and elemental analysis. The properties of the copolymers used as ligand and metal complexes were characterized by SEM-EDX, AAS, DSC, TGA, and DTA techniques. Then, the electrical properties of the copolymers and metal complexes were examined as a function of the temperature and frequency, and the activation energies (Ea were estimated with conductivity measurements.

  9. Metal decontamination for waste minimization using liquid metal refining technology

    International Nuclear Information System (INIS)

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-01-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species

  10. Fatal Cobalt Toxicity after a Non-Metal-on-Metal Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Rinne M. Peters

    2017-01-01

    Full Text Available This case illustrates the potential for systemic cobalt toxicity in non-metal-on-metal bearings and its potentially devastating consequences. We present a 71-year-old male with grinding sensations in his right hip following ceramic-on-ceramic total hip arthroplasty (THA. After diagnosing a fractured ceramic liner, the hip prosthesis was revised into a metal-on-polyethylene bearing. At one year postoperatively, X-rays and MARS-MRI showed a fixed reversed hybrid THA, with periarticular densities, flattening of the femoral head component, and a pattern of periarticular metal wear debris and pseudotumor formation. Before revision could take place, the patient was admitted with the clinical picture of systemic cobalt toxicity, supported by excessively high serum cobalt and chromium levels, and ultimately died. At autopsy dilated cardiomyopathy as cause of death was hypothesized. A third body wear reaction between ceramic remnants and the metal femoral head very likely led to excessive metal wear, which contributed systemic cobalt toxicity leading to neurotoxicity and heart failure. This case emphasizes that fractured ceramic-on-ceramic bearings should be revised to ceramic-on-ceramic or ceramic-on-polyethylene bearings, but not to metal-on-polyethylene bearings. We aim to increase awareness among orthopedic surgeons for clinical clues for systemic cobalt intoxication, even when there is no metal-on-metal bearing surface.

  11. Qualification of high damping seismic isolation bearings for the ALMR

    International Nuclear Information System (INIS)

    Tajirian, F.F.; Gluekler, E.L.; Chen, W.P.; Kelly, J.M.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) seismic isolation system consists of high damping steel-laminated elastomeric bearings. This type of bearing is used worldwide to isolate buildings and large critical components. A comprehensive testing program has been developed to qualify the use of this system for the ALMR. The program includes material characterization tests, various scale bearing tests, full-size bearing tests, shake table tests, and long-term aging tests. The main tasks and objectives of this program are described in the paper. Additionally, a detailed assessment of completed ALMR bearing test results will be provided. This assessment will be mainly based on half-scale bearing tests performed at the Earthquake Engineering Research Center (EERC) of the University of California at Berkeley and at the Energy Technology Engineering Center (ETEC). These tests were funded by the U.S. Department of Energy (DOE). Both static and dynamic tests were performed. Bearings with two types of end connections were tested: dowelled and bolted. The parameters examined will include the vertical, horizontal stiffness and damping of the bearings under different loading conditions up to failure. This will determine the available margins in the bearings above the design vertical load and horizontal displacement. Additionally, the self-centering capability of the bearings after an earthquake will be addressed. On the basis of these findings, recommendations can be made if necessary, to improve current manufacturing procedures, quality control, and procurement specifications. (author)

  12. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Pahl, R.G.; Frank, S.M.

    1998-01-01

    The oxidation behavior of hydride-bearing uranium metal corrosion products from zero power physics reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2 , Ar-9%O 2 , and Ar-20%O 2 . Ignition of corrosion product samples from two moderately corroded plates was observed between 125 C and 150 C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride. (orig.)

  13. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weijun [Environment Research Institute, Shandong University, Jinan, Shandong 250100 (China); State Key of Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029 (China); Shi, Zongbo [School of Geography, Earth and Environmental Sciences, University of Birmingham (United Kingdom); Yan, Chao; Yang, Lingxiao; Dong, Can; Wang, Wenxing [Environment Research Institute, Shandong University, Jinan, Shandong 250100 (China)

    2013-01-15

    Intensive firecracker/firework displays during Chinese New Year (CNY) release fine particles and gaseous pollutants into the atmosphere, which may lead to serious air pollution. We monitored ambient PM{sub 2.5} and black carbon (BC) concentrations at a regional background site in the Yellow River Delta region during the CNY in 2011. Our monitoring data and MOUDI images showed that there was a haze event during the CNY. Daily average PM{sub 2.5} concentration reached 183 μg m{sup −3} during the CNY, which was six times higher than that before and after the CNY. Similarly, the black carbon (BC) concentrations were elevated during the CNY. In order to confirm whether the firecracker/firework related emission is the main source of the haze particles, we further analyzed the morphology and chemical composition of individual airborne particles collected before, during and after the CNY by using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM/EDS). We found that sulfate and organic-rich particles were dominant in the atmosphere before and after the CNY. In contrast, K-rich sulfates and other metal (e.g., Ba-rich, Al-rich, Mg-rich, and Fe-rich) particles were much more abundant than ammoniated sulfate particles during the CNY. These data suggest that it was the aerosol particles from the firecracker/firework emissions that induced the regional haze episode during the CNY. In individual organic and K-rich particles, we often found more than two types of nano-metal particles. These metal-bearing particles also contained abundant S but not Cl. In contrast, fresh metal-bearing particles from firecrackers generated in the laboratory contained abundant Cl with minor amounts of S. This indicates that the firecracker/firework emissions during the CNY significantly changed the atmospheric transformation pathway of SO{sub 2} to sulfate. - Highlights: ► TEM was used to observe the aged individual particles from firecrackers

  14. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions

    International Nuclear Information System (INIS)

    Li, Weijun; Shi, Zongbo; Yan, Chao; Yang, Lingxiao; Dong, Can; Wang, Wenxing

    2013-01-01

    Intensive firecracker/firework displays during Chinese New Year (CNY) release fine particles and gaseous pollutants into the atmosphere, which may lead to serious air pollution. We monitored ambient PM 2.5 and black carbon (BC) concentrations at a regional background site in the Yellow River Delta region during the CNY in 2011. Our monitoring data and MOUDI images showed that there was a haze event during the CNY. Daily average PM 2.5 concentration reached 183 μg m −3 during the CNY, which was six times higher than that before and after the CNY. Similarly, the black carbon (BC) concentrations were elevated during the CNY. In order to confirm whether the firecracker/firework related emission is the main source of the haze particles, we further analyzed the morphology and chemical composition of individual airborne particles collected before, during and after the CNY by using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM/EDS). We found that sulfate and organic-rich particles were dominant in the atmosphere before and after the CNY. In contrast, K-rich sulfates and other metal (e.g., Ba-rich, Al-rich, Mg-rich, and Fe-rich) particles were much more abundant than ammoniated sulfate particles during the CNY. These data suggest that it was the aerosol particles from the firecracker/firework emissions that induced the regional haze episode during the CNY. In individual organic and K-rich particles, we often found more than two types of nano-metal particles. These metal-bearing particles also contained abundant S but not Cl. In contrast, fresh metal-bearing particles from firecrackers generated in the laboratory contained abundant Cl with minor amounts of S. This indicates that the firecracker/firework emissions during the CNY significantly changed the atmospheric transformation pathway of SO 2 to sulfate. - Highlights: ► TEM was used to observe the aged individual particles from firecrackers/fireworks during the Chinese New

  15. Removal and recovery of metal ions from process and waste streams using polymer filtration

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-01-01

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described

  16. Critical Metals in Strategic Low-carbon Energy Technologies

    Science.gov (United States)

    Moss, R. L.

    2012-04-01

    Due to the rapid growth in demand for certain materials, compounded by political risks associated with the geographical concentration of the supply of them, shortages of materials could be a potential bottleneck to the deployment of low-carbon energy technologies. Consequently, an assessment has been carried out to ascertain whether such shortages could jeopardise the objectives of the EU's Strategic Energy Technology Plan (SET-Plan), especially in the six low-carbon energy technologies of SET-Plan, namely: nuclear, solar, wind, bioenergy, carbon capture and storage (CCS) and electricity grids. The assessment identified 14 metals for which the deployment of the six technologies will require 1% or more (and in some cases, much more) of current world supply per annum between 2020 and 2030. Following a more critical examination, based on the likelihood of rapid future global demand growth, limitations to expanding supply in the short to medium term, and the concentration of supply and political risks associated with key suppliers, 5 of the 14 metals were pinpointed to be at high risk, namely: the rare earth metals neodymium and dysprosium (for wind technology), and the by-products (from the processing of other metals) indium, tellurium and gallium (for photovoltaic technologies). In addition, the work has explored potential mitigation strategies, ranging from expanding European output, increasing recycling and reuse to reducing waste and finding substitutes for these metals in their main applications. Furthermore, recommendations are provided which include closely working with the EU's Raw Materials Initiative; supporting efforts to ensure reliable supply of ore concentrates at competitive prices; promoting R&D and demonstration projects on new lower cost separation processes; and promoting the further development of recycling technologies and increasing end-of-life collection

  17. Improvements in process technology for uranium metal production

    International Nuclear Information System (INIS)

    Meghal, A.M.; Singh, H.; Koppiker, K.S.

    1991-01-01

    The research reactors in Trombay use uranium metal as a fuel. The plant to produce nuclear grade uranium metal ingots has been in operation at Trombay since 1959. Recently, the capacity of the plant has been expanded to meet the additional demand of the uranium metal. The operation of the expanded plant, has brought to the surface various shortcomings. This paper identifies various problems and describes the measures to be taken to upgrade the technology. Some comments are made on the necessity for development of technology for future requirement. (author). 6 refs., 1 fig

  18. EFFECT OF CLEARANCE THE BALL BEARINGS ON INCORRECT WORK OF THREE-SUPORT BEARING SHAFT

    Directory of Open Access Journals (Sweden)

    Jarosław KACZOR

    2014-06-01

    Full Text Available Durability deep groove ball bearings depends on factors (called attributes design, technological and operational. Among the design features one of the most important is play in the bearings. Polish Norm shows five groups of looseness in the bearings, in which the play range from 0 to 105 microns. Manufacturers of rolling bearings they only play group, which has a bearing data, without giving the exact value of the slack. Aim of this study is to determine how it affects the play in the bearings to work three-bearing shafts, including elasticity and resilience three-bearing shafts.

  19. Bearing technology in turbopumps; Lagerungstechnik fuer Turbopumpen. Eine naehere Betrachtung von Kugel- und Magnetlagerungen und ihre Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, Helmut; Ganswindt, Christoph [Pfeiffer Vacuum GmbH, Asslar (Germany)

    2012-06-15

    This contribution provides an overview of the development undergone by bearing technology in turbomolecular pumps or, in short, turbopumps. It not only describes which conventional bearing configurations are encountered today, but also explains the pros and cons of the various configurations. The path to using turbopumps with full magnetic bearings was paved with various difficulties in the early nineties. The concluding description of the current state of the art, with the focus on safety, reliability, user-friendliness, maintenance-free design and energy efficiency, illustrates how the development of turbopumps has undergone fundamental changes. (orig.)

  20. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review.

    Science.gov (United States)

    Guo, Bin; Liu, Bo; Yang, Jian; Zhang, Shengen

    2017-05-15

    Safe disposal of solid wastes containing heavy metals is a significant task for environment protection. Immobilization treatment is an effective technology to achieve this task. Cementitious material treatments and thermal treatments are two types of attractive immobilization treatments due to that the heavy metals could be encapsulated in their dense and durable wasteforms. This paper discusses the heavy metal immobilization mechanisms of these methods in detail. Physical encapsulation and chemical stabilization are two fundamental mechanisms that occur simultaneously during the immobilization processes. After immobilization treatments, the wasteforms build up a low permeable barrier for the contaminations. This reduces the exposed surface of wastes. Chemical stabilization occurs when the heavy metals transform into more stable and less soluble metal bearing phases. The heavy metal bearing phases in the wasteforms are also reviewed in this paper. If the heavy metals are incorporated into more stable and less soluble metal bearing phases, the potential hazards of heavy metals will be lower. Thus, converting heavy metals into more stable phases during immobilization processes should be a common way to enhance the immobilization effect of these immobilization methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Nanoporous metals for advanced energy technologies

    CERN Document Server

    Ding, Yi

    2016-01-01

    This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

  2. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    Science.gov (United States)

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  3. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    Science.gov (United States)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  4. Technical Development Path for Gas Foil Bearings

    Science.gov (United States)

    Dellacorte, Christopher

    2016-01-01

    Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.

  5. Radioactive scrap metal decontamination technology assessment report

    International Nuclear Information System (INIS)

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material's decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting

  6. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    International Nuclear Information System (INIS)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-01-01

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value

  7. Estimation of debonded area in bearing babbitt metal by C-Scan method

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Gye-jo; Park, Sang-ki [Korea Electric Power Research Inst., Taejeon (Korea); Cha, Seok-ju [Korea South Eastern Power Corp., Seoul (Korea). GEN Sector; Park, Young-woo [Chungnam National Univ., Taejeon (Korea). Mechatronics

    2006-07-01

    The debonding area which had a complex boundary was imaged with a immersion technique, and the acoustic image was compared with the actual area. The amplitude information from focused transducer can discriminate between a defected boundary area and a sound interface of dissimilar metal. The shape of irregular boundary and area was processed by a histogram equalization, after that, through the clustering and labelling, it makes the defect area cleared. Each pixel has ultrasonic intensity rate and represents a position data. The estimation error in measuring debonding area was within 4% by image processing technique. The validity of this immersion method and image equalizing technique has been done for the inspection of power plant turbine's thrust bearings. (orig.)

  8. EFFECT OF CLEARANCE THE BALL BEARINGS ON INCORRECT WORK OF THREE-SUPORT BEARING SHAFT

    OpenAIRE

    Jarosław KACZOR

    2014-01-01

    Durability deep groove ball bearings depends on factors (called attributes) design, technological and operational. Among the design features one of the most important is play in the bearings. Polish Norm shows five groups of looseness in the bearings, in which the play range from 0 to 105 microns. Manufacturers of rolling bearings they only play group, which has a bearing data, without giving the exact value of the slack. Aim of this study is to determine how it affects the play in the bea...

  9. The development of cobalt-base alloy ball bearing

    International Nuclear Information System (INIS)

    Yu Xinshui; Chen Jianting; Wang Zaishu; Wang Ximei; Huang Chongming.

    1986-01-01

    The main technologies and experiences in developing a Cobalt-base alloy ball bearing are described. In the hardfacing of bearing races, a lower-hardness alloy of type St-6 is used rather than an alloy with hardness similar to that of the ball and finally the hardness of race is increased to match that of the ball by heat treatment. This improvement has certain advantages. The experience of whole developing technology indicates that strict control of the technology in the bearing-race hardfacing is the key problem in the quality assurance of bearings

  10. Abductor dysfunction and related sciatic nerve palsy, a new complication of metal-on-metal arthroplasty.

    Science.gov (United States)

    Beaver, Walter B; Fehring, Thomas K

    2012-08-01

    The optimal bearing for use in young patients with hip arthritis remains elusive. Current options include metal-on-cross-linked polyethylene, ceramic-on-cross-linked polyethylene, ceramic on ceramic, and metal on metal. Each of these bearing couples has advantages and disadvantages. Metal-on-metal designs allow the use of large heads that decrease impingement and improve stability. This fact has made this bearing an attractive option for surgeons and patients alike. This case report will illustrate a severe adverse reaction to metal debris with necrosis of soft tissues and subsequent damage to the sciatic nerve. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Acoustic Emission Monitoring of Incipient in Journal Bearings - Part I : Detectability and measurement for bearing damages

    International Nuclear Information System (INIS)

    Yoon, Dong Jin; Kwon, Oh Yang; Chung, Min Hwa; Kim, Kyung Woong

    1994-01-01

    In contrast to the machinery using rolling element bearings, systems with journal bearings generally operate in large scale and under severe loading condition such as steam generator turbines and internal combustion engines. Failure of the bearings in these machinery can result in the system breakdown. To avoid the time consuming repair and considerable economic loss, the detection of incipient failure in journal bearings becomes very important. In this experimental approach, acoustic emission monitoring is applied to the detection of incipient failure caused by several types of abnormal operating condition most probable in the journal bearing systems. It has been known that the intervention of foreign materials, insufficient lubrication and misassembly etc. are principal factors to cause bearing failure and distress. The experiment was conducted under such designed conditions as hard particles in the lubrication layer, insufficient lubrication, and metallic contact in the simulated journal bearing system. The results showed that acoustic emission could be an effective tool to detect the incipient failure in journal bearings

  12. Reduction experiment of FeO-bearing amorphous silicate: application to origin of metallic iron in GEMS

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, Junya; Tsuchiyama, Akira; Miyake, Akira [Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502 (Japan); Noguchi, Ryo [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Ichikawa, Satoshi, E-mail: jmatsuno@kueps.kyoto-u.ac.jp [Institute for Nano-science Design, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-09-10

    Glass with embedded metal and sulfides (GEMS) are amorphous silicates included in anhydrous interplanetary dust particles (IDPs) and can provide information about material evolution in our early solar system. Several formation processes for GEMS have been proposed so far, but these theories are still being debated. To investigate a possible GEMS origin by reduction of interstellar silicates, we synthesized amorphous silicates with a mean GEMS composition and performed heating experiments in a reducing atmosphere. FeO-bearing amorphous silicates were heated at 923 K and 973 K for 3 hr, and at 1023 K for 1-48 hr at ambient pressure in a reducing atmosphere. Fe grains formed at the interface between the silicate and the reducing gas through a reduction. In contrast, TEM observations of natural GEMS show that metallic grains are uniformly embedded in amorphous silicates. Therefore, the present study suggests that metallic inclusions in GEMS could not form as reduction products and that other formation process such as condensation or irradiation are more likely.

  13. The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies

    International Nuclear Information System (INIS)

    Moss, R.L.; Tzimas, E.; Kara, H.; Willis, P.; Kooroshy, J.

    2013-01-01

    This paper examines the use of materials, in particular metals, in six low-carbon energy technologies of the European Union's Strategic Energy Technology Plan (SET-Plan), namely nuclear, solar, wind, bioenergy, carbon capture and storage and electricity grids. The projected average annual demand for metals in the SET-Plan technologies for the decades up to 2020 and 2030 is compared to the known global production volume in 2010. From an initial inventory of over 50 metals, 14 metals were identified that will require 1% or more of the 2010 world supply per annum between 2020 and 2030. These 14 metals are cadmium, dysprosium, gallium, hafnium, indium, molybdenum, neodymium, nickel, niobium, selenium, silver, tellurium, tin and vanadium. These metals were examined further by analysing the effect of market and geo-political factors of supply and demand, which highlighted five metals to represent a high risk to large-scale technology deployment, namely: neodymium, dysprosium, indium, tellurium and gallium. The five metals were further analysed with respect to the wind and solar sectors, showing that the demand of these metals could increase significantly depending on future sub-technology choices. Mitigation strategies to alleviate potential shortages are also discussed, e.g. extending primary output; re-use, re-cycling and waste reduction; and substitution. - Highlights: ► Over 50 metals and their usage in six low-carbon energy technologies are analysed. ► 14 metals are identified that will require 1% or more of the 2010 world supply per annum. ► The 14 metals are further examined with respect to market and geo-political factors. ► 5 metals Nd, Dy, In, Te and Ga are a high risk to large-scale technology deployment. ► Demand for the 5 metals increases for sub-technology choices in PV and wind energy

  14. Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination

    International Nuclear Information System (INIS)

    Jacobson, Victor Levon

    2002-01-01

    U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodium-bearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements

  15. Actuators for Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Eric H. Maslen

    2017-10-01

    Full Text Available The literature of active magnetic bearing (AMB technology dates back to at least 1937 when the earliest work that clearly describes an active magnetic bearing system was published by Jesse Beams [...

  16. Effective Technology for Recycling Metal. Proceedings of Two Special Workshops.

    Science.gov (United States)

    National Association of Secondary Material Industries, Inc., New York, NY.

    The National Association of Secondary Material Industries (NASMI) and the Bureau of Mines have cooperated to sponsor two technically-oriented workshops related to the role of metals recycling and air pollution control technology. The proceedings of these workshops, "Effective Technology and Research for Scrap Metal Recycling" and "Air Pollution…

  17. Converting an icebreaker from an oil lubricated stern tube bearing system to a seawater lubricated stern tube bearing considering environmental and operating costs

    Energy Technology Data Exchange (ETDEWEB)

    Ogle, Ken J.; Carter, Craig D. [Thordon Bearings Inc., Burlington, Ontario (Canada)], email: keno@thordonbearings.com, email: craigc@thordonbearings.com

    2010-07-01

    Icebreakers are prone to oil discharges from the stern tube, and lubricants that are biodegradable elsewhere may not be biodegradable enough in the Arctic and have a toxic effect on the food chain. The vulnerable element is the shaft seal, which must leak a small amount to operate in the first place, and ice milling causes very fast shaft movements that increase the leakage. Also, other objects such as fishing lines seriously compromise the operation of the seal. However, there is an alternative-namely the conversion of oil-lubricated bearings to Thordon COMPAC seawater-lubricated bearings. In this operation, white-metal bearings are replaced with Thordon non-metallic bearings; then, seawater is used as the lubrication and cooling medium. The seawater enters the front part of the stern, passes through the front and aft bearing before returning to the sea. This system totally eliminates the risk of polluting the Arctic ecosystem.

  18. Carbothermic reduction behaviors of Ti-Nb-bearing Fe concentrate from Bayan Obo ore in China

    Science.gov (United States)

    Wang, Guang; Du, Ya-xing; Wang, Jing-song; Xue, Qing-guo

    2018-01-01

    To support the development of technology to utilize low-grade Ti-Nb-bearing Fe concentrate, the reduction of the concentrate by coal was systematically investigated in the present paper. A liquid phase formed when the Ti-Nb-bearing Fe concentrate/coal composite pellet was reduced at temperatures greater than 1100°C. The addition of CaCO3 improved the reduction rate when the slag basicity was less than 1.0 and inhibited the formation of the liquid phase. Mechanical milling obviously increased the metallization degree compared with that of the standard pellet when reduced under the same conditions. Evolution of the mineral phase composition and microstructure of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet at 1100°C were analyzed by X-ray diffraction and scanning electron microscopy-energy-dispersive spectroscopy. The volume shrinkage value of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet with a basicity of 1.0 was approximately 35.2% when the pellet was reduced at 1100°C for 20 min, which enhanced the external heat transfer to the lower layers when reduced in a practical rotary hearth furnace. The present work provides key parameters and mechanism understanding for the development of carbothermic reduction technology of a Ti-Nb-bearing Fe concentrate incorporated in a pyrometallurgical utilization flow sheet.

  19. The state of the art on the radioactive metal waste recycling technologies

    International Nuclear Information System (INIS)

    Oh, Won Jin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1997-09-01

    As the best strategy to manage the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following recycling technologies are investigated. 1. decontamination technologies for radioactive metal waste recycling 2. decontamination waste treatment technologies. 3. residual radioactivity evaluation technologies. (author). 260 refs., 26 tabs., 31 figs

  20. Assessing Rare Metal Availability Challenges for Solar Energy Technologies

    Directory of Open Access Journals (Sweden)

    Leena Grandell

    2015-08-01

    Full Text Available Solar energy is commonly seen as a future energy source with significant potential. Ruthenium, gallium, indium and several other rare elements are common and vital components of many solar energy technologies, including dye-sensitized solar cells, CIGS cells and various artificial photosynthesis approaches. This study surveys solar energy technologies and their reliance on rare metals such as indium, gallium, and ruthenium. Several of these rare materials do not occur as primary ores, and are found as byproducts associated with primary base metal ores. This will have an impact on future production trends and the availability for various applications. In addition, the geological reserves of many vital metals are scarce and severely limit the potential of certain solar energy technologies. It is the conclusion of this study that certain solar energy concepts are unrealistic in terms of achieving TW scales.

  1. Comparative study of material loss at the taper interface in retrieved metal-on-polyethylene and metal-on-metal femoral components from a single manufacturer.

    Science.gov (United States)

    Bills, Paul; Racasan, Radu; Bhattacharya, Saugatta; Blunt, Liam; Isaac, Graham

    2017-08-01

    There have been a number of reports on the occurrence of taper corrosion and/or fretting and some have speculated on a link to the occurrence of adverse local tissue reaction specifically in relation to total hip replacement which have a metal-on-metal bearing. As such a study was carried out to compare the magnitude of material loss at the taper in a series of retrieved femoral heads used in metal-on-polyethylene bearings with that in a series of retrieved heads used in metal-on-metal bearings. A total of 36 metal-on-polyethylene and 21 metal-on-metal femoral components were included in the study all of which were received from a customer complaint database. Furthermore, a total of nine as-manufactured femoral components were included to provide a baseline for characterisation. All taper surfaces were assessed using an established corrosion scoring method and measurements were taken of the female taper surface using a contact profilometry. In the case of metal-on-metal components, the bearing wear was also assessed using coordinate metrology to determine whether or not there was a relationship between bearing and taper material loss in these cases. The study found that in this cohort the median value of metal-on-polyethylene taper loss was 1.25 mm 3 with the consequent median value for metal-on-metal taper loss being 1.75 mm 3 . This study also suggests that manufacturing form can result in an apparent loss of material from the taper surface determined to have a median value of 0.59 mm 3 . Therefore, it is clear that form variability is a significant confounding factor in the measurement of material loss from the tapers of femoral heads retrieved following revision surgery.

  2. Nonlinear Dynamic Response of Compliant Journal Bearings

    Directory of Open Access Journals (Sweden)

    Glavatskih S.

    2012-07-01

    Full Text Available This paper investigates the dynamic response of the compliant tilting pad journal bearings subjected to synchronous excitation. Bearing compliance is affected by the properties of pad liner and pad support geometry. Different unbalance eccentricities are considered. It is shown that bearing dynamic response is non-linear. Journal orbit complexity increases with pad compliance though the orbit amplitudes are marginally affected at low loads. At high loads, the journal is forced to operate outside the bearing clearance. The polymer liner reduces the maximum oil film pressure by a factor of 2 when compared to the white metal liner. The nonlinear dynamic response of compliant tilting pad journal bearings is thoroughly discussed.

  3. MODELLING OF THERMOELASTIC TRANSIENT CONTACT INTERACTION FOR BINARY BEARING TAKING INTO ACCOUNT CONVECTION

    Directory of Open Access Journals (Sweden)

    Igor KOLESNIKOV

    2016-12-01

    Full Text Available Serviceability of metal-polymeric "dry-friction" sliding bearings depends on many parameters, including the rotational speed, friction coefficient, thermal and mechanical properties of the bearing system and, as a result, the value of contact temperature. The objective of this study is to develop a computational model for the metallic-polymer bearing, determination on the basis of this model temperature distribution, equivalent and contact stresses for elements of the bearing arrangement and selection of the optimal parameters for the bearing system to achieve thermal balance. Static problem for the combined sliding bearing with the account of heat generation due to friction has been studied in [1]; the dynamic thermoelastic problem of the shaft rotation in a single and double layer bronze bearings were investigated in [2, 3].

  4. PRODUCTION OF PROTOTYPE PARTS USING DIRECT METAL LASER SINTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Josef Sedlak

    2015-08-01

    Full Text Available Unconventional methods of modern materials preparation include additive technologies which involve the sintering of powders of different chemical composition, granularity, physical, chemical and other utility properties. The technology called Rapid Prototyping, which uses different technological principles of producing components, belongs to this type of material preparation. The Rapid Prototyping technology facilities use photopolymers, thermoplastics, specially treated paper or metal powders. The advantage is the direct production of metal parts from input data and the fact that there is no need for the production of special tools (moulds, press tools, etc.. Unused powder from sintering technologies is re-used for production 98% of the time, which means that the process is economical, as well as ecological.The present paper discusses the technology of Direct Metal Laser Sintering (DMLS, which falls into the group of additive technologies of Rapid Prototyping (RP. The major objective is a detailed description of DMLS, pointing out the benefits it offers and its application in practice. The practical part describes the production and provides an economic comparison of several prototype parts that were designed for testing in the automotive industry.

  5. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  6. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    International Nuclear Information System (INIS)

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO's environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO's areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation's largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST's Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management

  7. The Biotribology of PEEK-on-HXLPE Bearings Is Comparable to Traditional Bearings on a Multidirectional Pin-on-disk Tester.

    Science.gov (United States)

    Baykal, Doruk; Siskey, Ryan S; Underwood, Richard J; Briscoe, Adam; Kurtz, Steven M

    2016-11-01

    All-polymer bearings involving polyetheretherketone (PEEK) have been proposed for orthopaedic applications because they may reduce stress shielding, reduce weight of the implants, reduce wear and risk of osteolysis, and prevent release of metal ions by replacing the metal articulating components. Little is known about the biotribology of all-polymer PEEK bearings, including the effects of cross-shear, which are relevant for implant longevity, especially in the hip, and increased temperature that may affect lubricant proteins and, hence, lubrication in the joint. Using pin-on-disk in vitro testing, we asked: (1) Can all-polymer bearing couples involving PEEK have a comparable or lower wear rate than highly crosslinked UHMWPE (HXLPE) on CoCr bearing couples? (2) Is the wear rate of PEEK bearing couples affected by the amount of cross-shear? (3) Is there a difference in wear mechanism and surface morphology for all-polymer bearing surfaces compared with UHMWPE (HXLPE) on CoCr? We simultaneously tested a total of 100 pin-on-disk couples (n = 10 per bearing couple) consisting of three traditional metal-on-UHMWPE and seven polymer-on-polymer bearings for 2 million cycles under physiologically relevant conditions and in accordance with ASTM F732. Using analysis of variance, we analyzed the effect of bearing surface topography and cross-shear on wear rate. The changes in surface topography were evaluated using optical microscopy. Sample size was sufficient to provide 80% power to detect a difference of 1.4 mm 3 /MC in average wear rates of bearing couples. The combined wear rates of all-polymer bearing couples were not different than traditional bearing couples. With the numbers available, the PEEK and HXLPE bearing couple had a mean wear rate (WR: mean ± SD) of 0.9 ± 1.1 mm 3 /MC (95% confidence interval [CI], 0.2-1.5 mm 3 /MC), which was not different than the wear rate of the CoCr and HXLPE bearing couple (1.6 ± 2.0 mm 3 /MC; 95% CI, 0.4-2.8 mm 3 /MC; mean difference

  8. Leaching Process of Rare Earth Elements, Gallium and Niobium in a Coal-Bearing Strata-Hosted Rare Metal Deposit—A Case Study from the Late Permian Tuff in the Zhongliangshan Mine, Chongqing

    OpenAIRE

    Jianhua Zou; Heming Tian; Zhen Wang

    2017-01-01

    The tuff, a part of coal-bearing strata, in the Zhongliangshan coal mine, Chongqing, southwestern China, hosts a rare metal deposit enriched in rare earth elements (REE), Ga and Nb. However, the extraction techniques directly related to the recovery of rare metals in coal-bearing strata have been little-studied in the literature. The purpose of this paper is to investigate the extractability of REE, Ga and Nb in the tuff in the Zhongliangshan mine using the alkaline sintering-water immersion-...

  9. DECISION ANALYSIS AND TECHNOLOGY ASSESSMENTS FOR METAL AND MASONRY DECONTAMINATION TECHNOLOGIES

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    The purpose of this investigation was to conduct a comparative analysis of innovative technologies for the non-aggressive removal of coatings from metal and masonry surfaces and the aggressive removal of one-quarter to one-inch thickness of surface from structural masonry. The technologies tested should be capable of being used in nuclear facilities. Innovative decontamination technologies are being evaluated under standard, non-nuclear conditions at the FIU-HCET technology assessment site in Miami, Florida. This study is being performed to support the OST, the Deactivation and Decommissioning (D and D) Focus Area, and the environmental restoration of DOE facilities throughout the DOE complex by providing objective evaluations of currently available decontamination technologies

  10. A study of TiN-coated metal-on-polymer bearing materials for hip prosthesis

    Science.gov (United States)

    Lee, Sung Bai; Choi, Jin Young; Park, Won Woong; Jeon, Jun Hong; Won, Sung Ok; Byun, Ji Young; Lim, Sang Ho; Han, Seung Hee

    2010-08-01

    The TiN-coated metal-on-polymer hip prosthetic pair has the potential to reduce wear debris of UHMWPE (ultra-high molecular weight polyethylene) and to prevent metallic-ion-induced cytotoxicity. However, high quality and adherent film is a key to the clinical success of hip prostheses. In this study, titanium nitride (TiN) films were deposited on stainless steel using plasma immersion ion implantation & deposition (PIII&D) technique to create high-quality film and an adherent interface. The chemical state and composition were analyzed by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and energy dispersive spectroscopy (EDS). The mechanical properties of the films were characterized using a micro-hardness tester and a pin-on-disk wear tester, and an x-ray diffractometer (XRD) was used for a crystallographic analysis. The PIII&D-treated TiN films showed a stoichiometric and (200) preferred orientation and micro-hardness up to 150 % higher than untreated film. A TiN-coated specimen using the PIII&D process also showed less UHMWPE wear compared to untreated specimens. The volumetric wear rate of UHMWPE could be reduced by as much as 42 % compared to when Co-Cr alloy was used. The results of this study show that advanced TiN-coating via the PIII&D process is a viable means of reducing UHMWPE wear in the metal-on-polymer bearing couple.

  11. Rotor Rolling over a Water-Lubricated Bearing

    Science.gov (United States)

    Shatokhin, V. F.

    2018-02-01

    The article presents the results of studying the effect of forces associated with secondary damping coefficients (gyroscopic forces) on the development of asynchronous rolling of the rotor over a water-lubricated bearing. The damping forces act against the background of other exciting forces in the rotor-supports system, in particular, the exciting forces of contact interaction between the rotor and bearing. The article considers a rotor resting on supports rubbing against the bearing and the occurrence of self-excited vibration in the form of asynchronous roll-over. The rotor supports are made in the form of plain-type water-lubricated bearings. The plain-type bearing's lubrication stiffness and damping forces are determined using the wellknown algorithms taking into account the physical properties of water serving as lubrication of the bearing. The bearing sliding pair is composed of refractory materials. The lubrication layer in such bearings is thinner than that used in oil-lubricated bearings with white metal lining, and there is no white metal layer in waterlubricated bearings. In case of possible deviations from normal operation of the installation, the rotating rotor comes into direct contact with the liner's rigid body. Unsteady vibrations are modeled using a specially developed software package for calculating the vibration of rotors that rub against the turbine (pump) stator elements. The stiffness of the bearing liner with the stator support structure is specified by a dependence in the force-deformation coordinate axes. In modeling the effect of damping forces, the time moment corresponding to the onset of asynchronous rolling-over with growing vibration amplitudes is used as the assessment criterion. With a longer period of time taken for the rolling-over to develop, it becomes possible to take the necessary measures in response to actuation of the equipment set safety system, which require certain time for implementing them. It is shown that the

  12. A state of the art on metallic fuel technology development

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang, Hee Young; Nam, Cheol; Kim, Jong Oh

    1997-01-01

    Since worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved in the late 1960's, the development of metallic fuels continued throughout the 1970's at ANL's experimental breeder reactor II (EBR-II) because EBR-II continued to be fueled with the metallic uranium-fissium alloy, U-5Fs. During this decade the performance limitations of metallic fuel were satisfactorily resolved resolved at EBR-II. The concept of the IFR developed at ANL since 1984. The technical feasibility had been demonstrated and the technology database had been established to support its practicality. One key features of the IFR is that the fuel is metallic, which brings pronounced benefits over oxide in improved inherent safety and lower processing costs. At the outset of the 1980's, it appeared that metallic fuels are recognized as a professed viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last score and summarizes the state-of the art on metallic fuel technology development. (author). 29 refs., 1 tab

  13. Precision ring rolling technique and application in high-performance bearing manufacturing

    Directory of Open Access Journals (Sweden)

    Hua Lin

    2015-01-01

    Full Text Available High-performance bearing has significant application in many important industry fields, like automobile, precision machine tool, wind power, etc. Precision ring rolling is an advanced rotary forming technique to manufacture high-performance seamless bearing ring thus can improve the working life of bearing. In this paper, three kinds of precision ring rolling techniques adapt to different dimensional ranges of bearings are introduced, which are cold ring rolling for small-scale bearing, hot radial ring rolling for medium-scale bearing and hot radial-axial ring rolling for large-scale bearing. The forming principles, technological features and forming equipments for three kinds of precision ring rolling techniques are summarized, the technological development and industrial application in China are introduced, and the main technological development trend is described.

  14. Barriers to development and deployment of innovative waste minimization technologies

    International Nuclear Information System (INIS)

    Flores, E.A.; Donaghue, J.F.

    1994-08-01

    Increasing regulation and scrutiny is driving waste generators towards reducing the use of scarce natural resources and reducing or eliminating was streams. There is increasing emphasis on developing and deploying technologies that meet industry needs for recovering valuable materials in a cost-effective manner. At the Department of Energy's (DOE) Hanford Site, Battelle operates Pacific Northwest Laboratory (PNL). PNL's mission is to develop technologies to clean up the environment, and to assist industry in being competitive on a global scale. One such technology developed by PNL is the Waste Acid Detoxification and Reclamation (WADR) process. This technology recovers acids from metal-bearing spent solutions, separating out the metals (which are a valuable byproduct of the acid recycling operation) from the acids. WADR uses selective precipitation and distillation together in an innovative waste recycling technology. Selective precipitation removes the heavy metals, and vacuum distillation recovers clean acid. However, WADR and other innovative waste reduction technologies face numerous barriers to successful development and deployment in the field

  15. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.edu [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 24-204 (United States)

    2011-07-15

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other

  16. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    Science.gov (United States)

    Karahan, Aydın

    2011-07-01

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other

  17. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin

    2011-01-01

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other

  18. A state of the art on metallic fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Kang, Hee Young; Nam, Cheol; Kim, Jong Oh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Since worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved in the late 1960`s, the development of metallic fuels continued throughout the 1970`s at ANL`s experimental breeder reactor II (EBR-II) because EBR-II continued to be fueled with the metallic uranium-fissium alloy, U-5Fs. During this decade the performance limitations of metallic fuel were satisfactorily resolved resolved at EBR-II. The concept of the IFR developed at ANL since 1984. The technical feasibility had been demonstrated and the technology database had been established to support its practicality. One key features of the IFR is that the fuel is metallic, which brings pronounced benefits over oxide in improved inherent safety and lower processing costs. At the outset of the 1980`s, it appeared that metallic fuels are recognized as a professed viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last score and summarizes the state-of the art on metallic fuel technology development. (author). 29 refs., 1 tab.

  19. Assessing for Cardiotoxicity from Metal-on-Metal Hip Implants with Advanced Multimodality Imaging Techniques.

    Science.gov (United States)

    Berber, Reshid; Abdel-Gadir, Amna; Rosmini, Stefania; Captur, Gabriella; Nordin, Sabrina; Culotta, Veronica; Palla, Luigi; Kellman, Peter; Lloyd, Guy W; Skinner, John A; Moon, James C; Manisty, Charlotte; Hart, Alister J

    2017-11-01

    High failure rates of metal-on-metal (MoM) hip implants prompted regulatory authorities to issue worldwide safety alerts. Circulating cobalt from these implants causes rare but fatal autopsy-diagnosed cardiotoxicity. There is concern that milder cardiotoxicity may be common and underrecognized. Although blood metal ion levels are easily measured and can be used to track local toxicity, there are no noninvasive tests for organ deposition. We sought to detect correlation between blood metal ions and a comprehensive panel of established markers of early cardiotoxicity. Ninety patients were recruited into this prospective single-center blinded study. Patients were divided into 3 age and sex-matched groups according to implant type and whole-blood metal ion levels. Group-A patients had a ceramic-on-ceramic [CoC] bearing; Group B, an MoM bearing and low blood metal ion levels; and Group C, an MoM bearing and high blood metal-ion levels. All patients underwent detailed cardiovascular phenotyping using cardiac magnetic resonance imaging (CMR) with T2*, T1, and extracellular volume mapping; echocardiography; and cardiac blood biomarker sampling. T2* is a novel CMR biomarker of tissue metal loading. Blood cobalt levels differed significantly among groups A, B, and C (mean and standard deviation [SD], 0.17 ± 0.08, 2.47 ± 1.81, and 30.0 ± 29.1 ppb, respectively) and between group A and groups B and C combined. No significant between-group differences were found in the left atrial or ventricle size, ejection fraction (on CMR or echocardiography), T1 or T2* values, extracellular volume, B-type natriuretic peptide level, or troponin level, and all values were within normal ranges. There was no relationship between cobalt levels and ejection fraction (R = 0.022, 95% confidence interval [CI] = -0.185 to 0.229) or T2* values (R = 0.108, 95% CI = -0.105 to 0.312). Using the best available technologies, we did not find that high (but not extreme) blood cobalt and chromium levels

  20. Process technology - rare and refractory metals

    International Nuclear Information System (INIS)

    Gupta, C.K.; Bose, D.K.

    1989-01-01

    India has fairly rich resreves of rare and refractory metals. Abundant sources of ilmenite, rutile, zircon and rare earths are found in the placer deposits of the southern and eastern coasts of the country. Columbite-tantalite occur in mica and the mining belts of Bihar and cassiterite deposits are found in Bastar (Madhya Pradesh). Vanadium as a minor associate occurs in bauxites and in the vast deposits of titaniferrous magnetites. Over the years, research and development and pilot plant works in many research organisations in India have built up a sound technological base in the country for process metallurgy of many refractory and rare earth metals starting from their indigenous sources. The present paper provides a comprehensive view of the developments that have taken place till now on the processing of various refractory and rare earth metals with particular reference to the extensive work carried out at the Department of Atomic Energy. The coverage includes mineral benification separation of individual elements, preparation of pure intermediates, techniques of reduction to metal and final purification. The paper also reviews some of the recent developments that have been taken place in these fields and the potential application of these metals in the foreseeable future. (author). 22 refs., 18 fi g., 7 tabs

  1. Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions

    Science.gov (United States)

    2009-12-01

    Aluminum, zinc , and barium were also present, but they are believed to be an artifact of the CI substrate filter material.) Other metals that appear in the...OPERATIONS As noted earlier, PPI technology is promoted as producing less metal-bearing particulates because less slag and spatter take place. This is...2) Also, less slag and spatter should result in reduced welding time. In addition, PPI reportedly will generate less ozone, carbon monoxide, and

  2. Acetabular bone density and metal ions after metal-on-metal versus metal-on-polyethylene total hip arthroplasty; short-term results

    NARCIS (Netherlands)

    Zijlstra, Wierd P.; van der Veen, Hugo C.; van den Akker-Scheek, Inge; Zee, Mark J. M.; Bulstra, Sjoerd K.; van Raay, Jos J. A. M.

    Information on periprosthetic acetabular bone density is lacking for metal-on-metal total hip arthroplasties. These bearings use cobalt-chromium instead of titanium acetabular components, which could lead to stress shielding and hence periprosthetic bone loss. Cobalt and chromium ions have

  3. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications

    Directory of Open Access Journals (Sweden)

    Xuelin Wang

    2016-11-01

    Full Text Available This article presents an overview on typical properties, technologies, and applications of liquid metal based flexible printed electronics. The core manufacturing material—room-temperature liquid metal, currently mainly represented by gallium and its alloys with the properties of excellent resistivity, enormous bendability, low adhesion, and large surface tension, was focused on in particular. In addition, a series of recently developed printing technologies spanning from personal electronic circuit printing (direct painting or writing, mechanical system printing, mask layer based printing, high-resolution nanoimprinting, etc. to 3D room temperature liquid metal printing is comprehensively reviewed. Applications of these planar or three-dimensional printing technologies and the related liquid metal alloy inks in making flexible electronics, such as electronical components, health care sensors, and other functional devices were discussed. The significantly different adhesions of liquid metal inks on various substrates under different oxidation degrees, weakness of circuits, difficulty of fabricating high-accuracy devices, and low rate of good product—all of which are challenges faced by current liquid metal flexible printed electronics—are discussed. Prospects for liquid metal flexible printed electronics to develop ending user electronics and more extensive applications in the future are given.

  4. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement

    International Nuclear Information System (INIS)

    Singh, A.; Prasad, S. M.

    2015-01-01

    The issue of heavy metal pollution is very much concerned because of their toxicity for plant, animal and human beings and their lack of biodegradability. Excess concentrations of heavy metals have adverse effect on plant metabolic activities hence affect the food production, quantitatively and qualitatively. Heavy metal when reaches human tissues through various absorption pathways such as direct ingestion, dermal contact, diet through the soil-food chain, inhalation, and oral intake may seriously affect their health. Therefore, several management practices are being applied to minimize metal toxicity by attenuating the availability of metal to the plants. Some of the traditional methods are either extremely costly or they are simply applied to isolate contaminated site. The biology based technology like use of hyper metal accumulator plants occurring naturally or created by transgenic technology, in recent years draws great attention to remediate heavy metal contamination. Recently, applications of nanoparticle for metal remediation are also attracting great research interest due to their exceptional adsorption and mechanical properties and unique electrical property, highly chemical stability, and large specific surface area. Thus the present review deals with different management approaches to reduce level of metal contamination in soil and finally to the food chain

  5. A study on the behaviour of corrosion-erosion at the Bearing metals by cavitation(1) (for the influence of pH)

    International Nuclear Information System (INIS)

    Lim, Uh Hoh; Lee, Jin Yeol

    1991-01-01

    Recently, due to increased occurrence of cavitation-erosion at slide bearing metals with the tendency of high speed and large output at internal combustion engine, there is a need to study the role of corrosive environments on cavitation-erosion. Therefore, this paper were investigate on the behaviour of cavitation-erosion under the change of pH environments at slide bearing metals with using piezoelectric vibratory apparatus. The main results obtained were as follows: 1. The weight loss and its rate showed to be increased according to the order of pH 2 > pH 12 > pH 7 > pH 4 environments, and also retarded extremely at pH 4 environment 2. The resistance of material on cavitation-erosion was excellent at pH 4 environment, and also was improved considerably its resistance with increasing of the space between specimen and horn tip. 3. It was showed that the incubation periods shortened with the tendency of pH 2 > pH 12 > pH 4 > pH 7 environment, and enlarged greatly at pH 7 environment. 4. The pitted holes of damaged surface under pH 4 environment showed dense aspects by comparison with pH 7 environment

  6. Flywheel Challenge: HTS Magnetic Bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2006-01-01

    A 200 mm cylindrical engineering prototype high temperature superconducting (HTS) was designed and fabricated. Measurements show that the 17 kg PM rotor can suspend safely 1000 kg in axial direction and 470 kg radially. The rationale for the bearing performance is to stabilize a 400 kg rotor of a new compact 5 kWh/280 kW flywheel energy storage system (COM - FESS). Measurements of the magnetic bearing force, stiffness and drag-torque are presented indicated the successful targeting a milestone in the HTS bearing technology. The influence of the PM configuration and the YBCO temperature on the bearing performance was experimentally studied, providing high-force or high-stiffness behaviour. The axial stiffness 5 kN/mm at 0.5 mm displacement is the highest value of a HTS bearing we know

  7. INNOVATIVE TECHNOLOGIES OF THE METAL-PLATE SPRINGS PRODUCTION AND HARDENING

    Directory of Open Access Journals (Sweden)

    V. V. Klubovich

    2010-01-01

    Full Text Available A methods and technology of the periodic rolling billets variable profile. Given schematic diagrams and technical specification of equipment for making plastic and surface treatment of small leaf springs and the guide bearings air suspension trucks. An assessment of the influence of ultrasonic vibrations on the structure and operating characteristics of the elastic elements of the suspension of vehicles.

  8. Assessment of heavy metal removal technologies for biowaste by physico-chemical fractionation

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    2003-01-01

    In the Netherlands, the heavy metal content of biowaste-compost frequently exceeds the legal standards for heavy metals. In order to assess heavy metal removal technologies, a physico-chemical fractionation scheme was developed to gain insight into the distribution of heavy metals (Cd, Cu, Pb and

  9. On the future of controllable fluid film bearings

    DEFF Research Database (Denmark)

    Santos, Ilmar

    2011-01-01

    lubrication regimes, i.e., as tilting-pad journal bearings, multi-recess journal bearings and plain journal bearings. After a comprehensive overview of the theoretical and experimental technological advancements achieved in university laboratories, the feasibility of industrial applications is highlighted......This work gives an overview of the theoretical and experimental achievements of mechatronics applied to fluid film bearings. Compressible and uncompressible fluids are addressed. Rigid and elastic (deformable) bearing profiles are investigated. Hydraulic, pneumatic, magnetic and piezoelectric...

  10. Assisted reproductive technology in bear (ursidae) conservation Ailuropoda Melanoleuca, Ursus Arctos and Usus Maritimus

    OpenAIRE

    Baldoví Sánchez, Isabel; Universitat Autònoma de Barcelona. Facultat de Veterinària

    2014-01-01

    Póster The Ursidae family is severely threatened having 6 of the 8 bear species in danger of extinction. Due to its reproductive physiology characteristics, ursids have a low reproduction rate which aggravates in captivity. It is because of this, that reproductive assisted technology has become a key element in the conservation of this species. The following study is the compendium of the obtained results in this field in three ursid species: giant panda (Auliropoda melanoleuca), brown bea...

  11. Plasmarc technology for the treatment of metallic radwaste

    International Nuclear Information System (INIS)

    Hoffelner, W.; Weigel, H.

    1999-01-01

    The Plasmarc incineration and melting technology is suitable for processing radioactive wastes arising from the fields of medicine, industry and research, and from the operation and maintenance of nuclear power plants. Combustible wastes can be thermally decomposed and metals melted in the same facility together, and the incineration products and metals are thus turned into a form suitable for disposal in one step. In secondary metallurgy the Plasmarc technology can be used for melting scrap metal and recovering usable metals from metalliferous wastes, particularly composites of different metals and ceramics and metals and plastics. In the case of special wastes, it is possible to thermally decompose otherwise problematic residues in an oxygen free atmosphere at high temperatures. Material construction in the incineration mode could be in 200-litre standard drums with a total weight up to 300 kilograms if an average processing efficiency of 200 kilograms of mixed waste per hours is assumed. Melting: In the melting mode for metals, the drums coming from the storage rack are placed in the slowly rotating furnace using a grabbing device. Because of the low speed of rotation, the central outlet is initially blocked with a stopper. The drums, with contents, are then molten in the plasma arc. As soon as there is a melted mass, the speed of rotation of the furnace is increased until there is no material outflow when the stopper is removed. The stopped is then removed and the speed of rotation is reduced once again to allow the melt to flow out, exactly as in the incineration mode. Mixing: In the mixing mode, metallic/nonmetallic mixtures (e.g. reinforced concrete) can be processed. The meltable components are melted and the organic components are thermally decomposed. Because of differences in density, the inorganic residues float on the surface of the molten metal and can be vitrified using additives. These different operating modes of the Plasmarc furnace allow various

  12. Fundamental study on metal plating removal using pulsed power technology

    International Nuclear Information System (INIS)

    Imasaka, Kiminobu; Gnapowski, Sebastian; Akiyama, Hidenori

    2013-01-01

    A novel method for the metal removal from metal-plated substrate using pulsed power technology is proposed. A metal-plated substrate with three metal-layers structure (Cu, Ni and Au) is used as the sample substrate. Repetitive pulsed arc discharge plasma is generated between a rod electrode and the surface of substrate. Effect of the type of electrode system on metal plating removal was investigated. The removal region is produced by the moving phenomena of the pulsed arc discharge. A part of Au layer, which is the tompost metal surface of the substrate is vaporized and removed by the repetitive pulsed arc discharges. The proposed method can be used for recycle of metal-plated substrate. (author)

  13. Cellulose bearing Schiff base and carboxylic acid chelating groups: a low cost and green adsorbent for heavy metal ion removal from aqueous solution.

    Science.gov (United States)

    Saravanan, R; Ravikumar, L

    2016-10-01

    Chemically modified cellulose bearing metal binding sites like Schiff base and carboxylic acid groups was synthesized and characterized through Fourier transform infrared and solid state 13 C-nuclear magnetic resonance (NMR) analysis. The chemically modified cellulose (Cell-PA) adsorbent was examined for its metal ion uptake ability for Cu(II) and Pb(II) ions from aqueous solution. Kinetic and isotherm studies were carried out under optimum conditions. Pseudo-second-order kinetics and Langmuir isotherm fit well with the experimental data. Thermodynamic studies were also performed along with adsorption regeneration performance studies. The adsorbent (Cell-PA) shows high potential for the removal of Cu(II) and Pb(II) metal ions, and it shows antibacterial activity towards selected microorganisms.

  14. Innovative technologies for recycling contaminated concrete and scrap metal

    International Nuclear Information System (INIS)

    Bossart, S.J.; Moore, J.

    1993-01-01

    Decontamination and decommissioning of US DOE's surplus facilities will generate enormous quantities of concrete and scrap metal. A solicitation was issued, seeking innovative technologies for recycling and reusing these materials. Eight proposals were selected for award. If successfully developed, these technologies will enable DOE to clean its facilities by 2019

  15. Ion exchange system design for removal of heavy metals from acid mine drainage wastewater

    Directory of Open Access Journals (Sweden)

    R. S. Sapkal

    2010-11-01

    Full Text Available This paper discusses the methodology used to determine the optimal ion-exchange column size to process all separate batchesof feeds from acid mine drainage wastewater.The optimal design ensures the best utilization of resin material and therefore results in a minimum amount of spent resins.Ion exchanger materials have been studied for removing heavy metals from a metal bearing wastes. For the current treatment,a facility has been designed for the removal of heavy metals from the acid mine drainage (AMD waste by the ion-exchange technology.

  16. Plasma-Induced Damage on the Reliability of Hf-Based High-k/Dual Metal-Gates Complementary Metal Oxide Semiconductor Technology

    International Nuclear Information System (INIS)

    Weng, W.T.; Lin, H.C.; Huang, T.Y.; Lee, Y.J.; Lin, H.C.

    2009-01-01

    This study examines the effects of plasma-induced damage (PID) on Hf-based high-k/dual metal-gates transistors processed with advanced complementary metal-oxide-semiconductor (CMOS) technology. In addition to the gate dielectric degradations, this study demonstrates that thinning the gate dielectric reduces the impact of damage on transistor reliability including the positive bias temperature instability (PBTI) of n-channel metal-oxide-semiconductor field-effect transistors (NMOSFETs) and the negative bias temperature instability (NBTI) of p-channel MOSFETs. This study shows that high-k/metal-gate transistors are more robust against PID than conventional SiO 2 /poly-gate transistors with similar physical thickness. Finally this study proposes a model that successfully explains the observed experimental trends in the presence of PID for high-k/metal-gate CMOS technology.

  17. Space Station alpha joint bearing

    Science.gov (United States)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  18. Renewable Modified Cellulose Bearing Chelating Schiff Base for Adsorptive Removal of Heavy Metal Ions and Antibacterial Action.

    Science.gov (United States)

    Saravanan, R; Ravikumar, L

    2017-07-01

      A novel approach toward chemically modified cellulose bearing active chelating Schiff base with hydroxyl group (Cell-Hy) was synthesized. The modified cellulose was examined for its heavy metal ion uptake potential from aqueous solution. The chemical and structural features of the adsorbent were characterized by Fourier transform infrared spectroscopy (FT-IR), solid state 13C-NMR, Scanning Electron Microscopy (SEM), and energy dispersive analysis of X-ray (EDAX) observations. The experimental conditions and adsorption parameters, including pH, initial metal ion concentration, adsorbent dosage, temperature, and contact time were optimized for the removal of Cu(II) and Pb(II) ions. Kinetic parameters, equilibrium adsorption capacities, and correlation coefficients for pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were carried out. The data obtained from the adsorption of Cu(II) and Pb(II) onto Cell-Hy were subjected to Langmuir and Freundlich isotherm models. Thermodynamic parameters have also been evaluated. The antibacterial activity of modified cellulose was tested toward specific bacterial species.

  19. A review of phytoremediation technology: heavy metals uptake by plants

    Science.gov (United States)

    Sumiahadi, A.; Acar, R.

    2018-03-01

    Heavy metal is one of the serious environmental pollutions for now days as impact of industrial development in several countries. Heavy metals give toxic effects on human health and cause several serious diseases. Several techniques have been using for removing heavy metal contaminants from the environmental but these techniques have limitations such as high cost, long time, logistical problems and mechanical complexity. Phytoremediation can be used as an alternative solution for heavy metal remediation process because of its advantages as a cost-effective, efficient, environment- and eco-friendly technology based on the use of metal-accumulating plants. According to previous studies, several plants have a high potential as heavy metals bioaccumulator and can be used for phytoremediation process of heavy metals.

  20. Outcomes of different bearings in total hip arthroplasty - implant survival, revision causes, and patient-reported outcome

    DEFF Research Database (Denmark)

    Varnum, Claus

    2017-01-01

    ceramic-on-ceramic (CoC) THAs comparing them to those of "standard" metal-on-polyethylene (MoP) THAs. Study II: To compare the six-year revision risk for metal-on-metal (MoM) with that for MoP bearings in cementless stemmed THA, and further to study the revision risk for different designs of stemmed Mo...... for the outcome of THA is the type of bearings. This PhD thesis focuses on the influence of different types of bearings on implant survival, revision causes, PROMs, and noises from THA. The aims of the thesis were: Study I: To examine the revision risk and to investigate the causes of revision of cementless......M THAs and the causes of revision. Study III: To examine the association between CoC, MoM, and MoP bearings and both generic and disease-specific PROMs, and furthermore to examine the incidence and types of noises from the three types of bearings and identify the effect of noises on PROM scores. In study...

  1. Precious Metals in Automotive Technology: An Unsolvable Depletion Problem?

    Directory of Open Access Journals (Sweden)

    Ugo Bardi

    2014-04-01

    Full Text Available Since the second half of the 20th century, various devices have been developed in order to reduce the emissions of harmful substances at the exhaust pipe of combustion engines. In the automotive field, the most diffuse and best known device of this kind is the “three way” catalytic converter for engines using the Otto cycle designed to abate the emissions of carbon monoxide, nitrogen oxides and unburnt hydrocarbons. These catalytic converters can function only by means of precious metals (mainly platinum, rhodium and palladium which exist in a limited supply in economically exploitable ores. The recent increase in prices of all mineral commodities is already making these converters significantly expensive and it is not impossible that the progressive depletion of precious metals will make them too expensive for the market of private cars. The present paper examines how this potential scarcity could affect the technology of road transportation worldwide. We argue that the supply of precious metals for automotive converters is not at risk in the short term, but that in the future it will not be possible to continue using this technology as a result of increasing prices generated by progressive depletion. Mitigation methods such as reducing the amounts of precious metals in catalysts, or recycling them can help but cannot be considered as a definitive solution. We argue that precious metal scarcity is a critical factor that may determine the future development of road transportation in the world. As the problem is basically unsolvable in the long run, we must explore new technologies for road transportation and we conclude that it is likely that the clean engine of the future will be electric and powered by batteries.

  2. Advanced technologies for decontamination and conversion of scrap metal

    International Nuclear Information System (INIS)

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-01-01

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ''Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting

  3. Review in Strengthening Technology for Phytoremediation of Soil Contaminated by Heavy Metals

    Science.gov (United States)

    Wu, Chishan; Zhang, Xingfeng; Deng, Yang

    2017-07-01

    In view of current problems of phytoremediation technology, this paper summarizes research progress for phytoremediation technology of heavy metal contaminated soil. When the efficiency of phytoremediation may not meet the demand in practice of contaminated soil or water. Effective measures should be taken to improve the plant uptake and translocation. This paper focuses on strengthening technology mechanism, which can not only increase the biomass of plant and hyperaccumulators, but also enhance the tolerance and resistance to heavy metals, and application effect of phytoremediation, including agronomic methods, earthworm bioremediation and chemical induction technology. In the end of paper, deficiencies of each methods also be discussed, methods of strengthening technology for phytoremediation need further research.

  4. How to assess the availability of resources for new technologies? Case study: lithium a strategic metal for emerging technologies

    International Nuclear Information System (INIS)

    Weil, M.; Ziemann, S.; Schebek, L.

    2009-01-01

    The development of new technologies is often connected with the use of non-renewable resources. In recent years a qualitative shift in the demand of bulk metals (e.g. Fe, Al, Cu) to more scarce metals (e.g. Te, Ga, Re) is recognizable. Novel technologies and products rely more and more on very specific metals which are indispensable for their function. Although such metals are generally used in low concentrations in products, the demand has raised significantly due to mass production. Some of them are of high importance due to their strategic relevance to emerging innovative technologies. Lithium so far has gained relatively little attention, although it fulfills the main criteria of a strategically relevant metal. In recent years, however, recognition of lithium increased as a result of the growing market for lithium-based chargeable batteries in mobile information/communication consumer products and in electric vehicles. Both areas of demand led to a skyrocketed use of lithium in recent years. Other technologies in the future like fusion power generation will raise lithium consumption at an accelerated rate. It is therefore necessary to determine the availability of lithium in the medium and long term in order to prevent technology failures and to ensure a more sustainable development. The authors will provide a well founded knowledge base, outline the availability of worldwide reserves and resources, and describe the structure of present and future demands for lithium. (authors)

  5. Additive manufacturing of metals the technology, materials, design and production

    CERN Document Server

    Yang, Li; Baughman, Brian; Godfrey, Donald; Medina, Francisco; Menon, Mamballykalathil; Wiener, Soeren

    2017-01-01

    This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leadin...

  6. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.

    Science.gov (United States)

    Qian, Guangren; Yang, Xiaoyan; Dong, Shixiang; Zhou, Jizhi; Sun, Ying; Xu, Yunfeng; Liu, Qiang

    2009-06-15

    This work investigated the feasibility and effectiveness of MSWI fly ash-based Friedel matrices on stabilizing/solidifying industrial chromium-bearing electroplating sludge using MSWI fly ash as the main raw material with a small addition of active aluminum. The compressive strength, leaching behavior and chemical speciation of heavy metals and hydration phases of matrices were characterized by TCLP, XRD, FTIR and other experimental methods. The results revealed that MSWI fly ash-based Friedel matrices could effectively stabilize chromium-bearing electroplating sludge, the formed ettringite and Friedel phases played a significant role in the fixation of heavy metals in electroplating sludge. The co-disposal of chromium-bearing electroplating sludge and MSWI fly ash-based Friedel matrices with a small addition of active aluminum is promising to be an effective way of stabilizing chromium-bearing electroplating sludge.

  7. The first application of antiseismic friction bearings: the Koeberg nuclear plant

    International Nuclear Information System (INIS)

    Renault, Jean; Richli, Marc; Pavot, Bernard.

    1979-01-01

    The siting of a nuclear plant requires a thoroughgoing analysis of the special seismic conditions of the site chosen and, for certain buildings of the plant, the level of seismicity is a determining factor in the dimensioning of the structures and even of the equipment. The standardization of nuclear plants, however, offers considerable advantages from every point of view, and in particular makes it possible to avoid making a study extending over several years. In order to enable this standardization to spread, it was necessary to make possible, even in highly seismic areas, the building of plants identical with those designed for the French market. With this in view, the SPIE-BATIGNOLLES Company, in association with Electricite de France, has developed a system for reducing the dynamic horizontal effects of an earthquake on the structure of a nuclear plant. This system, featuring essentially a double raft with the interposition of antiseismic bearings composed of blocks of helically reinforced elastomer associated with metal friction plates, is presented. The different phases of its development are shown: preliminary mathematical studies, an experimental study of the bearing apparatus, the elaboration of the technology of manufacture of the bearings, the method of placing at the Koeberg nuclear plant site [fr

  8. A comparison of technologies for remediation of heavy metal contaminated soils

    OpenAIRE

    Khalid , Sana; Shahid , Muhammad; Niazi , Nabeel Khan; Murtaza , Behzad; Bibi , Irshad; Dumat , Camille

    2016-01-01

    International audience; Soil contamination with persistent and potentially (eco)toxic heavy metal(loid)s is ubiquitous around the globe. Concentration of these heavy metal(loid)s in soil has increased drastically over the last three decades, thus posing risk to the environment and human health. Some technologies have long been in use to remediate the hazardous heavy metal(loid)s. Conventional remediation methods for heavy metal(loid)s are generally based on physical, chemical and biological a...

  9. 49 CFR 215.109 - Defective plain bearing box: Journal lubrication system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective plain bearing box: Journal lubrication... Freight Car Components Suspension System § 215.109 Defective plain bearing box: Journal lubrication system...) Metal parts contacting the journal; or (e) Is— (1) Missing; or (2) Not in contact with the journal. ...

  10. NOVEL IN-SITU METAL AND MINERAL EXTRACTION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Glenn O' Gorman; Hans von Michaelis; Gregory J. Olson

    2004-09-22

    This white paper summarizes the state of art of in-situ leaching of metals and minerals, and describes a new technology concept employing improved fragmentation of ores underground in order to prepare the ore for more efficient in-situ leaching, combined with technology to continuously improve solution flow patterns through the ore during the leaching process. The process parameters and economic benefits of combining the new concept with chemical and biological leaching are described. A summary is provided of the next steps required to demonstrate the technology with the goal of enabling more widespread use of in-situ leaching.

  11. Delayed child-bearing.

    Science.gov (United States)

    Johnson, Jo-Ann; Tough, Suzanne

    2012-01-01

    To provide an overview of delayed child-bearing and to describe the implications for women and health care providers. Delayed child-bearing, which has increased greatly in recent decades, is associated with an increased risk of infertility, pregnancy complications, and adverse pregnancy outcome. This guideline provides information that will optimize the counselling and care of Canadian women with respect to their reproductive choices. Maternal age is the most important determinant of fertility, and obstetric and perinatal risks increase with maternal age. Many women are unaware of the success rates or limitations of assisted reproductive technology and of the increased medical risks of delayed child-bearing, including multiple births, preterm delivery, stillbirth, and Caesarean section. This guideline provides a framework to address these issues. Studies published between 2000 and August 2010 were retrieved through searches of PubMed and the Cochrane Library using appropriate key words (delayed child-bearing, deferred pregnancy, maternal age, assisted reproductive technology, infertility, and multiple births) and MeSH terms (maternal age, reproductive behaviour, fertility). The Internet was also searched using similar key words, and national and international medical specialty societies were searched for clinical practice guidelines and position statements. Data were extracted based on the aims, sample, authors, year, and results. The quality of evidence was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table 1). The Society of Obstetricians and Gynaecologists of Canada. RECOMMENDATIONS 1. Women who delay child-bearing are at increased risk of infertility. Prospective parents, especially women, should know that their fecundity and fertility begin to decline significantly after 32 years of age. Prospective parents should know that assisted reproductive technologies cannot guarantee a live birth or completely

  12. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    International Nuclear Information System (INIS)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1997-01-01

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented

  13. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1997-12-31

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented.

  14. Technology development for producing nickel metallic filters

    International Nuclear Information System (INIS)

    Hubler, C.H.

    1990-01-01

    A technology to produce metallic filters by Instituto de Engenharia Nuclear (IEN-Brazilian CNEN) providing the Instituto de Pesquisas Energeticas e Nucleares (IPEN-Brazilian CNEN) in obtaining nickel alloy filters used for filtration process of uranium hexafluoride, was developed. The experiences carried out for producing nickel conical trunk filters from powder metallurgy are related. (M.C.K.)

  15. High-efficiency heat pump technology using metal hydrides (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y.; Harada, T.; Niikura, J.; Yamamoto, Y.; Suzuki, J. [Human Environmental Systems Development Center, Matsushita Electric Industrial Co., Ltd., Moriguchi, Osaka (Japan); Gamo, T. [Corporate Environmental Affairs Div., Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan)

    1999-07-01

    Metal hybrides are effective materials for utilizing hydrogen as a clean energy medium. That is, when the metal hydrides absorb or desorb the hydrogen, a large heat output of reaction occurs. So, the metal hydrides can be applied to a heat pump. We have researched on a high efficiency heat pump technology using their metal hydrides. In this report, a double effect type metal hydride heat pump configuration is described in which the waste heat of 160 C is recovered in a factory cite and transported to areas far distant from the industrial district. In the heat recovery unit, a low pressure hydrogen is converted into highly effective high pressure hydrogen by applying the metal hydrides. Other metal hydrides perform the parts of heating by absorbing the hydrogen and cooling by desorbing the hydrogen in the heat supply unit. One unit scale of the system is 3 kW class as the sum of heating and cooling. This system using the hydrogen absorbing alloy also has good energy storage characteristics and ambient hydrogen pressure self-safety control ability. Furthermore, this heating and cooling heat supply system is not harmful to the natural environment because it is a chlorofluorocarbon-free, and low noise type system. We have developed in the following element technologies to attain the above purposes, that is development of hydrogen absorbing alloys with high heat outputs and technologies to construct the heat pump system. This study is proceeded at present as one of the programs in New Sunshine Project, which aims for development of ingenious energy utilization technology to achieve reduction of primary energy consumption with keeping cultural and wealthy life and preventing deterioration of global environment. (orig.)

  16. Lead-free sliding overplate for highly loaded big end bearings; Bleifreie Laufschicht fuer hochbelastete Haupt- und Pleuellager

    Energy Technology Data Exchange (ETDEWEB)

    Graham, N.; Schnell, L.; Arnold, G. [Federal-Mogul Wiesbaden GmbH and Co. KG (Germany)

    2003-10-01

    Lead has always been an important metal in plain bearing technology. Completely lead-free solutions for high-end engine applications are still not considered to be technically achievable. Therefore, the European End of Life Directive (2000/53/EC), which took effect on 1 July 2003, lists copper-based lead/bronze bearings as an exception. The bearing group of Federal-Mogul has now announced its exit from the lead industry and addresses the issue layer by layer. A recently introduced adaptive bearing offers a lead-free overplate for high-performance internal combustion engine applications. This new bearing changes its technical characteristics during the running-in phase. (orig.) [German] Blei war schon immer eine wichtige Komponente in der Gleitlagertechnik. Bis heute gelten vollstaendig bleifreie Loesungen fuer hochbelastete Gleitlager als technisch nicht machbar. Deshalb nennt die europaeische Altautoverordnung (2000/53/EG), die seit dem 1. Juli 2003 in Kraft ist, als Ausnahme die kupferbasierten Bleibronzelager. Die Gleitlagergruppe von Federal-Mogul hat jetzt ihren Rueckzug aus der Verarbeitung von Blei angekuendigt und geht das Thema Schicht fuer Schicht an. Ein kuerzlich eingefuehrtes, anpassungsfaehiges Lager fuer High-End-Verbrennungsmotoren verfuegt ueber eine bleifreie Laufschicht. Bei diesem neuen Lager veraendern sich die technischen Eigenschaften waehrend der Einlaufphase. (orig.)

  17. Achievement report for fiscal 1998. Research and development of nano-structural materials for ceramic bearing application (the second year); 1998 nendo seika hokokusho. Ceramic bearing yo nano seigyo zairyo no kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Development is made on ceramic bearing using high-performance and low-cost nano-structural materials, and its application is performed to high-quality bearings suitable for energy conservation in automobiles and industrial machines, and bearings for office automation devices, electronics, and aeronautic and maritime development. To achieve these goals, raw material synthesizing technologies, forming technologies, structural control technologies, processing technologies and mass production technologies shall be established. Fiscal 1998 had the following achievements: establishment of nano-structure controlled ceramic material powder synthesizing technology (nano-lamination type composite powder made by using the beads mill co-precipitation method, nano-lamination type composite powder made by using the New Mymill co-precipitation method, nano-lamination type composite powder made by using the controlled liquid phase method, composite nano-structured gel, and nano-powder synthesis); near net forming technology for spherical ceramics; high-speed processing technology for ultra smooth surface; evaluation of rolling fatigue properties of ceramic bearings; and analysis and evaluation of nano-structured materials. Since this alumina-based ceramic bearing can be produced at reduced cost with performance comparable to silicon nitride based bearing, investigations and discussions are being given on the application thereof. (NEDO)

  18. Bearing load distribution studies in a multi bearing rotor system and a remote computing method based on the internet

    International Nuclear Information System (INIS)

    Yang, Zhao Jian; Peng, Ze Jun; Kim, Seock Sam

    2004-01-01

    A model in the form of a Bearing Load Distribution (BLD) matrix in the Multi Bearing Rotor System (MBRS) is established by a transfer matrix equation with the consideration of a bearing load, elevation and uniform load distribution. The concept of Bearing Load Sensitivity (BLS) is proposed and matrices for load and elevation sensitivity are obtained. In order to share MBRS design resources on the internet with remote customers, the basic principle of Remote Computing (RC) based on the internet is introduced ; the RC of the BLD and BLS is achieved by Microsoft Active Server Pages (ASP) technology

  19. RADIAL FORCE IMPACT ON THE FRICTION COEFFICIENT AND TEMPERATURE OF A SELF-LUBRICATING PLAIN BEARING

    Directory of Open Access Journals (Sweden)

    Nada Bojić

    2017-12-01

    Full Text Available Self-lubricating bearings are available in spherical, plain, flanged journal, and rod end bearing configurations. They were originally developed to eliminate the need for re-lubrication, to provide lower torque and to solve application problems where the conventional metal-to-metal bearings would not perform satisfactorily, for instance, in the presence of high frequency vibrations. Among the dominant tribological parameters of the self-lubricating bearing, two could be singled out: the coefficient of friction and temperature. To determine these parameters, an experimental method was applied in this paper. By using this method, the coefficient of friction and temperature were identified and their correlation was established. The aim of this research was to determine the effect of radial force on tribological parameters in order to predict the behavior of sliding bearings with graphite in real operating conditions.

  20. Elaboration of the technology of forming a conical product of sheet metal

    Directory of Open Access Journals (Sweden)

    W. Matysiak

    2010-01-01

    Full Text Available The work presents a general knowledge about spinning draw pieces of sheets, one of multi-operational processes of spinning a sheet metal conical product without machining. The objective of the work was to elaborate both the technology of forming conical products of sheet metal and execution of technological tests as well as to determine the technological parameters for the process of spinning a conical insert. As a result of the investigations, the products with improved mechanical properties, stricter execution tolerance and low roughness have been obtained. The series of 200 prototype conical inserts for the shipbuilding industry have been made.

  1. Failure analysis of motor bearing of sea water pump in nuclear power plant

    International Nuclear Information System (INIS)

    Bian Chunhua; Zhang Wei

    2015-01-01

    The motor bearing of sea water pump in Qinshan Phase II Nuclear Power plant broke after only one year's using. This paper introduces failure analysis process of the motor bearing. Chemical composition analysis, metallic phase analysis, micrographic examination, and hardness analysis, dimension analysis of each part of the bearing, as well as the high temperature and low temperature performance analysis of lubricating grease are performed. According to the analysis above mentioned, the failure mode of the bearing is wearing, and the reason of wearing is inappropriate installation of the bearing. (authors)

  2. A Kind of Energy Storage Technology: Metal Organic Frameworks

    OpenAIRE

    Ozturk, Zeynel; Kose, D. A.; Asan, A.; Ozturk, B.

    2016-01-01

    For last fifteen years energy has been transferred by using electricity and as an energy carrier media electricity has some disadvantages like its wire need for transportation and its being non-storable for large amounts. To store more energy safely and for transportation it easily, new storing medias and devices are needed. For easy and safe energy transport there are many technologies and some of these contain hydrogen energy. Metal hydrides, carbon nanotubes, metal organic frameworks (MOFs...

  3. Advanced technologies for decomtamination and conversion of scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-05-27

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ``Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a

  4. Superconducting levitation applications to bearings and magnetic transportation

    CERN Document Server

    Moon, Francis C

    1994-01-01

    Presents the fundamental principles governing levitation of material bodies by magnetic fields without too much formal theory. Defines the technology of magnetic bearings, especially those based on superconductivity, and demonstrates the key roles that magnetics, mechanics and dynamics play in the complete understanding of magnetic levitation and its bearings. Features extensive figures and photos of Mag-Lev devices and summarizes recent U.S. research studies in an effort to regain the lead in Mag-Lev technologies

  5. 3D Metal Printing - Additive Manufacturing Technologies for Frameworks of Implant-Borne Fixed Dental Prosthesis.

    Science.gov (United States)

    Revilla León, M; Klemm, I M; García-Arranz, J; Özcan, M

    2017-09-01

    An edentulous patient was rehabilitated with maxillary metal-ceramic and mandibular metal-resin implant-supported fixed dental prosthesis (FDP). Metal frameworks of the FDPs were fabricated using 3D additive manufacturing technologies utilizing selective laser melting (SLM) and electron beam melting (EBM) processes. Both SLM and EBM technologies were employed in combination with computer numerical control (CNC) post-machining at the implant interface. This report highlights the technical and clinical protocol for fabrication of FDPs using SLM and EBM additive technologies. Copyright© 2017 Dennis Barber Ltd.

  6. Technical specifications for the successful fabrication of laminated seismic isolation bearings

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R F [Argonne National Laboratory, Argonne, IL (United States)

    1992-07-01

    High damping steel-laminated elastomeric seismic isolation bearings are becoming a preferred device for isolating large buildings and structures. In the United States, the current reference design for the Advanced Liquid Metal Reactor uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of rubber and steel plates. They are typically designed for shear strains between 50 to 100 percent and expected to sustain two to three times these levels for beyond design basis loading considerations. The technical specifications used to procure these bearings are an important factor in assuring thatthe bearings meet the performance requirements of the design. The key aspects of the current version of the Technical Specifications are discussed in this paper. (author)

  7. Liquid metal pump

    Science.gov (United States)

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  8. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair

  9. Electrical technologies for the removal of toxic metals from the environment

    International Nuclear Information System (INIS)

    Millington, J.P.

    1994-01-01

    Electrical technologies are now available, both for the manufacture of materials and for the control of pollution. Although electrically intensive, they are not of necessity energy intensive and offers in many cases advantages over conventional technologies. This paper presents two examples of clean technology and two of pollution abatement, which all address the problem of toxic metals. (TEC)

  10. SITE demonstration of the Dynaphore/Forager Sponge technology to remove dissolved metals from contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, C.R. [Environmental Protection Agency, Edison, NJ (United States); Vaccaro, G. [Science Applications International Corp., Hackensack, NJ (United States)

    1995-10-01

    A Superfund Innovative Technology Evaluation (SITE) demonstration was conducted of the Dynaphore/Forager Sponge technology during the week of April 3, 1994 at the N.L. Industries Superfund Site in Pedricktown, New Jersey. The Forager Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals in both cationic and anionic states. This technology is a volume reduction technology in which heavy metal contaminants from an aqueous medium are concentrated into a smaller volume for facilitated disposal. The developer states that the technology can be used to remove heavy metals from a wide variety of aqueous media, such as groundwater, surface waters and process waters. The sponge matrix can be directly disposed, or regenerated with chemical solutions. For this demonstration the sponge was set up as a mobile pump-and-treat system which treated groundwater contaminated with heavy metals. The demonstration focused on the system`s ability to remove lead, cadmium, chromium and copper from the contaminated groundwater over a continuous 72-hour test. The removal of heavy metals proceeded in the presence of significantly higher concentrations of innocuous cations such as calcium, magnesium, sodium, potassium and aluminum.

  11. Carbon Solubility in Silicon-Iron-Bearing Metals during Core Formation on Mercury

    Science.gov (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent; Rapp, Jennifer F.; Danielson, Lisa R.; Keller, Lindsay P.; Righter, Kevin

    2016-01-01

    potential light element that could be incorporated into Mercury's core. The goal of this study is to determine the carbon concentration at graphite saturation in various silicon-iron bearing metals relevant to possible mercurian core compositions. Future experiments will include the addition of sulfur into these metals.

  12. Are Trends in Total Hip Arthroplasty Bearing Surface Continuing to Change? 2007-2015 Usage in a Large Database Cohort.

    Science.gov (United States)

    Bedard, Nicholas A; Burnett, Robert A; DeMik, David E; Gao, Yubo; Liu, Steve S; Callaghan, John J

    2017-12-01

    Bearing surface issues related to trunnionosis or metal-on-metal (MoM) articulations have likely impacted recent trends in bearing surface choice. The purpose of this study is to evaluate trends in total hip arthroplasty (THA) bearing surface use, including 2015 data, with respect to the date of operation and patient demographics. The Humana dataset was reviewed from 2007 through 2015 to analyze bearing surface usage in primary THA. Four bearing surface types were identified by International Classification of Disease, 10th Revision codes and trended throughout the years: metal-on-polyethylene (MoP), ceramic-on-ceramic (CoC), ceramic-on-polyethylene (CoP), and MoM. Prevalence was analyzed as a function of age and sex. Of the 28,504 primary THA procedures, the most commonly used bearing was MoP (46.1%), followed by CoP (33.2%), MoM (17.1%), and ceramic-on-ceramic (3.6%). The use of CoP bearings significantly increased from 6.4% in 2007 to 52.0% in 2015, while MoM bearings decreased during this period. MoP bearings decreased over 2012-2015 (P bearings increased with a transition occurring at 65-69 years of age. Women were more likely to receive MoP bearings (odds ratio [OR] 1.2), while men were more likely to receive MoM and CoP bearings (OR 1.1). Multivariate logistic regression showed age to be an independent predictor of bearing surface choice with patients 65 and older more likely to receive MoP bearings (OR 3.2). Bearing surface choice in primary THA has changed tremendously from 2007 to 2015. MoM bearing use has decreased as a result of adverse effects. Age continues to remain a significant factor in bearing surface choice. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. High-performance plain bearings for diesel engines. Hochleistungs-Gleitlager fuer Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.M.; Mathias, M.; Herrmann, B. (MTU, Friedrichshafen (Germany))

    1992-01-01

    The crankshaft bearings are among the most highly stressed engine components. Conventional plain bearings no longer fulfill the requirements of modern high-performance diesel engines. Introduction of the 'Sputter' technology, as a method of anti friction layer application, opened new perspectives in the field of plain bearing manufacture. In this presentation it is intended to compare various types of plain bearings and to demonstrate operation-oriented bearing testing. (orig.).

  14. Optimization design of turbo-expander gas bearing for a 500W helium refrigerator

    Science.gov (United States)

    Li, S. S.; Fu, B.; Y Zhang, Q.

    2017-12-01

    Turbo-expander is the core machinery of the helium refrigerator. Bearing as the supporting element is the core technology to impact the design of turbo-expander. The perfect design and performance study for the gas bearing are essential to ensure the stability of turbo-expander. In this paper, numerical simulation is used to analyze the performance of gas bearing for a 500W helium refrigerator turbine, and the optimization design of the gas bearing has been completed. And the results of the gas bearing optimization have a guiding role in the processing technology. Finally, the turbine experiments verify that the gas bearing has good performance, and ensure the stable operation of the turbine.

  15. Leading research on next generation metal production technology; Jisedai kinzoku shigen seisan gijutsu no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The energy saving environment-friendly technology for low- grade difficult-to-process ores was researched focusing attention on the hydro-metallurgical process of non-ferrous metals. This research aims at development of both effective leaching system of metals, and separation/crystallization system recognizing the property difference between metal ions in solution. The leaching system allows the inexpensive molecular level control of electron transfer, mass transfer of metal ions and stabilization of leached metal ions in a solid/liquid interface. The system thus allows selective leaching of metals from various resources such as difficult- to-leach sulfide minerals to prepare concentrated solutions. The separation system can obtain high-purity solutions including each metal ion by advanced separation/concentration technology from the solutions. The crystallization technology (including electrolysis) is developed for preparing target metal materials by molecular level control of nucleation, particle growth, thin film formation and bulky metal formation processes. Overall energy consumption is reduced to 1/3 of that of the pyro-metallurgical method, aiming at zero emission. 15 refs., 14 figs., 11 tabs.

  16. A technology development for the purification and utilization of rare metals

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Kang In; Yu, Hyo Shin; Youn, In Ju; Choi, Good Sun; Lee, Churl Kyoung; Seo, Chang Youl; Yang, Dong Hyo [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    The demand for rare metal and their alloys has dramatically increased due to the rapid growth of electronics industries. The clean metals such as molybdenum, nickel and cobalt are used in manufacturing of gate electrodes, interconnects, and barrier metal because of their superior properties. Despite the strong demand, the production of these metals in our nation has not made. And all products related with these have to be imported from other developed countries with high cost. Furthermore, some deposits and by-product exist, and the development of production of metal becomes to be important for the viewpoint of the supply national electronics industries with these materials as well as the increase in the added value of raw materials. Electron beam melting technique is the advantages for the ingot-making of molybdenum. In this melting process, the energy of highly accelerated electrons can be transferred to thermal energy and easily controlled to make various sizes and types of molybdenum ingot. In addition, membrane technology plays an important role to separation and purification of rare metals. Therefore, the objective for this research is to make the molybdenum ingot using this electron beam melting process and develop the technology of the manufacture of the sputtering target which can be used for semiconductor industries and a multi-stage cascade process of the supported liquid membrane(SLM) for separation and purification of rare metals such as cobalt and nickel. (author). 30 refs., 48 figs., 9 tabs.

  17. Recycling Potentials of Critical Metals-Analyzing Secondary Flows from Selected Applications

    Directory of Open Access Journals (Sweden)

    Till Zimmermann

    2014-03-01

    Full Text Available Metal mobilization in general, as well as the number of metals used in products to increase performance and provide sometimes unique functionalities, has increased steadily in the past decades. Materials, such as indium, gallium, platinum group metals (PGM, and rare earths (RE, are used ever more frequently in high-tech applications and their criticality as a function of economic importance and supply risks has been highlighted in various studies. Nevertheless, recycling rates are often below one percent. Against this background, secondary flows of critical metals from three different end-of-life products up to 2020 are modeled and losses along the products’ end-of-life (EOL chain are identified. Two established applications of PGM and RE–industrial catalysts and thermal barrier coatings–and CIGS photovoltaic cells as a relatively new product have been analyzed. In addition to a quantification of future EOL flows, the analysis showed that a relatively well working recycling system exists for PGM-bearing catalysts, while a complete loss of critical metals occurs for the other applications. The reasons include a lack of economic incentives, technologically caused material dissipation and other technological challenges.

  18. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    rains also destroy the denning habitat of ringed seals, the polar bears' primary prey. Declines in the ringed seal population would mean a loss of food for polar bears. A trend toward stronger winds and increasing ice drift observed in some parts of the Arctic over the last five decades will likely increase energy expenditures and stress levels in polar bears that spend most of their lives on drifting sea ice. Polar bears face other limiting factors as well. Historically, the main threat to polar bears has been hunting. Satisfactory monitoring information has been obtained for most polar bear populations in recent years, however there is concern about hunting in areas without formal quota systems, such as Greenland. A range of toxic pollutants, including heavy metals, radioactivity, and persistent organic pollutants (POPs) are found throughout the Arctic. Of greatest concern are the effects of POPs on polar bears, which include a general weakening of the immune system, reduced reproductive success and physical deformities. The expansion of oil development in the Arctic poses additional threats; for example, disturbances to denning females in the Arctic National Wildlife Refuge in Alaska could undermine recruitment of the Beaufort Sea polar bear population. These threats, along with other effects of human activity in the Arctic, combine to pressure polar bears and their habitat. Large carnivores are sensitive indicators of ecosystem health and can be used to define the minimum area necessary to preserve intact ecosystems. WWF has identified the polar bear as a unique symbol of the complexities and interdependencies of the arctic marine ecosystem as it works toward its goal of preserving biodiversity for future generations.

  19. Technical specifications for the successful fabrication of laminated seismic isolation bearings

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1992-01-01

    High damping laminated elastomeric bearings are becoming one of the preferred devices for isolating large buildings and structures. IN the United States, the current reference design for the Advanced Liquid Metal Reactor uses laminated bearings for seismic isolation. These bearing are constructed from alternating layers of rubber and steel plates. They are typically designed for shear strains between 50 to 100 percent and expected to sustain two to three times these levels for beyond design basis loading considerations. The technical specifications used to procure these bearings are an important factor in assuring that the bearings that are installed under nuclear structures meet the performance requirements of the design. The key aspects of the current version of the Technical Specifications are discussed in this paper

  20. Technical specifications for the successful fabrication of laminated seismic isolation bearings

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1992-01-01

    High damping steel-laminated elastomeric seismic isolation bearings are becoming a preferred device for isolating large buildings and structures. In the United States, the current reference design for the Advanced Liquid Metal Reactor uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of rubber and steel plates. They are typically designed for shear strains between 50 to 100 percent and expected to sustain two to three times these levels for beyond design basis loading considerations. The technical specifications used to procure these bearings are an important factor in assuring that the bearings meet the performance requirements of the design. The key aspects of the current version of the Technical Specifications are discussed in this paper. (author)

  1. Magnetic bearings promise reduced operation and maintenance costs

    International Nuclear Information System (INIS)

    Jones, G.

    1990-01-01

    Magnetic bearings are being incorporated into the design of the US DoE modular high temperature gas cooled reactor. The virtually maintenance-free bearing technology may have potential in other nuclear applications. In an active magnetic bearing, a stationary electromagnet (stator) and a rotating ferrous material (rotor) are used to allow a shaft to be suspended in a magnetic field. The position of the shaft is maintained dynamically using position sensors to provide a continuous feedback through a control and amplifier system to the electromagnetic poles which are used to suspend the shaft. Two separate systems are required: an axial positioning system, or thrust bearing, and a pair of radial positioning systems, or journal bearings. (author)

  2. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    Energy Technology Data Exchange (ETDEWEB)

    Bayrakal, Suna [Iowa State Univ., Ames, IA (United States)

    1993-09-30

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

  3. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    International Nuclear Information System (INIS)

    Bayrakal, S.

    1993-01-01

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within

  4. Influence of superoleophobic layer on the lubrication performance of partially textured bearing including cavitation

    Science.gov (United States)

    Tauviqirrahman, M.; Bayuseno, A. P.; Muchammad, Jamari, J.

    2016-04-01

    Surfaces with high superoleophobicity have attracted important attention because of their potential applications in scientific and industrial field. Especially classical metal bearing are faced with lubrication problem, because metal surface shows typically oleophilicity. The development of superolephobic metal surfaces which repel oil liquid droplet have significant applications in preventing the stiction. In addition, for classical bearing with texturing, the cavitation occurence is often considered as the main cause of the deterioration of the lubrication performance and thus shorten the lifetime of the bearing. In the present study, the exploration of the influence of adding the superoleophobic layer on the improvement of the performance of partially textured bearing in preventing the cavitation was performed. Navier slip model was used to model the behavior of the superoleophobic layer. A formulation of the modified Reynolds equation with mass-conserving boundary conditions was derived and the pressure distribution was of particular interest. The equations of lubrication were discretized using a finite volume method and solved using a tri-diagonal-matrix-algortihm. In this calculation, it was shown that after introducing the superoleophobic layer at the leading edge of the contact, the cavitation occurence can be prevented and thus the increased hydrodynamic pressure is found. However, the results showed that for deeper texture, the deterioration of the load support is noted. This findings may have useful implications to extend the life time of textured bearing.

  5. Bearing surfaces in total hip replacements: state of the art and future developments.

    Science.gov (United States)

    McKellop, H A

    2001-01-01

    Because the UHMWPE components fabricated by the historic process of gamma-sterilization in air are no longer marketed, a surgeon who wishes to continue performing joint replacement surgery must choose among the new polyethylenes, or he or she may choose a modern metal-metal or ceramic-ceramic bearing, each of which has its potential advantages and disadvantages (Table 4). Ultimately, it is the responsibility of the surgeon to assess the risk-benefit ratios of each of the new bearing combinations and make an informed and wise choice among them.

  6. Status of liquid metal cooled fast reactor technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants Refs, figs, tabs

  7. Status of liquid metal cooled fast reactor technology

    International Nuclear Information System (INIS)

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants

  8. A refractory metal gate approach for micronic CMOS technology

    International Nuclear Information System (INIS)

    Lubowiecki, V.; Ledys, J.L.; Plossu, C.; Balland, B.

    1987-01-01

    In the future, devices scaling down, integration density and performance improvements are going to bring a number of conventional circuit design and process techniques to their fundamental limits. To avoid any severe limitations in MOS ULSI (Ultra Large Scale Integration) technologies, interconnection materials and schemes are required to emerge, in order to face the Megabits memory field. Among those, the gate approach will obviously take a keyrole, when the operating speed of ULSI chips will reach the practical upper limits imposed by parasitic resistances and capacitances which stem from the circuit interconnect wiring. Even if fairly suitable for MOS process, doped polycrystalline silicon is being gradually replaced by refractory metal silicide or polycide structures, which match better with low resistivity requirements. However, as we approach the submicronic IC's, higher conductivity materials will be paid more and more attention. Recently, works have been devoted and published on refractory metal gate technologies. Molybdenum or tungsten, deposited either by CVD or PVD methods, are currently reported even if some drawbacks in their process integration still remain. This paper is willing to present such an approach based on tungsten (more reliable than Molybdenum deposited by LPCVD (giving more conductive and more stable films than PVD). Deposition process will be first described. Then CMOS process flow will allow us to focus on specific refractory metal gate issues. Finally, electrical and physical properties will be assessed, which will demonstrate the feasibility of such a technology as well as the compatibility of the tungsten with most of the usual techniques

  9. Selective removal/recovery of RCRA metals from waste and process solutions using polymer filtration trademark technology

    International Nuclear Information System (INIS)

    Smith, B.F.

    1997-01-01

    Resource Conservation and Recovery Act (RCRA) metals are found in a number of process and waste streams at many DOE, U.S. Department of Defense, and industrial facilities. RCRA metals consist principally of chromium, mercury, cadmium, lead, and silver. Arsenic and selenium, which form oxyanions, are also considered RCRA elements. Discharge limits for each of these metals are based on toxicity and dictated by state and federal regulations (e.g., drinking water, RCRA, etc.). RCRA metals are used in many current operations, are generated in decontamination and decommissioning (D ampersand D) operations, and are also present in old process wastes that require treatment and stabilization. These metals can exist in solutions, as part of sludges, or as contaminants on soils or solid surfaces, as individual metals or as mixtures with other metals, mixtures with radioactive metals such as actinides (defined as mixed waste), or as mixtures with a variety of inert metals such as calcium and sodium. The authors have successfully completed a preliminary proof-of-principle evaluation of Polymer Filtration trademark (PF) technology for the dissolution of metallic mercury and have also shown that they can remove and concentrate RCRA metals from dilute solutions for a variety of aqueous solution types using PF technology. Another application successfully demonstrated is the dilute metal removal of americium and plutonium from process streams. This application was used to remove the total alpha contamination to below 30 pCi/L for the wastewater treatment plant at TA-50 at Los Alamos National Laboratory (LANL) and from nitric acid distillate in the acid recovery process at TA-55, the Plutonium Facility at LANL (ESP-CP TTP AL16C322). This project will develop and optimize the PF technology for specific DOE process streams containing RCRA metals and coordinate it with the needs of the commercial sector to ensure that technology transfer occurs

  10. Selective removal/recovery of RCRA metals from waste and process solutions using polymer filtration{trademark} technology

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Resource Conservation and Recovery Act (RCRA) metals are found in a number of process and waste streams at many DOE, U.S. Department of Defense, and industrial facilities. RCRA metals consist principally of chromium, mercury, cadmium, lead, and silver. Arsenic and selenium, which form oxyanions, are also considered RCRA elements. Discharge limits for each of these metals are based on toxicity and dictated by state and federal regulations (e.g., drinking water, RCRA, etc.). RCRA metals are used in many current operations, are generated in decontamination and decommissioning (D&D) operations, and are also present in old process wastes that require treatment and stabilization. These metals can exist in solutions, as part of sludges, or as contaminants on soils or solid surfaces, as individual metals or as mixtures with other metals, mixtures with radioactive metals such as actinides (defined as mixed waste), or as mixtures with a variety of inert metals such as calcium and sodium. The authors have successfully completed a preliminary proof-of-principle evaluation of Polymer Filtration{trademark} (PF) technology for the dissolution of metallic mercury and have also shown that they can remove and concentrate RCRA metals from dilute solutions for a variety of aqueous solution types using PF technology. Another application successfully demonstrated is the dilute metal removal of americium and plutonium from process streams. This application was used to remove the total alpha contamination to below 30 pCi/L for the wastewater treatment plant at TA-50 at Los Alamos National Laboratory (LANL) and from nitric acid distillate in the acid recovery process at TA-55, the Plutonium Facility at LANL (ESP-CP TTP AL16C322). This project will develop and optimize the PF technology for specific DOE process streams containing RCRA metals and coordinate it with the needs of the commercial sector to ensure that technology transfer occurs.

  11. Experimental Performance Study of a High Speed Oil Lubricated Polymer Thrust Bearing

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    2015-01-01

    Full Text Available With the demand for turbomachinery to operate at higher speeds, loads, and power, fluid film bearings that support turbomachinery must be capable of operating in these more demanding applications. Thrust bearings operating at high speeds and loads can experience high surface temperatures and thin fluid film thickness. Typically, babbitt (white metal is the bearing lining material for most turbomachinery bearings but is limited in operating temperature and allowable film thickness. Polymer based materials are alternative materials that can operate at high temperatures and with thin films and have been in use for many decades in high load applications, such as electric submersible pumps (ESP. Test results of polymer lined thrust bearings subjected to modern turbomachinery speeds and loads are presented and compared to babbitt lined bearings of the same design and under similar conditions. The test results show polymer lined thrust bearings can operate at higher bearing unit loads than babbitt.

  12. Gearbox Instrumentation for the Investigation of Bearing Axial Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lambert, Scott R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-27

    Failures in gearbox bearings have been the primary source of reliability issues for wind turbine drivetrains, leading to costly downtime and unplanned maintenance. The most common failure mode is attributed to so-called axial cracks or white-etching cracks, which primarily affect the intermediate and high-speed-stage bearings. The high-speed-shaft and bearing loads and sliding will be measured with a specially instrumented gearbox installed in a 1.5-megawatt turbine at the National Wind Technology Center in an upcoming test campaign. Additional instrumentation will also measure the tribological environment of these bearings, including bearing temperatures, lubricant temperature and water content, air temperature and humidity, and stray electrical current across the bearings. This paper fully describes the instrumentation package and summarizes initial results.

  13. Raising quality of maintenance and control of metallic structures in large-load technological machines

    Science.gov (United States)

    Drygin, M. Yu; Kuryshkin, N. P.

    2018-01-01

    Active growth of coal extraction and underinvestment of coal mining in Russia lead to the fact that technical state of more than 86% of technological machines at opencast coal mines is unacceptable. One of the most significant problems is unacceptable state of supporting metallic structures of excavators and mine dump trucks. The analysis has shown that defects in these metallic structures had been accumulated for a long time. Their removal by the existing method of repair welding was not effective - the flaws reappeared in 2-6 months of technological machines’ service. The authors detected the prime causes that did not allow to make a good repair welding joint. A new technology of repair welding had been tested and endorsed, and this allowed to reduce the number of welded joints’ flaws by 85% without additional raising welders’ qualification. As a result the number of flaws in metallic structures of the equipment had been reduced by 35 % as early as in the first year of using the new technology.

  14. Refractory metal component technology for in-core sensor design

    International Nuclear Information System (INIS)

    Cannon, C.P.

    1986-02-01

    Within recent years, an increasing concern over reactor safety has prompted tests that characterize reactor core environments during transient conditions. Such tests include the Loss-of-Fluid-Tests (Idaho National Engineering Lab (INEL)), Severe Fuel Damage Tests (INEL), Core Debris Rubble Tests (Sandia National Laboratories (SNL)), and similar tests performed by foreign nations. The in-core sensors for these tests require refractory metal components to be compatible with electrical insulator materials as well as materials comprising highly corrosive service mediums. This paper presents the refractory metal technology utilized to provide basic sensor designs in the above mentioned reactor tests

  15. Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology

    International Nuclear Information System (INIS)

    Wang, J.-Y.; Huang, X.-J.; Kao, Jimmy C.M.; Stabnikova, Olena

    2006-01-01

    An upward electrokinetic soil remedial (UESR) technology was proposed to remove heavy metals from contaminated kaolin. Unlike conventional electrokinetic treatment that uses boreholes or trenches for horizontal migration of heavy metals, the UESR technology, applying vertical non-uniform electric fields, caused upward transportation of heavy metals to the top surface of the treated soil. The effects of current density, treatment duration, cell diameter, and different cathode chamber influent (distilled water or 0.01 M nitric acid) were studied. The removal efficiencies of heavy metals positively correlated to current density and treatment duration. Higher heavy metals removal efficiency was observed for the reactor cell with smaller diameter. A substantial amount of heavy metals was accumulated in the nearest to cathode 2 cm layer of kaolin when distilled water was continuously supplied to the cathode chamber. Heavy metals accumulated in this layer of kaolin can be easily excavated and disposed off. The main part of the removed heavy metals was dissolved in cathode chamber influent and moved away with cathode chamber effluent when 0.01 M nitric acid was used, instead of distilled water. Energy saving treatment by UESR technology with highest metal removal efficiencies was provided by two regimes: (1) by application of 0.01 M nitric acid as cathode chamber influent, cell diameter of 100 mm, duration of 18 days, and constant voltage of 3.5 V (19.7 kWh/m 3 of kaolin) and (2) by application of 0.01 M nitric acid as cathode chamber influent, cell diameter of 100 cm, duration of 6 days, and constant current density of 0.191 mA/cm 2 (19.1 kWh/m 3 of kaolin)

  16. Enhancement of Au-Ag-Te contents in tellurium-bearing ore minerals via bioleaching

    Science.gov (United States)

    Choi, Nag-Choul; Cho, Kang Hee; Kim, Bong Ju; Lee, Soonjae; Park, Cheon Young

    2018-03-01

    The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals (such as pyrite, chalcopyrite, sphalerite and galena) in combination with tellurium-bearing minerals (hessite, sylvanite and Tellurobismuthite) were studied. Indigenous microbes from mine drainage were isolated and identified as Acidithiobacillus ferrooxidans, which were used in bioleaching after adaption to copper. The effect of the microbial adaption on the bioleaching performance was then compared with the results produced by the non-adaptive process. The microbial adaption enhanced the Au-Ag-Te contents in biological leaching of tellurium-bearing ore minerals. This suggests that bioleaching with adapted microbes can be used both as a pretreatment and in the main recovery processes of valuable metals.

  17. Reducing Stress-Corrosion Cracking in Bearing Alloys

    Science.gov (United States)

    Paton, N. E.; Dennies, D. P.; Lumsden, I., J.b.

    1986-01-01

    Resistance to stress-corrosion cracking in some stainless-steel alloys increased by addition of small amounts of noble metals. 0.75 to 1.00 percent by weight of palladium or platinum added to alloy melt sufficient to improve properties of certain stainless steels so they could be used in manufacture of high-speed bearings.

  18. Fluidized-bed-combustion ash for the solidification and stabilization of a metal-hydroxide sludge.

    Science.gov (United States)

    Knoll, K L; Behr-Andres, C

    1998-01-01

    Fluidized-bed-combustion (FBC) ash is a by-product from a developing technology for coal-fired power plants that will economically reduce air emissions to meet requirements of the Clean Air Act. FBC ash has physical and chemical properties similar to Portland cement, but only has moderate success as a pozzolan in concrete applications due to low compressive strengths. However, FBC ash has proven effective for use as a binder for the solidification and stabilization (S/S) of metal-bearing sludges. Physical and chemical characterization procedures were used to analyze FBC ash and a metal-bearing sludge obtained from a hazardous waste treatment facility to develop 12 different S/S mix designs. The mix designs consist of four binder designs to evaluate sludge-to-binder ratios of approximately 0, 0.5, and 1. Portland cement is used as a control binder to compare unconfined compressive strengths and Toxicity Characteristic Leaching Procedure (TCLP) analyses from different ratios of the FBC ash streams: fly ash, char, and spent bed material (SBM). Compressive strengths ranging from 84 lbs per square inch (psi) to 298 psi were obtained from various mix designs containing different sludge-to-ash ratios cured for 28 days. All the mix designs passed the TCLP. Recoveries from leaching for each metal were less than 5% for most mix designs. Results of unconfined compressive strengths, TCLP, and percent recovery calculations indicate that the mix design containing approximately a 1:1 ratio of fly ash to char-and-sludge is the best mix design for the S/S of the metal-bearing sludge.

  19. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  20. Precious Metals Recovery from Electroplating Wastewater: A Review

    Science.gov (United States)

    Azmi, A. A.; Jai, J.; Zamanhuri, N. A.; Yahya, A.

    2018-05-01

    Metal bearing electroplating wastewater posts great health and environmental concerns, but could also provide opportunities for precious and valuable metal recovery, which can make the treatment process more cost-effective and sustainable. Current conventional electroplating wastewater treatment and metal recovery methods include chemical precipitation, coagulation and flocculation, ion exchange, membrane filtration, adsorption, electrochemical treatment and photocatalysis. However, these physico-chemical methods have several disadvantages such as high initial capital cost, high operational cost due to expensive chemical reagents and electricity supply, generation of metal complexes sludge which requires further treatment, ineffective in diluted and/or concentrated wastewater, low precious metal selectivity, and slow recovery process. On the other hand, metal bio-reduction assisted by bioactive phytochemical compounds extracted from plants and plant parts is a new found technology explored by several researchers in recent years aiming to recover precious and valuable metals from secondary sources mainly industrial wastewater by utilizing low-cost and eco-friendly biomaterials as reagents. Extract of plants contains polyphenolic compounds which have great antioxidant properties and reducing capacities, able to reduce metal ions into zerovalent metal atoms and stabilize the metal particles formed. This green bio-recovery method has a value added in their end products since the metals are recovered in nano-sized particles which are more valuable and have high commercial demand in other fields ranging from electrochemistry to medicine.

  1. Metal shell technology based upon hollow jet instability

    International Nuclear Information System (INIS)

    Kendall, J.M.; Lee, M.C.; Wang, T.G.

    1982-01-01

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. We describe a technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal. We have produced shells in the 0.7--2.0 mm size range using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold--lead--antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise

  2. Inorganic and Metallic Nanotubular Materials Recent Technologies and Applications

    CERN Document Server

    Kijima, Tsuyoshi

    2010-01-01

    This book describes the synthesis, characterization and applications of inorganic and metallic nanotubular materials. It cover a wide variety of nanotubular materials excluding carbon nanotubes, ranging from metal oxides, sulfides and nitrides such as titanium oxide, tungsten sulfide, and boron nitride, as well as platinum and other noble-metals to unique nanotubes consisting of water, graphene or fullerene. Based on their structural and compositional characteristics, these nanotubular materials are of importance for their potential applications in electronic devices, photocatalysts, dye-sensitized solar cells, nanothermometers, electrodes for fuel cells and batteries, sensors, and reinforcing fillers for plastics, among others. Such materials are also having a great impact on future developments, including renewable-energy sources as well as highly efficient energy-conversion and energy-saving technologies. This book will be of particular interest to experts in the fields of nanotechnology, material science ...

  3. Application of SEM/EDS to environmental geochemistry of heavy metals

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2009-06-01

    Full Text Available Heavy metals represent a ubiquitous constituent of the near-surface environment, present in widely varyingconcentrations that typically have little impact on human behaviour and health. However, the mining of metals anduse of these metals in industrial processes has produced significant anthropogenic inputs of metals to both localand global environments. As such, a rigorous overview of the current accumulation of heavy metals and knowledgeof mineralogy of heavy metal-bearing phases is important for understanding their stability, solubility, mobility,bioavailability and toxicity. These data are of fundamental importance for environmental risk assessment and evaluationof future scenarios. Since conventional geochemical analyses provide limited information, other analyticalmethods have to be utilized for the characterisation of heavy metal-bearing phases. Significant analytical methodfor identification and characterisation of heavy metals in environmental media is a scanning electron microscopecoupled with energy dispersive X-ray spectrometer (SEM/EDS, an apparatus for qualitative and semi-quantitative chemical analysis at microne level, newly introduced to Geological Survey of Slovenia. Use of SEM/EDS was already introduced to environmental studies world-wide. In Slovenia, SEM/EDS analyses of environmental media werefirstly carried out on the Meža River stream sediments and snow deposits from Ljubljana urban area.Heavy metal-bearing phases in the Meža River stream sediments were apportioned to three source areas: Mežica mining/smelting area (geogenic-technogenic origin, Ravne ironworks area (technogenic origin and the Meža River catchment area (geogenic origin, which corresponds to data obtained by conventional geochemical and multivariate statistical methods. Airborne particles, identified in urban snow deposits, were interpreted as geogenic particles, represented by fragments of heavy metal-bearing minerals, and technogenic particles that

  4. Comparison between microfabrication technologies for metal tooling

    DEFF Research Database (Denmark)

    Uriarte, L.; Herrero, A.; Ivanov, A.

    2006-01-01

    microtechnologies for processing tooling inserts made of metal. The following technologies have been analysed: micromilling, micro-electrodischarge machining (EDM, including wire-EDM, sinking-EDM, and EDM-milling), laser micromachining, electroforming, and electrochemical milling (ECF) (an electrochemical machining...... innovative process proposed by HSG-IMAT). Considered tool-insert materials are nickel for electroforming, stainless steel for ECF, and tool steel (AISI H13) for all other processes. Typical features (ribs, channels, pins, and holes) required by micro-optics, microfluidics, and sensor and actuator...

  5. Total Hip Arthroplasty Bearing Surface Trends in the United States From 2007 to 2014: The Rise of Ceramic on Polyethylene.

    Science.gov (United States)

    Heckmann, Nathanael D; Sivasundaram, Lakshmanan; Stefl, Michael D; Kang, Hyunwoo Paco; Basler, Eric T; Lieberman, Jay R

    2018-06-01

    Wear of the bearing surface is a critical element in determining the longevity of a total hip arthroplasty (THA). Over the past decade, concerns related to modern metal-on-metal (MoM) bearings and corrosion at the femoral head-neck interface have influenced surgeon selection of bearing surfaces. The purpose of this study is to analyze trends in THA bearing surface selection from 2007 through 2014 using a large national database. The Nationwide Inpatient Sample database was used to extract bearing surface data from patients who underwent a primary THA between 2007 and 2014. Patients were grouped by bearing surface type: metal-on-polyethylene (MoP), ceramic-on-polyethylene (CoP), MoM, and ceramic-on-ceramic (CoC) bearings. Descriptive statistics were employed to describe trends. Univariate and multivariate analyses were performed to identify differences between bearing surface groups. During the study period, 2,460,640 THA discharges were identified, of which 1,059,825 (43.1%) had bearing surface data. A total of 496,713 (46.9%) MoP, 307,907 (29.1%) CoP, 210,381 (19.9%) MoM, and 44,823 (4.2%) CoC cases were identified. MoM utilization peaked in 2008 representing 40.1% of THAs implanted that year and steadily declined to 4.0% in 2014. From 2007 to 2014, the use of CoP bearing surfaces increased from 11.1% of cases in 2007 to 50.8% of cases in 2014. In 2014, CoP utilization surpassed MoP which represented 42.1% of bearing surfaces that year. During the study period, MoM bearing surfaces decreased precipitously, while CoP surpassed MoP as the most popular bearing surface used in a THA. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Technology which led to the westinghouse inherently safe liquid metal reactor

    International Nuclear Information System (INIS)

    Schmidt, J.E.; Coffield, R.D.; Doncals, R.A.; Kalinowski, J.E.; Markley, R.A.

    1985-01-01

    The Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor programs resulted in an understanding of liquid metal reactor behavior that is being used to design inherent safety capability into liquid metal reactors. Technological advances give the same beneficial operating characteristics of conventional liquid metal reactors, however, the addition of inherently safe design features precludes the initiation of hypothetical core disruptive accidents. These innovative features permit inherent safety capability to be demonstrated with more than adequate margins. Also, the variety of inherent safety features provides the designers with options in selecting inherent design features for a specific reactor application

  7. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty.

    Science.gov (United States)

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-02-11

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of this articulation is variable. We reviewed the advantages and disadvantages of ceramicon- polyethylene articulation in THA, hip simulator study and retrieval study for polyethylene wear, in vivo clinical results of THA using alumina ceramic-on-polyethylene bearing surfaces in the literature, and new trial alumina ceramic-onhighly cross linked polyethylene bearing surfaces.

  8. An alternative to conventional babbitt metal-lined generator pads

    Energy Technology Data Exchange (ETDEWEB)

    Puuska, H. [Imatra Hydroelectric Power Plant (Finland)

    1996-08-01

    The generator refurbishment of the Imatra Hydroelectric Power Plant Unit 1 in Finland is described. The generator work called for installation of a new cooling system for the generator thrust bearing. The considerations leading to the decision to replace the conventional babbitt metal-lined pads with elastic metal-plastic coated thrust bearing pads and the installation of the new pads are outlined in the article. Results of the trial run are summarized; the end temperature of the unit was more than 20C lower than for units equipped with conventional babbitted bearings.

  9. ENVIROMETAL TECHNOLOGIES, INC., METAL-ENHANCED DECHLORINATION OF VOLATILE ORGANIC COMPOUNDS USING AN IN-SITU REACTIVE IRON WALL

    Science.gov (United States)

    This report summarizes the results of a field demonstration conducted under the SITE program. The technology that was demonstrated was a metal-enhanced dechlorination process developed by EnviroMetal Technologies, Inc. to treat groundwater contaminated with chlorinated volatile ...

  10. Oxygen-metal bonding in Ti-bearing compounds from O 1s spectra and ab initio full multiple-scattering calculations

    International Nuclear Information System (INIS)

    Ziyu Wu; Paris, E.; Langenhorst, F.; Seifert, F.

    2002-01-01

    The O K-edge spectra of a series of Ti-bearing compounds with Ti in diffrent structural and chemical environments have been measured using electron energy-loss spectroscopy and analyzed using ab initio full multiple-scattering (MS) calculations. The near-edge structures arise mainly from covalency by direct and/or indirect interaction between O and metal atoms and between O and Si atoms. The coordination number of the cation and the site symmetry also influence the spectral shape and structures. Using different size clusters around the excited atom in the full MS simulation, it is possible to interpret and assign the features present in the spectra of each compund to its specific atomic arrangement and electronic structure. (au)

  11. System for bearing a nuclear reactor vessel cooled by liquid metal

    International Nuclear Information System (INIS)

    Mahe, A.; Jullien, G.

    1976-01-01

    The invention relates to a bearing system for supporting a nuclear reactor vessel of the kind which is suspended from the reactor closure slab. The bearing system comprises a ring connected at one end to a collar and at the other end to two collars. The collar connected to the bottom end of the ring forms the top part of the vessel to be supported while the other two collars fit into the slab at two separate places. The ring and collars are disposed in an annular space formed in the slab and dividing it into two parts, i.e., a central part and a peripheral part surrounding the central part of the slab

  12. Application of brown bear (Ursus arctos) records for retrospective assessment of mercury.

    Science.gov (United States)

    Solgi, Eisa; Ghasempouri, Seyed Mahmoud

    2015-01-01

    Because mercury (Hg) is released into the atmosphere, wildlife living in habitats located far from point sources of metal may still be at risk. Mercury accumulation, previously considered a risk for aquatic ecosystems, is also found in many wildlife terrestrial species. The aim of the present study was to examine total Hg concentrations in the brown bear (Ursus arctos) by measurement of metal in hair from museum collections in Iran. Another objective of this investigation was to characterize the risk of Hg exposure in bears in several parts of Iran. Brown bear (Ursus arctos) hair samples (n = 35) were collected from 14 provinces in Iran for analysis of Hg contamination, performed using an advanced mercury analyzer (model Leco 254 AMA, USA) according to ASTM standard D-6722. Total Hg levels in Iranian bears from all areas ranged from 115.81 to 505.82 μg/kg, with a mean of 193.39 ng/g. Mercury concentrations in brown bear hair from different provinces in Iran were as follows in descending order: Khorasan Razavi > Esfahan > Khozestan > Yazd > Lorestan > Charmahalva Bakhtiari > Bushehr > Mazandaran > Markazi > Tehran > Ardebil > Gilan > East Azerbaijan. The highest content of Hg was found in the south (206.62 ± 31.95 ng/g), whereas the lowest levels were detected in the west (167.71 ± 32.97 ng/g). Overall total Hg content in bear hair was below harmful levels for this species. A decreasing trend was noted in the period 1986-2006, which may be mainly due to reduction of global Hg emissions. Data suggest that food habits and habitat are two important factors that influence Hg accumulation in bears.

  13. Liquid metal reactor development. Development of LMR design technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Cheol; Kim, Y I; Kim, Y G; Kim, E K; Song, H; Chung, H T; Sim, Y S; Min, B T; Kim, Y S; Wi, M H; Yoo, B; Lee, J H; Lee, H Y; Kim, J B; Koo, G H; Hahn, D H; Na, B C; Hwang, W; Nam, C; Ryu, W S; Lim, G S; Kim, D H; Kim, J D; Gil, C S

    1997-07-01

    This project was performed in five parts, the scope and contents of which are as follows: The nuclear data processing system was established and the KFS group constant library was improved and verified. Basic computation system was constructed by either developing or adding its function. Input/output (I/O) interface processing was developed to establish an integrated calculation system for LMR core nuclear rand thermal-hydraulic design and analysis. An experimental data analysis was performed to validate the constructed core neutronic calculation system. Using the established core calculation system and design technology, preliminary core design and performance analysis on the domestic LMR core design concept were carried out. To develop the basic technology of the LMR system analysis, LMR system behavior characteristics evaluation, thermal -fluid system analysis in the reactor pool, preliminary overall plant analysis and computer codes development have been performed. A porous model and simple one-dimensional model have been evaluated for the reactor pool analysis. The evaluation of the residual heat removal system on different design concepts has been also conducted. For the development of high temperature structural analysis, the heat transfer and thermal stress analyses were performed using finite element program with user subroutine that has been developed with an implementation of the Chaboche constitutive model for inelastic analysis capability, and the evaluation of creep-fatigue and ratcheting behavior of high temperature structure was carried out using this program. for development of the seismic isolation system and to predict the shear behavior for the laminated rubber bearing were established. And the behavior tests of isolation bearing and rubber specimens were carried out, and the seismic response tests for the isolation model structure were performed using the 30 ton shaking table. (author). 369 refs., 119 tabs., 320 figs.

  14. Liquid metal reactor development. Development of LMR design technology

    International Nuclear Information System (INIS)

    Kim, Young Cheol; Kim, Y. I.; Kim, Y. G.; Kim, E. K.; Song, H.; Chung, H. T.; Sim, Y. S.; Min, B. T.; Kim, Y. S.; Wi, M. H.; Yoo, B.; Lee, J. H.; Lee, H. Y.; Kim, J. B.; Koo, G. H.; Hahn, D. H.; Na, B. C.; Hwang, W.; Nam, C.; Ryu, W. S.; Lim, G. S.; Kim, D. H.; Kim, J. D.; Gil, C. S.

    1997-07-01

    This project was performed in five parts, the scope and contents of which are as follows: The nuclear data processing system was established and the KFS group constant library was improved and verified. Basic computation system was constructed by either developing or adding its function. Input/output (I/O) interface processing was developed to establish an integrated calculation system for LMR core nuclear rand thermal-hydraulic design and analysis. An experimental data analysis was performed to validate the constructed core neutronic calculation system. Using the established core calculation system and design technology, preliminary core design and performance analysis on the domestic LMR core design concept were carried out. To develop the basic technology of the LMR system analysis, LMR system behavior characteristics evaluation, thermal -fluid system analysis in the reactor pool, preliminary overall plant analysis and computer codes development have been performed. A porous model and simple one-dimensional model have been evaluated for the reactor pool analysis. The evaluation of the residual heat removal system on different design concepts has been also conducted. For the development of high temperature structural analysis, the heat transfer and thermal stress analyses were performed using finite element program with user subroutine that has been developed with an implementation of the Chaboche constitutive model for inelastic analysis capability, and the evaluation of creep-fatigue and ratcheting behavior of high temperature structure was carried out using this program. for development of the seismic isolation system and to predict the shear behavior for the laminated rubber bearing were established. And the behavior tests of isolation bearing and rubber specimens were carried out, and the seismic response tests for the isolation model structure were performed using the 30 ton shaking table. (author). 369 refs., 119 tabs., 320 figs

  15. Nanocrystalline, superhard, ductile ceramic coatings for roller-cone bit bearings

    Energy Technology Data Exchange (ETDEWEB)

    Namavar, F.; Colter, P.; Karimy, H. [Spire Corp., Bedford, MA (United States)] [and others

    1997-12-31

    The established method for construction of roller bits utilizes carburized steel, frequently with inserted metal bearing surfaces. This construction provides the necessary surface hardness while maintaining other desirable properties in the core. Protective coatings are a logical development where enhanced hardness, wear resistance, corrosion resistance, and surface properties are required. The wear properties of geothermal roller-cone bit bearings could be further improved by application of protective ceramic hard coatings consisting of nanometer-sized crystallites. Nanocrystalline protective coatings provide the required combination of hardness and toughness which has not been available thus far using traditional ceramics having larger grains. Increased durability of roller-cone bit bearings will ultimately reduce the cost of drilling geothermal wells through increased durability.

  16. An Assessment of Gas Foil Bearing Scalability and the Potential Benefits to Civilian Turbofan Engines

    Science.gov (United States)

    Bruckner, Robert J.

    2010-01-01

    Over the past several years the term oil-free turbomachinery has been used to describe a rotor support system for high speed turbomachinery that does not require oil for lubrication, damping, or cooling. The foundation technology for oil-free turbomachinery is the compliant foil bearing. This technology can replace the conventional rolling element bearings found in current engines. Two major benefits are realized with this technology. The primary benefit is the elimination of the oil lubrication system, accessory gearbox, tower shaft, and one turbine frame. These components account for 8 to 13 percent of the turbofan engine weight. The second benefit that compliant foil bearings offer to turbofan engines is the capability to operate at higher rotational speeds and shaft diameters. While traditional rolling element bearings have diminished life, reliability, and load capacity with increasing speeds, the foil bearing has a load capacity proportional to speed. The traditional applications for foil bearings have been in small, lightweight machines. However, recent advancements in the design and manufacturing of foil bearings have increased their potential size. An analysis, grounded in experimentally proven operation, is performed to assess the scalability of the modern foil bearing. This analysis was coupled to the requirements of civilian turbofan engines. The application of the foil bearing to larger, high bypass ratio engines nominally at the 120 kN (approx.25000 lb) thrust class has been examined. The application of this advanced technology to this system was found to reduce mission fuel burn by 3.05 percent.

  17. Comparison between Microfabrication Technologies for Metal Tooling

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    2005-01-01

    of metal. The following technologies have been analysed: micromilling, microEDM (microelectro discharge machining, including wire-EDM, sinking-EDM and EDM-milling), laser micromachining, electroforming and ECF (an innovative process proposed by HSG-IMAT). Considered materials are nickel for electroforming......, stainless steel for ECF, and tool steel (AISI H13) for the other processes. Typical features (ribs, channels, pins and holes) required by microoptics, microfluidics and sensors and actuators applications have been selected to carry out this analysis The task results provide a global comparison between...

  18. State-of-art of modern technologies for metals production

    Energy Technology Data Exchange (ETDEWEB)

    Holappa, L [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1996-12-31

    The future raw materials are becoming lower in metal content and more complex, multimetal concentrates will be utilized. This will give challenges for metallurgists to develop new, efficient and energy saving processes. The main impacts for current and future production technologies come from energy need and environmental issues of the production processes themselves as well as the inevitable energy production for the metal making. Metals production consumes huge amount of energy, roughly 10 pct of the global energy consumption is caused by metallurgists. That is the necessity but it also means energy saving is one of the metallurgical industry have been enormous when looking back to the history. Since the 1960`s the efforts of the industry together with the strict legislation in the industrialized countries have conducted to greatly decreased emissions and improved pollution control. Breakthrough of new processes like copper flash smelting has aided this positive progress

  19. State-of-art of modern technologies for metals production

    Energy Technology Data Exchange (ETDEWEB)

    Holappa, L. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1995-12-31

    The future raw materials are becoming lower in metal content and more complex, multimetal concentrates will be utilized. This will give challenges for metallurgists to develop new, efficient and energy saving processes. The main impacts for current and future production technologies come from energy need and environmental issues of the production processes themselves as well as the inevitable energy production for the metal making. Metals production consumes huge amount of energy, roughly 10 pct of the global energy consumption is caused by metallurgists. That is the necessity but it also means energy saving is one of the metallurgical industry have been enormous when looking back to the history. Since the 1960`s the efforts of the industry together with the strict legislation in the industrialized countries have conducted to greatly decreased emissions and improved pollution control. Breakthrough of new processes like copper flash smelting has aided this positive progress

  20. Compression and shear properties of elastomeric bearing using finite element analysis

    Directory of Open Access Journals (Sweden)

    2Faculty of Science and Technology, Chiang Mai Rajabhat University, Muang, Chiang Mai, 50300 Thailand.

    2006-09-01

    Full Text Available Standard size samples of four natural rubber compounds, varying the amount of carbon black from 10 to 70 phr, were characterised under uniaxial compression and simple shear tests in order to obtain the strain energy function constants. These constants were then used as hyperelastic material constants for the Windows-based finite element package (COSMOS/M version 1.75. The investigated bearings, made with those NR compounds, had the approximate area and thickness of 50x106 mm2 and 50 mm respectively. Each compound of bearing consisted of four different values of shape factor ranging from about 0.33 to 1.70, according to the number of reinforcing plates in the bearing. Three deformation modes of compression, shear and compression-shear were predicted. Good agreement was found between twelve compression model predictions and the corresponding experimental values of bearings, containing 10, 20 and 40 phr of carbon black and each of which consisted of four different layers of reinforcing metal plates (0, 1, 2 and 3 layers. On the other hand, deviation from the predicted valve was clearly seen in the 70 phr black bearing case. The percentage difference increased with respect to the increasing number of reinforcing plates or the rising shape factor. Therefore, the improved FEA model was supplemented with an imaginary elastic glue layer between the rubber block and metal plate as glue failure compensation. The optimum value of the elastic layers modulus is 8 MPa while the thickness of the layer depends on the total thickness or total volume of rubber block. This model can predict the 70 phr carbon black bearings, having shape factor ranging from 0.5 to 2.35 for 11 cases. The FEA prediction of shear behaviour agrees well with the experimental data for all four bearing compounds and there is no effect of shape factor on shear stress. Moreover, shear stress does not depend on the compressive force applied to like bearing before shear and the FEA results

  1. Applying Standard Industrial Components for Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Bert-Uwe Koehler

    2017-02-01

    Full Text Available With the increasing number of active magnetic bearing applications, satisfying additional requirements is becoming increasingly more important. As for every technology, moving away from being a niche product and achieving a higher level of maturity, these requirements relate to robustness, reliability, availability, safety, security, traceability, certification, handling, flexibility, reporting, costs, and delivery times. Employing standard industrial components, such as those from flexible modular motion control drive systems, is an approach that allows these requirements to be satisfied while achieving rapid technological innovation. In this article, we discuss technical and non-technical aspects of using standard industrial components in magnetic bearing applications.

  2. Superconducting magnetic bearings for machine tools. Phase 1, SBIR program. Final report

    International Nuclear Information System (INIS)

    Anastas, G.; Bennett, A.; Downer, J.; Hockney, R.

    1988-01-01

    The research was directed toward investigating the role of superconducting materials in a magnetic bearing system. Superconducting magnetic bearings are shown to offer the potential for vastly improved performance. These bearings are expected to be especially applicable to rotors which have extremely tight position tolerances. The development of superconducting magnetic bearing technology is also expected to allow a number of novel approaches in the development of machinery and systems. Researchers studied an alternative bearing design which employs a superconducting coil and eliminates all conventional magnetic structures. The study has resulted in a design definition and detailed analysis for a superconducting bearing system which is sized to roughly duplicate the air bearing system of an existing air-bearing spindle

  3. Heavy Metals Contaminated Soil Project, Resource Recovery Project, and Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November, 1989. OTD has begun to search out, develop, test and demonstrate technologies that can now or in the future be applied to the enormous remediation problem now facing the DOE and the United States public in general. Technology demonstration projects have been designed to attack a separate problem as defined by DOE. The Heavy Metals Contaminated Soil Project was conceived to test and demonstrate off-the-shelf technologies (dominantly from the mining industry) that can be brought to bear on the problem of radionuclide and heavy metal contamination in soils and sediments. The Resource Recovery Project is tasked with identifying, developing, testing, and evaluating new and innovative technologies for the remediation of metal contaminated surface and groundwater. An innovative twist on this project is the stated goal of recovering the metals, formerly disposed of as a waste, for reuse and resale, thereby transforming them into a usable resource. Finally, the Dynamic Underground Stripping Project was developed to demonstrate and remediate underground spills of hydrocarbons from formations that are (1) too deep for excavation, and/or (2) require in-situ remediation efforts of long duration. This project has already been shown effective in reducing the time for remediation by conventional methods from an estimated 200 years at the Lawrence Livermore National Laboratory (LLNL) to less than one year. The savings in time and dollars from this technology alone can be immeasurable

  4. Bearing system

    Science.gov (United States)

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  5. High-pitch metal-on-glass technology for pad pitch adaptation between detectors and readout electronics

    CERN Document Server

    Ullán, Miguel; Campabadal, Francesca; Fleta, Celeste; Garcia, Carmen; Gonzalez, Francisco; Bernabeu, Jose

    2004-01-01

    Modern high-energy physics and astrophysics strip detectors have increased channel density to levels at which their connection with readout electronics has become very complex due to high pad pitch. Also, direct wire bonding is prevented by the fact that typically detector's pad pitch and electronics' pad pitch do not match. A high- pitch metal-on-glass technology is presented, that allows pad pitch adaptation between detectors and readout electronics. It consists of high-density metal lines on top of an insulating glass substrate. A photoresist layer is deposited covering the metal tracks for passivation and protection The technology is tested for conductivity, bondability, bonding pull force, peel off, and radiation hardness, and it is an established technology in the clean room of the CNM Institute in Barcelona. This technology has been chosen by the ATLAS Collaboration for the pad pitch adapters (PPA) of the SCT Endcap Modules, by a Compton camera project, and by other HEP groups for interconnection betwe...

  6. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings Theory and Implementation

    CERN Document Server

    Yoon, Se Young; Allaire, Paul E

    2013-01-01

    Control of Surge in Centrifugal Compressors by Active Magnetic Bearings sets out the fundamentals of integrating the active magnetic bearing (AMB) rotor suspension technology in compressor systems, and describes how this relatively new bearing technology can be employed in the active control of compressor surge. The authors provide a self-contained and comprehensive review of rotordynamics and the fundamentals of the AMB technology. The active stabilization of compressor surge employing AMBs in a machine is fully explored, from the modeling of the instability and the design of feedback controllers, to the implementation and experimental testing of the control algorithms in a specially-constructed, industrial-size centrifugal compression system. The results of these tests demonstrate the great potential of the new surge control method developed in this text. This book will be useful for engineers in industries that involve turbocompressors and magnetic bearings, as well as for researchers and graduate students...

  7. Experimental investigations of active air bearings

    DEFF Research Database (Denmark)

    Santos, Ilmar; Morosi, Stefano

    2012-01-01

    Along with traditional oil lubrication, increasing demand for high-speed applications has renewed attention to gas bearings technology. Traditional aerostatic and aerodynamic gas lubrication has been widely used in a variety of applications, ranging from high-speed spindles to micro and meso......-scale turbomachinery. The present paper deals with experimental rotordynamic testing of a flexible rotor supported by hybrid aerostaticaerodynamic gas journal bearing equipped with an electronic radial air injection system. From a rotordynamic point of view there are two phenomena that limit the widespread...... of traditional gas lubrication: 1) Low damping makes operation across critical speed dangerous, as even low level of unbalance can generate large vibration responses. This is especially problematic for gas bearing applications, which often operate in the supercritical region. Moreover, 2) An upper bound...

  8. Tetra- and octa-[4-(2-hydroxyethyl)phenoxy bearing novel metal-free and zinc(II) phthalocyanines: Synthesis, characterization and investigation of photophysicochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Köksoy, Baybars [Marmara University, Department of Chemistry, 34722 Kadıköy, Istanbul (Turkey); Durmuş, Mahmut [Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli (Turkey); Bulut, Mustafa, E-mail: mbulut@marmara.edu.tr [Marmara University, Department of Chemistry, 34722 Kadıköy, Istanbul (Turkey)

    2015-05-15

    In this study, four novel phthalonitriles (1–4) and their corresponding metal-free (5–8) and zinc(II) phthalocyanine derivatives (9–12) bearing 4-(hydroxyethyl)phenoxy groups were synthesized. These novel compounds were characterized by IR, elemental analyses, {sup 1}H-NMR, UV–vis, and MALDI-TOF spectral data. Furthermore, photophysical (fluorescence quantum yields and lifetimes) and photochemical properties (singlet oxygen generation and photodegradation quantum yields) of these phthalocyanines were investigated in dimethylsulfoxide. The studied zinc(II) phthalocyanines generated highly singlet oxygen which is very important for the photodynamic therapy (PDT) of cancer. The fluorescence quenching behaviour of the newly synthesized phthalocyanine compounds were also investigated using 1,4-benzoquinone. - Highlights: • Octa and tetra 4-(hydroxyethyl)phenoxy substituted metal-free and zinc(II) phthalocyanines. • Study of photophysicochemical properties of eight new phthalocyanines. • Highly singlet oxygen generation for novel zinc(II) phthalocyanine photosensitizers.

  9. Polar bears: the fate of an icon.

    Science.gov (United States)

    Fitzgerald, Kevin T

    2013-11-01

    Polar bears are one of the most iconic animals on our planet. Worldwide, even people who would never see one are drawn to these charismatic arctic ice hunters. They are the world's largest terrestrial carnivore, and despite being born on land, they spend most of their lives out on the sea ice and are considered a marine mammal. Current global studies estimate there are around 20,000 animals in some 19 discrete circumpolar populations. Aside from pregnant females denning in the winter months to give birth, the white bears do not hibernate. They spend their winters on the sea ice hunting seals, an activity they are spectacularly adapted for. Research on these animals is incredibly difficult because of the inhospitable surroundings they inhabit and how inaccessible they make the bears. For many years, the sum of our understanding of the natural history of polar bears came from tracks, scats, the remains of their kills, abandoned dens, and anecdotal observations of native hunters, explorers, and early biologists. Nonetheless, the last 40 years have seen a much better picture of their biology emerge thanks to, first, dedicated Canadian researchers and, later, truly international efforts of workers from many countries. Veterinarians have contributed to our knowledge of the bears by delivering and monitoring anesthesia, obtaining blood samples, performing necropsies, investigating their reproduction, conducting radiotelemetry studies, and examining their behavior. Recently, new technologies have been developed that revolutionize the study of the lives and natural history of undisturbed polar bears. These advances include better satellite radiotelemetry equipment and the development of remote-controlled miniature devices equipped with high-definition cameras. Such new modalities provide dramatic new insights into the life of polar bears. The remarkable degree of specialized adaptation to life on the sea ice that allowed the bears to be successful is the very reason that

  10. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Riedel, T; Goebel, B; Wippich, D; Schirrmeister, P

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN 2 . More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  11. Composite risers for deep-water offshore technology: Problems and prospects. 1. Metal-composite riser

    Science.gov (United States)

    Beyle, A. I.; Gustafson, C. G.; Kulakov, V. L.; Tarnopol'skii, Yu. M.

    1997-09-01

    Prospects for the application of advanced composites in the offshore technology of oil production are considered. The use of composites in vertical pipelines-risers seems to be the most efficient. The operating loads are studied and the attendant problems are formulated. A comparative analysis of the characteristics of metal, composite, and metal-composite deep-water risers is presented. A technique is developed for designing multilayered risers, taking into account the action of internal and external pressures, gravity, and the axial tensile force created by tensioners, as well as the residual technological stresses due to the difference in coefficients of thermal expansion, physical-chemical shrinkage, and force winding. Numerical estimations are given for a two-layered riser with an inner metal layer of steel, titanium, or aluminum alloys and a composite layer of glass- or carbon-fiber plastics formed by circumferential winding. It is shown that the technological stresses substantially affect the characteristics of the riser.

  12. Stable isotope and trace element studies of black bear hair, Big Bend ecosystem, Texas and Mexico

    Science.gov (United States)

    Shanks, W.C. Pat; Hellgren, Eric C.; Stricker, Craig A.; Gemery-Hill, Pamela A.; Onorato, David P.

    2008-01-01

    Hair from black bears (Ursus americanus), collected from four areas in the Big Bend ecosystem, has been analyzed for stable isotopes of carbon, nitrogen, and sulfur to determine major food sources and for trace metals to infer possible effects of environmental contaminants. Results indicate that black bears are largely vegetarian, feeding on desert plants, nuts, and berries. Mercury concentrations in bear hair are below safe level standards (

  13. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Ruiz, R.H., E-mail: rhestrada@itsaltillo.edu.mx; Flores-Campos, R., E-mail: rcampos@itsaltillo.edu.mx; Gámez-Altamirano, H.A., E-mail: hgamez@itsaltillo.edu.mx; Velarde-Sánchez, E.J., E-mail: ejvelarde@itsaltillo.edu.mx

    2016-07-05

    Highlights: • Small sizes of particles are required in order to separate the different fractions. • Inverse flotation process is an efficient green technology to separate fractions. • Superficial air velocity is the main variable in the inverse flotation process. • Inverse flotation is a green process because the pulṕs pH is 7.0 during the test. - Abstract: The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained.

  14. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  15. Characterization of typical metal particles during haze episodes in Shanghai, China.

    Science.gov (United States)

    Li, Rui; Yang, Xin; Fu, Hongbo; Hu, Qingqing; Zhang, Liwu; Chen, Jianmin

    2017-08-01

    Aerosol particles were collected during three heavy haze episodes at Shanghai in the winter of 2013. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy was used to study the morphology and speciation of typical metal particles at a single-particle level. In addition, time-of-flight aerosol mass spectrometry (ATOFMS) was applied to identify the speciation of the Fe-containing particles. TEM analysis indicated that various metal-containing particles were hosted by sulfates, nitrates, and oxides. Fe-bearing particles mainly originated from vehicle emissions and/or steel production. Pb-, Zn-, and Sb-bearing particles were mainly contributed by anthropogenic sources. Fe-bearing particles were clustered into six groups by ATOFMS: Fe-Carbon, Fe-Inorganic, Fe-Trace metal, Fe-CN, Fe-PO 3, and Fe-NO 3 . ATOFMS data suggested that Fe-containing particles corresponded to different origins, including industrial activities, resuspension of dusts, and vehicle emissions. Fe-Carbon and Fe-CN particles displayed significant diurnal variation, and high levels were observed during the morning rush hours. Fe-Inorganic and Fe-Trace metal particle levels peaked at night. Furthermore, Fe-Carbon and Fe-PO 3 were mainly concentrated in the fine particles. Fe-CN, Fe-Inorganic, and Fe-Trace metal exhibited bimodal distribution. The mixing state of the particles revealed that all Fe-bearing particles tended to be mixed with sulfate and nitrate. The data presented herein is essential for elucidating the origin, evolution processes, and health effects of metal-bearing particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Rare earth element and rare metal inventory of central Asia

    Science.gov (United States)

    Mihalasky, Mark J.; Tucker, Robert D.; Renaud, Karine; Verstraeten, Ingrid M.

    2018-03-06

    Rare earth elements (REE), with their unique physical and chemical properties, are an essential part of modern living. REE have enabled development and manufacture of high-performance materials, processes, and electronic technologies commonly used today in computing and communications, clean energy and transportation, medical treatment and health care, glass and ceramics, aerospace and defense, and metallurgy and chemical refining. Central Asia is an emerging REE and rare metals (RM) producing region. A newly compiled inventory of REE-RM-bearing mineral occurrences and delineation of areas-of-interest indicate this region may have considerable undiscovered resources.

  17. Spectrophotometric and electrochemical study for metal ion binding of azocalix[4]arene bearing p-ethylester group

    Science.gov (United States)

    Kim, Tae Hyun

    2017-05-01

    The complexation behavior of diazophenylcalix[4]arene bearing para-ethylester group (p-EAC) for alkali, alkaline earth, various heavy and transition metal ions (Li+, Na+, K+, Rb+, Cs+, Mg2 +, Ca2 +, Sr2 +, Ba2 +, Cr3 +, Fe2 +, Co2 +, Ni2 +, Cu2 +, Zn2 +, Pb2 +) was investigated by spectrophotometric and electrochemical methods in CH3CN. p-EAC exhibits decreased absorbance at 353 nm in the presence of Cr3 +, Fe2 +, Pb2 +, and Cu2 +. The spectra of p-EAC showed bathochromic shift in absorption maximum on the addition of Cr3 +, Fe2 +, or Pb2 + with decreasing order of absorbance (Cr3 + > Fe2 + > Pb2 +), and on the other hand, hypsochromic shift on the addition of Cu2 +. This leads to the selective coloration from light green to orange and colorless for Cr3 + and Cu2 + that can be detected by the naked eye, respectively. In electrochemistry experiments, p-EAC also showed two different types of voltammetric changes toward Cr3 +, Fe2 +, or Pb2 +, and toward Cu2 +, whereas no significant changes occurred in the presence of the other metal ions. Nonlinear fitting curve procedure was used to determine a logarithmic value of 5.20, 4.92, 3.54 and 4.80 for the stability constants of the complex of p-EAC with Cr3 +, Fe2 +, Pb2 +, and Cu2 +, respectively.

  18. Characteristic test results of reduced-scale lead and 3D laminated rubber bearings for seismic isolation design of liquid metal reactor

    International Nuclear Information System (INIS)

    Yoo, B.; Lee, Jae Han; Kwon, H. S.

    1999-06-01

    Through the fabrications and the tests of reduced scale rubber bearing by several times since 1995, the technology related to the bearings has been improved. In this report, several lead rubber bearings (LLRB) with different lead plug diameters, high damping rubber bearing (HLRB), and 3D-LRB made of UNISON NR (natural rubber) compounds are tested to get the hysteretic characteristics of rubber bearings. Specially, the HLRB and 3D-LRB are tested for the vertical deformation characteristics. All the test data are plotted and analyzed to be compared with design target values such as equivalent horizontal stiffness and equivalent damping ration. The variations of the equivalent horizontal stiffness and damping for the lead and the 3D-LRB are evaluated from test data in the range of 25% to 150% of shear strain in horizontal direction. As increasing the lead plug diameter up to 48 mm, the values of yield load, equivalent stiffness, and equivalent damping are increased, and the maximum damping of 31 % are horizontal performance during compression and shear tests. Through the vertical performance tests of HLRB and 3D-LRB, it is reveal that the vertical stiffness of HLRB is 15.57 ton/mm, which is much lower than target value by 1/4, and the vertical stiffness of 3D-LRB show in the range of 2.17 ton/mm to 4.4 ton/mm, which are higher than the design target 1.25 ton/mm by about 2 times. The vertical equivalent damping of HLRB is 11.48%, but the ones of 3D-LRB show large variations between 8 % and 54%. There are no difference between the first and after curves of the vertical hysteresis of 3D-LRB and no dependency of test speed because the dish springs take the vertical behaviors of 3D-LRB. (author). 8 refs., 38 tabs., 47 figs

  19. A study on compliant layers and its influence on dynamic response of a hydrodynamic journal bearing

    DEFF Research Database (Denmark)

    Thomsen, Kim; Klit, Peder

    2011-01-01

    For some hydrodynamic bearing applications polymer-lined bearings are chosen over traditional metal alloy bearings due to their better wear and friction properties when operating at very thin films, e.g. in the mixed lubrication region. The introduction of a compliant layer also affects the dynamic...... used to evaluate hydrodynamic bearing designs: dynamic response, maximum pressure, minimum film thickness, wear, power loss and temperature response. The primary findings are that the maximum pressures are reduced significantly and this comes at the expense of slightly higher eccentricity ratios during...

  20. Empirical study of the perceived ease of use and relative advantage on load-bearing masonry (LBM) technology adoption

    Science.gov (United States)

    Ramli, Nor Azlinda; Abdullah, Che Sobry; Nawi, Mohd Nasrun Mohd

    2017-11-01

    Load-bearing masonry (LBM) technology has been identified as an alternative method that can potentially encourage the sustainability of the housing industry. The adoption of LBM technology is believed to bring beneficial effects to the housing industry as well as company productivity. The factors related to the adoption LBM technology was revealed to strongly influence the implementation of this system in the housing industry. The aim of this study is to determine the factors influencing the adoption of LBM technology among the developer firms in Malaysia as well as the factors that are highly related to perceived ease of use and relative advantage. A random sampling technique was applied and a questionnaire-based field survey was carried out to obtain the data from the respondents. All the data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). The findings of this paper have revealed that perceived ease of use and relative advantage are related to the adoption of LBM technology. The findings also indicated the validity of Technology Acceptance Model TAM (perceived ease of use) and Innovation Diffusion Theory IDT (relative advantage) as the determinant factors in the adoption of LBM technology. Finally, some recommendations for future research are suggested in the final section of this paper.

  1. RAPID FREEFORM SHEET METAL FORMING: TECHNOLOGY DEVELOPMENT AND SYSTEM VERIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Kiridena, Vijitha [Ford Scientific Research Lab., Dearborn, MI (United States); Verma, Ravi [Boeing Research and Technology (BR& T), Seattle, WA (United States); Gutowski, Timothy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Roth, John [Pennsylvania State Univ., University Park, PA (United States)

    2018-03-31

    The objective of this project is to develop a transformational RApid Freeform sheet metal Forming Technology (RAFFT) in an industrial environment, which has the potential to increase manufacturing energy efficiency up to ten times, at a fraction of the cost of conventional technologies. The RAFFT technology is a flexible and energy-efficient process that eliminates the need for having geometry-specific forming dies. The innovation lies in the idea of using the energy resource at the local deformation area which provides greater formability, process control, and process flexibility relative to traditional methods. Double-Sided Incremental Forming (DSIF), the core technology in RAFFT, is a new concept for sheet metal forming. A blank sheet is clamped around its periphery and gradually deformed into a complex 3D freeform part by two strategically aligned stylus-type tools that follow a pre-described toolpath. The two tools, one on each side of the blank, can form a part with sharp features for both concave and convex shapes. Since deformation happens locally, the forming force at any instant is significantly decreased when compared to traditional methods. The key advantages of DSIF are its high process flexibility, high energy-efficiency, low capital investment, and the elimination of the need for massive amounts of die casting and machining. Additionally, the enhanced formability and process flexibility of DSIF can open up design spaces and result in greater weight savings.

  2. Journal bearing

    Science.gov (United States)

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  3. Camshaft bearing arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Aoi, K.; Ozawa, T.

    1986-06-10

    A bearing arrangement is described for the camshaft of an internal combustion engine or the like which camshaft is formed along its length in axial order with a first bearing surface, a first cam lobe, a second bearing surface, a second cam lobe, a third bearing surface, a third cam lobe and a fourth bearing surface, the improvement comprising first bearing means extending around substantially the full circumference of the first bearing surface and journaling the first bearing surface, second bearing means extending around substantially less than the circumference of the second bearing surface and journaling the second bearing surface, third bearing means extending around substantially less than the circumference of the third bearing surface and journaling the third bearing surface, and fourth bearing means extending around substantially the full circumference of the fourth bearing surface and journaling the first bearing surface.

  4. Bearings for high performance requirements in two-stroke and four-stroke diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Ederer, U.G.

    1983-11-01

    Most measures to reduce fuel consumption in diesel engines lead, directly or indirectly, to more severe operating conditions for the engine bearings. In ever more instances the bearings become the components which limit useful engine life and the time between overhauls. Bearings with improved performance characteristics are required. During recent years, Miba Gleitlager AG has developed several solutions to meet these requirements. They consist of either material improvements, such as a cast white metal (SnSb 12Cu 3 NiCd) with higher fatigue strength, or an electroplated overlay (PbSn 18 Cu) with improved fatigue and wear resistance. New design solutions found included the steel-Al Sn 6-WM 85 bearing for two-stroke engines, the steel-Al Sn 6 PbSn 18 Cu bearing applied to two-stroke crosshead bearings, the steel-AlZn 4,5 PbSn 18 Cu bearing for high bearing loads in four-stroke engines, and the Miba-Rillenlager with its radically new running-surface structure for extreme load and wear conditions. The application potential of these bearings and the operating experience with them are discussed in this article.

  5. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    Science.gov (United States)

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  6. Seamount mineral deposits: A source of rare metals for high technology industries

    Science.gov (United States)

    Hein, James R.; Conrad, Tracey A.; Staudigel, Hubert

    2010-01-01

    The near exponential growth in Earth’s population and the global economy puts increasing constraints on our planet’s finite supply of natural metal resources, and, consequently, there is an increasing need for new sources to supply high-tech industries. To date, effectively all of our raw-metal resources are produced at land-based sites. Except for nearshore placer deposits, the marine environment has been largely excluded from metal mining due to technological difficulties, even though it covers more than 70% of the planet. The case can be made that deep-water seabed mining is inevitable in the future, owing to the critical and strategic metal needs for human society. In this paper, we evaluate the case that seamounts offer significant potential for mining.

  7. Adaptive Spindle Balancing Using Magnetically Levitated Bearings

    International Nuclear Information System (INIS)

    BARNEY, PATRICK S.; LAUFFER, JAMES P.; PETTEYS, REBECCA; REDMOND, JAMES M.; SULLIVAN, WILLIAM N.

    1999-01-01

    A technological break through for supporting rotating shafts is the active magnetic bearing (AMB). Active magnetic bearings offer some important advantages over conventional ball, roller or journal bearings such as reduced frictional drag, no physical contact in the bearing, no need for lubricants, compatibility with high vacuum and ultra-clean environments, and ability to control shaft position within the bearing. The disadvantages of the AMB system are the increased cost and complexity, reduced bearing stiffness and the need for a controller. Still, there are certain applications, such as high speed machining, biomedical devices, and gyroscopes, where the additional cost of an AMB system can be justified. The inherent actuator capabilities of the AMB offer the potential for active balancing of spindles and micro-shaping capabilities for machine tools, The work presented in this paper concentrates on an AMB test program that utilizes the actuator capability to dynamically balance a spindle. In this study, an unbalanced AMB spindle system was enhanced with an LMS (Least Mean Squares) algorithm combined with an existing PID (proportional, integral, differential) control. This enhanced controller significantly improved the concentricity of an intentionally unbalanced shaft. The study included dynamic system analysis, test validation, control design and simulation, as well as experimental implementation using a digital LMS controller

  8. Courses of Action to Optimize Heavy Bearings Cages

    Science.gov (United States)

    Szekely, V. G.

    2016-11-01

    The global expansion in the industrial, economically and technological context determines the need to develop products, technologies, processes and methods which ensure increased performance, lower manufacturing costs and synchronization of the main costs reported to the elementary values which correspond to utilization”. The development trend of the heavy bearing industry and the wide use of bearings determines the necessity of choosing the most appropriate material for a given application in order to meet the cumulative requirements of durability, reliability, strength, etc. Evaluation of commonly known or new materials represents a fundamental criterion, in order to choose the materials based on the cost, machinability and the technological process. In order to ensure the most effective basis for the decision, regarding the heavy bearing cage, in the first stage the functions of the product are established and in a further step a comparative analysis of the materials is made in order to establish the best materials which satisfy the product functions. The decision for selecting the most appropriate material is based largely on the overlapping of the material costs and manufacturing process during which the half-finished material becomes a finished product. The study is orientated towards a creative approach, especially towards innovation and reengineering by using specific techniques and methods applied in inventics. The main target is to find new efficient and reliable constructive and/or technological solutions which are consistent with the concept of sustainable development.

  9. SEMICONDUCTOR TECHNOLOGY: TaN wet etch for application in dual-metal-gate integration technology

    Science.gov (United States)

    Yongliang, Li; Qiuxia, Xu

    2009-12-01

    Wet-etch etchants and the TaN film method for dual-metal-gate integration are investigated. Both HF/HN O3/H2O and NH4OH/H2O2 solutions can etch TaN effectively, but poor selectivity to the gate dielectric for the HF/HNO3/H2O solution due to HF being included in HF/HNO3/H2O, and the fact that TaN is difficult to etch in the NH4OH/H2O2 solution at the first stage due to the thin TaOxNy layer on the TaN surface, mean that they are difficult to individually apply to dual-metal-gate integration. A two-step wet etching strategy using the HF/HNO3/H2O solution first and the NH4OH/H2O2 solution later can fully remove thin TaN film with a photo-resist mask and has high selectivity to the HfSiON dielectric film underneath. High-k dielectric film surfaces are smooth after wet etching of the TaN metal gate and MOSCAPs show well-behaved C-V and Jg-Vg characteristics, which all prove that the wet etching of TaN has little impact on electrical performance and can be applied to dual-metal-gate integration technology for removing the first TaN metal gate in the PMOS region.

  10. Moessbauer investigation of gold-bearing pyrite-rich concentrates

    International Nuclear Information System (INIS)

    Wagner, F.E.; Harris, D.C.

    1994-01-01

    A gold-bearing pyrite-rich concentrate of a refractory ore from the Golden Bear mine, northwestern British Columbia, and a pyrite-rich concentrate from Newhawk's west zone, Brucejack Lake area, northern British Columbia, containing 38 and 316 ppm Au and 0.57% and 0.19% As, respectively, have been investigated using 197 Au and 57 Fe Moessbauer spectroscopy. In the Golden Bear sample, the gold is mainly chemically bound in the pyrite with minor amounts present as an Au-Ag alloy, whereas in the Newhawk sample, the gold occurs mainly as an Au-Ag alloy with a composition close to Au 0.5 Ag 0.5 and is only partly bound in the pyrite. Having mean isomer shifts of +3.2 and +4.0 mm/s with respect to a Pt metal source, the gold in pyrite exhibits shifts similar to those observed for gold in arsenopyrite. The nature of the lattice sites occupied by the gold in pyrite is discussed. (orig.)

  11. Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances.

    Science.gov (United States)

    Deetman, Sebastiaan; Pauliuk, Stefan; van Vuuren, Detlef P; van der Voet, Ester; Tukker, Arnold

    2018-04-17

    This study provides scenarios toward 2050 for the demand of five metals in electricity production, cars, and electronic appliances. The metals considered are copper, tantalum, neodymium, cobalt, and lithium. The study shows how highly technology-specific data on products and material flows can be used in integrated assessment models to assess global resource and metal demand. We use the Shared Socio-economic Pathways as implemented by the IMAGE integrated assessment model as a starting point. This allows us to translate information on the use of electronic appliances, cars, and renewable energy technologies into quantitative data on metal flows, through application of metal content estimates in combination with a dynamic stock model. Results show that total demand for copper, neodymium, and tantalum might increase by a factor of roughly 2 to 3.2, mostly as a result of population and GDP growth. The demand for lithium and cobalt is expected to increase much more, by a factor 10 to more than 20, as a result of future (hybrid) electric car purchases. This means that not just demographics, but also climate policies can strongly increase metal demand. This shows the importance of studying the issues of climate change and resource depletion together, in one modeling framework.

  12. Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances

    Science.gov (United States)

    2018-01-01

    This study provides scenarios toward 2050 for the demand of five metals in electricity production, cars, and electronic appliances. The metals considered are copper, tantalum, neodymium, cobalt, and lithium. The study shows how highly technology-specific data on products and material flows can be used in integrated assessment models to assess global resource and metal demand. We use the Shared Socio-economic Pathways as implemented by the IMAGE integrated assessment model as a starting point. This allows us to translate information on the use of electronic appliances, cars, and renewable energy technologies into quantitative data on metal flows, through application of metal content estimates in combination with a dynamic stock model. Results show that total demand for copper, neodymium, and tantalum might increase by a factor of roughly 2 to 3.2, mostly as a result of population and GDP growth. The demand for lithium and cobalt is expected to increase much more, by a factor 10 to more than 20, as a result of future (hybrid) electric car purchases. This means that not just demographics, but also climate policies can strongly increase metal demand. This shows the importance of studying the issues of climate change and resource depletion together, in one modeling framework. PMID:29533657

  13. Breast milk metal ion levels in a young and active patient with a metal-on-metal hip prosthesis.

    Science.gov (United States)

    Nelis, Raymond; de Waal Malefijt, Jan; Gosens, Taco

    2013-01-01

    Metal-on-metal resurfacing arthroplasty of the hip has been used increasingly over the last 10 years in younger active patients. The dissolution of the metal wear particles results in measurable increases in cobalt and chromium ions in the serum and urine of patients with a metal-on-metal bearing. We measured the cobalt, chromium, and molybdenum ion levels in urine; serum; and breast milk in a young and active patient with a metal-on-metal hip prosthesis after a pathologic fracture of the femoral neck. Metal-on-metal hip prosthesis leads to increasing levels of molybdenum in breast milk in the short-term follow-up. There are no increasing levels of chromium and cobalt ions in breast milk. Besides the already known elevated concentrations in serum of chromium and cobalt after implantation of a metal-on-metal hip prosthesis, we found no increasing levels of chromium and cobalt in urine. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Jeong, N. H.; Sung, T. H.; Han, Y. H.

    2008-01-01

    A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  15. Data management implementation plan for the Bear Creek Valley treatability study phase 2 hydraulic performance testing, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-12-01

    The overall objective of the Bear Creek Valley treatability study is to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. The ultimate goal of this effort is to install a treatment system that will remove uranium, technetium, nitrate, and several metals from groundwater before it reaches Bear Creek. This project, the Bear Creek Valley treatability study Phase 2 hydraulic performance testing, directly supports the Bear Creek Valley Feasibility Study. Specific project objectives include (1) installing monitoring and extraction wells, (2) installing a groundwater extraction trench, (3) performing pumping tests of the extraction wells and trench, (4) determining hydraulic gradients, and (5) collecting water quality parameters. The primary purpose of environmental data management is to provide a system for generating and maintaining technically defensible data. To meet current regulatory requirements for the Environmental Restoration Program, complete documentation of the information flow must be established. To do so, each step in the data management process (collection, management, storage, and analysis) must be adequately planned and documented. This document will serve to identify data management procedures, expected data types and flow, and roles and responsibilities for all data management activities associated with this project

  16. Metal recovery by microbial electro-metallurgy

    NARCIS (Netherlands)

    Dominguez-Benetton, Xochitl; Varia, Jeet Chandrakant; Pozo, Guillermo; Modin, Oskar; Heijne, Ter Annemiek; Fransaer, Jan; Rabaey, Korneel

    2018-01-01

    Raw metals are fundamental to the global economy as they are essential to maintain the quality of our life as well as industrial performance. A number of metal-bearing aqueous matrices are appealing as alternative supplies to conventional mining, like solid industrial and urban waste leachates,

  17. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 1. METAL PRECIPITATION FOR RECOVERY AND RECYCLE

    Science.gov (United States)

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both active and abandoned mining operations. The wastewater...

  18. Influence of technological factors on characteristics of hybrid fluid-film bearings

    Science.gov (United States)

    Koltsov, A.; Prosekova, A.; Rodichev, A.; Savin, L.

    2017-08-01

    The influence of the parameters of micro- and macrounevenness on the characteristics of a hybrid bearing with slotted throttling is considered in the present paper. The quantitative assumptions of calculation of pressure distribution, load capacity, lubricant flow rate and power loss due to friction in a radial hybrid bearing with slotted throttling are taken into account, considering the shape, dimensions and roughness of the support surfaces inaccuracies. Numerical simulation of processes in the lubricating layer is based on the finite-difference solution of the Reynolds equation using an uneven orthogonal computational grid with adaptive condensation. The results of computational and physical experiments are presented.

  19. 1998 report on results of technological development of super metal. Innovative technological development for producing advanced structure controlled metallic material (high-speed large reduction rolling technology); 1998 nendo super metal no gijutsu kaihatsu seika hokokusho. Kodo soshiki kozo seigyo kinzoku zairyo sosei gijutsu kaihatsu (kosoku daiatsuka atsuen gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A report was made on the 1998 results concerning technological development of super metal. In the 'research and development of super metal', metallurgical examination has been made on crystal grain super refining process using a machining simulator, with studies carried out on crystal grain refining by utilizing large-strain deformation with more than 50% deformation for a single pass and a diploid structure. As a result, it was found that the crystal grain size can be refined to approximately 1{mu}m. Consequently, in fiscal 1998, a high-speed large reduction rolling test equipment was developed capable of rendering a sheathing technology in a mechanically testable size by a rolling method. This test equipment has such capacity as the maximum load of 1,000 ton and the maximum torque of 95 ton/m and is a rolling mill whose scale is largest in the nation on the laboratory level. The rolling speed can be 120mpm, a very fast speed for a large sized rolling mill. Moreover, equipped with an immediate water cooling facility adjacent to the rolls and an automatic operating system for example, it is a high function rolling mill capable of cooling and rolling that render the complex and delicate sheathing technology of super metal. (NEDO)

  20. Metal mining to the aid of the oil sands? Lateral opportunities in industrial cross-breeding

    Energy Technology Data Exchange (ETDEWEB)

    Sabag, S.F. [Dumont Nickel Inc., Toronto, ON (Canada)

    2009-07-01

    This paper demonstrated how oil sands operations can benefit from supporting innovative low cost metal mining to enhance their eco-footprint. Northeast Alberta contains large accumulations of recoverable metals, hosted in metal bearing black shales. Immense low grade polymetallic zones were discovered in 1995 but could not be exploited with existing recovery technologies. However, significant advances in bioleaching of metals from polymetallic black shale deposits have propelled this new deposit type to the forefront over the past 5 years as a long term future source of metals. Compared to traditional smelting and refining, bioleaching has lower Capex/Opex, lower eco-footprint and less energy dependence. Envisaged metal mining in the black shales of northeast Alberta can benefit oil sands operations by consuming large amounts of waste sulfur while also providing collateral opportunities for carbon sinks/offsets. Black shales have the capacity to sequester carbon dioxide (CO{sub 2}). Dumont Nickel Inc. is advancing 6 polymetallic black shale projects in northeast Alberta over 2,500 km{sup 2} with potential for hosting up to 20 billion tons in six 50-100 km{sup 2} deposits. The projects present opportunities to develop low footprint metal mines, to use run-of-river hydro, to harvest waste heat, and to combine local technologies to create a new valuable industry independent of energy markets.

  1. Transient Lift-Off Test Results for an Experimental Hybrid Bearing in Air

    Science.gov (United States)

    2009-12-01

    bearings. The electric motor designed to drive the rotor is a high speed integral motorized spindle unit manufactured by SKF Precision Technologies and...create pressure that supports the rotor ( shaft ) without rotation. The pressure generated by the flow through an orifice gives the hybrid bearing a...Kettering University; Chair of Advisory Committee: Dr. Dara Childs A hybrid bearing designed for use in a next generation turbo-pump is

  2. Process for the production of a tantalum and niobium bearing concentrate from a tantalum and niobium bearing ferro-alloy

    International Nuclear Information System (INIS)

    Deweck, J.; Van, H.

    1980-01-01

    In a process for the production of a tantalum and niobium bearing concentrate from a tantalum and niobium bearing ferro-alloy containing tantalum and niobium as carbide, by treating the ferro-alloy in molten state with a controlled amount of an oxidizing agent in order to slag at least most of the tantalum and at least part of the niobium and by separting the so obtained slag phase from the metal phase, the improvement which comprises using air, oxygen enriched air or oxygen as oxidizing agent and adjusting the iron content to the ferro-alloy by adding at least 70% by weight of iron prior to the step of forming the slag so that at least most of the tantalum carbide is dissolved in the molten ferro-alloy

  3. Isolation of Metals from Liquid Wastes: Reactive in Turbulent Thermal Reactors

    International Nuclear Information System (INIS)

    Wendt, Jost O.L.

    2001-01-01

    A Generic Technology for treatment of DOE Metal-Bearing Liquid Waste The DOE metal-bearing liquid waste inventory is large and diverse, both with respect to the metals (heavy metals, transuranics, radionuclides) themselves, and the nature of the other species (annions, organics, etc.) present. Separation and concentration of metals is of interest from the standpoint of reducing the volume of waste that will require special treatment or isolation, as well as, potentially, from the standpoint of returning some materials to commerce by recycling. The variety of metal-bearing liquid waste in the DOE complex is so great that it is unlikely that any one process (or class of processes) will be suitable for all material. However, processes capable of dealing with a wide variety of wastes will have major advantages in terms of process development, capital, and operating costs, as well as in environmental and safety permitting. Moreover, to the extent that a process operates well with a variety of metal-bearing liquid feedwastes, its performance is likely to be relatively robust with respect to the inevitable composition variations in each waste feed. One such class of processes involves high-temperature treatment of atomized liquid waste to promote reactive capture of volatile metallic species on collectible particulate substrates injected downstream of a flame zone. Compared to low-temperature processes that remove metals from the original liquid phase by extraction, precipitation, ion exchange, etc., some of the attractive features of high-temperature reactive scavenging are: The organic constituents of some metal-bearing liquid wastes (in particular, some low-level mixed wastes) must be treated thermally in order to meet the requirements of the Resource Conservation and Recovery Act (RCRA) and Toxic Substances Control Act (TSCA), and the laws of various states. No species need be added to an already complex liquid system. This is especially important in light of the fact

  4. Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications

    Science.gov (United States)

    DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.

    2009-01-01

    An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.

  5. A Comparison between Microfabrication Technologies for Metal Tooling

    DEFF Research Database (Denmark)

    Uriarte, L.; Ivanov, A.; Oosterling, H

    2005-01-01

    , stainless steel for ECF, and tool steel (AISI H13) for the other processes. Typical features (ribs, channels, pins and holes) required by microoptics, microfluidics and sensors and actuators applications have been selected to carry out this analysis The task results provide a global comparison between......The current paper is based on the information gathered within 4M Network activities, specifically in the "Processing of Metals" Division (Task 7.2 "Tooling"). The aim of the task involves a systematic analysis of the partners' expertise in different technologies for processing tooling inserts made...

  6. The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase

    Directory of Open Access Journals (Sweden)

    Yusuke Takezawa

    2016-06-01

    Full Text Available A metal-mediated base pair, composed of two ligand-bearing nucleotides and a bridging metal ion, is one of the most promising components for developing DNA-based functional molecules. We have recently reported an enzymatic method to synthesize hydroxypyridone (H-type ligand-bearing artificial DNA strands. Terminal deoxynucleotidyl transferase (TdT, a template-independent DNA polymerase, was found to oligomerize H nucleotides to afford ligand-bearing DNAs, which were subsequently hybridized through copper-mediated base pairing (H–CuII–H. In this study, we investigated the effects of a metal cofactor, MgII ion, on the TdT-catalyzed polymerization of H nucleotides. At a high MgII concentration (10 mM, the reaction was halted after several H nucleotides were appended. In contrast, at lower MgII concentrations, H nucleotides were further appended to the H-tailed product to afford longer ligand-bearing DNA strands. An electrophoresis mobility shift assay revealed that the binding affinity of TdT to the H-tailed DNAs depends on the MgII concentration. In the presence of excess MgII ions, TdT did not bind to the H-tailed strands; thus, further elongation was impeded. This is possibly because the interaction with MgII ions caused folding of the H-tailed strands into unfavorable secondary structures. This finding provides an insight into the enzymatic synthesis of longer ligand-bearing DNA strands.

  7. Grizzly bear

    Science.gov (United States)

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  8. Advantage of superconducting bearing in a commercial flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Viznichenko, R; Velichko, A V; Hong, Z; Coombs, T A [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)], E-mail: tac1000@cam.ac.uk

    2008-02-01

    The use of a superconducting magnetic bearing in an Urenco Power Technologies (UPT) 100kW flywheel is being studied. The dynamics of a conventional flywheel energy storage system have been studied at low frequencies. We show that the main design consideration is overcoming drag friction losses and parasitic resonances. We propose an original superconducting magnetic bearing design and improved cryogenic motor cooling to increase stability and decrease energy losses in the system.

  9. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    International Nuclear Information System (INIS)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates

  10. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  11. Service life investigations of ball bearings at 1200C in a helium atmosphere

    International Nuclear Information System (INIS)

    Haas, H.

    1984-04-01

    The generally known rules for the layout of ball bearings do not yield in the case the bearings run in an helium atmosphere contaminated with impurities in the range of microbars. Therefore the layout of bearings put into action in helium has to be supported by tests carried out in a similar environment and for similar loads. With the aim to support the selection of lubricants and the design of the bearings in regard to the economical point of view, the basic principles of tribology in helium have been compiled and forty ball bearings have been tested at 90 0 C and 120 0 C in helium. The applied loads comply with the usual values in machine construction. The tests show as result that ball bearings suitable for the different fields of applications in helium can be produced by simply exchanging the cages of standardized bearings. Reliable 10 7 revolutions have been obtained for different materials, also for cages made out of soft metals such as lead bronze, suitable in a radiation environment. In addition lubricants have been tested in order to find out the limits of suitability. (orig.) [de

  12. Design technology co-optimization for 14/10nm metal1 double patterning layer

    Science.gov (United States)

    Duan, Yingli; Su, Xiaojing; Chen, Ying; Su, Yajuan; Shao, Feng; Zhang, Recco; Lei, Junjiang; Wei, Yayi

    2016-03-01

    Design and technology co-optimization (DTCO) can satisfy the needs of the design, generate robust design rule, and avoid unfriendly patterns at the early stage of design to ensure a high level of manufacturability of the product by the technical capability of the present process. The DTCO methodology in this paper includes design rule translation, layout analysis, model validation, hotspots classification and design rule optimization mainly. The correlation of the DTCO and double patterning (DPT) can optimize the related design rule and generate friendlier layout which meets the requirement of the 14/10nm technology node. The experiment demonstrates the methodology of DPT-compliant DTCO which is applied to a metal1 layer from the 14/10nm node. The DTCO workflow proposed in our job is an efficient solution for optimizing the design rules for 14/10 nm tech node Metal1 layer. And the paper also discussed and did the verification about how to tune the design rule of the U-shape and L-shape structures in a DPT-aware metal layer.

  13. 77 FR 70423 - Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC...

    Science.gov (United States)

    2012-11-26

    ... Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC; Notice of..., 2012, Black Bear Hydro Partners, LLC, sole licensee (transferor) and Black Bear Development Holdings, LLC and Black Bear SO, LLC (transferees) filed an application for the partial the transfer of licenses...

  14. Toughness of submerged arc weld metals of controlled rolled NB bearing steel

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Shiga, A.; Kamada, A.; Tsuboi, J.

    1982-01-01

    The toughness and the hardness of reheated weld metals depend on the maximum reheating temperature. When the maximum reheating temperature is 500 to 700 0 C, the hardness of single pass weld metal increases and the toughness decreases because of fine Nb- and V-carbonitride precipitation. When the maximum reheating temperature is over 800 0 C, the hardness and the toughness remain almost unchanged. The stress relieving treatment of single pass weld metal at 600 0 C for 1 up to about 100 hours causes the increase in hardness and then decreases the hardness gradually. It needs over 500 hours to obtain the same hardness value as that of as-welded metal. The addition of Ti to weld metal is very effective to improve the toughness, however excess Ti increases the hardness of stress relieved weld metal by precipitating as fine Ti-carbonitride. Therefore Ti addition should be restricted within the lowest limit required to improve as-welded metal toughness. The optimum Ti content is about 0.020% in the case of weld metal of which oxygen content is 350 ppM or so. In multipass welding, the hardness of weld metal affected by subsequent weld heat cycle varies from pass to pass, because Nb and V content change with the passes as the result of the change in dilution from base metal. The most hardened zone is observed in the reheated first pass weld metal, in which Nb and V content are the highest. Good weld metal toughness would be obtained by lowering dilution from base metal and taking advantage of grain refinement by subsequent passes

  15. Metal recycling technology and related issues in the United States, a BNFL perspective

    International Nuclear Information System (INIS)

    Bradbury, P.; Dam, S.; Starke, W.

    1995-01-01

    Radioactively contaminated metallic materials comprise a large part of the potential waste products which result from nuclear facility repair, refurbishment, and decommissioning. United States Government (Departments of Energy and Defense) facilities, U.S. nuclear power plants, and other commercial nuclear fuel cycle facilities have large inventories of radioactive scrap metal which could be decontaminated and recycled into useful radioactive and non-radioactive products. Residual radioactivity and recycling criteria is needed to avoid the high cost of disposal and the waste of natural resources. In the United Kingdom, BNFL has decommissioned the gaseous diffusion plant at Capenhurst and has recycled a large fraction of the metallic scrap into the metals market. Other structural materials have also been released as uncontaminated scrap. U.K. release criteria for residual radionuclide contamination have been applied to these operations. A variety of techniques were utilized to size reduce large components, to remove radioactivity, and to survey and release these materials. These methods and the application of release criteria has a direct relationship to methods which would be applicable in the U.S. and in other countries. This paper will describe the specific U.K. technology and experience in the decontamination, recycle, and release of scrap metal. It will also describe the U.S. environment for metal recycle, including the volumes and levels of contamination, and the current and proposed release criteria. Comparisons will be presented between the U.S. and U.K., both in technology and methodology for recycle and in regulatory criteria for residual radioactivity and material release and for ultimate decommissioning. The paper will then provide suggested approaches and criteria for U.S. recycling and decommissioning. (author)

  16. Application of existing iron-babbitt metal pairing in slide bearings as a thermocouple in technical diagnostics

    International Nuclear Information System (INIS)

    Herrmann, D.; Schmidt, U.

    1979-01-01

    Temperature can be used as a parameter in technical diagnostics of slide bearings. A novel, very simple method of nonpointlike temperature measurement is proposed. The salient advantage of this method is the fact that there is no necessity of influencing the bearing. (author)

  17. Phylogeography of mitochondrial DNA variation in brown bears and polar bears.

    Science.gov (United States)

    Shields, G F; Adams, D; Garner, G; Labelle, M; Pietsch, J; Ramsay, M; Schwartz, C; Titus, K; Williamson, S

    2000-05-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples. Copyright 2000 Academic Press.

  18. Phylogeography of mitochondrial DNA variation in brown bears and polar bears

    Science.gov (United States)

    Shields, Gerald F.; Adams, Deborah; Garner, Gerald W.; Labelle, Martine; Pietsch, Jacy; Ramsay, Malcolm; Schwartz, Charles; Titus, Kimberly; Williamson, Scott

    2000-01-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples.

  19. Sustainable synthesis of metals-doped ZnO nanoparticles from zinc-bearing dust for photodegradation of phenol

    International Nuclear Information System (INIS)

    Wu, Zhao-Jin; Huang, Wei; Cui, Ke-Ke; Gao, Zhi-Fang; Wang, Ping

    2014-01-01

    Highlights: • Multi-doped ZnO (M-ZnO) was prepared from Zn-bearing dust for waste-cleaning-waste. • All the dopants M (Fe, Mg, Ca and Al) and Zn are recovered from the dust. • Doping by the dust-derived M expands excitability of ZnO to visible light region. • M-ZnO has good catalytic activity in the degradation of phenol under visible light. - Abstract: A novel strategy of waste-cleaning-waste is proposed in the present work. A metals-doped ZnO (M-ZnO, M = Fe, Mg, Ca and Al) nanomaterial has been prepared from a metallurgical zinc-containing solid waste “fabric filter dust” by combining sulfolysis and co-precipitation processes, and is found to be a favorable photocatalyst for photodegradation of organic substances in wastewater under visible light irradiation. All the zinc and dopants (Fe, Mg, Ca and Al) for preparing M-ZnO are recovered from the fabric filter dust, without any addition of chemical as elemental source. The dust-derived M-ZnO samples deliver single phase indexed as the hexagonal ZnO crystal, with controllable dopants species. The photocatalytic activity of the dust-derived M-ZnO samples is characterized by photodegradation of phenol aqueous solution under visible light irradiation, giving more prominent photocatalytic behaviors than undoped ZnO. Such enhancements may be attributed to incorporation of the dust-derived metal elements (Fe, Mg, Ca and Al) into ZnO structure, which lead to the modification of band gap and refinement of grain size. The results show a feasibility to utilize the industrial waste as a resource of photodegradating organic substances in wastewater treatments

  20. Review of the treatment of actinides-bearing radioactive wastes

    International Nuclear Information System (INIS)

    Krause, H.

    1983-01-01

    Actinides bearing wastes are produced above all in the course of irradiated nuclear fuel reprocessing and during fabrication of mixed oxide fuel elements. Particular attention in research and development work must be paid to this type of waste, mainly on account of its longevity. In practical application, the specific character of the actinides bearing wastes has been largely recognized. Nevertheless, definitions and methods of treatment generally accepted worldwide are still missing today. This has no bearing as yet on present day treatment of radioactive wastes. But by the time of application of the breeder technology at the latest a special treatment concept should be available which complies with the high actinide contents and short precooling periods of the wastes

  1. [COMPUTER ASSISTED DESIGN AND ELECTRON BEAMMELTING RAPID PROTOTYPING METAL THREE-DIMENSIONAL PRINTING TECHNOLOGY FOR PREPARATION OF INDIVIDUALIZED FEMORAL PROSTHESIS].

    Science.gov (United States)

    Liu, Hongwei; Weng, Yiping; Zhang, Yunkun; Xu, Nanwei; Tong, Jing; Wang, Caimei

    2015-09-01

    To study the feasibility of preparation of the individualized femoral prosthesis through computer assisted design and electron beammelting rapid prototyping (EBM-RP) metal three-dimensional (3D) printing technology. One adult male left femur specimen was used for scanning with 64-slice spiral CT; tomographic image data were imported into Mimics15.0 software to reconstruct femoral 3D model, then the 3D model of individualized femoral prosthesis was designed through UG8.0 software. Finally the 3D model data were imported into EBM-RP metal 3D printer to print the individualized sleeve. According to the 3D model of individualized prosthesis, customized sleeve was successfully prepared through the EBM-RP metal 3D printing technology, assembled with the standard handle component of SR modular femoral prosthesis to make the individualized femoral prosthesis. Customized femoral prosthesis accurately matching with metaphyseal cavity can be designed through the thin slice CT scanning and computer assisted design technology. Titanium alloy personalized prosthesis with complex 3D shape, pore surface, and good matching with metaphyseal cavity can be manufactured by the technology of EBM-RP metal 3D printing, and the technology has convenient, rapid, and accurate advantages.

  2. Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-04-01

    Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G

  3. Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G.

  4. Assessment of biotechnological strategies for the valorization of metal bearing wastes

    International Nuclear Information System (INIS)

    Beolchini, Francesca; Fonti, Viviana; Dell’Anno, Antonio; Rocchetti, Laura; Vegliò, Francesco

    2012-01-01

    Highlights: ► We examine biological strategies to valorize different metal rich solid waste. ► Bacteria play a key role in the mobilization of Zn and Y from fluorescent powders. ► Ferrous iron is crucial for the bioleaching of Ni, V, Mo from spent catalysts. ► No biological effect is observed for Ni, Zn, As, Cr mobilisation from sediments. - Abstract: The present work deals with the application of biotechnology for the mobilization of metals from different solid wastes: end of life industrial catalysts, heavy metal contaminated marine sediments and fluorescent powders coming from a cathode ray tube glass recycling process. Performed experiments were aimed at assessing the performance of acidophilic chemoautotrophic Fe/S-oxidizing bacteria for such different solid matrices, also focusing on the effect of solid concentration and of different substrata. The achieved results have evidenced that metal solubilization seems to be strongly influenced by the metal speciation and partitioning in the solid matrix. No biological effect was observed for Ni, Zn, As, Cr mobilization from marine sediments (34%, 44%, 15%, 10% yields, respectively) due to metal partitioning. On the other hand, for spent refinery catalysts (Ni, V, Mo extractions of 83%, 90% and 40%, respectively) and fluorescent powders (Zn and Y extraction of 55% and 70%, respectively), the improvement in metal extraction observed in the presence of a microbial activity confirms the key role of Fe/S oxidizing bacteria and ferrous iron. A negative effect of solid concentration was in general observed on bioleaching performances, due to the toxicity of dissolved metals and/or to the solid organic component.

  5. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    Science.gov (United States)

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. © 2015 John Wiley & Sons Ltd.

  6. Metal detector technology data base

    Energy Technology Data Exchange (ETDEWEB)

    Porter, L.K.; Gallo, L.R.; Murray, D.W.

    1990-08-01

    The tests described in this report were conducted to obtain information on the effects target characteristics have on portal type metal detector response. A second purpose of the tests was to determine the effect of detector type and settings on the detection of the targets. Although in some cases comparison performance of different types and makes of metal detectors is found herein, that is not the primary purpose of the report. Further, because of the many variables that affect metal detector performance, the information presented can be used only in a general way. The results of these tests can show general trends in metal detection, but do little for making accurate predictions as to metal detector response to a target with a complex shape such as a handgun. The shape of an object and its specific metal content (both type and treatment) can have a significant influence on detection. Thus it should not be surprising that levels of detection for a small 100g stainless steel handgun are considerably different than for detection of the 100g stainless steel right circular cylinder that was used in these tests. 7 figs., 1 tab.

  7. Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear

    OpenAIRE

    Lindqvist, Charlotte; Schuster, Stephan C.; Sun, Yazhou; Talbot, Sandra L.; Qi, Ji; Ratan, Aakrosh; Tomsho, Lynn P.; Kasson, Lindsay; Zeyl, Eve; Aars, Jon; Miller, Webb; Ingólfsson, Ólafur; Bachmann, Lutz; Wiig, Øystein

    2010-01-01

    The polar bear has become the flagship species in the climate-change discussion. However, little is known about how past climate impacted its evolution and persistence, given an extremely poor fossil record. Although it is undisputed from analyses of mitochondrial (mt) DNA that polar bears constitute a lineage within the genetic diversity of brown bears, timing estimates of their divergence have differed considerably. Using next-generation sequencing technology, we have generated a complete, ...

  8. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    Science.gov (United States)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.

  9. Site-wide remedial alternative development in Bear Creek Valley, Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Anderson, M.

    1995-07-01

    This paper presents a case study of an environmental restoration project at a major mixed waste site that poses unique challenges to remediation efforts. Bear Creek Valley is located immediately west of the Y-12 Plant on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The Y-12 Plant was built in 1943 as part of the Manhattan Project, with its original mission being electromagnetic separation of uranium. Since being completed, the Y-12 Plant has also been used for chemical processing of uranium and lithium compounds as well as precision fabrication of components containing these and other materials. Wastes containing radionuclides, metals, chlorinated solvents, oils, coolants, polychlorinated biphenyis (PCBs), and others were disposed of in large quantities at Bear Creek Valley as a result of manufacturing operations at the Y-12 Plant. The Bear Creek Valley feasibility study is using innovative strategies to efficiently and thoroughly consider the information available regarding Bear Creek Valley and process options that could be combined into its remedial alternatives

  10. Study of a ;hot; particle with a matrix of U-bearing metallic Zr: Clue to supercriticality during the Chernobyl nuclear accident

    Science.gov (United States)

    Pöml, P.; Burakov, B.

    2017-05-01

    This paper is dedicated to the 30th anniversary of the severe nuclear accident that occurred at the Chernobyl NPP on 26 April 1986. A detailed study on a Chernobyl "hot" particle collected from contaminated soil was performed. Optical and electron microscopy, as well as quantitative x-ray microbeam analysis methods were used to determine the properties of the sample. The results show that the particle (≈ 240 x 165 μm) consists of a metallic Zr matrix containing 2-3 wt. % U and bearing veins of an U,Nb admixture. The metallic Zr matrix contains two phases with different amounts of O with the atomic proportions (U,Zr,Nb)0.73O0.27 and (U,Zr,Nb)0.61O0.39. The results confirm the interaction between UO2 fuel and zircaloy cladding in the reactor core. To explain the process of formation of the particle, its properties are compared to laboratory experiments. Because of the metallic nature of the particle it is concluded that it must have formed during a very high temperature (> 2400∘C) process that lasted for only a very short time (few microseconds or less); otherwise the particle should have been oxidised. Such a rapid very high temperature process indicates that at least part of the reactor core could have been supercritical prior to an explosion as it was previously suggested in the literature.

  11. Investigation on laser welding characteristics for appendage of bearing pads of nuclear fuel element

    International Nuclear Information System (INIS)

    Kim, S. S.; Kim, W. K.; Park, C. H.; Ko, J. H.; Lee, J. W.; Yang, M. S.

    2001-01-01

    In CANDU nuclear fuel manufacturing the brazing technology has been adopted conventionally to attach the bearing pads of nuclear fuel elements. However, in order to meet good performance of nuclear fuel and improved working efficiency, we started developing the laser welding technology for attachments of the bearing pads. Since the YAG laser can be suitable for small parts and transmit the beam through the optical fiber, the process is corresponding to mass-production with working shops. Making the most of this feature, we have developed the laser welding for appendage of the bearing pads of nuclear fuel elements, and has studied on the laser welding characterisitcs of appendages for nuclear fuel element

  12. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming Analysis, Simulation and Engineering Applications

    CERN Document Server

    Hu, Ping; Liu, Li-zhong; Zhu, Yi-guo

    2013-01-01

    Over the last 15 years, the application of innovative steel concepts in the automotive industry has increased steadily. Numerical simulation technology of hot forming of high-strength steel allows engineers to modify the formability of hot forming steel metals and to optimize die design schemes. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming focuses on hot and cold forming theories, numerical methods, relative simulation and experiment techniques for high-strength steel forming and die design in the automobile industry. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming introduces the general theories of cold forming, then expands upon advanced hot forming theories and simulation methods, including: • the forming process, • constitutive equations, • hot boundary constraint treatment, and • hot forming equipment and experiments. Various calculation methods of cold and hot forming, based on the authors’ experience in commercial CAE software f...

  13. Liquid metal reactor development. Development of LMR coolant technology

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Choi, S. K.; Hwang, J. s.; Lee, Y. B.; Choi, B. H.; Kim, J. M.; Kim, Y. G.; Kim, M. J.; Lee, S. D.; Kang, Y. H.; Maeng, Y. Y.; Kim, T. R.; Park, J. H.; Park, S. J.; Cha, J. H.; Kim, D. H.; Oh, S. K.; Park, C. G.; Hong, S. H.; Lee, K. H.; Chun, M. H.; Moon, H. T.; Chang, S. H.; Lee, D. N.

    1997-07-15

    Following studies have been performed during last three years as the 1.2 phase study of the mid and long term nuclear technology development plan. First, the small scale experiments using the sodium have been performed such as the basic turbulent mixing experiment which is related to the design of a compact reactor, the flow reversal characteristics experiment by natural circulation which is necessary for the analysis of local flow reversal when the electromagnetic pump is installed, the feasibility test of the decay heat removal by wall cooling and the operation of electromagnetic pump. Second, the technology of operation mechanism of sodium facility is developed and the technical analysis and fundamental experiments of sodium measuring technology has been performed such as differential pressure measuring experiment, local flow rate measuring experimenter, sodium void fraction measuring experiment, under sodium facility, the free surface movement experiment and the side orifice pressure drop experiment. A new bounded convection scheme was introduced to the ELBO3D thermo-hydraulic computer code designed for analysis of experimental result. A three dimensional computer code was developed for the analysis of free surface movement and the analysis model of transmission of sodium void fraction was developed. Fourth, the small scale key components are developed. The submersible-in-pool type electromagnetic pump which can be used as primary pump in the liquid metal reactor is developed. The SASS which uses the Curie-point electromagnet and the mock-up of Pantograph type IVTM were manufactured and their feasibility was evaluated. Fifth, the high temperature characteristics experiment of stainless steel which is used as a major material for liquid metal reactor and the material characteristics experiment of magnet coil were performed. (author). 126 refs., 98 tabs., 296 figs.

  14. New technology of extracting the amount of rare earth metals from the red mud

    International Nuclear Information System (INIS)

    Martoyan, G A; Karamyan, G G; Vardan, G A

    2016-01-01

    The paper outlined the environmental and economic problems associated with red mud - the waste generated in processing of bauxite ore for aluminum production. The chemical analysis of red mud has identified a number of useful elements including rare earth metals. The electromembrane technology of red mud processing with extraction of valuable elements is described. A possible scheme of separation of these metals through electrolysis is also given. (paper)

  15. Metallic oxide switches using thick film technology

    Science.gov (United States)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  16. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes.

    Science.gov (United States)

    Bullock, R Morris; Chambers, Geoffrey M

    2017-08-28

    This perspective examines frustrated Lewis pairs (FLPs) in the context of heterolytic cleavage of H 2 by transition metal complexes, with an emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with main group compounds, yet many reactions of transition metal complexes support a broader classification of FLPs that includes certain types of transition metal complexes with reactivity resembling main group-based FLPs. This article surveys transition metal complexes that heterolytically cleave H 2 , which vary in the degree that the Lewis pairs within these systems interact. Many of the examples include complexes bearing a pendant amine functioning as the base with the metal functioning as the hydride acceptor. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.This article is part of the themed issue 'Frustrated Lewis pair chemistry'. © 2017 The Author(s).

  17. Cyclodextrin Nanoparticles Bearing 8-Hydroxyquinoline Ligands as Multifunctional Biomaterials.

    Science.gov (United States)

    Oliveri, Valentina; Bellia, Francesco; Vecchio, Graziella

    2017-03-28

    Cyclodextrins are used as building blocks for the development of a host of polymeric biomaterials. The cyclodextrin polymers have found numerous applications as they exhibit unique features such as mechanical properties, stimuli responsiveness and drug loading ability. Notwithstanding the abundance of cyclodextrin polymers studied, metal-chelating polymers based on cyclodextrins have been poorly explored. Herein we report the synthesis and the characterization of the first metal-chelating β-cyclodextrin polymer bearing 8-hydroxyquinoline ligands. The metal ions (Cu 2+ or Zn 2+ ) can modulate the assembly of the polymer nanoparticles. Moreover, the protective activity of the new chelating polymer against self- and metal-induced Aβ aggregation and free radical species are significantly higher than those of the parent compounds. These synergistic effects suggest that the incorporation of hydroxyquinoline moieties into a soluble β-cyclodextrin polymer could represent a promising strategy to design multifunctional biomaterials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In bear country: peaceful co-existence with a touchy wilderness icon starting to look possible

    Energy Technology Data Exchange (ETDEWEB)

    Podlubny, J.

    2002-10-07

    How oil and gas companies have harnessed location data maps and satellite communication technology to help resource developers to map out new roads and pipelines in the grizzly bear habitat of western Alberta is described. The high-tech approach is part of the Foot Hills Model Forest Grizzly Bear Study project, operating out of Hinton, Alberta, which focuses on the effects of industrial activity on the Alberta grizzly bear. Since the project's inception three years ago a library of data has been collected with a tool known as the GPS collar. This collar attached to more than 70 bears enabled scientists to add new dimensions of precision and intimacy to the tracking of grizzly bears. The maps created from data captured by the collars have been used by forestry and oil and gas industry personnel to help establish working relationships with grizzly bears by using the information as a guide to decisions on which routes are best suited for road and pipeline projects, i.e. which ones can be forecast to have the least effect on bears. The study is the first that has generated scientific information which is being used in a practical way to help preserve grizzly bears in the wild. At least one pipeline route has been changed when the company found out, through the mapping technology, that an area affected by the originally proposed route was an important grizzly bear habitat. The information also has been used in conjunction with developing new roads, mining locations and other activities that involve grizzly bear habitats. In addition to these practical industry-related applications the study also focuses on collecting new information about grizzly bears, clearing up bear myths, making discoveries about bear DNA, creating new trapping techniques and the best drugs to use when putting on collars and ear tags.

  19. AGT101 Advanced Gas Turbine Technology update

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.L.; Kidwell, J.R.; Kreiner, D.M.

    1986-01-01

    The Garrett/Ford Advanced Gas Turbine Technology Development Program, designated AGT101, has made significant progress during 1985 encompassing ceramic engine and ceramic component testing. Engine testing has included full speed operation to 100,000 rpm and 1149C (2100F) turbine inlet temperature, initial baseline performance mapping and ceramic combustor start and steady state operation. Over 380 hours of test time have been accumulated on four development engines. High temperature foil bearing coatings have passed rig test and a thick precious metal foil coating selected for engine evaluation. Ceramic structures have been successfully rig tested at 1371C (2500F) for over 27 hours.

  20. Curvilinear steel elements in load-bearing structures of high-rise building spatial frames

    Directory of Open Access Journals (Sweden)

    Ibragimov Alexander

    2018-01-01

    Full Text Available The application of curvilinear elements in load-bearing metal structures of high-rise buildings supposes ensuring of their bearing capacity and serviceability. There may exist a great variety of shapes and orientations of such structural elements. In particular, it may be various flat curves of an open or closed oval profile such as circular or parabolic arch or ellipse. The considered approach implies creating vast internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in "skyscraper" type buildings contributes to resolving a great number of problems, including those of communicative nature. The calculation results confirm the basic assumptions.

  1. Curvilinear steel elements in load-bearing structures of high-rise building spatial frames

    Science.gov (United States)

    Ibragimov, Alexander; Danilov, Alexander

    2018-03-01

    The application of curvilinear elements in load-bearing metal structures of high-rise buildings supposes ensuring of their bearing capacity and serviceability. There may exist a great variety of shapes and orientations of such structural elements. In particular, it may be various flat curves of an open or closed oval profile such as circular or parabolic arch or ellipse. The considered approach implies creating vast internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in "skyscraper" type buildings contributes to resolving a great number of problems, including those of communicative nature. The calculation results confirm the basic assumptions.

  2. Geochemical correlations between uranium and other components in U-bearing formations of Ogcheon belt

    International Nuclear Information System (INIS)

    Lee, M.S.; Chon, H.T.

    1980-01-01

    Some components in uranium-bearing formations which consist mainly of black shale, slate and low grade coal-bearing formation of Ogcheon Belt were processed statistically in order to find out the geochemical correlations with uranium. Geochemical enrichment of uranium, vanadium and molybdenum in low grade coal-bearing formations and surrounding rocks is remarkable in the studied area. Geochemical correlation coefficient of uranium and molybdenum in the rocks displays about 0.6 and that of uranium and fixed carbon about 0.4. Uranium and vanadium in uranium-bearing low grade coals denote very high correlation with fixed carbon, which is considered to be responsible for enrichment of metallic elements, especially molybdenum. Close geochemical correlation of uranium-molybdenum couple in the rocks can be applied as a competent exploration guide to low grade uranium deposits of this area. (author)

  3. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  4. Gene transcription in polar bears (Ursus maritimus) from disparate populations

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Waters, Shannon C.; Meyerson, Randi; Rode, Karyn D.; Atwood, Todd C.

    2015-01-01

    Polar bears in the Beaufort (SB) and Chukchi (CS) Seas experience different environments due primarily to a longer history of sea ice loss in the Beaufort Sea. Ecological differences have been identified as a possible reason for the generally poorer body condition and reproduction of Beaufort polar bears compared to those from the Chukchi, but the influence of exposure to other stressors remains unknown. We use molecular technology, quantitative PCR, to identify gene transcription differences among polar bears from the Beaufort and Chukchi Seas as well as captive healthy polar bears. We identified significant transcriptional differences among a priori groups (i.e., captive bears, SB 2012, SB 2013, CS 2013) for ten of the 14 genes of interest (i.e., CaM, HSP70, CCR3, TGFβ, COX2, THRα, T-bet, Gata3, CD69, and IL17); transcription levels of DRβ, IL1β, AHR, and Mx1 did not differ among groups. Multivariate analysis also demonstrated separation among the groups of polar bears. Specifically, we detected transcript profiles consistent with immune function impairment in polar bears from the Beaufort Sea, when compared with Chukchi and captive polar bears. Although there is no strong indication of differential exposure to contaminants or pathogens between CS and SB bears, there are clearly differences in important transcriptional responses between populations. Further investigation is warranted to refine interpretation of potential effects of described stress-related conditions for the SB population.

  5. EcoBears

    DEFF Research Database (Denmark)

    Nielsen, Nick; Pedersen, Sandra Bleuenn; Sørensen, Jens Ager

    2015-01-01

    In this paper, we introduce the EcoBears concept that aims to augment household appliances with functional and aesthetic features to promote their "use'' and "longevity of use'' to prevent their disposal. The EcoBears also aim to support the communication of environmental issues in the home setting....... We present our initial design and implementation of the EcoBears that consist of two bear modules (a mother and her cub). We also present our preliminary concept validations and lessons learned to be considered for future directions....

  6. [Determination of a Friction Coefficient for THA Bearing Couples].

    Science.gov (United States)

    Vrbka, M; Nečas, D; Bartošík, J; Hartl, M; Křupka, I; Galandáková, A; Gallo, J

    2015-01-01

    The wear of articular surfaces is considered one of the most important factors limiting the life of total hip arthroplasty (THA). It is assumed that the particles released from the surface of a softer material induce a complex inflammatory response, which will eventually result in osteolysis and aseptic loosening. Implant wear is related to a friction coefficient which depends on combination of the materials used, roughness of the articulating surfaces, internal clearance, and dimensions of the prosthesis. The selected parameters of the bearing couples tested were studied using an experimental device based on the principle of a pendulum. Bovine serum was used as a lubricant and the load corresponded to a human body mass of 75 kg. The friction coefficient was derived from a curve of slowdown of pendulum oscillations. Roughness was measured with a device working on the principle of interferometry. Clearance was assessed by measuring diameters of the acetabular and femoral heads with a 3D optical scanner. The specimens tested included unused metal-on-highly cross-linked polyethylene, ceramic-on-highly cross-linked polyethylene and ceramic-on-ceramic bearing couples with the diameters of 28 mm and 36 mm. For each measured parameter, an arithmetic mean was calculated from 10 measurements. 1) The roughness of polyethylene surfaces was higher by about one order of magnitude than the roughness of metal and ceramic components. The Protasul metal head had the least rough surface (0.003 μm). 2) The ceramic-on-ceramic couples had the lowest clearance. Bearing couples with polyethylene acetabular liners had markedly higher clearances ranging from 150 μm to 545 μm. A clearance increased with large femoral heads (up to 4-fold in one of the couple tested). 3) The friction coefficient was related to the combination of materials; it was lowest in ceramic-on-ceramic surfaces (0.11 to 0.12) and then in ceramic-on-polyethylene implants (0.13 to 0.14). The friction coefficient is

  7. USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA

    Science.gov (United States)

    Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

  8. Stable isotopes to detect food-conditioned bears and to evaluate human-bear management

    Science.gov (United States)

    Hopkins, John B.; Koch, Paul L.; Schwartz, Charles C.; Ferguson, Jake M.; Greenleaf, Schuyler S.; Kalinowski, Steven T.

    2012-01-01

    We used genetic and stable isotope analysis of hair from free-ranging black bears (Ursus americanus) in Yosemite National Park, California, USA to: 1) identify bears that consume human food, 2) estimate the diets of these bears, and 3) evaluate the Yosemite human–bear management program. Specifically, we analyzed the isotopic composition of hair from bears known a priori to be food-conditioned or non-food-conditioned and used these data to predict whether bears with an unknown management status were food-conditioned (FC) or non-food-conditioned (NFC). We used a stable isotope mixing model to estimate the proportional contribution of natural foods (plants and animals) versus human food in the diets of FC bears. We then used results from both analyses to evaluate proactive (population-level) and reactive (individual-level) human–bear management, and discussed new metrics to evaluate the overall human–bear management program in Yosemite. Our results indicated that 19 out of 145 (13%) unknown bears sampled from 2005 to 2007 were food-conditioned. The proportion of human food in the diets of known FC bears likely declined from 2001–2003 to 2005–2007, suggesting proactive management was successful in reducing the amount of human food available to bears. In contrast, reactive management was not successful in changing the management status of known FC bears to NFC bears, or in reducing the contribution of human food to the diets of FC bears. Nine known FC bears were recaptured on 14 occasions from 2001 to 2007; all bears were classified as FC during subsequent recaptures, and human–bear management did not reduce the amount of human food in the diets of FC bears. Based on our results, we suggest Yosemite continue implementing proactive human–bear management, reevaluate reactive management, and consider removing problem bears (those involved in repeated bear incidents) from the population.

  9. Failure analysis of the ball bearings of dental air turbine handpieces.

    Science.gov (United States)

    Wei, M; Dyson, J E; Darvell, B W

    2013-12-01

    The aim of this study was to identify the nature and causes of deterioration and failure in dental handpiece ball bearings and thus provide guidance for clinical handling for service longevity. The bearings of 36 turbine assemblies were dismantled for visual inspection, documented using a digital camera, and examined using scanning electron microscopy, as appropriate. For the metal parts of the ball bearing assembly, defects observed were mainly wear arising from the running load and corrosion. This was in the form of scratches and discoloured circumferential bands on the balls, and dull or worn surfaces extending around the circumference of the raceways. Cage damage including cracking, fracture, surface rubbing and distortion occurred, in varying degrees, in every failed turbine. Dental ball bearing failure modes have been identified. Cumulative effects of damage from corrosion and mechanical factors lead to handpiece deterioration. The cage was found to be very vulnerable to damage, and this may be the key limitation on bearing lifetime. Autoclaving may contribute to that, as it does to corrosion in the absence of adequate lubrication, but this seems to be minor in comparison to the effects of abuse. There is no justification for failing to observe usage and sterilization instructions. © 2013 Australian Dental Association.

  10. Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps

    Science.gov (United States)

    SanAndres, Luis

    1998-01-01

    A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs

  11. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics.

    Science.gov (United States)

    Tse, Peter W; Wang, Dong

    2017-02-14

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL). Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI) so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  12. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    Directory of Open Access Journals (Sweden)

    Peter W. Tse

    2017-02-01

    Full Text Available Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL. Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  13. Conditioning of alpha bearing wastes

    International Nuclear Information System (INIS)

    1991-01-01

    Alpha bearing wastes are generated during the reprocessing of spent fuel, mixed oxide fuel fabrication, decommissioning and other activities. The safe and effective management of these wastes is of particular importance owing to the radiotoxicity and long lived characteristics of certain transuranic (TRU) elements. The management of alpha bearing wastes involves a number of stages which include collection, characterization, segregation, treatment, conditioning, transport, storage and disposal. This report describes the currently available matrices and technologies for the conditioning of alpha wastes and relates them to their compatibility with the other stages of the waste management process. The selection of a specific immobilization process is dependent on the waste treatment state and the subsequent handling, transport, storage and disposal requirements. The overall objectives of immobilization are similar for all waste producers and processors, which are to produce: (a) Waste forms with sufficient mechanical, physical and chemical stability to satisfy all stages of handling, transport and storage (referred to as the short term requirements), and (b) Waste forms which will satisfy disposal requirements and inhibit the release of radionuclides to the biosphere (referred to as the long term requirements). Cement and bitumen processes have already been successfully applied to alpha waste conditioning on the industrial scale in many of the IAEA Member States. Cement systems based on BFS and pozzolanic cements have emerged as the principal encapsulation matrices for the full range of alpha bearing wastes. Alternative technologies, such as polymers and ceramics, are being developed for specific waste streams but are unlikely to meet widespread application owing to cost and process complexity. The merits of alpha waste conditioning are improved performance in transport, storage and disposal combined with enhanced public perception of waste management operations. These

  14. Ball Bearings Equipped for In Situ Lubrication on Demand

    Science.gov (United States)

    Marchetti, Mario; Jones, William R., Jr.; Pepper, Stephen V.; Jansen, Mark; Predmore, Roamer

    2005-01-01

    In situ systems that provide fresh lubricants to ball/race contacts on demand have been developed to prolong the operational lives of ball bearings. These systems were originally intended to be incorporated into ball bearings in mechanisms that are required to operate in outer space for years, in conditions in which lubricants tend to deteriorate and/or evaporate. These systems may also be useful for similarly prolonging bearing lifetimes on Earth. Reservoirs have been among the means used previously to resupply lubricants. Lubricant- resupply reservoirs are bulky and add complexity to bearing assemblies. In addition, such a reservoir cannot be turned on or off as needed: it supplies lubricant continuously, often leading to an excess of lubricant in the bearing. A lubricator of the present type includes a porous ring cartridge attached to the inner or the outer ring of a ball bearing (see Figure 1). Oil is stored in the porous cartridge and is released by heating the cartridge: Because the thermal expansion of the oil exceeds that of the cartridge, heating causes the ejection of some oil. A metal film can be deposited on a face of the cartridge to serve as an electrical-resistance heater. The heater can be activated in response to a measured increase in torque that signals depletion of oil from the bearing/race contacts. Because the oil has low surface tension and readily wets the bearing-ring material, it spreads over the bearing ring and eventually reaches the ball/race contacts. The Marangoni effect (a surface-tension gradient associated with a temperature gradient) is utilized to enhance the desired transfer of lubricant to the ball/race contacts during heating. For a test, a ball bearing designed for use at low speed was assembled without lubricant and equipped with a porous-ring lubricator, the resistance heater of which consumed a power of less than 1 W when triggered on by a torque-measuring device. In the test, a load of 20 lb (.89 N) was applied and the

  15. The enhancing of Au-Ag-Te content in tellurium-bearing ore mineral by bio-oxidation-leaching

    Science.gov (United States)

    Kim, PyeongMan; Kim, HyunSoo; Myung, EunJi; Kim, YoonJung; Lee, YongBum; Park*, CheonYoung

    2015-04-01

    The purpose of this study is to enhance the content of valuable metals such as Au-Ag-Te in tellurium-bearing minerals by bio-oxidation-leaching. It was confirmed that pyrite, chalcopyrite, sphalerite and galena were produced together with tellurium-bearing minerals including hessite, sylvanite and tellurobismuthite from ore minerals and concentrates through microscopic observation and SEM/EDS analysis. In a bio-oxidation-leaching experiment, with regard to Au, Ag, Te, Cu and Fe, the changes in the amount of leaching and the content of leaching residues were compared and analyzed with each other depending on the adaptation of an indigenous microbe identified as Acidithiobacillus ferrooxidans. As a result of the experiment, the Au-Ag-Te content in tellurium-bearing ore mineral was enhanced in the order of physical oxidation leaching, physical/non-adaptive bio-oxidation-leaching and physical/adaptive biological leaching. It suggests that the bio-oxidation-leaching using microbes adapted in tellurium-bearing ore mineral can be used as a pre-treatment and a main process in a recovery process of valuable metals. "This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A2004898)"

  16. Comparison of Alignment Correction Angles Between Fixed-Bearing and Mobile-Bearing UKA.

    Science.gov (United States)

    Inoue, Atsuo; Arai, Yuji; Nakagawa, Shuji; Inoue, Hiroaki; Yamazoe, Shoichi; Kubo, Toshikazu

    2016-01-01

    Good outcomes have been reported with both fixed-bearing and mobile-bearing unicompartmental knee arthroplasty (UKA). However, overcorrected alignment could induce the progression of arthritis on the non-arthroplasty side. Changes of limb alignment after UKA with both types of bearings (fixed bearing: 24 knees, mobile bearing: 28 knees) were investigated. The mean difference between the preoperative standing femoral-tibial angle (FTA) and postoperative standing FTA was significantly larger in mobile bearing UKA group. In fixed-bearing UKA, there must be some laxity in MCL tension so that a 2-mm tension gauge can be inserted. In mobile-bearing UKA, appropriate MCL tension is needed to prevent bearing dislocation. This difference in MCL tension may have caused the difference in the correction angle between the groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The effect of bone cement particles on the friction of polyethylene and polyurethane knee bearings

    International Nuclear Information System (INIS)

    Ash, H E; Scholes, S C; Unsworth, A; Jones, E

    2004-01-01

    Compliant layer knee joints have been considered for use in an attempt to increase the serviceable life of artificial joints. If designed correctly, these joints should operate within the full-fluid film lubrication regime. However, adverse tribological conditions, such as the presence of bone and bone cement particles, may breach the fluid film and cause surface wear. The frictional behaviour of both polyurethane (PU) and conventional polyethylene (PE) tibial components against a metallic femoral component was therefore assessed when bone cement particles were introduced into the lubricant. The bone cement particles caused a large increase in the frictional torque of both the PE and PU bearings; however, the friction produced by the PU bearings was still considerably lower than that produced by the PE bearings. The volume of bone cement particles between each of the bearings and the resultant frictional torque both decreased over time. This occurred more quickly with the PE bearings but greater damage was caused to the surface of the PE bearings than the PU components

  18. Study of seismic responses of Candu-3 reactor building using isolator bearings

    International Nuclear Information System (INIS)

    Biswas, J.K.

    1992-01-01

    Seismic isolator bearings are known to increase reliability, reduce cost and increase the potential sitings for nuclear power plants located in regions of high seismicity. High seismic activities in Canada occur mainly in the western coast, the Grand Banks and regions of Quebec along the St. Lawrence river. In Canada, nuclear power plants are located in Ontario, Quebec and New Brunswick where the seismicity levels are low to moderate. Consequently, seismic isolator bearings have not been used in the existing nuclear power plants in Canada. The present paper examines the effect of using seismic isolator bearings in the design for the new CANDU3 which would be suitable for regions having high seismicity. The CANDU3 Nuclear Power Plant is rated at 450 MW of net output power and is a smaller version of its predecessor CANDU6 successfully operating in Canada and abroad. The design of CANDU3 is being developed by AECL CANDU. Advanced technologies for design, construction and plant operation have been utilized. During the conceptual development of the CANDU3 design, various design options including the use of isolator bearings were considered. The present paper presents an overview of seismic isolation technology and summarizes the analytical work for predicting the seismic behavior of the CANDU3 reactor building. A lumped-parameter dynamic model for the reactor building is used for the analysis. The characteristics of the bearings are utilized in the analysis work. The time-history modal analysis has been used to compute the seismic responses. Seismic responses of the reactor building with and without isolator bearings are compared. The isolator bearings are found to reduce the accelerations of the reactor building. As a result, a lower level of seismic qualification for components and systems would be required. The use of these bearings however increases rigid body seismic displacements of the structure requiring special considerations in the layout and interfaces for

  19. Cobalt deposition in mineralized bone tissue after metal-on-metal hip resurfacing: Quantitative μ-X-ray-fluorescence analysis of implant material incorporation in periprosthetic tissue.

    Science.gov (United States)

    Hahn, Michael; Busse, Björn; Procop, Mathias; Zustin, Jozef; Amling, Michael; Katzer, Alexander

    2017-10-01

    Most resurfacing systems are manufactured from cobalt-chromium alloys with metal-on-metal (MoM) bearing couples. Because the quantity of particulate metal and corrosion products which can be released into the periprosthetic milieu is greater in MoM bearings than in metal-on-polyethylene (MoP) bearings, it is hypothesized that the quantity and distribution of debris released by the MoM components induce a compositional change in the periprosthetic bone. To determine the validity of this claim, nondestructive µ-X-ray fluorescence analysis was carried out on undecalcified histological samples from 13 femoral heads which had undergone surface replacement. These samples were extracted from the patients after gradient time points due to required revision surgery. Samples from nonintervened femoral heads as well as from a MoP resurfaced implant served as controls. Light microscopy and µ-X-ray fluorescence analyses revealed that cobalt debris was found not only in the soft tissue around the prosthesis and the bone marrow, but also in the mineralized bone tissue. Mineralized bone exposed to surface replacements showed significant increases in cobalt concentrations in comparison with control specimens without an implant. A maximum cobalt concentration in mineralized hard tissue of up to 380 ppm was detected as early as 2 years after implantation. Values of this magnitude are not found in implants with a MoP surface bearing until a lifetime of more than 20 years. This study demonstrates that hip resurfacing implants with MoM bearings present a potential long-term health risk due to rapid cobalt ion accumulation in periprosthetic hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1855-1862, 2017. © 2016 Wiley Periodicals, Inc.

  20. Technology development for metallic hot structures in aerodynamic control surfaces of reusable launchers

    NARCIS (Netherlands)

    Sudmeijer, K.J.; Wentzel, C.; Lefeber, B.M.; Kloosterman, A.

    2002-01-01

    In this paper a summary is presented of the technology development in the Netherlands focussed on the design and development of a metallic aerodynamic control surface for the future European reusable launcher. The applied materials are mainly Oxide Dispersion Strengthened (ODS) alloys produced by

  1. Off-line testing of multifunctional surfaces for metal forming applications

    DEFF Research Database (Denmark)

    Godi, A.; Grønbæk, J.; De Chiffre, L.

    2015-01-01

    In this paper, Bending-Under-Tension, an off-line test method simulating deep-drawing, is chosen for investigating the effectiveness of multifunctional (MUFU) surfaces in metal forming operations. Four different MUFU surfaces, characterized by a plateau bearing area and grooves for lubricant...... retention, are manufactured, together with two polished references. During the tests, surface texture is the only variable. The results show how MUFU surfaces perform better than the polished references, which produce severe galling, while MUFU surfaces with low bearing area display no clear evidence...... of galling. Metal-to-metal contact occurs anyway, but the strip material is pulverized and deposited onto the tool instead of cold-welding to it. The pockets create a discontinuity on the texture hindering pick-up propagation....

  2. Leaching Process of Rare Earth Elements, Gallium and Niobium in a Coal-Bearing Strata-Hosted Rare Metal Deposit—A Case Study from the Late Permian Tuff in the Zhongliangshan Mine, Chongqing

    Directory of Open Access Journals (Sweden)

    Jianhua Zou

    2017-05-01

    Full Text Available The tuff, a part of coal-bearing strata, in the Zhongliangshan coal mine, Chongqing, southwestern China, hosts a rare metal deposit enriched in rare earth elements (REE, Ga and Nb. However, the extraction techniques directly related to the recovery of rare metals in coal-bearing strata have been little-studied in the literature. The purpose of this paper is to investigate the extractability of REE, Ga and Nb in the tuff in the Zhongliangshan mine using the alkaline sintering-water immersion-acid leaching (ASWIAL method. The results show that ASWIAL can separate and extract REE, Ga and Nb effectively under the optimized conditions of calcining at 860 °C for 0.5 h with a sample to sintering agent ratio of 1:1.5, immersing at 90 °C for 2 h with 150 mL hot water dosage, and leaching using 4 mol/L HCl at 40 °C for 2 h with a liquid-solid ratio of 20:1 (mL:g. The final leaching efficiencies of REE and Ga are up to 85.81% and 93.37%, respectively, whereas the leaching efficiency of Nb is less than 1%, suggesting the high concentration of Nb in the leaching residue, which needs further extraction.

  3. Bearing Fault Detection Based on Empirical Wavelet Transform and Correlated Kurtosis by Acoustic Emission.

    Science.gov (United States)

    Gao, Zheyu; Lin, Jing; Wang, Xiufeng; Xu, Xiaoqiang

    2017-05-24

    Rolling bearings are widely used in rotating equipment. Detection of bearing faults is of great importance to guarantee safe operation of mechanical systems. Acoustic emission (AE), as one of the bearing monitoring technologies, is sensitive to weak signals and performs well in detecting incipient faults. Therefore, AE is widely used in monitoring the operating status of rolling bearing. This paper utilizes Empirical Wavelet Transform (EWT) to decompose AE signals into mono-components adaptively followed by calculation of the correlated kurtosis (CK) at certain time intervals of these components. By comparing these CK values, the resonant frequency of the rolling bearing can be determined. Then the fault characteristic frequencies are found by spectrum envelope. Both simulation signal and rolling bearing AE signals are used to verify the effectiveness of the proposed method. The results show that the new method performs well in identifying bearing fault frequency under strong background noise.

  4. A review of bear farming and bear trade in Lao People's Democratic Republic

    Directory of Open Access Journals (Sweden)

    E. Livingstone

    2018-01-01

    Full Text Available This study reviews the bear farming industry in Lao PDR with the objective of documenting the current number of commercial bear facilities (i.e. captive bear facilities judged to be trading in bear bile and/or bears and bear parts and the number of bears contained within these facilities, noting changes since it was last examined between 2000 and 2012 by Livingstone and Shepherd (2014. We surveyed all known commercial bear facilities and searched for previously unrecorded facilities. We compared our records with Livingstone and Shepherd (2014 and corrected some duplicate records from their study. In 2017, we recorded seven commercial facilities; four dedicated bear farms, and three tiger farms that were reportedly also keeping bears. We found that between 2012 and 2017 the recorded number of dedicated bear farms reduced by two, and the recorded number of tiger farms also keeping bears increased by one. Within the same period, the total number of captive bears among all facilities in Lao PDR hardly changed (+one, but the number of bears within each facility did. The northern facilities, owned by ethnic Chinese, have expanded since 2012, and central and southern facilities have downsized or closed. While bear farming appears to be downsizing in Lao PDR overall, efforts to phase it out are undermined by the expansion of foreign owned facilities in the north, within Special and Specific Economic Zones that largely cater to a Chinese market, and where the Lao government's efforts to enforce laws and protect wildlife appear to be lacking. Closing the facilities in the north will require political will and decisive law enforcement. Keywords: Bear farms, Bear bile, Gall bladder, Urso-deoxycholic acid, Bear bile extraction facilities, Lao PDR, Ursus thibetanus

  5. Precious metal-bearing epithermal deposits in western Patagonia (NE Lago Fontana region), Argentina

    Science.gov (United States)

    Lanfranchini, Mabel Elena; Etcheverry, Ricardo Oscar; de Barrio, Raúl Ernesto; Recio Hernández, Clemente

    2013-04-01

    Precious metal-bearing quartz veins occur at the northeastern sector of the Lago Fontana region in southwestern Argentina, within the context of the Andean continental magmatic arc environment. The deposits and their associated alteration zones are spatially related to a Cretaceous calc-alkaline magmatism represented by silicic dikes and hypabyssal intrusions, and hosted by a Late Jurassic to Cretaceous volcano-sedimentary sequence. The veins and related veinlets crop out discontinuously, in general terms in a NW-SE belt. The primary vein mineral assemblage is composed mostly of pyrite ± galena ± chalcopyrite > hematite ± arsenopyrite in silica gangue minerals. Chemical analyses of grab samples from selected quartz veins show as much as 5.7 ppm Au and 224 ppm Ag, as well as elevated Pb, Cu, and Zn. Hydrothermal fluids caused an innermost silicification and adularia-sericite alteration assemblage, and an external propylitic halo. Sulfur isotope values measured for sulfides (δSS from -1.90 to +1.56‰), and oxygen and hydrogen isotopes measured on quartz crystals and extracted primary fluid inclusion waters (δOO = -2.85 to +5.40‰; δDO = -106.0 to -103.4‰) indicate that mineralization probably formed from magmatic fluids, which were mixed with meteoric waters. Also, fluid inclusion data from quartz veins point out that these fluids had low salinity (1.7-4.2 wt% NaCl equiv.), and temperatures of homogenization between 180 and 325 °C. Mineralogical, petrographic and geochemical features for mineralized surface exposures indicate a typical adularia-sericite, low sulfidation epithermal system in the Lago Fontana area that represents a promising target for further exploration programs.

  6. Trophic relationships in an Arctic food web and implications for trace metal transfer

    Energy Technology Data Exchange (ETDEWEB)

    Dehn, Larissa-A. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States)]. E-mail: ftld@uaf.edu; Follmann, Erich H. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); Thomas, Dana L. [Department of Mathematical Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-6660 (United States); Sheffield, Gay G. [Alaska Department of Fish and Game, Fairbanks, Division of Wildlife Conservation, Fairbanks, Alaska, 99701-1599 (United States); Rosa, Cheryl [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); Duffy, Lawrence K. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); O' Hara, Todd M. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States)

    2006-06-01

    Tissues of subsistence-harvested Arctic mammals were analyzed for silver (Ag), cadmium (Cd), and total mercury (THg). Muscle (or total body homogenates of potential fish and invertebrate prey) was analyzed for stable carbon ({delta} {sup 13}C) and nitrogen ({delta} {sup 15}N) isotopes to establish trophic interactions within the Arctic food chain. Food web magnification factors (FWMFs) and biomagnification factors for selected predator-prey scenarios (BMFs) were calculated to describe pathways of heavy metals in the Alaskan Arctic. FWMFs in this study indicate that magnification of selected heavy metals in the Arctic food web is not significant. Biomagnification of Cd occurs mainly in kidneys; calculated BMFs are higher for hepatic THg than renal THg for all predator-prey scenarios with the exception of polar bears (Ursus maritimus). In bears, the accumulation of renal THg is approximately 6 times higher than in liver. Magnification of hepatic Ag is minimal for all selected predator-prey scenarios. Though polar bears occupy a higher trophic level than belugas (Delphinapterus leucas), based on {delta} {sup 15}N, the metal concentrations are either not statistically different between the two species or lower for bears. Similarly, concentrations of renal and hepatic Cd are significantly lower or not statistically different in polar bears compared to ringed (Phoca hispida) and bearded seals (Erignathus barbatus), their primary prey. THg, on the other hand, increased significantly from seal to polar bear tissues. Mean {delta} {sup 15}N was lowest in muscle of Arctic fox (Alopex lagopus) and foxes also show the lowest levels of Hg, Cd and Ag in liver and kidney compared to the other species analyzed. These values are in good agreement with a diet dominated by terrestrial prey. Metal deposition in animal tissues is strongly dependent on biological factors such as diet, age, sex, body condition and health, and caution should be taken when interpreting magnification of

  7. Trophic relationships in an Arctic food web and implications for trace metal transfer

    International Nuclear Information System (INIS)

    Dehn, Larissa-A.; Follmann, Erich H.; Thomas, Dana L.; Sheffield, Gay G.; Rosa, Cheryl; Duffy, Lawrence K.; O'Hara, Todd M.

    2006-01-01

    Tissues of subsistence-harvested Arctic mammals were analyzed for silver (Ag), cadmium (Cd), and total mercury (THg). Muscle (or total body homogenates of potential fish and invertebrate prey) was analyzed for stable carbon (δ 13 C) and nitrogen (δ 15 N) isotopes to establish trophic interactions within the Arctic food chain. Food web magnification factors (FWMFs) and biomagnification factors for selected predator-prey scenarios (BMFs) were calculated to describe pathways of heavy metals in the Alaskan Arctic. FWMFs in this study indicate that magnification of selected heavy metals in the Arctic food web is not significant. Biomagnification of Cd occurs mainly in kidneys; calculated BMFs are higher for hepatic THg than renal THg for all predator-prey scenarios with the exception of polar bears (Ursus maritimus). In bears, the accumulation of renal THg is approximately 6 times higher than in liver. Magnification of hepatic Ag is minimal for all selected predator-prey scenarios. Though polar bears occupy a higher trophic level than belugas (Delphinapterus leucas), based on δ 15 N, the metal concentrations are either not statistically different between the two species or lower for bears. Similarly, concentrations of renal and hepatic Cd are significantly lower or not statistically different in polar bears compared to ringed (Phoca hispida) and bearded seals (Erignathus barbatus), their primary prey. THg, on the other hand, increased significantly from seal to polar bear tissues. Mean δ 15 N was lowest in muscle of Arctic fox (Alopex lagopus) and foxes also show the lowest levels of Hg, Cd and Ag in liver and kidney compared to the other species analyzed. These values are in good agreement with a diet dominated by terrestrial prey. Metal deposition in animal tissues is strongly dependent on biological factors such as diet, age, sex, body condition and health, and caution should be taken when interpreting magnification of dynamic and actively regulated trace metals

  8. In-operation inspection technology development 'development of degradation prediction technology for rotating machinery'

    International Nuclear Information System (INIS)

    Osaki, K.; Watanabe, Y.; Uhara, Y.; Hattori, H.; O'shima, E.; Matsumoto, K.

    2001-01-01

    In order to rationalize facility maintenance management and improve reliabilities of rotating machines, it is desirable to develop the technology for estimating bearing wear and predicting bearing wear growth. Therefore, we developed a bearing wear analysis method for evaluating bearing wear growth in the mixed lubrication, and developed a degradation prediction system which estimates the bearing wear and predicts bearing wear growth from external parameters, such as shaft vibration. In bearing wear analysis, the influence of bearing surface roughness and elastic deformation are considered. This analysis model was validated by the bearing wear test. The developed system can predict degradation respecting bearing wear, casing deformation, shaft curvature and bearing sleeve corrosion, using some physical models of degradation that take into account various degradation phenomena. Furthermore, this system can estimate bearing life, taking into consideration the distribution of the vibration characteristic caused by the differences in assembling processes and the distribution of the degradation characteristic. This system was validated by the degradation simulation test. (authors)

  9. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    Science.gov (United States)

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears.

  10. Stress Analysis and Fatigue Behaviour of PTFE-Bronze Layered Journal Bearing under Real-Time Dynamic Loading

    Science.gov (United States)

    Duman, M. S.; Kaplan, E.; Cuvalcı, O.

    2018-01-01

    The present paper is based on experimental studies and numerical simulations on the surface fatigue failure of the PTFE-bronze layered journal bearings under real-time loading. ‘Permaglide Plain Bearings P10’ type journal bearings were experimentally tested under different real time dynamic loadings by using real time journal bearing test system in our laboratory. The journal bearing consists of a PTFE-bronze layer approximately 0.32 mm thick on the steel support layer with 2.18 mm thick. Two different approaches have been considered with in experiments: (i) under real- time constant loading with varying bearing widths, (ii) under different real-time loadings at constant bearing widths. Fatigue regions, micro-crack dispersion and stress distributions occurred at the journal bearing were experimentally and theoretically investigated. The relation between fatigue region and pressure distributions were investigated by determining the circumferential pressure distribution under real-time dynamic loadings for the position of every 10° crank angles. In the theoretical part; stress and deformation distributions at the surface of the journal bearing analysed by using finite element methods to determine the relationship between stress and fatigue behaviour. As a result of this study, the maximum oil pressure and fatigue cracks were observed in the most heavily loaded regions of the bearing surface. Experimental results show that PTFE-Bronze layered journal bearings fatigue behaviour is better than the bearings include white metal alloy.

  11. Well-defined (co)polypeptides bearing pendant alkyne groups

    KAUST Repository

    Zhao, Wei

    2016-03-18

    A novel metal-free strategy, using hydrogen-bonding catalytic ring opening polymerization of acetylene-functionalized N-carboxy anhydrites of α-amino acids, was developed for the synthesis of well-defined polypeptides bearing pendant alkyne groups. This method provides an efficient way to synthesize novel alkyne-functionalized homopolypeptides (A) and copolypeptides, such as AB diblock (B: non-functionalized), ABA triblock and star-AB diblock, as well as linear and star random copolypeptides, precursors of a plethora complex macromolecular architectures by click chemistry.

  12. Well-defined (co)polypeptides bearing pendant alkyne groups

    KAUST Repository

    Zhao, Wei; Gnanou, Yves; Hadjichristidis, Nikolaos

    2016-01-01

    A novel metal-free strategy, using hydrogen-bonding catalytic ring opening polymerization of acetylene-functionalized N-carboxy anhydrites of α-amino acids, was developed for the synthesis of well-defined polypeptides bearing pendant alkyne groups. This method provides an efficient way to synthesize novel alkyne-functionalized homopolypeptides (A) and copolypeptides, such as AB diblock (B: non-functionalized), ABA triblock and star-AB diblock, as well as linear and star random copolypeptides, precursors of a plethora complex macromolecular architectures by click chemistry.

  13. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    Science.gov (United States)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  14. Analysis of actual status of works on technology of heavy liquid metal coolants

    International Nuclear Information System (INIS)

    Martynov, P.N.; Askhadullin, R.Sh.; Orlov, Yu.I.; Storozhenko, A.N.

    2014-01-01

    Principle duties in heavy liquid metal coolant technology (HLMC) are provision of the purity of coolant and surfaces of circulation loop for maintenance of design thermohydraulic characteristics, prevention of structural materials corrosion and erosion during long service life and present-day safety precautions on different stages of reactor facility operation. For this reason, current HLMC (Pb-Bi, Pb) technology must include coolant pre-operation and charging; monitoring and regulating of coolant oxygen potential; hydrogen purification of coolant and surfaces of circulation loop from lead oxides-based slags; coolant filtration; reactor cover gas purification from coolant aerosols. The current topical problem is personnel training on the questions of HLMC technology [ru

  15. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-01-01

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of th...

  16. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.

    Science.gov (United States)

    Derakhshan Nejad, Zahra; Jung, Myung Chae; Kim, Ki-Hyun

    2018-06-01

    The major frequent contaminants in soil are heavy metals which may be responsible for detrimental health effects. The remediation of heavy metals in contaminated soils is considered as one of the most complicated tasks. Among different technologies, in situ immobilization of metals has received a great deal of attention and turned out to be a promising solution for soil remediation. In this review, remediation methods for removal of heavy metals in soil are explored with an emphasis on the in situ immobilization technique of metal(loid)s. Besides, the immobilization technique in contaminated soils is evaluated through the manipulation of the bioavailability of heavy metals using a range of soil amendment conditions. This technique is expected to efficiently alleviate the risk of groundwater contamination, plant uptake, and exposure to other living organisms. The efficacy of several amendments (e.g., red mud, biochar, phosphate rock) has been examined to emphasize the need for the simultaneous measurement of leaching and the phytoavailability of heavy metals. In addition, some amendments that are used in this technique are inexpensive and readily available in large quantities because they have been derived from bio-products or industrial by-products (e.g., biochar, red mud, and steel slag). Among different amendments, iron-rich compounds and biochars show high efficiency to remediate multi-metal contaminated soils. Thereupon, immobilization technique can be considered a preferable option as it is inexpensive and easily applicable to large quantities of contaminants derived from various sources.

  17. Nonlinear Dynamics of a Foil Bearing Supported Rotor System: Simulation and Analysis

    Science.gov (United States)

    Li, Feng; Flowers, George T.

    1996-01-01

    Foil bearings provide noncontacting rotor support through a number of thin metal strips attached around the circumference of a stator and separated from the rotor by a fluid film. The resulting support stiffness is dominated by the characteristics of the foils and is a nonlinear function of the rotor deflection. The present study is concerned with characterizing this nonlinear effect and investigating its influence on rotordynamical behavior. A finite element model is developed for an existing bearing, the force versus deflection relation characterized, and the dynamics of a sample rotor system are studied. Some conclusions are discussed with regard to appropriate ranges of operation for such a system.

  18. Technologies for Decentralized Fluoride Removal: Testing Metallic Iron-based Filters

    Directory of Open Access Journals (Sweden)

    Arnaud Igor Ndé-Tchoupé

    2015-11-01

    Full Text Available Since the realization in the 1930s that elevated fluoride concentrations in drinking water can have detrimental effects on human health, new methods have been progressively developed in order to reduce fluoride to acceptable levels. In the developing world the necessity for filtration media that are both low-cost and sourced from locally available materials has resulted in the widespread use of bone char. Since the early 1990s metallic iron (Fe0 has received widespread use as both an adsorbent and a reducing agent for the removal of a wide range of contaminant species from water. The ion-selectivity of Fe0 is dictated by the positively charged surface of iron (hydroxides at circumneutral pH. This suggests that Fe0 could potentially be applied as suitable filter media for the negatively charged fluoride ion. This communication seeks to demonstrate from a theoretical basis and using empirical data from the literature the suitability of Fe0 filters for fluoride removal. The work concludes that Fe0-bearing materials, such as steel wool, hold good promise as low-cost, readily available and highly effective decentralized fluoride treatment materials.

  19. Effect of laser power on clad metal in laser-TIG combined metal cladding

    Science.gov (United States)

    Utsumi, Akihiro; Hino, Takanori; Matsuda, Jun; Tasoda, Takashi; Yoneda, Masafumi; Katsumura, Munehide; Yano, Tetsuo; Araki, Takao

    2003-03-01

    TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.

  20. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special

  1. Teddy Bear Stories

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Caldas-Coulthardt, Carmen

    2014-01-01

    This paper presents a semiotic analysis of a key cultural artefact, the teddy bear. After introducing the iconography of the teddy bear, it analyses different kinds of stories to show how teddy bears are endowed with meaning in everyday life: stories from children's books, reminiscenses by adults...... bears have traditionally centred on interpersonal relations within the nuclear family, but have recently been institutionalized and commercialized....

  2. MINE WASTE TECHNOLOGY PROGRAM; PHOSPHATE STABILIZATION OF HEAVY METALS CONTAMINATED MINE WASTE YARD SOILS, JOPLIN, MISSOURI NPL SITE

    Science.gov (United States)

    This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...

  3. Active magnetic bearing for use in compressors and other turbomachinery

    International Nuclear Information System (INIS)

    Hennau, J.N.

    1989-01-01

    Active magnetic bearings and dry gas seals are now in operation on quite a number of compressors, turbines and generators, proving than an oil-free system is actually working and that furthermore, it has merits in energy savings, rotor dynamic monitoring and improved reliability. The technology of active magnetic bearing has been developed mainly in France after the Second World War for space application, but soon there appeared the large possibilities in industrial applications starting with the vacuum industry (turbomolecular pump), followed by the machine tool industry (high power and high speed milling and grinding spindles) and the large turbomachinery field (centrifugal compressors, blowers, steam and gas turbines, turbogenerators). Merits of the active magnetic bearing vary from one application to another, but they all derive from the fact that we have no contact between the rotor and the stator and that the electronic control of the bearings can cope with the rotor dynamics and provide useful information on the operating conditions

  4. On the matter of synovial fluid lubrication: implications for Metal-on-Metal hip tribology.

    Science.gov (United States)

    Myant, Connor; Cann, Philippa

    2014-06-01

    Artificial articular joints present an interesting, and difficult, tribological problem. These bearing contacts undergo complex transient loading and multi axes kinematic cycles, over extremely long periods of time (>10 years). Despite extensive research, wear of the bearing surfaces, particularly metal-metal hips, remains a major problem. Comparatively little is known about the prevailing lubrication mechanism in artificial joints which is a serious gap in our knowledge as this determines film formation and hence wear. In this paper we review the accepted lubrication models for artificial hips and present a new concept to explain film formation with synovial fluid. This model, recently proposed by the authors, suggests that interfacial film formation is determined by rheological changes local to the contact and is driven by aggregation of synovial fluid proteins. The implications of this new mechanism for the tribological performance of new implant designs and the effect of patient synovial fluid properties are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Bear-ly” learning: Limits of abstraction in black bear cognition

    Directory of Open Access Journals (Sweden)

    Jennifer Vonk

    2018-02-01

    Full Text Available We presented two American black bears (Ursus americanus with a serial list learning memory task, and one of the bears with a matching-to-sample task. After extended training, both bears demonstrated some success with the memory task but failed to generalize the overarching rule of the task to novel stimuli. Matching to sample proved even more difficult for our bear to learn. We conclude that, despite previous success in training bears to respond to natural categories, quantity discriminations, and other related tasks, that bears may possess a cognitive limitation with regards to learning abstract rules. Future tests using different procedures are necessary to determine whether this is a limit of bears’ cognitive capacities, or a limitation of the current tasks as presented. Future tests should present a larger number of varying stimuli. Ideally, bears of various species should be tested on these tasks to demonstrate species as well as individual differences.

  6. Process evaluation for treatment of aluminium bearing declad waste

    International Nuclear Information System (INIS)

    Banerjee, D.; Rao, Manjula A.; Srinivas, C.; Wattal, P.K.

    2012-01-01

    Declad waste generated by the process of chemical decladding of Al-cladded uranium metal fuel is characterized by highly alkaline, high Al bearing intermediate level waste. It was found that the process developed and adopted in India for plant scale treatment of alkaline intermediate level waste (ILW) is unsuitable for treatment of declad waste. This is mainly due to its exotic characteristics, notably substantial amounts of aluminium in the declad waste. As part of development of treatment scheme for this waste, 137 Cs removal by RFPR has been demonstrated earlier and the present paper reports the results of further processing of the Cs-lean effluent. The waste simulated with respect to the major chemical constituents of stored Al-bearing alkaline ILW after 137 Cs and 90 Sr removal by ion exchange, is used in this study

  7. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    International Nuclear Information System (INIS)

    Appleton, B.R.; Bauer, G.S.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R ampersand D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has been funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R ampersand D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R ampersand D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and

  8. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, B.R.; Bauer, G.S. [comp.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R&D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has been funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R & D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R & D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. THK: CLB Crossed Linear Bearing Seismic Isolators

    International Nuclear Information System (INIS)

    Toniolo, Roberto

    2008-01-01

    This text highlights the new seismic isolation technology called CLB (Crossed Linear Bearing), which is made of linear guides with recirculating steel ball technology. It describes specifications and building characteristics, provides examples of seismic isolation and application functionalities and shows experimental data. Since 1994, the constant commitment by Japan to develop diversified anti-seismic systems based on the precise needs of the structures to protect and the areas where they were built has led to the creation of important synergy between the research institutions of leading Japanese companies and THK's Centre for Research and Development. Their goal has been to develop new technology and solutions to allow seismic isolation to be effective in the following cases:

  10. Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear

    Science.gov (United States)

    Lindqvist, Charlotte; Schuster, Stephan C.; Sun, Yazhou; Talbot, Sandra L.; Qi, Ji; Ratan, Aakrosh; Tomsho, Lynn P.; Kasson, Lindsay; Zeyl, Eve; Aars, Jon; Miller, Webb; Ingólfsson, Ólafur; Bachmann, Lutz; Wiig, Øystein

    2010-01-01

    The polar bear has become the flagship species in the climate-change discussion. However, little is known about how past climate impacted its evolution and persistence, given an extremely poor fossil record. Although it is undisputed from analyses of mitochondrial (mt) DNA that polar bears constitute a lineage within the genetic diversity of brown bears, timing estimates of their divergence have differed considerably. Using next-generation sequencing technology, we have generated a complete, high-quality mt genome from a stratigraphically validated 130,000- to 110,000-year-old polar bear jawbone. In addition, six mt genomes were generated of extant polar bears from Alaska and brown bears from the Admiralty and Baranof islands of the Alexander Archipelago of southeastern Alaska and Kodiak Island. We show that the phylogenetic position of the ancient polar bear lies almost directly at the branching point between polar bears and brown bears, elucidating a unique morphologically and molecularly documented fossil link between living mammal species. Molecular dating and stable isotope analyses also show that by very early in their evolutionary history, polar bears were already inhabitants of the Artic sea ice and had adapted very rapidly to their current and unique ecology at the top of the Arctic marine food chain. As such, polar bears provide an excellent example of evolutionary opportunism within a widespread mammalian lineage. PMID:20194737

  11. Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear.

    Science.gov (United States)

    Lindqvist, Charlotte; Schuster, Stephan C; Sun, Yazhou; Talbot, Sandra L; Qi, Ji; Ratan, Aakrosh; Tomsho, Lynn P; Kasson, Lindsay; Zeyl, Eve; Aars, Jon; Miller, Webb; Ingólfsson, Olafur; Bachmann, Lutz; Wiig, Oystein

    2010-03-16

    The polar bear has become the flagship species in the climate-change discussion. However, little is known about how past climate impacted its evolution and persistence, given an extremely poor fossil record. Although it is undisputed from analyses of mitochondrial (mt) DNA that polar bears constitute a lineage within the genetic diversity of brown bears, timing estimates of their divergence have differed considerably. Using next-generation sequencing technology, we have generated a complete, high-quality mt genome from a stratigraphically validated 130,000- to 110,000-year-old polar bear jawbone. In addition, six mt genomes were generated of extant polar bears from Alaska and brown bears from the Admiralty and Baranof islands of the Alexander Archipelago of southeastern Alaska and Kodiak Island. We show that the phylogenetic position of the ancient polar bear lies almost directly at the branching point between polar bears and brown bears, elucidating a unique morphologically and molecularly documented fossil link between living mammal species. Molecular dating and stable isotope analyses also show that by very early in their evolutionary history, polar bears were already inhabitants of the Artic sea ice and had adapted very rapidly to their current and unique ecology at the top of the Arctic marine food chain. As such, polar bears provide an excellent example of evolutionary opportunism within a widespread mammalian lineage.

  12. Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear

    Science.gov (United States)

    Lindqvist, Charlotte; Schuster, Stephan C.; Sun, Yazhou; Talbot, Sandra L.; Qi, Ji; Ratan, Aakrosh; Tomsho, Lynn P.; Kasson, Lindsay; Zeyl, Eve; Aars, Jon; Miller, Webb; Ingólfsson, Ólafur; Bachmann, Lutz; Wiig, Øystein

    2010-01-01

    The polar bear has become the flagship species in the climate-change discussion. However, little is known about how past climate impacted its evolution and persistence, given an extremely poor fossil record. Although it is undisputed from analyses of mitochondrial (mt) DNA that polar bears constitute a lineage within the genetic diversity of brown bears, timing estimates of their divergence have differed considerably. Using next-generation sequencing technology, we have generated a complete, high-quality mt genome from a stratigraphically validated 130,000- to 110,000-year-old polar bear jawbone. In addition, six mt genomes were generated of extant polar bears from Alaska and brown bears from the Admiralty and Baranof islands of the Alexander Archipelago of southeastern Alaska and Kodiak Island. We show that the phylogenetic position of the ancient polar bear lies almost directly at the branching point between polar bears and brown bears, elucidating a unique morphologically and molecularly documented fossil link between living mammal species. Molecular dating and stable isotope analyses also show that by very early in their evolutionary history, polar bears were already inhabitants of the Artic sea ice and had adapted very rapidly to their current and unique ecology at the top of the Arctic marine food chain. As such, polar bears provide an excellent example of evolutionary opportunism within a widespread mammalian lineage.

  13. The study on the overseas recycling technology of the radioactive metallic wastes

    International Nuclear Information System (INIS)

    Kim, H. R.; Jung, Y. S.; Sin, J. I.

    2002-01-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  14. GAS BEARING

    Science.gov (United States)

    Skarstrom, C.W.

    1960-09-01

    A gas lubricated bearing for a rotating shaft is described. The assembly comprises a stationary collar having an annular member resiliently supported thereon. The collar and annular member are provided with cooperating gas passages arranged for admission of pressurized gas which supports and lubricates a bearing block fixed to the rotatable shaft. The resilient means for the annular member support the latter against movement away from the bearing block when the assembly is in operation.

  15. Research report of FY 1997 on the industrial science and technology development. Technology development of super-metal (technology development of nano-amorphous structural control materials); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku seika hokokusho. Super metal no gijutsu kaihatsu (nano-amorphous kozo seigyo zairyo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development of the innovative metals have been conducted, by which the weight reduction of members can be done by drastically improving the strength compared with conventional metals. For the high-rate cluster deposition and super plastic forming technologies, research and development of aluminum-based light-weight materials have been conducted, which provides excellent strength, toughness, and super plastic formability at room temperature. For the high-density energy utilization and control technology (amorphous-A), super-metals have been investigated as high dew point and corrosion resistance materials used for waste incinerators operated under the very severe conditions. These are expected to be applied to the apparatuses and equipment due to their excellent properties. For the controlled cooling technology (amorphous-B), super-metals with excellent soft magnetic characteristics and degree of shape freedom have been investigated for high performance and high efficiency devices including electric/electronic/communication devices, power transmission devices, and various industrial devices and parts. These are expected to contribute to the creation of new markets and the improvement of international competitive force. 123 refs., 160 figs., 33 tabs.

  16. Study on the prevention of spragging in a tilting pad journal bearing using the variation of preload

    International Nuclear Information System (INIS)

    Yang, Seong Heon; Park, Chul Hyun; Ha, Hyun Cheon; Kim, Chae Sil

    2001-01-01

    Tilting pad journal bearings have been widely used in a high speed rotating machinery, such as steam turbines and gas turbines, owing to their inherent stability characteristics. However, some peculiar fatigue failure in the babbitt metal due to spragging has been continuously occurred at the leading edge of the upper pads. The spragging is defined as the pad vibration initiated on the upper unloaded pads in tilting pad journal bearing. This paper describes both several kinds of bearing failure related with spragging and the theoretical investigation on the prevention of the spragging phenomenon using the variation of preload. Results show that positive preload(m>0.5) assures all pads remain statically loaded under all operating conditions. For the change of design parameter to prevent spragging, thermo-hydrodynamic lubrication and rotor dynamic analysis were performed to verify temperature limitation on bearing and vibration problems on rotor bearing system

  17. Advanced technologies for decontamination and conversion of scrap metal

    International Nuclear Information System (INIS)

    MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

    1996-01-01

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products

  18. Study on Fault Diagnosis of Rolling Bearing Based on Time-Frequency Generalized Dimension

    Directory of Open Access Journals (Sweden)

    Yu Yuan

    2015-01-01

    Full Text Available The condition monitoring technology and fault diagnosis technology of mechanical equipment played an important role in the modern engineering. Rolling bearing is the most common component of mechanical equipment which sustains and transfers the load. Therefore, fault diagnosis of rolling bearings has great significance. Fractal theory provides an effective method to describe the complexity and irregularity of the vibration signals of rolling bearings. In this paper a novel multifractal fault diagnosis approach based on time-frequency domain signals was proposed. The method and numerical algorithm of Multi-fractal analysis in time-frequency domain were provided. According to grid type J and order parameter q in algorithm, the value range of J and the cut-off condition of q were optimized based on the effect on the dimension calculation. Simulation experiments demonstrated that the effective signal identification could be complete by multifractal method in time-frequency domain, which is related to the factors such as signal energy and distribution. And the further fault diagnosis experiments of bearings showed that the multifractal method in time-frequency domain can complete the fault diagnosis, such as the fault judgment and fault types. And the fault detection can be done in the early stage of fault. Therefore, the multifractal method in time-frequency domain used in fault diagnosis of bearing is a practicable method.

  19. Sodium waste technology: A summary report

    International Nuclear Information System (INIS)

    Abrams, C.S.; Witbeck, L.C.

    1987-01-01

    The Sodium Waste Technology (SWT) Program was established to resolve long-standing issues regarding disposal of sodium-bearing waste and equipment. Comprehensive SWT research programs investigated a variety of approaches for either removing sodium from sodium-bearing items, or disposal of items containing sodium residuals. The most successful of these programs was the design, test, and the production operation of the Sodium Process Demonstration Facility at ANL-W. The technology used was a series of melt-drain-evaporate operations to remove nonradioactive sodium from sodium-bearing items and then converting the sodium to storable compounds

  20. Tribology and wear of metal-on-metal hip prostheses: influence of cup angle and head position.

    Science.gov (United States)

    Williams, Sophie; Leslie, Ian; Isaac, Graham; Jin, Zhongmin; Ingham, Eileen; Fisher, John

    2008-08-01

    Clinical studies have indicated that the angular position of the acetabular cup may influence wear in metal-on-metal total hip bearings. A high cup angle in comparison to the anatomical position may lead to the head being constrained by the superior lateral surface and rim of the cup, thus potentially changing the location of the contact zone between the head and the cup. The aim of this study was to test the hypothesis that both a steep cup angle and a lateralized position of the head can increase head contact on the superior rim of the cup, with the consequence of increased wear. Hip-joint simulator studies of metal-on-metal bearings were undertaken with cup angles of 45 degrees and 55 degrees . The femoral head was either aligned to the center of the cup or placed in a position of microlateralization. Wear was measured gravimetrically over 5 million cycles. A steep cup angle of 55 degrees showed significantly higher long-term steady-state wear than a standard cup angle of 45 degrees (p < 0.01). The difference was fivefold. Microlateralization of the head resulted in a fivefold increase in steady-state wear compared with a centralized head. The combination of a steep cup angle and a microlateralized head increased the steady-state wear rate by tenfold compared with a standard cup angle with a centralized head. These studies support the hypothesis that both an increased cup angle and a lateral head position increase wear in metal-on-metal hip prostheses.

  1. Increased Wear Resistance of Surfaces of Rotation Bearings Methods Strengthening-Smoothing Processing

    Directory of Open Access Journals (Sweden)

    A.A. Tkachuk

    2016-05-01

    Full Text Available Trends of modern engineering put forward higher requirements for quality bearings. This is especially true on production of bearings for special purposes with high speeds of rotation and resource. Much more opportunities in the technology management quality surface layers appear in the application of smoothing-strengthening methods, based on superficial plastic deformation. Working models of cutting lathes, grinders and tool smoothing sequence revealed the formation of operational parameters in the technological cycle of roller rings. The model of the dynamics of elastic deformation of the work piece tool helps identify actions radial force in the contact “surface – indenter.” Using mathematical modelling resolved a number of issues relevant process.

  2. Heavy metal enrichment in mine drainage:III

    International Nuclear Information System (INIS)

    Wittmann, G.T.W.; Forstner, U.

    1977-01-01

    Mine drainage from gold and uranium recovery is characterized by low pH and high metal values. Attention is drawn to the potential environmental hazards caused by vast losses of uranium-bearing minerals [af

  3. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  4. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  5. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  6. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  7. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  8. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears.

    Science.gov (United States)

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-03-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  9. Prediction of contact mechanics in metal-on-metal Total Hip Replacement for parametrically comprehensive designs and loads.

    Science.gov (United States)

    Donaldson, Finn E; Nyman, Edward; Coburn, James C

    2015-07-16

    Manufacturers and investigators of Total Hip Replacement (THR) bearings require tools to predict the contact mechanics resulting from diverse design and loading parameters. This study provides contact mechanics solutions for metal-on-metal (MoM) bearings that encompass the current design space and could aid pre-clinical design optimization and evaluation. Stochastic finite element (FE) simulation was used to calculate the head-on-cup contact mechanics for five thousand combinations of design and loading parameters. FE results were used to train a Random Forest (RF) surrogate model to rapidly predict the contact patch dimensions, contact area, pressures and plastic deformations for arbitrary designs and loading. In addition to widely observed polar and edge contact, FE results included ring-polar, asymmetric-polar, and transitional categories which have previously received limited attention. Combinations of design and load parameters associated with each contact category were identified. Polar contact pressures were predicted in the range of 0-200 MPa with no permanent deformation. Edge loading (with subluxation) was associated with pressures greater than 500 MPa and induced permanent deformation in 83% of cases. Transitional-edge contact (with little subluxation) was associated with intermediate pressures and permanent deformation in most cases, indicating that, even with ideal anatomical alignment, bearings may face extreme wear challenges. Surrogate models were able to accurately predict contact mechanics 18,000 times faster than FE analyses. The developed surrogate models enable rapid prediction of MoM bearing contact mechanics across the most comprehensive range of loading and designs to date, and may be useful to those performing bearing design optimization or evaluation. Published by Elsevier Ltd.

  10. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  11. Casting technology for ODS steels - dispersion of nanoparticles in liquid metals

    Science.gov (United States)

    Sarma, M.; Grants, I.; Kaldre, I.; Bojarevics, A.; Gerbeth, G.

    2017-07-01

    Dispersion of particles to produce metal matrix nanocomposites (MMNC) can be achieved by means of ultrasonic vibration of the melt using ultrasound transducers. However, a direct transfer of this method to produce steel composites is not feasible because of the much higher working temperature. Therefore, an inductive technology for contactless treatment by acoustic cavitation was developed. This report describes the samples produced to assess the feasibility of the proposed method for nano-particle separation in steel. Stainless steel samples with inclusions of TiB2, TiO2, Y2O3, CeO2, Al2O3 and TiN have been created and analyzed. Additional experiments have been performed using light metals with an increased value of the steady magnetic field using a superconducting magnet with a field strength of up to 5 T.

  12. Compositions of airborne plutonium-bearing particles from a plutonium finishing operation

    International Nuclear Information System (INIS)

    Sanders, S.M. Jr.

    1976-11-01

    The elemental composition of 111 plutonium-bearing particles was determined (using an electron microprobe) as part of a program to investigate the origin and behavior of the long-lived transuranic radionuclides released from fuel reprocessing facilities at the Savannah River Plant. These particles, collected from wet-cabinet and room-air exhausts from the plutonium finishing operation (JB-Line), were between 0.4 and 36 μm in diameter. Ninety-nine of the particles were found to be aggregates of various minerals and metals, six were quartz, and six were small (less than 2-μm-diameter) pieces of iron oxide. Collectively, these particles contained less minerals and more metals than natural dusts contain. The metallic constituents included elements normally not found in dusts, e.g., chromium, nickel, copper, and zinc. Concentrations of aluminum and iron exceeded those normally found in minerals. Elemental concentrations in individual particles covered a wide range: one 2-μm-diameter particle contained 97 percent NiO, a 9-μm-diameter particle contained 72 percent Cr 2 O 3 . Although the particles were selected because they produced plutonium fission tracks, the plutonium concentration was too low to be estimated by microprobe analysis in all but a 1-μm-diameter particle. This plutonium-bearing particle contained 73 percent PuO 2 by weight in combination with Fe 2 O 3 and mica; its activity was estimated at 0.17 pCi of 239 Pu

  13. Mystery of Foil Air Bearings for Oil-free Turbomachinery Unlocked: Load Capacity Rule-of-thumb Allows Simple Estimation of Performance

    Science.gov (United States)

    DellaCorte, Christopher; Valco, Mark J.

    2002-01-01

    The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and

  14. In-operation inspection technology development 'development of degradation prediction technology for rotating machinery'

    Energy Technology Data Exchange (ETDEWEB)

    Osaki, K.; Watanabe, Y.; Uhara, Y.; Hattori, H. [Toshiba Ceramics Co. Ltd., Ykohama (Japan); O' shima, E. [Tokyo Institute of Technology (Japan); Matsumoto, K. [Japan Power Engineering and Inspection Corporation, Chiba (Japan)

    2001-07-01

    In order to rationalize facility maintenance management and improve reliabilities of rotating machines, it is desirable to develop the technology for estimating bearing wear and predicting bearing wear growth. Therefore, we developed a bearing wear analysis method for evaluating bearing wear growth in the mixed lubrication, and developed a degradation prediction system which estimates the bearing wear and predicts bearing wear growth from external parameters, such as shaft vibration. In bearing wear analysis, the influence of bearing surface roughness and elastic deformation are considered. This analysis model was validated by the bearing wear test. The developed system can predict degradation respecting bearing wear, casing deformation, shaft curvature and bearing sleeve corrosion, using some physical models of degradation that take into account various degradation phenomena. Furthermore, this system can estimate bearing life, taking into consideration the distribution of the vibration characteristic caused by the differences in assembling processes and the distribution of the degradation characteristic. This system was validated by the degradation simulation test. (authors)

  15. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  16. Screening for the next generation heavy metal hyperaccumulators for dryland decontamination

    NARCIS (Netherlands)

    Ravanbakhsh, Mohammadhossein; Ronaghi, Abdol Majid; Taghavi, Seyed Mohsen; Jousset, Alexandre

    2016-01-01

    Heavy metal removal by plants bears a great potential to decontaminate soils. A major challenge remains to find plant species that accumulate heavy metal, harbor a sufficient biomass and grow in the desired environmental conditions. Here we present candidate plants for phytoremediation in arid

  17. Development of metallic uranium recovery technology from uranium oxide by Li reduction and electrorefining

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu; Kawabe, Akihiro; Yuda, Ryouichi; Usami, Tsuyoshi; Fujita, Reiko; Nakamura, Hitoshi; Yahata, Hidetsugu

    2002-01-01

    The purpose of the study is to develop technology for pre-treatment of oxide fuel reprocessing through pyroprocess. In the pre-treatment process, it is necessary to reduce actinide oxide to metallic form. This paper outlines some experimental results of uranium oxide reduction and recovery of refined metallic uranium in electrorefining. Both uranium oxide granules and pellets were used for the experiments. Uranium oxide granules was completely reduced by lithium in several hours at 650degC. Reduced uranium pellets by about 70% provided a simulation of partial reduction for the process flow design. Almost all adherent residues of Li and Li 2 O were successfully washed out with fresh LiCl salt. During electrorefining, metallic uranium deposited on the iron cathode as expected. The recovery efficiencies of metallic uranium from reduced uranium oxide granules and from pellets were about 90% and 50%, respectively. The mass balance data provided the technical bases of Li reduction and refining process flow for design. (author)

  18. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  19. Multifunctional Structures for High-Energy Lightweight Load-Bearing Storage

    Science.gov (United States)

    Loyselle, Patricia L.

    2018-01-01

    This is a pull-up banner of the Multifunctional Structures for High-Energy Lightweight Load-bearing Storage (M-SHELLS) technology that will be on display at the SciTech Conference in January 2018. Efforts in Multifunctional Structures for High Energy Load-Bearing Storage (M-Shells) are pushing the boundaries of development for hybrid electric propulsion for future commercial aeronautical transport. The M-Shells hybrid material would serve as the power/energy storage of the vehicle and provide structural integrity, freeing up usable volume and mass typically occupied by bulky batteries. The ultimate goal is to demonstrate a system-level mass savings with a multifunctional structure with energy storage.

  20. Recalibrated Equations for Determining Effect of Oil Filtration on Rolling Bearing Life

    Science.gov (United States)

    Needelman, William M.; Zaretsky, Erwin V.

    2014-01-01

    In 1991, Needelman and Zaretsky presented a set of empirically derived equations for bearing fatigue life (adjustment) factors (LFs) as a function of oil filter ratings. These equations for life factors were incorporated into the reference book, "STLE Life Factors for Rolling Bearings." These equations were normalized (LF = 1) to a 10-micrometer filter rating at Beta(sub x) = 200 (normal cleanliness) as it was then defined. Over the past 20 years, these life factors based on oil filtration have been used in conjunction with ANSI/ABMA standards and bearing computer codes to predict rolling bearing life. Also, additional experimental studies have been made by other investigators into the relationship between rolling bearing life and the size, number, and type of particle contamination. During this time period filter ratings have also been revised and improved, and they now use particle counting calibrated to a new National Institute of Standards and Technology (NIST) reference material, NIST SRM 2806, 1997. This paper reviews the relevant bearing life studies and describes the new filter ratings. New filter ratings, Beta(sub x(c)) = 200 and Beta(sub x(c)) = 1000, are benchmarked to old filter ratings, Beta(sub x) = 200, and vice versa. Two separate sets of filter LF values were derived based on the new filter ratings for roller bearings and ball bearings, respectively. Filter LFs can be calculated for the new filter ratings.

  1. Rare earth metal bis(amide) complexes bearing amidinate ancillary ligands: synthesis, characterization, and performance as catalyst precursors for cis-1,4 selective polymerization of isoprene.

    Science.gov (United States)

    Luo, Yunjie; Fan, Shimin; Yang, Jianping; Fang, Jianghua; Xu, Ping

    2011-03-28

    A family of rare earth metal bis(amide) complexes bearing monoanionic amidinate [RC(N-2,6-Me(2)C(6)H(3))(2)](-) (R = cyclohexyl (Cy), phenyl (Ph)) as ancillary ligands were synthesized and characterized. One-pot salt metathesis reaction of anhydrous LnCl(3) with one equivalent of amidinate lithium [RC(N-2,6-Me(2)C(6)H(3))(2)]Li, following the introduction of two equivalents of NaN(SiMe(3))(2) in THF at room temperature afforded the neutral and unsolvated mono(amidinate) rare earth metal bis(amide) complexes [RC(N-2,6-Me(2)C(6)H(3))(2)]Y[N(SiMe(3))(2)](2) (R = Cy (1); R = Ph (2)), and the "ate" mono(amidinate) rare earth metal bis(amide) complex [CyC(N-2,6-Me(2)C(6)H(3))(2)]Lu[N(SiMe(3))(2)](2)(μ-Cl)Li(THF)(3) (3) in 61-72% isolated yields. These complexes were characterized by elemental analysis, NMR spectroscopy, FT-IR spectroscopy, and X-ray single crystal diffraction. Single crystal structural determination revealed that the central metal in complexes 1 and 2 adopts a distorted tetrahedral geometry, and in complex 3 forms a distorted trigonal bipyramidal geometry. In the presence of AlMe(3), and in combination with one equimolar amount of [Ph(3)C][B(C(6)F(5))(4)], complexes 1 and 2 showed high activity towards isoprene polymerization to give high molecular weight polyisoprene (M(n) > 10(4)) with good cis-1,4 selectivity (>90%).

  2. Metal-Containing Molecules Beyond the Solar System: a Laboratory and Radio Astronomical Perspective

    Science.gov (United States)

    Ziurys, L. M.

    2010-06-01

    Although the history of interstellar molecules began around 1970, with the millimeter-wave detection of CO in the Orion Nebula, metal-containing species have been somewhat elusive for astronomical searches. Only in the past two decades have metal-bearing molecules been identified in space, starting with metal halides (NaCl, KCl, AlCl, and AlF), and then metal cyanide and isocyanide species (MgNC, MgCN, NaCN, and AlNC). Moreover, the metal-containing molecules seemed to be present in a single astronomical object: the envelope of a dying, carbon-rich star, IRC+10216. However, with improvements both in laboratory spectroscopy and telescope sensitivity, it is becoming clear that the relevance of metal-containing species in astrophysics is increasing. Metal oxide and hydroxide species, such as AlO and AlOH, have recently been identified in interstellar space. Metal-containing molecules are now being found in other astronomical sources, such as the oxygen-rich shell surrounding VY Canis Majoris, a supergiant star. These new astronomical discoveries will be presented, as well as the laboratory measurements that made them possible. New directions in rotational spectroscopy of metal-bearing molecules will also be discussed.

  3. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    OpenAIRE

    Peter W. Tse; Dong Wang

    2017-01-01

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To exten...

  4. Oil-free bearing development for high-speed turbomachinery in distributed energy systems – dynamic and environmental evaluation

    Directory of Open Access Journals (Sweden)

    Tkacz Eliza

    2015-09-01

    Full Text Available Modern distributed energy systems, which are used to provide an alternative to or an enhancement of traditional electric power systems, require small size highspeed rotor turbomachinery to be developed. The existing conventional oil-lubricated bearings reveal performance limits at high revolutions as far as stability and power loss of the bearing are concerned. Non-conventional, oil-free bearings lubricated with the machine working medium could be a remedy to this issue. This approach includes a correct design of the machine flow structure and an accurate selection of the bearing type. Chosen aspects of the theoretical and experimental investigations of oil-free bearings and supports; including magnetic, tilting pad, pressurized aerostatic and hydrostatic bearings as well as some applications of oil-free bearing technology for highspeed turbomachinery; are described in the paper.

  5. Evaluation of bearing configurations using the single bearing tester in liquid nitrogen

    Science.gov (United States)

    Jett, T.; Hall, P.; Thom, R.

    1991-01-01

    Various bearing configurations were tested using the Marshall Space Flight Center single bearing tester with LN2 as the cryogenic coolant. The baseline was one Rocketdyne phase one high pressure oxidizer turbopump (HPOTP) pump end 45-mm bore bearing. The bearing configurations that were tested included a Salox/M cage configuration, a silicon nitride ball configuration, an elongated cage configuration, and a Bray 601 grease configuration.

  6. Measurements versus Predictions for a Hybrid (Hydrostatic Plus Hydrodynamic) Thrust Bearing for a Range of Orifice Diameters

    Science.gov (United States)

    2010-05-01

    Type of Lubrication for a Tilting Pad Thrust Bearing ,” ASME Journal of Lubrication Technology, 96 Ser F (1), pp. 22-27. [9] Gregory, R.S., 1974...1986, “Measurements of Maximum Temperature in Tilting - Pad Thrust Bearings ,” Technical Preprints - Presented at the ASLE 41st Annual Meeting. (ASLE...Safar [7] provides a modified Reynolds number analysis on hydrostatic thrust bearing performance parameters including the effects of tilt . Finally, San

  7. Improvement of journal bearing operation at heavy misalignment using bearing flexibility and compliant liners

    DEFF Research Database (Denmark)

    Thomsen, Kim; Klit, Peder

    2012-01-01

    A flexure journal bearing design is proposed that will improve operational behaviour of a journal bearing at pronounced misalignment. Using a thermoelastohydrodynamic model, it is shown that the proposed flexure journal bearing has vastly increased the hydrodynamic performance compared to the stiff...... bearing when misaligned. The hydrodynamic performance is evaluated on lubricant film thickness, pressure and temperature. Furthermore, the influence of a compliant bearing liner is investigated and it is found that it increases the hydrodynamic performance when applied to a stiff bearing, whereas...... the liner has practically no influence on the flexure journal bearing's performance....

  8. Dehydroabiethylamine acetate as metal-containing anion precipitant

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Borisov, V.A.

    1979-01-01

    The precipitation is studied of vanadate, tungstate-, molybdate- and chromate-ions by dehydroabiethylamine acetate. The degree of precipitation of metal-bearing anions is a function of the anion and of pH of the treated solutions. There exists a predetermined value of pH for each anion, at which the content of metal-bearing anion in the ultra-filtrate is at a minimum. For vanadate-ions, this pH is 5.0; for tungstate-ions, 3.0; for molybdate-ions, 4.0; for chrommate-ions, 8.0. The heats of solution of methavanadate, paratungstate, paramolybdate and dehydroabiethylamine chromate, calculated in accordance with the Vant-Hoff equation, range between 3.5 and 8.3 kJ/mole; free energy varies between 45.8 and 137.5 kJ/mole; and entropy varies between 110 and 371 J/degree mole

  9. Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage.

    Science.gov (United States)

    Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Klassert, Denise; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel

    2012-04-20

    Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pleistocene, about 600 (338 to 934) thousand years ago. This provides more time for polar bear evolution and confirms previous suggestions that polar bears carry introgressed brown bear mitochondrial DNA due to past hybridization. Our results highlight that multilocus genomic analyses are crucial for an accurate understanding of evolutionary history.

  10. Inclusion Extraction of Alkali Metals by Emulsion Liquid Membranes and Nano-baskets of p-tert-Calix[4]arene Bearing Di-[N-(X)sulfonyl Carboxamide] and Di-(1-propoxy) in ortho-cone Conformation

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Bahram; Pourabdollah, Kobra [Islamic Azad University, Province (Iran, Islamic Republic of)

    2012-05-15

    Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclusion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixarene in the selective and efficient separation of alkali metals as both the carrier and the surfactant. For this aim, four derivatives of p-tert-calix[4]arene bearing different sulfonamide moieties were synthesized and their inclusionextraction parameters were optimized including the calixarene scaffold 3 (4 wt %) as the carrier/demulsifier, the commercial kerosene as diluent in membrane, sulphonic acid (0.2 M) and ammonium carbonate (0.4 M) as the strip and the feed phases, the phase and the treat ratios of 0.8 and 0.3, mixing speed (300 rpm), and initial solute concentration (100 mg/L). The selectivity of membrane over more than ten interfering cations was examined and the results reveled that under the optimized operating condition, the degree of inclusionextraction of alkali metals was as high as 98-99%.

  11. Inclusion Extraction of Alkali Metals by Emulsion Liquid Membranes and Nano-baskets of p-tert-Calix[4]arene Bearing Di-[N-(X)sulfonyl Carboxamide] and Di-(1-propoxy) in ortho-cone Conformation

    International Nuclear Information System (INIS)

    Mokhtari, Bahram; Pourabdollah, Kobra

    2012-01-01

    Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclusion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixarene in the selective and efficient separation of alkali metals as both the carrier and the surfactant. For this aim, four derivatives of p-tert-calix[4]arene bearing different sulfonamide moieties were synthesized and their inclusionextraction parameters were optimized including the calixarene scaffold 3 (4 wt %) as the carrier/demulsifier, the commercial kerosene as diluent in membrane, sulphonic acid (0.2 M) and ammonium carbonate (0.4 M) as the strip and the feed phases, the phase and the treat ratios of 0.8 and 0.3, mixing speed (300 rpm), and initial solute concentration (100 mg/L). The selectivity of membrane over more than ten interfering cations was examined and the results reveled that under the optimized operating condition, the degree of inclusionextraction of alkali metals was as high as 98-99%

  12. Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan.

    Science.gov (United States)

    Nansai, Keisuke; Nakajima, Kenichi; Kagawa, Shigemi; Kondo, Yasushi; Shigetomi, Yosuke; Suh, Sangwon

    2015-02-17

    Meeting the 2-degree global warming target requires wide adoption of low-carbon energy technologies. Many such technologies rely on the use of precious metals, however, increasing the dependence of national economies on these resources. Among such metals, those with supply security concerns are referred to as critical metals. Using the Policy Potential Index developed by the Fraser Institute, this study developed a new footprint indicator, the mining risk footprint (MRF), to quantify the mining risk directly and indirectly affecting a national economy through its consumption of critical metals. We formulated the MRF as a product of the material footprint (MF) of the consuming country and the mining risks of the countries where the materials are mined. A case study was conducted for the 2005 Japanese economy to determine the MF and MRF for three critical metals essential for emerging energy technologies: neodymium, cobalt and platinum. The results indicate that in 2005 the MFs generated by Japanese domestic final demand, that is, the consumption-based metal output of Japan, were 1.0 × 10(3) t for neodymium, 9.4 × 10(3) t for cobalt, and 2.1 × 10 t for platinum. Export demand contributes most to the MF, accounting for 3.0 × 10(3) t, 1.3 × 10(5) t, and 3.1 × 10 t, respectively. The MRFs of Japanese total final demand (domestic plus export) were calculated to be 1.7 × 10 points for neodymium, 4.5 × 10(-2) points for cobalt, and 5.6 points for platinum, implying that the Japanese economy is incurring a high mining risk through its use of neodymium. This country's MRFs are all dominated by export demand. The paper concludes by discussing the policy implications and future research directions for measuring the MFs and MRFs of critical metals. For countries poorly endowed with mineral resources, adopting low-carbon energy technologies may imply a shifting of risk from carbon resources to other natural resources, in particular critical metals, and a trade

  13. Low-technology monitoring of atmospheric metal pollution in central Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Yule, F A; Lloyd, O L

    1984-01-01

    In epidemiological studies covering relationships of disease patterns and patterns of atmospheric pollution, conventional filtering equipment is normally used for monitoring the pollution. For various reasons, however, this type of approach often results in levels of pollution being obtained for only a few sites within an extensive fieldwork area. Hence, alternative monitoring techniques, which allow a high density of sampling sites in an area, have been of interest to an increasing number of investigators. The monitors used, known as low-technology monitors, fall into two main categories; indigenous; and transplants. In the authors surveys of atmospheric metal pollutants in industrial communities in Scotland, the indigenous sample materials have included: Hypnum cupressiforme, Lecanora conizaeoides, Agropyron repens and surface soils. In their transplant surveys a variety of different low-technology samplers have been deployed, the most frequently used being: spherical and flat moss bags, Hypogymnia physodes, Tak (synthetic fabric), and total deposition collectors. The data obtained from the various surveys have been plotted on a variety of types of computer map to minimize any systematic bias resulting from the use of a single technique. The pollution patterns found in one particular town were partly unexpected, in view of the dominant wind direction in the locality concerned. Hence it was decided to carry out a wind tunnel experiment to investigate the situation further. The wind tunnel experiment produced results which were consistent with the patterns of pollution derived from the metal surveys, and revealed that the meteorological dispersal of the pollution was unexpectedly influenced by local topography.

  14. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis

    Science.gov (United States)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Pecht, Michael

    2013-04-01

    Rolling element bearing faults are among the main causes of breakdown in rotating machines. In this paper, a rolling bearing fault model is proposed based on the dynamic load analysis of a rotor-bearing system. The rotor impact factor is taken into consideration in the rolling bearing fault signal model. The defect load on the surface of the bearing is divided into two parts, the alternate load and the determinate load. The vibration response of the proposed fault signal model is investigated and the fault signal calculating equation is derived through dynamic and kinematic analysis. Outer race and inner race fault simulations are realized in the paper. The simulation process includes consideration of several parameters, such as the gravity of the rotor-bearing system, the imbalance of the rotor, and the location of the defect on the surface. The simulation results show that different amplitude contributions of the alternate load and determinate load will cause different envelope spectrum expressions. The rotating frequency sidebands will occur in the envelope spectrum in addition to the fault characteristic frequency. This appearance of sidebands will increase the difficulty of fault recognition in intelligent fault diagnosis. The experiments given in the paper have successfully verified the proposed signal model simulation results. The test rig design of the rotor bearing system simulated several operating conditions: (1) rotor bearing only; (2) rotor bearing with loader added; (3) rotor bearing with loader and rotor disk; and (4) bearing fault simulation without rotor influence. The results of the experiments have verified that the proposed rolling bearing signal model is important to the rolling bearing fault diagnosis of rotor-bearing systems.

  15. High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits.

    Science.gov (United States)

    Yu, Lili; Zubair, Ahmad; Santos, Elton J G; Zhang, Xu; Lin, Yuxuan; Zhang, Yuhao; Palacios, Tomás

    2015-08-12

    Because of their extraordinary structural and electrical properties, two-dimensional materials are currently being pursued for applications such as thin-film transistors and integrated circuit. One of the main challenges that still needs to be overcome for these applications is the fabrication of air-stable transistors with industry-compatible complementary metal oxide semiconductor (CMOS) technology. In this work, we experimentally demonstrate a novel high performance air-stable WSe2 CMOS technology with almost ideal voltage transfer characteristic, full logic swing and high noise margin with different supply voltages. More importantly, the inverter shows large voltage gain (∼38) and small static power (picowatts), paving the way for low power electronic system in 2D materials.

  16. Transient Vibration Prediction for Rotors on Ball Bearings Using Load-dependent Non-linear Bearing Stiffness

    Science.gov (United States)

    Fleming, David P.; Poplawski, J. V.

    2002-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.

  17. Local Attitudes towards Bear Management after Illegal Feeding and Problem Bear Activity.

    Science.gov (United States)

    Dubois, Sara; Fraser, David

    2013-09-12

    The "pot bears" received international media attention in 2010 after police discovered the intentional feeding of over 20 black bears during the investigation of an alleged marijuana-growing operation in Christina Lake, British Columbia, Canada. A two-phase random digit dialing survey of the community was conducted in 2011 to understand local perspectives on bear policy and management, before and after a summer of problem bear activity and government interventions. Of the 159 households surveyed in February 2011, most had neutral or positive attitudes towards bears in general, and supported the initial decision to feed the food-conditioned bears until the autumn hibernation. In contrast to wildlife experts however, most participants supported relocating the problem bears, or allowing them to remain in the area, ahead of killing; in part this arose from notions of fairness despite the acknowledged problems of relocation. Most locals were aware of the years of feeding but did not report it, evidently failing to see it as a serious form of harm, even after many bears had been killed. This underscores the importance of preventive action on wildlife feeding and the need to narrow the gap between public and expert opinion on the likely effects of relocation versus killing.

  18. 60 GHz 5-bit digital controlled phase shifter in a digital 40 nm CMOS technology without ultra-thick metals

    NARCIS (Netherlands)

    Gao, H.; Ying, K.; Matters-Kammerer, M.K.; Harpe, P.; Wang, B.; Liu, B.; Serdijn, W.A.; Baltus, P.G.M.

    2016-01-01

    A 5-bit digital controlled switch-type passive phase shifter realised in a 40 nm digital CMOS technology without ultra-thick metals for the 60 GHz Industrial, Scientific and Medical (ISM) band is presented. A patterned shielding with electromagnetic bandgap structure and a stacked metals method to

  19. Characterization of Lubricants on Ball Bearings by FT-IR Using an Integrating Sphere

    Science.gov (United States)

    Street, K. W.; Pepper, S. V.; Wright, A. A.; Grady, B.

    2007-01-01

    Fourier Transform-Infrared reflectance microspectroscopy has been used extensively for the examination of coatings on nonplanar surfaces such as ball bearings. While this technique offers considerable advantages, practical application has many drawbacks, some of which are easily overcome by the use of integrating sphere technology. This paper describes the use of an integrating sphere for the quantification of thin layers of lubricant on the surface of ball bearings and the parameters which require optimization in order to obtain reliable data. Several applications of the technique are discussed including determination of lubricant load on 12.7 mm steel ball bearings and the examination of degraded lubricant on post mortem specimens.

  20. Idaho Nuclear Technology and Engineering Center Sodium-Bearing Waste Treatment Research and Development FY-2002 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Alan Keith; Deldebbio, John Anthony; Mc Cray, John Alan; Kirkham, Robert John; Olson, Lonnie Gene; Scholes, Bradley Adams

    2002-09-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering several optional processes for disposal of liquid sodium-bearing waste. During fiscal year 2002, immobilization-related research included of grout formulation development for sodium-bearing waste, absorption of the waste on silica gel, and off-gas system mercury collection and breakthrough using activated carbon. Experimental results indicate that sodium-bearing waste can be immobilized in grout at 70 weight percent and onto silica gel at 74 weight percent. Furthermore, a loading of 11 weight percent mercury in sulfur-impregnated activated carbon was achieved with 99.8% off-gas mercury removal efficiency.

  1. The evaluation of the micro-tracks and micro-dimples on the tribological characteristics of thrust ball bearings.

    Science.gov (United States)

    Amanov, Auezhan; Pyoun, Young-Shik; Cho, In-Shik; Lee, Chang-Soon; Park, In-Gyu

    2011-01-01

    One of the primary remedies for tribological problems is surface modification. The reduction of the friction between the ball and the raceway of bearings is a very important goal of the development of bearing technology. A low friction has a positive effect in terms of the extension of the fatigue life, avoidance of a temperature rise, and prevention of premature failure of bearings. Therefore, this research sought to investigate the effects of micro-tracks and micro-dimples on the tribological characteristics at the contact point between the ball and the raceway of thrust ball bearings (TBBs). The ultrasonic nanocrystal surface modification (UNSM) technology was applied using different intervals (feed rates) to the TBB raceway surface to create micro-tracks and micro-dimples. The friction coefficient after UNSM at 50 microm intervals showed marked sensitivity and a significant reduction of 30%. In this study, the results showed that more micro-dimples yield a lower friction coefficient.

  2. ANALYSIS OF SUFFICIENCY OF THE BEARING CAPACITY OF BUILDING STRUCTURES OF OPERATING SITES OF MAIN BUILDINGS OF THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Alekseeva Ekaterina Leonidovna

    2012-10-01

    Full Text Available Upon examination of eleven main buildings of power plants, analysis of defects and damages of building structures was performed. Thereafter, the damageability of principal bearing structures of main buildings of thermal plants was analyzed. It was identified that the fastest growing defects and damages were concentrated in the structures of operating sites. The research of the rate of development of the most frequent damages and defects made it possible to conclude that internal corrosion of the reinforcing steel was the most dangerous defect, as far as the reinforced concrete elements of operating sites were concerned. Methods of mathematical statistics were applied to identify the reinforcing steel development pattern inside reinforced concrete elements of floors of operating sites. It was identified that the probability of corrosion of reinforced concrete elements of operating sites was distributed in accordance with the demonstrative law. Based on these data, calculation of strength of reinforced concrete slabs and metal beams was performed in terms of their regular sections, given the natural loads and the realistic condition of structures. As a result, dependence between the bearing capacity reserve ratio and the corrosion development pattern was identified for reinforced concrete slabs and metal beams of operating sites. In order to analyze the sufficiency of the bearing capacity of building structures of operating sites in relation to their time in commission, equations were derived to identify the nature of dependence between the sufficiency of the bearing capacity of reinforced concrete slabs and metal beams of the operating sites and their time in commission.

  3. Genetic relationships of extant brown bears (Ursus arctos) and polar bears (Ursus maritimus).

    Science.gov (United States)

    Cronin, Matthew A; MacNeil, Michael D

    2012-01-01

    Polar bears (Ursus maritimus) and brown bears (Ursus arctos) are closely related species for which extensive mitochondrial and nuclear phylogenetic comparisons have been made. We used previously published genotype data for 8 microsatellite DNA loci from 930 brown bears in 19 populations and 473 polar bears in 16 populations to compare the population genetic relationships of extant populations of the species. Genetic distances (Nei standard distance = 1.157), the proportion of private alleles (52% of alleles are not shared by the species), and Bayesian cluster analysis are consistent with morphological and life-history characteristics that distinguish polar bears and brown bears as different species with little or no gene flow among extant populations.

  4. Selection of contact bearing couple materials for hip prosthesis using finite element analysis under static conditions

    Science.gov (United States)

    Arirajan, K. A.; Chockalingam, K.; Vignesh, C.

    2018-04-01

    Implants are the artificial parts to replace the missing bones or joints in human anatomy to give mechanical support. Hip joint replacement is an important issue in orthopaedic surgery. The main concern limiting the long-run success of the total hip replacement is the limited service life. Hip replacement technique is widely used in replacing the femur head and acetabular cup by materials that are highly biocompatible. The success of the artificial hip replacement depends upon proper material selection, structure, and shape of the hip prosthesis. Many orthopaedic analyses have been tried with different materials, but ended with partial success on the application side. It is a critical task for selecting the best material pair in the hip prosthesis design. This work develops the finite element analysis of an artificial hip implant to study highest von Mises stress, contact pressure and elastic strain occurs for the dissimilar material combination. The different bearing couple considered for the analysis are Metal on Metal, Metal on Plastic, Metal on Ceramic, Ceramic on Plastic, Ceramic on Ceramic combinations. The analysis is carried out at different static positions of a human (i.e) standing, sitting. The results reveals that the combination with metal in contact with plastic (i.e) Titanium femoral head paired with Ultra High Molecular Weight Poly Ethylene acetabular cup reduces maximum von Mises stress and also it gives lowest contact pressure than other combination of bearing couples.

  5. Recent advances in transition-metal-catalyzed intermolecular carbomagnesiation and carbozincation

    Directory of Open Access Journals (Sweden)

    Kei Murakami

    2013-02-01

    Full Text Available Carbomagnesiation and carbozincation reactions are efficient and direct routes to prepare complex and stereodefined organomagnesium and organozinc reagents. However, carbon–carbon unsaturated bonds are generally unreactive toward organomagnesium and organozinc reagents. Thus, transition metals were employed to accomplish the carbometalation involving wide varieties of substrates and reagents. Recent advances of transition-metal-catalyzed carbomagnesiation and carbozincation reactions are reviewed in this article. The contents are separated into five sections: carbomagnesiation and carbozincation of (1 alkynes bearing an electron-withdrawing group; (2 alkynes bearing a directing group; (3 strained cyclopropenes; (4 unactivated alkynes or alkenes; and (5 substrates that have two carbon–carbon unsaturated bonds (allenes, dienes, enynes, or diynes.

  6. Are PEEK-on-Ceramic Bearings an Option for Total Disc Arthroplasty? An In Vitro Tribology Study.

    Science.gov (United States)

    Siskey, Ryan; Ciccarelli, Lauren; Lui, Melissa K C; Kurtz, Steven M

    2016-11-01

    endplates were the primary sources of wear and demonstrated an abrasive wear mechanism. Under idealized and impingement conditions, the ceramic core also demonstrated slight polishing of the articulating surface but the change in mass was unmeasurable. During abrasive testing, the titanium transfer on the core was shown to polish over 5 MC of testing. In all cases and consistent with previous studies of other PEEK bearing couples, the particle size was primarily < 2 µm and morphology was smooth and spheroidal. Overall, the idealized PEEK-on-ceramic wear rate (0.7 ± 0.1 mm 3 /MC) appears comparable to the published wear rates for other polymer-on-hard bearing couples (0.3-6.7 mm 3 /MC) and within the range of 0.2 to 1.9 mm 3 /MC reported for PEEK-on-PEEK cervical disc designs. The particles, based on size and morphology, also suggest the wear mechanism is comparable between the PEEK-on-ceramic couple and other polymer-on-ceramic orthopaedic couples. The PEEK-on-ceramic bearing considered in this study is a novel bearing couple for use in total disc arthroplasty devices and will require clinical evaluation to fully assess the bearing couple and total disc design. However, the wear rates under idealized and adverse conditions, and particle size and morphology, suggest that PEEK-on-ceramic bearings may be a reasonable alternative to polyethylene-on-CoCr and metal-on-metal bearings currently used in cervical TDRs.

  7. R+D works for the further development of high temperature reactors. (1) Captive bearing experiments for active magnetic bearings. (2) Captive bearing test for HTR blowers

    International Nuclear Information System (INIS)

    1991-01-01

    When using active magnetic bearings as blower shaft bearings, blower motors and bearings must be protected against mechanical damage in case of faults (example: total electrical supply failure due to the supply cables breaking). So-called captive bearings are provided, in order to be able to shut the blowers down safely in such faults. These captive bearings are roller bearings which are additionally fitted in the area of the blower shaft bearings, to prevent mechanical contact between the blower rotor and stator. As there was little experience available for the given boundary conditions, such as - speed, - acceleration, - bearing load, - bearing dimensions, - ambient conditions, appropriate development and tests had to be carried out. It was important to determine suitable captive bearings and the necessary ambient conditions, which will make it possible to support the failures of the magnetic bearings to be expected in 40 years' operation of the reactor without damage and to meet the requirements of the captive bearings. (orig./GL) [de

  8. EFFECT OF BEARING MACROGEOMETRY ON BEARING PERFORMANCE IN ELASTOHYDRODYNAMIC LUBRICATION

    Directory of Open Access Journals (Sweden)

    Emin GÜLLÜ

    2000-01-01

    Full Text Available During manufacturing, ideal dimension and mutual positioning of machine elements proposed in project desing can be achieved only within certain range of tolerances. These tolerances, being classified in two groups, related to micro and macro geometry of machine elements, don't have to effect the functioning of these elements. So, as for all machine elements, investigation of the effects of macro and micro tolerances for journal bearings is important. In this study, we have investigated the effect of macro geometric irregularities of journal bearings on performance characteristics. In this regard, we have studied the change of bearing performance in respect to deviation from ideal circle for an elliptic shaft with small ovality rolling in circular journal bearing.

  9. Hydraulic testing plan for the Bear Creek Valley Treatability Study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatability technologies applicable to contaminated groundwater and surface water. The ultimate goal of this effort is to install a treatment system that will remove uranium, technetium, nitrate, and several metals from groundwater before it reaches Bear Creek. This project directly supports the BCV Feasibility Study. Part of the Treatability Study, Phase II Hydraulic Performance Testing, will produce hydraulic and treatment performance data required to design a long-term treatment system. This effort consists of the installation and testing of two groundwater collection systems: a trench in the vicinity of GW-835 and an angled pumping well adjacent to NT-1. Pumping tests and evaluations of gradients under ambient conditions will provide data for full-scale design of treatment systems. In addition to hydraulic performance, in situ treatment chemistry data will be obtained from monitoring wells installed in the reactive media section of the trench. The in situ treatment work is not part of this test plan. This Hydraulic Testing Plan describes the location and installation of the trench and NT-1 wells, the locations and purpose of the monitoring wells, and the procedures for the pumping tests of the trench and NT-1 wells

  10. Passive magnetic bearing configurations

    Science.gov (United States)

    Post, Richard F [Walnut Creek, CA

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  11. Hydrogen energy technology development conference. From production of hydrogen to application of utilization technologies and metal hydrides, and examples; Suiso energy gijutsu kaihatsu kaigi. Suiso no seizo kara riyo gijutsu kinzoku suisokabutsu no oyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-02-14

    The hydrogen energy technology development conference was held on February 14 to 17, 1984 in Tokyo. For hydrogen energy systems and production of hydrogen from water, 6 papers were presented for, e.g., the future of hydrogen energy, current state and future of hydrogen production processes, and current state of thermochemical hydrogen technology development. For hydrogen production, 6 papers were presented for, e.g., production of hydrogen from steel mill gas, coal and methanol. For metal hydrides and their applications, 6 papers were presented for, e.g., current state of development of hydrogen-occluding alloy materials, analysis of heat transfer in metal hydride layers modified with an organic compound and its simulation, and development of a large-size hydrogen storage system for industrial purposes. For hydrogen utilization technologies, 8 papers were presented for, e.g., combustion technologies, engines incorporating metal hydrides, safety of metal hydrides, hydrogen embrittlement of system materials, development trends of phosphate type fuel cells, and alkali and other low-temperature type fuel cells. (NEDO)

  12. Liquid metal pump for nuclear reactors

    International Nuclear Information System (INIS)

    Allen, H.G.; Maloney, J.R.

    1975-01-01

    A pump for use in pumping high temperature liquids at high pressures, particularly liquid metals used to cool nuclear reactors is described. It is of the type in which the rotor is submerged in a sump but is fed by an inlet duct which bypasses the sump. A chamber, kept full of fluid, surrounds the pump casing into which fluid is bled from the pump discharge and from which fluid is fed to the rotor bearings and hence to the sump. This equalizes pressure inside and outside the pump casing and reduces or eliminates the thermal shock to the bearings and sump tank

  13. Remediation of contaminated subsurface materials by a metal-reducing bacterium

    International Nuclear Information System (INIS)

    Gorby, Y.A.; Amonette, J.E.; Fruchter, J.S.

    1994-11-01

    A biotic approach for remediating subsurface sediments and groundwater contaminated with carbon tetrachloride (CT) and chromium was evaluated. Cells of the Fe(iii)-reducing bacterium strain BrY were added to sealed, anoxic flasks containing Hanford groundwater, natural subsurface sediments, and either carbon tetrachloride, CT, or oxidized chromium, Cr(VI). With lactate as the electron donor, BrY transformed CT to chloroform (CF), which accumulated to about 1 0 % of the initial concentration of CT. The remainder of the CT was transformed to unidentified, nonvolatile compounds. Transformation of CT by BrY was an indirect process Cells reduced solid phase Fe(ill) to chemically reactive FE(II) that chemically transformed the chlorinated contaminant. Cr(VI), in contrast, was reduced by a direct enzymatic reaction in the presence or absence of Fe(III)-bearing sediments. These results demonstrate that Fe(ill)-reducing bacteria provide potential for transforming CT and for reducing CR(VI) to less toxic Cr(III). Technologies for stimulating indigenous populations of metal-reducing bacteria or for introducing specific metal-reducing bacteria to the subsurface are being investigated

  14. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1981-01-01

    A liquid metal pump comprising a shaft support structure which is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft carries an impeller and the support structure carries an impeller cage which is slidably disposed in a diffuser so as to allow complete removal of pump internals for inspection and repair. The diffuser is concentrically supported in the pump housing which also takes up all reaction forces generated by the discharge of the liquid metal from the diffuser, with floating seals arranged between impeller cage and the diffuser. The space between the diffuser and the pump housing permits the incoming liquid to essentially surround the diffuser. (author)

  15. MATHEMATICAL AND COMPUTER MODELING OF AUTOMATIC CONTROL SYSTEM FOR HYDROSTATIC BEARING

    Directory of Open Access Journals (Sweden)

    N. A. Pelevin

    2016-09-01

    Full Text Available The paper presents simulation results of hydrostatic bearing dynamics in spindle assembly of standard flexible production module with throttled circuit. The necessity of dynamic quality increase for automatic control system of the hydrostatic bearing with the use of correcting means in the form of RC-chains is shown. The features of correction parameters choice coming from the existence of the crossing connections in automatic control system structure are noted. We propose the block diagram of automatic control system of the hydrostatic bearing in Simulink working field and cyclic algorithm for determination program of RC-chain parameters implemented in MATLAB taking into account typical thermal processes for the finishing treatment. Graphic-analytical method for the correction parameters choice is presented based on the stability stock phase gradient for dynamic quality determination of automatic control system. Researches of the method estimability in case of using the standard metal bellow valve as the hydrocapacity for RC-chain are also carried out. Recommendations for the bellow valve choice are formulated. The check of dynamic quality indicators concerning transition processes calculated by means of the appropriate programs developed for MATLAB is performed. Examples are given for phase stability factor gradient schedules with partition of various areas of hydrostatic bearing dynamic quality for different frequencies of spindle rotation and procedure description of data cursor function application on MATLAB toolbar. Improvement of hydrostatic bearing dynamics under typical low loadings for finishing treatment is noted. Also, decrease of dynamic indicators for high loadings treatment in case of roughing treatment is marked.

  16. Review of FY2001 Development Work for Vitrification of Sodium Bearing Waste

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.M.; Taylor, D.D.

    2002-09-09

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  17. Review of FY 2001 Development Work for Vitrification of Sodium Bearing Waste

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Dean Dalton; Barnes, Charles Marshall

    2002-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  18. Review of FY2001 Development Work for Vitrification of Sodium Bearing Waste

    International Nuclear Information System (INIS)

    Barnes, C.M.; Taylor, D.D.

    2002-01-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification

  19. Resilient and Corrosion-proof Rolling Element Bearings Made from Ni-ti Alloys for Aerospace Mechanism Applications and the Ultimate Space Technology Development Platform

    Science.gov (United States)

    Dellacorte, Christopher

    2014-01-01

    The International Space Station provides a unique microgravity laboratory environment for research. The ISS also serves as an effective platform for the development of technologies and engineered solutions related to living and working in space. The space environment also challenges our capabilities related to lubrication and tribology. In this seminar, Dr. DellaCorte will review the basics of space mechanism tribology and the challenges of providing good lubrication and long-life in the harsh space environment. He will also discuss recent tribological challenges associated with the Solar Alpha Rotary Joint (SARJ) bearings and life support hardware that must operate under severe conditions that are literally out of this world. Each tribology challenge is unique and their solutions often result in new technologies that benefit the tribology community everywhere, even back on Earth

  20. Mechanical pumps for liquid metals; Pompes mecaniques pour metaux liquides

    Energy Technology Data Exchange (ETDEWEB)

    Baumier, J; Gollion, H J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The pumping of liquid metals by centrifugal pumps poses two principal problems. These are hermetic sealing of the rotating shaft and, its guidance where immersed in liquid metal. The solutions to the problems used on 13 experimental pumps are given here. The resolution of the guidance problem consists in the majority of cases in the utilisation of hydrostatic bearings. Accordingly, a theoretical study was instituted for the first time to calculate the bearings of the earlier pumps. After this, an experimental study was carried out, to check the theory by water tests. A relation for bearing calculation of pumps with diffusers is proposed. Finally the influence of the bearing elasticity on the shafts critical speed is studied. (authors) [French] Le pompage des metaux liquides, par des pompes centrifuges, pose 2 principaux problemes, qui sont: d'une part, la realisation d'une excellente etancheite au passage de l'arbre, d'autre part, son guidage sur la partie immergee dans le metal liquide. Les solutions retenues pour resoudre ces problemes sur 13 pompes experimentees sont presentees. Le probleme du guidage de l'arbre, a dans la majorite des cas ete resolu en utilisant un palier hydrostatique, aussi l'etude en a d'abord ete approfondie de facon theorique pour calculer les paliers des premieres pompes, puis experimentale pour controler la theorie, en effectuant des essais a l'eau. On propose une relation pour calculer les paliers des pompes a diffuseurs. On a en outre effectue une etude de l'influence de l'elasticite du palier hydrostatique sur la vitesse critique de l'arbre. (auteurs)

  1. Study on Tribological Properties of CoCrMo Alloys against Metals and Ceramics as Bearing Materials for Artificial Cervical Disc

    Science.gov (United States)

    Xiang, Dingding; Song, Jian; Wang, Song; Liao, Zhenhua; Liu, Yuhong; Tyagi, Rajnesh; Liu, Weiqiang

    2018-02-01

    CoCrMo alloys are believed to be a kind of potential material for artificial cervical disc. However, the tribological properties of CoCrMo alloys against different metals and ceramics are not systematically studied. In this study, the tribological behaviors of CoCrMo alloys against metals (316L, Ti6Al4V) and ceramics (Si3N4, ZrO2) were focused under dry friction and 25 wt.% newborn calf serum (NCS)-lubricated conditions using a ball-on-disc apparatus under reciprocating motion. The microstructure, composition and hardness of CoCrMo alloys were characterized using x-ray diffraction, scanning electron microscopy (SEM) and hardness testers, respectively. The contact angles of the CoCrMo alloys with deionized water and 25 wt.% NCS were measured by the OCA contact angle measuring instrument. The maximum wear width, wear depth and wear volume were measured by three-dimensional white light interference. The morphology and the EDX analysis of the wear marks on CoCrMo alloys were examined by SEM to determine the basic mechanism of friction and wear. The dominant wear mechanism in dry friction for CoCrMo alloys against all pairings was severe abrasive wear, accompanied with a lot of material transfer. Under 25 wt.% NCS-lubricated condition, the wear mechanism for CoCrMo alloys against ceramics (Si3N4, ZrO2) was also mainly severe abrasive wear. However, severe abrasive wear and electrochemical corrosion occurred for the CoCrMo-316L pairing under lubrication. Severe abrasive wear, adhesive wear and electrochemical corrosion occurred for the CoCrMo-Ti6Al4V pairing under lubrication. According to the results, the tribological properties of CoCrMo alloys against ceramics were better than those against metals. The CoCrMo-ZrO2 pairing displayed the best tribological behaviors and could be taken as a potential candidate bearing material for artificial cervical disc.

  2. Comparison of fixed-bearing and mobile-bearing total knee arthroplasty after high tibial osteotomy.

    Science.gov (United States)

    Hernigou, Philippe; Huys, Maxime; Pariat, Jacques; Roubineau, François; Flouzat Lachaniette, Charles Henri; Dubory, Arnaud

    2018-02-01

    There is no information comparing the results of fixed-bearing total knee replacement and mobile-bearing total knee replacement in the same patients previously treated by high tibial osteotomy. The purpose was therefore to compare fixed-bearing and mobile-bearing total knee replacements in patients treated with previous high tibial osteotomy. We compared the results of 57 patients with osteoarthritis who had received a fixed-bearing prosthesis after high tibial osteotomy with the results of 41 matched patients who had received a rotating platform after high tibial osteotomy. The match was made for length of follow-up period. The mean follow-up was 17 years (range, 15-20 years). The patients were assessed clinically and radiographically. The pre-operative knee scores had no statistically significant differences between the two groups. So was the case with the intra-operative releases, blood loss, thromboembolic complications and infection rates in either group. There was significant improvement in both groups of knees, and no significant difference was observed between the groups (i.e., fixed-bearing and mobile-bearing knees) for the mean Knee Society knee clinical score (95 and 92 points, respectively), or the Knee Society knee functional score (82 and 83 points, respectively) at the latest follow-up. However, the mean post-operative knee motion was higher for the fixed-bearing group (117° versus 110°). In the fixed-bearing group, one knee was revised because of periprosthetic fracture. In the rotating platform mobile-bearing group, one knee was revised because of aseptic loosening of the tibial component. The Kaplan-Meier survivorship for revision at ten years of follow-up was 95.2% for the fixed bearing prosthesis and 91.1% for the rotating platform mobile-bearing prosthesis. Although we did manage to detect significant differences mainly in clinical and radiographic results between the two groups, we found no superiority or inferiority of the mobile-bearing

  3. Hydrodynamic sliding bearings vs. roller bearings. Segmented sliding bearings for higher rotational speed; Hydrodynamische Gleitlager versus Waelzlager. Segmentgleitlager fuer hoehere Drehzahlen

    Energy Technology Data Exchange (ETDEWEB)

    Hagenhoff, M.; Sauer, M. [Main-Metall-Giesserei Fritz Schorr GmbH und Co. KG, Altenglan (Germany)

    2004-10-01

    Hydrodynamic sliding bearings are considered only in cases when roller bearings reach their speed limits and there is no other solution. However, this view neglects the fact that there are modern, optimised sliding bearings which have more advantages over roller bearings than should be expected. Many producers of sliding bearings also have computer programs enabling them to offer customised solutions, i.e. optimal adaptation of the bearings to their specific operating conditions. (orig.) [German] Hydrodynamische Gleitlager werden oft erst dann in Betracht gezogen, wenn man an die Drehzahlgrenzen von Waelzlagern stoesst und keine andere sinnvolle Alternative mehr in Frage kommt. Dabei uebersieht man leicht, dass es moderne, optimierte Gleitlagerkonstruktionen gibt, die weitaus haeufiger ihre Staerken im Vergleich zu Waelzlagern ausspielen koennen als zunaechst vermutet. Viele Gleitlagerhersteller haben zudem heute Berechnungsprogramme zur Verfuegung, die eine optimale Anpassung der Lager an die speziellen Betriebsbedingungen erlauben. (orig.)

  4. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears

    OpenAIRE

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-01-01

    © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we...

  5. Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals

    Science.gov (United States)

    Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.

    2017-02-01

    The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.

  6. Model of converter dusts and iron-bearing slurries management in briquetting

    Directory of Open Access Journals (Sweden)

    P. Gara

    2016-07-01

    Full Text Available An important problem in metallurgy of iron and steel is management of hydrated, fine-grained, iron-bearing waste which can be formed as a result of gas scrubbing. The article presents a model of application of converter slurry in a closed-circuit flow system. The correct preparation of slag, namely briquetting with defined additives, allows for application of such slag in the steel-making process as the substitute for scrap metal.

  7. The application of metal cutting technologies in tasks performed in radioactive environments

    International Nuclear Information System (INIS)

    Fogle, R.F.; Younkins, R.M.

    1997-01-01

    The design and use of equipment to perform work in radioactive environments is uniquely challenging. Some tasks require that the equipment be operated by a person wearing a plastic suit or full face respirator and donning several pairs of rubber gloves. Other applications may require that the equipment be remotely controlled. Other important, design considerations include material compatibility, mixed waste issues, tolerance to ionizing radiation, size constraints and weight capacities. As always, there is the ''We need it ASAP'' design criteria. This paper describes four applications where different types of metal cutting technologies were used to successfully perform tasks in radioactive environments. The technologies include a plasma cutting torch, a grinder with an abrasive disk, a hydraulic shear, and a high pressure abrasive water jet cutter

  8. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence.

    Directory of Open Access Journals (Sweden)

    Andrew Ladle

    Full Text Available Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a occurrence of grizzly bears and black bears relative to habitat variables (b occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for

  9. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence.

    Science.gov (United States)

    Ladle, Andrew; Steenweg, Robin; Shepherd, Brenda; Boyce, Mark S

    2018-01-01

    Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a) occurrence of grizzly bears and black bears relative to habitat variables (b) occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c) temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for motorised

  10. Unbalance Response Prediction for Rotors on Ball Bearings Using Speed and Load Dependent Nonlinear Bearing Stiffness

    Science.gov (United States)

    Fleming, David P.; Poplawski, J. V.

    2003-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic analysis requires that bearing forces corresponding to the actual bearing deflection be utilized. For this work bearing forces were calculated by COBRA-AHS, a recently developed rolling-element bearing analysis code. Bearing stiffness was found to be a strong function of bearing deflection, with higher deflection producing markedly higher stiffness. Curves fitted to the bearing data for a range of speeds and loads were supplied to a flexible rotor unbalance response analysis. The rotordynamic analysis showed that vibration response varied nonlinearly with the amount of rotor imbalance. Moreover, the increase in stiffness as critical speeds were approached caused a large increase in rotor and bearing vibration amplitude over part of the speed range compared to the case of constant bearing stiffness. Regions of bistable operation were possible, in which the amplitude at a given speed was much larger during rotor acceleration than during deceleration. A moderate amount of damping will eliminate the bistable region, but this damping is not inherent in ball bearings.

  11. Collision Welding of Dissimilar Materials by Vaporizing Foil Actuator: A Breakthrough Technology for Dissimilar Metal Joining

    Energy Technology Data Exchange (ETDEWEB)

    Daehn, Glenn S. [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Vivek, Anupam [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Liu, Bert C. [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    2016-09-30

    This work demonstrated and further developed Vaporizing Foil Actuator Welding (VFAW) as a viable technique for dissimilar-metal joining for automotive lightweighting applications. VFAW is a novel impact welding technology, which uses the pressure developed from electrically-assisted rapid vaporization of a thin aluminum foil (the consumable) to launch and ultimately collide two of more pieces of metal to create a solid-state bond between them. 18 dissimilar combinations of automotive alloys from the steel, aluminum and magnesium alloy classes were screened for weldability and characterized by metallography of weld cross sections, corrosion testing, and mechanical testing. Most combinations, especially a good number of Al/Fe pairs, were welded successfully. VFAW was even able to weld combinations of very high strength materials such as 5000 and 6000 series aluminum alloys to boron and dual phase steels, which is difficult to impossible by other joining techniques such as resistance spot welding, friction stir welding, or riveting. When mechanically tested, the samples routinely failed in a base metal rather than along the weld interface, showing that the weld was stronger than either of the base metals. As for corrosion performance, a polymer-based protective coating was used to successfully combat galvanic corrosion of 5 Al/Fe pairs through a month-long exposure to warm salt fog. In addition to the technical capabilities, VFAW also consumes little energy compared to conventional welding techniques and requires relatively light, flexible tooling. Given the technical and economic advantages, VFAW can be a very competitive joining technology for automotive lightweighting. The success of this project and related activities has resulted in substantial interest not only within the research community but also various levels of automotive supply chain, which are collaborating to bring this technology to commercial use.

  12. Local Attitudes towards Bear Management after Illegal Feeding and Problem Bear Activity

    Directory of Open Access Journals (Sweden)

    David Fraser

    2013-09-01

    Full Text Available The “pot bears” received international media attention in 2010 after police discovered the intentional feeding of over 20 black bears during the investigation of an alleged marijuana-growing operation in Christina Lake, British Columbia, Canada. A two-phase random digit dialing survey of the community was conducted in 2011 to understand local perspectives on bear policy and management, before and after a summer of problem bear activity and government interventions. Of the 159 households surveyed in February 2011, most had neutral or positive attitudes towards bears in general, and supported the initial decision to feed the food-conditioned bears until the autumn hibernation. In contrast to wildlife experts however, most participants supported relocating the problem bears, or allowing them to remain in the area, ahead of killing; in part this arose from notions of fairness despite the acknowledged problems of relocation. Most locals were aware of the years of feeding but did not report it, evidently failing to see it as a serious form of harm, even after many bears had been killed. This underscores the importance of preventive action on wildlife feeding and the need to narrow the gap between public and expert opinion on the likely effects of relocation versus killing.

  13. Bearing construction for refrigeration compresssor

    Science.gov (United States)

    Middleton, Marc G.; Nelson, Richard T.

    1988-01-01

    A hermetic refrigeration compressor has a cylinder block and a crankshaft rotatable about a vertical axis to reciprocate a piston in a cylinder on the cylinder block. A separate bearing housing is secured to the central portion of the cylinder block and extends vertically along the crankshaft, where it carries a pair of roller bearings to journal the crankshaft. The crankshaft has a radially extending flange which is journaled by a thrust-type roller bearing above the bearing housing to absorb the vertical forces on the crankshaft so that all three of the roller bearings are between the crankshaft and the bearing housing to maintain and control the close tolerances required by such bearings.

  14. The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

    2012-11-28

    Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

  15. Geology, mineralization, and hydrothermal alteration and relationships to acidic and metal-bearing surface waters in the Palmetto Gulch area, southwestern Colorado

    Science.gov (United States)

    Bove, Dana J.; Kurtz, Jeffrey P.; Wright, Winfield G.

    2002-01-01

    The Palmetto Gulch area is affected by low pH and metal-bearing drainage from abandoned mines, and perhaps, from natural weathering around vein zones. To investigate these anthropogenic and potential natural sources of acidity and metals, we mapped the geology, veins, and hydrothermally altered areas; conducted mine dump leachate studies; and collected reconnaissance water quality data. Several small abandoned mines are present in the Palmetto Gulch area that produced small amounts of relatively high-grade silver ore from fault-controlled polymetallic vein deposits. These veins are hosted in lavas, breccias, and related volcaniclastic sediments that ponded within the 28 Ma San Juan-Uncompahgre caldera complex. These rock units generally have conformable contacts and have shallow dips to the northwest. Lava flows of pyroxene andesite, which host the Roy-Pray mine, are massive near their base and typically grade upward into tightly jointed rock with 2-15 cm joint spacing. In general, most hydrothermally altered rock within the Palmetto Gulch area is restricted to envelopes surrounding the mineralized veins and faults. Composite zones of vein-related alteration vary from about 50 to 80 m wide along the high ridgelines and narrow to less than 10 to 15 m beneath an elevation of about 5,462 m. Where unaffected by surficial oxidation, these altered zones contain as much as 7 to 10 volume percent finely-disseminated pyrite. The majority of rocks in the area were affected by regional and vein-related propylitic alteration. These greenish-colored rocks have alteration products consisting of chlorite, illite, and calcite; and feldspars are typically weakly altered. Most of these rocks have detectable amounts of calcite, while as much as 11 percent by weight was detected in samples collected during this study. The Palmetto Gulch area is affected by low pH and metal-bearing drainage from abandoned mines, and perhaps, from natural weathering around vein zones. To investigate

  16. A semi-analytical bearing model considering outer race flexibility for model based bearing load monitoring

    Science.gov (United States)

    Kerst, Stijn; Shyrokau, Barys; Holweg, Edward

    2018-05-01

    This paper proposes a novel semi-analytical bearing model addressing flexibility of the bearing outer race structure. It furthermore presents the application of this model in a bearing load condition monitoring approach. The bearing model is developed as current computational low cost bearing models fail to provide an accurate description of the more and more common flexible size and weight optimized bearing designs due to their assumptions of rigidity. In the proposed bearing model raceway flexibility is described by the use of static deformation shapes. The excitation of the deformation shapes is calculated based on the modelled rolling element loads and a Fourier series based compliance approximation. The resulting model is computational low cost and provides an accurate description of the rolling element loads for flexible outer raceway structures. The latter is validated by a simulation-based comparison study with a well-established bearing simulation software tool. An experimental study finally shows the potential of the proposed model in a bearing load monitoring approach.

  17. EFFECT OF PLASMA CUTTING PARAMETERS UPON SHAPES OF BEARING CURVE OF C45 STEEL SURFACE

    Directory of Open Access Journals (Sweden)

    Agnieszka Skoczylas

    2015-08-01

    Full Text Available The article presents the results of studies on the effect of plasma cutting technological parameters upon the shape of bearing curves and the parameters of the curve. The topography of surface formed by plasma cutting were analyzed. For measuring surface roughness and determining the bearing curve the appliance T8000 RC120 – 400 by Hommel-Etamic was used together with software.

  18. The improved damping of superconductor bearings for 35 kWh superconductor flywheel energy storage system

    International Nuclear Information System (INIS)

    Han, Y.H.; Park, B.J.; Jung, S.Y.; Han, S.C.; Lee, W.R.; Bae, Y.C.

    2013-01-01

    Highlights: ► We made a 35 kWh superconductor flywheel energy storage system. ► The damping coefficient of the superconductor bearing was increased over 3000 N s/m. ► The source of damping was discussed. -- Abstract: A 35 kWh Superconductor Flywheel Energy Storage system (SFES) using hybrid bearing sets, which is composed of a high temperature superconductor (HTS) bearing and an active magnet damper (AMD), has been developed at KEPCO Research Institute (KEPRI). Damping is a source of energy loss but necessary for the stability of the flywheel system. We found that the damping of HTS bearings can be improved by thermal insulating bolts, which play a role of passive type external damper. To investigate the source of the increased damping, damping coefficients were measured with HTS bearings using insulating bolts made of three kinds of polymer materials. The damping coefficient was raised over 3000 N s/m in the case of PEEK bolts. The value was almost a quarter of the AMD. In this study, thermoelastic and Coulomb friction damping mechanisms are discussed. The main damping mechanism was the thermoelastic damping of the bolts themselves. And interfacial gap between the insulating bolt and metal chamber, which increased during the cooling process, was considered to be the cause of the anisotropic damping coefficients. Finally, the effects of the HTS bearings on the first critical speed are shown

  19. Fabrication of metallic fuel for fast breeder reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arbind; Mittal, R.K.; Prasad, R.S.; Mahule, N.; Kumar, Arun; Prasad, G.J.

    2012-01-01

    Natural uranium oxide fuelled PHWRs comprises of first stage of Indian nuclear power programme. Liquid metal fast breeder reactors fuelled by Pu (from PHWR's) form the second stage. A shorter reactor doubling time is essential in order to accelerate the nuclear power growth in India. Metallic fuels are known to provide shorter doubling times, necessitating to be used as driver fuel for fast breeder reactors. One of the fabrication routes for metallic fuels having random grain orientation, is injection casting technique. The technique finds its basis in an elementary physical concept - the possibility of supporting a liquid column within a tube, by the application of a pressure difference across the liquid interface inside and outside the tube. At AFD, BARC a facility has been set-up for injection casting of uranium rods in quartz tube moulds, demoulding of cast rods, end-shearing of rods and an automated inspection system for inspection of fuel rods with respect to mass, length, diameter and diameter variation along the length and internal and external porosities/voids. All the above facilities have been set-up in glove boxes and have successfully been used for fabrication of uranium bearing fuel rods. The facility has been designed for fabrication and inspection of Pu-bearing metallic fuels also, if required

  20. Flow measurement in turbine bearings. A measure to prevent damage; Durchflussmessung an Turbinenlagern. Eine Massnahme zur Verhuetung von Schaeden

    Energy Technology Data Exchange (ETDEWEB)

    Nagler, T. [STEAG AG, Heizkraftwerk Herne (Germany); Schenk, K. [STEAG AG, Essen (Germany)

    1999-10-01

    The temperature of sliding bearings for turbines, pumps, compressors, blowers and motors is normally continually monitored. Depending on the type of construction and size of the aggregates, it has been common practice since the beginning of 1960 to measure the temperature of the bearing metal directly instead of the outflowing oil. Provided measurements are made also in areas of the highest surface compression, any deficiency, i.e. overload due to increasing bearing metal temperatues, are noticed at an early stage. In case of other design types, however, serious damage might result. But also serious maintenance errors due to the closure of bearing oil flow have forced us to implement more suitable measuring measures, one of them being an ultrasonic quantity measurement, that can be refurbished without great expenditure during operation. (orig.) [Deutsch] Gleitlager fuer Turbinen, Pumpen, Verdichter, Geblaese, Getriebe und Motoren werden ueblicherweise kontinuierlich temperaturmaessig ueberwacht. Seit Anfang 1960 werden je nach Bauart und Groesse der Aggregate Temperaturen nicht mehr des ablaufendes Oeles, sondern des Weissmetalls direkt gemessen. Vorausgesetzt, es wird auch im Bereich der hoechsten Flaechenpressung gemessen, werden Maengel, d.h. Ueberbelastung durch ansteigende Weissmetalltemperaturen, schnell erkannt. Bei anderen Konstruktionen hingegen kann es zu schweren Schaeden kommen. Aber auch gravierende Wartungsfehler durch Verschluss der Lageroelzufuhr haben uns gezwungen, geeignetere Messmethoden anzuwenden. Hierzu gehoert eine Mengenmessung mittels Ultraschall, die ohne viel Aufwand waehrend des Betriebes nachgeruestet werden kann. (orig.)

  1. Component level study of an actively lubricated LEG Tilting Pad Bearing: Theory and experiment

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier; Santos, Ilmar Ferreira

    2018-01-01

    portrays the first experimental study for the“proof of concept” of this configuration, as well as a comparison with theoretical results. A simplified setup, featuring a rigid rotor supported by a single pad arrangement is the subject of study. The obtained results prove the viability of the proposed active...... bearing design, validate the available simulation tool and exemplify on a conceptual level the operational benefits from introducing this technology into standard LEG Tilting Pad Bearings....

  2. Selecting Security Technology Providers

    Science.gov (United States)

    Schneider, Tod

    2009-01-01

    The world of security technology holds great promise, but it is fraught with opportunities for expensive missteps and misapplications. The quality of the security technology consultants and system integrators one uses will have a direct bearing on how well his school masters this complex subject. Security technology consultants help determine…

  3. Heavy Metal.

    Science.gov (United States)

    Black, Susan

    2001-01-01

    The Centers for Disease Control and Prevention (CDC) estimate that more than 1 million children ages 5 and under are afflicted with unsafe amounts of lead. Schools can be a source of lead poisoning. Other sources include playgrounds near freeways, playground equipment, contaminated soil, and technology rooms with lead-bearing supplies. Sidebars…

  4. Friction and Wear Reduction of Eccentric Journal Bearing Made of Sn-Based Babbitt for Ore Cone Crusher.

    Science.gov (United States)

    Amanov, Auezhan; Ahn, Byungmin; Lee, Moon Gu; Jeon, Yongho; Pyun, Young-Sik

    2016-11-22

    An anti-friction Babbitt alloy-coated bearing made by a casting process is a journal bearing, which is used in an ore cone crusher eccentric. The main purpose of the Babbitt coated eccentric is to provide a low friction to support and guide a rotating shaft. Despite the fact that the Babbitt-coated eccentric offers a low friction coefficient and can be operated without a continuous supply of lubricant, it suffers from mining environments and short service life. In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique was used to further reduce the friction coefficient, to increase the wear resistance, and to extend the service life of the Sn-based Babbitt metal. The friction and wear behavior of the Sn-based Babbitt metal was investigated using a block-on-ring tester under both dry and oil-lubricated conditions. The results of the experiments revealed that the friction and wear behavior of Sn-based Babbitt metal could be improved by the application of the UNSM technique. The friction and wear mechanisms of the specimens were explained and discussed in terms of changes in surface properties-microstructure, surface hardness, surface roughness, etc.

  5. Friction and Wear Reduction of Eccentric Journal Bearing Made of Sn-Based Babbitt for Ore Cone Crusher

    Directory of Open Access Journals (Sweden)

    Auezhan Amanov

    2016-11-01

    Full Text Available An anti-friction Babbitt alloy-coated bearing made by a casting process is a journal bearing, which is used in an ore cone crusher eccentric. The main purpose of the Babbitt coated eccentric is to provide a low friction to support and guide a rotating shaft. Despite the fact that the Babbitt-coated eccentric offers a low friction coefficient and can be operated without a continuous supply of lubricant, it suffers from mining environments and short service life. In this study, an ultrasonic nanocrystalline surface modification (UNSM technique was used to further reduce the friction coefficient, to increase the wear resistance, and to extend the service life of the Sn-based Babbitt metal. The friction and wear behavior of the Sn-based Babbitt metal was investigated using a block-on-ring tester under both dry and oil-lubricated conditions. The results of the experiments revealed that the friction and wear behavior of Sn-based Babbitt metal could be improved by the application of the UNSM technique. The friction and wear mechanisms of the specimens were explained and discussed in terms of changes in surface properties—microstructure, surface hardness, surface roughness, etc.

  6. Analysis and simulation of non-metallic inclusions in spheroidal graphite iron

    International Nuclear Information System (INIS)

    Pustal, B; Schelnberger, B; Bührig-Polaczek, A

    2016-01-01

    Non-metallic inclusions in spheroidal cast iron (SGI) reduce fatigue strength and yield strength. This type of inclusion usually accumulates at grain boundaries. Papers addressing this topic show the overall impact of both the fraction of so-called white (carbides) and black (non-metallic) inclusions on mechanical properties. In the present work we focus on the origin and the formation conditions of black Mg-bearing inclusions, further distinguishing between Si-bearing and non-Si-bearing Mg inclusions. The formation was simulated applying thermodynamic approaches. Moreover, appropriate experiments have been carried out and a large number of particles have been studied applying innovative feature analysis with regard to shape, size, and composition. Magnesium silicates are predicted at elevated oxygen concentrations, whereas at low levels of oxygen sulphides and carbides appear at a late stage of solidification. Experiments with three consecutive flow obstacles show that the amount of magnesium silicates decrease after each of the three obstacles, whereas the fraction of non-Si-bearing inclusions remains approximately constant. The size of inclusions divides in halves over the flow path and the number of particles increases accordingly. We point out that based on feature analysis Mg-O-C bearing inclusion show disadvantageous form factors for which reason this kind of inclusions may be extremely harmful in terms of crack initiation. All results obtained indicate that magnesium silicates are entrapped on mould filling, whereas Mg-(O, C, S, P, N) bearing particles are precipitates at late stages of solidification. Consequently, the only avoidance strategy is setting up optimum retained magnesium content. (paper)

  7. Bearing restoration by grinding

    Science.gov (United States)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  8. Metal oxalate complexes as novel inorganic dopants: Studies on ...

    Indian Academy of Sciences (India)

    Unknown

    UV-visible and IR spectral features not only confirmed the polyaniline doping by complex anions but also substantiated ... MoS3 dopant. Although inorganic metal complexes bear- ... distilled water and then with methanol and acetone until.

  9. Impact of Fixed-Bearing and Mobile-Bearing Tibial Insert in Unicondylar Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Mehmet Faruk Çatma

    2016-06-01

    Full Text Available INTRODUCTION: The aim of the study is to investigate the impact of fixed or mobile-bearing tibial inserts on patellofemoral arthrosis and evaluate which one to be preferred for patients with patellofemoral arthrosis. METHODS: Operated in our clinic between January 2009 and February 2013, 33 with patellofemoral arthritis together with anteromedial compartment arthritis were included in the study. Patellofemoral joints of patients were evaluated according to the scoring system defined by Fulkerson-Shea. RESULTS: Unicondylar knee arthroplasty with fixed-bearing tibial insertsand 22 (66,6% (male: 3, female: 19 and unicondylar knee arthroplasty with mobile-bearing tibial inserts 11 (33,9 % (male: 2, female: 9 were implanted.Average knee flexion was found to be 116,5 (100-135 degrees in 22 patients with mobile-bearing tibial inserts, and 114,5 (95-135 in 11 patients with fixed-bearing tibial inserts. DISCUSSION AND CONCLUSION: Patellofemoral arthrosis is an important factor for unicondylar knee arthroplasty prognosis and one of the determinants of patient satisfaction. Significantly less patellofemoral complaints were seen with UKA with fixed-bearing tibial insert compared to mobile-bearing tibial insert.

  10. Degradation of Zr-based bulk metallic glasses used in load-bearing implants: A tribocorrosion appraisal.

    Science.gov (United States)

    Zhao, Guo-Hua; Aune, Ragnhild E; Mao, Huahai; Espallargas, Nuria

    2016-07-01

    Owing to the amorphous structure, Bulk Metallic Glasses (BMGs) have been demonstrating attractive properties for potential biomedical applications. In the present work, the degradation mechanisms of Zr-based BMGs with nominal compositions Zr55Cu30Ni5Al10 and Zr65Cu18Ni7Al10 as potential load-bearing implant material were investigated in a tribocorrosion environment. The composition-dependent micro-mechanical and tribological properties of the two BMGs were evaluated prior to the tribocorrosion tests. The sample Zr65-BMG with a higher Zr content exhibited increased plasticity but relatively reduced wear resistance during the ball-on-disc tests. Both BMGs experienced abrasive wear after the dry wear test under the load of 2N. The cross-sectional subsurface structure of the wear track was examined by Focused Ion Beam (FIB). The electrochemical properties of the BMGs in simulated body fluid were evaluated by means of potentiodynamic polarization and X-ray Photoelectron Spectroscopy (XPS). The spontaneous passivation of Zr-based BMGs in Phosphate Buffer Saline solution was mainly attributed to the highly concentrated zirconium cation (Zr(4+)) in the passive film. The tribocorrosion performance of the BMGs was investigated using a reciprocating tribometer equipped with an electrochemical cell. The more passive nature of the Zr65-BMG had consequently a negative influence on its tribocorrosion resistance, which induced the wear-accelerated corrosion and eventually speeded-up the degradation process. It has been revealed the galvanic coupling was established between the depassivated wear track and the surrounding passive area, which is the main degradation mechanism for the passive Zr65-BMG subjected to the tribocorrosion environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Climate Drives Polar Bear Origins

    Science.gov (United States)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  12. Fabrication of cermet bearings for the control system of a high temperature lithium cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Heestand, R. L.; Kizer, D. E.

    1973-01-01

    The techniques used to fabricate cermet bearings for the fueled control drums of a liquid metal cooled reference-design reactor concept are presented. The bearings were designed for operation in lithium for as long as 5 years at temperatures to 1205 C. Two sets of bearings were fabricated from a hafnium carbide - 8-wt. % molybdenum - 2-wt. % niobium carbide cermet, and two sets were fabricated from a hafnium nitride - 10-wt. % tungsten cermet. Procedures were developed for synthesizing the material in high purity inert-atmosphere glove boxes to minimize oxygen content in order to enhance corrosion resistance. Techniques were developed for pressing cylindrical billets to conserve materials and to reduce machining requirements. Finishing was accomplished by a combination of diamond grinding, electrodischarge machining, and diamond lapping. Samples were characterized in respect to composition, impurity level, lattice parameter, microstructure and density.

  13. Intelligence diagnosis method for roller bearings using features of AE signal

    International Nuclear Information System (INIS)

    Pan, J; Wang, H Q; Wang, F; Yang, J F; Liu, W B

    2012-01-01

    Rolling bearings are important components in rotating machines, which are wildly used in industrial production. The fault diagnosis technology plays a very important role for quality and life of machines. Based on symptom parameters of acoustic emission (AE) signals, this paper presents an intelligent diagnosis method for roller bearings using the principal component analysis, rough sets, and BP neural network to detect faults and distinguish fault types. The principal component analysis and the rough sets algorithm are used to reduce details of time-domain symptom parameters for training the BP neural network. The BP neural network, which is used for condition diagnosis of roller bearings, can obtain good convergence using the symptom parameters acquired by the principal component analysis and the rough sets during learning, and automatically distinguish fault types during diagnosing. Practical examples are provided to verify the efficiency of the proposed method.

  14. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    International Nuclear Information System (INIS)

    Curwen, P.W.; Rao, D.K.; Wilson, D.S.

    1992-06-01

    This report describes work performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061, open-quotes A Feasibility Assessment of Magnetic Bearings for Free-Piston Stirling Space Engines.close quotes The work was performed over the period from July 1990 through August 1991. The objective of the effort was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in future long-term space missions

  15. Technology development program for safe shipment of spent fuel from liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Freedman, J.M.; Humphreys, J.R.

    1975-10-01

    A comprehensive plan to develop shipping cask technology is described. Technical programs in the disciplines of heat transfer, structures and containment, spent fuel characterization, hot laboratory verification, shielding, and hazards analysis are discussed. Both short- and long-term goals in each discipline are delineated and how the disciplines interrelate is shown. The technologies developed will be used in the design, fabrication, and testing of truck-mounted and rail-car casks. These casks will be used for safely transporting short-cooled, high-burnup Liquid Metal Fast Breeder Reactor (LMFBR) spent fuel from reactors to reprocessing plants

  16. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    Directory of Open Access Journals (Sweden)

    Shigeki Nakagome

    Full Text Available Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA and matrilineal mitochondrial DNA (mtDNA. Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA or more than 14 times (mtDNA larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  17. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    Science.gov (United States)

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-01-01

    Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  18. Role of water lubricated bearings in Candu reactors

    International Nuclear Information System (INIS)

    Kumar, Ashok N.

    1999-01-01

    During the twentieth century a great emphasis was placed in understanding and defining the operating regime of oil and grease lubricated components. Major advances have been made through elastohydrodynamic lubrication theory in the quantifying the design life of heavily loaded components such as rolling element bearings and gears. Detailed guidelines for the design of oil and grease lubricated components are widely available and are being applied to the successful design of these components. However similar guidelines for water lubricated components are either not available or not well documented. It is often forgotten that the water was used as a lubricant in several components as far back as 1884 B.C. During the twentieth century the water lubricated components continued to play a major role in some high technology industries such as in the power generation plants. In CANDU nuclear reactors water lubrication of several critical components always occupied a pride place and in most cases the only practical mode of lubrication of several critical components always occupied a pride place and in most cases the only practical mode of lubrication. This paper presents some examples of the major water lubricated components in a CANDU reactors. Major part of the paper is focused on presenting an example of successful operating history of water lubricated bearings used in the HT pumps are presented. Both types of bearings have been qualified by tests for operation under normal as well as under more severe postulated condition of loss-of-coolant-accident (LOCA). These bearings have been designed to operate for the 30 years in the existing CANDU 6 (600 MW) reactors. However for the next generation of CANDU 6 reactors which go into service in the year 2003, the HT pump bearing life has been extended to 40 years. (author)

  19. Ultra-precision bearings

    CERN Document Server

    Wardle, F

    2015-01-01

    Ultra-precision bearings can achieve extreme accuracy of rotation, making them ideal for use in numerous applications across a variety of fields, including hard disk drives, roundness measuring machines and optical scanners. Ultraprecision Bearings provides a detailed review of the different types of bearing and their properties, as well as an analysis of the factors that influence motion error, stiffness and damping. Following an introduction to basic principles of motion error, each chapter of the book is then devoted to the basic principles and properties of a specific type of bearin

  20. Watchable Wildlife: The Black Bear

    Science.gov (United States)

    Lynn L. Rogers

    1992-01-01

    Black bears are the bears people most often encounter. Black bears live in forests over much of North America, unlike grizzlies that live only in Alaska, northern and western Canada, and the northern Rocky Mountains. This brochure presents the latest information on black bear life and how this species responds to an ever-increasing number of campers, hikers, and...

  1. An online condition monitoring system implemented an internet connectivity and FTP for low speed slew bearing

    Science.gov (United States)

    Caesarendra, W.; Kosasih, B.; Tjahjowidodo, T.; Ariyanto, M.; Daryl, LWQ; Pamungkas, D.

    2018-04-01

    Rapid and reliable information in slew bearing maintenance is not trivial issue. This paper presents the online monitoring system to assist maintenance engineer in order to monitor the bearing condition of low speed slew bearing in sheet metal company. The system is able to pass the vibration information from the place where the bearing and accelerometer sensors are attached to the data center; and from the data center it can be access by opening the online monitoring website from any place and by any person. The online monitoring system is built using some programming languages such as C language, MATLAB, PHP, HTML and CSS. Generally, the flow process is start with the automatic vibration data acquisition; then features are calculated from the acquired vibration data. These features are then sent to the data center; and form the data center, the vibration features can be seen through the online monitoring website. This online monitoring system has been successfully applied in School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong.

  2. Development of 3D Visualization Technology for Medium-and Large-sized Radioactive Metal Wastes from Decommissioning Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A Rim; Park, Chan Hee; Lee, Jung Min; Kim, Rinah; Moon, Joo Hyun [Dongguk Univ., Gyongju (Korea, Republic of)

    2013-10-15

    The most important point of decommissioning nuclear facilities and nuclear power plants is to spend less money and do this process safely. In order to perform a better decommissioning nuclear facilities and nuclear power plants, a data base of radioactive waste from decontamination and decommissioning of nuclear facilities should be constructed. This data base is described herein, from the radioactive nuclide to the shape of component of nuclear facilities, and representative results of the status and analysis are presented. With the increase in number of nuclear facilities at the end of their useful life, the demand of decommissioning technologies will continue to grow for years to come. This analysis of medium-and large-sized radioactive metal wastes and 3D visualization technology of the radioactive metal wastes using the 3D-SCAN are planned to be used for constructing data bases. The data bases are expected to be used on development of the basic technologies for decommissioning nuclear facilities 4 session.

  3. Dynamic Characteristics of Rotors on Passive and Active Thrust Fluid-film Bearings with Fixed Pads

    Directory of Open Access Journals (Sweden)

    Babin Alexander

    2018-01-01

    Full Text Available Application of fluid-film bearings in rotor machines in many cases could have no alternative due to obvious advantages when compared to roller element bearings. Integration of information technology in mechanical engineering resulting in emergence of a new field of research – mechatronic bearings which allowed tracking condition of the most important parts of a machine and adjusting operational parameters of the system. Application of servo valves to control the flow rate through a fluid-film bearing is the most universal and simple way of rotor’s position control due to relative simplicity of modelling and absence of need to radically change the design of conventional hydrodynamic bearings. In the present paper numerical simulations of passive (conventional as opposed to mechatronic and active hybrid thrust fluid-film bearings with a central feeding chamber are presented, that are parts of a mechatronic rotor-bearing node. Numerical model of an active thrust bearing is based on solution of equations of hydrodynamics, rotor dynamics and an additional model of a servo valve. Various types of control have been investigated: P, PI and PID control, and the dynamic behaviour of a system has been estimated under various loads, namely static, periodic and impulse. A design of a test rig has been proposed to study passive and active thrust fluid-film bearings aimed at, among other, validation of numerical results of active bearings simulation.

  4. Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis.

    Science.gov (United States)

    Xu, Yuanping; Di, Long; Zhou, Jin; Jin, Chaowu; Guo, Qintao

    2016-03-01

    The active health monitoring of rotordynamic systems in the presence of bearing outer race defect is considered in this paper. The shaft is assumed to be supported by conventional mechanical bearings and an active magnetic bearing (AMB) is used in the mid of the shaft location as an exciter to apply electromagnetic force to the system. We investigate a nonlinear bearing-pedestal system model with the outer race defect under the electromagnetic force. The nonlinear differential equations are integrated using the fourth-order Runge-Kutta algorithm. The simulation and experimental results show that the characteristic signal of outer race incipient defect is significantly amplified under the electromagnetic force through the AMBs, which is helpful to improve the diagnosis accuracy of rolling element bearing׳s incipient outer race defect. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Environmental bioremediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.N.; Tripathi, R.D. (eds.) [National Botanical Research Institute, Lucknow (India). Ecotoxicology and Bioremediation

    2007-07-01

    The rapid expansion and increasing sophistication of various industries in the past century has remarkably increased the amount and complexity of toxic waste effluents, which may be bioremediated by suitable plants and microbes, either natural occurring or tailor-made for the specific purpose. This technology is termed as bioremediation. Bioremediation is an eco- friendly, cost-effective and natural technology targeted to remove heavy metals, radionuclides, xenobiotic compounds, organic waste, pesticides etc. from contaminated sites or industrial discharges through biological means. Since this technology is used in in-situ conditions, it does not physically disturb the site unlike conventional methods i.e. chemical or mechanical methods. In this technology, higher plants or microbes are used alone or in combination for phytoextraction of heavy metals from metal contaminated sites. Through microbial interventions, either the metals are immobilized or mobilized through redox conversions at contaminated sites. If mobilized, metal accumulating plants are put in place to accumulate metals in their body. Thereafter, metal-loaded plants are harvested and incinerated to reduce the volume of waste and then disposed off as hazardous materials or used for recovery of precious metals, if possible. In case of immobilization, metals are no longer available to be toxic to organisms. (orig.)

  6. Deviation Among Technology Reviews: An Informative Enrichment of Technology Evolution Theory for Marketing

    NARCIS (Netherlands)

    A. Sood (Ashish); S. Stremersch (Stefan)

    2010-01-01

    textabstractUnderstanding technological change is of critical importance to marketers, as it bears new markets, new brands, new customers, and new market leaders. This paper examines the deviation among reviews of a technology’s performance and its consequences for inferences on technology evolution

  7. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME

  8. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME.

  9. The Design of High Reliability Magnetic Bearing Systems for Helium Cooled Reactor Machinery

    International Nuclear Information System (INIS)

    Swann, M.; Davies, N.; Jayawant, R.; Leung, R.; Shultz, R.; Gao, R.; Guo, Z.

    2014-01-01

    The requirements for magnetic bearing equipped machinery used in high temperature, helium cooled, graphite moderated reactor applications present a set of design considerations that are unlike most other applications of magnetic bearing technology in large industrial rotating equipment, for example as used in the oil and gas or other power generation applications. In particular, the bearings are typically immersed directly in the process gas in order to take advantage of the design simplicity that comes about from the elimination of ancillary lubrication and cooling systems for bearings and seals. Such duty means that the bearings will usually see high temperatures and pressures in service and will also typically be subject to graphite particulate and attendant radioactive contamination over time. In addition, unlike most industrial applications, seismic loading events become of paramount importance for the magnetic bearings system, both for actuators and controls. The auxiliary bearing design requirements, in particular, become especially demanding when one considers that the whole mechanical structure of the magnetic bearing system is located inside an inaccessible pressure vessel that should be rarely, if ever, disassembled over the service life of the power plant. Lastly, many machinery designs for gas cooled nuclear power plants utilize vertical orientation. This circumstance presents its own unique requirements for the machinery dynamics and bearing loads. Based on the authors’ experience with machine design and supply on several helium cooled reactor projects including Ft. St. Vrain (US), GT-MHR (Russia), PBMR (South Africa), GTHTR (Japan), and most recently HTR-PM (China), this paper addresses many of the design considerations for such machinery and how the application of magnetic bearings directly affects machinery reliability and availability, operability, and maintainability. Remote inspection and diagnostics are a key focus of this paper. (author)

  10. Handling of tritium-bearing wastes

    International Nuclear Information System (INIS)

    1981-01-01

    The generation of nuclear power and reprocessing of nuclear fuel results in the production of tritium and the possible need to control the release of tritium-contaminated effluents. In assessing the need for controls, it is necessary to know the production rates of tritium at different nuclear facilities, the technologies available for separating tritium from different gaseous and liquid streams, and the methods that are satisfactory for storage and disposal of tritiated wastes. The intention in applying such control technologies and methods is to avoid undesirable effects on the environment, and to reduce the radiation burden on operational personnel and the general population. This technical report is a result of the IAEA Technical Committee Meeting on Handling of Tritium-bearing Effluents and Wastes, which was held in Vienna, 4 - 8 December 1978. It summarizes the main topics discussed at the meeting and appends the more detailed reports on particular aspects that were prepared for the meeting by individual participants

  11. What's in it for me? An analysis of the need for credit-bearing ...

    African Journals Online (AJOL)

    ... for credit-bearing professional development modules on the topic of e-learning. ... as they are called elsewhere) to use technology properly in the classrooms. ... they are typically awarded a certificate that serves to indicate their successful ...

  12. 40 CFR Appendix C to Part 438 - Metal-Bearing Operations Definitions

    Science.gov (United States)

    2010-07-01

    ... is rotated in a drum containing a water-based solution, glass beads, and metal powder. In vapor... interference shielding; thermal barriers for rocket engines; nuclear moderators; films for hot isostatic...

  13. Genomic Evidence of Widespread Admixture from Polar Bears into Brown Bears during the Last Ice Age.

    Science.gov (United States)

    Cahill, James A; Heintzman, Peter D; Harris, Kelley; Teasdale, Matthew D; Kapp, Joshua; Soares, Andre E R; Stirling, Ian; Bradley, Daniel; Edwards, Ceiridwen J; Graim, Kiley; Kisleika, Aliaksandr A; Malev, Alexander V; Monaghan, Nigel; Green, Richard E; Shapiro, Beth

    2018-05-01

    Recent genomic analyses have provided substantial evidence for past periods of gene flow from polar bears (Ursus maritimus) into Alaskan brown bears (Ursus arctos), with some analyses suggesting a link between climate change and genomic introgression. However, because it has mainly been possible to sample bears from the present day, the timing, frequency, and evolutionary significance of this admixture remains unknown. Here, we analyze genomic DNA from three additional and geographically distinct brown bear populations, including two that lived temporally close to the peak of the last ice age. We find evidence of admixture in all three populations, suggesting that admixture between these species has been common in their recent evolutionary history. In addition, analyses of ten fossil bears from the now-extinct Irish population indicate that admixture peaked during the last ice age, whereas brown bear and polar bear ranges overlapped. Following this peak, the proportion of polar bear ancestry in Irish brown bears declined rapidly until their extinction. Our results support a model in which ice age climate change created geographically widespread conditions conducive to admixture between polar bears and brown bears, as is again occurring today. We postulate that this model will be informative for many admixing species pairs impacted by climate change. Our results highlight the power of paleogenomics to reveal patterns of evolutionary change that are otherwise masked in contemporary data.

  14. Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines

    Science.gov (United States)

    Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.

    2004-01-01

    Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing

  15. Efficiency improvements by Metal Wrap Through technology for n-type Si solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Wenchao, Zhao; Jianming, Wang; Yanlong, Shen; Ziqian, Wang; Yingle, Chen; Shuquan, Tian; Zhiliang, Wan; Bo, Yu; Gaofei, Li; Zhiyan, Hu; Jingfeng, Xiong [Yingli Green Energy Holding Co., Ltd, 3399 North Chaoyang Avenue, Baoding (China); Guillevin, N.; Heurtault, B.; Aken, B.B. van; Bennett, I.J.; Geerligs, L.J.; Weeber, A.W.; Bultman, J.H. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    N-type Metal Wrap Through (n-MWT) is presented as an industrially promising back-contact technology to reach high performance of silicon solar cells and modules. It can combine benefits from both n-type base and MWT metallization. In this paper, the efficiency improvements of commercial industrial n-type bifacial Si solar cells (239 cm{sup 2}) and modules (60 cells) by the integration of the MWT technique are described. For the cell, after the optimization of integration, over 0.3% absolute efficiency gain was achieved over the similar non-MWT technology, and Voc gain and Isc gain up to 0.9% and 3.5%, respectively. These gains are mainly attributed to reduced shading loss and surface recombination. Besides the front pattern optimization, a 0.1m{Omega} reduction of Rs in via part will induce further 0.06% absolute efficiency improvement. For the module part, a power output of n-MWT module up to 279W was achieved, corresponding to a module efficiency of about 17.7%.

  16. Application of zinc isotope tracer technology in tracing soil heavy metal pollution

    Science.gov (United States)

    Norbu, Namkha; Wang, Shuguang; Xu, Yan; Yang, Jianqiang; Liu, Qiang

    2017-08-01

    Recent years the soil heavy metal pollution has become increasingly serious, especially the zinc pollution. Due to the complexity of this problem, in order to prevent and treat the soil pollution, it's crucial to accurately and quickly find out the pollution sources and control them. With the development of stable isotope tracer technology, it's able to determine the composition of zinc isotope. Based on the theory of zinc isotope tracer technique, and by means of doing some latest domestic and overseas literature research about the zinc isotope multi-receiving cups of inductively coupled plasma mass spectrometer (MC-ICP-MS) testing technology, this paper summarized the latest research results about the pollution tracer of zinc isotope, and according to the deficiencies and existing problems of previous research, made outlooks of zinc isotope fractionation mechanism, repository establishment and tracer multiple solutions.

  17. Scaling laws for radial foil bearings

    Science.gov (United States)

    Honavara Prasad, Srikanth

    The effects of fluid pressurization, structural deformation of the compliant members and heat generation in foil bearings make the design and analysis of foil bearings very complicated. The complex fluid-structural-thermal interactions in foil bearings also make modeling efforts challenging because these phenomena are governed by highly non-linear partial differential equations. Consequently, comparison of various bearing designs require detailed calculation of the flow fields (velocities, pressures), bump deflections (structural compliance) and heat transfer phenomena (viscous dissipation in the fluid, frictional heating, temperature profile etc.,) resulting in extensive computational effort (time/hardware). To obviate rigorous computations and aid in feasibility assessments of foil bearings of various sizes, NASA developed the "rule of thumb" design guidelines for estimation of journal bearing load capacity. The guidelines are based on extensive experimental data. The goal of the current work is the development of scaling laws for radial foil bearings to establish an analytical "rule of thumb" for bearing clearance and bump stiffness. The use of scale invariant Reynolds equation and experimentally observed NASA "rule of thumb" yield scale factors which can be deduced from first principles. Power-law relationships between: a. Bearing clearance and bearing radius, and b. bump stiffness and bearing radius, are obtained. The clearance and bump stiffness values obtained from scaling laws are used as inputs for Orbit simulation to study various cases. As the clearance of the bearing reaches the dimensions of the material surface roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the rotor diameter increases (requiring larger bearing diameters), the load capacity of the fluid film should increase to prevent dry rubbing. This imposes limits on the size of the rotor diameter and consequently bearing diameter. Therefore, this thesis aims

  18. Timing of Formation of a Wassonite-bearing Chondrule

    Science.gov (United States)

    Needham, A. W.; Nakamura-Messenger, K.; Rubin, A. E.; Choi, B.-G.; Messenger, S.

    2014-01-01

    Wassonite, ideally stoichiometric TiS, is a titanium monosulfide recently discovered in the Yamato 691 EH3 enstatite chondrite. Wassonite grains were located within the mesostasis of a single barred olivine chondrule. Such chondrules likely formed in the solar nebula by melting of fine grained precursor dust. The reduced nature of enstatite chondrites, and the wassonite-bearing chondrule in particular, may suggest precursor materials included Ti-bearing troilite, metallic Fe-Ni, and possibly graphite. Under the reducing conditions present in enstatite chondrites S can partition more readily into silicate melt, leading to raised Ti content of the residual Fe-FeS melt. By the time sulfide crystallized from the melt, the Ti concentration was high enough to form small grains of pure TiS - wassonite. As a mineral not previously observed in nature wassonite and its host chondrule may provide additional constraints on physical and chemical conditions in the solar nebula at a specific time and location relevant to planetary formation. Enstatite chondrites and Earth share similar isotopic compositions of Cr, Ni, Ti, O and N. Understanding the formation conditions of enstatite chondrite chondrules may therefore have wider relevance for terrestrial planet accretion and other early inner solar system processes. Here we present preliminary results of an investigation of the Al-Mg systematics of the only known wassonite-bearing chondrule. The goal of this study is to determine whether this chondrule's formation was contemporaneous with other enstatite chondrite chondrules and to establish its place in the broader timeline of solar system events.

  19. Bears and pipeline construction in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Follmann, E.H.; Hechtel, J.L. (Univ. of Alaska Fairbanks, AK (USA))

    1990-06-01

    Serious problems were encountered with bears during construction of the 1274-km trans-Alaska oil pipeline between Prudhoe Bay and Valdez. This multi-billion-dollar project traversed both black bear (Ursus americanus Pallas) and grizzly bear (U. arctos L.) habitat throughtout its entire length. Plans for dealing with anticipated problems with bears were often inadequate. Most (71%) problems occurred north of the Yukon River in a previously roadless wilderness where inadequate refuse disposal and widespread animal feeding created dangerous situations. Of the 192 officially reported bear problems associated with the Trans-Alaska Pipeline System (TAPS) (1971-1979), about 65% involved the presence of bears in camps or dumps, 13% the feeding of bears on garbage or handouts, 10% property damage or economic loss, 7% bears under and in buildings, and only 5% charges by bears. Remarkably, no bear-related injuries were reported, suggesting that bears became accustomed to people and did not regard them as a threat. Following construction of the TAPS there have been proposals for pipelines to transport natural gas from Prudhoe Bay to southern and Pacific-rim markets. Based on past experience, some animal control measures were developed during the planning phase for the authorized gas pipeline route in Alaska. Fences installed around 100-person survey camps were found to be effective in deterring bears in two traditionally troublesome areas. 16 refs., 7 figs., 1 tab.

  20. Characterisation of metallic glass incorporated Zircaloy-2 weldments

    International Nuclear Information System (INIS)

    Mishra, S.; Savalia, R.T.; Bhanumurthy, K.; Dey, G.K.; Banerjee, S.

    1995-01-01

    In this study the effect of incorporation of Zr based Fe and Ni bearing metallic glass in spot welds in Zircaloy components has been examined. A comparison of strength and microstructure of the welded joint with and without glass has been carried out. The welded joint with metallic glass has been found to be stronger than the one without metallic glass. The microstructure of the welded region with metallic glass has been found to comprise a large region having martensite. This large martensitic region has also been found to have considerable amount of excess solute (Fe, Ni). The higher strength of the weld with metallic glass seems to originate due to solid solution strengthening, small grain size and the presence of martensitic structure over a large region. (orig.)

  1. Computational design of rolling bearings

    CERN Document Server

    Nguyen-Schäfer, Hung

    2016-01-01

    This book comprehensively presents the computational design of rolling bearings dealing with many interdisciplinary difficult working fields. They encompass elastohydrodynamics (EHD), Hertzian contact theory, oil-film thickness in elastohydrodynamic lubrication (EHL), bearing dynamics, tribology of surface textures, fatigue failure mechanisms, fatigue lifetimes of rolling bearings and lubricating greases, Weibull distribution, rotor balancing, and airborne noises (NVH) in the rolling bearings. Furthermore, the readers are provided with hands-on essential formulas based on the up-to-date DIN ISO norms and helpful examples for computational design of rolling bearings. The topics are intended for undergraduate and graduate students in mechanical and material engineering, research scientists, and practicing engineers who want to understand the interactions between these working fields and to know how to design the rolling bearings for automotive industry and many other industries.

  2. Large Metal Heads and Vitamin E Polyethylene Increase Frictional Torque in Total Hip Arthroplasty.

    Science.gov (United States)

    Meneghini, R Michael; Lovro, Luke R; Wallace, Joseph M; Ziemba-Davis, Mary

    2016-03-01

    Trunnionosis has reemerged in modern total hip arthroplasty for reasons that remain unclear. Bearing frictional torque transmits forces to the modular head-neck interface, which may contribute to taper corrosion. The purpose of this study is to compare frictional torque of modern bearing couples in total hip arthroplasty. Mechanical testing based on in vivo loading conditions was used to measure frictional torque. All bearing couples were lubricated and tested at 1 Hz for more than 2000 cycles. The bearing couples tested included conventional, highly crosslinked (XLPE) and vitamin E polyethylene, CoCr, and ceramic femoral heads and dual-mobility bearings. Statistical analysis was performed using Student t test for single-variable and analysis of variance for multivariant analysis. P ≤ .05 was considered statistically significant. Large CoCr metal heads (≥36 mm) substantially increased frictional torque against XLPE liners (P = .01), a finding not observed in ceramic heads. Vitamin E polyethylene substantially increased frictional torque compared with XLPE in CoCr and ceramic heads (P = .001), whereas a difference between conventional and XLPE was not observed (P = .69) with the numbers available. Dual-mobility bearing with ceramic inner head demonstrated the lowest mean frictional torque of all bearing couples. In this simulated in vivo model, large-diameter CoCr femoral heads and vitamin E polyethylene liners are associated with increased frictional torque compared with smaller metal heads and XLPE, respectively. The increased frictional torque of vitamin E polyethylene and larger-diameter femoral heads should be considered and further studied, along with reported benefits of these modern bearing couples. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Commercial technologies from the SP-100 program

    International Nuclear Information System (INIS)

    Truscello, V.C.; Fujita, T.; Mondt, J.F.

    1995-01-01

    For more than a decade, Jet Propulsion Labortory and Los Alamos have managed a multi-agency funded effort to develop a space reactor power system. This SP-100 Program has developed technologies required for space power systems that can be implemented in the industrial and commercial sectors to improve competitiveness in the global economy. Initial steps taken to transfer this technology from the laboratories to industrial and commercial entities within United States include: (1) identifying specific technologies having commercial potential; (2) distributing information describing the identified technologies and interacting with interested commercial and industrial entities to develop application-specific details and requirements; and (3) providing a technological data base that leads to transfer of technology or the forming of teaming arrangements to accomplish the transfer by tailoring the technology to meet application-specific requirements. SP-100 technologies having commercial potential encompass fabrication processes, devices, and components. Examples: a process for bonding refractory metals to graphite, a device to sense the position of an actuator and a component to enable rotating machines to operate without supplying lubrication (self-lubricating ball bearing). Shortly after the NASA Regional Technology Transfer Centers widely disseminated information covering SP-100 technologies, over one hundred expressions of interest were received, which indicate that there is a large potential benefit in transferring SP-100 technology. Interactions with industrial and commercial entities have identified a substantial need for creating teaming arrangements involving the interested entity and personnel from laboratories and their contractors, who have the knowledge and ability to tailor the technology to meet application-specific requirements. copyright 1995 American Institute of Physics

  4. The use of double-decker catcher bearing with face-to-face installed inner layer bearings

    Science.gov (United States)

    Zhu, Yi-Li; Zheng, Zhong-Qiao

    2017-07-01

    In active magnetic bearing (AMB) system, the catcher bearings (CB) are indispensable to temporarily support the rotor from directly impacting the stators. In most cases, traditional CB cannot bear the ultra-high speed, vibrations and impacts after a rotor drop event. To address the shortcomings, a double-decker ball bearing (DDBB) with inner two face-to-face angular contact ball bearings are proposed to be used as CB in an AMB system, and the dynamic response of the rotor after a rotor drop event is experimentally analyzed. The results indicate that using a DDBB as a CB helps to reduce the following collision forces after a rotor drop. Larger ball initial contact angles and smaller pre-load force on the inner layer bearings, larger radial clearance of the outer layer bearing and choosing AISI 10AISI 1045 steel which has a larger density for the adapter ring can effectively reduce the maximum impact force after a rotor drop event.

  5. Fast EEMD Based AM-Correntropy Matrix and Its Application on Roller Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Yunxiao Fu

    2016-06-01

    Full Text Available Roller bearing plays a significant role in industrial sectors. To improve the ability of roller bearing fault diagnosis under multi-rotating situation, this paper proposes a novel roller bearing fault characteristic: the Amplitude Modulation (AM based correntropy extracted from the Intrinsic Mode Functions (IMFs, which are decomposed by Fast Ensemble Empirical mode decomposition (FEEMD and employ Least Square Support Vector Machine (LSSVM to implement intelligent fault identification. Firstly, the roller bearing vibration acceleration signal is decomposed by FEEMD to extract IMFs. Secondly, IMF correntropy matrix (IMFCM as the fault feature matrix is calculated from the AM-correntropy model of the primary vibration signal and IMFs. Furthermore, depending on LSSVM, the fault identification results of the roller bearing are obtained. Through the bearing identification experiments in stationary rotating conditions, it was verified that IMFCM generates more stable and higher diagnosis accuracy than conventional fault features such as energy moment, fuzzy entropy, and spectral kurtosis. Additionally, it proves that IMFCM has more diagnosis robustness than conventional fault features under cross-mixed roller bearing operating conditions. The diagnosis accuracy was more than 84% for the cross-mixed operating condition, which is much higher than the traditional features. In conclusion, it was proven that FEEMD-IMFCM-LSSVM is a reliable technology for roller bearing fault diagnosis under the constant or multi-positioned operating conditions, and as such, it possesses potential prospects for a broad application of uses.

  6. Transformations of highly enriched uranium into metal or oxide

    International Nuclear Information System (INIS)

    Nollet, P.; Sarrat, P.

    1964-01-01

    The enriched uranium workshops in Cadarache have a double purpose on the one hand to convert uranium hexafluoride into metal or oxide, and on the other hand to recover the uranium contained in scrap materials produced in the different metallurgical transformations. The principles that have been adopted for the design and safety of these workshops are reported. The nuclear safety is based on the geometrical limitations of the processing vessels. To establish the processes and the technology of these workshops, many studies have been made since 1960, some of which have led to original achievements. The uranium hexafluoride of high isotopic enrichment is converted either by injection of the gas into ammonia or by an original process of direct hydrogen reduction to uranium tetrafluoride. The uranium contained m uranium-zirconium metal scrap can be recovered by combustion with hydrogen chloride followed treatment of the uranium chloride by fluorine in order to obtain the uranium in the hexafluoride state. Recovery of the uranium contained m various scrap materials is obtained by a conventional refining process combustion of metallic scrap, nitric acid dissolution of the oxide, solvent purification by tributyl phosphate, ammonium diuranate precipitation, calcining, reduction and hydro fluorination into uranium tetrafluoride, bomb reduction by calcium and slag treatment. Two separate workshops operate along these lines one takes care of the uranium with an isotopic enrichment of up to 3 p. 100, the other handles the high enrichments. The handling of each step of this process, bearing in mind the necessity for nuclear safety, has raised some special technological problems and has led to the conception of new apparatus, in particular the roasting furnace for metal turnings, the nitric acid dissolution unit, the continuous precipitator and ever safe filter and dryer for ammonium diuranate, the reduction and hydro fluorination furnace and the slag recovery apparatus These are

  7. 1998 report on results of research and development on new venture type industrial science and technology. 'Technological development of super metal' (technological development of innovative metallic material); 1998 nendo super metal no gijutsu kaihatsu seika hokokusho. Kakushinteki kinzoku sokei zairyo no gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Results on 1998 research and development were summarized concerning the technological development of innovative metallic materials. In the research of particulate micro-diffusion technology, as a modeling of nano-structure holding process, Ag/Fe nano-crystal alloy was manufactured by inert gas vapor deposition, with the structural change at the time of rolling examined. In addition, a large-scale spark plasma sintering device was developed, with a 40mm diameter cylinder manufactured. In the research on crystal grain refining process by a stirring solidification method, crystal grain refining was achieved to 1{mu}m order. In the development of an advanced aluminum alloy forming method, concerning a high-speed superplastic molding technology, a basic evaluation test was carried out for the superplastic characteristics of rapidly solidified aluminum alloy continuously from fiscal 1997. Further, a calculator simulation was performed by the finite element method for the high-speed superplastic molding. From these results, knowledge was obtained necessary for the detailed design of a high-speed superplastic molding device. On the basis of this knowledge, manufacturing of the equipment was implemented, as were the introduction, rise, basic test, etc. (NEDO)

  8. Polar bears, Ursus maritimus

    Science.gov (United States)

    Rode, Karyn D.; Stirling, Ian

    2017-01-01

    Polar bears are the largest of the eight species of bears found worldwide and are covered in a pigment-free fur giving them the appearance of being white. They are the most carnivorous of bear species consuming a high-fat diet, primarily of ice-associated seals and other marine mammals. They range throughout the circumpolar Arctic to the southernmost extent of seasonal pack ice.

  9. Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses

    OpenAIRE

    Kim, C. Paul; Suh, Jin-Yoo; Wiest, Aaron; Lind, Mary Laura; Conner, R. Dale; Johnson, William L.

    2009-01-01

    Three new compositional variants of the Zr–Ti–Be–LTM (late transition metal) family of metallic glasses are discussed. Thermal stability, ΔT = T_x−T_g, was increased from 82 °C for Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) (Viterloy 1) to 141 °C for Zr_(44)Ti_(11)Cu_(20)Be_(25). It is found that fracture toughness is the most distinguishing parameter characterizing the alloys in contrast to other mechanical properties. Quaternary alloys consistently had fracture toughness values exceeding 8...

  10. Migration and clinical outcome of mobile-bearing versus fixed-bearing single-radius total knee arthroplasty.

    Science.gov (United States)

    Van Hamersveld, Koen T; Marang-Van De Mheen, Perla J; Van Der Heide, Huub J L; Van Der Linden-Van Der Zwaag, Henrica M J; Valstar, Edward R; Nelissen, Rob G H H

    2018-04-01

    Background and purpose - Mobile-bearing total knee prostheses (TKPs) were developed in the 1970s in an attempt to increase function and improve implant longevity. However, modern fixed-bearing designs like the single-radius TKP may provide similar advantages. We compared tibial component migration measured with radiostereometric analysis (RSA) and clinical outcome of otherwise similarly designed cemented fixed-bearing and mobile-bearing single-radius TKPs. Patients and methods - RSA measurements and clinical scores were assessed in 46 randomized patients at baseline, 6 months, 1 year, and annually thereafter up to 6 years postoperatively. A linear mixed-effects model was used to analyze the repeated measurements. Results - Both groups showed comparable migration (p = 0.3), with a mean migration at 6-year follow-up of 0.90 mm (95% CI 0.49-1.41) for the fixed-bearing group compared with 1.22 mm (95% CI 0.75-1.80) for the mobile-bearing group. Clinical outcomes were similar between groups. 1 fixed-bearing knee was revised for aseptic loosening after 6 years and 2 knees (1 in each group) were revised for late infection. 2 knees (1 in each group) were suspected for loosening due to excessive migration. Another mobile-bearing knee was revised after an insert dislocation due to failure of the locking mechanism 6 weeks postoperatively, after which study inclusion was preliminary terminated. Interpretation - Fixed-bearing and mobile-bearing single-radius TKPs showed similar migration. The latter may, however, expose patients to more complex surgical techniques and risks such as insert dislocations inherent to this rotating-platform design.

  11. Design and characterization of a fully differential MEMS accelerometer fabricated using MetalMUMPs technology.

    Science.gov (United States)

    Qu, Peng; Qu, Hongwei

    2013-05-02

    This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and -5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A -0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology.

  12. Development of solid-state joining technology of dissimilar metals using amorphous metastable alloy powders

    International Nuclear Information System (INIS)

    Lee, Min Ku; Rhee, Chang Kyu; Uhm, Young Rang; Park, Jin Ju; Lee, Jeong Gu; Kim, Gwang Ho; Hong, Sung Mo; Lee, Jong Geuk; Kim, Kyoung Ho

    2007-04-01

    Many nuclear components such as nozzles, steam generator, pipes, condensers, and heat exchangers require a realization of the reliable and high-performance joining or welding between the dissimilar metals or alloys, despite the fact that their melting points, thermal expansion coefficients and physical properties are quite different from each other. The conventional arc welding processes (SMAW, TIG), however, which is currently used as a welding process for NPP components, have not met the requirements of obtaining a reliable and high-quality dissimilar joints, as demonstrated from a number of the previously reported accidents or material failures in the welded joints. This originates from the various weaknesses of the arc welding processes (more than 1700 .deg. C) such as high residual stresses which is sensitive to SCC, porous or deformed joint structures, a formation of grain-coarsened HAZ and an induced degradation of the base metals in the vicinity of the joint. Moreover, they are not applicable to a joining of the dissimilar metals when their melting point or mechanical/physical properties are quite different. In this research, the low-temperature joining (700 .deg. C - 800 .deg. C) and simultaneously strong diffusion bonding technologies between the dissimilar Ti and Cu metals have been developed for the applications to the dissimilar joints of various nuclear tube components

  13. Low leakage Ru-strontium titanate-Ru metal-insulator-metal capacitors for sub-20 nm technology node in dynamic random access memory

    Energy Technology Data Exchange (ETDEWEB)

    Popovici, M., E-mail: Mihaela.Ioana.Popovici@imec.be; Swerts, J.; Redolfi, A.; Kaczer, B.; Aoulaiche, M.; Radu, I.; Clima, S.; Everaert, J.-L.; Van Elshocht, S.; Jurczak, M. [Imec, Leuven 3001 (Belgium)

    2014-02-24

    Improved metal-insulator-metal capacitor (MIMCAP) stacks with strontium titanate (STO) as dielectric sandwiched between Ru as top and bottom electrode are shown. The Ru/STO/Ru stack demonstrates clearly its potential to reach sub-20 nm technology nodes for dynamic random access memory. Downscaling of the equivalent oxide thickness, leakage current density (J{sub g}) of the MIMCAPs, and physical thickness of the STO have been realized by control of the Sr/Ti ratio and grain size using a heterogeneous TiO{sub 2}/STO based nanolaminate stack deposition and a two-step crystallization anneal. Replacement of TiN with Ru as both top and bottom electrodes reduces the amount of electrically active defects and is essential to achieve a low leakage current in the MIM capacitor.

  14. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    Science.gov (United States)

    Curwen, Peter W.; Rao, Dantam K.; Wilson, Donald R.

    1992-01-01

    This report describes a design and analysis study performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061. The objective of the study was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in long-term space missions. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) system consisting of two 25-kWe free-piston Stirling engine modules. Two different versions of the RSSPC engine modules have been defined under NASA Contract NAS3-25463. These modules currently use hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Results of this study show that active magnetic bearings of the attractive electromagnetic type are technically feasible for RSSPC application provided that wire insulation with 60,000-hr life capability at 300 C can be developed for the bearing coils. From a design integration standpoint, both versions of the RSSPC were found to be conceptually amenable to magnetic support of the power piston assembly. However, only one version of the RSSPC was found to be amendable to magnetic support of the displacer assembly. Unacceptable changes to the basic engine design would be required to incorporate magnetic displacer bearings into the second version. Complete magnetic suspension of the RSSPC can potentially increase overall efficiency of the Stirling cycle power converter by 0.53 to 1.4 percent (0.15 to 0.4 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. However, these advantages are accompanied by a 5 to 8 percent increase in specific mass of the RSSPC, depending on the RSSPC version employed. Additionally, magnetic bearings are much more complex, both mechanically and particularly electronically, than hydrostatic bearings. Accordingly, long

  15. Micro-focus x-ray inspection of the bearing pad welded by laser for CANDU fuel element

    International Nuclear Information System (INIS)

    Kim, W. K.; Kim, S. S.; Lee, J. W.; Yang, M. S.

    2001-01-01

    To attach the bearing pads on the surface of CANDU fuel element, laser welding technique has been reviewed to replace brazing technology which is complicate process and makes use of the toxic beryllium. In this study, to evaluate the soundness of the weld of the bearing pad of CANDU fuel element, a precise X-ray inspection system was developed using a micro-focus X-ray generator with an image intensifier and a real time camera system. The weld of the bearing pad welded by Nd:YAG laser has been inspected by the developed inspection system. Image processing technique has been applied to reduce random noise and to enhance the contrast of the X-ray image. A few defects on the weld of the bearing pads have been detected by the X-ray inspection process

  16. A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite

    Science.gov (United States)

    Zhang, Yi-min; Wang, Li-na; Chen, De-sheng; Wang, Wei-jing; Liu, Ya-hui; Zhao, Hong-xin; Qi, Tao

    2018-02-01

    An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.

  17. Fabrication of integrated metallic MEMS devices

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Ravnkilde, Jan Tue; Hansen, Ole

    2002-01-01

    A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators are characteri......A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators...

  18. Improvement of the cooldown time of LSF 9599 flexure bearing SADA cooler

    NARCIS (Netherlands)

    Mullié, J.; Groep, van der W.; Bruins, P.; Benschop, T.; Koning, de A.; Dam, J.A.M.; Andresen, B.F.; Fulop, G.F.; Norton, P.R.

    2006-01-01

    Thales Cryogenics has presented the LSF 9599 SADA II flexure cooler in 2005. Based on Thales' well-known moving magnet flexure technology, the LSF 9599 complies with the SADA II specification with respect to performance, envelope and mass. Being the first manufacturer offering a full flexure-bearing

  19. Post-depositional redistribution of trace metals in reservoir sediments of a mining/smelting-impacted watershed (the Lot River, SW France)

    International Nuclear Information System (INIS)

    Audry, Stephane; Grosbois, Cecile; Bril, Hubert; Schaefer, Joerg; Kierczak, Jakub; Blanc, Gerard

    2010-01-01

    Mining/smelting wastes and reservoir sediment cores from the Lot River watershed were studied using mineralogical (XRD, SEM-EDS, EMPA) and geochemical (redox dynamics, selective extractions) approaches to characterize the main carrier phases of trace metals. These two approaches permitted determining the role of post-depositional redistribution processes in sediments and their effects on the fate and mobility of trace metals. The mining/smelting wastes showed heterogeneous mineral compositions with highly variable contents of trace metals. The main trace metal-bearing phases include spinels affected by secondary processes, silicates and sulfates. The results indicate a clear change in the chemical partitioning of trace metals between the reservoir sediments upstream and downstream of the mining/smelting activities, with the downstream sediments showing a 2-fold to 5-fold greater contribution of the oxidizable fraction. This increase was ascribed to stronger post-depositional redistribution of trace metals related to intense early diagenetic processes, including dissolution of trace metal-bearing phases and precipitation of authigenic sulfide phases through organic matter (OM) mineralization. This redistribution is due to high inputs (derived from mining/smelting waste weathering) at the water-sediment interface of (i) dissolved SO 4 promoting more efficient OM mineralization, and (ii) highly reactive trace metal-bearing particles. As a result, the main trace metal-bearing phases in the downstream sediments are represented by Zn- and Fe-sulfides, with minor occurrence of detrital zincian spinels, sulfates and Fe-oxyhydroxides. Sequestration of trace metals in sulfides at depth in reservoir sediments does not represent long term sequestration owing to possible resuspension of anoxic sediments by natural (floods) and/or anthropogenic (dredging, dam flush) events that might promote trace metal mobilization through sulfide oxidation. It is estimated that, during a major

  20. Program for tests on magnetic bearing suspended rotor dynamics for gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Takada, Shoji; Takizuka, Takakazu; Kunitomi, Kazuhiko; Kosugiyama, Shinichi; Yan, Xing

    2003-01-01

    A program for test on rotor dynamics was planned for the turbo-machine of the Gas Turbine High Temperature Reactor (GTHTR300). The rotor system of the turbo-machine consists of a turbo-compressor rotor and a generator rotor connected with a flexible coupling, each suspended with two radial magnetic bearings. The rotors, which are flexible rotors, pass over the critical speeds of bending mode. The magnetic bearing is required to have a high load capacity, about 10 times larger than any built thus far to support a flexible rotor. In the rotor design, the standard limit of the vibration amplitude of 75 μm at the rated rotational speed of 3,600 rpm was fulfilled by optimizing the stiffness of the magnetic bearings. A test apparatus was designed to verify the design of the magnetic bearing suspended turbo-machine rotor of the GTHTR300. The test apparatus is composed of 1/3-scale test rotors, which are connected with a flexible coupling and driven by a variable speed motor. The test magnetic bearing was designed within the state-of-the-art technology to have a load capacity about 1/10 of that of the actual one. The test rotors were designed to closely simulate the critical speeds and vibration modes of the actual ones. This paper shows the test apparatus and the test plan for the magnetic bearing suspended rotor system. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)