WorldWideScience

Sample records for metal affinity electrophoresis

  1. Affinity in electrophoresis.

    Science.gov (United States)

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  2. Lectin affinity electrophoresis.

    Science.gov (United States)

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  3. The Cutting Edge of Affinity Electrophoresis Technology.

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-03-18

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years.

  4. The Cutting Edge of Affinity Electrophoresis Technology

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  5. Affinity capillary electrophoresis and density functional theory employed for the characterization of hexaarylbenzene-based receptor complexation with alkali metal ions

    Czech Academy of Sciences Publication Activity Database

    Ehala, Sille; Toman, Petr; Rathore, R.; Makrlík, E.; Kašička, Václav

    2011-01-01

    Roč. 32, č. 9 (2011), s. 981-987 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA203/08/1428; GA ČR(CZ) GA203/09/0675; GA ČR(CZ) GAP205/10/2280; GA AV ČR 1ET400500402 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40500505 Keywords : affinity capillary electrophoresis * alkali metal ions * binding constant Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.303, year: 2011

  6. Capillary electrophoresis-based assessment of nanobody affinity and purity

    NARCIS (Netherlands)

    Haselberg, Rob; Oliveira, Sabrina; van der Meel, Roy; Somsen, Govert W; de Jong, Gerhardus J

    2014-01-01

    Drug purity and affinity are essential attributes during development and production of therapeutic proteins. In this work, capillary electrophoresis (CE) was used to determine both the affinity and composition of the biotechnologically produced "nanobody" EGa1, the binding fragment of a

  7. Applications of on-line weak affinity interactions in free solution capillary electrophoresis

    DEFF Research Database (Denmark)

    Heegaard, Niels H H; Nissen, Mogens H; Chen, David D Y

    2002-01-01

    The impressive selectivity offered by capillary electrophoresis can in some cases be further increased when ligands or additives that engage in weak affinity interactions with one or more of the separated analytes are added to the electrophoresis buffer. This on-line affinity capillary...... electrophoresis approach is feasible when the migration of complexed molecules is different from the migration of free molecules and when separation conditions are nondenaturing. In this review, we focus on applying weak interactions as tools to enhance the separation of closely related molecules, e.g., drug...... enantiomers and on using capillary electrophoresis to characterize such interactions quantitatively. We describe the equations for binding isotherms, illustrate how selectivity can be manipulated by varying the additive concentrations, and show how the methods may be used to estimate binding constants. On...

  8. Affinity Electrophoresis for Analysis of Catalytic Module-Carbohydrate Interactions

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Svensson, Birte

    2017-01-01

    Affinity electrophoresis has long been used to study the interaction between proteins and large soluble ligands. The technique has been found to have great utility for the examination of polysaccharide binding by proteins, particularly carbohydrate binding modules (CBMs). In recent years, carbohy...

  9. Defining carbohydrate binding of glucan phosphatases via Affinity gel electrophoresis

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper

    2016-01-01

    was to determine a technique to measure carbohydrate binding quickly and efficiently. We established a protocol to reproducibly and quantitatively measure the binding of the enzymes to glucans utilizing Affinity Gel Electrophoresis (AGE). The results show that the various glucan phosphatases possess differing...

  10. Interaction of albumins and heparinoids investigated by affinity capillary electrophoresis and free flow electrophoresis.

    Science.gov (United States)

    Mozafari, Mona; El Deeb, Sami; Krull, Friederike; Wildgruber, Robert; Weber, Gerhard; Reiter, Christian G; Wätzig, Hermann

    2018-02-01

    A fast and precise affinity capillary electrophoresis (ACE) method has been applied to investigate the interactions between two serum albumins (HSA and BSA) and heparinoids. Furthermore, different free flow electrophoresis methods were developed to separate the species which appears owing to interaction of albumins with pentosan polysulfate sodium (PPS) under different experimental conditions. For ACE experiments, the normalized mobility ratios (∆R/R f ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. ACE experiments were performed at two different temperatures (23 and 37°C). Both BSA and HSA interact more strongly with PPS than with unfractionated and low molecular weight heparins. For PPS, the interactions can already be observed at low mg/L concentrations (3 mg/L), and saturation is already obtained at approximately 20 mg/L. Unfractionated heparin showed almost no interactions with BSA at 23°C, but weak interactions at 37°C at higher heparin concentrations. The additional signals also appeared at higher concentrations at 37°C. Nevertheless, in most cases the binding data were similar at both temperatures. Furthermore, HSA showed a characteristic splitting in two peaks especially after interacting with PPS, which is probably attributable to the formation of two species or conformational change of HSA after interacting with PPS. The free flow electrophoresis methods have confirmed and completed the ACE experiments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Affinity Capillary Electrophoresis – A Powerful Tool to Investigate Biomolecular Interactions

    Czech Academy of Sciences Publication Activity Database

    Kašička, Václav

    2017-01-01

    Roč. 30, č. 5 (2017), s. 248 ISSN 1471-6577 Institutional support: RVO:61388963 Keywords : capillary affinity electrophoresis * biomolecular interactions * binding constants Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 0.663, year: 2016

  12. Studies on lectins. XXXII. Application of affinity electrophoresis to the study of the interaction of lectins and their derivatives with sugars.

    Science.gov (United States)

    Horejsí, V; Tichá, M; Kocourek, J

    1977-09-29

    Affinity electrophoresis was used to study the sugar binding heterogeneity of lectins or their derivatives. Commercial and demetallized preparations of concanavalin A could be resolved by affinity electrophoresis into three components with different affinity to immobilized sugar. Similarly the Vicia cracca lectin obtained by affinity chromatography behaved on affinity gels as a mixture of active and inactive molecular species. Affinity electrophoresis has shown that the nonhemagglutinating acetylated lentil lectin and photo-oxidized or sulfenylated pea lectin retain their sugar binding properties; dissociation constants of saccharide complexes of these derivatives are similar to those of native lectins. The presence of specific immobilized sugar in the affinity gel improved the resolution of isolectins from Dolichos biflorus and Ricinus communis seeds.

  13. Phosphopeptide enrichment by immobilized metal affinity chromatography

    DEFF Research Database (Denmark)

    Thingholm, Tine E.; Larsen, Martin R.

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively...... charged metal ions such as Fe3+, Ga3+, Al3+, Zr4+, and Ti4+ has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from...

  14. Characterization of metal/humic acid systems by Capillary Electrophoresis

    NARCIS (Netherlands)

    Staden JJ van; Hoop MAGT van den; Cleven R; LAC

    2000-01-01

    Metal-humic acid systems have been characterised applying Capillary Electrophoresis (CE). Appropriate experimental conditions with respect to carrier electrolyte, pH range, salt concentration, humic acid concentration and the applied potential, have been optimised. The influence of multivalent metal

  15. Interactions of helquats with chiral acidic aromatic analytes investigated by partial-filling affinity capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Růžička, Martin; Koval, Dušan; Vávra, Jan; Reyes Gutierrez, Paul Eduardo; Teplý, Filip; Kašička, Václav

    2016-01-01

    Roč. 1467, Oct 7 (2016), s. 417-426 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA15-01948S; GA ČR GA13-32974S; GA ČR GA13-19213S Institutional support: RVO:61388963 Keywords : affinity capillary electrophoresis * binding constant * chiral separation * helquats * noncovalent interactions * partial filling Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 3.981, year: 2016

  16. Simulated electron affinity tuning in metal-insulator-metal (MIM) diodes

    Science.gov (United States)

    Mistry, Kissan; Yavuz, Mustafa; Musselman, Kevin P.

    2017-05-01

    Metal-insulator-metal diodes for rectification applications must exhibit high asymmetry, nonlinearity, and responsivity. Traditional methods of improving these figures of merit have consisted of increasing insulator thickness, adding multiple insulator layers, and utilizing a variety of metal contact combinations. However, these methods have come with the price of increasing the diode resistance and ultimately limiting the operating frequency to well below the terahertz regime. In this work, an Airy Function Transfer Matrix simulation method was used to observe the effect of tuning the electron affinity of the insulator as a technique to decrease the diode resistance. It was shown that a small increase in electron affinity can result in a resistance decrease in upwards of five orders of magnitude, corresponding to an increase in operating frequency on the same order. Electron affinity tuning has a minimal effect on the diode figures of merit, where asymmetry improves or remains unaffected and slight decreases in nonlinearity and responsivity are likely to be greatly outweighed by the improved operating frequency of the diode.

  17. Estimation of apparent binding constant of complexes of selected acyclic nucleoside phosphonates with beta-cyclodextrin by affinity capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Šolínová, Veronika; Mikysková, Hana; Kaiser, Martin Maxmilian; Janeba, Zlatko; Holý, Antonín; Kašička, Václav

    2016-01-01

    Roč. 37, č. 2 (2016), s. 239-247 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-17224S; GA ČR(CZ) GA15-01948S Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonates * affinity capillary electrophoresis * binding constant * nucleotide analogs * beta-cyclodextrin Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.744, year: 2016

  18. Affinity capillary electrophoresis and density functional theory study of noncovalent interactions of cyclic peptide [Gly(6)]-antamanide with small cations

    Czech Academy of Sciences Publication Activity Database

    Pangavhane, Sachin; Böhm, S.; Makrlík, E.; Ruzza, P.; Kašička, Václav

    2017-01-01

    Roč. 38, č. 16 (2017), s. 2025-2033 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA15-01948S Institutional support: RVO:61388963 Keywords : affinity capillary electrophoresis * cesium complex * density functional theory * [Gly(6)]-antamanide * rubidium complex * stability constants Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  19. Affinity capillary electrophoresis and quantum mechanical calculations applied to investigation of [Gly(6)]-antamanide binding with sodium and potassium ions

    Czech Academy of Sciences Publication Activity Database

    Pangavhane, Sachin; Böhm, S.; Makrlík, E.; Ruzza, P.; Kašička, Václav

    2017-01-01

    Roč. 38, č. 12 (2017), s. 1551-1559 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA15-01948S Institutional support: RVO:61388963 Keywords : affinity capillary electrophoresis * density functional theory * [Gly(6)]-antamanide * peptide complex * stability constant Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  20. Specific capture of uranyl protein targets by metal affinity chromatography

    International Nuclear Information System (INIS)

    Basset, C.; Dedieu, A.; Guerin, P.; Quemeneur, E.; Meyer, D.; Vidaud, C.

    2008-01-01

    To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO 2 2+ ) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of amino-phosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis. (authors)

  1. Study of the interactions between fluoroquinolones and human serum albumin by affinity capillary electrophoresis and fluorescence method

    International Nuclear Information System (INIS)

    Zhang Liwei; Wang Kun; Zhang Xinxiang

    2007-01-01

    The interactions between fluoroquinolones and human serum albumin (HSA) were investigated by affinity capillary electrophoresis (ACE) and fluorescence quenching technique. Based on the efficient separation of several fluoroquinolones using a simple phosphate buffer, the binding constants of fluoroquinolones with HSA were determined simultaneously during one set of electrophoresis by ACE method. The thermodynamic parameters were obtained from data at different temperatures, and the negative ΔH and ΔS values showed that both hydrogen bonds and van der Waals interaction played major roles in the binding of fluoroquinolones to HSA. The interactions were also studied by fluorescence quenching technique. The results of fluorescence titration revealed that fluoroquinolones had the strong ability to quenching the intrinsic fluorescence of HSA through the static quenching procedure. The binding site number n, apparent binding constant K b and the Stern-Volmer quenching constant K sv were determined. The thermodynamic parameters were also studied by fluorescence method, and the results were consonant with that of ACE

  2. Application of capillary affinity electrophoresis and density functional theory to the investigation of benzo-18-crown-6-ether complex with ammonium cation

    Czech Academy of Sciences Publication Activity Database

    Ehala, Sille; Toman, Petr; Makrlík, E.; Kašička, Václav

    2009-01-01

    Roč. 1216, č. 45 (2009), s. 7927-7931 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA203/08/1428; GA AV ČR 1ET400500402 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40500505 Keywords : affinity capillary electrophoresis * benzo-18-crown-6-ether * density functional theory Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.101, year: 2009

  3. Comparison of different transition metal ions for immobilized metal affinity chromatography of selenoprotein P from human plasma

    DEFF Research Database (Denmark)

    Sidenius, U; Farver, O; Jøns, O

    1999-01-01

    Cu2+, Ni2+, Zn2+, Co2+ and Cd2+ were evaluated in metal ion affinity chromatography for enrichment of selenoprotein P, and immobilized Co2+ affinity chromatography was found to be the most selective chromatographic method. The chromatography was performed by fast protein liquid chromatography...

  4. Study of solvent effects on the stability constant and ionic mobility of the dibenzo-18-crown-6 complex with potassium ion by affinity capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Konášová, Renáta; Jaklová Dytrtová, Jana; Kašička, Václav

    2016-01-01

    Roč. 39, č. 22 (2016), s. 4429-4438 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA15-01948S; GA ČR GP13-21409P Institutional support: RVO:61388963 Keywords : affinity capillary electrophoresis * crown ethers * hydro-organic solvents * ionic mobility * potassium complexes Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.557, year: 2016

  5. Influence of metallic surface states on electron affinity of epitaxial AlN films

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna, Shibin; Aggarwal, Neha [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Govind, E-mail: govind@nplindia.org [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2017-06-15

    The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6–1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2–3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.

  6. Toxic metals (Ni2+, Pb2+, Hg2+) binding affinity of dissolved organic matter (DOM) derived from different ages municipal landfill leachate

    Science.gov (United States)

    Rikta, S. Y.; Tareq, Shafi M.; Uddin, M. Khabir

    2018-03-01

    Solid waste production is rapidly increasing in Bangladesh and landfill leachate is the consequence of the decomposition of this waste. These leachates contain heavy metals and significant amount of dissolved organic matter (DOM). DOM is known to have considerable role in heavy metals speciation. Hence, it is important to characterize DOM/leachate and evaluate toxic metals binding affinity of DOM. The objectives of this study were to characterize the DOM in landfill leachate through physico-chemical and optical analyses and to investigate the toxic metals (Ni2+, Pb2+ and Hg2+) binding affinity of three different ages (fresh sample L-1, young sample L-2 and mature sample L-3) DOM samples. Results suggested that leachate is a potential pollutant which contained very high organic pollutant load. Conditional stability constant (Log K) and percentages of fluorophores that correspond to metal binding (% f) values indicated that young DOM sample (L-2) had the highest binding affinity to all the three metals ions. In general, DOM samples showed the following order affinity to the metal ions; Ni2+ binding affinity: L-2 > L-3 > L-1, Pb2+ binding affinity: L-2 > L-3 > L-1 and Hg2+ binding affinity: L-2 > L-1 > L-3.

  7. Using affinity capillary electrophoresis and computational models for binding studies of heparinoids with p-selectin and other proteins.

    Science.gov (United States)

    Mozafari, Mona; Balasupramaniam, Shantheya; Preu, Lutz; El Deeb, Sami; Reiter, Christian G; Wätzig, Hermann

    2017-06-01

    A fast and precise affinity capillary electrophoresis (ACE) method has been developed and applied for the investigation of the binding interactions between P-selectin and heparinoids as potential P-selectin inhibitors in the presence and absence of calcium ions. Furthermore, model proteins and vitronectin were used to appraise the binding behavior of P-selectin. The normalized mobility ratios (∆R/R f ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. It was found that P-selectin interacts more strongly with heparinoids in the presence of calcium ions. P-selectin was affected by heparinoids at the concentration of 3 mg/L. In addition, the results of the ACE experiments showed that among other investigated proteins, albumins and vitronectin exhibited strong interactions with heparinoids. Especially with P-selectin and vitronectin, the interaction may additionally induce conformational changes. Subsequently, computational models were applied to interpret the ACE experiments. Docking experiments explained that the binding of heparinoids on P-selectin is promoted by calcium ions. These docking models proved to be particularly well suited to investigate the interaction of charged compounds, and are therefore complementary to ACE experiments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enrichment and characterization of phosphopeptides by immobilized metal affinity chromatography (IMAC) and mass spectrometry

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N

    2009-01-01

    The combination of immobilized metal affinity chromatography (IMAC) and mass spectrometry is a widely used technique for enrichment and sequencing of phosphopeptides. In the IMAC method, negatively charged phosphate groups interact with positively charged metal ions (Fe3+, Ga3+, and Al3...

  9. Metal-conjugated affinity labels: A new concept to create enantioselective artificial metalloenzymes

    KAUST Repository

    Reiner, Thomas

    2013-02-20

    How to train a protein: Metal-conjugated affinity labels were used to selectively position catalytically active metal centers in the binding pocket of proteases. The resulting artificial metalloenzymes achieve up to 82% e.r. in the hydrogenation of ketones. The modular setup enables a rapid generation of artificial metalloenzyme libraries, which can be adapted to a broad range of catalytic conditions. 2013 The Authors.

  10. Metal-conjugated affinity labels: A new concept to create enantioselective artificial metalloenzymes

    KAUST Repository

    Reiner, Thomas; Jantke, Dominik; Marziale, Alexander N.; Raba, Andreas; Eppinger, Jö rg

    2013-01-01

    How to train a protein: Metal-conjugated affinity labels were used to selectively position catalytically active metal centers in the binding pocket of proteases. The resulting artificial metalloenzymes achieve up to 82% e.r. in the hydrogenation of ketones. The modular setup enables a rapid generation of artificial metalloenzyme libraries, which can be adapted to a broad range of catalytic conditions. 2013 The Authors.

  11. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2016-06-01

    We have analyzed the structure and bonding of gas-phase Cl-X and [HCl-X](+) complexes for X(+)= H(+), CH3 (+), Li(+), and Na(+), using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl(-) and HCl for the various cations. The Cl-X bond becomes longer and weaker along X(+) = H(+), CH3 (+), Li(+), and Na(+). Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn-Sham molecular orbital (KS-MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities.

  12. Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen

    International Nuclear Information System (INIS)

    Ouargli-Saker, R.; Bouazizi, N.; Boukoussa, B.; Barrimo, Diana; Paola-Nunes-Beltrao, Ana; Azzouz, A.

    2017-01-01

    Highlights: • Metal dispersion in longitudinal channels confers adsorption properties to SBA-16. • Both Fe"0-NPs and Cu"0-NPs seem to be responsible of this effect. • Effect of the repetitive adsorption-desorption cycles on CO_2 and water sorption. • Hydrogen storage on the functionalized materials. - Abstract: Nanoparticles of Cu"o (CuNPs) and Fe"o (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO_2 retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  13. Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ouargli-Saker, R. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Bouazizi, N. [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Unité de recherche, Electrochimie, Matériaux et Environnement, Faculté des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072 Gabès (Tunisia); Boukoussa, B. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Lqamb, Laboratório de Química Analítica Ambiental, Faculdade de Química, Pontifícia Universidade Católica do Rio Grande do Sul (Brazil); Barrimo, Diana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Paola-Nunes-Beltrao, Ana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Laboratory of Materials Chemistry L.C.M, University of Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran (Algeria); Azzouz, A., E-mail: azzouz.a@uqam.ca [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada)

    2017-07-31

    Highlights: • Metal dispersion in longitudinal channels confers adsorption properties to SBA-16. • Both Fe{sup 0}-NPs and Cu{sup 0}-NPs seem to be responsible of this effect. • Effect of the repetitive adsorption-desorption cycles on CO{sub 2} and water sorption. • Hydrogen storage on the functionalized materials. - Abstract: Nanoparticles of Cu{sup o} (CuNPs) and Fe{sup o} (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO{sub 2} retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  14. Conducting polymer electrodes for gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Katarina Bengtsson

    Full Text Available In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene (PEDOT can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  15. Conducting polymer electrodes for gel electrophoresis.

    Science.gov (United States)

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  16. Optimization of the Nonaqueous Capillary Electrophoresis Separation of Metal Ions Using Mixture Design and Response Surface Methods

    OpenAIRE

    DEMİR, Cevdet; YÜCEL, Yasin

    2014-01-01

    Mixture experimental design was used to enhance the separation selectivity of metal ions in nonaqueous capillary electrophoresis. The separation of cations (Ag, Fe, Cr, Mn, Cd, Co, Pb, Ni, Zn and Cu) was achieved using imidazole as UV co-ion for indirect detection. Acetic acid was chosen as an electrolyte because its cathodic electroosmotic flow permits faster separation. The composition of organic solvents is important to achieve the best separation of all metal ions. Simplex latt...

  17. Electromembrane extraction of heavy metal cations followed by capillary electrophoresis with capacitively coupled contactless conductivity detection

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Strieglerová, Lenka; Gebauer, Petr; Boček, Petr

    2011-01-01

    Roč. 32, č. 9 (2011), s. 1025-1032 ISSN 0173-0835 R&D Projects: GA ČR GA203/08/1536; GA ČR GAP206/10/1219; GA AV ČR IAA400310703 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary electrophoresis * electromembrane extraction * heavy metal cations Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.303, year: 2011

  18. Investigation of Interactions between Thrombin and Ten Phenolic Compounds by Affinity Capillary Electrophoresis and Molecular Docking

    Directory of Open Access Journals (Sweden)

    Qiao-Qiao Li

    2018-01-01

    Full Text Available Thrombin plays a vital role in blood coagulation, which is a key process involved in thrombosis by promoting platelet aggregation and converting fibrinogen to form the fibrin clot. In the receptor concept, drugs produce their therapeutic effects via interactions with the targets. Therefore, investigation of interaction between thrombin and small molecules is important to find out the potential thrombin inhibitor. In this study, affinity capillary electrophoresis (ACE and in silico molecular docking methods were developed to study the interaction between thrombin and ten phenolic compounds (p-hydroxybenzoic acid, protocatechuic acid, vanillic acid, gallic acid, catechin, epicatechin, dihydroquercetin, naringenin, apigenin, and baicalein. The ACE results showed that gallic acids and six flavonoid compounds had relative strong interactions with thrombin. In addition, the docking results indicated that all of optimal conformations of the six flavonoid compounds were positioned into the thrombin activity centre and had interaction with the HIS57 or SER195 which was the key residue to bind thrombin inhibitors such as argatroban. Herein, these six flavonoid compounds might have the potential of thrombin inhibition activity. In addition, the developed method in this study can be further applied to study the interactions of other molecules with thrombin.

  19. Conducting Polymer Electrodes for Gel Electrophoresis

    OpenAIRE

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that p-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel ...

  20. [PHEMA/PEI]–Cu(II) based immobilized metal affinity chromatography cryogels: Application on the separation of IgG from human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshpour, Monireh; Derazshamshir, Ali; Bereli, Nilay [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey); Elkak, Assem [Laboratory of “Valorisation des Ressources Naturelles et Produits de Santé (VRNPS)”, Doctoral School of Sciences and Technology, Lebanese University, Rafic Hariri University Campus, Hadath (Lebanon); Denizli, Adil, E-mail: denizli@hacettepe.edu [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2016-04-01

    The immobilized metal-affinity chromatography (IMAC) has gained significant interest as a widespread separation and purification tool for therapeutic proteins, nucleic acids and other biological molecules. The enormous potential of IMAC for proteins with natural surface exposed-histidine residues and for recombinant proteins with histidine clusters. Cryogels as monolithic materials have recently been proposed as promising chromatographic adsorbents for the separation of biomolecules in downstream processing. In the present study, IMAC cryogels have been synthesized and utilized for the adsorption and separation of immunoglobulin G (IgG) from IgG solution and whole human plasma. For this purpose, Cu(II)-ions were coupled to poly(hydroxyethyl methacrylate) PHEMA using poly(ethylene imine) (PEI) as the chelating ligand. In this study the cryogels formation optimized by the varied proportion of PEI from 1% to 15% along with different amounts of Cu (II) as chelating metal. The prepared cryogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The [PHEMA/PEI]–Cu(II) cryogels were assayed for their capability to bind the human IgG from aqueous solutions. The IMAC cryogels were found to have high affinity toward human IgG. The adsorption of human IgG was investigated onto the PHEMA/PEI cryogels with (10% PEI) and the concentration of Cu (II) varied as 10, 50, 100 and 150 mg/L. The separation of human IgG was achieved in one purification step at pH 7.4. The maximum adsorption capacity was observed at the [PHEMA/PEI]–Cu(II) (10% PEI) with 72.28 mg/g of human IgG. The purification efficiency and human IgG purity were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). - Highlights: • Cu(II)-ions were coupled to PHEMA using PEI as the chelating ligand. • Cu(II) chelated [PHEMA/PEI] cryogels for IgG separation were produced. • Maximum IgG adsorption capacity

  1. [PHEMA/PEI]–Cu(II) based immobilized metal affinity chromatography cryogels: Application on the separation of IgG from human plasma

    International Nuclear Information System (INIS)

    Bakhshpour, Monireh; Derazshamshir, Ali; Bereli, Nilay; Elkak, Assem; Denizli, Adil

    2016-01-01

    The immobilized metal-affinity chromatography (IMAC) has gained significant interest as a widespread separation and purification tool for therapeutic proteins, nucleic acids and other biological molecules. The enormous potential of IMAC for proteins with natural surface exposed-histidine residues and for recombinant proteins with histidine clusters. Cryogels as monolithic materials have recently been proposed as promising chromatographic adsorbents for the separation of biomolecules in downstream processing. In the present study, IMAC cryogels have been synthesized and utilized for the adsorption and separation of immunoglobulin G (IgG) from IgG solution and whole human plasma. For this purpose, Cu(II)-ions were coupled to poly(hydroxyethyl methacrylate) PHEMA using poly(ethylene imine) (PEI) as the chelating ligand. In this study the cryogels formation optimized by the varied proportion of PEI from 1% to 15% along with different amounts of Cu (II) as chelating metal. The prepared cryogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The [PHEMA/PEI]–Cu(II) cryogels were assayed for their capability to bind the human IgG from aqueous solutions. The IMAC cryogels were found to have high affinity toward human IgG. The adsorption of human IgG was investigated onto the PHEMA/PEI cryogels with (10% PEI) and the concentration of Cu (II) varied as 10, 50, 100 and 150 mg/L. The separation of human IgG was achieved in one purification step at pH 7.4. The maximum adsorption capacity was observed at the [PHEMA/PEI]–Cu(II) (10% PEI) with 72.28 mg/g of human IgG. The purification efficiency and human IgG purity were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). - Highlights: • Cu(II)-ions were coupled to PHEMA using PEI as the chelating ligand. • Cu(II) chelated [PHEMA/PEI] cryogels for IgG separation were produced. • Maximum IgG adsorption capacity

  2. Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table

    NARCIS (Netherlands)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F. Matthias

    2017-01-01

    We have carried out an extensive exploration of gas-phase alkali metal cation affinities (AMCA) of archetypal anionic bases across the periodic system using relativistic density functional theory at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P. AMCA values of all bases were computed for the lithium, sodium,

  3. Adsorption of endotoxins on Ca2+ -iminodiacetic acid by metal ion affinity chromatography.

    Science.gov (United States)

    Lopes, André Moreni; Romeu, Jorge Sánchez; Meireles, Rolando Páez; Perera, Gabriel Marquez; Morales, Rolando Perdomo; Pessoa, Adalberto; Cárdenas, Lourdes Zumalacárregui

    2012-11-01

    Endotoxins (also known as lipopolysaccharides (LPS)) are undesirable by-products of recombinant proteins, purified from Escherichia coli. LPS can be considered stable under a wide range of temperature and pH, making their removal one of the most difficult tasks in downstream processes during protein purification. The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration. Immobilized metal affinity chromatography (IMAC) enables the affinity interactions between the metal ions (immobilized on the support through the chelating compound) and the target molecules, thus enabling high-efficiency separation of the target molecules from other components present in a mixture. Affinity chromatography is applied with Ca2+ -iminodiacetic acid (IDA) to remove most of the LPS contaminants from the end product (more than 90%). In this study, the adsorption of LPS on an IDA-Ca2+ was investigated. The adsorption Freundlich isotherm of LPS-IDA-Ca2+ provides a theoretical basis for LPS removal. It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ ligands on the beads. The factors such as pH (4.0 or 5.5) and ionic strength (1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin' concentration values less than 100 EU/mL and 100 000 EU/mL. This new protocol represents a substantial advantage in time, effort, and production costs.

  4. Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions

    Science.gov (United States)

    David, Calin; Mongin, Sandrine; Rey-Castro, Carlos; Galceran, Josep; Companys, Encarnació; Garcés, José Luis; Salvador, José; Puy, Jaume; Cecilia, Joan; Lodeiro, Pablo; Mas, Francesc

    2010-09-01

    Information on the Pb and Cd binding to a purified Aldrich humic acid (HA) is obtained from the influence of different fixed total metal concentrations on the acid-base titrations of this ligand. NICA (Non-Ideal Competitive Adsorption) isotherm has been used for a global quantitative description of the binding, which has then been interpreted by plotting the Conditional Affinity Spectra of the H + binding at fixed total metal concentrations (CAScTM). This new physicochemical tool, here introduced, allows the interpretation of binding results in terms of distributions of proton binding energies. A large increase in the acidity of the phenolic sites as the total metal concentration increases, especially in presence of Pb, is revealed from the shift of the CAScTM towards lower affinities. The variance of the CAScTM distribution, which can be used as a direct measure of the heterogeneity, also shows a significant dependence on the total metal concentration. A discussion of the factors that influence the heterogeneity of the HA under the conditions of each experiment is provided, so that the smoothed pattern exhibited by the titration curves can be justified.

  5. Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2017-10-05

    We have carried out an extensive exploration of gas-phase alkali metal cation affinities (AMCA) of archetypal anionic bases across the periodic system using relativistic density functional theory at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P. AMCA values of all bases were computed for the lithium, sodium, potassium, rubidium and cesium cations and compared with the corresponding proton affinities (PA). One purpose of this work is to provide an intrinsically consistent set of values of the 298 K AMCAs of all anionic (XH n-1 - ) constituted by main group-element hydrides of groups 14-17 along the periods 2-6. In particular, we wish to establish the trend in affinity for a cation as the latter varies from proton to, and along, the alkali cations. Our main purpose is to understand these trends in terms of the underlying bonding mechanism using Kohn-Sham molecular orbital theory together with a quantitative bond energy decomposition analyses (EDA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Developments in coupled solid-phase extraction-capillary electrophoresis 2013-2015.

    Science.gov (United States)

    Ramautar, Rawi; Somsen, Govert W; de Jong, Gerhardus J

    2016-01-01

    An overview of the design and application of coupled solid-phase extraction-capillary electrophoresis (SPE-CE) systems reported in the literature between July 2013 and June 2015 is provided in this paper. The present article is a continuation of our previous review papers on this topic which covered the time period 2000-2013 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54; Electrophoresis 2012, 33, 243-250; Electrophoresis 2014, 35, 128-137). The use of in-line and on-line SPE-CE approaches is treated and outlined in this review. Recent advancements, such as, for example, the use of aptamers as affinity material for in-line SPE-CE, the use of a bead string design for in-line fritless SPE-CE, and new interfacing techniques for the on-line coupling of SPE to CE, are outlined. Selected examples demonstrate the applicability of the coupled SPE-CE systems for biomedical, pharmaceutical, environmental, and food studies. A complete overview of the recent SPE-CE studies is given in table format, providing information on sample type, SPE sorbent, coupling mode, detection mode, and LOD. Finally, some general conclusions and perspectives are provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Screening method of carbohydrate-binding proteins in biological sources by capillary affinity electrophoresis and its application to determination of Tulipa gesneriana agglutinin in tulip bulbs.

    Science.gov (United States)

    Nakajima, Kazuki; Kinoshita, Mitsuhiro; Oda, Yasuo; Masuko, Takashi; Kaku, Hanae; Shibuya, Naoto; Kakehi, Kazuaki

    2004-09-01

    We developed capillary affinity electrophoresis (CAE) to analyze the molecular interaction between carbohydrate chains and proteins in solution state. A mixture of oligosaccharides derived from a glycoprotein was labeled with 8-aminopyrene-1,3,6-trisulfonate (APTS), and used as glycan library without isolation. Interaction of a carbohydrate-binding protein with each oligosaccharide in the mixture could be simultaneously observed, and relative affinities of oligosaccharides toward the protein were accurately determined. In this study, we applied CAE to detect the presence of lectins in some plants (Japanese elderberry bark and tulip bulb). In the crude extract of the elderberry bark, binding activity toward sialo-carbohydrate chains could be easily detected. We also examined the presence of lectins in the crude extract of tulip bulbs and determined the detailed carbohydrate-binding specificity of Tulipa gesneriana agglutinin (TGA), one of the lectins from tulip bulbs. Kinetic studies demonstrated that TGA showed novel carbohydrate-binding specificity and preferentially recognized triantennary oligosaccharides with Gal residues at nonreducing termini and a Fuc residue linked through alpha(1-6) linkage at chitobiose portion of the reducing termini but not tetraantennary carbohydrates. The results described here indicate that CAE will be a valuable method for both screening of lectins in natural sources and determination of their detailed carbohydrate-binding specificities.

  8. Removal of PCR error products and unincorporated primers by metal-chelate affinity chromatography.

    Directory of Open Access Journals (Sweden)

    Indhu Kanakaraj

    Full Text Available Immobilized Metal Affinity Chromatography (IMAC has been used for decades to purify proteins on the basis of amino acid content, especially surface-exposed histidines and "histidine tags" genetically added to recombinant proteins. We and others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu(2+-iminodiacetic acid (IDA agarose spin column, 94-99% of the dNTPs and nearly all the primers can be removed. Many of the error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results show that IMAC matrices (specifically Cu(2+-IDA agarose can be used for the purification of PCR products. Due to the generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of oligonucleotides, cDNA, mRNA and micro RNAs.

  9. Drug Release from ß-Cyclodextrin Complexes and Drug Transfer into Model Membranes Studied by Affinity Capillary Electrophoresis.

    Science.gov (United States)

    Darwish, Kinda A; Mrestani, Yahya; Rüttinger, Hans-Hermann; Neubert, Reinhard H H

    2016-05-01

    Is to characterize the drug release from the ß-cyclodextrin (ß-CD) cavity and the drug transfer into model membranes by affinity capillary electrophoresis. Phospholipid liposomes with and without cholesterol were used to mimic the natural biological membrane. The interaction of cationic and anionic drugs with ß-CD and the interaction of the drugs with liposomes were detected separately by measuring the drug mobility in ß-CD containing buffer and liposome containing buffer; respectively. Moreover, the kinetics of drug release from ß-CD and its transfer into liposomes with or without cholesterol was studied by investigation of changes in the migration behaviours of the drugs in samples, contained drug, ß-CD and liposome, at 1:1:1 molar ratio at different time intervals; zero time, 30 min, 1, 2, 4, 6, 8, 10 and 24 h. Lipophilic drugs such as propranolol and ibuprofen were chosen for this study, because they form complexes with ß-CD. The mobility of the both drug liposome mixtures changed with time to a final state. For samples of liposomal membranes with cholesterol the final state was faster reached than without cholesterol. The study confirmed that the drug release from the CD cavity and its transfer into the model membrane was more enhanced by the competitive displacement of the drug from the ß-CD cavity by cholesterol, the membrane component. The ACE method here developed can be used to optimize the drug release from CD complexes and the drug transfer into model membranes.

  10. Haemoglobin Pierre-Benite--a high affinity variant associated with relative polycythaemia.

    Science.gov (United States)

    Beard, M E; Potter, H C; Spearing, R L; Brennan, S O

    2001-12-01

    This is the second reported example of Hb Pierre--Benite (beta90 Glu-->Asp). This mutation is associated with increased oxygen affinity and polycythaemia. No instability was found and there was no charge shift detected by cellulose acetate electrophoresis at pH 8.3. The mutation was however, clearly indicated by electrospray ionization mass spectrometry (ESI MS), which showed an abnormal beta chain with a 14 Da decrease in mass. Blood volume studies documented a relative rather than a true polycythaemia and this finding has been reported in at least two other high affinity haemoglobin variants--Hb Heathrow and Hb Rahere. This finding led to delay in diagnosis because high oxygen affinity variants are conventionally considered to cause a true polycythaemia.

  11. Haemoglobin Rahere (beta Lys-Thr): A new high affinity haemoglobin associated with decreased 2, 3-diphosphoglycerate binding and relative polycythaemia.

    Science.gov (United States)

    Lorkin, P A; Stephens, A D; Beard, M E; Wrigley, P F; Adams, L; Lehmann, H

    1975-01-01

    A new haemoglobin with increased oxygen affinity, beta82 (EF6) lysine leads to threonine (Hb Rahere), was found during the investigation of a patient who was found to have a raised haemoglobin concentration after a routine blood count. The substitution affects one of the 2, 3-diphosphoglycerate binding sites, resulting in an increased affinity for oxygen, but both the haem-haem interaction and the alkaline Bohr effect are normal in the haemolysate. This variant had the same mobility as haemoglobin A on electrophoresis at alkaline pH but was detected by measuring the whole blood oxygen affinity; it could be separated from haemoglobin A, however, by electrophoresis in agar at acid pH. The raised haemoglobin concentration was mainly due to a reduction in plasma volume (a relative polycythaemia) and was associated with a persistently raised white blood count. This case emphasises the need to measure the oxygen affinity of haemoglobin in all patients with absolute or relative polycythaemia when some obvious cause is not evident. PMID:124

  12. New polymer-supported ion-complexing agents: Design, preparation and metal ion affinities of immobilized ligands

    International Nuclear Information System (INIS)

    Alexandratos, Spiro D.

    2007-01-01

    Polymer-supported reagents are comprised of crosslinked polymer networks that have been modified with ligands capable of selective metal ion complexation. Applications of these polymers are in environmental remediation, ion chromatography, sensor technology, and hydrometallurgy. Bifunctional polymers with diphosphonate/sulfonate ligands have a high selectivity for actinide ions. The distribution coefficient for the uranyl ion from 1 M nitric acid is 70,000, compared to 900 for the monophosphonate/sulfonate polymer and 200 for the sulfonic acid ion-exchange resin. A bifunctional trihexyl/triethylammonium polymer has a high affinity and selectivity for pertechnetate and perchlorate anions from groundwater. In one example, its distribution coefficient for perchlorate ions in the presence of competing anions is 3,300,000, compared to 203,180 for a commercially available anion-exchange resin. Polystyrene modified with N-methyl-D-glucamine ligands is capable of selectively complexing arsenate from groundwater. It complexes 99% of the arsenate present in a solution of 100 mg/L arsenate with 560 mg/L sulfate ions. Its selectivity is retained even in the presence of 400 mg/L phosphate. There is no affinity for arsenate above pH 9, allowing for the polymer to be regenerated with moderate alkali solution. In studies aimed at developing a Hg(II)-selective resin, simple amine resins were found to have a high Hg(II) affinity and that affinity is dependent upon the solution pH and the counterion

  13. Evaluation of iron and selenium losses in metalloproteins separated by gel electrophoresis by ICPMS

    International Nuclear Information System (INIS)

    Gherghel, I.; Fernandez, M.L.; Fernandez, B.; Pereiro, R.; Sanz-Medel, A.

    2009-01-01

    Full text: Metallomics addresses the study of metabolism, transport, and metal-protein interactions aiming to obtain relevant information of physiological and pathological alterations in living organisms. Gel electrophoresis is widely employed in proteomics and its use is actually extending to metallomics. Unfortunately, analysis of proteins by molecular techniques does not offer quantitative information. So, a good alternative could be their determination via the quantification of (semi)metal bound to the protein by ICPMS. In this work, we will show a detailed study of possible losses of protein and/or metal in Fe-bound and selenium proteins (transferrin and glutathione peroxidase, respectively) to evaluate the behaviour of the protein-metal interactions during the electrophoresis process. (author)

  14. Two-step purification of His-tagged Nef protein in native condition using heparin and immobilized metal ion affinity chromatographies.

    Science.gov (United States)

    Finzi, Andrés; Cloutier, Jonathan; Cohen, Eric A

    2003-07-01

    The Nef protein encoded by human immunodeficiency virus type 1 (HIV-1) has been shown to be an important factor of progression of viral growth and pathogenesis in both in vitro and in vivo. The lack of a simple procedure to purify Nef in its native conformation has limited molecular studies on Nef function. A two-step procedure that includes heparin and immobilized metal ion affinity chromatographies (IMACs) was developed to purify His-tagged Nef (His(6)-Nef) expressed in bacteria in native condition. During the elaboration of this purification procedure, we identified two closely SDS-PAGE-migrating contaminating bacterial proteins, SlyD and GCHI, that co-eluted with His(6)-Nef in IMAC in denaturing condition and developed purification steps to eliminate these contaminants in native condition. Overall, this study describes a protocol that allows rapid purification of His(6)-Nef protein expressed in bacteria in native condition and that removes metal affinity resin-binding bacterial proteins that can contaminate recombinant His-tagged protein preparation.

  15. Immobilized metal-affinity chromatography protein-recovery screening is predictive of crystallographic structure success

    International Nuclear Information System (INIS)

    Choi, Ryan; Kelley, Angela; Leibly, David; Nakazawa Hewitt, Stephen; Napuli, Alberto; Van Voorhis, Wesley

    2011-01-01

    An overview of the methods used for high-throughput cloning and protein-expression screening of SSGCID hexahistidine recombinant proteins is provided. It is demonstrated that screening for recombinant proteins that are highly recoverable from immobilized metal-affinity chromatography improves the likelihood that a protein will produce a structure. The recombinant expression of soluble proteins in Escherichia coli continues to be a major bottleneck in structural genomics. The establishment of reliable protocols for the performance of small-scale expression and solubility testing is an essential component of structural genomic pipelines. The SSGCID Protein Production Group at the University of Washington (UW-PPG) has developed a high-throughput screening (HTS) protocol for the measurement of protein recovery from immobilized metal-affinity chromatography (IMAC) which predicts successful purification of hexahistidine-tagged proteins. The protocol is based on manual transfer of samples using multichannel pipettors and 96-well plates and does not depend on the use of robotic platforms. This protocol has been applied to evaluate the expression and solubility of more than 4000 proteins expressed in E. coli. The UW-PPG also screens large-scale preparations for recovery from IMAC prior to purification. Analysis of these results show that our low-cost non-automated approach is a reliable method for the HTS demands typical of large structural genomic projects. This paper provides a detailed description of these protocols and statistical analysis of the SSGCID screening results. The results demonstrate that screening for proteins that yield high recovery after IMAC, both after small-scale and large-scale expression, improves the selection of proteins that can be successfully purified and will yield a crystal structure

  16. Enhanced binding affinity, remarkable selectivity, and high capacity of CO 2 by dual functionalization of a rht-type metal-organic framework

    KAUST Repository

    Li, Baiyan; Zhang, Zhijuan; Li, Yi; Yao, Kexin; Zhu, Yihan; Deng, Zhiyong; Yang, Fen; Zhou, Xiaojing; Li, Guanghua; Wu, Haohan; Nijem, Nour; Chabal, Yves Jean; Lai, Zhiping; Han, Yu; Shi, Zhan; Feng, Shouhua; Li, Jing

    2011-01-01

    Open and friendly: The smallest member of the rht-type metal-organic frameworks (MOFs, see picture) constructed by a hexacarboxylate ligand with a nitrogen-rich imino triazine backbone shows a significantly enhanced gas binding affinity relative

  17. Laser photoelectron spectroscopy of MnH - 2, FeH - 2, CoH - 2, and NiH - 2: Determination of the electron affinities for the metal dihydrides

    Science.gov (United States)

    Miller, Amy E. S.; Feigerle, C. S.; Lineberger, W. C.

    1986-04-01

    The laser photoelectron spectra of MnH-2, FeH-2, CoH-2, and NiH-2 and the analogous deuterides are reported. Lack of vibrational structure in the spectra suggests that all of the dihydrides and their negative ions have linear geometries, and that the transitions observed in the spectra are due to the loss of nonbonding d electrons. The electron affinities for the metal dihydrides are determined to be 0.444±0.016 eV for MnH2, 1.049±0.014 eV for FeH2, 1.450±0.014 eV for CoH2, and 1.934±0.008 eV for NiH2. Electronic excitation energies are provided for excited states of FeH2, CoH2, and NiH2. Electron affinities and electronic excitation energies for the dideuterides are also reported. A limit on the electron affinity of CrH2 of ≥2.5 eV is determined. The electron affinities of the dihydrides directly correlate with the electron affinities of the high-spin states of the monohydrides, and with the electron affinities of the metal atoms. These results are in agreement with a qualitative model developed for bonding in the monohydrides.

  18. Living Colloidal Metal Particles from Solvated Metal Atoms. Clustering of Metal Atoms in Organic Media 15.

    Science.gov (United States)

    1986-09-23

    attributed to these solutions, especially toward heart disease. And in 1618 Antoni published Panacea Aurea : Auro Potabile 4 which centered on the...probably a slow process (discussed next under the electrophoresis section ). Electrophoresis: Electrophoresis, the movement of charged particles in...electrical properties. Experimental Section Preparation of a Typical Au-Acetone Colloid The metal atom reactor has been described previo sly. 3 9 ’ 5 9 ’ 6 0

  19. An improved interface for capillary zone electrophoresis-mass spectrometry

    International Nuclear Information System (INIS)

    Smith, R.D.; Loo, J.A.; Barinaga, C.J.; Udseth, H.R.

    1988-06-01

    We have recently developed an improved electrospray ionization interface for capillary electrophoresis mass-spectrometry (CZE-MS). Our initial interface employed a vacuum deposited metal film at the exit of the capillary to make an electrical contact with he eluting buffer and establish the electrospray field gradient. This interface did, however, impose significant limitations on the range of capillary electrophoretic (CE) separations that could be performed. To circumvent these limitations, an interface that does not require a metalized tip was designed nd developed. In the new approach, the electrical contact at the column exit is made through a flowing liquid sheath. The principal advantage of this interface is that it allows operation with a much broader range of electrophoresis conditions. The sheath flow can be readily varied in both composition and volume. An electrospray ionization spectrum is given for a previously intractable buffer solution. 5 refs., 2 figs

  20. Mobility-based correction for accurate determination of binding constants by capillary electrophoresis-frontal analysis.

    Science.gov (United States)

    Qian, Cheng; Kovalchik, Kevin A; MacLennan, Matthew S; Huang, Xiaohua; Chen, David D Y

    2017-06-01

    Capillary electrophoresis frontal analysis (CE-FA) can be used to determine binding affinity of molecular interactions. However, its current data processing method mandate specific requirement on the mobilities of the binding pair in order to obtain accurate binding constants. This work shows that significant errors are resulted when the mobilities of the interacting species do not meet these requirements. Therefore, the applicability of CE-FA in many real word applications becomes questionable. An electrophoretic mobility-based correction method is developed in this work based on the flux of each species. A simulation program and a pair of model compounds are used to verify the new equations and evaluate the effectiveness of this method. Ibuprofen and hydroxypropyl-β-cyclodextrinare used to demonstrate the differences in the obtained binding constant by CE-FA when different calculation methods are used, and the results are compared with those obtained by affinity capillary electrophoresis (ACE). The results suggest that CE-FA, with the mobility-based correction method, can be a generally applicable method for a much wider range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The use of selective adsorbents in capillary electrophoresis-mass spectrometry for analyte preconcentration and microreactions: a powerful three-dimensional tool for multiple chemical and biological applications.

    Science.gov (United States)

    Guzman, N A; Stubbs, R J

    2001-10-01

    Much attention has recently been directed to the development and application of online sample preconcentration and microreactions in capillary electrophoresis using selective adsorbents based on chemical or biological specificity. The basic principle involves two interacting chemical or biological systems with high selectivity and affinity for each other. These molecular interactions in nature usually involve noncovalent and reversible chemical processes. Properly bound to a solid support, an "affinity ligand" can selectively adsorb a "target analyte" found in a simple or complex mixture at a wide range of concentrations. As a result, the isolated analyte is enriched and highly purified. When this affinity technique, allowing noncovalent chemical interactions and biochemical reactions to occur, is coupled on-line to high-resolution capillary electrophoresis and mass spectrometry, a powerful tool of chemical and biological information is created. This paper describes the concept of biological recognition and affinity interaction on-line with high-resolution separation, the fabrication of an "analyte concentrator-microreactor", optimization conditions of adsorption and desorption, the coupling to mass spectrometry, and various applications of clinical and pharmaceutical interest.

  2. Immobilised metal-ion affinity chromatography purification of histidine-tagged recombinant proteins : a wash step with a low concentration of EDTA

    NARCIS (Netherlands)

    Westra, DF; Welling, GW; Koedijk, DGAM; Scheffer, AJ; The, TH; Welling-Wester, S

    2001-01-01

    Immobilised metal-ion affinity chromatography (IMAC) is widely used for the purification of recombinant proteins in which a poly-histidine tag is introduced. However, other proteins may also bind to IMAC columns. We describe the use of a washing buffer with a low concentration of EDTA (0.5 mM) for

  3. Native gel electrophoresis of human telomerase distinguishes active complexes with or without dyskerin

    Science.gov (United States)

    Gardano, Laura; Holland, Linda; Oulton, Rena; Le Bihan, Thierry; Harrington, Lea

    2012-01-01

    Telomeres, the ends of linear chromosomes, safeguard against genome instability. The enzyme responsible for extension of the telomere 3′ terminus is the ribonucleoprotein telomerase. Whereas telomerase activity can be reconstituted in vitro with only the telomerase RNA (hTR) and telomerase reverse transcriptase (TERT), additional components are required in vivo for enzyme assembly, stability and telomere extension activity. One such associated protein, dyskerin, promotes hTR stability in vivo and is the only component to co-purify with active, endogenous human telomerase. We used oligonucleotide-based affinity purification of hTR followed by native gel electrophoresis and in-gel telomerase activity detection to query the composition of telomerase at different purification stringencies. At low salt concentrations (0.1 M NaCl), affinity-purified telomerase was ‘supershifted’ with an anti-dyskerin antibody, however the association with dyskerin was lost after purification at 0.6 M NaCl, despite the retention of telomerase activity and a comparable yield of hTR. The interaction of purified hTR and dyskerin in vitro displayed a similar salt-sensitive interaction. These results demonstrate that endogenous human telomerase, once assembled and active, does not require dyskerin for catalytic activity. Native gel electrophoresis may prove useful in the characterization of telomerase complexes under various physiological conditions. PMID:22187156

  4. Enhanced binding affinity, remarkable selectivity, and high capacity of CO 2 by dual functionalization of a rht-type metal-organic framework

    KAUST Repository

    Li, Baiyan

    2011-12-23

    Open and friendly: The smallest member of the rht-type metal-organic frameworks (MOFs, see picture) constructed by a hexacarboxylate ligand with a nitrogen-rich imino triazine backbone shows a significantly enhanced gas binding affinity relative to all other isoreticular rht-type MOFs. The high adsorption capacity and remarkable selectivity of CO 2 are attributed to the high density of open metal and Lewis basic sites in the framework. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Disc electrophoresis and related techniques of polyacrylamide gel electrophoresis

    National Research Council Canada - National Science Library

    Maurer, H. R

    1971-01-01

    ..., enzymes, antingens and radioactively labelled materials, and detailed treatments of micro disc electrophoresis, preparative polyacrylamide gel electrophoresis and many other techniques for special problems...

  6. Affinity of Smectite and Divalent Metal Ions (Mg(2+), Ca(2+), Cu(2+)) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology.

    Science.gov (United States)

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg(2+), Ca(2+) and Cu(2+)) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu(2+)- exchanged SMT and minimal affinity for Mg(2+)- exchanged SMT. The vibrational frequency shifts of -NH3 (+) and -COO(-) favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu-M(2+) complex, M = Mg(2+), Ca(2+), Cu(2+)) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu-M(2+) × (H2O)n, (n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of

  7. Electrophoresis forum '80

    International Nuclear Information System (INIS)

    Radola, B.J.

    1980-01-01

    In this volume the contributions of the electrophoresis meeting are presented in a short term form. The main topics are gel-electrophoresis, ultra thin film isoelectric focusing, one- and two-dimensional electrophoresis, electrophoretical separation techniques, electric focusing (for phorensic studies), substrate free and substrate electrophoresis. In the poster session of this meeting subjects such as (ultra) thin film isoelectric focusing, identification of radioactive proteins, labelling of cell surfaces, autoradiography and 3 H-labelled proteins. Separate abstracts were prepared for 4 papers in this report. (HK) [de

  8. Speciation of protein-bound trace elements by gel electrophoresis and atomic spectrometry.

    Science.gov (United States)

    Ma, Renli; McLeod, Cameron W; Tomlinson, Kerry; Poole, Robert K

    2004-08-01

    The metabolism of trace elements, in particular their binding to proteins in biological systems is of great importance in biochemical, toxicological, and pharmacological studies. As a result there has been a sustained interest over the last two decades in the speciation of protein-bound metals. Various analytical approaches have been employed, combining efficient separation of metalloproteins by liquid chromatography or electrophoresis with high-sensitivity elemental detection. Slab-gel electrophoresis (GE) is a key platform for high-resolution protein separation, and has been combined with autoradiography and various atomic spectrometric techniques for in-gel determination of protein-bound metals. Recently, the combination of GE with state-of-the-art inductively coupled plasma-mass spectrometry (ICP-MS), particularly when linked to laser ablation (LA) for direct gel interrogation, has opened up new opportunities for rapid characterization of metalloproteins. The use of GE and atomic spectrometry for the speciation of protein-bound trace elements is reviewed in this paper. Technical requirements for gel electrophoresis/atomic spectrometric measurement are considered in terms of method compatibilities, detection capability and potential usefulness. The literature is also surveyed to illustrate current status and future trends. Copyright 2004 Wiley-VCH Verlag GmbH and Co.

  9. Comparison of non-electrophoresis grade with electrophoresis grade BIS in NIPAM polymer gel preparation

    Science.gov (United States)

    Khodadadi, Roghayeh; Khajeali, Azim; Farajollahi, Ali Reza; Hajalioghli, Parisa; Raeisi, Noorallah

    2015-01-01

    Introduction:The main objective of this study was to investigate the possibility of replacing electrophoresis cross-linker with non-electrophoresis N, N′-methylenebisacrylamide (BIS) in N-isopropyl acrylamide (NIPAM) polymer gel and its possible effect on dose response. Methods: NIPAM polymer gel was prepared from non-electrophoresis grade BIS and the relaxation rate (R2) was measured by MR imaging after exposing the gel to gamma radiation from Co-60 source. To compare the response of this gel with the one that contains electrophoresis grade BIS, two sets of NIPAM gel were prepared using electrophoresis and non-electrophoresis BIS and irradiated to different gamma doses. Results: It was found that the dose–response of NIPAM gel made from the non-electrophoresis grade BIS is coincident with that of electrophoresis grade BIS. Conclusion:Taken all, it can be concluded that the non-electrophoresis grade BIS not only is a suitable alternative for the electrophoresis grade BIS but also reduces the cost of gel due to its lower price. PMID:26457250

  10. Development in electrophoresis: instrumentation for two-dimensional gel electrophoresis of protein separation and application of capillary electrophoresis in micro-bioanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Aoshuang [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    This dissertation begins with a general introduction of topics related to this work. The following chapters contain three scientific manuscripts, each presented in a separate chapter with accompanying tables, figures, and literature citations. The final chapter summarizes the work and provides some prospective on this work. This introduction starts with a brief treatment of the basic principles of electrophoresis separation, followed by a discussion of gel electrophoresis and particularly polyacrylamide gel electrophoresis for protein separation, a summary of common capillary electrophoresis separation modes, and a brief treatment of micro-bioanalysis application of capillary electrophoresis, and ends with an overview of protein conformation and dynamics.

  11. Combination of ICP-MS, capillary electrophoresis, and their hyphenation for probing Ru(III) metallodrug-DNA interactions.

    Science.gov (United States)

    Foteeva, Lidia S; Matczuk, Magdalena; Pawlak, Katarzyna; Aleksenko, Svetlana S; Nosenko, Sergey V; Karandashev, Vasily K; Jarosz, Maciej; Timerbaev, Andrei R

    2017-03-01

    Determination of the DNA-binding reactivity and affinity is an important part of a successful program for the selection of metallodrug candidates. For such assaying, a range of complementary analytical techniques was proposed and tested here using one of few anticancer metal-based drugs that are currently in clinical trials, indazolium trans-[tetrachloridobis(1H-indazole)ruthenate(III), and a DNA oligonucleotide. A high reactivity of the Ru drug was confirmed in affinity capillary electrophoresis (CE) mode, where adduct formation takes place in situ (i.e., in the capillary filled with an oligonucleotide-containing electrolyte). To further characterize the binding kinetics, a drug-oligonucleotide mixture was incubated for a different period of time, followed by ultrafiltration separation into two different in molecular weight fractions (>3 and ICP-MS), revealing that at least two DNA adducts exist at equilibrium conditions. Using standalone ICP-MS, dominant equilibrium amount of the bound ruthenium was found to occur in a fraction of 5-10 kDa, which includes the oligonucleotide (ca. 6 kDa). Importantly, in all three assays, the drug was used for the first time in in-vitro studies, not in the intact form but as its active species released from the transferrin adduct at simulated cancer cytosolic conditions. This circumstance makes the established analytical platform promising to provide a detailed view on metallodrug targeting, including other possible biomolecules and ex vivo samples.

  12. Screening of chemokine receptor CCR4 antagonists by capillary zone electrophoresis

    Directory of Open Access Journals (Sweden)

    Zhe Sun

    2011-11-01

    Full Text Available CC chemokine receptor 4 (CCR4 is a kind of G-protein-coupled receptor, which plays a pivotal role in allergic inflammation. The interaction between 2-(2-(4-chloro-phenyl-5-{[(naphthalen-1-ylmethyl-carbamoyl]-methyl}-4-oxo-thiazolidin-3-yl-N-(3-morpholin-4-yl-propyl-acetamide (S009 and the N-terminal extracellular tail (ML40 of CCR4 has been validated to be high affinity by capillary zone electrophoresis (CZE. The S009 is a known CCR4 antagonist. Now, a series of new thiourea derivatives have been synthesized. Compared with positive control S009, they were screened using ML40 as target by CZE to find some new drugs for allergic inflammation diseases. The synthesized compounds XJH-5, XJH-4, XJH-17 and XJH-1 displayed the interaction with ML40, but XJH-9, XJH-10, XJH-11, XJH-12, XJH-13, XJH-14, XJH-3, XJH-8, XJH-6, XJH-7, XJH-15, XJH-16 and XJH-2 did not bind to ML40. Both qualification and quantification characterizations of the binding were determined. The affinity of the four compounds was valued by the binding constant, which was similar with the results of chemotactic experiments. The established CEZ method is capable of sensitive and fast screening for a series of lactam analogs in the drug discovery for allergic inflammation diseases. Keywords: Capillary zone electrophoresis, CCR4 antagonist, 2-(2-(4-chloro-phenyl-5-{[(naphthalen-1-ylmethyl-carbamoyl]-methyl}-4-oxo-thiazolidin-3-yl-N-(3-morpholin-4-yl-propyl-acetamide, Interactions, Structural modification

  13. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard [Laboratoire de Chimie Nucleaire Analytique et Bioenvironnementale, CNRS UMR5084, Universite Bordeaux 1, Chemin du Solarium, F-33175 Gradignan cedex (France); Solari, Pier Lorenzo [Synchrotron SOLEIL, L' Orme des Merisiers, BP 48, F-91192 Gif-sur-Yvette cedex, Saint-Aubin (France); Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis, E-mail: ortega@cenbg.in2p3.f [FAME, ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble cedex (France)

    2009-11-15

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  14. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Science.gov (United States)

    Chevreux, Sylviane; Solari, Pier Lorenzo; Roudeau, Stéphane; Deves, Guillaume; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis; Ortega, Richard

    2009-11-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  15. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    International Nuclear Information System (INIS)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard; Solari, Pier Lorenzo; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis

    2009-01-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  16. PRELIMINARY HIGH PERFORMANCE CAPILLARY ELECTROPHORESIS (HPCE) STUDIES OF ENZYMATIC DEGRADATION OF HYALURONIC ACID BY HYALURONIDASE IN THE PRESENCE OF POLYVALENT METAL IONS.

    Science.gov (United States)

    Urbaniak, Bartosz; Plewa, Szymon; Kokot, Zenon Jozef

    2017-01-01

    The aim of this study was, at first, to examine the influence of metal ions on digestion process of hyaluronic acid by hyaluronidase (HAse) using high performance capillary electrophoresis (HPCE) method. The influence of copper(H), zinc(Il), manganese(II) ions on enzymatic degradation of HA by hyaluronidase enzyme (HA-se) were investigated. Secondly, the kinetic parameters, V(max), K(m), k(cat), and k (cat),/K(m) were determined to estimate the impact of these metal ions (Me) on digestion process of hyaluronic acid (HA). The two different HA-Me mole ratios were analyzed. The examined data were always compared to the digestion process of pure HA solution by hyaluronidase, to exhibit the differences in the digestion process of pure hyaluronan as well as the hyaluronan in the presence of metal ions. It was observed that all of the investigated metal ions have influenced the hyaluronic acid degradation process. The most important conclusion was a decrease of the kinetic parameters both K,, and V,. In the result, it can be assumed that in all of the studied samples with metal ions addition, the uncompetitive mechanism of enzyme inhibition occurred. The results of this study may give new insight into foregoing knowledge about hyaluronic acid behavior. Due to the fact that our study was carried out only for three different metal ions in two concentrations, it is necessary to continue further research comprising wider range of metal ions and their concentrations.

  17. Coinheritance of High Oxygen Affinity Hb Helsinki [HBB: c.248A>T; β82(EF6)Lys→Met] with Hb H Disease.

    Science.gov (United States)

    Lee, Shir-Ying; Goh, Jia-Hui; Tan, Karen M L; Liu, Te-Chih

    2017-05-01

    Hb Helsinki [HBB: c.248A>T; β82(EF6)Lys→Met] is a high oxygen affinity hemoglobin (Hb) causing polycythemia, whereas Hb H (β4) disease causes mild to severe chronic hemolytic anemia. The clinical characteristics, gel electrophoresis, capillary electrophoresis (CE) and molecular genotyping of a case of Hb Helsinki coinherited with Hb H disease in an ethnic Malay is described, illustrating the interaction between the β-globin variant and coinheritance of three α gene deletions. The proband was asymptomatic, exhibited microcytosis and a normal with Hb value.

  18. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    Science.gov (United States)

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  19. Development of a multiplexed interface for capillary electrophoresis-electrospray ion trap mass spectrometry.

    Science.gov (United States)

    Li, Fu-An; Wu, Ming-Chi; Her, Guor-Rong

    2006-08-01

    A four-channel multiplexed electrospray capillary electrophoresis interface has been developed. This new interface permits up to four capillary electrophoresis columns to be sampled sequentially by means of a stepper motor and a notched rotating plate assembly, which at any instant occludes all but a single sprayer. In this design, four sheath liquid electrospray probes are oriented in a circular array situated 90 degrees relative to one another. The rotating metal disk, which contains a one-quarter notch, is mounted to the stepper motor assembly and is located between the sprayers and the entrance aperture of an ion trap mass spectrometer. By using the data acquisition signal from the ion trap mass spectrometer, the scan event is synchronized with the rotation of the metal disk. With this device, four discrete sample streams can be simultaneously analyzed, resulting in a 4-fold increase in analytical throughput.

  20. Characterization of the somatogenic receptor in rat liver. Hydrodynamic properties and affinity cross-linking

    International Nuclear Information System (INIS)

    Husman, B.; Haldosen, L.A.; Andersson, G.; Gustafsson, J.A.

    1988-01-01

    Rat liver somatogenic receptors have been characterized by gel permeation chromatography, sucrose density gradients in H 2 O and D 2 O, and affinity cross-linking using 125 I-bovine growth hormone (bGH) as a specific somatogenic receptor ligand. Cross-linking of 125 I-bovine growth hormone to a Triton X-100-treated low density fraction isolated from livers of late pregnant rats followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis under reducing conditions showed three major binders with Mr 95,000, 86,000, and 43,000 and a minor binder of Mr 55,000, after correction for bound ligand assuming a 1:1 binding ratio of ligand-receptor. The Mr 86,000, 55,000, and 43,000 species were recovered in the detergent-soluble supernatant after high-speed centrifugation, whereas the Mr 95,000 species remained Triton X-100 insoluble. Detergent-soluble 125 I-bGH-receptor complexes were further analyzed by sedimentation into sucrose density gradients. The sedimentation coefficient was S20,w = 5.2 S and the partial specific volume v = 0.72 ml/g. Gel permeation chromatography on a Sepharose S-400 column indicated a Stokes radius of 61 A for the 125 I-bGH-receptor-Triton X-100 complex. Based on these figures, the molecular weight of the complex was calculated as 131,100. The molecular weight of the ligand-free receptor-Triton X-100 complex was calculated as Mr 109,100. Affinity cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the 61 A peak from Sephacryl S-400 chromatography (cf. above) showed two binding entities, one major and one minor with Mr values 86,000 and 43,000, respectively, in the absence of reductant. When electrophoresis was run in the presence of reductant the Mr 43,000 species was the major binding entity

  1. Efficient fabrication of high-capacity immobilized metal ion affinity chromatographic media: The role of the dextran-grafting process and its manipulation.

    Science.gov (United States)

    Zhao, Lan; Zhang, Jingfei; Huang, Yongdong; Li, Qiang; Zhang, Rongyue; Zhu, Kai; Suo, Jia; Su, Zhiguo; Zhang, Zhigang; Ma, Guanghui

    2016-03-01

    Novel high-capacity Ni(2+) immobilized metal ion affinity chromatographic media were prepared through the dextran-grafting process. Dextran was grafted to an allyl-activated agarose-based matrix followed by functionalization for the immobilized metal ion affinity chromatographic media. With elaborate regulation of the allylation degree, dextran was completely or partly grafted to agarose microspheres, namely, completely dextran-grafted agarose microspheres and partly dextran-grafted ones, respectively. Confocal laser scanning microscope results demonstrated that a good adjustment of dextran-grafting degree was achieved, and dextran was distributed uniformly in whole completely dextran-grafted microspheres, while just distributed around the outside of the partly dextran-grafted ones. Flow hydrodynamic properties were improved greatly after the dextran-grafting process, and the flow velocity increased by about 30% compared with that of a commercial chromatographic medium (Ni Sepharose FF). A significant improvement of protein binding performance was also achieved by the dextran-grafting process, and partly dextran-grafted Ni(2+) chelating medium had a maximum binding capacity for His-tagged lactate dehydrogenase about 2.5 times higher than that of Ni Sepharose FF. The results indicated that this novel chromatographic medium is promising for applications in high-efficiency and large-scale protein purification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Selectivity in capillary electrophoresis:  application to chiral separations with cyclodextrins.

    Science.gov (United States)

    Lelièvre, F; Gareil, P; Jardy, A

    1997-02-01

    In order to accurately evaluate the performances of any electrolyte medium, a clear concept of selectivity in capillary electrophoresis and related electroseparation techniques is proposed. Selectivity is defined as the ratio of the affinity factors of both analytes for a separating agent (phase, pseudophase, or complexing agent present in the background electrolyte). When in the presence of a complexing agent and if only 1:1 complexation occurs, selectivity corresponds to the ratio of the apparent binding constants and is independent of the concentration of the complexing agent. This concept is illustrated through the separations of neutral and anionic enantiomers in the presence of a cationic cyclodextrin, the mono(6-amino-6-deoxy)-β-cyclodextrin, as a chiral complexing agent. The values obtained for different pairs of enantiomers are discussed with regard to the functional groups that distinguish them. When the analytes have the same mobilities in free solution and in their complexed form, then the resolution equation developed in micellar electrokinetic chromatography may be applied and optimum conditions (affinity factors, chiral agent concentration) can be predicted.

  3. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    Science.gov (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  4. Electrophoresis technology

    Science.gov (United States)

    Snyder, R. S.

    1985-01-01

    A new high resolution apparatus designed for space was built as a laboratory prototype. Using a moving wall with a low zeta potential coating, the major sources of flow distortion for an electrophoretic sample stream are removed. Highly resolved fractions, however, will only be produced in space because of the sensitivity of this chamber to buoyancy-induced convection in the laboratory. The second and third flights of the McDonnell Douglas Astronautics Corporation continuous flow electrophoresis system carried samples developed at MSFC intended to evaluate the broad capabilities of free flow electrophoresis in a reduced gravity environment. Biological model materials, hemoglobin and polystyrene latex microspheres, were selected because of their past use as electrophoresis standards and as visible markers for fluid flow due to electroosmosis, spacecraft acceleration or other factors. The dependence of the separation resolution on the properties of the sample and its suspension solution was assessed.

  5. Determination of residual fluoroquinolones in honey by liquid chromatography using metal chelate affinity chromatography.

    Science.gov (United States)

    Yatsukawa, Yoh-Ichi; Ito, Hironobu; Matsuda, Takahiro; Nakamura, Munetomo; Watai, Masatoshi; Fujita, Kazuhiro

    2011-01-01

    A new analytical method for the simultaneous determination of seven fluoroquinolones, namely, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, orbifloxacin, sarafloxacin, and difloxacin, especially in dark-colored honey, has been developed. Fluoroquinolone antibiotics were extracted from samples with MacIlvaine buffer solution (pH 4.0) containing EDTA disodium salt dihydrate. The extracts were treated with both a polymeric cartridge and a metal chelate affinity column preloaded with ferric ion (Fe3+). LC separation with fluorescence detection was performed at 40 degrees C using an Inertsil ODS-4 analytical column (150 x 4.6 mm, 3 microm). The mobile phase was composed of 20 mM/L citrate buffer solution (pH 3.1)-acetonitrile mixture (70 + 30, v/v) containing 1 mM/L sodium dodecyl sulfate. Lomefloxacin was used as an internal standard. The developed method was validated according to the criteria of European Commission Decision 2002/657/EC. Decision limits and detection capabilities were below 2.9 and 4.4 microg/kg, respectively.

  6. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    Directory of Open Access Journals (Sweden)

    Chin-Soon Chee

    2014-01-01

    Full Text Available Glutathione transferases (GST were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW of 23 kDa. 2-dimensional (2-D gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5 and GST2 (pI 6.2 with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase and F0KKB0 (glutathione S-transferase III of Acinetobacter calcoaceticus strain PHEA-2, respectively.

  7. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    Science.gov (United States)

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  8. Affinity labeling of the folate-methotrexate transporter from Leishmania donovani

    International Nuclear Information System (INIS)

    Beck, J.T.; Ullman, B.

    1989-01-01

    An affinity labeling technique has been developed to identify the folate-methotrexate transporter of Leishmania donovani promastigotes using activated derivatives of the ligands. These activated derivatives were synthesized by incubating folate and methotrexate with a 10-fold excess of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) for 10 min at ambient temperature in dimethyl sulfoxide. When intact wild-type (DI700) Leishmania donovani or preparations of their membranes were incubated with a 0.4 μM concentration of either activated [ 3 H]folate or activated [ 3 H]methotrexate, the radiolabeled ligands were covalently incorporated into a polypeptide with a molecular weight of approximately 46,000, as demonstrated by SDS-polyacrylamide gel electrophoresis. No affinity labeling of a 46,000-dalton protein was observed when equimolar concentrations of activated radiolabeled ligands were incubated with intact cells or membranes prepared from a methotrexate-resistant mutant clone of Leishmania donovani, MTXA5, that is genetically defective in folate-methotrexate transport capability. Time course studies indicated that maximal labeling of the 46,000-dalton protein occurred within 5-10 min of incubation of intact cells with activated ligand. These studies provide biochemical evidence that the folate-methotrexate transporter of Leishmania donovani can be identified in crude extracts by an affinity labeling technique and serve as a prerequisite to further analysis of the transport protein by providing a vehicle for subsequent purification of this membrane carrier. Moreover, these investigations suggest that the affinity labeling technique using EDC-activated ligands may be exploitable to analyze other cell surface binding proteins in Leishmania donovani, as well as in other organisms

  9. Microchip analysis of lithium in blood using moving boundary electrophoresis and zone electrophoresis

    NARCIS (Netherlands)

    Vrouwe, E.X.; Lüttge, Regina; Olthuis, Wouter; van den Berg, Albert

    The determination of inorganic cations in blood plasma is demonstrated using a combination of moving boundary electrophoresis (MBE) and zone electrophoresis. The sample loading performed under MBE conditions is studied with the focus on the quantitative analysis of lithium. A concentration

  10. Microchip analysis of lithium in blood using moving boundary electrophoresis and zone electrophoresis

    NARCIS (Netherlands)

    Vrouwe, E.X.; Luttge, R.; Olthuis, W.; Berg, van den A.

    2005-01-01

    The determination of inorganic cations in blood plasma is demonstrated using a combination of moving boundary electrophoresis (MBE) and zone electrophoresis. The sample loading performed under MBE conditions is studied with the focus on the quantitative analysis of lithium. A concentration

  11. Affine and quasi-affine frames for rational dilations

    DEFF Research Database (Denmark)

    Bownik, Marcin; Lemvig, Jakob

    2011-01-01

    In this paper we extend the investigation of quasi-affine systems, which were originally introduced by Ron and Shen [J. Funct. Anal. 148 (1997), 408-447] for integer, expansive dilations, to the class of rational, expansive dilations. We show that an affine system is a frame if, and only if......, the corresponding family of quasi-affine systems are frames with uniform frame bounds. We also prove a similar equivalence result between pairs of dual affine frames and dual quasi-affine frames. Finally, we uncover some fundamental differences between the integer and rational settings by exhibiting an example...

  12. Direct measurement of lithium in whole blood using microchip capillary electrophoresis with integrated conductivity detection

    NARCIS (Netherlands)

    Vrouwe, E.X.; Lüttge, Regina; van den Berg, Albert

    2004-01-01

    The direct measurement of lithium in whole blood is described. Using microchip capillary electrophoresis (CE) with defined sample loading and applying the principles of column coupling, alkali metals were determined in a drop of whole blood. Blood collected from a finger stick was mixed with

  13. Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection.

    Science.gov (United States)

    Luo, Zhaofeng; Zhou, Hongmin; Jiang, Hao; Ou, Huichao; Li, Xin; Zhang, Liyun

    2015-04-21

    Aptamers have attracted much attention due to their ability to bind to target molecules with high affinity and specificity. The development of an approach capable of efficiently generating aptamers through systematic evolution of ligands by exponential enrichment (SELEX) is particularly challenging. Herein, a fraction collection approach in capillary electrophoresis SELEX (FCE-SELEX) for the partition of a bound DNA-target complex is developed. By integrating fraction collection with a facile oil seal method for avoiding contamination while amplifying the bound DNA-target complex, in a single round of selection, a streptavidin-binding aptamer (SBA) has been generated. The affinity of aptamer SBA-36 for streptavidin (SA) is determined as 30.8 nM by surface plasmon resonance (SPR). Selectivity and biotin competition experiments demonstrate that the SBA-36 aptamer selected by FCE-SELEX is as efficient as those from other methods. Based on the ability of fraction collection in partition and collection of the aptamer-target complex from the original DNA library, FCE-SELEX can be a universal tool for the development of aptamers.

  14. Recent advances in on-line coupling of capillary electrophoresis to atomic absorption and fluorescence spectrometry for speciation analysis and studies of metal-biomolecule interactions

    International Nuclear Information System (INIS)

    Li Yan; Yin Xuebo; Yan Xiuping

    2008-01-01

    Speciation information is vital for the understanding of the toxicity, mobility and bioavailability of elements in environmental or biological samples. Hyphenating high resolving power of separation techniques and element-selective detectors provides powerful tools for studying speciation of trace elements in environmental and biological systems. During the last five years several novel hybrid techniques based on capillary electrophoresis (CE) and atomic spectrometry have been developed for speciation analysis and metal-biomolecule interaction study in our laboratory. These techniques include CE on-line coupled with atomic fluorescence spectrometry (AFS), chip-CE on-line coupled with AFS, CE on-line coupled with flame heated quartz furnace atomic absorption spectrometry (FHF-AAS), and CE on-line coupled with electrothermal atomic absorption spectrometry (ETAAS). The necessity for the development of these techniques, their interface design, and applications in speciation analysis and metal-biomolecule interaction study are reviewed. The advantages and limitations of the developed hybrid techniques are critically discussed, and further development is also prospected

  15. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity

    Science.gov (United States)

    Algimantas P. Valaitis; Jeremy L. Jenkins; Mi Kyong Lee; Donald H. Dean; Karen J. Garner

    2001-01-01

    BTR-270, a gypsy moth (Lymantria dispar) brush border membrane molecule that binds Bacillus thuringiensis (Bt) Cry1A toxins with high affinity, was purified by preparative gel electrophoresis. Rabbit antibodies specific for the Bt toxin-binding molecule were raised. Attempts to label BTR-270 by protein-directed techniques were...

  16. DNA typing by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  17. Preparation of metal nanoband microelectrode on poly(dimethylsiloxane) for chip-based amperometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shaopeng; Wu Jian; Yu Xiaodong [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Xu Jingjuan, E-mail: xujj@nju.edu.cn [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen Hongyuan [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2010-04-30

    We proposed herein a novel approach for fabricating nanoband microelectrodes for electrochemical detection on an electrophoresis microchip. The metal films were first obtained via region-selective electroless deposition of gold or copper films on PDMS substrates by selective region plasma oxidation through shadow masking. Both metal films show uniform surfaces with the thickness at the level of 100 nm. By casting another PDMS layer on the metal films, the cross section of the sandwich structures can be used as nanoband microelectrodes, which can be renewed just by cutting. These nanoband microelectrodes are successfully used as electrochemical detectors in microchip electrophoresis for the detection of amino acids, proteins and neurotransmitter molecules. Moreover, integrating an Au-Cu double-metal detector with a double-channel electrophoresis system, we can easily distinguish electroactive amino acids from that of non-electroactive amino acids.

  18. Biomedical applications of capillary electrophoresis

    International Nuclear Information System (INIS)

    Kartsova, L A; Bessonova, E A

    2015-01-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references

  19. Supramolecular gel electrophoresis of large DNA fragments.

    Science.gov (United States)

    Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi

    2017-10-01

    Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Research on pre-staining gel electrophoresis

    International Nuclear Information System (INIS)

    Zhong Ruibo; Liu Yushuang; Zhang Ping; Liu Jingran; Zhao Guofen; Zhang Feng

    2014-01-01

    Background: Gel electrophoresis is a powerful biochemical separation technique. Most biological molecules are completely transparent in the visible region of light, so it is necessary to use staining to show the results after gel electrophoresis, and the general steps of conventional staining methods are time-consuming. Purpose: We try to develop a novel approach to simplify the gel electrophoresis: Pre-Staining Gel Electrophoresis (PSGE), which can make the gel electrophoresis results monitored in real time. Methods: Pre-stain the protein samples with Coomassie Brilliant Blue (CBB) for 30 min before loading the sample into the gel well. Results and Conclusion: PSGE can be successfully used to analyze the binding efficiency of Bovine Serum Albumin (BSA) and amphiphilic polymer via chemical coupling and physical absorption, and the double PSGE also shows a great potential in bio-analytical chemistry. (authors)

  1. Affinity monolith chromatography: A review of principles and recent analytical applications

    Science.gov (United States)

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  2. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    Science.gov (United States)

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Leaf Protein Electrophoresis and Taxonomy of Species of Jatropha L. (Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    Olaniran Temitope OLADIPO

    2012-08-01

    Full Text Available The systematic relationship existing among members of the all important genus Jatropha was studied using leaf protein electrophoresis. The aim was to identify possible taxonomic importance of the protein profile in the estimation and elucidation of the taxonomic affinity of the six species of Jatropha (Jatropha curcas Linn., J. podagrica Hook., J. gossypifolia Linn., J. mutifida Linn., J. tanjorensis Ellis & Saroja and J. integerrima Linn. found in Nigeria. The species were screened for total protein banding patterns using gel electrophoresis. Young leaves (0.8 g of the plants were washed with distilled water and macerated with sterile mortar and pestle in 0.8% Phosphate Buffer-Saline (PBS containing 0.4 M NaCl at pH 8.0. Results reveal that protein banding pattern was taxon specific. Generic band occurs at 8.3. The highest number of interspecific bands (4 exists between J. podagrica and J. multifida. Variations exist not only in the number of bands but also in the intensity of the bands. Sokal and Sneath coefficient of similarity ranges between 11.1-44.4 %. Single linkage Cluster Analysis (SLCA of the relative mobility values of the protein in the taxa shows partial agreement with current sub generic and sectional delimitation of the species based on morphology and anatomy of the species.

  4. Dual-affinity peptides to generate dense surface coverages of nanoparticles

    International Nuclear Information System (INIS)

    Del Re, Julia; Blum, Amy Szuchmacher

    2014-01-01

    Graphical abstract: - Highlights: • Stable nanoparticles were created with the Flg-A3 fusion peptide as a ligand. • Interactions of transition metal ions with Flg control aggregation of the nanoparticles in solution. • The QBP1-A3 fusion peptide improves surface attachment of gold nanoparticles. • Solution pre-aggregation of nanoparticles results in dense surface coverage. - Abstract: Depositing gold nanoparticles is of great interest because of the many potential applications of nanoparticle films; however, generating dense surface nanoparticle coverage remains a difficult challenge. Using dual-affinity peptides we have synthesized gold nanoparticles and then pre-aggregated the particles in solution via interactions with metal ions. These nanoparticle aggregates were then deposited onto silicon dioxide surfaces using another dual-affinity peptide to control binding to the substrate. The results demonstrate that when divalent ions like Zn 2+ or Ni 2+ are used, densely packed gold nanoparticle monolayers are formed on the silicon dioxide substrate, which may have applications in fields like molecular electronics

  5. Molecular electron affinities

    International Nuclear Information System (INIS)

    Fukuda, E.K.

    1983-01-01

    Molecular electron affinities have historically been difficult quantities to measure accurately. These difficulties arise from differences in structure between the ion and neutral as well as the existence of excited negative ion states. To circumvent these problems, relative electron affinities were determined in this dissertation by studying equilibrium electron transfer reactions using a pulsed ion cyclotron resonance (ICR) spectrometer. Direct measurement of ion and neutral concentrations for reactions of the general type, A - + B = B - + A, allow calculation of the equilibrium constant and, therefore, the free energy change. The free energy difference is related to the difference in electron affinities between A and B. A relative electron affinity scale covering a range of about 45 kcal/mol was constructed with various substituted p-benzoquinones, nitrobenzenes, anhydrides, and benzophenones. To assign absolute electron affinities, various species with accurately known electron affinities are tied to the scale via ion-cyclotron double resonance bracketing techniques. After the relative scale is anchored to these species with well-known electron affinities, the scale is then used as a check on other electron affinity values as well as generating new electron affinity values. Many discrepancies were found between the electron affinities measured using the ICR technique and previous literature determinations

  6. Identification of high-affinity calmodulin-binding proteins in rat liver

    International Nuclear Information System (INIS)

    Hanley, R.M.; Dedman, J.R.; Shenolikar, S.

    1987-01-01

    The Ca 2+ -dependent binding of [ 125 I] calmodulin (CaM) to hepatic proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was utilized to identify CaM binding or acceptor proteins or CAPs. Two proteins of apparent molecular weight of 60,000 (CAP-60) and 45,000 (CAP-45) comprised > 80% of the Ca 2+ -dependent CaM binding in rat liver cytosol. CAP-60 and CAP-45 were partially purified by a variety of chromatographic steps, including affinity chromatography on CaM Sepharose. CAP-60 possessed a native molecular size of 400,000, indicating it to be the CaM-binding subunit of a larger oligomeric complex. In contrast, CAP-45 was monomeric as judged by gel filtration. Neither CAP-60 nor CAP-45 possessed chromatographic properties consistent with known CaM-dependent enzymes reported in the literature. Two-dimensional peptide mapping provided convincing evidence that CAP-60 and CAP-45 were unrelated to other well-characterized CAPs, namely Ca 2+ (CaM)-dependent protein kinase II, calcineurin, or the CaM-dependent cyclic nucleotide phosphodiesterase. The relative abundance and high affinity for CaM could suggest that these novel target proteins, CAP-60 and CAP-45, represent a dominant pathway for CaM action in the mammalian liver

  7. The utility of affine variables and affine coherent states

    International Nuclear Information System (INIS)

    Klauder, John R

    2012-01-01

    Affine coherent states are generated by affine kinematical variables much like canonical coherent states are generated by canonical kinematical variables. Although all classical and quantum formalisms normally entail canonical variables, it is shown that affine variables can serve equally well for many classical and quantum studies. This general purpose analysis provides tools to discuss two major applications: (1) the completely successful quantization of a nonrenormalizable scalar quantum field theory by affine techniques, in complete contrast to canonical techniques which only offer triviality; and (2) a formulation of the kinematical portion of quantum gravity that favors affine kinematical variables over canonical kinematical variables, and which generates a framework in which a favorable analysis of the constrained dynamical issues can take place. All this is possible because of the close connection between the affine and the canonical stories, while the few distinctions can be used to advantage when appropriate. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)

  8. DNA gel electrophoresis: the reptation model(s).

    Science.gov (United States)

    Slater, Gary W

    2009-06-01

    DNA gel electrophoresis has been the most important experimental tool to separate DNA fragments for several decades. The introduction of PFGE in the 1980s and capillary gel electrophoresis in the 1990s made it possible to study, map and sequence entire genomes. Explaining how very large DNA molecules move in a gel and why PFGE is needed to separate them has been an active field of research ever since the launch of the journal Electrophoresis. This article presents a personal and historical overview of the development of the theory of gel electrophoresis, focusing on the reptation model, the band broadening mechanisms, and finally the factors that limit the read length and the resolution of electrophoresis-based sequencing systems. I conclude with a short discussion of some of the questions that remain unanswered.

  9. Separation of ions in acidic solution by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Michelle [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  10. Recent applications of nanomaterials in capillary electrophoresis.

    Science.gov (United States)

    González-Curbelo, Miguel Ángel; Varela-Martínez, Diana Angélica; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier

    2017-10-01

    Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal-organic frameworks, magnetic and non-magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010-2017). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Direct electrochemical sensing of glucose using glucose oxidase immobilized on functionalized carbon nanotubes via a novel metal chelate-based affinity method

    International Nuclear Information System (INIS)

    Tu, X.; Zhao, Y.; Luo, S.; Luo, X.; Feng, L.

    2012-01-01

    We report on a novel amperometric glassy carbon biosensing electrode for glucose. It is based on the immobilization of a highly sensitive glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The new technique for immobilization is exploiting the affinity of Co(II) ions to the histidine and cysteine moieties on the surface of GOx. The direct electrochemistry of immobilized GOx revealed that the functionalized CNTs greatly improve the direct electron transfer between GOx and the surface of the electrode to give a pair of well-defined and almost reversible redox peaks and undergoes fast heterogeneous electron transfer with a rate constant (k s) of 0. 59 s -1 . The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor is capable of detecting glucose at levels as low as 0.01 mM, and has excellent operational stability (with no decrease in the activity of enzyme over a 10 days period). The method of immobilizing GOx is easy and also provides a model technique for potential use with other redox enzymes and proteins. (author)

  12. Surface Charge Measurement of SonoVue, Definity and Optison: A Comparison of Laser Doppler Electrophoresis and Micro-Electrophoresis.

    Science.gov (United States)

    Ja'afar, Fairuzeta; Leow, Chee Hau; Garbin, Valeria; Sennoga, Charles A; Tang, Meng-Xing; Seddon, John M

    2015-11-01

    Microbubble (MB) contrast-enhanced ultrasonography is a promising tool for targeted molecular imaging. It is important to determine the MB surface charge accurately as it affects the MB interactions with cell membranes. In this article, we report the surface charge measurement of SonoVue, Definity and Optison. We compare the performance of the widely used laser Doppler electrophoresis with an in-house micro-electrophoresis system. By optically tracking MB electrophoretic velocity in a microchannel, we determined the zeta potentials of MB samples. Using micro-electrophoresis, we obtained zeta potential values for SonoVue, Definity and Optison of -28.3, -4.2 and -9.5 mV, with relative standard deviations of 5%, 48% and 8%, respectively. In comparison, laser Doppler electrophoresis gave -8.7, +0.7 and +15.8 mV with relative standard deviations of 330%, 29,000% and 130%, respectively. We found that the reliability of laser Doppler electrophoresis is compromised by MB buoyancy. Micro-electrophoresis determined zeta potential values with a 10-fold improvement in relative standard deviation. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Pulsed-field gel electrophoresis of bacterial chromosomes.

    Science.gov (United States)

    Mawer, Julia S P; Leach, David R F

    2013-01-01

    The separation of fragments of DNA by agarose gel electrophoresis is integral to laboratory life. Nevertheless, standard agarose gel electrophoresis cannot resolve fragments bigger than 50 kb. Pulsed-field gel electrophoresis is a technique that has been developed to overcome the limitations of standard agarose gel electrophoresis. Entire linear eukaryotic chromosomes, or large fragments of a chromosome that have been generated by the action of rare-cutting restriction endonucleases, can be separated using this technique. As a result, pulsed-field gel electrophoresis has many applications, from karyotype analysis of microbial genomes, to the analysis of chromosomal strand breaks and their repair intermediates, to the study of DNA replication and the identification of origins of replication. This chapter presents a detailed protocol for the preparation of Escherichia coli chromosomal DNA that has been embedded in agarose plugs, digested with the rare-cutting endonuclease NotI, and separated by contour-clamped homogeneous field electrophoresis. The principles in this protocol can be applied to the separation of all fragments of DNA whose size range is between 40 kb and 1 Mb.

  14. Nonradioactive telomerase activity assay by microchip electrophoresis: privileges to the classical gel electrophoresis assay.

    Science.gov (United States)

    Zhelev, Zhivko; Bakalova, Rumiana; Ewis, Ashraf; Ohba, Hideki; Ishikawa, Mitsuru; Baba, Yoshinobu

    2005-08-01

    The present study accents on the privileges of microchip-based electrophoresis to the conventional gel electrophoresis in separation of telomerase repeat amplification protocol/polymerase chain reaction (PCR) ladder products obtained in telomerase-catalyzed reaction in cancer cells. We try to clarify the interpretation of the results obtained by both electrophoretic procedures and to avoid misinterpretation as a result of PCR-dependent artefacts.

  15. Gel electrophoresis of inorganic cations

    International Nuclear Information System (INIS)

    Schoenhofer, F.; Grass, F.

    1978-01-01

    In order to be able to separate the largest possible amounts of substance, polyacryl amide gel (PAA) and silica gel are used as carrier for the electrophoresis. Milligramme quantities can easily be separated on PAA gel plates. Electrophoretic ion focussing considerably improves it. Separations of Sr/Y and lanthanoids were carried out. The behaviour of the readily soluble complexing agent acids on silica gel thin layers was minutely investigated and an interpretation of the focussing effect was derived. The conditions for separating radionuclides were optimized. A further improved separation can be achieved by a time sequence combination of normal electrophoresis and ion focussing. Selective isolation methods are advantageous to determine radionuclide traces in environmental samples. The selective adsorption on preformed deposits was transferred to electrophoresis. After pre-investigations on silica gel layers, strontium and barium could also be retained on PAA gel and radium on strontium sulphate in PAA, whereas the disturbing calcium can easily pass through. Cesium can also be retained by prussian blue in the electrophoresis. (orig.) [de

  16. Bioprocessing: Prospects for space electrophoresis

    Science.gov (United States)

    Bier, M.

    1977-01-01

    The basic principles of electrophoresis are reviewed in light of its past contributions to biology and medicine. The near-zero gravity environment of orbiting spacecraft may present some unique advantages for a variety of processes, by abolishing the major source of convection in fluids. As the ground-based development of electrophoresis was heavily influenced by the need to circumvent the effects of gravity, this process should be a prime candidate for space operation. Nevertheless, while a space facility for electrophoresis may overcome the limitations imposed by gravity, it will not necessarily overcome all problems inherent in electrophoresis. These are, mainly, electroosmosis and the dissipation of the heat generated by the electric field. The NASA program has already led to excellent coatings to prevent electroosmosis, while the need for heat dissipation will continue to impose limits on the actual size of equipment. It is also not excluded that, once the dominant force of gravity is eliminated, disturbances in fluid stability may originate from weaker forces, such as surface tension.

  17. Report: Affinity Chromatography.

    Science.gov (United States)

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  18. Electrophoresis in space at zero gravity

    Science.gov (United States)

    Bier, M.; Snyder, R. S.

    1974-01-01

    Early planning for manufacturing operations in space include the use of electrophoresis for purification and separation of biological materials. Greatly simplified electrophoresis apparatus have been flown in the Apollo 14 and 16 missions to test the possibility of stable liquid systems in orbit. Additionally, isoelectric focusing and isotachophoresis are of particular interest as they offer very high resolution and have self-sharpening boundaries. The value of possible space electrophoresis is substantial. For example, present technology permits large fractionation of only a few of blood proteins many fractions, and separated cell populations are needed for research.

  19. The connection between metal ion affinity and ligand affinity in integrin I domains

    DEFF Research Database (Denmark)

    Vorup-Jensen, Thomas; Waldron, TT; Astrof, N

    2007-01-01

    Integrins are cell-surface heterodimeric proteins that mediate cell-cell, cell-matrix, and cell-pathogen interactions. Half of the known integrin alpha subunits contain inserted domains (I domains) that coordinate ligand through a metal ion. Although the importance of conformational changes withi...

  20. Covalent labeling of the beta-adrenergic ligand-binding site with para-(bromoacetamidyl)benzylcarazolol. A highly potent beta-adrenergic affinity label

    International Nuclear Information System (INIS)

    Dickinson, K.E.; Heald, S.L.; Jeffs, P.W.; Lefkowitz, R.J.; Caron, M.G.

    1985-01-01

    Para-(Bromoacetamidyl)benzylcarazolol (pBABC) was synthesized and found to be an extremely potent affinity label for beta-adrenergic receptors. Its interaction with mammalian (rabbit and hamster lung) and nonmammalian (turkey and frog erythrocyte) beta-adrenergic receptors was similar, displaying EC 50 values of 400-900 pM for inhibiting 125 I-cyanopindolol binding to these receptors. pBABC reduced the number of beta-adrenergic receptors in frog erythrocyte membranes, without any change in the affinity of the remaining sites for [ 125 I]iodocyanopindolol. pBABC has been radioiodinated. As assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, this affinity probe specifically labeled the beta-adrenergic peptide of a purified preparation of hamster lung, with high efficiency (approximately 40%) and with a pharmacological specificity characteristic of an interaction at the beta 2-adrenergic receptor ligand-binding site. Comparison of the proteolyzed products derived from purified receptor labeled with [ 125 I]pBABC and with the photoaffinity agent [ 125 I]p-azidobenzylcarazolol suggested that covalent labeling of the beta-adrenergic receptor by these probes occurs at similar domains of the beta-adrenergic receptor

  1. Uptake of Radionuclide Metals by SPME Fibers

    International Nuclear Information System (INIS)

    Duff, M; S Crump, S; Robert Ray, R; Keisha Martin, K; Donna Beals, D

    2006-08-01

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ( 239/240 Pu, 238 U, 237 Np, 85 Sr, 133 Ba, 137 Cs, 60 Co and 226 Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection

  2. Affinity monolith chromatography: A review of general principles and applications.

    Science.gov (United States)

    Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S

    2017-11-01

    Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Recent progress in preparation and application of microfluidic chip electrophoresis

    International Nuclear Information System (INIS)

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yuan, Hua; Peng, Qiaohong; Tian, Chao

    2015-01-01

    Since its discovery in 1990, microfluidic chip electrophoresis (MCE) has allowed the development of applications with small size, fast analysis, low cost, high integration density and automatic level, which are easy to carry and have made commercialization efficient. MCE has been widely used in the areas of environmental protection, biochemistry, medicine and health, clinical testing, judicial expertise, food sanitation, pharmaceutical checking, drug testing, agrochemistry, biomedical engineering and life science. As one of the foremost fields in the research of capillary electrophoresis, MCE is the ultimate frontier to develop the miniaturized, integrated, automated all-in-one instruments needed in modern analytical chemistry. By adopting the advanced technologies of micro-machining, lasers and microelectronics, and the latest research achievements in analytical chemistry and biochemistry, the sampling, separation and detection systems of commonly used capillary electrophoresis are integrated with high densities onto glass, quartz, silicon or polymer wafers to form the MCE, which can finish the analysis of multi-step operations such as injection, enrichment, reaction, derivatization, separation, and collection of samples in a portable, efficient and super high speed manner. With reference to the different technological achievements in this area, the latest developments in MCE are reviewed in this article. The preparation mechanisms, surface modifications, and properties of different materials in MCE are compared, and the different sampling, separation and detection systems in MCE are summarized. The performance of MCE in analysis of fluorescent substance, metallic ion, sugar, medicine, nucleic acid, DNA, amino acid, polypeptide and protein is discussed, and the future direction of development is forecast. (topical review)

  4. Recent progress in preparation and application of microfluidic chip electrophoresis

    Science.gov (United States)

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yuan, Hua; Peng, Qiaohong; Tian, Chao

    2015-05-01

    Since its discovery in 1990, microfluidic chip electrophoresis (MCE) has allowed the development of applications with small size, fast analysis, low cost, high integration density and automatic level, which are easy to carry and have made commercialization efficient. MCE has been widely used in the areas of environmental protection, biochemistry, medicine and health, clinical testing, judicial expertise, food sanitation, pharmaceutical checking, drug testing, agrochemistry, biomedical engineering and life science. As one of the foremost fields in the research of capillary electrophoresis, MCE is the ultimate frontier to develop the miniaturized, integrated, automated all-in-one instruments needed in modern analytical chemistry. By adopting the advanced technologies of micro-machining, lasers and microelectronics, and the latest research achievements in analytical chemistry and biochemistry, the sampling, separation and detection systems of commonly used capillary electrophoresis are integrated with high densities onto glass, quartz, silicon or polymer wafers to form the MCE, which can finish the analysis of multi-step operations such as injection, enrichment, reaction, derivatization, separation, and collection of samples in a portable, efficient and super high speed manner. With reference to the different technological achievements in this area, the latest developments in MCE are reviewed in this article. The preparation mechanisms, surface modifications, and properties of different materials in MCE are compared, and the different sampling, separation and detection systems in MCE are summarized. The performance of MCE in analysis of fluorescent substance, metallic ion, sugar, medicine, nucleic acid, DNA, amino acid, polypeptide and protein is discussed, and the future direction of development is forecast.

  5. Electrophoresis in strong electric fields.

    Science.gov (United States)

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  6. Analytical biotechnology: Capillary electrophoresis and chromatography

    International Nuclear Information System (INIS)

    Horvath, C.; Nikelly, J.G.

    1990-01-01

    The papers describe the separation, characterization, and equipment required for the electrophoresis or chromatography of cyclic nucleotides, pharmaceuticals, therapeutic proteins, recombinant DNA products, pheromones, peptides, and other biological materials. One paper, On-column radioisotope detection for capillary electrophoresis, has been indexed separately for inclusion on the data base

  7. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  8. Hirota's solitons in the affine and the conformal affine Toda models

    International Nuclear Information System (INIS)

    Aratyn, H.; Constantinidis, C.P.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.

    1993-01-01

    We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis. (orig.)

  9. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.

    Science.gov (United States)

    Anderson, James; Wright, Drew; Meksem, Khalid

    2013-01-01

    In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

  10. Determination of Na and Al Ions in Semiconductor Cleaning Solution Using Capillary Electrophoresis

    International Nuclear Information System (INIS)

    Lee, H. P.; Lim, H. B.

    2003-01-01

    The most common process chemical used in the manufacturing process is a standard cleaning (SC) solution, a mixture of ammonia and hydrogen peroxide in deionized water. Since the purity of the SC solution used in the process has been required to the level of sub-ppb range, accurate and reliable determination of ionic contaminants becomes increasingly difficult. In order to satisfy the requirement of impurity control, inductively coupled plasma-mass spectrometer (ICP-MS), graphite furnace atomic absorption spectrometer (GFAAS), and ion chromatography (IC) are currently the most common analytical instruments used in the process. However, those instruments are not designed for on-line monitoring but rather for off-line analysis. Recently, separation and detection of various particles, such as cells and nanoparticles, with capillary electrophoresis (CE) was reported, although the application of CE has been mostly limited to organic or biological samples. Capillary electrophoresis has been emerging as an alternative to ICPAES and AAS for trace metal analysis

  11. The solutions of affine and conformal affine Toda field theory

    International Nuclear Information System (INIS)

    Papadopoulos, G.; Spence, B.

    1994-02-01

    We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions and give the general static solutions for the affine theory. (authors). 10 refs

  12. Purification of Escherichia coli L-asparaginase mutants by a native polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Wei, Yujun; Chen, Jianhua; Jia, Ruibo; Wang, Min; Wu, Wutong

    2008-07-01

    The antigenicity of L-asaparaginase (L-ASP) has been problematic for the treatment of leukemia for many years. In order to establish a relationship between the antigenic epitope of L-asparaginase and its antigenicity, several L-asparaginase mutants (mL-ASPs) are constructed and expressed. To effectively purify these enzyme mutants for further investigation, a native preparative polyacrylamide gel electrophoresis is developed. The simplicity and reproducibility of this approach permits the purification of different mutants from the crude enzyme extracts, with a sufficient activity to perform immunological and biological studies. Furthermore, the newly developed method is efficient and cost-effective compared with other methods, such as column chromatography and affinity chromatography. As a result, the enzyme mutants with specific activity of 300 approximately 400 U/mg are obtained by the single-step purification with a high degree of purity.

  13. Separation and determination of some carboxylic acids by capillary electrophoresis

    International Nuclear Information System (INIS)

    Sladkov, V.; Fourest, B.

    2006-01-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  14. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B

    2006-07-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  15. Protein electrophoresis - serum

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003540.htm Protein electrophoresis - serum To use the sharing features on ... JavaScript. This lab test measures the types of protein in the fluid (serum) part of a blood ...

  16. APPLICATION OF IMMUNOGLOBULIN-BINDING PROTEINS A, G, L IN THE AFFINITY CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    О. V. Sviatenko

    2014-04-01

    Full Text Available Proteins A, G and L are native or recombinant proteins of microbial origin that bind to mammalian immunoglobulins. Preferably recombinant variants of proteins A, G, L are used in biotechnology for affinity sorbents production. Сomparative characteristics of proteins A, G, L and affinity sorbents on the basis of them, advantages and disadvantages of these proteins application as ligands in the affinity chromatography are done. Analysis of proteins A, G, L properties is presented. Binding specificities and affinities of these proteins differ between species and antibody subclass. Protein А has high affinity to human IgG1, IgG2, IgG4, mouse IgG2a, IgG2b, IgG3, goat and sheep IgG2, dog, cat, guinea pig, rabbit IgG. Protein G binds strongly to human, mouse, cow, goat, sheep and rabbit IgG. Protein L has ability of strong binding to immunoglobulin kappa-chains of human, mouse, rat and pig. Expediency of application of affinity chromatography with usage of sorbents on the basis of immobilized proteins A, G, L are shown for isolation and purification of antibodies different classes. Previously mentioned method is used as an alternative to conventional methods of protein purification, such as ion-exchange, hydrophobic interactions, metal affinity chromatography, ethanol precipitation due to simplicity in usage, possibility of one-step purification process, obtaining of proteins high level purity, multiuse at maintenance of proper storage and usage conditions. Affinity sorbents on the basis of immobilized proteins A, G, L are used not only for antibodies purification, but also for extraction of different antibodies fractions from blood serum.

  17. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrophoresis apparatus for clinical use. 862.2485 Section 862.2485 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An electrophoresis...

  18. Blackletter logotypes and metal music

    DEFF Research Database (Denmark)

    Vestergaard, Vitus

    2016-01-01

    Text and band logos based on blackletter scripts are a common sight in visual metal music culture such as on album covers. This article develops a framework for analysing the affinity between blackletter script and metal music. The analytical framework includes five themes: genre tradition, relig...

  19. Lp-dual affine surface area

    Science.gov (United States)

    Wei, Wang; Binwu, He

    2008-12-01

    According to the notion of Lp-affine surface area by Lutwak, in this paper, we introduce the concept of Lp-dual affine surface area. Further, we establish the affine isoperimetric inequality and the Blaschke-Santaló inequality for Lp-dual affine surface area. Besides, the dual Brunn-Minkowski inequality for Lp-dual affine surface area is presented.

  20. An affinity pull-down approach to identify the plant cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth; Meier, Stuart Kurt

    2013-01-01

    Cyclic nucleotides (CNs) are intracellular second messengers that play an important role in mediating physiological responses to environmental and developmental signals, in species ranging from bacteria to humans. In response to these signals, CNs are synthesized by nucleotidyl cyclases and then act by binding to and altering the activity of downstream target proteins known as cyclic nucleotide-binding proteins (CNBPs). A number of CNBPs have been identified across kingdoms including transcription factors, protein kinases, phosphodiesterases, and channels, all of which harbor conserved CN-binding domains. In plants however, few CNBPs have been identified as homology searches fail to return plant sequences with significant matches to known CNBPs. Recently, affinity pull-down techniques have been successfully used to identify CNBPs in animals and have provided new insights into CN signaling. The application of these techniques to plants has not yet been extensively explored and offers an alternative approach toward the unbiased discovery of novel CNBP candidates in plants. Here, an affinity pull-down technique for the identification of the plant CN interactome is presented. In summary, the method involves an extraction of plant proteins which is incubated with a CN-bait, followed by a series of increasingly stringent elutions that eliminates proteins in a sequential manner according to their affinity to the bait. The eluted and bait-bound proteins are separated by one-dimensional gel electrophoresis, excised, and digested with trypsin after which the resultant peptides are identified by mass spectrometry - techniques that are commonplace in proteomics experiments. The discovery of plant CNBPs promises to provide valuable insight into the mechanism of CN signal transduction in plants. © Springer Science+Business Media New York 2013.

  1. An affinity pull-down approach to identify the plant cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth

    2013-09-03

    Cyclic nucleotides (CNs) are intracellular second messengers that play an important role in mediating physiological responses to environmental and developmental signals, in species ranging from bacteria to humans. In response to these signals, CNs are synthesized by nucleotidyl cyclases and then act by binding to and altering the activity of downstream target proteins known as cyclic nucleotide-binding proteins (CNBPs). A number of CNBPs have been identified across kingdoms including transcription factors, protein kinases, phosphodiesterases, and channels, all of which harbor conserved CN-binding domains. In plants however, few CNBPs have been identified as homology searches fail to return plant sequences with significant matches to known CNBPs. Recently, affinity pull-down techniques have been successfully used to identify CNBPs in animals and have provided new insights into CN signaling. The application of these techniques to plants has not yet been extensively explored and offers an alternative approach toward the unbiased discovery of novel CNBP candidates in plants. Here, an affinity pull-down technique for the identification of the plant CN interactome is presented. In summary, the method involves an extraction of plant proteins which is incubated with a CN-bait, followed by a series of increasingly stringent elutions that eliminates proteins in a sequential manner according to their affinity to the bait. The eluted and bait-bound proteins are separated by one-dimensional gel electrophoresis, excised, and digested with trypsin after which the resultant peptides are identified by mass spectrometry - techniques that are commonplace in proteomics experiments. The discovery of plant CNBPs promises to provide valuable insight into the mechanism of CN signal transduction in plants. © Springer Science+Business Media New York 2013.

  2. ssDNA degradation along capillary electrophoresis process using a Tris buffer.

    Science.gov (United States)

    Ric, Audrey; Ong-Meang, Varravaddheay; Poinsot, Verena; Martins-Froment, Nathalie; Chauvet, Fabien; Boutonnet, Audrey; Ginot, Frédéric; Ecochard, Vincent; Paquereau, Laurent; Couderc, François

    2017-06-01

    Tris-Acetate buffer is currently used in the selection and the characterization of ssDNA by capillary electrophoresis (CE). By applying high voltage, the migration of ionic species into the capillary generates a current that induces water electrolysis. This phenomenon is followed by the modification of the pH and the production of Tris derivatives. By injecting ten times by capillary electrophoresis ssDNA (50 nM), the whole oligonucleotide was degraded. In this paper, we will show that the Tris buffer in the running vials is modified along the electrophoretic process by electrochemical reactions. We also observed that the composition of the metal ions changes in the running buffer vials. This phenomenon, never described in CE, is important for fluorescent ssDNA analysis using Tris buffer. The oligonucleotides are degraded by electrochemically synthesized species (present in the running Tris vials) until it disappears, even if the separation buffer in the capillary is clean. To address these issues, we propose to use a sodium phosphate buffer that we demonstrate to be electrochemically inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interaction of Hydroxyproline with Bivalent Metal Ions in Chemical ...

    African Journals Online (AJOL)

    NICO

    The stability constants of the ML and ML2 complex species of some metal ions, namely beryllium(II) and cobalt(II), with hydroxyproline were ... metal ions have several significant applications in biological systems.3–20 Beryllium is one ... 1 filter paper for chromatography was used for the purpose of electrophoresis. An Elico ...

  4. Fundamental and practical studies on high-performance liquid affinity chromatography of biopolymers with novel stationary phases

    Energy Technology Data Exchange (ETDEWEB)

    Bacolod, M.D.

    1992-01-01

    Rigid microparticulate stationary phases having surface-bound metal chelating functions were developed and evaluated in high performance metal chelate affinity chromatography of proteins. Silica- and polystyrene-divinylbenzene-based metal chelate sorbents were produced in wide pore and in non-porous type of column packings. A major effort has been placed on development of non-porous highly crosslinked polystyrene-divinylbenzene (PSDVB). These PSDVB microparticles were produced by a two-step swelling polymerization, and exhibited excellent mechanical strength over a wide range of flow-rates and composition used in high performance liquid chromatography (HPLC). Simple and reproducible hydrophilic coatings were developed for the surface modification of hydrophobic PSDVB supports. A tetradentate metal chelating ligand, ethylenediamine-N, N[prime]-diacetic acid (EDDA), was covalently bound to the surface of the various supports. Sorbents having iminodiacetic acid (IDA) metal chelating functions were also evaluated. The hydrophilic character and surface coverage of various stationary phases were assessed chromatographically. Studies concerning the effects of eluent pH as well as the nature and concentration of salts on retention and selectivity with different metal chelate stationary phases having various immobilized metal ions were carried out. Elution schemes were developed for rapid separation of proteins in metal chelate affinity chromatography. EDDA stationary phases in metal forms can be viewed as complementary to IDA stationary phases since they afforded different selectivity and retentivity toward proteins. Hydrophilic PSDVB could be functionalized with IDA or EDDA metal chelating ligands or lectins. The non-porous metal chelate stationary phases afforded rapid separation of proteins by the development of multiple gradient systems, which permitted higher column peak capacity, enabling the separation of a greater number of proteins in a single chromatographic run.

  5. Separations chemistry of toxic metals

    International Nuclear Information System (INIS)

    Smith, P.; Barr, M.; Barrans, R.

    1996-01-01

    Sequestering and removing toxic metal ions from their surroundings is an increasingly active area of research and is gaining importance in light of current environmental contamination problems both within the DOE complex and externally. One method of separating metal ions is to complex them to a molecule (a ligand or chelator) which exhibits specific binding affinity for a toxic metal, even in the presence of other more benign metals. This approach makes use of the sometimes subtle differences between toxic and non-toxic metals resulting from variations in size, charge and shape. For example, toxic metals such as chromium, arsenic, and technetium exist in the environment as oxyanions, negatively charged species with a characteristic tetrahedral shape. Other toxic metals such as actinides and heavy metals are positively charged spheres with specific affinities for particular donor atoms such as oxygen (for actinides) and nitrogen (for heavy metals). In most cases the toxic metals are found in the presence of much larger quantities of less toxic metals such as sodium, calcium and iron. The selectivity of the chelators is critical to the goal of removing the toxic metals from their less toxic counterparts. The approach was to build a ligand framework that complements the unique characteristics of the toxic metal (size, charge and shape) while minimizing interactions with non-toxic metals. The authors have designed ligands exhibiting specificity for the target metals; they have synthesized, characterized and tested these ligands; and they have shown that they exhibit the proposed selectivity and cooperative binding effects

  6. Practical capillary electrophoresis

    CERN Document Server

    Weinberger, Robert

    2000-01-01

    In the 1980s, capillary electrophoresis (CE) joined high-performance liquid chromatography (HPLC) as the most powerful separation technique available to analytical chemists and biochemists. Published research using CE grew from 48 papers in the year of commercial introduction (1988) to 1200 in 1997. While only a dozen major pharmaceutical and biotech companies have reduced CE to routine practice, the applications market is showing real or potential growth in key areas, particularly in the DNA marketplace for genomic mapping and forensic identification. For drug development involving small molecules (including chiral separations), one CE instrument can replace 10 liquid chromatographs in terms of speed of analysis. CE also uses aqueous rather than organic solvents and is thus environmentally friendlier than HPLC. The second edition of Practical Capillary Electrophoresis has been extensively reorganized and rewritten to reflect modern usage in the field, with an emphasis on commercially available apparatus and ...

  7. Misleading presentation of haemoglobin electrophoresis data | Adu ...

    African Journals Online (AJOL)

    Haemoglobinopathies are common in sub-Saharan Africa. As such haemoglobin electrophoresis are required to inform clinical decision making. However, haemoglobin electrophoresis is an assay that detects protein at either alkaline or acidic pH. Such assays do not interrogate gene sequences but rather the product of a ...

  8. Comparison of lipoprotein electrophoresis and apolipoprotein e genotyping in investigating dysbetalipoproteinemia

    International Nuclear Information System (INIS)

    Ahmed, F.; Kadiki, A.E.

    2017-01-01

    Dysbetalipoproteinemia is often associated with apolipoprotein E2E2 homozygosity; however, lipoprotein electrophoresis may also be used to assist in the diagnosis. The aim of this study was to compare apolipoprotein E (apo E) genotyping and lipoprotein electrophoresis in investigating dysbetalipoproteinemia. Data were collected over a three-year period from a lipid clinic in a tertiary referral centre and reviewed for apo E genotyping and lipoprotein electrophoresis. Sixty-two patients had both apo E genotyping and lipoprotein electrophoresis. Of these, 16 patients showed broad beta band on electrophoresis. However, only 3 of them had apo E2E2 homozygosity on genotyping. Lipoprotein electrophoresis and apo E genotyping results showed poor concordance. This was primarily due to visual interpretation error of lipoprotein electrophoresis which may over diagnose dysbetalipoproteinemia. (author)

  9. Comparison of Lipoprotein Electrophoresis and Apolipoprotein E Genotyping in Investigating Dysbetalipoproteinemia.

    Science.gov (United States)

    Ahmed, Farhan; El-Kadiki, Alia; Gibbons, Stephen

    2017-06-01

    Dysbetalipoproteinemia is often associated with apolipoprotein E2E2 homozygosity; however, lipoprotein electrophoresis may also be used to assist in the diagnosis. The aim of this study was to compare apolipoprotein E (apo E) genotyping and lipoprotein electrophoresis in investigating dysbetalipoproteinemia. Data were collected over a three-year period from a lipid clinic in a tertiary referral centre and reviewed for apo E genotyping and lipoprotein electrophoresis. Sixty-two patients had both apo E genotyping and lipoprotein electrophoresis. Of these, 16 patients showed broad beta band on electrophoresis. However, only 3 of them had apo E2E2 homozygosity on genotyping. Lipoprotein electrophoresis and apo E genotyping results showed poor concordance. This was primarily due to visual interpretation error of lipoprotein electrophoresis which may over diagnose dysbetalipoproteinemia.

  10. Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli

    OpenAIRE

    Grillo-Puertas, Mariana; Schurig-Briccio, Lici Ariane; Rodríguez-Montelongo, Luisa; Rintoul, María Regina; Rapisarda, Viviana Andrea

    2014-01-01

    Background Metal tolerance in bacteria has been related to polyP in a model in which heavy metals stimulate the polymer hydrolysis, forming metal-phosphate complexes that are exported. As previously described in our laboratory, Escherichia coli cells grown in media containing a phosphate concentration >37 mM maintained an unusually high polyphosphate (polyP) level in stationary phase. The aim of the present work was to evaluate the influence of polyP levels as the involvement of low-affinity ...

  11. In situ photo-immobilised pH gradient isoelectric focusing and zone electrophoresis integrated two-dimensional microfluidic chip electrophoresis for protein separation

    International Nuclear Information System (INIS)

    Lin, Fengmin; Yu, Shiyong; Gu, Le; Zhu, Xuetao; Wang, Jianshe; Zhu, Han; Lu, Yi; Wang, Yihua; Deng, Yulin; Geng, Lina

    2015-01-01

    A method is introduced for open-column photo-induced site-selective immobilization of pH gradients in a layer of PEG-methacrylate in a multi-dimensional microfluidic chip for use in electrophoresis. It has several attractive features: (a) mixtures of fluorescently labelled proteins carbonic anhydrase, catalase and myoglobin in their native state can be separated by pH-gradient isoelectric focusing (IEF) and zone electrophoresis (CZE) using integrated 2D chip electrophoresis; (b) compared to strip packing or monolithic photo-immobilization, it overcomes the shortcomings of free carrier ampholyte-based 2D chip electrophoresis in an easy way; (c) larger amount of sample can be loaded into the open column-mode electrophoresis (d) immobilized pH gradients can be re-used and the chip can be recycled; (e) a multilayer 3D pH gradient is established by a layer-by-layer assembly technique to further increase the separation capacity. In our perception, this strategy has a large potential in microfluidic chip-based separation schemes because of its simplicity, separation power, re-usability, and separation capacity. (author)

  12. DNA Sequencing by Capillary Electrophoresis

    Science.gov (United States)

    Karger, Barry L.; Guttman, Andras

    2009-01-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496

  13. Urine protein electrophoresis test

    Science.gov (United States)

    Urine protein electrophoresis; UPEP; Multiple myeloma - UPEP; Waldenström macroglobulinemia - UPEP; Amyloidosis - UPEP ... special paper and apply an electric current. The proteins move and form visible bands. These reveal the ...

  14. Polymer−metal organic framework composite films as affinity layer for capacitive sensor devices

    NARCIS (Netherlands)

    Sachdeva, S.; Gravesteijn, Dirk J; Soccol, D.; Kapteijn, F.; Sudhölter, E.J.R.; Gascon, J.; Smet, de L.C.P.M.

    2016-01-01

    We report a simple method for sensor development using polymer-MOF composite films. Nanoparticles of NH2-MIL-53(Al) dispersed in a Matrimid polyimide were applied as a thin film on top of capacitive sensor devices with planar electrodes. These drop-cast films act as an affinity layer. Sensing

  15. Polymer-metal organic framework composite films as affinity layer for capacitive sensor devices

    NARCIS (Netherlands)

    Sachdeva, Sumit; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, Freek; Sudhölter, E.J.R.; Gascon, Jorge; Smet, de L.C.P.M.

    2016-01-01

    We report a simple method for sensor development using polymer-
    MOF composite films. Nanoparticles of NH2-MIL-53(Al) dispersed in a Matrimid
    polyimide were applied as a thin film on top of capacitive sensor devices with planar electrodes. These drop-cast films act as an affinity layer.

  16. Selective removal of heavy metal ions by disulfide linked polymer networks

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Dongah [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Lee, Joo Sung [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Patel, Hasmukh A. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Jakobsen, Mogens H. [Department of Micro and Nano technology, Technical University of Denmark, Ørsteds Plads, 345B, 2800 Kgs. Lyngby (Denmark); Hwang, Yuhoon [Department of Environmental Engineering, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811 (Korea, Republic of); Yavuz, Cafer T. [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Hansen, Hans Chr. Bruun [Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Andersen, Henrik R., E-mail: henrik@ndersen.net [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark)

    2017-06-15

    Highlights: • Disulfide/thiol polymer networks are promising as sorbent for heavy metals. • Rapid sorption and high Langmuir affinity constant (a{sub L}) for stormwater treatment. • Selective sorption for copper, cadmium, and zinc in the presence of calcium. • Reusability likely due to structure stability of disulfide linked polymer networks. - Abstract: Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions–copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

  17. A new biotechnology for recovering heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Darnall, D.W.; Gabel, A.

    1989-01-01

    This paper reports that bio-recovery systems has developed a new sorption process for removing toxic metal ions from water. This process is based upon the natural, very strong affinity for biological materials, such as the cell walls of plants and microorganisms, for heavy metal ions such as uranium, cadmium, cobalt, nickel, etc.. Biological materials, primarily algae, have been immobilized in a polymer to produce a biological ion exchange resin, AlgaSORB. The material has a remarkable affinity for heavy metal ions and is capable of concentrating these ions by a factor of may thousand-fold. Additionally, the bound metals can be stripped and recovered from the algal material in a manner similar to conventional resins

  18. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism

    NARCIS (Netherlands)

    Boughlala, Z.; Guerra, C.F.; Bickelhaupt, F.M.

    2016-01-01

    We have analyzed the structure and bonding of gas-phase Cl X and [HCl X](+) complexes for X+ = H+, CH3+, Li+, and Na+, using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl- and HCl for the various

  19. Single-cell microgel electrophoresis: an in vitro assay of radiosensitivity

    International Nuclear Information System (INIS)

    Deeley, J.O.T.; Moore, J.L.

    1993-01-01

    The results obtained by a microgel electrophoresis are comparable to conventional gel electrophoresis and elution techniques (Singh et al, 1989), DNA precipitation, alkali unwinding and cell clonogenicity assays (Olive et al, 1990). Since single cells are assessed, microgel electrophoresis is particularly appropriate for end-points such as the intercell variation in response. The simplicity, low cost and rapidity of microgel electrophoresis compared with other assays makes it particularly attractive for assessing the effects on DNA of radiation and other genotoxic agents on the general population. (Author)

  20. Continuous affine processes

    DEFF Research Database (Denmark)

    Buchardt, Kristian

    2016-01-01

    Affine processes possess the property that expectations of exponential affine transformations are given by a set of Riccati differential equations, which is the main feature of this popular class of processes. In this paper we generalise these results for expectations of more general transformati...

  1. Capillary electrophoresis: principles and applications in illicit drug analysis.

    Science.gov (United States)

    Tagliaro, F; Turrina, S; Smith, F P

    1996-02-09

    Capillary electrophoresis, which appeared in the early 1980s, is now rapidly expanding into many scientific disciplines, including analytical chemistry, biotechnology and biomedical and pharmaceutical sciences. In capillary electrophoresis,electrokinetic separations are carried out in tiny capillaries at high voltages (10-30 kV), thus obtaining high efficiencies (N > 10(5)) and excellent mass sensitivities (down to 10(-18)-10(-20) moles). The main features of capillary electrophoresis are: versatility of application (from inorganic ions to large DNA fragments), use of different separation modes with different selectivity, extremely low demands on sample volume, negligible running costs, possibility of interfacing with different detection systems, ruggedness and simplicity of instrumentation. Capillary electrophoresis applications in forensic sciences have appeared only recently, but are now rapidly growing, particularly in forensic toxicology. The present paper briefly describes the basic principles of capillary electrophoresis, from both the instrumental and analytical points of view. Furthermore, the main applications in the analysis of illicit/controlled drugs in both illicit preparations and biological samples are presented and discussed (43 references). It is concluded that the particular separation mechanism and the high complementarity of this technique to chromatography makes capillary electrophoresis a new powerful tool of investigation in the hands of forensic toxicologists.

  2. Electrophoresis in the analysis of natural and industrial ob ects

    International Nuclear Information System (INIS)

    Stepanov, A.V.; Korchemnaya, E.K.

    1979-01-01

    Given is a brief review on practical application of electrophoresis in the analysis of natural and industrial objects. Suggested are expressiVe methods of thorium, uranium and rare earth elements separation in minerals by electrophoresis. The possibility of quantitative determination of rare earth elements in meteorites by the method of electromigration is shown. By means of electrophoresis identified are forms of radioruthenium in a sea water. Shown is the electrophoresis application for reactor loop water analysis, for environment contamination study, for determination of some rare earth yield in reactions of uranium fission by heavy ions

  3. The metric-affine gravitational theory as the gauge theory of the affine group

    International Nuclear Information System (INIS)

    Lord, E.A.

    1978-01-01

    The metric-affine gravitational theory is shown to be the gauge theory of the affine group, or equivalently, the gauge theory of the group GL(4,R) of tetrad deformations in a space-time with a locally Minkowskian metric. The identities of the metric-affine theory, and the relationship between them and those of general relativity and Sciama-Kibble theory, are derived. (Auth.)

  4. Partial filling affinity capillary electrophoresis as a useful tool for fragment-based drug discovery: A proof of concept on thrombin.

    Science.gov (United States)

    Farcaş, E; Bouckaert, C; Servais, A-C; Hanson, J; Pochet, L; Fillet, M

    2017-09-01

    With the emergence of more challenging targets, a relatively new approach, fragment-based drug discovery (FBDD), proved its efficacy and gained increasing importance in the pharmaceutical industry. FBDD identifies low molecular-weight (MW) ligands (fragments) that bind to biologically important macromolecules, then a structure-guided fragment growing or merging approach is performed, contributing to the quality of the lead. However, to select the appropriate fragment to be evolved, sensitive analytical screening methods must be used to measure the affinity in the μM or even mM range. In this particular context, we developed a robust and selective partial filling affinity CE (ACE) method for the direct binding screening of a small fragment library in order to identify new thrombin inhibitors. To demonstrate the accuracy of our assay, the complex dissociation constants of three known thrombin inhibitors, namely benzamidine, p-aminobenzamidine and nafamostat were determined and found to be in good concordance with the previously reported values. Finally, the screening of a small library was performed and demonstrated the high discriminatory power of our method towards weak binders compared to classical spectrophotometric activity assay, proving the interest of our method in the context of FBDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Chemical partitioning of heavy metals in suspended particulates of Tajan River

    International Nuclear Information System (INIS)

    Nikoosepehr, E.

    2002-01-01

    In this investigation samples of river water sediments were collected at Takam bridge in Tajan River. In order to evaluate various chemical bonds ( loosely bonded ions, sulphides and organics), 120 A A S reading on Zn, Mn, Ni was carried out. The results indicates that Zn and Ni have more affinity towards sulphides while Cu and Mn are rather concentrated in loosely bonded ions. We have found out the following trends: Affinity of metals in loosely bonded ions in 63 and 40 μm fraction in Mn>Cu>Ni>Zn. Affinity of metals in organic bonds in 63 and 40 μm fraction is Zn>Ni>Mn>Cu and Zn>Ni>Cu>Mn respectively. It should be pointed out that metals do not show any regular pattern with sulphides: however in 63 μm fraction the trend is Zn>Ni>Cu>Mn

  6. A Generalized Affine Isoperimetric Inequality

    OpenAIRE

    Chen, Wenxiong; Howard, Ralph; Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong

    2004-01-01

    A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santalo inequality and the affine isoperimetric inequality of affine differential geometry.

  7. Inhibition study of alanine aminotransferase enzyme using sequential online capillary electrophoresis analysis.

    Science.gov (United States)

    Liu, Lina; Chen, Yuanfang; Yang, Li

    2014-12-15

    We report the study of several inhibitors on alanine aminotransferase (ALT) enzyme using sequential online capillary electrophoresis (CE) assay. Using metal ions (Na(+) and Mg(2+)) as example inhibitors, we show that evolution of the ALT inhibition reaction can be achieved by automatically and simultaneously monitoring the substrate consumption and product formation as a function of reaction time. The inhibition mechanism and kinetic constants of ALT inhibition with succinic acid and two traditional Chinese medicines were derived from the sequential online CE assay. Our study could provide valuable information about the inhibition reactions of ALT enzyme. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    Binding equilibria for decanoate to a defatted, commercially available human serum albumin preparation were investigated by dialysis exchange rate determinations. The binding isotherm could not be fitted by the general binding equation. It was necessary to assume that the preparation was a mixture...... of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...... and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture...

  9. Complexation of tauro- and glyco-conjugated bile salts with alpha-cyclodextrin and hydroxypropyl-alpha-cyclodextrin studied by affinity capillary electrophoresis and molecular modelling

    DEFF Research Database (Denmark)

    Holm, Rene; Schönbeck, Jens Christian Sidney; Askjær, Sune

    2011-01-01

    The interaction of the bile salts taurocholate, taurodeoxycholate, taurochenodeoxycholate, glycocholate, glycodeoxycholate, and glycochenodeoxycholate present in man, dog, and rat with α-cyclodextrin and 2-hydroxypropyl-α-cyclodextrin was investigated by mobility shift affinity capillary electrop...

  10. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes

    DEFF Research Database (Denmark)

    Morrill, Johan; Kulcinskaja, Evelina; Sulewska, Anna Maria

    2015-01-01

    and displays the highest catalytic efficiency reported to date for a GH5 mannanase owing to a very high kcat (1828 ± 87 s-1) and a low Km (1.58 ± 0.23 g · L-1) using locust bean galactomannan as substrate. The novel CBM of BlMan5_8 mediates increased binding to soluble mannan based on affinity electrophoresis...

  11. Analysis of electrophoresis performance

    Science.gov (United States)

    Roberts, G. O.

    1984-01-01

    The SAMPLE computer code models electrophoresis separation in a wide range of conditions. Results are included for steady three dimensional continuous flow electrophoresis (CFE), time dependent gel and acetate film experiments in one or two dimensions and isoelectric focusing in one dimension. The code evolves N two dimensional radical concentration distributions in time, or distance down a CFE chamber. For each time or distance increment, there are six stages, successively obtaining the pH distribution, the corresponding degrees of ionization for each radical, the conductivity, the electric field and current distribution, and the flux components in each direction for each separate radical. The final stage is to update the radical concentrations. The model formulation for ion motion in an electric field ignores activity effects, and is valid only for low concentrations; for larger concentrations the conductivity is, therefore, also invalid.

  12. Preparative electrophoresis of industrial fission product solutions

    International Nuclear Information System (INIS)

    Tret, Joel

    1971-07-01

    The aim of this work is to contribute to the development of the continuous electrophoresis technique while studying its application in the preparative electrophoresis of industrial fission product solutions. The apparatus described is original. It was built for the purposes of the investigation and proved very reliable in operation. The experimental conditions necessary to maintain and supervise the apparatus in a state of equilibrium are examined in detail; their stability is an important factor, indispensable to the correct performance of an experiment. By subjecting an industrial solution of fission products to preparative electrophoresis it is possible, according to the experimental conditions, to prepare carrier-free radioelements of radiochemical purity (from 5 to 7 radioelements): 137 Cs, 90 Sr, 141+144 Ce, 91 Y, 95 Nb, 95 Zr, 103+106 Ru. (author) [fr

  13. Gastrin receptor characterization: affinity cross-linking of the gastrin receptor on canine gastric parietal cells

    International Nuclear Information System (INIS)

    Matsumoto, M.; Park, J.; Yamada, T.

    1987-01-01

    The authors applied affinity cross-linking methods to label the gastrin receptor on isolated canine gastric parietal cells in order to elucidate the nature of its chemical structure. 125 I-labeled Leu 15 -gastrin and 125 I-labeled gastrin/sub 2-17/ bound to intact parietal cells and their membranes with equal affinity, and half-maximal inhibition of binding was obtained at an incubation concentration of 3.2 x 10 -10 M unlabeled gastrin. 125 I-gastrin/sub 2-17/ was cross-linked to plasma membranes or intact parietal cells by incubation in disuccinimidyl suberate. The membrane pellets were solubilized with or without dithiothreitol and applied to electrophoresis on 7.5% sodium dodecyl sulfate polyacrylamide gels. Autoradiograms revealed a band of labeling at M/sub r/ 76,000 and labeling of this band was inhibited in a dose-dependent fashion by addition of unlabeled gastrin to the incubation mixture. Dithiothreitol in concentrations as high as 100 mM did not later the electrophoretic mobility of the labeled band. After taking into account the molecular weight of 125 I-gastrin/sub 2-17/, the results suggest that the gastrin receptor on parietal cells is a single protein of M/sub r/ 74,000 without disulfide-linked subunits

  14. Images of gel electrophoresis - RGP caps | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us RGP caps Images of gel electrophoresis Data detail Data name Images of gel electrophoresis D...OI 10.18908/lsdba.nbdc00318-05-002 Description of data contents Detailed information and images of gel electrophoresis... of each marker. Data file File name: rgp_caps_electrophoresis_image.zip File URL: ftp://ftp.biosc...iencedbc.jp/archive/rgp-caps/LATEST/rgp_caps_electrophoresis_image.zip File size:... 28.7 MB Simple search URL - Data acquisition method Gel electrophoresis Data analysis method STS markers :

  15. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    Science.gov (United States)

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Applications of space-electrophoresis in medicine. [for cellular separations in molecular biology

    Science.gov (United States)

    Bier, M.

    1976-01-01

    The nature of electrophoresis is reviewed and potential advances realizable in the field of biology and medicine from a space electrophoresis facility are examined. The ground-based applications of electrophoresis: (1) characterization of an ionized species; (2) determination of the quantitative composition of a complex mixture; and (3) isolation of the components of a mixture, separation achieved on the basis of the difference in transport rates is reviewed. The electrophoresis of living cells is considered, touching upon the following areas: the separation of T and B lymphocytes; the genetic influence on mouse lymphocyte mobilities; the abnormal production of specific and monoclonal immunoproteins; and the study of cancer. Schematic diagrams are presented of three types of electrophoresis apparatus: the column assembly for the static electrophoresis experiment on the Apollo-Soyuz mission, the continuous flow apparatus used in the same mission and a miniaturized electrophoresis apparatus.

  17. Lp-mixed affine surface area

    Science.gov (United States)

    Wang, Weidong; Leng, Gangsong

    2007-11-01

    According to the three notions of mixed affine surface area, Lp-affine surface area and Lp-mixed affine surface area proposed by Lutwak, in this article, we give the concept of ith Lp-mixed affine surface area such that the first and second notions of Lutwak are its special cases. Further, some Lutwak's results are extended associated with this concept. Besides, applying this concept, we establish an inequality for the volumes and dual quermassintegrals of a class of star bodies.

  18. The elution of certain protein affinity tags with millimolar concentrations of diclofenac.

    Science.gov (United States)

    Baliova, Martina; Juhasova, Anna; Jursky, Frantisek

    2015-12-01

    Diclofenac (2-[(2, 6-dichlorophenyl)amino] benzeneacetic acid) is a sparingly soluble, nonsteroidal anti-inflammatory drug therapeutically acting at low micromolar concentrations. In pH range from 8 to 11, its aqueous solubility can be increased up to 200 times by the presence of counter ions such as sodium. Our protein interaction studies revealed that a millimolar concentration of sodium diclofenac is able to elute glutathione S-transferase (GST), cellulose binding protein (CBD), and maltose binding protein (MBP) but not histidine-tagged or PDZ-tagged proteins from their affinity resins. The elution efficiency of diclofenac is comparable with the eluting agents normally used at similar concentrations. Native gel electrophoresis of sodium diclofenac-treated proteins showed that the interaction is non-covalent and non-denaturing. These results suggest that sodium diclofenac, in addition to its pharmaceutical applications, can also be exploited as a lead for the development of new proteomics reagents. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Selective removal of heavy metal ions by disulfide linked polymer networks

    DEFF Research Database (Denmark)

    Ko, Dongah; Sung Lee, Joo; Patel, Hasmukh A.

    2017-01-01

    Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has...... a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal...... sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions―copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water....

  20. Gel Electrophoresis on a Budget to Dye for

    Science.gov (United States)

    Yu, Julie H.

    2010-01-01

    Gel electrophoresis is one of the most important tools used in molecular biology and has facilitated the entire field of genetic engineering by enabling the separation of nucleic acids and proteins. However, commercial electrophoresis kits can cost up to $800 for each setup, which is cost prohibitive for most classroom budgets. This article…

  1. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  2. Study of Streptavidin-Modified Quantum Dots by Capillary Electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Stanisavljevic, M.; Janů, L.; Šmerková, K.; Křížková, S.; Pizúrová, Naděžda; Ryvolová, M.; Adam, V.; Hubálek, J.; Kizek, R.

    2013-01-01

    Roč. 76, 7-8 (2013), s. 335-343 ISSN 0009-5893 Institutional support: RVO:68081723 Keywords : Capillary electrophoresis * Gel electrophoresis * Avidin-biotin technology * Oligonucleotide * Nanoparticle * quantum dots Subject RIV: CE - Biochemistry Impact factor: 1.370, year: 2013

  3. Integration of amperometric sensors for microchip capillary electrophoresis application

    International Nuclear Information System (INIS)

    Dicorato, F; Moore, E; Glennon, J

    2011-01-01

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis (μCE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor) using a micro-injection molding machine.

  4. Integration of amperometric sensors for microchip capillary electrophoresis application

    Energy Technology Data Exchange (ETDEWEB)

    Dicorato, F; Moore, E [Life Sciences Interface Group, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork (Ireland); Glennon, J, E-mail: eric.moore@tyndall.ie [Chemistry Department, University College Cork, College Road, Cork (Ireland)

    2011-08-17

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis ({mu}CE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor) using a micro-injection molding machine.

  5. Ceramic protective coatings applied by sol-gel or electrophoresis

    International Nuclear Information System (INIS)

    Stoch, A.

    1993-01-01

    Sol-gel and electrophoresis are the complementary techniques which may be used for obtaining the ceramic coatings. The composition of such a coatings depends on the composition of electrophoresis bath or sol solution. Thermal treatment is used for densifying the coating and promoting the adherence of coating to the substrate. In presented work silica, silica-alumina or alumina coatings are applied by sol-gel dip coating procedure on steel, aluminium or ceramic substrates. Electrophoresis is employed for obtaining zirconia, alumina or hydroxyapatite coatings on stainless steel. (author). 7 refs

  6. Response surface methodology optimization of partitioning of xylanase form Aspergillus Niger by metal affinity polymer-salt aqueous two-phase systems.

    Science.gov (United States)

    Fakhari, Mohamad Ali; Rahimpour, Farshad; Taran, Mojtaba

    2017-09-15

    Aqueous two phase affinity partitioning system using metal ligands was applied for partitioning and purification of xylanase produced by Aspergillus Niger. To minimization the number of experiments for the design parameters and develop predictive models for optimization of the purification process, response surface methodology (RSM) with a face-centered central composite design (CCF) has been used. Polyethylene glycol (PEG) 6000 was activated using epichlorohydrin, covalently linked to iminodiacetic acid (IDA), and the specific metal ligand Cu was attached to the polyethylene glycol-iminodiacetic acid (PEG-IDA). The influence of some experimental variables such as PEG (10-18%w/w), sodium sulfate (8-12%), PEG-IDA-Cu 2+ concentration (0-50% w/w of total PEG), pH of system (4-8) and crude enzyme loading (6-18%w/w) on xylanase and total protein partitioning coefficient, enzyme yield and enzyme specific activity were systematically evaluated. Two optimal point with high enzyme partitioning factor 10.97 and yield 79.95 (including 10% PEG, 12% Na 2 SO 4 , 50% ligand, pH 8 and 6% crude enzyme loading) and high specific activity in top phase 42.21 (including 14.73% PEG, 8.02% Na 2 SO 4 , 28.43% ligand, pH 7.7 and 6.08% crude enzyme loading) were attained. The adequacy of the RSM models was verified by a good agreement between experimental and predicted results. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Imaging metals in proteins by combining electrophoresis with rapid x-ray fluorescence mapping

    International Nuclear Information System (INIS)

    Finney, L.; Chishti, Y.; Khare, T.; Giometti, C.; Levina, A.; Lay, P.A.; Vogt, S.

    2010-01-01

    Growing evidence points toward a very dynamic role for metals in biology. This suggests that physiological circumstance may mandate metal ion redistribution among ligands. This work addresses a critical need for technology that detects, identifies, and measures the metal-containing components of complex biological matrixes. We describe a direct, user-friendly approach for identifying and quantifying metal?protein adducts in complex samples using native- or SDS-PAGE, blotting, and rapid synchrotron X-ray fluorescence mapping with micro-XANES (X-ray absorption near-edge structure) of entire blots. The identification and quantification of each metal bound to a protein spot has been demonstrated, and the technique has been applied in two exemplary cases. In the first, the speciation of the in vitro binding of exogenous chromium to blood serum proteins was influenced markedly by both the oxidation state of chromium exposed to the serum proteins and the treatment conditions, which is of relevance to the biochemistry of Cr dietary supplements. In the second case, in vivo changes in endogenous metal speciation were examined to probe the influence of oxygen depletion on iron speciation in Shewanella oneidensis.

  9. Mapping Affinities in Academic Organizations

    Directory of Open Access Journals (Sweden)

    Dario Rodighiero

    2018-02-01

    Full Text Available Scholarly affinities are one of the most fundamental hidden dynamics that drive scientific development. Some affinities are actual, and consequently can be measured through classical academic metrics such as co-authoring. Other affinities are potential, and therefore do not leave visible traces in information systems; for instance, some peers may share interests without actually knowing it. This article illustrates the development of a map of affinities for academic collectives, designed to be relevant to three audiences: the management, the scholars themselves, and the external public. Our case study involves the School of Architecture, Civil and Environmental Engineering of EPFL, hereinafter ENAC. The school consists of around 1,000 scholars, 70 laboratories, and 3 institutes. The actual affinities are modeled using the data available from the information systems reporting publications, teaching, and advising scholars, whereas the potential affinities are addressed through text mining of the publications. The major challenge for designing such a map is to represent the multi-dimensionality and multi-scale nature of the information. The affinities are not limited to the computation of heterogeneous sources of information; they also apply at different scales. The map, thus, shows local affinities inside a given laboratory, as well as global affinities among laboratories. This article presents a graphical grammar to represent affinities. Its effectiveness is illustrated by two actualizations of the design proposal: an interactive online system in which the map can be parameterized, and a large-scale carpet of 250 square meters. In both cases, we discuss how the materiality influences the representation of data, in particular the way key questions could be appropriately addressed considering the three target audiences: the insights gained by the management and their consequences in terms of governance, the understanding of the scholars’ own

  10. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    Science.gov (United States)

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  11. Photoaffinity labeling of mammalian α1-adrenergic receptors: identification of the ligand binding subunit with a high affinity radioiodinated probe

    International Nuclear Information System (INIS)

    Leeb-Lundberg, L.M.F.; Dickinson, K.E.J.; Heald, S.L.

    1984-01-01

    A description is given of the synthesised and characterization of a novel high affinity radioiodinated α 1 -adrenergic receptor photoaffinity probe, 4-amino-6,7-dimethoxy-2-[4-[5-(4-azido-3-[ 125 I]iodophenyl)pentanoyl]-1-piperazinyl] quinazoline. In the absence of light, this ligand binds with high affinity (K/sub d/ = 130 pm) in a reverisble and saturable manner to sites in rat hepatic plasma membranes. The binding is stereoselective and competitively inhibited by adrenergic agonists and antagonists with an α 1 -adrenergic specificity. Upon photolysis, this ligand incorporates irreversibly into plasma membranes prepared from several mammalian tissues including rat liver, rat, guinea pig, and rabbit spleen, rabbit lung, and rabbit aorta vascular smooth muscle cells, also with typical α 1 -adrenergic specificity. Autoradiograms of such membrane samples subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveal a major specifically labeled polypeptide at M/sub 4/ = 78,000-85,000, depending on the tissue used, in addition to some lower molecular weight peptides. Protease inhibitors, in particular EDTA, a metalloprotease inhibitor, dramatically increases the predominance of the M/sub r/ = 78,000-85,000 polypeptide while attenuating the labeling of the lower molecular weight bands. This new high affinity radioiodinated photoaffinity probe should be of great value for the molecular characterization of the α 1 -adrenergic receptor

  12. Investigation of Mixed Chiral Selectors of Different Metal Ion-L-Alanine Complex and β-Cyclodextrin on the Chiral Separation of Dansyl Amino Acids with Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    郑志侠; 屈锋; 林金明

    2003-01-01

    Chiral separation of dausyl amino acids by capillary electrophoresis using mixed selectors of Mn(ll)-L-alanine complex and β-cyclodextrin (β-CD) was studied. Resolution was considerably superior to that obtained by using either Mn (Ⅱ)-L-alanine complex or β-CD alone. The effects of separation parameters, such as pH value of buffer solution, capillary temperature, the concentration of Mn (Ⅱ)-L-alanine complex, the types of CD and ligand on the migration times and resolutions were investigated. Six different transition metal complexes,Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and Cd(Ⅱ)-L-alanine complexes have been employed and compared with Mn(Ⅱ)complex. Differences in retention and selectivity were found.The substitution of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ) and Ni(Ⅱ) for Mn(Ⅱ) resulted in a better chiral resolution while Hg(Ⅱ) and Cd(Ⅱ) showed poorer resolution abilities. The chiral separation mechanism was also discussed briefly.

  13. Selective affinity labeling of a 27-kDa integral membrane protein in rat liver and kidney with N-bromoacetyl derivatives of L-thyroxine and 3,5,3'-triiodo-L-thyronine

    International Nuclear Information System (INIS)

    Koehrle, J.R.; Rasmussen, U.B.; Rokos, H.; Leonard, J.L.; Hesch, R.D.

    1990-01-01

    125I-Labeled N-bromoacetyl derivatives of L-thyroxine and L-triiodothyronine were used as alkylating affinity labels to identify rat liver and kidney microsomal membrane proteins which specifically bind thyroid hormones. Affinity label incorporation was analyzed by ethanol precipitation and individual affinity labeled proteins were identified by autoradiography after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Six to eight membrane proteins ranging in size from 17 to 84 kDa were affinity labeled by both bromoacetyl-L-thyroxine (BrAcT4) and bromoacetyl-L-triiodothyronine (BrAcT3). Affinity labeling was time- and temperature-dependent, and both reduced dithiols and detergents increased affinity labeling, predominantly in a 27-kDa protein(s). Up to 80% of the affinity label was associated with a 27-kDa protein (p27) under optimal conditions. Affinity labeling of p27 by 0.4 nM BrAc[125I]L-T4 was blocked by 0.1 microM of the alkylating ligands BrAcT4, BrAcT3, or 100 microM iodoacetate, by 10 microM concentrations of the non-alkylating, reversible ligands N-acetyl-L-thyroxine, 3,3',5'-triiodothyronine, 3,5-diiodosalicylate, and EMD 21388, a T4-antagonistic flavonoid. Neither 10 microM L-T4, nor 10 microM N-acetyltriiodothyronine or 10 microM L-triiodothyronine blocked affinity labeling of p27 or other affinity labeled bands. Affinity labeling of a 17-kDa band was partially inhibited by excess of the alkylating ligands BrAcT4, BrAcT3, and iodoacetate, but labeling of other minor bands was not blocked by excess of the competitors. BrAc[125I]T4 yielded higher affinity label incorporation than BrAc[125I]T3, although similar banding patterns were observed, except that BrAcT3 affinity labeled more intensely a 58,000-Da band in liver and a 53,000-55,000-Da band in kidney

  14. Basic evaluation of 67Ga labeled digoxin derivative as a metal-labeled bifunctional radiopharmaceutical

    International Nuclear Information System (INIS)

    Fujibayashi, Yasuhisa; Konishi, Junji; Takemura, Yasutaka; Taniuchi, Hideyuki; Iijima, Naoko; Yokoyama, Akira.

    1993-01-01

    To develop metal-labeled digoxin radiopharmaceuticals with affinity with anti-digoxin antibody as well as Na + , K + -ATPase, a digoxin derivative conjugated with deferoxamine was synthesized. The derivative had a high binding affinity with 67 Ga at deferoxamine introduced to the terminal sugar ring of digoxin. The 67 Ga labeled digoxin derivative showed enough in vitro binding affinity and selectivity to anti-digoxin antibody as well as Na + , K + -ATPase. The 67 Ga labeled digoxin derivative is considered to be a potential metal-labeled bifunctional radiopharmaceutical for digoxin RIA as well as myocardial Na + , K + -ATPase imaging. (author)

  15. Fundamentals of affinity cell separations.

    Science.gov (United States)

    Zhang, Ye; Lyons, Veronica; Pappas, Dimitri

    2018-03-01

    Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Potential of capillary electrophoresis for the profiling of propolis

    NARCIS (Netherlands)

    Hilhorst, M.J; Somsen, G.W; de Jong, G.J.

    1998-01-01

    The usefulness of capillary electrophoresis (CE) with diode array detection for the profiling of Propolis, a hive product, is investigated. Water extracts of Propolis were analyzed with both capillary zone electrophoresis (CZE) at pH 7.0 and 9.3, and micellar electrokinetic chromatography (MEKC)

  17. A new BODIPY/nanoparticle/Ni affinity system for binding of cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Maltas, Esra, E-mail: maltasesra@gmail.com [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Selcuk University, Faculty of Science, Department of Biochemistry, 42075 Konya (Turkey); Kursunlu, Ahmed Nuri [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Arslan, Gulsin [Selcuk University, Faculty of Science, Department of Biochemistry, 42075 Konya (Turkey); Selcuk University, Advanced Research Technology and Application Center, 42075 Konya (Turkey); Ozmen, Mustafa [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Selcuk University, Advanced Research Technology and Application Center, 42075 Konya (Turkey)

    2015-09-15

    Highlights: • BODIPY was synthesized, and then attached to magnetic nanoparticles. • Ni(II) ions were chelated on prepared material. • The binding of cytochrome c to obtained material was studied. - Abstract: In this study, 3,5-{Bis[4,4-difluoro, 8-(2,6-diethyl, 1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene)]}benzoylchloride (BODIPY) was synthesized for the improving of a new immobilized metal affinity supporting material. Firstly, the synthesized BODIPY was immobilized on iron oxide superparamagnetic nanoparticles (SPIONs) and then, Ni(II) ions were chelated with the active terminals of BODIPY on nanoparticles surfaces to prepare an immobilized metal affinity (IMA) adsorbent for protein adsorption. The amount of BODIPY coated on SPIONs was about 29.7 μM at 10 mg nanoparticles. 738 μmol of Ni(II) ions were loaded to 10 mg of the SPIONs/BODIPY. The binding amount of cytochrome c was found to be 170 μg to the SPIONs/BODIPY/Ni at pH 7.4. The binding amount of the molecules on SPIONs was analyzed by using UV–vis, fluorescence and atomic absorption spectroscopy. The characterization of the prepared surfaces was performed by FT-IR, SEM and TEM.

  18. Serum protein fractionation using supported molecular matrix electrophoresis.

    Science.gov (United States)

    Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko

    2013-08-01

    Supported molecular matrix electrophoresis (SMME), in which a hydrophilic polymer such as PVA serves as a support within a porous PVDF membrane, was recently developed. This method is similar to cellulose acetate membrane electrophoresis but differs in the compatibility to glycan analysis of the separated bands. In this report, we describe the first instance of the application of SMME to human serum fractionation, and demonstrate the differences with serum fractionation by cellulose acetate membrane electrophoresis. The SMME membrane exhibited almost no EOF during electrophoresis, unlike the cellulose acetate membrane, but afforded comparative results for serum fractionation. The visualization of each fraction was achieved by conventional staining with dye such as Direct Blue-71, and objective quantification was obtained by densitometry after inducing membrane transparency with 1-nonene. Immunostaining was also achieved. Moreover, mass spectrometric analysis of both N-linked and O-linked glycans from the separated bands was demonstrated. Serum fractionation and glycan profiling of each fraction using SMME will enable novel insights into the relationships between various glycosylation profiles and disease states. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Affine field theories

    International Nuclear Information System (INIS)

    Cadavid, A.C.

    1989-01-01

    The author constructs a non-Abelian field theory by gauging a Kac-Moody algebra, obtaining an infinite tower of interacting vector fields and associated ghosts, that obey slightly modified Feynman rules. She discusses the spontaneous symmetry breaking of such theory via the Higgs mechanism. If the Higgs particle lies in the Cartan subalgebra of the Kac-Moody algebra, the previously massless vectors acquire a mass spectrum that is linear in the Kac-Moody index and has additional fine structure depending on the associated Lie algebra. She proceeds to show that there is no obstacle in implementing the affine extension of supersymmetric Yang-Mills theories. The result is valid in four, six and ten space-time dimensions. Then the affine extension of supergravity is investigated. She discusses only the loop algebra since the affine extension of the super-Poincare algebra appears inconsistent. The construction of the affine supergravity theory is carried out by the group manifold method and leads to an action describing infinite towers of spin 2 and spin 3/2 fields that interact subject to the symmetries of the loop algebra. The equations of motion satisfy the usual consistency check. Finally, she postulates a theory in which both the vector and scalar fields lie in the loop algebra of SO(3). This theory has an expanded soliton sector, and corresponding to the original 't Hooft-Polyakov solitonic solutions she now finds an infinite family of exact, special solutions of the new equations. She also proposes a perturbation method for obtaining an arbitrary solution of those equations for each level of the affine index

  20. A protein engineered to bind uranyl selectively and with femtomolar affinity

    Science.gov (United States)

    Zhou, Lu; Bosscher, Mike; Zhang, Changsheng; Özçubukçu, Salih; Zhang, Liang; Zhang, Wen; Li, Charles J.; Liu, Jianzhao; Jensen, Mark P.; Lai, Luhua; He, Chuan

    2014-03-01

    Uranyl (UO22+), the predominant aerobic form of uranium, is present in the ocean at a concentration of ~3.2 parts per 109 (13.7 nM) however, the successful enrichment of uranyl from this vast resource has been limited by the high concentrations of metal ions of similar size and charge, which makes it difficult to design a binding motif that is selective for uranyl. Here we report the design and rational development of a uranyl-binding protein using a computational screening process in the initial search for potential uranyl-binding sites. The engineered protein is thermally stable and offers very high affinity and selectivity for uranyl with a Kd of 7.4 femtomolar (fM) and >10,000-fold selectivity over other metal ions. We also demonstrated that the uranyl-binding protein can repeatedly sequester 30-60% of the uranyl in synthetic sea water. The chemical strategy employed here may be applied to engineer other selective metal-binding proteins for biotechnology and remediation applications.

  1. Procedures for two-dimensional electrophoresis of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  2. Detection of telomerase activity using microchip electrophoresis.

    Science.gov (United States)

    Karasawa, Koji; Arakawa, Hidetoshi

    2015-07-01

    Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making these TRAP methods time consuming and technically demanding. In this study we developed a novel telomerase assay using microchip electrophoresis for rapid and highly sensitive detection of telomerase activity in cancer cells. The mixed gel of 0.8% hydroxypropyl methylcellulose (HPMC) and 0.3% polyethylene oxide (PEO) with SYBR Gold (fluorescent reagent) was used for microchip electrophoresis. As a result, the product amplified by a telomerase-positive cell could be measured in one cell per assay and detected with high reproducibility (CV=0.67%) in the short time of 100s. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Electron affinities: theoretical

    International Nuclear Information System (INIS)

    Kaufman, J.J.

    1976-01-01

    A brief description is given of the conceptual background and formalism of the various ab-initio and semi-ab-initio quantum computational techniques for calculating atomic and molecular electron affinities: Hartree--Fock--Roothaan SCF, configuration interaction (CI), multiconfiguration SCF (MC-SCF), Bethe--Goldstone, superposition of configurations (SOC), ab-initio effective core model potentials, Xα-MS, plus other less common methods. Illustrative and comparative examples of electron affinities calculated by these various methods are presented

  4. Usage of Capillary Electrophoresis for screening common Hemoglobinopathies

    Directory of Open Access Journals (Sweden)

    2016-06-01

    Full Text Available Hemoglobinopathies are most common inherited disorders in the world approximately 7 percent of the worldwide population and 5-6 percent of population of Iran are carriers. For control of this inherited hemoglobin disorders need to accurate screening by more advanced and more accurate methods. This study explains features of current Iran hemoglobin disorders, nominates the accessible methods for screening them and introduces the capillary zone electrophoresis as a rapid & more accurate method. The required data were extracted of various articles and then for good explanation, current Iran hemoglobinopathies properties were showed in the tables and electropherograms of important hemoglobin disorders in Iran population were provided for help to interpretation results of blood tests by capillary zone electrophoresis method. Hemoglobin disorders are including thalassemias & hemoglobin variants Disruption in the production and malfunction of globin chains cause types of hemoglobin disorders. We cannot introduce one of clinical laboratory tests as critical and basic method for screening and distinguishing types of inherited hemoglobin disorders as alone. For distinguishing the types of them must be prepared enough information and data of the hemoglobin disorders and for more accurate analysis must be used simultaneously different methods as Gel electrophoresis, High performance liquid chromatography, Isoelectric focusing, Capillary zone electrophoresis or molecular tests. The capillary electrophoresis is an accurate and rapid method for screening types of the hemoglobin disorders. Other side this method cannot analyze all of them, so must be used biochemical, biophysical and molecular methods for confirmation the results. This review showed we can use the capillary electrophoresis and HPLC as two complementary methods for hemoglobinopathies screening. We can analyze by the methods more hemoglobin disorders and decrease more laboratory errors. Moreover

  5. Hemoglobin affinity in Andean rodents

    Directory of Open Access Journals (Sweden)

    HRVOJ OSTOJIC

    2002-01-01

    Full Text Available Blood hemoglobin oxygen affinity (P50 was measured in three Andean species and in the laboratory rat (control, all raised near sea level. Chinchilla lanigera (Molina, 1792 has an altitudinal habitat range from low Andean slopes up to 3000 m., while Chinchilla brevicaudata (Waterhouse, 1848 has an altitudinal range from 3000 to 5000 m. The laboratory type guinea pig, wild type guinea pig (Cavia porcellus, (Waterhouse, 1748, and laboratory rat (Rattus norvegicus were also raised at sea level. The Andean species had high hemoglobin oxygen affinities (low P50 compared with the rat. Chinchilla brevicaudata had a higher affinity than Chinchilla lanigera. The wild type guinea pig had a higher affinity than the laboratory type. As has been shown in other species, this is another example of an inverse correlation between the altitude level and the P50 values. This is the first hemoglobin oxygen affinity study in Chinchilla brevicaudata.

  6. Basic study for gas cleaning using discharge and electrophoresis

    International Nuclear Information System (INIS)

    Su, Zhen-Zhou; Sawada, Jun; Takashima, Kazunori; Katsura, Shinji; Mizuno, Akira

    2004-01-01

    A NO x removal method using discharge plasma and electrophoresis for exhaust control was studied. The 65-50% of NO was oxidized to NO 2 or HNO 3 by the discharge plasma with specific input energy of 45J/l. The electrophoresis was carried out to concentrate the NO 2 or HNO 3 adsorbed on the adsorbents. As a result, 80% of the adsorbed nitrate ions were found in the anode region. A combination of molecular sieve pellets of 13X and glass fiber cloth was tested for the collection of nitrate ions. The ability of simultaneous concentration of nitrate ions and sulfate ions using electrophoresis was examined

  7. A novel venom protein of the Asian bee (Apis cerana indica with an affinity to human α1-microglobulin

    Directory of Open Access Journals (Sweden)

    Rosdiana Natzir

    1999-01-01

    Full Text Available Bee stings are a common health problem throughout the world and can sometimes result in fatal anaphylactic reactions. We have studied Asian bee (Apis cerana indica, Apis cerana nigrocincta and Apis dorsata venoms and have discovered a novel protein with a molecular size of 50 kDa (p50, as shown by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, which has not been reported in the venom of the Western honey-bee, Apis mellifera (AM. The p50 protein showed a unique affinity to human α1-microglobulin (α1-m. As a result, p50 was purified using an affinity column with α1-m. The p50 protein was further purified by an affinity column with a monoclonal antibody raised against p50 in mice. The p50 protein induced an inflammatory reaction following injection into mouse ear; that is, degranulation of mast cells, edema, hyperemia and hyperpermeation of the local capillaries were observed. The reaction was very similar to that seen when phospholipase A2 of AM, a representative bee venom, was administered by injection. The inflammatory reaction induced by p50 was completely inhibited by mixing p50 with α1-m prior to injection. These results indicate that p50 is a unique venom component of the Asian bee that induces the inflammatory reaction and that human α1-m may be involved as a protective mechanism against bee stings of at least some Asian bee species.

  8. Using Gel Electrophoresis To Illustrate Protein Diversity and Isoelectric Point.

    Science.gov (United States)

    Browning, Mark; Vanable, Joseph

    2002-01-01

    Demonstrates the differences in protein structures by focusing on isoelectric point with an experiment that is observable under certain pH levels in gel electrophoresis. Explains the electrophoresis procedure and reports results of the experiments. (YDS)

  9. Emerging trends in biosensing using stripping voltammetric detection of metal-containing nanolabels – A review

    Energy Technology Data Exchange (ETDEWEB)

    Kokkinos, Christos; Economou, Anastasios, E-mail: aeconomo@chem.uoa.gr

    2017-04-08

    Over the last years, nanomaterials have found many applications in the development of electrochemical biosensors. Among other functions, metal nanoparticles (NPs) and quantum dots (QDs) (semiconducting nanocrystals composed of metal salts) are increasingly being used as voltammetric labels in affinity biosensing. Labeling is based on the attachment of the label(s) on the target biomolecules or on a biorecognition reporting probe. After an appropriate specific affinity interaction between the target and the reporting probe, the metallic nanolabels are converted to the respective cations which are quantified by a voltammetric technique. The very use of metal-containing nanoprobes as labels provides a first amplification step since each nanoprobe can release a very significant number of detectable cations. When anodic stripping voltammetry (ASV) (in which a preconcentration step precedes the actual voltammetric scan) is further employed as the detection format, ultra-sensitive bioassays can be developed. The present paper reviews the emerging trends in affinity biosensing using ASV detection of metal-containing nanolabels. It provides a critical discussion of recent developments in ASV transduction and electrodes, novel strategies for signal enhancement, approaches for multiplexed detection as well as fluidics, paper-based and lab-on-a-chip devices. - Highlights: • This paper reviews the use of ASV for affinity biosensing with metal-containing nanolabels. • Both metal nanoparticles and quantum dots applications are considered. • Transducers and new electrode materials are covered. • Signal enhancement and multiplexing strategies are discussed. • Sensor arrays, paper-based, fluidic and lab-on-chip applications are described.

  10. Large abnormal peak on capillary zone electrophoresis due to contrast agent.

    Science.gov (United States)

    Wheeler, Rachel D; Zhang, Liqun; Sheldon, Joanna

    2017-01-01

    Background Some iodinated radio-contrast media absorb ultraviolet light and can therefore be detected by capillary zone electrophoresis. If seen, these peaks are typically small with 'quantifications' of below 5 g/L. Here, we describe the detection of a large peak on capillary zone electrophoresis that was due to the radio-contrast agent, Omnipaque™. Methods Serum from a patient was analysed by capillary zone electrophoresis, and the IgG, IgA, IgM and total protein concentrations were measured. The serum sample was further analysed by gel electrophoresis and immunofixation. Results Capillary zone electrophoresis results for the serum sample showed a large peak with a concentration high enough to warrant urgent investigation. However, careful interpretation alongside the serum immunoglobulin concentrations and total protein concentration showed that the abnormal peak was a pseudoparaprotein rather than a monoclonal immunoglobulin. This was confirmed by analysis with gel electrophoresis and also serum immunofixation. The patient had had a CT angiogram with the radio-contrast agent Omnipaque™; addition of Omnipaque™ to a normal serum sample gave a peak with comparable mobility to the pseudoparaprotein in the patient's serum. Conclusions Pseudoparaproteins can appear as a large band on capillary zone electrophoresis. This case highlights the importance of a laboratory process that detects significant electrophoretic abnormalities promptly and interprets them in the context of the immunoglobulin concentrations. This should avoid incorrect reporting of pseudoparaproteins which could result in the patient having unnecessary investigations.

  11. Quantitative analysis by microchip capillary electrophoresis – current limitations and problem-solving strategies

    NARCIS (Netherlands)

    Revermann, T.; Götz, S.; Künnemeyer, Jens; Karst, U.

    2008-01-01

    Obstacles and possible solutions for the application of microchip capillary electrophoresis in quantitative analysis are described and critically discussed. Differences between the phenomena occurring during conventional capillary electrophoresis and microchip-based capillary electrophoresis are

  12. Inexpensive and Safe DNA Gel Electrophoresis Using Household Materials

    Science.gov (United States)

    Ens, S.; Olson, A. B.; Dudley, C.; Ross, N. D., III; Siddiqi, A. A.; Umoh, K. M.; Schneegurt, M. A.

    2012-01-01

    Gel electrophoresis is the single most important molecular biology technique and it is central to life sciences research, but it is often too expensive for the secondary science classroom or homeschoolers. A simple safe low-cost procedure is described here that uses household materials to construct and run DNA gel electrophoresis. Plastic…

  13. Dynamic computer simulations of electrophoresis: three decades of active research.

    Science.gov (United States)

    Thormann, Wolfgang; Caslavska, Jitka; Breadmore, Michael C; Mosher, Richard A

    2009-06-01

    Dynamic models for electrophoresis are based upon model equations derived from the transport concepts in solution together with user-inputted conditions. They are able to predict theoretically the movement of ions and are as such the most versatile tool to explore the fundamentals of electrokinetic separations. Since its inception three decades ago, the state of dynamic computer simulation software and its use has progressed significantly and Electrophoresis played a pivotal role in that endeavor as a large proportion of the fundamental and application papers were published in this periodical. Software is available that simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. This has been employed to show the detailed mechanisms of many of the fundamental phenomena that occur in electrophoretic separations. Dynamic electrophoretic simulations are relevant for separations on any scale and instrumental format, including free-fluid preparative, gel, capillary and chip electrophoresis. This review includes a historical overview, a survey of current simulators, simulation examples and a discussion of the applications and achievements of dynamic simulation.

  14. Sample Stacking in capillary zone electrophoresis : Principles, advantages and limitations

    NARCIS (Netherlands)

    Beckers, J.L.; Bocek, P.

    2000-01-01

    The principles of stacking procedures are described and their properties are discussed, including the fundamentals of the behavior of zone boundaries and the consequences of the self-correcting properties of boundaries in moving boundary electrophoresis, isotachophoresis, and zone electrophoresis.

  15. Continuous Fractionation of a two-component mixture by zone electrophoresis

    NARCIS (Netherlands)

    Zalewski, D.R.; Gardeniers, Johannes G.E.

    2009-01-01

    Synchronized continuous-flow zone electrophoresis is a recently demonstrated tool for performing electrophoretic fractionation of a complex sample. The method resembles free flow electrophoresis, but unlike in that technique, no mechanical fluid pumping is required. Instead, fast electrokinetic flow

  16. Biomonitoring of Heavy Metals Using Intertidal Mollusks in East Johor Coastal Waters

    International Nuclear Information System (INIS)

    Mohd Mokhlesur Rahman

    2016-01-01

    Interspecies, inter-tissue and interspatial dissimilarities of trace metals in particular body parts of Saccostrea cucullata, Thais clavigera and Nerita chameleon from the east Johor coastal waters were compared. Metals of interest includes Pb, Cd, Zn, Cu, Mn, Co, Se and Sr. Bivalve mollusk S. cucullata evidenced to be a worthy bioindicator for Zn and Cu while the two gastropod molluscs, T. clavigera for Cd and Se, and N. chameleon for Pb, Mn and Sr. The prominent concentration of metals originate in T. clavigera may be the outcome of biomagnification transfer from the S. cucullata on which they feed while for N. chameleon, it might be resulting from their herbivorous feeding behavior on algae on rocks which they graze. The metal accumulation patterns indicate consistent enrichment of essential metals in soft tissue. Values of operculum to tissue ratio (OTR) and shell to tissue (STR) higher than unity in T. clavigera indicate that operculum had higher affinities for Pb, Mn and Se while shell had higher affinities for Co and Sr. In N. chameleon, values of OTR and STR higher than unity displayed that operculum and shell had similar higher affinities for Co and Sr and Cd, Co and Sr, respectively. Significant interspatial variations (p<0.05 and p<0.01) in trace metals were noted. Assessment of metal concentration with maximum permissible limits of toxic metals in food shown the values were well within safety levels, except for Zn in S. cucullata that need to be monitored. (author)

  17. 2017 Guralp Affinity Digitizer Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J.

    2018-03-01

    Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).

  18. Basic evaluation of [sup 67]Ga labeled digoxin derivative as a metal-labeled bifunctional radiopharmaceutical

    Energy Technology Data Exchange (ETDEWEB)

    Fujibayashi, Yasuhisa; Konishi, Junji (Kyoto Univ. (Japan). Faculty of Medicine); Takemura, Yasutaka; Taniuchi, Hideyuki; Iijima, Naoko; Yokoyama, Akira

    1993-11-01

    To develop metal-labeled digoxin radiopharmaceuticals with affinity with anti-digoxin antibody as well as Na[sup +], K[sup +]-ATPase, a digoxin derivative conjugated with deferoxamine was synthesized. The derivative had a high binding affinity with [sup 67]Ga at deferoxamine introduced to the terminal sugar ring of digoxin. The [sup 67]Ga labeled digoxin derivative showed enough in vitro binding affinity and selectivity to anti-digoxin antibody as well as Na[sup +], K[sup +]-ATPase. The [sup 67]Ga labeled digoxin derivative is considered to be a potential metal-labeled bifunctional radiopharmaceutical for digoxin RIA as well as myocardial Na[sup +], K[sup +]-ATPase imaging. (author).

  19. Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance

    Science.gov (United States)

    Xia, Yang; Zhu, Derong; Si, Shihui; Li, Degeng; Wu, Sen

    2015-06-01

    Porous nickel foam is used as a substrate for the development of rechargeable zinc//polyaniline battery, and the cathode electrophoresis of PANI microparticles in non-aqueous solution is applied to the fabrication of Ni foam supported PANI electrode, in which the corrosion of the nickel foam substrate is prohibited. The Ni foam supported PANI cathode with high loading is prepared by PANI electrophoretic deposition, and followed by PANI slurry casting under vacuum filtration. The electrochemical charge storage performance for PANI material is significantly improved by using nickel foam substrate via the electrophoretic interlayer. The specific capacity of the nickel foam-PANI electrode with the electrophoretic layer is higher than the composite electrode without the electrophoretic layer, and the specific capacity of PANI supported by Ni foam reaches up to 183.28 mAh g-1 at the working current of 2.5 mA cm-2. The present electrophoresis deposition method plays the facile procedure for the immobilization of PANI microparticles onto the surface of non-platinum metals, and it becomes feasible to the use of the Ni foam supported PANI composite cathode for the Zn/PANI battery in weak acidic electrolyte.

  20. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials

    NARCIS (Netherlands)

    Sachdeva, S.; Koper, S.J.H.; Sabetghadam Esfahani, A.; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, F.; Sudholter, E.J.R.; Gascon Sabate, J.; de Smet, L.C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al)

  1. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials

    NARCIS (Netherlands)

    Sachdeva, Sumit; Koper, Sander J.H.; Sabetghadam, Anahid; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, Freek; Sudhölter, Ernst J.R.; Gascon, Jorge; Smet, De Louis C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in

  2. Isolation and purification of wheat germ agglutinin and analysis of its properties

    Science.gov (United States)

    Wang, Han

    2017-12-01

    In this paper, the wheat germ agglutinin was isolated and purified by affinity chromatography of chicken ovomucoid as ligand. The physicochemical properties were analyzed. The chicken ovomucoid was isolated from egg white and conjugated to affinity chromatography column agarose gel to prepare affinity adsorbent. The crude extract of wheat germ was freezedried by affinity chromatography. The physicochemical properties were analyzed by SDSpolyacrylamide gel electrophoresis and isoelectric focusing electrophoresis. And the relative molecular mass and isoelectric point of wheat germ agglutinin were obtained, and the high efficiency of purification of wheat germ agglutinin was proved by affinity chromatography.

  3. Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage

    International Nuclear Information System (INIS)

    Singh, N.P.; Stephens, R.E.; Schneider, E.L.

    1994-01-01

    The alkaline microgel electrophoresis technique was modified to achieve a substantial increase in sensitivity for the detection of radiation-induced DNA damage in human lymphocytes. This increased sensitivity was achieved through: (1) the addition of free radical scavengers to the electrophoresis solution to reduce DNA damage generated during alkaline unwinding and electrophoresis; (2) the modification of the electrophoresis unit to achieve a more uniform electric field; (3) the use of YOYO-1, a DNA dye, producing fluorescence 500-fold more intense than ethidium bromide; and (4) the introduction of an image analysis system for the quantitation of DNA migration. In human lymphocytes, these modifications have resulted in an increased sensitivity of several fold, allowing the detection of DNA damage in the range of 50 mGy. (author)

  4. Usage of capillary electrophoresis for common hemoglobinopathies screening

    Directory of Open Access Journals (Sweden)

    Alireza Ebrahimi

    2016-06-01

    Full Text Available Hemoglobinopathies are most common inherited disorders in the world; approximately 7 percent of the worldwide population and 5-6 percent of population of Iran are carriers. The hemoglobin disorders inherit as autosomal recessive and are very common in the Mediterranean area and much of the Asia and Africa. The control of this inherited disorders need to genetic counseling and accurate screening by more advanced and more accurate methods. This study explains features of current Iran hemoglobin disorders, nominates the accessible methods for screening them and introduces the capillary zone electrophoresis as a rapid and more accurate method. The required data were extracted of various articles and then for good explanation, current Iran hemoglobinopathies properties were showed in the tables and electropherograms of important hemoglobin disorders in Iran population were provided for help to interpretation results of blood tests by capillary zone electrophoresis method. Hemoglobin disorders are including thalassemias and hemoglobin variants; Disruption in the production and malfunction of globin chains cause types of hemoglobin disorders. We cannot introduce one of clinical laboratory tests as critical and basic method for screening and distinguishing types of inherited hemoglobin disorders as alone. For distinguishing the types of them must be prepared enough information and data of the hemoglobin disorders and for more accurate analysis must be used simultaneously different methods as gel electrophoresis, high performance liquid chromatography, isoelectric focusing, capillary zone electrophoresis or molecular tests. The capillary electrophoresis is an accurate and rapid method for screening types of the hemoglobin disorders. Other side this method cannot analyze all of them, so must be used biochemical, biophysical and molecular methods for confirmation the results. This review showed we can use the capillary electrophoresis and HPLC as two

  5. Two-parameter quantum affine algebra Ur,s(sln-circumflex), Drinfeld realization and quantum affine Lyndon basis

    International Nuclear Information System (INIS)

    Hu Naihong; Rosso, M.; Zhang Honglian

    2006-12-01

    We further find the defining structure of a two-parameter quantum affine algebra U r,s (sl n -circumflex) (n > 2) in the sense of Benkart-Witherspoon [BW1] after the work of [BGH1], [HS] and [BH], which turns out to be a Drinfeld double. Of more importance for the 'affine' cases is that we work out the compatible two-parameter version of the Drinfeld realization as a quantum affinization of U r,s (sl n ) and establish the Drinfeld isomorphism Theorem in the two-parameter setting via developing a new remarkable combinatorial approach - quantum 'affine' Lyndon basis with an explicit valid algorithm, based on the Drinfeld realization. (author)

  6. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng

    2015-01-01

    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences. The book gives an overview of the development of MC and CE technology as well as technology that now allows for the fabrication of MC-CE devices. It describes the operating principles that make integration possible and illustrates some achievements already made by the application of MC-CE devices in hospitals, clinics, food safety, and environmental research. The authors envision further applications for private and public use once the proof-of-concept stage has been passed and obstacles to increased commercialization are ad...

  7. Solid phase microextraction sampling of high explosive residues in the presence of radionuclides and radionuclide surrogate metals

    International Nuclear Information System (INIS)

    Duff, M.C.; Crump, S.L.; Ray, R.J.; Beals, D.; Cotham, W.E.; Mount, K.; Koons, R.D.; Leggitt, J.

    2008-01-01

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) evidence while maintaining evidentiary value. One experimental method for the isolation of HE residue involves using solid phase microextraction (SPME) fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ( 239/240 Pu, 238 U, 237 Np, 85 Sr, 133 Ba, 137 Cs, 60 Co and 226 Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection. (author)

  8. A dual protease approach for expression and affinity purification of recombinant proteins.

    Science.gov (United States)

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. Published by Elsevier Inc.

  9. Capillary array electrophoresis using laser-excited confocal fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.C.; Quesada, M.A.; Mathies, R.A. [Univ. of California, Berkeley, CA (United States)

    1992-04-15

    Capillary electrophoresis (CE) has found widespread application in analytical and biomedical research, and the scope and sophistication of CE is still rapidly advancing. Gel-filled capillaries have been employed for the rapid separation and analysis of synthetic polynucleotides, DNA sequencing fragments, and DNA restriction fragments. Open-tube capillary electrophoresis has attained subattomole detection levels in amino acid separations 14 and proven its utility for the separation of proteins, viruses, and bacteria. Separation of the optical isomers of dansyl amino acids has also been successfully demonstrated. Micellar electrokinetic capillary chromatography, isoelectric focusing, and on-column derivatization can all be performed on CE columns, demonstrating the utility of capillary electrophoresis as an analytical and micropreparative tool. 29 refs., 6 figs., 1 tab.

  10. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism

    OpenAIRE

    Boughlala, Z.; Guerra, C.F.; Bickelhaupt, F.M.

    2016-01-01

    Abstract We have analyzed the structure and bonding of gas?phase Cl?X and [HCl?X]+ complexes for X+=?H+, CH3 +, Li+, and Na+, using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl? and HCl for the various cations. The Cl?X bond becomes longer and weaker along X+?=?H+, CH3 +, Li+, and Na+. Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence ...

  11. Half-sandwich pentamethylcyclopentadienyl group 9 metal ...

    Indian Academy of Sciences (India)

    453 and LS-174) revealed low anti-proliferative activity. Replacement of substituted pyridine ligand in complexes such as picolinic acid exhibits better DNA binding affinity and cytotoxicity.7–10. Till now, a few reports are available for metal com-.

  12. Heavy metal removal from water/wastewater by nanosized metal oxides: A review

    International Nuclear Information System (INIS)

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-01-01

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs’ preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance.

  13. Representations of affine Hecke algebras

    CERN Document Server

    Xi, Nanhua

    1994-01-01

    Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

  14. Description of two-metal biosorption equilibria by Langmuir-type models.

    Science.gov (United States)

    Chong, K H; Volesky, B

    1995-08-20

    A biosorbent prepared from Ascophyllum nodosum seaweed biomass, FCAN2, was examined for its sorption capacity. Equilibrium batch sorption studies were performed using two-matal systems containing either (Cu + Zn), (Cu + Cd), or (Zn + Cd). In the evaluation of the two-metal sorption system performance, simple isotherm curves had to be replaced by three-dimensional sorption isotherm surfaces. In order to describe the isotherm surfaces mathematically, three Langmuir-type models were evaluated. The apparent one-parameter Langmuir constant (b) was used to quantify FCAN2 "affinity" for one metal in the presence of another one. The uptake of Zn decreased drastically when Cu or Cd were present. The uptake of Cd wasmuch more sensitive to the presence of Cu than to that of Zn. The presence of Cd and Zn alter the "affinity" of FCAN2 for Cu the least at high Cu equilibrium concentrations. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal (bio)sorption inhibition due to the influence of a second metal. (c) 1995 John Wiley & Sons Inc.

  15. Interactions of trace metals with hydrogels and filter membranes used in DET and DGT techniques.

    Science.gov (United States)

    Garmo, Oyvind A; Davison, William; Zhang, Hao

    2008-08-01

    Equilibrium partitioning of trace metals between bulk solution and hydrogels/filter was studied. Under some conditions, trace metal concentrations were higher in the hydrogels or filter membranes compared to bulk solution (enrichment). In synthetic soft water, enrichment of cationic trace metals in polyacrylamide hydrogels decreased with increasing trace metal concentration. Enrichment was little affected by Ca and Mg in the concentration range typically encountered in natural freshwaters, indicating high affinity but low capacity binding of trace metals to solid structure in polyacrylamide gels. The apparent binding strength decreased in the sequence: Cu > Pb > Ni approximately to Cd approximately to Co and a low concentration of cationic Cu eliminated enrichment of weakly binding trace metal cations. The polyacrylamide gels also had an affinity for fulvic acid and/or its trace metal complexes. Enrichment of cationic Cd in agarose gel and hydrophilic polyethersulfone filter was independent of concentration (10 nM to 5 microM) but decreased with increasing Ca/ Mg concentration and ionic strength, suggesting that it is mainly due to electrostatic interactions. However, Cu and Pb were enriched even after equilibration in seawater, indicating that these metals additionally bind to sites within the agarose gel and filter. Compared to the polyacrylamide gels, agarose gel had a lower affinity for metal-fulvic complexes. Potential biases in measurements made with the diffusive equilibration in thin-films (DET) technique, identified by this work, are discussed.

  16. Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions

    Directory of Open Access Journals (Sweden)

    Nur Hasiba Kamaruddin

    2017-10-01

    Full Text Available The study of binding affinity is essential in surface plasmon resonance (SPR sensing because it allows researchers to quantify the affinity between the analyte and immobilised ligands of an SPR sensor. In this study, we demonstrate the derivation of the binding affinity constant, K, for Pb2+ and Hg2+ ions according to their SPR response using a gold/silver/gold/chitosan–graphene oxide (Au/Ag/Au/CS–GO sensor for the concentration range of 0.1–5 ppm. The higher affinity of Pb2+ to binding with the CS–GO sensor explains the outstanding sensitivity of 2.05 °ppm−1 against 1.66 °ppm−1 of Hg2+. The maximum signal-to-noise ratio (SNR upon detection of Pb2+ is 1.53, and exceeds the suggested logical criterion of an SNR. The Au/Ag/Au/CS–GO SPR sensor also exhibits excellent repeatability in Pb2+ due to the strong bond between its functional groups and this cation. The adsorption data of Pb2+ and Hg2+ on the CS–GO sensor fits well with the Langmuir isotherm model where the affinity constant, K, of Pb2+ and Hg2+ ions is computed. The affinity of Pb2+ ions to the Au/Ag/Au/CS–GO sensor is significantly higher than that of Hg2+ based on the value of K, 7 × 105 M−1 and 4 × 105 M−1, respectively. The higher shift in SPR angles due to Pb2+ and Hg2+ compared to Cr3+, Cu2+ and Zn2+ ions also reveals the greater affinity of the CS–GO SPR sensor to them, thus supporting the rationale for obtaining K for these two heavy metals. This study provides a better understanding on the sensing performance of such sensors in detecting heavy metal ions.

  17. Field-portable Capillary Electrophoresis Instrument with Conductivity Detection

    International Nuclear Information System (INIS)

    Zhang, H F; Liu, X W; Wang, W; Wang, X L; Tian, L

    2006-01-01

    In this paper a novel capillary electrophoresis chip (CEC) is presented with integrated platinum electrodes and simplified conductivity detector. CEC is fabricated by the method of mechanical modification with probe on organic glass. Capillary electrophoresis chip can rapidly completed ion separation by simulation of concentration distribution and zone-broadening. Detection circuit is simple which can detect pA order current. This system has those advantages such as small volume, low power consumption and linearity, and well suit for field analysis

  18. Antisymmetric tensor generalizations of affine vector fields.

    Science.gov (United States)

    Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-02-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.

  19. Manifolds with integrable affine shape operator

    Directory of Open Access Journals (Sweden)

    Daniel A. Joaquín

    2005-05-01

    Full Text Available This work establishes the conditions for the existence of vector fields with the property that theirs covariant derivative, with respect to the affine normal connection, be the affine shape operatorS in hypersurfaces. Some results are obtained from this property and, in particular, for some kind of affine decomposable hypersurfaces we explicitely get the actual vector fields.

  20. Western blotting using capillary electrophoresis.

    Science.gov (United States)

    Anderson, Gwendolyn J; M Cipolla, Cynthia; Kennedy, Robert T

    2011-02-15

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein adsorption. Although discrete protein zones could be detected, bands were broadened by ∼1.7-fold by transfer to membrane. A complete Western blot for lysozyme was completed in about one hour with 50 pg mass detection limit from low microgram per milliliter samples. These results demonstrate substantial reduction in time requirements and improvement in mass sensitivity compared to conventional Western blots. Western blotting using capillary electrophoresis shows promise to analyze low volume samples with reduced reagents and time, while retaining the information content of a typical Western blot.

  1. Magneto-paper electrophoresis in the separation of inorganic ions

    International Nuclear Information System (INIS)

    Mukherjee, H.G.; Datta, S.K.

    1983-01-01

    A comparative study of the separation of lanthanide ions by paper electrophoresis and magneto-paper electrophoresis is reported. The separation of La(III)-Gd(III), La(III)-Dy(III), Lu(III)-Gd(III), Lu(III)-Ho(III) etc. was achieved by magneto paper electrophoresis using 0.1M KCl as carrier electrolyte. Separation of different oxidation states of the same element like Cu(I)-Cu(II), Ce(III)-Ce(IV), Mn(CN) 6 3 - -Mn(CN) 6 4 - , Co(C 2 O 4 ) 2 2 - -Co(C 2 O 4 ) 3 3 - , V(CN) 6 3 - -VO(CN) 5 3 - , W(CN) 8 4 - -W(CN) 8 3 - and Ru(CN) 6 3 - Ru(CN) 6 4 - was also achieved by magneto paper electrophoretic technique using different carrier electrolytes. (Author)

  2. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  3. Gas phase sensing of alcohols by Metal Organic Framework – polymer composite materials

    NARCIS (Netherlands)

    Sachdeva, S.; Koper, Sander J.H.; Sabetghadam, Anahid; Soccol, D.; Gravesteijn, Dirk J; Kapteijn, Freek; Sudholter, Ernst J.R.; Gascon, Jorge; de Smet, Louis C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in

  4. Affine LIBOR Models with Multiple Curves

    DEFF Research Database (Denmark)

    Grbac, Zorana; Papapantoleon, Antonis; Schoenmakers, John

    2015-01-01

    are specified following the methodology of the affine LIBOR models and are driven by the wide and flexible class of affine processes. The affine property is preserved under forward measures, which allows us to derive Fourier pricing formulas for caps, swaptions, and basis swaptions. A model specification...... with dependent LIBOR rates is developed that allows for an efficient and accurate calibration to a system of caplet prices....

  5. Undergraduate physics laboratory: Electrophoresis in chromatography paper

    Science.gov (United States)

    Hyde, Alexander; Batishchev, Oleg

    2015-12-01

    An experiment studying the physical principles of electrophoresis in liquids was developed for an undergraduate laboratory. We have improved upon the standard agarose gel electrophoresis experimental regime with a straightforward and cost-effective procedure, in which drops of widely available black food coloring were separated by electric field into their dye components on strips of chromatography paper soaked in a baking soda/water solution. Terminal velocities of seven student-safe dyes were measured as a function of the electric potential applied along the strips. The molecular mobility was introduced and calculated by analyzing data for a single dye. Sources of systematic and random errors were investigated.

  6. Affinity Programs and the Real Estate Brokerage Industry

    OpenAIRE

    G Stacy Sirmans; David A. Macpherson

    2001-01-01

    This study surveys active real estate brokers obtaining information on involvement in affinity programs and referral/relocation networks. Some results regarding affinity involvement are: (a) 13% of respondents reported affinity affilliations, 75% reported no affiliations, and 12% indicated plans to become involved within the next year; (b) about half having affinity affiliations were involved with 2-4 groups; (c) affinity relationships were most often with membership organizations, corporatio...

  7. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  8. Modulating uranium binding affinity in engineered Calmodulin EF-hand peptides: effect of phosphorylation

    International Nuclear Information System (INIS)

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Guilloreau, Luc; Berthomieu, Catherine; Delangle, Pascale; Adriano, Jean-Marc

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T 9 TKE 12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K d =25±6 nM to K d =5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the sub-nanomolar range (K d = 0.25±0.06 nM). FTIR analyses showed that the phospho-threonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν as (P-O) and ν s (P-O) IR modes of phospho-threonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν as (UO 2 ) 2+ vibration (from 923 cm -1 to 908 cm -1 ) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. (authors)

  9. Speciation and solubility of neptunium in underground environments by paper electrophoresis

    International Nuclear Information System (INIS)

    Nagasaki, S.; Tanaka, Satoru; Takahashi, Yoichi

    1988-01-01

    Speciation and solubility of neptunium were studied using paper electrophoresis, ion exchange and ultrafiltration. Among these methods, the paper electrophoresis was found to be suitable for measuring speciation and solubility of neptunium of low concentration, if chemical species had opposite charge to each other or dissolved species had a charge. Using paper electrophoresis, hydrolysis constants of NpO 2 OH 0 and NpO 2 - (OH) 2 - and solubility product of NpO 2 were obtained and ionic-strength dependence of speciation was observed. (author) 9 refs.; 3 figs.; 2 tabs

  10. Immobilized Metal Affinity Chromatography Co-Purifies TGF-β1 with Histidine-Tagged Recombinant Extracellular Proteins

    Science.gov (United States)

    Kaur, Jasvir; Reinhardt, Dieter P.

    2012-01-01

    Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075

  11. Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations

    International Nuclear Information System (INIS)

    Wang Yu; Wang Lei; Fang Guodong; Herath, H.M.S.K.; Wang Yujun; Cang Long; Xie Zubin; Zhou Dongmei

    2013-01-01

    Biochar plays an important role in the behaviors of organic pollutants in the soil environment. The role of humic acid (HA) and metal cations on the adsorption affinity of polychlorinated biphenyls (PCBs) to the biochars in an aqueous medium and an extracted solution from a PCBs-contaminated soil was studied using batch experiments. Biochars were produced with pine needles and wheat straw at 350 °C and 550 °C under anaerobic condition. The results showed that the biochars had high adsorption affinity for PCBs. Pine needle chars adsorbed less nonplanar PCBs than planar ones due to dispersive interactions and separation. Coexistence of HA and metal cations increased PCBs sorption on the biochars accounted for HA adsorption and cation complexation. The results will aid in a better understanding of biochar sorption mechanism of contaminants in the environment. - Highlights: ► Application of the biochars for PCBs sorption was a new and effective way. ► The biochars had higher adsorption affinity for PCBs in the soil extracted solution. ► Pine needle chars adsorbed less nonplanar PCBs than planar ones. ► Coexisting humic acid or metal cations increased PCBs sorption on the biochars. - The biochars had higher adsorption affinity for PCBs in the extracted soil solution because coexisting humic acid and metal cations increased their sorption.

  12. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin.

    Directory of Open Access Journals (Sweden)

    Johan Nilvebrant

    Full Text Available The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein.

  13. Leading research on super metal. 3. Amorphous and nanostructured metallic materials; Super metal no sendo kenkyu. 3. Kogata buzai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Very fine structure control technique for amorphous and nanostructured metallic materials was reviewed to exceed the marginal performance of small metallic member materials. In Japan, high strength alloys and anticorrosion alloys are currently developed as an amorphous structure control technique, and ultra fine powder production and nano-compaction molding are studied for nanostructured materials. Fabrication of amorphous alloy wire materials and metal glass in USA are also introduced. Fabrication of metallic nanocrystals deposited within gas phase in Germany are attracting attention. The strength and abrasion resistance are remarkably enhanced by making nanostructured crystals and dispersing them. It may be most suitable to utilize amorphous and nanostructured metallic materials for earth-friendly materials having anticorrosion, and catalyst and biomaterial affinities, and also for magnetic materials. It is important for controlling micro-structures to clarify the formation mechanism of structures. For their processing techniques, the diversity and possibility are suggested, as to the condensation and solidification of gaseous and liquid phase metals, the molding and processing of very fine solid phase alloys, and the manufacturing members by heat treatment. 324 refs., 109 figs., 21 tabs.

  14. Alkali metal cation selectivity of [17]ketonand in methanol: free energy perturbation and molecular dynamics simulation studies

    International Nuclear Information System (INIS)

    Hwang, Sun Gu; Chung, Doo Soo; Jang, Yun Hee; Ryu, Gean Ha

    1999-01-01

    Free energy perturbation and molecular dynamics simulations were carried out to investigate the relative binding affinities of [1 7 ]ketonand (1) toward alkali metal cations in methanol. The binding affinities of 1 toward the alkali metal cations were calculated to be in the order Li + >Na + >K + >Rb + >Cs + , whereas our recent theoretically predicted and experimentally observed binding affinities for [1 8 ]starand (2) were in the order K + >Rb + >Cs + >Na + >Li + . The extremely different affinities of 1 and 2 toward smaller cations, Li + and Na + , were explained in terms of the differences in their ability to change the conformation to accommodate cations of different sizes. The carbonyl groups constituting the central cavity of 1 can reorganize to form a cavity with the optimal M + -O distance, even for the smallest Li + , without imposing serious strain on 1. The highest affinity of 1 for Li + was predominantly due to the highest Coulombic attraction between the smallest Li + and the carbonyl oxygens of 1

  15. Using Affinity Diagrams to Evaluate Interactive Prototypes

    DEFF Research Database (Denmark)

    Lucero, Andrés

    2015-01-01

    our particular use of affinity diagramming in prototype evaluations. We reflect on a decade’s experience using affinity diagramming across a number of projects, both in industry and academia. Our affinity diagramming process in interaction design has been tailored and consists of four stages: creating...

  16. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K(+) is the best.

    Science.gov (United States)

    Zaccaria, F; Paragi, G; Fonseca Guerra, C

    2016-08-21

    The alkali metal ion affinity of guanine quadruplexes has been studied using dispersion-corrected density functional theory (DFT-D). We have done computational investigations in aqueous solution that mimics artificial supramolecular conditions where guanine bases assemble into stacked quartets as well as biological environments in which telomeric quadruplexes are formed. In both cases, an alkali metal cation is needed to assist self-assembly. Our quantum chemical computations on these supramolecular systems are able to reproduce the experimental order of affinity of the guanine quadruplexes for the cations Li(+), Na(+), K(+), Rb(+), and Cs(+). The strongest binding is computed between the potassium cation and the quadruplex as it occurs in nature. The desolvation and the size of alkali metal cations are thought to be responsible for the order of affinity. Until now, the relative importance of these two factors has remained unclear and debated. By assessing the quantum chemical 'size' of the cation, determining the amount of deformation of the quadruplex needed to accommodate the cation and through the energy decomposition analysis (EDA) of the interaction energy between the cation and the guanines, we reveal that the desolvation and size of the alkali metal cation are both almost equally responsible for the order of affinity.

  17. Instrumental development of novel detection and separation methods for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Garner, Tommy [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    After a general introduction, this thesis is divided into 3 parts: indirect fluorescence detection of sugars separated by capillary zone electrophoresis with visible laser excitation, absorption detection in capillary electrophoresis by fluorescence energy transfer, and increased selectivity for electrochromatography by dynamic ion exchange.

  18. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    Science.gov (United States)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  19. Single-step affinity purification for fungal proteomics.

    Science.gov (United States)

    Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A

    2010-05-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  20. Applicability of a field-portable toxic heavy metal detector, using a radioisotope-tagged metalloprotein, to DOE environmental remediation and waste minimization initiatives

    International Nuclear Information System (INIS)

    Randles, K.E.; Bragg, D.J.; Bodette, D.E.; Lipinski, R.J.; Luera, T.F.

    1998-08-01

    A system based on the metal-binding kidney protein, metallothionein, bound with a trace quantity of radioactive metal, has been shown to be capable of detecting parts-per-million (ppm) to parts-per-billion (ppb) concentrations of some heavy metals in liquid solution. The main objective of this study was to determine if this type of system has adequate sensitivity and selectivity for application in detecting a number of metallic species of concern to DOE, such as mercury, lead, and chromium. An affinity-displacement study is reported here using the heavy metal radiotracers 65 Zn and 109 Cd bound to metallothionein immobilized on an Affi-Gel 10 filter support. When a heavy metal solution with a greater affinity than the tracer for the protein is poured through the filter the radiotracer is displaced by a mechanism similar to ion exchange. The main objective of this study was to verify previous internal experimental parameters and results, and to determine the specific affinities of metallothionein for the metallic species of most concern to DOE

  1. Connections between quantized affine algebras and superalgebras

    International Nuclear Information System (INIS)

    Zhang, R.B.

    1992-08-01

    Every affine superalgebra with a symmetrizable Cartan matrix is closely related to an ordinary affine algebra with the same Cartan matrix. It is shown that the quantum supergroup associated with the former is essentially isomorphic to the quantum group associated with the latter in an appropriate class of representations. At the classical level, each integrable irreducible highest weight representation of the affine superalgebra has a corresponding irreducible representation of the affine algebra, which has the same weight space decomposition. (author). 5 refs, 3 tabs

  2. Mobile Technology Affinity in Renal Transplant Recipients.

    Science.gov (United States)

    Reber, S; Scheel, J; Stoessel, L; Schieber, K; Jank, S; Lüker, C; Vitinius, F; Grundmann, F; Eckardt, K-U; Prokosch, H-U; Erim, Y

    Medication nonadherence is a common problem in renal transplant recipients (RTRs). Mobile health approaches to improve medication adherence are a current trend, and several medication adherence apps are available. However, it is unknown whether RTRs use these technologies and to what extent. In the present study, the mobile technology affinity of RTRs was analyzed. We hypothesized significant age differences in mobile technology affinity and that mobile technology affinity is associated with better cognitive functioning as well as higher educational level. A total of 109 RTRs (63% male) participated in the cross-sectional study, with an overall mean age of 51.8 ± 14.2 years. The study included the Technology Experience Questionnaire (TEQ) for the assessment of mobile technology affinity, a cognitive test battery, and sociodemographic data. Overall, 57.4% of the patients used a smartphone or tablet and almost 45% used apps. The TEQ sum score was 20.9 in a possible range from 6 (no affinity to technology) to 30 (very high affinity). Younger patients had significantly higher scores in mobile technology affinity. The only significant gender difference was found in having fun with using electronic devices: Men enjoyed technology more than women did. Mobile technology affinity was positively associated with cognitive functioning and educational level. Young adult patients might profit most from mobile health approaches. Furthermore, high educational level and normal cognitive functioning promote mobile technology affinity. This should be kept in mind when designing mobile technology health (mHealth) interventions for RTRs. For beneficial mHealth interventions, further research on potential barriers and desired technologic features is necessary to adapt apps to patients' needs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Versatile electrophoresis-based self-test platform.

    Science.gov (United States)

    Guijt, Rosanne M

    2015-03-01

    Lab on a Chip technology offers the possibility to extract chemical information from a complex sample in a simple, automated way without the need for a laboratory setting. In the health care sector, this chemical information could be used as a diagnostic tool for example to inform dosing. In this issue, the research underpinning a family of electrophoresis-based point-of-care devices for self-testing of ionic analytes in various sample matrices is described [Electrophoresis 2015, 36, 712-721.]. Hardware, software, and methodological chances made to improve the overall analytical performance in terms of accuracy, precision, detection limit, and reliability are discussed. In addition to the main focus of lithium monitoring, new applications including the use of the platform for veterinary purposes, sodium, and for creatinine measurements are included. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Algal-bacterial interactions in metal contaminated floodplain sediments

    International Nuclear Information System (INIS)

    Boivin, M.E.Y.; Greve, G.D.; Garcia-Meza, J.V.; Massieux, B.; Sprenger, W.; Kraak, M.H.S.; Breure, A.M.; Rutgers, M.; Admiraal, W.

    2007-01-01

    The aim of the present study was to investigate algal-bacterial interactions in a gradient of metal contaminated natural sediments. By means of multivariate techniques, we related the genetic structure (denaturing gradient gel electrophoresis, DGGE) and the physiological structure (community-level physiological profiling, CLPP) of the bacterial communities to the species composition of the algal communities and to the abiotic environmental variables, including metal contamination. The results revealed that genetic and physiological structure of the bacterial communities correlated with the species composition of the algal community, but hardly to the level of metal pollution. This must be interpreted as an indication for a strong and species-specific linkage of algal and bacterial species in floodplain sediments. Metals were, however, not proven to affect either the algal or the bacterial communities of the Dutch river floodplains. - Algal and bacterial communities in floodplain sediments are interlinked, but are not affected by metal pollution

  5. Agarose gel electrophoresis for the separation of DNA fragments.

    Science.gov (United States)

    Lee, Pei Yun; Costumbrado, John; Hsu, Chih-Yuan; Kim, Yong Hoon

    2012-04-20

    Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb(1). Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits(2). During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel's molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight(3). The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along(4). The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation(5); 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: Understand the mechanism by which DNA fragments are separated within a gel matrix Understand how conformation of the DNA molecule will determine its mobility through a gel matrix Identify an agarose solution of appropriate

  6. Joachim kohn (1912-1987) and the origin of cellulose acetate electrophoresis.

    Science.gov (United States)

    Rocco, Richard M

    2005-10-01

    The year 2006 marks the 50th anniversary of the discovery of cellulose acetate (CA) electrophoresis by Joachim Kohn, a pathologist at Queen Mary's Hospital in Roehampton, London. During a career in pathology that began in 1950 and spanned 37 years, Kohn published more than 50 papers in clinical laboratory medicine. He was the first to report the use of CA microbiology filters as solid supports for zone electrophoresis and the separation of hemoglobin phenotypes on CA membranes. Kohn also invented a new electrophoresis chamber and an 8-position stamp applicator especially for use with CA membranes. Beginning in 1957, Kohn pioneered the development of CA techniques for immunoelectrophoresis, counter immunoelectrophoresis, radial immunodiffusion, protein blotting, and immunofixation. He also designed a transport dressing for burn patients and was the first person to describe the use of an enzyme-based dipstick for measuring fingerstick blood glucose concentrations. This short review highlights Kohn's discovery of CA electrophoresis and his contributions to the development of this procedure.

  7. Concentration polarization in nanochannel DNA electrophoresis

    NARCIS (Netherlands)

    Dubsky, P.; Das, Siddhartha; van den Berg, Albert; Eijkel, Jan C.T.

    2011-01-01

    We demonstrate that the large field electrophoresis of a single DNA molecule in nanofluidic systems is accompanied by concentration polarization. We illustrate this phenomena by utilizing our electrophoretic simulation tool SIMUL. First we in-vestigate a simple system with univalent strong

  8. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    Science.gov (United States)

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  9. Affine Fullerene C60 in a GS-Quasigroup

    Directory of Open Access Journals (Sweden)

    Vladimir Volenec

    2014-01-01

    Full Text Available It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C(1/2(1+5.

  10. Affinity Spaces and 21st Century Learning

    Science.gov (United States)

    Gee, James Paul

    2017-01-01

    This article discusses video games as "attractors" to "affinity spaces." It argues that affinity spaces are key sites today where people teach and learn 21st Century skills. While affinity spaces are proliferating on the Internet as interest-and-passion-driven sites devoted to a common set of endeavors, they are not new, just…

  11. Seed Biology of Medicinal Plants (IX) : The Relationship of Corydalis Species Derived by Gel Electrophoresis

    OpenAIRE

    米田, 該典; 加賀, 順二; 那須, 正夫; KAISUKE, YONEDA; JUNJI, KAGA; MASAO, NASU; 大阪大学薬学部; 大阪大学薬学部; 大阪大学薬学部; Faculty of Pharmaceutical Sciences, Osaka University; Faculty of Pharmaceutical Sciences, Osaka University; Faculty of Pharmaceutical Sciences, Osaka University

    1987-01-01

    The saline soluble protein fraction of seeds of the Corydalis species (Papaveraceae) in Japan was examined by polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis. The esterase zymogram suggested that C. pallida, C. pallida var. tenuis, C. heterocarpa var. japonica and C. speciosa, having yellow flowers and no tuber, are closely related to each other. Electrophoresis and SDS-electrophoresis patterns also coincided with the result of the esterase zymogram. They also su...

  12. A Study on Major Components of Bee Venom Using Electrophoresis

    Directory of Open Access Journals (Sweden)

    Lee, Jin-Seon

    2000-12-01

    Full Text Available This study was designed to study on major components of various Bee Venom(Bee Venom by electrical stimulation in Korea; K-BV I, Bee Venom by Microwave stimulation in Korea; K -BV II, 0.5rng/ml, Fu Yu Pharmaceutical Factory, China; C-BV, 1mg /ml, Monmouth Pain Institute, Inc., U.S.A.; A-BV using Electrophoresis. The results were summarized as follows: 1. In 1:4000 Bee Venom solution rate, the band was not displayed distinctly usmg Electrophoresis. But in 1: 1000, the band showed clearly. 2. The results of Electrophoresis at solution rate 1:1000, K-BV I and K-BVII showed similar band. 3. The molecular weight of Phospholipase A2 was known as 19,000 but its band was seen at 17,000 in Electrophoresis. 4. Protein concentration of Bee Venom by Lowry method was different at solution rate 1:4000 ; C-BV was 250μg/ml, K-BV I was 190μg/ml, K-BV Ⅱ was 160μg/ml and C-BV was 45μg/ml. 5. Electrophoresis method was unuseful for analysis of Bee Venom when solution rate is above 1:4000 but Protein concentration of Bee Venom by Lowry method was possible. These data from the study can be applied to establish the standard measurement of Bee Venom and prevent pure bee venom from mixing of another components. I think it is desirable to study more about safety of Bee Venom as time goes by.

  13. On the structure of self-affine convex bodies

    Energy Technology Data Exchange (ETDEWEB)

    Voynov, A S [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2013-08-31

    We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.

  14. Old but Still Relevant: High Resolution Electrophoresis and Immunofixation in Multiple Myeloma.

    Science.gov (United States)

    Misra, Aroonima; Mishra, Jyoti; Chandramohan, Jagan; Sharma, Atul; Raina, Vinod; Kumar, Rajive; Soni, Sushant; Chopra, Anita

    2016-03-01

    High resolution electrophoresis (HRE) and immunofixation (IFX) of serum and urine are integral to the diagnostic work-up of multiple myeloma. Unusual electrophoresis patterns are common and may be misinterpreted. Though primarily the responsibility of the hematopathologist, clinicians who are responsible for managing myelomas may benefit from knowledge of these. In this review article we intend to discuss the patterns and importance of electrophoresis in present day scenario. Patterns of HRE and IFX seen in our laboratory over the past 15 years were studied. Monoclonal proteins are seen on HRE as sharply defined bands, sometimes two, lying from γ- to α-globulin regions on a background of normal, increased or decreased polyclonal γ-globulins, showing HRE to be a rapid and dependable method of detecting M-protein in serum or urine. Immunofixation complements HRE and due to its greater sensitivity, is able to pick up small or light chain bands, not apparent on electrophoresis, including biclonal disease even when electrophoresis shows only one M-band. Special features liable to misinterpretation are discussed. Familiarity with the interpretation of the varied patterns seen in health and disease is essential for providing dependable laboratory support in the management of multiple myeloma.

  15. Energetics of charged metal clusters containing vacancies

    Science.gov (United States)

    Pogosov, Valentin V.; Reva, Vitalii I.

    2018-01-01

    We study theoretically large metal clusters containing vacancies. We propose an approach, which combines the Kohn-Sham results for monovacancy in a bulk of metal and analytical expansions in small parameters cv (relative concentration of vacancies) and RN,v -1, RN ,v being cluster radii. We obtain expressions of the ionization potential and electron affinity in the form of corrections to electron work function, which require only the characteristics of 3D defect-free metal. The Kohn-Sham method is used to calculate the electron profiles, ionization potential, electron affinity, electrical capacitance; dissociation, cohesion, and monovacancy-formation energies of the small perfect clusters NaN, MgN, AlN (N ≤ 270) and the clusters containing a monovacancy (N ≥ 12) in the stabilized-jellium model. The quantum-sized dependences for monovacancy-formation energies are calculated for the Schottky scenario and the "bubble blowing" scenario, and their asymptotic behavior is also determined. It is shown that the asymptotical behaviors of size dependences for these two mechanisms differ from each other and weakly depend on the number of atoms in the cluster. The contribution of monovacancy to energetics of charged clusters and the size dependences of their characteristics and asymptotics are discussed. It is shown that the difference between the characteristics for the neutral and charged clusters is entirely determined by size dependences of ionization potential and electron affinity. Obtained analytical dependences may be useful for the analysis of the results of photoionization experiments and for the estimation of the size dependences of the vacancy concentration including the vicinity of the melting point.

  16. Synthesis of hydrogel via click chemistry for DNA electrophoresis.

    Science.gov (United States)

    Finetti, Chiara; Sola, Laura; Elliott, Jim; Chiari, Marcella

    2017-09-01

    This work introduces a novel sieving gel for DNA electrophoresis using a classical click chemistry reaction, the copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC), to cross-link functional polymer chains. The efficiency of this reaction provides, under mild conditions, hydrogels with near-ideal network connectivity and improved physical properties. Hydrogel formation via click chemistry condensation of functional polymers does not involve the use of toxic monomers and UV initiation. The performance of the new hydrogel in the separation of double stranded DNA fragments was evaluated in the 2200 TapeStation system, an analytical platform, recently introduced by Agilent that combines the advantages of CE in terms of miniaturization and automation with the simplicity of use of slab gel electrophoresis. The click gel enables addition of florescent dyes prior to electrophoresis with considerable improvement of resolution and separation efficiency over conventional cross-linked polyacrylamide gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Electrophoresis for the analysis of heparin purity and quality.

    Science.gov (United States)

    Volpi, Nicola; Maccari, Francesca; Suwan, Jiraporn; Linhardt, Robert J

    2012-06-01

    The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007-2008 produced a global crisis resulting in extensive revisions to the pharmacopeia monographs and prompting the FDA to recommend the development of additional methods for the analysis of heparin purity. As a consequence, a wide variety of innovative analytical approaches have been developed for the quality assurance and purity of unfractionated and low-molecular-weight heparins. This review discusses recent developments in electrophoresis techniques available for the sensitive separation, detection, and partial structural characterization of heparin contaminants. In particular, this review summarizes recent publications on heparin quality and related impurity analysis using electrophoretic separations such as capillary electrophoresis (CE) of intact polysaccharides and hexosamines derived from their acidic hydrolysis, and polyacrylamide gel electrophoresis (PAGE) for the separation of heparin samples without and in the presence of its relatively specific depolymerization process with nitrous acid treatment. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Polynomials associated with equilibria of affine Toda-Sutherland systems

    International Nuclear Information System (INIS)

    Odake, S; Sasaki, R

    2004-01-01

    An affine Toda-Sutherland system is a quasi-exactly solvable multi-particle dynamics based on an affine simple root system. It is a 'cross' between two well-known integrable multi-particle dynamics, an affine Toda molecule (exponential potential, periodic nearest-neighbour interaction) and a Sutherland system (inverse sine-square interaction). Polynomials describing the equilibrium positions of affine Toda-Sutherland systems are determined for all affine simple root systems

  19. Different endothelin receptor affinities in dog tissues

    International Nuclear Information System (INIS)

    Loeffler, B.M.L.; Loehrer, W.

    1991-01-01

    Endothelin (ET) is a long-lasting potent vasoconstrictor-peptide. Here the authors report different binding affinities of endothelin-1 (ET-1) to ET-receptors of various dog tissues. Crude microsomal fractions were prepared after homogenisation of dog tissues in 50 mM Tris/HCl, 20 mM MnCl2, 1 mM EDTA, pH 7.4 by differential centrifugation. Aliquots of microsomal fractions (70 micrograms of protein) were incubated at 25 degrees C for 180 min in the presence of 20 pM 125I-ET-1 and various concentrations of cold ET-1. Four different ET-1 receptor binding affinities were found: adrenals, cerebrum, liver, heart, skeletal muscle and stomach microsomal membranes contained high affinity binding sites (Kd 50 - 80 pM, Bmax 60 - 250 fmol/mg). In cerebellum and spleen medium affinity ET-1 receptors (Kd 350 pM, Bmax 880 and 1200 fmol/mg respectively) were present. In comparison lung and kidney microsomes contained a low affinity ET-1 receptor (Kd 800 and 880 pM, Bmax 1600 and 350 fmol/mg). Receptors of even lower affinity were present in heart, intestine and liver microsomes with Kd values of 3 - 6 nM

  20. Duals of Affine Grassmann Codes and Their Relatives

    DEFF Research Database (Denmark)

    Beelen, P.; Ghorpade, S. R.; Hoholdt, T.

    2012-01-01

    Affine Grassmann codes are a variant of generalized Reed-Muller codes and are closely related to Grassmann codes. These codes were introduced in a recent work by Beelen Here, we consider, more generally, affine Grassmann codes of a given level. We explicitly determine the dual of an affine...... Grassmann code of any level and compute its minimum distance. Further, we ameliorate the results by Beelen concerning the automorphism group of affine Grassmann codes. Finally, we prove that affine Grassmann codes and their duals have the property that they are linear codes generated by their minimum......-weight codewords. This provides a clean analogue of a corresponding result for generalized Reed-Muller codes....

  1. Phylogenetic reconstruction of South American felids defined by protein electrophoresis

    OpenAIRE

    Pecon Slattery, J.; Johnson, W. E.; Goldman, D.; O'Brien, S. J.

    1994-01-01

    Phylogenetic associations among six closely related South American felid species were defined by changes in protein-encoding gene loci. We analyzed proteins isolated from skin fibroblasts using two-dimensional electrophoresis and allozymes extracted from blood cells. Genotypes were determined for multiple individuals of ocelot, margay, tigrina, Geoffroy's cat, kodkod, and pampas cat at 548 loci resolved by two-dimensional electrophoresis and 44 allozyme loci. Phenograms were constructed using...

  2. A Novel Vertex Affinity for Community Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  3. Submicrometer Metallic Barcodes

    Science.gov (United States)

    Nicewarner-Peña, Sheila R.; Freeman, R. Griffith; Reiss, Brian D.; He, Lin; Peña, David J.; Walton, Ian D.; Cromer, Remy; Keating, Christine D.; Natan, Michael J.

    2001-10-01

    We synthesized multimetal microrods intrinsically encoded with submicrometer stripes. Complex striping patterns are readily prepared by sequential electrochemical deposition of metal ions into templates with uniformly sized pores. The differential reflectivity of adjacent stripes enables identification of the striping patterns by conventional light microscopy. This readout mechanism does not interfere with the use of fluorescence for detection of analytes bound to particles by affinity capture, as demonstrated by DNA and protein bioassays.

  4. Development of bufferless gel electrophoresis chip for easy preparation and rapid DNA separation.

    Science.gov (United States)

    Oleksandrov, Sergiy; Aman, Abdurazak; Lim, Wanyoung; Kim, Younghee; Bae, Nam Ho; Lee, Kyoung G; Lee, Seok Jae; Park, Sungsu

    2018-02-01

    This work presents a handy, fast, and compact bufferless gel electrophoresis chip (BGEC), which consists of precast agarose gel confined in a disposable plastic body with electrodes. It does not require large volumes of buffer to fill reservoirs, or the process of immersing the gel in the buffer. It withstands voltages up to 28.4 V/cm, thereby allowing DNA separation within 10 min with a similar separation capability to the standard gel electrophoresis. The results suggest that our BGEC is highly suitable for in situ gel electrophoresis in forensic, epidemiological settings and crime scenes where standard gel electrophoresis equipment cannot be brought in while quick results are needed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. On affine non-negative matrix factorization

    DEFF Research Database (Denmark)

    Laurberg, Hans; Hansen, Lars Kai

    2007-01-01

    We generalize the non-negative matrix factorization (NMF) generative model to incorporate an explicit offset. Multiplicative estimation algorithms are provided for the resulting sparse affine NMF model. We show that the affine model has improved uniqueness properties and leads to more accurate id...

  6. Femtomolar Ln(III) affinity in peptide-based ligands containing unnatural chelating amino acids.

    Science.gov (United States)

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Delangle, Pascale

    2012-05-07

    The incorporation of unnatural chelating amino acids in short peptide sequences leads to lanthanide-binding peptides with a higher stability than sequences built exclusively from natural residues. In particular, the hexadentate peptide P(22), which incorporates two unnatural amino acids Ada(2) with aminodiacetate chelating arms, showed picomolar affinity for Tb(3+). To design peptides with higher denticity, expected to show higher affinity for Ln(3+), we synthesized the novel unnatural amino acid Ed3a(2) which carries an ethylenediamine triacetate side-chain and affords a pentadentate coordination site. The synthesis of the derivative Fmoc-Ed3a(2)(tBu)(3)-OH, with appropriate protecting groups for direct use in the solid phase peptide synthesis (Fmoc strategy), is described. The two high denticity peptides P(HD2) (Ac-Trp-Ed3a(2)-Pro-Gly-Ada(2)-Gly-NH(2)) and P(HD5) (Ac-Trp-Ada(2)-Pro-Gly-Ed3a(2)-Gly-NH(2)) led to octadentate Tb(3+) complexes with femtomolar stability in water. The position of the high denticity amino acid Ed3a(2) in the hexapeptide sequence appears to be critical for the control of the metal complex speciation. Whereas P(HD5) promotes the formation of polymetallic species in excess of Ln(3+), P(HD2) forms exclusively the mononuclear complex. The octadentate coordination of Tb(3+) by both P(HD) leads to total dehydration of the metal ion in the mononuclear complexes with long luminescence lifetimes (>2 ms). Hence, we demonstrated that unnatural amino acids carrying polyaminocarboxylate side-chains are interesting building blocks to design high affinity Ln-binding peptides. In particular the novel peptide P(HD2) forms a unique octadentate Tb(3+) complex with femtomolar stability in water and an improvement of the luminescence properties with respect to the trisaquo TbP(22) complex by a factor of 4.

  7. Utilization of ICP/OES for the determination of trace metal binding to different humic fractions.

    Science.gov (United States)

    de la Rosa, G; Peralta-Videa, J R; Gardea-Torresdey, J L

    2003-02-28

    In this study, the use of inductively coupled plasma/optical emission spectrometry (ICP/OES) to determine multi-metal binding to three biomasses, Sphagnum peat moss, humin and humic acids is reported. All the investigations were performed under part per billion (ppb) concentrations. Batch pH profile experiments were performed using multi-metal solutions of Cd(II), Cu(II), Pb(II), Ni(II), Cr(III) and Cr(VI). The results showed that at pH 2 and 3, the metal affinity of the three biomasses exposed to the multi-metal solution that included Cr(III) presented the following order: Cu(II), Pb(II)>Ni(II)>Cr(III)>Cd(II). On the other hand, when Cr(VI) was in the heavy metal mixture, Sphagnum peat moss and humin showed the following affinity: Cu(II), Pb(II)>Ni(II)>Cr(VI)>Cd(II); however, the affinity of the humic acids was: Cu(II)>Pb(II), Cr(VI)>Ni(II)>Cd(II). The results demonstrated that pH values of 4 and 5 were the most favorable for the heavy metal binding process. At pH 5, all the metals, except for Cr(VI), were bound between 90 and 100% to the three biomasses. However, the binding capacity of humic acids decreased at pH 6 in the presence of Cr(VI). The results showed that the ICP/OES permits the determination of heavy metal binding to organic matter at ppb concentration. These results will be very useful in understanding the role of humic substances in the fate and transport of heavy metals, and thus could provide information to develop new methodologies for the removal of low concentrations of toxic heavy metals from contaminated waters.

  8. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Šlampová, Andrea; Malá, Zdeňka; Pantůčková, Pavla; Gebauer, Petr; Boček, Petr

    2013-01-01

    Roč. 34, č. 1 (2013), s. 3-18 ISSN 0173-0835 R&D Projects: GA ČR GAP206/10/1219 Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  9. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...

  10. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr

    2015-01-01

    Roč. 36, č. 1 (2015), s. 15-35 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

  11. Contribution of capillary electrophoresis to an integrated vision of humic substances size and charge characterizations

    International Nuclear Information System (INIS)

    D'Orlye, Fanny; Reiller, Pascal E.

    2014-01-01

    The physicochemical properties of three different humic substances (HS) are probed using capillary zone electrophoresis in alkaline carbonate buffers, pH 10. Special attention is drawn to the impact of the electrolyte ionic strength and counter-ion nature, chosen within the alkali-metal series, on HS electrophoretic mobility. Taylor-Aris dispersion analysis provides insights into the hydrodynamic radius (R-H) distributions of HS. The smallest characterized entities are of nano-metric dimensions, showing neither ionic strength- nor alkali-metal-induced aggregation. These results are compared with the entities evidenced in dynamic light scattering measurements, the size of which is two order of magnitude higher, ca. 100 nm. The extended Onsager model provides a reasonable description of measured electrophoretic mobilities in the ionic strength range 1-50 mM, thus allowing the estimation of limiting mobilities and ionic charge numbers for the different HS samples. An unexpected HS electrophoretic mobility increase (in absolute value) is observed in the order Li + ≤ Na + ≤ K + ≤ Cs + and discussed either in terms of retarding forces or in terms of ion-ion interactions. (authors)

  12. Improving image segmentation by learning region affinities

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  13. Selection of imprinted nanoparticles by affinity chromatography.

    Science.gov (United States)

    Guerreiro, António R; Chianella, Iva; Piletska, Elena; Whitcombe, Michael J; Piletsky, Sergey A

    2009-04-15

    Soluble molecularly imprinted nanoparticles were synthesised via iniferter initiated polymerisation and separated by size via gel permeation chromatography. Subsequent fractionation of these particles by affinity chromatography allowed the separation of high affinity fractions from the mixture of nanoparticles. Fractions selected this way possess affinity similar to that of natural antibodies (K(d) 6.6x10(-8)) M and were also able to discriminate between related functional analogues of the template.

  14. [The sequential use of local vacuum magnetotherapy and papaverine electrophoresis with sinusoidal modulated currents in impotence].

    Science.gov (United States)

    Karpukhin, I V; Bogomol'nyĭ, V A

    1997-01-01

    105 patients with chronic nonspecific prostatitis were examined and treated with papaverin electrophoresis using sinusoidal modulated currents (SMC) and local vacuum magnetotherapy (LVMT). Papaverin SMC electrophoresis and LVMT stimulated cavernous circulation. The highest stimulation was achieved at successive use of LVMT and the electrophoresis. LVMT followed by the electrophoresis maintained good cavernous circulation for 5-6 hours after the procedure in the course of which several spontaneous erections were observed.

  15. Variations of plasma protein electrophoresis in healthy captive Green Iguanas (Iguana iguana).

    Science.gov (United States)

    Musilová, Anna; Knotková, Zora; Pinterová, Kateřina; Knotek, Zdeněk

    2015-06-01

    Serum or plasma protein electrophoresis is used as a routine test for health assessment in veterinary medicine, but there are only a limited number of studies regarding clinical use of electrophoresis in reptile species. The goals of this study were to establish reference intervals for plasma protein electrophoresis in the Green Iguana (Iguana iguana), compare values between males and females, and to identify season-related changes. Plasma samples were obtained from 21 healthy captive male and female Green Iguanas. Agarose gel electrophoresis was performed using an automated Hydrasys system. Four main protein fractions were observed: albumin, α globulins, β globulins, and γ globulins. Bisalbuminemia was observed in 4 of 21 healthy iguanas. Minimum and maximum values were reported for healthy Green Iguanas in March, June, September, and December. Seasonal changes in albumin were determined between March and December, and in γ globulins between June and September. Differences between males and females were seen in albumin concentration in September. Reference intervals of the plasma protein fractions according to electrophoresis in the Green Iguana can be affected by seasonal changes and sex of animals. It should be taken into account when clinical evaluation is performed. © 2015 American Society for Veterinary Clinical Pathology.

  16. Micro-injector for capillary electrophoresis.

    Science.gov (United States)

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C

    2015-08-01

    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 μm diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 μM) and linear ranges (between about 10 and 1000 μM). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Contractions of affine spherical varieties

    International Nuclear Information System (INIS)

    Arzhantsev, I V

    1999-01-01

    The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL 2 -varieties are considered

  18. Thermostatted dual-channel portable capillary electrophoresis instrument

    Czech Academy of Sciences Publication Activity Database

    Koenka, I.J.; Küng, N.; Kubáň, Pavel; Chwalek, T.; Furrer, G.; Wehrli, B.; Müller, B.; Hauser, P.C.

    2016-01-01

    Roč. 37, 17-18 (2016), s. 2368-2375 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : portable devices * on-site measurements * capillary electrophoresis Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.744, year: 2016

  19. Thermostatted dual-channel portable capillary electrophoresis instrument

    Czech Academy of Sciences Publication Activity Database

    Koenka, I.J.; Küng, N.; Kubáň, Pavel; Chwalek, T.; Furrer, G.; Wehrli, B.; Müller, B.; Hauser, P.C.

    2016-01-01

    Roč. 37, 17-18 (2016), s. 2368-2375 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : portable devices * on-site measurements * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.744, year: 2016

  20. Alkali metals in fungi of forest soil

    International Nuclear Information System (INIS)

    Vinichuk, M.; Taylor, A.; Rosen, K.; Nikolova, I.; Johanson, K.J.

    2009-01-01

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  1. Electrophoresis-base dye adsorption into titanium dioxide film for dye sensitized solar cell application

    International Nuclear Information System (INIS)

    Ratno Nuryadi; Zico Alaia Akbar Junior; Lia Aprilia

    2010-01-01

    Dye Sensitized Solar Cell (DSSC) is one of renewable energy sources which has demanded a substitute non renewable energy sources. The most important factor influencing DSSC performance is dye adsorption into semiconductor nano-porous TiO 2 particles. The purpose of this work is to study the effect of dye eosin Y adsorption on DSSC characteristics by an electrophoresis method. As result, Open Circuit Voltage (V oc ) of DSSC increases as the applied voltage of electrophoresis increases. It is also found that the eosin Y absorbance at wavelength of around 500 nm increases when the electrophoresis voltage is increased. These results indicate that electrophoresis process plays an important role in dye adsorption. (author)

  2. Automated Lab-on-a-Chip Electrophoresis System

    Science.gov (United States)

    Willis, Peter A.; Mora, Maria; Greer, Harold F.; Fisher, Anita M.; Bryant, Sherrisse

    2012-01-01

    Capillary electrophoresis is an analytical technique that can be used to detect and quantify extremely small amounts of various biological molecules. In the search for biochemical traces of life on other planets, part of this search involves an examination of amino acids, which are the building blocks of life on Earth. The most sensitive method for detecting amino acids is the use of laser induced fluorescence. However, since amino acids do not, in general, fluoresce, they first must be reacted with a fluorescent dye label prior to analysis. After this process is completed, the liquid sample then must be transported into the electrophoresis system. If the system is to be reused multiple times, samples must be added and removed each time. In typical laboratories, this process is performed manually by skilled human operators using standard laboratory equipment. This level of human intervention is not possible if this technology is to be implemented on extraterrestrial targets. Microchip capillary electrophoresis (CE) combined with laser induced fluorescence detection (LIF) was selected as an extremely sensitive method to detect amino acids and other compounds that can be tagged with a fluorescent dye. It is highly desirable to package this technology into an integrated, autonomous, in situ instrument capable of performing CE-LIF on the surface of an extraterrestrial body. However, to be fully autonomous, the CE device must be able to perform a large number of sample preparation and analysis operations without the direct intervention of a human.

  3. Plasma protein electrophoresis of Trachemys scripta and Iguana iguana.

    Science.gov (United States)

    Giménez, Mercè; Saco, Yolanda; Pato, Raquel; Busquets, Alex; Martorell, Jaime M; Bassols, Anna

    2010-06-01

    Protein electrophoresis is widely applied in veterinary medicine, but is not used often in reptiles, in part because of lack of reference values. The goals of this study were to compare plasma protein profiles obtained by cellulose acetate electrophoresis (CAE) and agarose gel electrophoresis (AGE), measure precision and examine interference by sample hemolysis, and establish preliminary reference intervals for 2 reptile species. Heparinized plasma samples from healthy and diseased adult female Iguana iguana (n=40) and Trachemys scripta (n=60) were analyzed by CAE and AGE. Total protein concentration was measured by the biuret method. Electrophoresis results were compared using Bland-Altman plots and Passing-Bablok regression analysis. Precision and the effects of sample hemolysis were determined. Results from clinically healthy animals were used to determine reference intervals. Five protein fractions were identified in both species, with bisalbuminemia observed in 23/40 iguanas. High correlation was observed between the 2 methods for all fractions, with few proportional and systematic errors. Coefficients of variation were lower using AGE vs CAE and for I. iguana vs T. scripta. Two additional bands were observed in hemolyzed samples from T. scripta; 1 additional band was observed for I. iguana. Minimum and maximum values were reported for healthy I. iguana (n=14) and T. scripta (n=22). Although both methods are acceptable, the performance of AGE was slightly better than that of CAE for analysis of plasma from reptiles. Furthermore, reptile electrophoretic patterns should be interpreted based on the method used, the species analyzed, and the quality of the plasma sample.

  4. Elucidating differences in metal absorption efficiencies between terrestrial soft-bodied and aquatic species

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Veltman, Karin; Hauschild, Michael Zwicky

    2014-01-01

    species, with the covalent index being the best predictor. It is hypothesized that metal absorption by soft-bodied species in soil systems is influenced by the rate of metal supply to the membrane, while in aquatic systems accumulation is solely determined by metal affinity to membrane bound transport...... proteins. Our results imply that developing predictive terrestrial bioaccumulation and toxicity models for metals must consider metal interactions with soil solids. This may include desorption of a cation bound to soil solids through ion exchange, or metal release from soil surfaces involving breaking...

  5. Development of a Novel Optical Biosensor for Detection of Organophoshorus Pesticides Based on Methyl Parathion Hydrolase Immobilized by Metal-Chelate Affinity

    Science.gov (United States)

    Lan, Wensheng; Chen, Guoping; Cui, Feng; Tan, Feng; Liu, Ran; Yushupujiang, Maolidan

    2012-01-01

    We have developed a novel optical biosensor device using recombinant methyl parathion hydrolase (MPH) enzyme immobilized on agarose by metal-chelate affinity to detect organophosphorus (OP) compounds with a nitrophenyl group. The biosensor principle is based on the optical measurement of the product of OP catalysis by MPH (p-nitrophenol). Briefly, MPH containing six sequential histidines (6× His tag) at its N-terminal was bound to nitrilotriacetic acid (NTA) agarose with Ni ions, resulting in the flexible immobilization of the bio-reaction platform. The optical biosensing system consisted of two light-emitting diodes (LEDs) and one photodiode. The LED that emitted light at the wavelength of the maximum absorption for p-nitrophenol served as the signal light, while the other LED that showed no absorbance served as the reference light. The optical sensing system detected absorbance that was linearly correlated to methyl parathion (MP) concentration and the detection limit was estimated to be 4 μM. Sensor hysteresis was investigated and the results showed that at lower concentration range of MP the difference got from the opposite process curves was very small. With its easy immobilization of enzymes and simple design in structure, the system has the potential for development into a practical portable detector for field applications. PMID:23012501

  6. Simulation of Two Dimensional Electrophoresis and Tandem Mass Spectrometry for Teaching Proteomics

    Science.gov (United States)

    Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul

    2012-01-01

    In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…

  7. Characterization of asphaltenes by nonaqueous capillary electrophoresis

    NARCIS (Netherlands)

    Kok, W.T.; Tüdös, A.J.; Grutters, M.; Shepherd, A.G.

    2011-01-01

    Nonaqueous capillary electrophoresis was used for the separation and characterization of asphaltene samples from different sources. For the separation medium (background electrolyte), mixtures of tetrahydrofuran and a high-permittivity organic solvent could be used. The best results were obtained

  8. Affinity labeling of Escherichia coli phenylalanyl-tRNA synthetase at the binding site for tRNA

    International Nuclear Information System (INIS)

    Hountondji, C.; Schmitter, J.M.; Beauvallet, C.; Blanquet, S.

    1987-01-01

    Periodate-oxidized tRNA/sup Phe/ (tRNA/sub ox//sup Phe/) behaves as a specific affinity label of tetrameric Escherichia coli phenylalanyl-tRNA synthetase (PheRS). Reaction of the α 2 β 2 enzyme with tRNA/sub ox//sup Phe/ results in the loss of tRNA/sup Phe/ aminoacylation activity with covalent attachment of 2 mol of tRNA dialdehyde/mol of enzyme, in agreement with the stoichiometry of tRNA binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PheRS-[ 14 C]tRNA/sub ox//sup Phe/ covalent complex indicates that the large (α, M/sub r/ 87K) subunit of the enzyme interacts with the 3'-adenosine of tRNA/sub ox//sup Phe/. The [ 14 C]tRNA-labeled chymotryptic peptides of PheRS were purified by both gel filtration and reverse-phase high-performance liquid chromatography. The radioactivity was almost equally distributed among three peptides: Met-Lys[Ado]-Phe, Ala-Asp-Lys[Ado]-Leu, and Lys-Ile-Lys[Ado]-Ala. These sequences correspond to residues 1-3, 59-62, and 104-107, respectively, in the N-terminal region of the 795 amino acid sequence of the α subunit. It is noticeable that the labeled peptide Ala-Asp-Lys-Leu is adjacent to residues 63-66 (Arg-Val-Thr-Lys). The latter sequence was just predicted to resemble the proposed consensus tRNA CCA binding region Lys-Met-Ser-Lys-Ser, as deduced from previous affinity labeling studies on E. coli methionyl- and tyrosyl-tRNA synthetases

  9. Global affine differential geometry of hypersurfaces

    CERN Document Server

    Li, An-Min; Zhao, Guosong; Hu, Zejun

    2015-01-01

    This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

  10. Multiplexed Western Blotting Using Microchip Electrophoresis.

    Science.gov (United States)

    Jin, Shi; Furtaw, Michael D; Chen, Huaxian; Lamb, Don T; Ferguson, Stephen A; Arvin, Natalie E; Dawod, Mohamed; Kennedy, Robert T

    2016-07-05

    Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps.

  11. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Arnquist, Isaac J.; Holcombe, James A., E-mail: holcombe@mail.utexas.edu

    2012-10-15

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (K{sub app}) and intrinsic (K{sub int}) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu{sup 2+} for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu{sup 2+} and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu{sup 2+} can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu{sup 2+} ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data K{sub app} and K{sub int} were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log K{sub app} values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log K{sub int} values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log K{sub int} at pH 9.53 was in good agreement with literature values obtained from alternative methods, K{sub int} at pH 7.93 was about 2.5 Multiplication-Sign larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the 'intrinsic' binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at p

  12. Serum protein concentrations from clinically healthy horses determined by agarose gel electrophoresis.

    Science.gov (United States)

    Riond, Barbara; Wenger-Riggenbach, Bettina; Hofmann-Lehmann, Regina; Lutz, Hans

    2009-03-01

    Serum protein electrophoresis is a useful screening test in equine laboratory medicine. The method can provide valuable information about changes in the concentrations of albumin and alpha-, beta-, and gamma-globulins and thereby help characterize dysproteinemias in equine patients. Reference values for horses using agarose gel as a support medium have not been reported. The purpose of this study was to establish reference intervals for serum protein concentrations in adult horses using agarose gel electrophoresis and to assess differences between warm-blooded and heavy draught horses. In addition, the precision of electrophoresis for determining fraction percentages and the detection limit were determined. Blood samples were obtained from 126 clinically healthy horses, including 105 Thoroughbreds and 21 heavy draught horses of both sexes and ranging from 2 to 20 years of age. The total protein concentration was determined by an automated biuret method. Serum protein electrophoresis was performed using a semi-automated agarose gel electrophoresis system. Coefficients of variation (CVs) were calculated for within-run and within-assay precision. Data from warm-blooded and draught horses were compared using the Mann-Whitney U test. Within-run and within-assay CVs were draught horses and so combined reference intervals (2.5-97.5%) were calculated for total protein (51.0-72.0 g/L), albumin (29.6-38.5 g/L), alpha(1)-globulin (1.9-3.1 g/L), alpha(2)-globulin (5.3-8.7 g/L), beta(1)-globulin (2.8-7.3g/L), beta(2)-globulin (2.2-6.0 g/L), and gamma-globulin (5.8-12.7 g/L) concentrations, and albumin/globulin ratio (0.93-1.65). Using agarose gel as the supporting matrix for serum protein electrophoresis in horses resulted in excellent resolution and accurate results that facilitated standardization into 6 protein fractions.

  13. Accumulation of metal ions by pectinates

    Science.gov (United States)

    Deiana, S.; Deiana, L.; Palma, A.; Premoli, A.; Senette, C.

    2009-04-01

    The knowledge of the mechanisms which regulate the interactions of metal ions with partially methyl esterified linear polymers of α-1,4 linked D-galacturonic acid units (pectinates), well represented in the root inner and outer apoplasm, is of great relevance to understand the processes which control their accumulation at the soil-root interface as well as their mobilization by plant metabolites. Accumulation of a metal by pectinates can be affected by the presence of other metals so that competition or distribution could be expected depending on the similar or different affinity of the metal ions towards the binding sites, mainly represented by the carboxylate groups. In order to better understand the mechanism of accumulation in the apoplasm of several metal ions, the sorption of Cd(II), Zn(II), Cu(II), Pb(II) and Cr(III) by a Ca-polygalacturonate gel, used as model of the soil-root interface, with a degree of esterification of 18% (PGAE1) and 65% (PGAE2) was studied at pH 3.0, 4.0, 5.0 and 6.0 in the presence of CaCl2 2.5 mM.. The results show that sorption increases with increasing both the initial metal concentration and pH. A similar sorption trend was evidenced for Cu(II) and Pb(II) and for Zn(II) and Cd(II), indicating that the mechanism of sorption for these two ionic couples is quite different. As an example, at pH 6.0 and an initial metal concentration equal to 2.0 mM, the amount of Cu(II) and Pb(II) sorbed was about 1.98 mg-1 of PGAE1 while that of Cd(II) and Zn(II) was about 1.2 mg-1. Cr(III) showed a rather different sorption trend and a much higher amount (2.8 mg-1of PGAE1 at pH 6.0) was recorded. The higher affinity of Cr(III) for the polysaccharidic matrix is attributable to the formation of Cr(III) polynuclear species in solution, as shown by the distribution diagrams obtained through the MEDUSA software. On the basis of these findings, the following affinity towards the PGAE1 can be assessed: Cr(III) > Cu(II) ? Pb(II) > Zn (II) ? Cd

  14. New unitary affine-Virasoro constructions

    International Nuclear Information System (INIS)

    Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M.; Yamron, J.P.

    1990-01-01

    This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g

  15. Western Blotting using Capillary Electrophoresis

    OpenAIRE

    Anderson, Gwendolyn J.; Cipolla, Cynthia; Kennedy, Robert T.

    2011-01-01

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein a...

  16. Alternative affinity tools: more attractive than antibodies?

    NARCIS (Netherlands)

    Ruigrok, V.J.B.; Levisson, M.; Eppink, M.H.M.; Smidt, H.; Oost, van der J.

    2011-01-01

    Antibodies are the most successful affinity tools used today, in both fundamental and applied research (diagnostics, purification and therapeutics). Nonetheless, antibodies do have their limitations, including high production costs and low stability. Alternative affinity tools based on nucleic acids

  17. Affine stochastic mortality

    NARCIS (Netherlands)

    Schrager, D.F.

    2006-01-01

    We propose a new model for stochastic mortality. The model is based on the literature on affine term structure models. It satisfies three important requirements for application in practice: analytical tractibility, clear interpretation of the factors and compatibility with financial option pricing

  18. Rank Two Affine Manifolds in Genus 3

    OpenAIRE

    Aulicino, David; Nguyen, Duc-Manh

    2016-01-01

    We complete the classification of rank two affine manifolds in the moduli space of translation surfaces in genus three. Combined with a recent result of Mirzakhani and Wright, this completes the classification of higher rank affine manifolds in genus three.

  19. Analysis of Two-Dimensional Electrophoresis Gel Images

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2002-01-01

    This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...

  20. Role of capillary electrophoresis in the fight against doping in sports.

    Science.gov (United States)

    Harrison, Christopher R

    2013-08-06

    At present the role of capillary electrophoresis in the detection of doping agents in athletes is, for the most part, nonexistent. More traditional techniques, namely gas and liquid chromatography with mass spectrometric detection, remain the gold standard of antidoping tests. This Feature will investigate the in-roads that capillary electrophoresis has made, the limitations that the technique suffers from, and where the technique may grow into being a key tool for antidoping analysis.

  1. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda

    Directory of Open Access Journals (Sweden)

    Hubbard Alan E

    2010-01-01

    Full Text Available Abstract Background Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Methods Samples were genotyped using both gel and capillary electrophoresis from randomized trials of artemether-lumefantrine (AL vs. dihydroartemisinin-piperaquine (DP performed in two areas of Uganda: Kanungu, where transmission is moderate, and Apac, where transmission is very high. Both gel and capillary methods evaluated polymorphic regions of the merozoite surface protein 1 and 2 and glutamine rich protein genes. Results Capillary electrophoresis detected more alleles and provided higher discriminatory power than agarose gel electrophoresis at both study sites. There was only moderate agreement between classification of outcomes with the two methods in Kanungu (kappa = 0.66 and poor agreement in Apac (kappa = 0.24. Overall efficacy results were similar when using gel vs. capillary methods in Kanungu (42-day risk of treatment failure for AL: 6.9% vs. 5.5%, p = 0.4; DP 2.4% vs. 2.9%, p = 0.5. However, the measured risk of recrudescence was significantly higher when using gel vs. capillary electrophoresis in Apac (risk of treatment failure for AL: 17.0% vs. 10.7%, p = 0.02; DP: 8.5% vs. 3.4%, p = 0.03. Risk differences between AL and DP were not significantly different whether gel or capillary methods were used. Conclusions Genotyping with gel electrophoresis overestimates the risk of recrudescence in anti-malarial trials performed in areas of high transmission intensity. Capillary electrophoresis provides more accurate outcomes for such trials and should be performed when possible. In areas of moderate transmission

  2. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda.

    Science.gov (United States)

    Gupta, Vinay; Dorsey, Grant; Hubbard, Alan E; Rosenthal, Philip J; Greenhouse, Bryan

    2010-01-15

    Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure) or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Samples were genotyped using both gel and capillary electrophoresis from randomized trials of artemether-lumefantrine (AL) vs. dihydroartemisinin-piperaquine (DP) performed in two areas of Uganda: Kanungu, where transmission is moderate, and Apac, where transmission is very high. Both gel and capillary methods evaluated polymorphic regions of the merozoite surface protein 1 and 2 and glutamine rich protein genes. Capillary electrophoresis detected more alleles and provided higher discriminatory power than agarose gel electrophoresis at both study sites. There was only moderate agreement between classification of outcomes with the two methods in Kanungu (kappa = 0.66) and poor agreement in Apac (kappa = 0.24). Overall efficacy results were similar when using gel vs. capillary methods in Kanungu (42-day risk of treatment failure for AL: 6.9% vs. 5.5%, p = 0.4; DP 2.4% vs. 2.9%, p = 0.5). However, the measured risk of recrudescence was significantly higher when using gel vs. capillary electrophoresis in Apac (risk of treatment failure for AL: 17.0% vs. 10.7%, p = 0.02; DP: 8.5% vs. 3.4%, p = 0.03). Risk differences between AL and DP were not significantly different whether gel or capillary methods were used. Genotyping with gel electrophoresis overestimates the risk of recrudescence in anti-malarial trials performed in areas of high transmission intensity. Capillary electrophoresis provides more accurate outcomes for such trials and should be performed when possible. In areas of moderate transmission, gel electrophoresis appears adequate to estimate comparative

  3. A new electrophoresis technique to separate microsatellite alleles ...

    African Journals Online (AJOL)

    A new electrophoresis technique to separate microsatellite alleles* ... African Journal of Biotechnology ... with the CEQTM 8000 Genetic Analysis System and ABI 3130xl DNA Sequencer easily separated products and determined allelic size, ...

  4. Peroxotitanates for Biodelivery of Metals

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.

  5. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice — A field study over four rice seasons in Hunan, China

    International Nuclear Information System (INIS)

    Chen, De; Guo, Hu; Li, Ruiyue; Li, Lianqing; Pan, Genxing; Chang, Andrew; Joseph, Stephen

    2016-01-01

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha"−"1. Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35–91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69–80% and 72–80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. - Highlights: • Biochar sustainably reduced soil Cd availability and Cd translocation in rice plant. • Indica conventional cultivars had lower Cd but higher Zn in grains than hybrid ones. • Biochar significantly reduced grain Cd and Cd/Zn ratio, though

  6. Dynamics of Open Systems with Affine Maps

    International Nuclear Information System (INIS)

    Zhang Da-Jian; Liu Chong-Long; Tong Dian-Min

    2015-01-01

    Many quantum systems of interest are initially correlated with their environments and the reduced dynamics of open systems are an interesting while challenging topic. Affine maps, as an extension of completely positive maps, are a useful tool to describe the reduced dynamics of open systems with initial correlations. However, it is unclear what kind of initial state shares an affine map. In this study, we give a sufficient condition of initial states, in which the reduced dynamics can always be described by an affine map. Our result shows that if the initial states of the combined system constitute a convex set, and if the correspondence between the initial states of the open system and those of the combined system, defined by taking the partial trace, is a bijection, then the reduced dynamics of the open system can be described by an affine map. (paper)

  7. USING MICROSCALE THERMOPHORESIS TO EASILY MEASURE BINDING AFFINITY

    Directory of Open Access Journals (Sweden)

    Dennis Breitsprecher*

    2018-03-01

    Full Text Available While it’s very common for biologists and chemists to test whether or not two molecules interact with each other, it’s much more useful to gather information on the nature of that interaction. How strong is it? How long will it last? What does that mean for its biological function? One way to answer these questions is to study affinity. Binding affinity is defined as the strength of the binding interaction between a single biomolecule to its binding partner, or ligand, and it can be quantifiably measured, providing information on whether or not molecules are interacting, as well as assigning a value to the affinity. When measuring binding affinity, there are several parameters to look at, but the dissociation constant (Kd, which defines the likelihood that an interaction between two molecules will break, is a very common measurement. The smaller the dissociation constant, the more tightly bound the ligand is, and the higher the affinity is between the two molecules.

  8. Macro creatine kinases: results of isoenzyme electrophoresis and differentiation of the immunoglobulin-bound type by radioassay

    International Nuclear Information System (INIS)

    Bohner, J.; Stein, W.; Steinhart, R.; Wurzburg, U.; Eggstein, M.

    1982-01-01

    In 2.9% of sera from 1253 unselected patients we detected two different types of macromolecular creatine kinases (CK;EC 2.7.3.2). One macro type was represented by immunoglobulin-linked CK; in sera containing macro CK-BB isoenzyme, 125 I-labeled CK-BB was bound with high affinity to the immunoglobulin fraction. Furthermore, during electrophoresis, macro CK-BB mostly migrated between CK-MB and CK-MM, and was fixed to Protein A from Staphlococcus aureus. We therefore propose radioelectrophoresis as a specific, highly sensitive, and simple method for detecting this type of macro CK. This form occurs predominantly in elderly women, is not correlated to any specific disease, and persists in blood over a long period of time. In contrast, a second type (macro-CK type 2) never bound radiolabeled CK isoenzymes, and was not adsorbed to protein A. Electrophoretic migration of this macro-CK type 2 was generally cathodic to CK-MM. We observed this type in severely ill patients, frequently those suffering from malignant tumors. Clinical observations and biochemical data suggest that macro-CK type 2 is of mitochondrial origin

  9. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS ...

    African Journals Online (AJOL)

    Four strains of eri, Samia cynthia ricini Lepidoptera: Saturniidae that can be identified morphologically and maintained at North East Institute of Science and Technology, Jorhat were characterized based on their protein profile by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and DNA by random ...

  10. Electrophoresis test prevalence, requesting patterns, yield and ...

    African Journals Online (AJOL)

    Most of the appropriate SPE test requests were from clinical haematology, renal ... implementation of principles of demand management and the ... electrophoresis (IFE)) in a South African (SA) pathology laboratory setting are limited. Objectives. ... (NHLS) hospital information system database from 1 July 2010 to. 30 June ...

  11. Single-Step Affinity Purification for Fungal Proteomics ▿ †

    OpenAIRE

    Liu, Hui-Lin; Osmani, Aysha H.; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B.; De Souza, Colin P.; Osmani, Stephen A.

    2010-01-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  12. The Structure of Affine Buildings

    CERN Document Server

    Weiss, Richard M

    2009-01-01

    In The Structure of Affine Buildings, Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions, and residues of these buildings. It also includes tables correlating the results in the locally finite case with the results of Tits's classification of absolutely simple algebraic groups defined over a local field. A companion to Weiss's The Structure of Spherical Buildings, The Structure of Affine Buildings is organized around the clas

  13. The dynamics of metric-affine gravity

    International Nuclear Information System (INIS)

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-01-01

    Highlights: → The role and the dynamics of the connection in metric-affine theories is explored. → The most general second order action does not lead to a dynamical connection. → Including higher order invariants excites new degrees of freedom in the connection. → f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy

  14. Mutation screening of the TP53 gene by temporal temperature gradient gel electrophoresis.

    Science.gov (United States)

    Sørlie, Therese; Johnsen, Hilde; Vu, Phuong; Lind, Guro Elisabeth; Lothe, Ragnhild; Børresen-Dale, Anne-Lise

    2005-01-01

    A protocol for detection of mutations in the TP53 gene using temporal temperature gradient gel electrophoresis (TTGE) is described. TTGE is a mutation detection technique that separates DNA fragments differing by single base pairs according to their melting properties in a denaturing gel. It is based on constant denaturing conditions in the gel combined with a temperature gradient during the electrophoretic run. This method combines some of the advantages of the related techniques denaturing gradient gel electrophoresis (DGGE) and constant denaturant gel electrophoresis (CDGE) and eliminates some of the problems. The result is a rapid and sensitive screening technique that is robust and easily set up in smaller laboratory environments.

  15. Mutation screening of the TP53 gene by temporal temperature gel electrophoresis (TTGE).

    Science.gov (United States)

    Sørlie, Therese; Johnsen, Hilde; Vu, Phuong; Lind, Guro Elisabeth; Lothe, Ragnhild; Børresen-Dale, Anne-Lise

    2014-01-01

    A protocol for detection of mutations in the TP53 gene using temporal temperature gradient electrophoresis (TTGE) is described. TTGE is a mutation detection technique that separates DNA fragments differing by single base pairs according to their melting properties in a denaturing gel. It is based on constant denaturing conditions in the gel combined with a temperature gradient during the electrophoretic run. This method combines some of the advantages of the related techniques, denaturing gradient gel electrophoresis and constant denaturant gel electrophoresis, and eliminates some of the problems. The result is a rapid and sensitive screening technique which is robust and easily set up in smaller laboratory environments.

  16. Preparation of Barley Storage Protein, Hordein, for Analytical Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

    DEFF Research Database (Denmark)

    Doll, Hans; Andersen, Bente

    1981-01-01

    The extraction, reduction, and alkylation of barley hordein for routine electrophoresis in sodium dodecyl sulfate-polyacrylamide gels were studied to set up a simple preparation procedure giving well-resolved bands in the electrophoresis gel. Hordein was extracted from single crushed seeds or flour...... by aqueous 50% propan-2-ol containing a Tris-borate buffer, pH 8.6. The presence of the buffer facilitates the consecutive complete reduction of the extracted protein in the alcohol. Reduction and alkylation in the buffer containing propan-2-ol give sharper bands in the electrophoresis than reduction...

  17. Spectral affinity in protein networks.

    Science.gov (United States)

    Voevodski, Konstantin; Teng, Shang-Hua; Xia, Yu

    2009-11-29

    Protein-protein interaction (PPI) networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to quickly find nodes closest to a queried vertex in any protein

  18. Development of two dimensional electrophoresis method using single chain DNA

    International Nuclear Information System (INIS)

    Ikeda, Junichi; Hidaka, So

    1998-01-01

    By combining a separation method due to molecular weight and a method to distinguish difference of mono-bases, it was aimed to develop a two dimensional single chain DNA labeled with Radioisotope (RI). From electrophoretic pattern difference of parent and variant strands, it was investigated to isolate the root module implantation control gene. At first, a Single Strand Conformation Polymorphism (SSCP) method using concentration gradient gel was investigated. As a result, it was formed that intervals between double chain and single chain DNAs expanded, but intervals of both single chain DNAs did not expand. On next, combination of non-modified acrylic amide electrophoresis method and Denaturing Gradient-Gel Electrophoresis (DGGE) method was examined. As a result, hybrid DNA developed by two dimensional electrophoresis arranged on two lines. But, among them a band of DNA modified by high concentration of urea could not be found. Therefore, in this fiscal year's experiments, no preferable result could be obtained. By the used method, it was thought to be impossible to detect the differences. (G.K.)

  19. Detecting irradiation of seeds using microgel electrophoresis (a collaborative trial)

    International Nuclear Information System (INIS)

    Cerda, H.; Haine, H.E.; Jones, J.L.

    1995-06-01

    Preservation of certain foods by irradiation is permitted in the United Kingdom. However, all irradiated foods must be labelled as such, to ensure consumer choice. To help enforce labelling, a variety of methods have been developed for distinguishing between irradiated and non-irradiated foods. In preliminary trials, microgel electrophoresis -a simple method of assessing DNA damage - has shown considerable promise in this respect. This report describes microgel electrophoresis, and details results obtained in a blind trial carried out in collaboration with the Swedish University of Agricultural Sciences. Microgel electrophoresis facilitates analysis of the leakage of DNA from cells extracted from food material. In irradiated samples, the DNA is fragmented and will leak from cells in an electric current. This leakage can be seen as a 'comet' when the stained gel is viewed with a microscope. The size and shape of the comet can be used to estimate the irradiation dose administered to the sample. In non-irradiated samples the DNA is less fragmented, will tend not to leak from the cells and will not form a comet. (author)

  20. Radiogallium localization in tumors: blood binding and transport and the role of transferrin

    International Nuclear Information System (INIS)

    Vallabhajosula, S.R.; Harwig, J.F.; Siemsen, J.K.; Wolf, W.

    1980-01-01

    As a crucial step toward the understanding of the tumor localization of gallium, we have re-investigated its binding and transport in blood. The studies were performed in vivo by injection of gallium-67 citrate in rabbits, and in vitro by incubation of gallium-67 citrate with individual plasma proteins. By ultrafiltration and gel filtration chromatography, rabbit plasma samples showed essentially complete protein binding, whereas dialysis indicated considerable nonprotein-bound gallium, the amount depending on the dialysis medium. According to electrophoresis, total binding was inversely proportional to electrophoresis time. Affinity chromatography showed all gallium to be bound to transferrin, whereas electrophoresis caused continuous dissociation of gallium from transferrin, with the resulting unbound radioactivity appearing in various other protein bands. Similarly, the binding of gallium to transferrin in the in vitro incubation studies was inversely proportional to electrophoresis time, whereas ultrafiltration and gel filtration chromatography showed all gallium to be transferrin-bound. No binding of gallium to other proteins, such as albumin, was observed. This study demonstrates that gallium at the tracer level in blood is exclusively bound to and transported by transferrin, and indicates that electrophoresis and dialysis of easily dissociable metal complexes are subject to significant artifacts. Accurate determination of protein binding of radiopharmaceuticals requires a combination of analytical techniques and cautious interpretation of the results

  1. Disulfide polymer grafted porous carbon composites for heavy metal removal from stormwater runoff

    DEFF Research Database (Denmark)

    Ko, Dongah; Mines, Paul D.; Jakobsen, Mogens Havsteen

    2018-01-01

    The emerging concern of heavy metal pollution derived from stormwater runoff has triggered a demand for effective heavy metal sorbents. To be an effective sorbent, high affinity along with rapid sorption kinetics for environmental relevant concentrations of heavy metals is important. Herein, we...... have introduced a new composite suitable for trace metal concentration removal, which consists of cheap and common granular activated carbon covered with polymers containing soft bases, thiols, through acyl chlorination (DiS-AC). Material characterization demonstrated that the polymer was successfully...

  2. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino,J.; Tetenbaum-Novatt, J.; White, A.; Berkovitch, F.; Ringe, D.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.

  3. Multiprocessor Real-Time Scheduling with Hierarchical Processor Affinities

    OpenAIRE

    Bonifaci , Vincenzo; Brandenburg , Björn; D'Angelo , Gianlorenzo; Marchetti-Spaccamela , Alberto

    2016-01-01

    International audience; Many multiprocessor real-time operating systems offer the possibility to restrict the migrations of any task to a specified subset of processors by setting affinity masks. A notion of " strong arbitrary processor affinity scheduling " (strong APA scheduling) has been proposed; this notion avoids schedulability losses due to overly simple implementations of processor affinities. Due to potential overheads, strong APA has not been implemented so far in a real-time operat...

  4. Effects of metal ions on the catalytic degradation of dicofol by cellulase.

    Science.gov (United States)

    Zhai, Zihan; Yang, Ting; Zhang, Boya; Zhang, Jianbo

    2015-07-01

    A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km=8.18 mg/L, and Vmax=0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+ promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment. Copyright © 2015. Published by Elsevier B.V.

  5. High affinity, ligand specific uptake of complexed copper-67 by brain tissue incubated in vitro

    International Nuclear Information System (INIS)

    Barnea, A.; Hartter, D.E.

    1987-01-01

    Copper is an essential metal that is highly concentrated in the brain. The blood, the sole source of tissue Cu, contains 16-20 μM Cu, of which >95% is complexed to proteins and 2 was 10 times greater than that of CuAlbumin or Cu(II). Within the range of 0.2-150μM Cu, multiple uptake sites for CuHis were apparent. Increasing the molar ratio of His:Cu had a differential effect on Cu uptake: enhancing uptake at [Cu] 1 μM. Thus, using a His:Cu ratio of 1000, they observed a high affinity process exhibiting saturating and half saturating values of 5 μM and 1.5 μM Cu, respectively; using a His:Cu ratio of 2, they observed a low affinity process exhibiting saturating and half-saturating values of 100 μM and 40 μM Cu, respectively. Both processes required thermic but not metabolic energy, suggestive of facilitated diffusion. Considering the blood brain barrier for proteins, CuHis appears to be the major substrate for Cu uptake by neuronal tissue. They demonstrate the existence of a ligand specific, high affinity (apparent Km about 1.5 μM Cu) uptake process for CuHis in the brain, operative at the physiological concentration range of CuHis and histidine

  6. Development of a Novel Optical Biosensor for Detection of Organophoshorus Pesticides Based on Methyl Parathion Hydrolase Immobilized by Metal-Chelate Affinity

    Directory of Open Access Journals (Sweden)

    Wensheng Lan

    2012-06-01

    Full Text Available We have developed a novel optical biosensor device using recombinant methyl parathion hydrolase (MPH enzyme immobilized on agarose by metal-chelate affinity to detect organophosphorus (OP compounds with a nitrophenyl group. The biosensor principle is based on the optical measurement of the product of OP catalysis by MPH (p-nitrophenol. Briefly, MPH containing six sequential histidines (6× His tag at its N-terminal was bound to nitrilotriacetic acid (NTA agarose with Ni ions, resulting in the flexible immobilization of the bio-reaction platform. The optical biosensing system consisted of two light-emitting diodes (LEDs and one photodiode. The LED that emitted light at the wavelength of the maximum absorption for p-nitrophenol served as the signal light, while the other LED that showed no absorbance served as the reference light. The optical sensing system detected absorbance that was linearly correlated to methyl parathion (MP concentration and the detection limit was estimated to be 4 μM. Sensor hysteresis was investigated and the results showed that at lower concentration range of MP the difference got from the opposite process curves was very small. With its easy immobilization of enzymes and simple design in structure, the system has the potential for development into a practical portable detector for field applications.

  7. Characterization of tannin-metal complexes by UV-visible spectrophotometry

    Science.gov (United States)

    Tannins enter soils by plant decay and rain throughfall, but little is known of their effects on soils. Tannins may influence bioavailability and toxicity of metals by forming complexes and by mediating redox reactions. We evaluated the affinity and stoichiometry of Al(III) for a gallotannin, pent...

  8. Methods and instrumentation for quantitative microchip capillary electrophoresis

    NARCIS (Netherlands)

    Revermann, T.

    2007-01-01

    The development of novel instrumentation and analytical methodology for quantitative microchip capillary electrophoresis (MCE) is described in this thesis. Demanding only small quantities of reagents and samples, microfluidic instrumentation is highly advantageous. Fast separations at high voltages

  9. Affine fractal functions as bases of continuous funtions | Navascues ...

    African Journals Online (AJOL)

    The objective of the present paper is the study of affine transformations of the plane, which provide self-affine curves as attractors. The properties of these curves depend decisively of the coefficients of the system of affinities involved. The corresponding functions are continuous on a compact interval. If the scale factors are ...

  10. Antibody Affinity Maturation in Fishes—Our Current Understanding

    Directory of Open Access Journals (Sweden)

    Brad G. Magor

    2015-07-01

    Full Text Available It has long been believed that fish lack antibody affinity maturation, in part because they were thought to lack germinal centers. Recent research done on sharks and bony fishes indicates that these early vertebrates are able to affinity mature their antibodies. This article reviews the functionality of the fish homologue of the immunoglobulin (Ig mutator enzyme activation-induced cytidine deaminase (AID. We also consider the protein and molecular evidence for Ig somatic hypermutation and antibody affinity maturation. In the context of recent evidence for a putative proto-germinal center in fishes we propose some possible reasons that observed affinity maturation in fishes often seems lacking and propose future work that might shed further light on this process in fishes.

  11. Analysis of rRNA gene methylation in Arabidopsis thaliana by CHEF-Conventional 2D gel electrophoresis

    Science.gov (United States)

    Mohannath, Gireesha; Pikaard, Craig S.

    2017-01-01

    Summary Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb to 9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes and sub-chromosomal DNA fragments, etc. Here we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~ 4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes. PMID:27576719

  12. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity.

    Directory of Open Access Journals (Sweden)

    Joel Raborn

    Full Text Available The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.

  13. Bad metal behaviour in the new Hg-rich amalgam KHg{sub 6} with polar metallic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Hoch, Constantin, E-mail: constantin.hoch@cup.uni-muenchen.de

    2015-01-05

    Highlights: • The novel Hg-rich amalgam KHg{sub 6} was synthesised by electrocrystallisation. • The structure was investigated by single crystal and powder diffraction. • Thermal decomposition, electric resistance and magnetic susceptibiliy were examined. • Band structure, total and partial density of states and Bader charges were calculated. • Bad metal behaviour results from ionic, metallic and covalent bonding contributions. - Abstract: The new mercury-rich amalgam KHg{sub 6} crystallises with the BaHg{sub 6} structure type (orthorhombic, space group Pnma (No. 62), a = 13.394(9) Å, b = 5.270(3) Å, c = 10.463 Å). It was prepared by electrolysis of a solution of KI in N,N′-Dimethylformamide at 343 K at a reactive Hg cathode. The structure of KHg{sub 6} shows motifs of ionic packing, covalent Hg cluster formation and metallic properties. KHg{sub 6} decomposes peritectically at 443 K. The combination of alkali metals with a noble metal with moderate electron affinity results in the formation of polar metal–metal bonding with considerable but incomplete electron transfer from the electropositive to the electronegative sublattice, resulting in typical “bad metal behaviour”, illustrated by resistance and susceptibility measurements and quantum theoretical calculations.

  14. Capillary electrophoresis systems and methods

    Science.gov (United States)

    Dorairaj, Rathissh [Hillsboro, OR; Keynton, Robert S [Louisville, KY; Roussel, Thomas J [Louisville, KY; Crain, Mark M [Georgetown, IN; Jackson, Douglas J [New Albany, IN; Walsh, Kevin M [Louisville, KY; Naber, John F [Goshen, KY; Baldwin, Richard P [Louisville, KY; Franco, Danielle B [Mount Washington, KY

    2011-08-02

    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  15. The Optimization of Electrophoresis on a Glass Microfluidic Chip and its Application in Forensic Science.

    Science.gov (United States)

    Han, Jun P; Sun, Jing; Wang, Le; Liu, Peng; Zhuang, Bin; Zhao, Lei; Liu, Yao; Li, Cai X

    2017-11-01

    Microfluidic chips offer significant speed, cost, and sensitivity advantages, but numerous parameters must be optimized to provide microchip electrophoresis detection. Experiments were conducted to study the factors, including sieving matrices (the concentration and type), surface modification, analysis temperature, and electric field strengths, which all impact the effectiveness of microchip electrophoresis detection of DNA samples. Our results showed that the best resolution for ssDNA was observed using 4.5% w/v (7 M urea) lab-fabricated LPA gel, dynamic wall coating of the microchannel, electrophoresis temperatures between 55 and 60°C, and electrical fields between 350 and 450 V/cm on the microchip-based capillary electrophoresis (μCE) system. One base-pair resolution could be achieved in the 19-cm-length microchannel. Furthermore, both 9947A standard genomic DNA and DNA extracted from blood spots were demonstrated to be successfully separated with well-resolved DNA peaks in 8 min. Therefore, the microchip electrophoresis system demonstrated good potential for rapid forensic DNA analysis. © 2017 American Academy of Forensic Sciences.

  16. Gel Electrophoresis--The Easy Way for Students

    Science.gov (United States)

    VanRooy, Wilhelmina; Sultana, Khalida

    2010-01-01

    This article describes a simple, inexpensive, easy to conduct gel-electrophoresis activity using food dyes. It is an alternative to the more expensive counterparts which require agarose gel, DNA samples, purchased chamber and Tris-borate-EDTA buffer. We suggest some learning activities for senior biology students along with comments on several…

  17. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    DEFF Research Database (Denmark)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida

    2014-01-01

    of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical...

  18. Thermokinetic model of borosilicate glass dissolution: contextual affinity

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Crovisier, J.L.; Fritz, B.

    1989-01-01

    Short and long-term geochemical interactions of R7T7 nuclear glass with water at 100 0 C were simulated with the DISSOL thermokinetic computer code. Both the dissolved glass quantity and the resulting water composition, saturation states and mineral quantities produced were calculated as a function of time. The rate equation used in the simulation was first proposed by Aagaard and Helgeson. It simulates a gradually diminishing dissolution rate as the reaction affinity diminishes. The best agreement with 1-year experimental data was obtained with a reaction affinity calculated from silica activity (Grambow's hypothesis) rather than taking into account the activity of all the glass components as proposed by Jantzen and Plodinec. The concept of residual affinity was introduced by Grambow to express the fact that the glass dissolution rate does not cease. We prefer to replace the term residual affinity by contextual affinity, which expresses the influence on the dissolution rate of three factors: the solution chemistry, the metastability of SiO 2 (m), and the possible precipitation of certain aluminosilicates such as zeolites. 19 refs

  19. Affinity Strings: Enterprise Data for Resource Recommendations

    Directory of Open Access Journals (Sweden)

    Shane Nackerud

    2008-12-01

    Full Text Available The University of Minnesota Libraries have created a MyLibrary portal, with databases and e-journals targeted to users, based on their affiliations. The University's enterprise authentication system provides an "affinity string", now used to personalize the MyLibrary portal. This affinity string automates discovery of a user's relationship to the University--describing a user's academic department and degree program or position at the University. Affinity strings also provide the Libraries with an anonymized view of resource usage, allowing data collection that respects users' privacy and lays the groundwork for automated recommendation of relevant resources based on the practices and habits of their peers.

  20. Compound immobilization and drug-affinity chromatography.

    Science.gov (United States)

    Rix, Uwe; Gridling, Manuela; Superti-Furga, Giulio

    2012-01-01

    Bioactive small molecules act through modulating a yet unpredictable number of targets. It is therefore of critical importance to define the cellular target proteins of a compound as an entry point to understanding its mechanism of action. Often, this can be achieved in a direct fashion by chemical proteomics. As with any affinity chromatography, immobilization of the bait to a solid support is one of the earliest and most crucial steps in the process. Interfering with structural features that are important for identification of a target protein will be detrimental to binding affinity. Also, many molecules are sensitive to heat or to certain chemicals, such as acid or base, and might be destroyed during the process of immobilization, which therefore needs to be not only efficient, but also mild. The subsequent affinity chromatography step needs to preserve molecular and conformational integrity of both bait compound and proteins in order to result in the desired specific enrichment while ensuring a high level of compatibility with downstream analysis by mass spectrometry. Thus, the right choice of detergent, buffer, and protease inhibitors is also essential. This chapter describes a widely applicable procedure for the immobilization of small molecule drugs and for drug-affinity chromatography with subsequent protein identification by mass spectrometry.

  1. Affine coherent states and Toeplitz operators

    Science.gov (United States)

    Hutníková, Mária; Hutník, Ondrej

    2012-06-01

    We study a parameterized family of Toeplitz operators in the context of affine coherent states based on the Calderón reproducing formula (= resolution of unity on L_2( {R})) and the specific admissible wavelets (= affine coherent states in L_2( {R})) related to Laguerre functions. Symbols of such Calderón-Toeplitz operators as individual coordinates of the affine group (= upper half-plane with the hyperbolic geometry) are considered. In this case, a certain class of pseudo-differential operators, their properties and their operator algebras are investigated. As a result of this study, the Fredholm symbol algebras of the Calderón-Toeplitz operator algebras for these particular cases of symbols are described. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  2. Facile synthesis of Fe3O4@PDA core-shell microspheres functionalized with various metal ions: A systematic comparison of commonly-used metal ions for IMAC enrichment.

    Science.gov (United States)

    Jiang, Jiebing; Sun, Xueni; Li, Yan; Deng, Chunhui; Duan, Gengli

    2018-02-01

    Metal ions differed greatly in affinity towards phosphopeptides, and thus it is essential to systematically compare the phosphopeptides enrichment ability of different metal ions usually used in the IMAC techniques. In this work, for the first time, eight metal ions, including Nb 5+ , Ti 4+ , Zr 4+ , Ga 3+ , Y 3+ , In 3+ , Ce 4+ , Fe 3+ , were immobilized on the polydopamine (PDA)-coated Fe 3 O 4 (denoted as Fe 3 O 4 @PDA-M n+ ), and systematically compared by the real biosamples, in addition to standard phosphopeptides. Fe 3 O 4 microspheres were synthesized via the solvothermal reaction, followed by self-polymerization of dopamine on the surface. Then through taking advantage of the hydroxyl and amino group of PDA, the eight metal ions were easily adhered to the surface of Fe 3 O 4 @PDA. After characterization, the resultant Fe 3 O 4 @PDA-M n+ microspheres were applied to phosphopeptides enrichment based on the binding affinity between metal ions and phosphopeptides. According to the results, different metal ions presented diverse phosphopeptides enrichment efficiency in terms of selectivity, sensitivity and the enrichment ability from real complex samples, and Fe 3 O 4 @PDA-Nb 5+ and Fe 3 O 4 @PDA-Ti 4+ showed obvious advantages of the phosphopeptides enrichment effect after the comparison. This systematic comparison may provide certain reference for the use and development of IMAC materials in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Synthesis of organolanthanides by metal addition on insaturated substrates in ether and reactivity

    International Nuclear Information System (INIS)

    Olivier, H.

    1988-01-01

    The aim of the study is the extension to rare earths of the synthesis, well known for alkaline or alkaline earth metals, by direct metal addition to insaturated substrates in ether and where the metal is directly bound to carbon. A definition of formation conditions and affinity rules is attempled, both with substrates (essentially aromatic hydrocarbons and ketones) and with metals: Yb, Sm, Ce, Nd and others. The nature of obtained products by reaction of electrophiles on synthetised organometallics, allows investigations specific reactivity and structure. Potential catalytic transformation of olefins is precised [fr

  4. The new horizon in 2D electrophoresis: new technology to increase resolution and sensitivity.

    Science.gov (United States)

    Moche, Martin; Albrecht, Dirk; Maaß, Sandra; Hecker, Michael; Westermeier, Reiner; Büttner, Knut

    2013-06-01

    A principally new type of an electrophoresis setup for the second dimension of 2DE named HPE (high performance electrophoresis) has recently become available that provides excellent reproducibility much superior to traditional 2DE. It takes up ideas from early beginnings of 2DE which could not be satisfactory realized at that time. The new HPE system is in contrast to all other established systems a horizontal electrophoresis that employs a new type of precast polyacrylamide gels on film-backing and runs on a multilevel flatbed electrophoresis apparatus. In a systematic approach we compared its features to traditional 2DE for the cytosolic proteome of Bacillus subtilis. Not only the reproducibility is enhanced, but also nearly all qualitative parameters as resolution, sensitivity, the number of protein spots (25% more), and the number of different proteins (also additional 25%) are markedly increased. More than 200 proteins were exclusively found in HPE. This new electrophoresis system does not use buffer tanks. No glass plates are needed. Therefore handling of gels is greatly facilitated and very simple to use even for personnel with low technical skills. The new HPE system is technically at the beginnings and further development with increased performance can be expected. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Affinity of nat/68Ga-Labelled Curcumin and Curcuminoid Complexes for β-Amyloid Plaques: Towards the Development of New Metal-Curcumin Based Radiotracers

    Directory of Open Access Journals (Sweden)

    Sara Rubagotti

    2016-09-01

    Full Text Available Curcumin derivatives labelled with fluorine-18 or technetium-99m have recently shown their potential as diagnostic tools for Alzheimer’s disease. Nevertheless, no study by exploiting the labelling with gallium-68 has been performed so far, in spite of its suitable properties (positron emitter, generator produced radionuclide. Herein, an evaluation of the affinity for synthetic β-amyloid fibrils and for amyloid plaques of three nat/68Ga-labelled curcumin analogues, namely curcumin curcumin (CUR, bis-dehydroxy-curcumin (bDHC and diacetyl-curcumin (DAC, was performed. Affinity and specificity were tested in vitro on amyloid synthetic fibrils by using gallium-68 labelled compounds. Post-mortem brain cryosections from Tg2576 mice were used for the ex vivo visualization of amyloid plaques. The affinity of 68Ga(CUR2+, 68Ga(DAC2+, and 68Ga(bDHC2+ for synthetic β-amyloid fibrils was moderate and their uptake could be observed in vitro. On the other hand, amyloid plaques could not be visualized on brain sections of Tg2576 mice after injection, probably due to the low stability of the complexes in vivo and of a hampered passage through the blood–brain barrier. Like curcumin, all nat/68Ga-curcuminoid complexes maintain a high affinity for β-amyloid plaques. However, structural modifications are still needed to improve their applicability as radiotracers in vivo.

  6. Affinity between information retrieval system and search topic

    International Nuclear Information System (INIS)

    Ebinuma, Yukio

    1979-01-01

    Ten search profiles are tested on the INIS system at the Japan Atomic Energy Research Institute. The results are plotted on recall-precision chart ranging from 100% recall to 100% precision. The curves are not purely systems-dependent nor search-dependent, and are determined substantially by the ''affinity'' between the system and the search topic. The curves are named ''Affinity curves of search topics with information retrieval systems'', and hence retrieval affinity factors are derived. They are obtained not only for individual search topics but also for averages in the system. By such a quantitative examination, the difference of affinity among search topics in a given system, that of the same search topic among various systems, and that of systems to the same group of search topics can be compared reasonably. (author)

  7. Affine group formulation of the Standard Model coupled to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China); Ita, Eyo, E-mail: ita@usna.edu [Department of Physics, US Naval Academy, Annapolis, MD (United States); Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China)

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  8. Affinity-Mediated Homogeneous Electrochemical Aptasensor on a Graphene Platform for Ultrasensitive Biomolecule Detection via Exonuclease-Assisted Target-Analog Recycling Amplification.

    Science.gov (United States)

    Ge, Lei; Wang, Wenxiao; Sun, Ximei; Hou, Ting; Li, Feng

    2016-02-16

    As is well-known, graphene shows a remarkable difference in affinity toward nonstructured single-stranded (ss) DNA and double-stranded (ds) DNA. This property makes it popular to prepare DNA-based optical sensors. In this work, taking this unique property of graphene in combination with the sensitive electrochemical transducer, we report a novel affinity-mediated homogeneous electrochemical aptasensor using graphene modified glassy carbon electrode (GCE) as the sensing platform. In this approach, the specific aptamer-target recognition is converted into an ultrasensitive electrochemical signal output with the aid of a novel T7 exonuclease (T7Exo)-assisted target-analog recycling amplification strategy, in which the ingeniously designed methylene blue (MB)-labeled hairpin DNA reporters are digested in the presence of target and, then, converted to numerous MB-labeled long ssDNAs. The distinct difference in differential pulse voltammetry response between the designed hairpin reporters and the generated long ssDNAs on the graphene/GCE allows ultrasensitive detection of target biomolecules. Herein, the design and working principle of this homogeneous electrochemical aptasensor were elucidated, and the working conditions were optimized. The gel electrophoresis results further demonstrate that the designed T7Exo-assisted target-analog recycling amplification strategy can work well. This electrochemical aptasensor realizes the detection of biomolecule in a homogeneous solution without immobilization of any bioprobe on electrode surface. Moreover, this versatile homogeneous electrochemical sensing system was used for the determination of biomolecules in real serum samples with satisfying results.

  9. Understanding the self-assembly of proteins onto gold nanoparticles and quantum dots driven by metal-histidine coordination.

    Science.gov (United States)

    Aldeek, Fadi; Safi, Malak; Zhan, Naiqian; Palui, Goutam; Mattoussi, Hedi

    2013-11-26

    Coupling of polyhistidine-appended biomolecules to inorganic nanocrystals driven by metal-affinity interactions is a greatly promising strategy to form hybrid bioconjugates. It is simple to implement and can take advantage of the fact that polyhistidine-appended proteins and peptides are routinely prepared using well established molecular engineering techniques. A few groups have shown its effectiveness for coupling proteins onto Zn- or Cd-rich semiconductor quantum dots (QDs). Expanding this conjugation scheme to other metal-rich nanoparticles (NPs) such as AuNPs would be of great interest to researchers actively seeking effective means for interfacing nanostructured materials with biology. In this report, we investigated the metal-affinity driven self-assembly between AuNPs and two engineered proteins, a His7-appended maltose binding protein (MBP-His) and a fluorescent His6-terminated mCherry protein. In particular, we investigated the influence of the capping ligand affinity to the nanoparticle surface, its density, and its lateral extension on the AuNP-protein self-assembly. Affinity gel chromatography was used to test the AuNP-MPB-His7 self-assembly, while NP-to-mCherry-His6 binding was evaluated using fluorescence measurements. We also assessed the kinetics of the self-assembly between AuNPs and proteins in solution, using time-dependent changes in the energy transfer quenching of mCherry fluorescent proteins as they immobilize onto the AuNP surface. This allowed determination of the dissociation rate constant, Kd(-1) ∼ 1-5 nM. Furthermore, a close comparison of the protein self-assembly onto AuNPs or QDs provided additional insights into which parameters control the interactions between imidazoles and metal ions in these systems.

  10. Acid-Urea Gel Electrophoresis and Western Blotting of Histones.

    Science.gov (United States)

    Hazzalin, Catherine A; Mahadevan, Louis C

    2017-01-01

    Acid-urea gel electrophoresis offers significant advantages over SDS-PAGE for analysis of post-translational protein modifications, being capable of resolving proteins of similar size but varying in charge. Hence, it can be used to separate protein variants with small charge-altering differences in primary sequence, and is particularly useful in the analysis of histones whose charge variation arises from post-translational modification, such as phosphorylation or acetylation. On acid-urea gels, histones that carry multiple modifications, each with a characteristic charge, are resolved into distinct bands, the so-called "histone ladder." Thus, the extent and distribution of different modification states of histones can be visualized. Here, we describe the analysis of histone H3 by acid-urea gel electrophoresis and western blotting.

  11. Uncertainty analysis of the nonideal competitive adsorption-donnan model: effects of dissolved organic matter variability on predicted metal speciation in soil solution.

    Science.gov (United States)

    Groenenberg, Jan E; Koopmans, Gerwin F; Comans, Rob N J

    2010-02-15

    Ion binding models such as the nonideal competitive adsorption-Donnan model (NICA-Donnan) and model VI successfully describe laboratory data of proton and metal binding to purified humic substances (HS). In this study model performance was tested in more complex natural systems. The speciation predicted with the NICA-Donnan model and the associated uncertainty were compared with independent measurements in soil solution extracts, including the free metal ion activity and fulvic (FA) and humic acid (HA) fractions of dissolved organic matter (DOM). Potentially important sources of uncertainty are the DOM composition and the variation in binding properties of HS. HS fractions of DOM in soil solution extracts varied between 14 and 63% and consisted mainly of FA. Moreover, binding parameters optimized for individual FA samples show substantial variation. Monte Carlo simulations show that uncertainties in predicted metal speciation, for metals with a high affinity for FA (Cu, Pb), are largely due to the natural variation in binding properties (i.e., the affinity) of FA. Predictions for metals with a lower affinity (Cd) are more prone to uncertainties in the fraction FA in DOM and the maximum site density (i.e., the capacity) of the FA. Based on these findings, suggestions are provided to reduce uncertainties in model predictions.

  12. The fluid mechanics of continuous flow electrophoresis

    Science.gov (United States)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  13. Affine.m—Mathematica package for computations in representation theory of finite-dimensional and affine Lie algebras

    Science.gov (United States)

    Nazarov, Anton

    2012-11-01

    In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent

  14. Spectral affinity in protein networks

    Directory of Open Access Journals (Sweden)

    Teng Shang-Hua

    2009-11-01

    Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to

  15. Quantitative relationship between antibody affinity and antibody avidity

    International Nuclear Information System (INIS)

    Griswold, W.R.

    1987-01-01

    The relationship between antibody avidity, measured by the dissociation of the antigen-antibody bond in antigen excess, and antibody affinity was studied. Complexes of radiolabelled antigen and antibody of known affinity were prepared in vitro and allowed to stand for seven days to reach equilibrium. Then nonlabelled antigen in one hundred fold excess was added to dissociate the complexes. After an appropriate incubation the fraction of antigen bound to antibody was measured by the ammonium sulfate precipitation method. The dissociation index was the fraction bound in the experimental sample divided by the fraction bound in the control. The correlation coefficient between the dissociation index and the antibody binding constant was 0.92 for early dissociation and 0.98 for late dissociation. The regression equation relating the binding constant to the dissociation index was K = 6.4(DI) + 6.25, where DI is the late dissociation index and K is the logarithm to the base 10 of the binding constant. There is a high correlation between avidity and affinity of antibody. Antibody affinity can be estimated from avidity data. The stability of antigen-antibody complexes can be predicted from antibody affinity

  16. Thermokinetic model of borosilicate glass dissolution: Contextual affinity

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Crovisier, J.L.; Fritz, B.

    1990-01-01

    Short and long-term geochemical interactions of R7T7 nuclear glass with water at 100C were simulated with the DISSOL thermokinetic computer code. Both the dissolved glass quantity and the resulting water composition, saturation states and mineral quantities produced were calculated as a function of time. The rate equation used in the simulation was first proposed by Aagaard and Hegelson: v = k + · S · a( H + ) -n · (1 - e -(A/RT) ). It simulates a gradually diminishing dissolution rate as the reaction affinity diminishes. The best agreement with 1-year experimental data was obtained with a reaction affinity calculated from silica activity (Grambow's hypothesis) rather than taking into account the activity of all the glass components as proposed by Jantzen and Plodinec. The concept of residual affinity was introduced by Grambow to express the fact that the glass dissolution rate does not cease. The authors prefer to replace the term residual affinity by contextual affinity, which expresses the influence on the dissolution rate of three factors: the solution chemistry, the metastability of SiO 2 (m), and the possible precipitation of certain aluminosilicates such as zeolites

  17. Biosorption of heavy metals from wastewater by biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Orhan, Y.; Bueyuekguengoer, H. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, 55139 Samsun (Turkey); Hrenovic, J. [University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb (Croatia)

    2006-08-15

    In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013-0.089 min{sup -1} and 0.026-0.690 min{sup -0.5}. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81-100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  18. Studies of transferin polymorphism in Swedish cattle using agarose gel electrophoresis

    International Nuclear Information System (INIS)

    Liberg, P.; Carlstroem, G.

    1976-01-01

    The polymorphic transferrin picture in the sera from 894 Swedish cattle was investigated with an agarose gel electrophoresis technique. The serum transferrin bands in the electrophoresis pattern were first identified by labelling with 59 Fe. Six existing phenotypes based on the alleles Tf(supA), Tf(supD) and Tf(supE) could be detected. The frequencies of transferrin types and transferrin alleles are presented, and it is concluded that there are great differences in the frequencis between the Swedish Red and White and the Swedish Friesian. (author)

  19. Attempt to run urinary protein electrophoresis using capillary technique.

    Science.gov (United States)

    Falcone, Michele

    2014-10-01

    The study of urinary protein has a predominant place in the diagnosis of kidney disease. The most common technique is agarose gel electrophoresis (AGE). For several years, the technique of choice applied to the analysis of serum proteins has been CE, a system that uses capillary fused silica, subjected to high voltage to separate and measure serum proteins. The purpose of this paper was to perform capillary electrophoresis on urinary proteins which, at present, are not interpretable due to the many nonspecific peaks visible when using gel electrophoresis. In order to carry out our research, we used a capillary V8 analyzer together with an agarose gel system from the same company. AGE was taken as the reference method, for which urine was used without any pretreatment. For the V8 system, urine was subjected to purification on granular-activated carbon and then inserted into the V8 analyzer, selecting a program suitable for liquids with low protein content. We examined 19 urine samples collected over 24 hrs from both hospitalized and external patients with different types of proteinuria plus a serum diluted 1/61 considered as a control to recognize the bands. Both methods showed the same protein fractions and classified the proteinuria in a similar way. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An analytical model for enantioseparation process in capillary electrophoresis

    Science.gov (United States)

    Ranzuglia, G. A.; Manzi, S. J.; Gomez, M. R.; Belardinelli, R. E.; Pereyra, V. D.

    2017-12-01

    An analytical model to explain the mobilities of enantiomer binary mixture in capillary electrophoresis experiment is proposed. The model consists in a set of kinetic equations describing the evolution of the populations of molecules involved in the enantioseparation process in capillary electrophoresis (CE) is proposed. These equations take into account the asymmetric driven migration of enantiomer molecules, chiral selector and the temporary diastomeric complexes, which are the products of the reversible reaction between the enantiomers and the chiral selector. The solution of these equations gives the spatial and temporal distribution of each species in the capillary, reproducing a typical signal of the electropherogram. The mobility, μ, of each specie is obtained by the position of the maximum (main peak) of their respective distributions. Thereby, the apparent electrophoretic mobility difference, Δμ, as a function of chiral selector concentration, [ C ] , can be measured. The behaviour of Δμ versus [ C ] is compared with the phenomenological model introduced by Wren and Rowe in J. Chromatography 1992, 603, 235. To test the analytical model, a capillary electrophoresis experiment for the enantiomeric separation of the (±)-chlorpheniramine β-cyclodextrin (β-CD) system is used. These data, as well as, other obtained from literature are in closed agreement with those obtained by the model. All these results are also corroborate by kinetic Monte Carlo simulation.

  1. 25. Steenbock symposium -- Biosynthesis and function of metal clusters for enzymes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This symposium was held June 10--14, 1997 in Madison, Wisconsin. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on biochemistry of enzymes that have an affinity for metal clusters. Attention is focused on the following: metal clusters involved in energy conservation and remediation; tungsten, molybdenum, and cobalt-containing enzymes; Fe proteins, and Mo-binding proteins; nickel enzymes; and nitrogenase.

  2. A comparative proteomic study on the effects of metal pollution in oysters Crassostrea hongkongensis.

    Science.gov (United States)

    Xu, Lanlan; Ji, Chenglong; Wu, Huifeng; Tan, Qiaoguo; Wang, Wen-Xiong

    2016-11-15

    The metal pollution has posed great risk on the coastal organisms along the Jiulongjiang Estuary in South China. In this work, two-dimensional electrophoresis-based proteomics was applied to the oysters Crassostrea hongkongensis from metal pollution sites to characterize the proteomic responses to metal pollution. Metal accumulation and proteomic responses indicated that the oysters from BJ site were more severely contaminated than those from FG site. Compared with those oyster samples from the clean site (JZ), metal pollution induced cellular injuries, oxidative and immune stresses in oyster heapatopancreas from both BJ and FG sites via differential metabolic pathways. In addition, metal pollution in BJ site induced disturbance in energy and lipid metabolisms in oysters. Results indicated that cathepsin L and ferritin GF1 might be the biomarkers of As and Fe in oyster C. hongkongensis, respectively. This study demonstrates that proteomics is a useful tool for investigating biological effects induced by metal pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Approach to analysis of single nucleotide polymorphisms by automated constant denaturant capillary electrophoresis

    International Nuclear Information System (INIS)

    Bjoerheim, Jens; Abrahamsen, Torveig Weum; Kristensen, Annette Torgunrud; Gaudernack, Gustav; Ekstroem, Per O.

    2003-01-01

    Melting gel techniques have proven to be amenable and powerful tools in point mutation and single nucleotide polymorphism (SNP) analysis. With the introduction of commercially available capillary electrophoresis instruments, a partly automated platform for denaturant capillary electrophoresis with potential for routine screening of selected target sequences has been established. The aim of this article is to demonstrate the use of automated constant denaturant capillary electrophoresis (ACDCE) in single nucleotide polymorphism analysis of various target sequences. Optimal analysis conditions for different single nucleotide polymorphisms on ACDCE are evaluated with the Poland algorithm. Laboratory procedures include only PCR and electrophoresis. For direct genotyping of individual SNPs, the samples are analyzed with an internal standard and the alleles are identified by co-migration of sample and standard peaks. In conclusion, SNPs suitable for melting gel analysis based on theoretical thermodynamics were separated by ACDCE under appropriate conditions. With this instrumentation (ABI 310 Genetic Analyzer), 48 samples could be analyzed without any intervention. Several institutions have capillary instrumentation in-house, thus making this SNP analysis method accessible to large groups of researchers without any need for instrument modification

  4. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    Science.gov (United States)

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  5. Capillary zone electrophoresis-mass spectromet of intact proteins

    NARCIS (Netherlands)

    Domínguez-Vega, Elena; Haselberg, Rob; Somsen, Govert W.

    2016-01-01

    Capillary electrophoresis (CE) coupled with mass spectrometry (MS) has proven to be a powerful analytical tool for the characterization of intact proteins. It combines the high separation efficiency, short analysis time, and versatility of CE with the mass selectivity and sensitivity offered by MS

  6. Routine hemoglobin electrophoresis for pediatric surgery day case ...

    African Journals Online (AJOL)

    Background: Hemoglobin electrophoresis (HBE) is a part of the preoperative routine requested by anesthetists. However, the prevalence of hemoglobinopathy in the population is low. This study aims to determine the clinical risk factors for hemoglobinopathies and propose clinical guidelines for preoperative screening of ...

  7. Calculation of protein-ligand binding affinities.

    Science.gov (United States)

    Gilson, Michael K; Zhou, Huan-Xiang

    2007-01-01

    Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.

  8. Metal-metal interaction mediates the iron induction of Drosophila MtnB

    International Nuclear Information System (INIS)

    Qiang, Wenjia; Huang, Yunpeng; Wan, Zhihui; Zhou, Bing

    2017-01-01

    Metallothionein (MT) protein families are a class of small and universal proteins rich in cysteine residues. They are synthesized in response to heavy metal stresses to sequester the toxic ions by metal-thiolate bridges. Five MT family members, namely MtnA, MtnB, MtnC, MtnD and MtnE, have been discovered and identified in Drosophila. These five isoforms of MTs are regulated by metal responsive transcription factor dMTF-1 and play differentiated but overlapping roles in detoxification of metal ions. Previous researches have shown that Drosophila MtnB responds to copper (Cu), cadmium (Cd) and zinc (Zn). Interestingly in this study we found that Drosophila MtnB expression also responds to elevated iron levels in the diet. Further investigations revealed that MtnB plays limited roles in iron detoxification, and the direct binding of MtnB to ferrous iron in vitro is also weak. The induction of MtnB by iron turns out to be mediated by iron interference of other metals, because EDTA at even a partial concentration of that of iron can suppress this induction. Indeed, in the presence of iron, zinc homeostasis is altered, as reflected by expression changes of zinc transporters dZIP1 and dZnT1. Thus, iron-mediated MtnB induction appears resulting from interrupted homeostasis of other metals such as zinc, which in turns induced MtnB expression. Metal-metal interaction may more widely exist than we expected. - Highlights: • Metallothionein B expression is regulated by iron in Drosophila melanogaster. • MtnB has limited physiological roles in iron detoxification. • Binding affinity of MtnB to iron is weak in vitro. • Induction of Drosophila MtnB by iron is mediated indirectly through metal-metal interaction.

  9. Separation and Species Characterization of Complex Compound of Yttrium-90 and Strontium-90 by Paper Electrophoresis

    International Nuclear Information System (INIS)

    Sulaiman; Adang Hardi G; Noor Anis Kundari

    2007-01-01

    The research for species characterization of 90 Y and 90 Sr complex compound have been conducted using variation of buffer, concentration of HCl, electrophoresis operation voltage, time of electrophoresis, and electrophoresis migration media. From many trials, the conclusions are the applicable buffer are tartrate buffer and citrate buffer. These buffers can make a complex compound of 90 Y and there is migration to the anode. But, 90 Sr can’t make any complex compound and migration to the cathode. The optimum concentration of hydrochloride acid is 8 M with tartrate buffer but for citrate buffer, the concentration HCl is 2 M. The hydrochloric acid is used to dissolved the both elements as the mentioned above, but also for making complex ligand. The optimum electrophoresis operation voltage is 200 Volt for the both buffer solution and the duration of electrophoresis operation is 2.5 hours with using tartrate buffer but for citrate buffer the duration is 2 hours. The media of migration which can be used for replacing paper is silica. (author)

  10. Capillary electrophoresis in the N-glycosylation analysis of biopharmaceuticals

    Czech Academy of Sciences Publication Activity Database

    Guttman, András

    2013-01-01

    Roč. 48, JUL-AUG (2013), s. 132-143 ISSN 0165-9936 Institutional support: RVO:68081715 Keywords : automated workflow * biopharmaceuticals * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 6.612, year: 2013

  11. ASIFT: An Algorithm for Fully Affine Invariant Comparison

    Directory of Open Access Journals (Sweden)

    Guoshen Yu

    2011-02-01

    Full Text Available If a physical object has a smooth or piecewise smooth boundary, its images obtained by cameras in varying positions undergo smooth apparent deformations. These deformations are locally well approximated by affine transforms of the image plane. In consequence the solid object recognition problem has often been led back to the computation of affine invariant image local features. The similarity invariance (invariance to translation, rotation, and zoom is dealt with rigorously by the SIFT method The method illustrated and demonstrated in this work, Affine-SIFT (ASIFT, simulates a set of sample views of the initial images, obtainable by varying the two camera axis orientation parameters, namely the latitude and the longitude angles, which are not treated by the SIFT method. Then it applies the SIFT method itself to all images thus generated. Thus, ASIFT covers effectively all six parameters of the affine transform.

  12. Dual-signal amplification strategy for ultrasensitive chemiluminescence detection of PDGF-BB in capillary electrophoresis.

    Science.gov (United States)

    Cao, Jun-Tao; Wang, Hui; Ren, Shu-Wei; Chen, Yong-Hong; Liu, Yan-Ming

    2015-12-01

    Many efforts have been made toward the achievement of high sensitivity in capillary electrophoresis coupled with chemiluminescence detection (CE-CL). This work describes a novel dual-signal amplification strategy for highly specific and ultrasensitive CL detection of human platelet-derived growth factor-BB (PDGF-BB) using both aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (HRP-AuNPs-aptamer) as nanoprobes in CE. Both AuNPs and HRP in the nanoprobes could amplify the CL signals in the luminol-H2 O2 CL system, owing to the excellent catalytic behavior of AuNPs and HRP in the CL system. Meanwhile, the high affinity of aptamer modified on the AuNPs allows detection with high specificity. As proof-of-concept, the proposed method was employed to quantify the concentration of PDGF-BB from 0.50 to 250 fm with a detection limit of 0.21 fm. The applicability of the assay was further demonstrated in the analysis of PDGF-BB in human serum samples with acceptable accuracy and reliability. The result of this study exhibits distinct advantages, such as high sensitivity, good specificity, simplicity, and very small sample consumption. The good performances of the proposed strategy provide a powerful avenue for ultrasensitive detection of rare proteins in biological sample, showing great promise in biochemical analysis. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Detection system of capillary array electrophoresis microchip based on optical fiber

    Science.gov (United States)

    Yang, Xiaobo; Bai, Haiming; Yan, Weiping

    2009-11-01

    To meet the demands of the post-genomic era study and the large parallel detections of epidemic diseases and drug screening, the high throughput micro-fluidic detection system is needed urgently. A scanning laser induced fluorescence detection system based on optical fiber has been established by using a green laser diode double-pumped solid-state laser as excitation source. It includes laser induced fluorescence detection subsystem, capillary array electrophoresis micro-chip, channel identification unit and fluorescent signal processing subsystem. V-shaped detecting probe composed with two optical fibers for transmitting the excitation light and detecting induced fluorescence were constructed. Parallel four-channel signal analysis of capillary electrophoresis was performed on this system by using Rhodamine B as the sample. The distinction of different samples and separation of samples were achieved with the constructed detection system. The lowest detected concentration is 1×10-5 mol/L for Rhodamine B. The results show that the detection system possesses some advantages, such as compact structure, better stability and higher sensitivity, which are beneficial to the development of microminiaturization and integration of capillary array electrophoresis chip.

  14. Characterization and Study of Transgenic Cultivars by Capillary and Microchip Electrophoresis

    Directory of Open Access Journals (Sweden)

    Elena Domínguez Vega

    2014-12-01

    Full Text Available Advances in biotechnology have increased the demand for suitable analytical techniques for the analysis of genetically modified organisms. Study of the substantial equivalence, discrimination between transgenic and non-transgenic cultivars, study of the unintended effects caused by a genetic modification or their response to diverse situations or stress conditions (e.g., environmental, climatic, infections are some of the concerns that need to be addressed. Capillary electrophoresis (CE is emerging as an alternative to conventional techniques for the study and characterization of genetically modified organisms. This article reviews the most recent applications of CE for the analysis and characterization of transgenic cultivars in the last five years. Different strategies have been described depending on the level analyzed (DNA, proteins or metabolites. Capillary gel electrophoresis (CGE has shown to be particularly useful for the analysis of DNA fragments amplified by PCR. Metabolites and proteins have been mainly separated using capillary zone electrophoresis (CZE using UV and MS detection. Electrophoretic chips have also proven their ability in the analysis of transgenic cultivars and a section describing the new applications is also included.

  15. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice — A field study over four rice seasons in Hunan, China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De; Guo, Hu; Li, Ruiyue [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Li, Lianqing, E-mail: lqli@njau.edu.cn [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Pan, Genxing [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Chang, Andrew [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Joseph, Stephen [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-01-15

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha{sup −1}. Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35–91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69–80% and 72–80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. - Highlights: • Biochar sustainably reduced soil Cd availability and Cd translocation in rice plant. • Indica conventional cultivars had lower Cd but higher Zn in grains than hybrid ones. • Biochar significantly reduced grain Cd and Cd/Zn ratio

  16. Applications of Affine and Weyl geometry

    CERN Document Server

    García-Río, Eduardo; Nikcevic, Stana

    2013-01-01

    Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannia

  17. Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India

    International Nuclear Information System (INIS)

    Srichandan, Suchismita; Panigrahy, R.C.; Baliarsingh, S.K.; Srinivasa, Rao B.; Pati, Premalata; Sahu, Biraja K.; Sahu, K.C.

    2016-01-01

    Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe > Ni > Mn > Pb > As > Zn > Cr > V > Se > Cd while in zooplankton it was Fe > Mn > Cd > As > Pb > Ni > Cr > Zn > V > Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. - Highlights: • First-hand report on trace metal concentration in zooplankton and seawater covering 2 years from this eco-sensitive region. • In seawater trace metals followed the rank order of Fe > Ni > Mn > Pb > As > Zn > Cr > V > Se > Cd. • In zooplankton the rank order was Fe > Mn > Cd > As > Pb > Ni > Cr > Zn > V > Se. • The bioaccumulation factor of Fe was highest followed by Zn. • Strong affinity, coexistence, and similar source of trace metals in the study area.

  18. Characterization of biological macromolecules by electrophoresis and neutron activation

    International Nuclear Information System (INIS)

    Stone, S.F.; Hancock, D.; Zeisler, R.

    1987-01-01

    A procedure combining polyacrylamide gel electrophoresis (PAGE) with INAA and autoradiography was developed to study biological macromolecules and their associated trace elements. Results from the application of this method to several metalloproteins are presented. (author)

  19. Theoretical determination of proton affinity differences in zeolites

    NARCIS (Netherlands)

    Kramer, G.J.; Santen, van R.A.

    1993-01-01

    An important factor in zeolite catalysis is the proton affinity, i.e., the energy required to remove a proton from the zeolite lattice. Differences in proton affinity are expected to influence the catalytic activity of acid sites, making the catalytically active sites inhomogeneous (within one

  20. Pseudo-affinity chromatography of rumen microbial cellulase on ...

    African Journals Online (AJOL)

    Pseudo-affinity chromatography of rumen microbial cellulase on Sepharose- Cibacron Blue F3GA. ... African Journal of Biotechnology ... Pseudo affinity adsorption of bioproducts on Sepharose-cibacron blue F3-GA was subjected to rumen microbial enzyme evaluation through batch binding and column chromatography of ...

  1. Volatility Components, Affine Restrictions and Non-Normal Innovations

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Dorian, Christian

    Recent work by Engle and Lee (1999) shows that allowing for long-run and short-run components greatly enhances a GARCH model's ability fit daily equity return dynamics. Using the risk-neutralization in Duan (1995), we assess the option valuation performance of the Engle-Lee model and compare...... models to four conditionally non-normal versions. As in Hsieh and Ritchken (2005), we find that non-affine models dominate affine models both in terms of fitting return and in terms of option valuation. For the affine models we find strong evidence in favor of the component structure for both returns...

  2. Realization of Robertson-Walker spacetimes as affine hypersurfaces

    International Nuclear Information System (INIS)

    Chen Bangyen

    2007-01-01

    Due to the growing interest in embeddings of spacetimes in higher dimensional spaces, we consider a special type of embedding. We prove that Robertson-Walker spacetimes can be embedded as centroaffine hypersurfaces and graph hypersurfaces in some affine spaces in such a way that the induced relative metrics are exactly the Lorentzian metrics on the Robertson-Walker spacetimes. Such realizations allow us to view Robertson-Walker spacetimes and their submanifolds as affine submanifolds in a natural way. Consequently, our realizations make it possible to apply the tools of affine differential geometry to study Robertson-Walker spacetimes and their submanifolds

  3. Chelation in metal intoxication

    DEFF Research Database (Denmark)

    Aaseth, Jan; Skaug, Marit Aralt; Cao, yang

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the incon......The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due...... to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment...... of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new...

  4. Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence after sodium dodecyl sulphate polyacrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Gao Yuxi; Chen Chunying; Zhang Peiqun; Chai Zhifang; He Wei; Huang Yuying

    2003-01-01

    An improved method of analysis of metals in protein bands with synchrotron radiation X-ray fluorescence (SRXRF) after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation is introduced and applied to human liver cytosol. Through a step of drying the gel before SRXRF determination, the continuous background resulting mainly from the Compton-scattering of X-rays by the gel matrix was substantially reduced, and the detection of biological trace elements, such as Cu, Fe, and Zn in protein bands was thereby made possible. With the new procedure, six Zn-containing proteins with molecular weights (MWs) of 17.5, 20.5, 27, 35, 55, and 63 kDa, respectively were found in human liver cytosol, among which the 63 kDa Zn-containing band was shown to be the dominant form of zinc. In addition, at least four Fe containing proteins with MWs of 20, 23, 43, and 83.5 kDa, respectively, were present in the samples. The metal contents in some metalloproteins, such as the 63 kDa Zn-containing protein, the 23 and 83.5 kDa Fe-containing proteins, and a 22 kDa Cu-containing protein were more closely related to the metal level in the sample. It is demonstrated that the procedure could be widely used to further investigate metal-binding proteins in biological samples

  5. Quantification of DNA damage by single-cell electrophoresis

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1990-01-01

    A simple technique of micro-agarose gel electrophoresis has been developed to quantify DNA damage in individual cells. Cells are embedded in agarose gel on microscope slides, lysed by detergents and then electrophoresed for a short time under neutral or alkaline condition. In irradiated cells, DNA migrates from the nucleus toward the anode, displaying commet-like pattern by staining with DNA-specific fluorescence dye. DNA damage is evaluated by measuring the distance of DNA migration. The technique was applied for measuring DNA damage in single cells exposed to 60 Co γ-rays, or to KUR radiation in the presence or absence of 10 B-enriched boric acid. The enhanced production of double-stranded DNA breaks by 10 B(n,α) 7 Li reaction was demonstrated here. The significant increase in the length of DNA migration was observed in single cells exposed to such a low dose as 20 cGy after alkaline micro electrophoresis. (author)

  6. Nonequilibrium electrophoresis of an ion-selective microgranule for weak and moderate external electric fields

    Science.gov (United States)

    Frants, E. A.; Ganchenko, G. S.; Shelistov, V. S.; Amiroudine, S.; Demekhin, E. A.

    2018-02-01

    Electrokinetics and the movement of charge-selective micro-granules in an electrolyte solution under the influence of an external electric field are investigated theoretically. Straightforward perturbation analysis is applied to a thin electric double layer and a weak external field, while a numerical solution is used for moderate electric fields. The asymptotic solution enables the determination of the salt concentration, electric charge distribution, and electro-osmotic velocity fields. It may also be used to obtain a simple analytical formula for the electrophoretic velocity in the case of quasi-equilibrium electrophoresis (electrophoresis of the first kind). This formula differs from the famous Helmholtz-Smoluchowski relation, which applies to dielectric microparticles, but not to ion-selective granules. Numerical calculations are used to validate the derived formula for weak external electric fields, but for moderate fields, nonlinear effects lead to a significant increase in electrophoretic mobility and to a transition from quasi-equilibrium electrophoresis of the first kind to nonequilibrium electrophoresis of the second kind. Theoretical results are successfully compared with experimental data.

  7. Methyl Cation Affinities of Neutral and Anionic Maingroup-Element Hydrides: Trends Across the Periodic Table and Correlation with Proton Affinities

    NARCIS (Netherlands)

    Mulder, R. Joshua; Guerra, Celia Fonseca; Bickelhaupt, F. Matthias

    2010-01-01

    We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and

  8. Metallation of protoporphyrins used as fluorescent chemo sensor for imidazole recognition

    International Nuclear Information System (INIS)

    Panpae, Kornvalai; Krikrutthee, Chaiwat; Porntaweethum, Phumthan; Weerachiwcharnchai, Panya; Chenwittayayos, Aekapoj

    2008-01-01

    Metalloporphyrin Complexes play significant roles in many biological and catalytic systems. The diversity of their functions is due in part to the variety of metals that bind in the pocket of the porphyrin ring system. Two kinds of metalloporphyrin derivatives, Cu (II) and Zn (II) protoporphyrins (PP) were microscale synthesized and characterized by spectroscopic methods and magnetic measurements. A PP ligand bound to each metal center in a tetradentate fashion including four amine nitrogen atoms in the equatorial planes. These complexes were found to recognize imidazolyl groups of histidine and histamine derivatives as guest molecules by coordination and additional non-covalent interactions. These added analytes displace the selective fluorescent indicator, which when released to the solution displays its full fluorescence. Thus, analyte recognition is signaled by the sharp appearance of the fluorescence of the indicators. The binding affinities to histidine and histamine were investigated and accounted for different complexation properties. Moreover, we demonstrated that careful choice of a fluorescent indicator with tuned affinity toward the receptor can provide discrimination in sensing of a desired substrate and the role that the metal coordination plays on the hypochromic shift and loss of fluorescence distincted characteristics of hypsoporphyrins were also discussed. (author)

  9. The role of siderophores in metal homeostasis of members of the genus Burkholderia.

    Science.gov (United States)

    Mathew, Anugraha; Jenul, Christian; Carlier, Aurelien L; Eberl, Leo

    2016-02-01

    Although members of the genus Burkholderia can utilize a high-affinity iron uptake system to sustain growth under iron-limiting conditions, many strains also produce siderophores, suggesting that they may serve alternative functions. Here we demonstrate that the two Burkholderia siderophores pyochelin and ornibactin can protect the cells from metal toxicity and thus play an alternative role in metal homeostasis. We also demonstrate that metals such as copper and zinc induce the production of ornibactin. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Mathematical analysis of frontal affinity chromatography in particle and membrane configurations.

    Science.gov (United States)

    Tejeda-Mansir, A; Montesinos, R M; Guzmán, R

    2001-10-30

    The scaleup and optimization of large-scale affinity-chromatographic operations in the recovery, separation and purification of biochemical components is of major industrial importance. The development of mathematical models to describe affinity-chromatographic processes, and the use of these models in computer programs to predict column performance is an engineering approach that can help to attain these bioprocess engineering tasks successfully. Most affinity-chromatographic separations are operated in the frontal mode, using fixed-bed columns. Purely diffusive and perfusion particles and membrane-based affinity chromatography are among the main commercially available technologies for these separations. For a particular application, a basic understanding of the main similarities and differences between particle and membrane frontal affinity chromatography and how these characteristics are reflected in the transport models is of fundamental relevance. This review presents the basic theoretical considerations used in the development of particle and membrane affinity chromatography models that can be applied in the design and operation of large-scale affinity separations in fixed-bed columns. A transport model for column affinity chromatography that considers column dispersion, particle internal convection, external film resistance, finite kinetic rate, plus macropore and micropore resistances is analyzed as a framework for exploring further the mathematical analysis. Such models provide a general realistic description of almost all practical systems. Specific mathematical models that take into account geometric considerations and transport effects have been developed for both particle and membrane affinity chromatography systems. Some of the most common simplified models, based on linear driving-force (LDF) and equilibrium assumptions, are emphasized. Analytical solutions of the corresponding simplified dimensionless affinity models are presented. Particular

  11. Generalized Warburg impedance on realistic self-affine fractals ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals.

  12. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry

    Science.gov (United States)

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide. PMID:26865351

  13. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria.

    Science.gov (United States)

    Yue, Zheng-Bo; Li, Qing; Li, Chuan-chuan; Chen, Tian-hu; Wang, Jin

    2015-10-01

    Extracellular polymeric substances (EPS) play an important role in the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB). In this paper, Desulfovibrio desulfuricans was used as the test strain to explore the effect of heavy metals on the components and adsorption ability of EPS. Fourier-transform infrared (FTIR) spectroscopy analysis results showed that heavy metals did not influence the type of functional groups of EPS. Potentiometric titration results indicated that the acidic constants (pKa) of the EPS fell into three ranges of 3.5-4.0, 5.9-6.7, and 8.9-9.8. The adsorption site concentrations of the surface functional groups also increased. Adsorption results suggested that EPS had a specific binding affinity for the dosed heavy metal, and that EPS extracted from the Zn(2+)-dosed system had a higher binding affinity for all heavy metals. Additionally, Zn(2+) decreased the inhibitory effects of Cd(2+) and Cu(2+) on the SRB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Capillary electrophoresis-driven synthesis of water-soluble CdTe quantum dots in nanoliter scale

    Science.gov (United States)

    Nejdl, Lukas; Hynek, David; Adam, Vojtech; Vaculovicova, Marketa

    2018-04-01

    ‘Green nanotechnology’ is a term used for the design of nanomaterials and processes that reduce or eliminate the use and/or generation of hazardous substances. In this paper, a capillary electrophoresis (CE)-driven synthesis of CdTe quantum dots (QDs) and their subsequent conjugation with a metal-binding protein metallothionein (isofom MT1) is reported. Even though the toxic materials (cadmium and potassium borohydride) were used for synthesis, the proposed method can be labeled as ‘environmentally friendly’ because the whole process (synthesis of QDs and MT1 conjugation) was carried out under mild conditions: ultra-low volume (nanoliter scale), relatively low temperature (50 °C), atmospheric pressure, and completed in a short time (under 90 s). Prepared QDs were also characterized by classical fluorescence spectroscopy and transmission electron microscopy. This study opens up new possibilities for the utilization of classical CE in the synthesis of nanoparticles and on-line labeling of biomolecules in the nanoliter scale in short period of time.

  15. Weak affinity chromatography for evaluation of stereoisomers in early drug discovery.

    Science.gov (United States)

    Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Svensson, Susanne; Ohlson, Sten; Isaksson, Roland

    2013-07-01

    In early drug discovery (e.g., in fragment screening), recognition of stereoisomeric structures is valuable and guides medicinal chemists to focus only on useful configurations. In this work, we concurrently screened mixtures of stereoisomers and estimated their affinities to a protein target (thrombin) using weak affinity chromatography-mass spectrometry (WAC-MS). Affinity determinations by WAC showed that minor changes in stereoisomeric configuration could have a major impact on affinity. The ability of WAC-MS to provide instant information about stereoselectivity and binding affinities directly from analyte mixtures is a great advantage in fragment library screening and drug lead development.

  16. Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses

    Czech Academy of Sciences Publication Activity Database

    Štěpánová, Sille; Kašička, Václav

    2016-01-01

    Roč. 39, č. 1 (2016), s. 198-211 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA13-17224S; GA ČR(CZ) GA15-01948S Institutional support: RVO:61388963 Keywords : capillary electrophoresis * mass spectrometry * microchip electrophoresis * peptidomics * proteomics Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.557, year: 2016

  17. Short-lived γ-emitting metal isotopes phthalocyanine tetrasulfonic acid

    International Nuclear Information System (INIS)

    Lier, J. Van; Rousseau, J.; Autenrieth, D.

    1981-01-01

    New phthalocyanine tetrasulfonic acid metal complexes selected from technetium-99m, gallium-67, gallium-68, copper-64, chromium-51, cobalt-57, indium-111, mercury-197 and zinc-62 have been found to have affinity for malignant growth and thus are useful in detecting the presence, size and location thereof with radiation imaging device. (author)

  18. Phylogenetic reconstruction of South American felids defined by protein electrophoresis.

    Science.gov (United States)

    Slattery, J P; Johnson, W E; Goldman, D; O'Brien, S J

    1994-09-01

    Phylogenetic associations among six closely related South American felid species were defined by changes in protein-encoding gene loci. We analyzed proteins isolated from skin fibroblasts using two-dimensional electrophoresis and allozymes extracted from blood cells. Genotypes were determined for multiple individuals of ocelot, margay, tigrina, Geoffroy's cat, kodkod, and pampas cat at 548 loci resolved by two-dimensional electrophoresis and 44 allozyme loci. Phenograms were constructed using the methods of Fitch-Margoliash and neighbor-joining on a matrix of Nei's unbiased genetic distances for all pairs of species. Results of a relative-rate test indicate changes in two-dimensional electrophoresis data are constant among all South American felids with respect to a hyena outgroup. Allelic frequencies were transformed to discrete character states for maximum parsimony analysis. Phylogenetic reconstruction indicates a major split occurred approximately 5-6 million years ago, leading to three groups within the ocelot lineage. The earliest divergence led to Leopardus tigrina, followed by a split between an ancestor of an unresolved trichotomy of three species (Oncifelis guigna, O. geoffroyi, and Lynchailuris colocolo) and a recent common ancestor of Leopardus pardalis and L. wiedii. The results suggest that modern South American felids are monophyletic and evolved rapidly after the formation of the Panama land bridge between North and South America.

  19. Factors affecting the separation performance of proteins in capillary electrophoresis.

    Science.gov (United States)

    Zhu, Yueping; Li, Zhenqing; Wang, Ping; Shen, Lisong; Zhang, Dawei; Yamaguchi, Yoshinori

    2018-04-15

    Capillary electrophoresis (CE) is an effective tool for protein separation and analysis. Compared with capillary gel electrophoresis (CGE), non-gel sieving capillary electrophoresis (NGSCE) processes the superiority on operation, repeatability and automaticity. Herein, we investigated the effect of polymer molecular weight and concentration, electric field strength, and the effective length of the capillary on the separation performance of proteins, and find that (1) polymer with high molecular weight and concentration favors the separation of proteins, although concentrated polymer hinders its injection into the channel of the capillary due to its high viscosity. (2) The resolution between the adjacent proteins decreases with the increase of electric field strength. (3) When the effective length of the capillary is long, the separation performance improves at the cost of separation time. (4) 1.4% (w/v) hydroxyethyl cellulose (HEC), 100 V/cm voltage and 12 cm effective length offers the best separation for the proteins with molecular weight from 14,400 Da to 97,400 Da. Finally, we employed the optimal electrophoretic conditions to resolve Lysozyme, Ovalbumin, BSA and their mixtures, and found that they were baseline resolved within 15 min. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Evaluation of denaturing gradient gel electrophoresis (DGGE) used ...

    African Journals Online (AJOL)

    Denaturing gradient gel electrophoresis (DGGE) is a powerful method used to study structure of bacterial communities, without cultivation, based on the diversity of the genes coding for ribosomal RNA. However, the results are strongly dependent on the respective target region of the used primer systems. Therefore, three ...

  1. Generalized Warburg impedance on realistic self-affine fractals

    Indian Academy of Sciences (India)

    We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals. The information about the ...

  2. Two-dimensional polyacrylamide gel electrophoresis of intracellular proteins

    International Nuclear Information System (INIS)

    Ojima, N.; Sakamoto, T.; Yamashita, M.

    1996-01-01

    Since two-dimensional electrophoresis was established by O'Farrell for analysis of intracellular proteins of Escherichia coli, it has been applied to separation of proteins of animal cells and tissues, and especially to identification of stress proteins. Using this technique, proteins are separated by isoelectric focusing containing 8 m urea in the first dimension and by SDS-PAGE in the second dimension. The gels are stained with Coomassie Blue R-250 dye, followed by silver staining. In the case of radio-labeled proteins, the gels are dried and then autoradiographed. In order to identify a specific protein separated by two-dimensional electrophoresis, a technique determining the N-terminal amino acid sequence of the protein has been developed recently. After the proteins in the gel were electrotransferred to a polyvinylidene difluoride membrane, the membrane was stained for protein with Commassie Blue and a stained membrane fragment was applied to a protein sequencer. Our recent studies demonstrated that fish cells newly synthesized various proteins in response to heat shock, cold nd osmotic stresses. For example, when cellular proteins extracted from cold-treated rainbow trout cells were subjected to two-dimensional gel electrophoresis, the 70 kDa protein was found to be synthesized during the cold-treatment. N-Terminal sequence analysis showed that the cold-inducible protein was a homolog of mammalian valosin-containing protein and yeast cell division cycle gene product CDC48p. Furthermore, the sequence data were useful for preparing PCR primers and a rabbit antibody against a synthetic peptide to analyze a role for the protein in the function of trout cells and mechanisms for regulation

  3. Interactions between cadmium and lead with acidic soils: Experimental evidence of similar adsorption patterns for a wide range of metal concentrations and the implications of metal migration

    International Nuclear Information System (INIS)

    Pokrovsky, O.S.; Probst, A.; Leviel, E.; Liao, B.

    2012-01-01

    Highlights: ► Adsorption experiments of Cd and Pb in acid soils (China, France). ► Large pH conditions and large range of metal concentrations were considered. ► Similar dependencies between metals concentration in solution and metal adsorbed on the surface were predicted using Langmuir and Freundlich equations and surface complexation model (SCM). ► No competition between Cd and Pb detected at pH 5. ► Metal adsorption capacity is two orders of magnitude higher than limit value for soil protection. - Abstract: The importance of high- and low-affinity surface sites for cadmium and lead adsorption in typical European and Asian soils was investigated. Adsorption experiments on surface and deep horizons of acidic brown (Vosges, France) and red loess soils (Hunan, China) were performed at 25 °C as a function of the pH (3.5–8) and a large range of metal concentrations in solution (10 −9 –10 −4 mol l −1 ). We studied the adsorption kinetics using a Cd 2+ -selective electrode and desorption experiments as a function of the solid/solution ratio and pH. At a constant solution pH, all samples exhibited similar maximal adsorption capacities (4.0 ± 0.5 μmol/g Cd and 20 ± 2 μmol/g Pb). A constant slope of adsorbed–dissolved concentration dependence was valid over 5 orders of magnitude of metal concentrations. Universal Langmuir and Freundlich equations and the SCM formalism described the adsorption isotherms and the pH-dependent adsorption edge over very broad ranges of metal concentrations, indicating no high- or low-affinity sites for metal binding at the soil surface under these experimental conditions. At pH 5, Cd and Pb did not compete, in accordance with the SCM. The metal adsorption ability exceeded the value for soil protection by two orders of magnitude, but only critical load guarantees soil protection since metal toxicity depends on metal availability.

  4. Affine pairings on ARM

    NARCIS (Netherlands)

    Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.

    2011-01-01

    Pairings on elliptic curves are being used in an increasing number of cryptographic applications on many different devices and platforms, but few performance numbers for cryptographic pairings have been reported on embedded and mobile devices. In this paper we give performance numbers for affine and

  5. Human lymphocyte polymorphisms detected by quantitative two-dimensional electrophoresis

    International Nuclear Information System (INIS)

    Goldman, D.; Merril, C.R.

    1983-01-01

    A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of 14 C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P . 19/186 . .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses

  6. Trapping and breaking of in vivo nicked DNA during pulsed-field gel electrophoresis

    Science.gov (United States)

    Khan, Sharik R.; Kuzminov, Andrei

    2013-01-01

    Pulsed field gel electrophoresis (PFGE) offers a high-resolution approach to quantify chromosomal fragmentation in bacteria, measured as percent of chromosomal DNA entering the gel. The degree of separation in PFG depends upon the size of DNA, as well as various conditions of electrophoresis, such as electric field strength (FS), time of electrophoresis, switch time and buffer composition. Here we describe a new parameter, the structural integrity of the sample DNA itself, that influences its migration through PFGs. We show that sub-chromosomal fragments containing both spontaneous and DNA damage-induced nicks are prone to breakage during PFGE. Such breakage at single strand interruptions results in artefactual decrease in molecular weight of linear DNA making accurate determination of the number of double strand breaks difficult. While breakage of nicked sub-chromosomal fragments is FS-independent, some high molecular weight sub-chromosomal fragments are also trapped within wells under the standard PFGE conditions. This trapping can be minimized by lowering the field strength and increasing the time of electrophoresis. We discuss how breakage of nicked DNA may be mechanistically linked to trapping. Our results suggest how to optimize conditions for PFGE when quantifying chromosomal fragmentation induced by DNA damage. PMID:23770235

  7. Common and metal-specific proteomic responses to cadmium and zinc in the metal tolerant ericoid mycorrhizal fungus Oidiodendron maius Zn.

    Science.gov (United States)

    Chiapello, M; Martino, E; Perotto, S

    2015-05-01

    Although adaptive metal tolerance may arise in fungal populations in polluted soils, the mechanisms underlying metal-specific tolerance are poorly understood. Comparative proteomics is a powerful tool to identify variation in protein profiles caused by changing environmental conditions, and was used to investigate protein accumulation in a metal tolerant isolate of the ericoid mycorrhizal fungus Oidiodendron maius exposed to zinc and cadmium. Two-dimensional gel electrophoresis and shotgun proteomics followed by mass spectrometry lead to the identification of common and metal-specific proteins and pathways. Proteins selectively induced by cadmium exposure were molecular chaperons of the Hsp90 family, cytoskeletal proteins and components of the translation machinery. Zinc significantly up-regulated metabolic pathways related to energy production and carbohydrates metabolism, likely mirroring zinc adaptation of this fungal isolate. Common proteins induced by the two metal ions were the antioxidant enzyme Cu/Zn superoxide dismutase and ubiquitin. In mycelia exposed to zinc and cadmium, both proteomic techniques also identified agmatinase, an enzyme involved in polyamine biosynthesis. This novel finding suggests that, like plants, polyamines may have important functions in response to abiotic environmental stress in fungi. Genetic evidence also suggests that the biosynthesis of polyamines via an alternative metabolic pathway may be widespread in fungi.

  8. Heavy metal ions are potent inhibitors of protein folding

    International Nuclear Information System (INIS)

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-01-01

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd 2+ , Hg 2+ and Pb 2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC 50 in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far

  9. Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT

    Directory of Open Access Journals (Sweden)

    Gregory R. Kowald

    2016-01-01

    Full Text Available Earthworms express, as most animals, metallothioneins (MTs—small, cysteine-rich proteins that bind d10 metal ions (Zn(II, Cd(II, or Cu(I in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II and Zn(II. Crucially, whilst a single Cd7wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II, expressions in the presence of Zn(II yielded mixtures. The average affinities of wMT-2 determined for either Cd(II or Zn(II are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by 1H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo.

  10. ODE/IM correspondence and modified affine Toda field equations

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Katsushi; Locke, Christopher

    2014-08-15

    We study the two-dimensional affine Toda field equations for affine Lie algebra g{sup ^} modified by a conformal transformation and the associated linear equations. In the conformal limit, the associated linear problem reduces to a (pseudo-)differential equation. For classical affine Lie algebra g{sup ^}, we obtain a (pseudo-)differential equation corresponding to the Bethe equations for the Langlands dual of the Lie algebra g, which were found by Dorey et al. in study of the ODE/IM correspondence.

  11. Device for Horizontal Zone Electrophoresis in Free Electrolyte

    CERN Document Server

    Priemyshev, A N; Bozhikov, G A; Alikov, B A; Salamatin, A V; Furyaev, T A; Maslov, O D; Milanov, M V; Dmitriev, S N

    2000-01-01

    With expansion of area of application of an electromigration method the necessity of modernization of installation for horizontal zone electrophoresis in free electrolyte has appeared. A number of the basic modules was essentially advanced, that has allowed considerably increase reliability and accuracy of received results. The device is completely automated.

  12. Evaluation of wheat by polyacrylamide gel electrophoresis | Shuaib ...

    African Journals Online (AJOL)

    ... polyacrylamide gel electrophoresis (SDS-PAGE). Electrophorogram for each variety were scored and presence or absence of each band noted and was entered in a binary data matrix. Based on the data of SDS-PAGE gels cluster analysis was performed to check the variations among varieties. The overall result shows ...

  13. Capillary electrophoresis in the analysis of biologically important thiols

    Czech Academy of Sciences Publication Activity Database

    Lačná, J.; Kubáň, Petr; Foret, František

    2017-01-01

    Roč. 38, č. 1 (2017), s. 203-222 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : biological thiols * capillary electrophoresis * clinical applications Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  14. Stability of the neurotensin receptor NTS1 free in detergent solution and immobilized to affinity resin.

    Directory of Open Access Journals (Sweden)

    Jim F White

    2010-09-01

    Full Text Available Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1.To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [(3H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein.Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.

  15. Detection of human DNA polymorphisms with a simplified denaturing gradient gel electrophoresis technique.

    OpenAIRE

    Noll, W W; Collins, M

    1987-01-01

    Single base pair differences between otherwise identical DNA molecules can result in altered melting behavior detectable by denaturing gradient gel electrophoresis. We have developed a simplified procedure for using denaturing gradient gel electrophoresis to detect base pair changes in genomic DNA. Genomic DNA is digested with restriction enzymes and hybridized in solution to labeled single-stranded probe DNA. The excess probe is then hybridized to complementary phage M13 template DNA, and th...

  16. Characterization of self-affinity in the global regime

    Science.gov (United States)

    Neimark, Alexander V.

    1994-11-01

    Methods for characterization of self-affine surfaces and measurements of their roughness exponents H are developed. It is shown that for smoothed surfaces, which underwent particular coarse graining or averaging of the small-scale fluctuations, the excess surface area Sex and the mean square root radius of curvature ac are related by two distinct asymptotic power laws if ac is well below or well above a certain crossover scale acr. In the local regime of self-affinity, when acSex~(ac/acr)-(1-H). In the global regime of self-affinity, when ac>>acr, Sex~(ac/acr)-2(1-H)/(2-H). The former scaling relationship is consistent with the well known definition of local fractal dimensions dloc=dtop+1-H. The latter scaling relationship offers alternatives for characterization of self-affinity over large scales by means of excess dimensions defined as dex=dtop+2(1-H)/(2-H) and can be used for determination of roughness exponents from the measurements provided in the global regime. The thermodynamic method of fractal analysis, proposed earlier for self-similar surfaces (A.V. Neimark, Pis'ma Zh. Eksp. Teor. Fiz. 51, 535 (1990) [JETP Lett. 51, 607 (1990)]; Physica A 191, 258 (1992)), is extended for self-affine surfaces for determination of fractal dimensions and roughness exponents from adsorption and capillary experimental data.

  17. Pulsed-field gel electrophoresis typing of Staphylococcus aureus isolates

    Science.gov (United States)

    Pulsed-field gel electrophoresis (PFGE) is the most applied and effective genetic typing method for epidemiological studies and investigation of foodborne outbreaks caused by different pathogens, including Staphylococcus aureus. The technique relies on analysis of large DNA fragments generated by th...

  18. DNA migration mechanism analyses for applications in capillary and microchip electrophoresis

    Science.gov (United States)

    Forster, Ryan E.; Hert, Daniel G.; Chiesl, Thomas N.; Fredlake, Christopher P.; Barron, Annelise E.

    2009-01-01

    In 2009, electrophoretically driven DNA separations in slab gels and capillaries have the sepia tones of an old-fashioned technology in the eyes of many, even while they remain ubiquitously used, fill a unique niche, and arguably have yet to reach their full potential. For comic relief, what is old becomes new again: agarose slab gel separations are used to prepare DNA samples for “next-gen” sequencing platforms (e.g., the Illumina and 454 machines)—dsDNA molecules within a certain size range are “cut out” of a gel and recovered for subsequent “massively parallel” pyrosequencing. In this review, we give a Barron lab perspective on how our comprehension of DNA migration mechanisms in electrophoresis has evolved, since the first reports of DNA separations by CE (∼1989) until now, 20 years later. Fused silica capillaries, and borosilicate glass and plastic microchips, quietly offer increasing capacities for fast (and even “ultra-fast”), efficient DNA separations. While the channel-by-channel scaling of both old and new electrophoresis platforms provides key flexibility, it requires each unique DNA sample to be prepared in its own micro- or nanovolume. This Achille's heel of electrophoresis technologies left an opening through which pooled-sample, next-gen DNA sequencing technologies rushed. We shall see, over time, whether sharpening understanding of transitions in DNA migration modes in crosslinked gels, nanogel solutions, and uncrosslinked polymer solutions will allow electrophoretic DNA analysis technologies to flower again. Microchannel electrophoresis, after a quiet period of metamorphosis, may emerge sleeker and more powerful, to claim its own important niche applications. PMID:19582705

  19. A Transition Metal-Binding, Trimeric βγ-Crystallin from Methane-Producing Thermophilic Archaea, Methanosaeta thermophila.

    Science.gov (United States)

    Srivastava, Shanti Swaroop; Jamkhindikar, Aditya Anand; Raman, Rajeev; Jobby, Maroor K; Chadalawada, Swathi; Sankaranarayanan, Rajan; Sharma, Yogendra

    2017-03-07

    βγ-Crystallins are important constituents of the vertebrate eye lens, whereas in microbes, they are prevalent as Ca 2+ -binding proteins. In archaea, βγ-crystallins are conspicuously confined to two methanogens, viz., Methanosaeta and Methanosarcina. One of these, i.e., M-crystallin from Methanosarcina acetivorans, has been shown to be a typical Ca 2+ -binding βγ-crystallin. Here, with the aid of a high-resolution crystal structure and isothermal titration calorimetry, we report that "Methallin", a βγ-crystallin from Methanosaeta thermophila, is a trimeric, transition metal-binding protein. It binds Fe, Ni, Co, or Zn ion with nanomolar affinity, which is consistent even at 55 °C, the optimal temperature for the methanogen's growth. At the center of the protein trimer, the metal ion is coordinated by six histidines, two from each protomer, leading to an octahedral geometry. Small-angle X-ray scattering analysis confirms that the trimer seen in the crystal lattice is a biological assembly; this assembly dissociates to monomers upon removal of the metal ion. The introduction of two histidines (S17H/S19H) into a homologous βγ-crystallin, Clostrillin, allows it to bind nickel at the introduced site, though with micromolar affinity. However, because of the lack of a compatible interface, nickel binding could not induce trimerization, affirming that Methallin is a naturally occurring trimer for high-affinity transition metal binding. While βγ-crystallins are known to bind Ca 2+ and form homodimers and oligomers, the transition metal-binding, trimeric Methallin is a new paradigm for βγ-crystallins. The distinct features of Methallin, such as nickel or iron binding, are also possible imprints of biogeochemical changes during the period of its origin.

  20. Development of a high-quality cut-off wall using electrophoresis

    International Nuclear Information System (INIS)

    Kawachi, T.; Murahashi, H.

    1991-01-01

    Techniques to build a high-quality cut-off wall have been developed for storage facilities of low-level radioactive waste (LLW) as an emergency measures to prevent leakages. The cut-off wall is highly impermeable, nucleid-adsorptive and have long-term durability. Electrophoresis is used to form impermeable membrane of bentonite as main features of the cut-off wall. First of all, laboratory tests have been conducted to study ways of building barriers on site and to collect data on the barriers properties. Afterwards, on-site construction tests of a high-quality cut-off wall have been carried out. In this paper, we describe the process and results on the studies of the high-quality cut-off wall using electrophoresis

  1. Methyl cation affinities of neutral and anionic maingroup-element hydrides: trends across the periodic table and correlation with proton affinities.

    Science.gov (United States)

    Mulder, R Joshua; Guerra, Célia Fonseca; Bickelhaupt, F Matthias

    2010-07-22

    We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and corresponding entropies) at 298 K of all anionic (XH(n-1)(-)) and neutral bases (XH(n)) constituted by maingroup-element hydrides of groups 14-17 and the noble gases (i.e., group 18) along the periods 2-6. The cation affinity of the bases decreases from H(+) to CH(3)(+). To understand this trend, we have carried out quantitative bond energy decomposition analyses (EDA). Quantitative correlations are established between the MCA and PA values.

  2. Exploiting large-pore metal-organic frameworks for separations through entropic molecular mechanisms

    NARCIS (Netherlands)

    Torres-Knoop, A.; Dubbeldam, D.

    2015-01-01

    We review the molecular mechanisms behind adsorption and the separations of mixtures in metal-organic frameworks and zeolites. Separation mechanisms can be based on differences in the affinity of the adsorbate with the framework and on entropic effects. To develop next-generation adsorbents, the

  3. DAYA ANTIBAKTERI EKSTRAK ETANOL DAUN SENGGANI (Melastoma affine D. Don

    Directory of Open Access Journals (Sweden)

    Ika Trisharyanti Dian Kusumowati

    2014-08-01

    Full Text Available Melastoma affine D. Don had some activities such as anthelmintic, antibacteria, antiinfiammation, antifungal, and antitumor. The aims of this research was determine antibacteria activity of ethanolic extract of Melastoma affine D. Don. The antimicrobial activity was tested by solid dilution method to get Minimum Inhibition Concentration (MIC. The compounds in Melastoma affine D. Don was analyzed by tube test method and Thin Layer Chromatography (TLC with chloroform : methanol : formic acid (8,5:1,5:0,5 as mobile phase and silica gel GF254 as stationary phase. The result showed ethanolic extract of Melastoma affine D. Don contains alkaloid, polyphenol, fiavonoid, saponin, and essential oil. The MIC of Senggani against Staphylococcus aureus was 2% and 3% against Escherichia coli and the extract could not inhibit Staphylococcus aureus and Escherichia coli multiresistant until concentration 7% extract ethanol. Keywords: Melastoma affine D. Don, Staphylococcus aureus, Escherichia coli

  4. Simultaneous determination of five flavonoids in saussurea involucrata by capillary electrophoresis

    International Nuclear Information System (INIS)

    Li, Y.; Zhong, H.; Zhong, H.

    2013-01-01

    A method of determination of five flavonoids in Saussurea involucrata by beta-cyclodextrin modified capillary zone electrophoresis has been developed.The effects of buffer pH and buffer concentration, applied voltage and beta-CD concentrations on the separation were systematically investigated. The optimum condition providing baseline separation of all compounds within 8 min was obtained in the 20 mmol per liter borax buffer (pH 9.2), 20 kV applied voltage and 8 mmol per liter beta-CD. The linearity, detection limits, limits of quantification, reproducibility and recovery were satisfactory. The beta-cyclodextrin modified capillary zone electrophoresis method proposed here has been satisfactorily employed to analyze S. involucrate samples. (author)

  5. Computation of piecewise affine terminal cost functions for model predictive control

    NARCIS (Netherlands)

    Brunner, F.D.; Lazar, M.; Allgöwer, F.; Fränzle, Martin; Lygeros, John

    2014-01-01

    This paper proposes a method for the construction of piecewise affine terminal cost functions for model predictive control (MPC). The terminal cost function is constructed on a predefined partition by solving a linear program for a given piecewise affine system, a stabilizing piecewise affine

  6. Distribution of hemoglobinopathies in patients presenting for electrophoresis and comparison of result with High performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    R Jha

    2015-09-01

    Full Text Available Background: Nearly 226 million carriers of thalassemias and abnormal hemoglobin are present worldwide according to the World Health Organization (WHO. The laboratory plays an important role in the investigation of the thalassemias and hemoglobinopathies. Cellulose acetate electrophoresis at alkaline pH and diagnosis based mainly on visual impression of thickness of band may miss the thalassemic trait patients. The aim of this study was to find out different hemoglobinopathies and thalassemia presenting in our hospital and to compare electrophoresis results with HPLC.Materials and Methods: This study was performed in the hematopathology section of Department of Pathology of Tribhuvan University Teaching Hospital on cases sent for electrophoresis during 18 months period from October 2013 to March 2015 and included hemoglobinopathies and thalassemias identified by either electrophoresis or HPLC. 97 cases fulfilled the inclusion criteria and thus were included in the study. Electrophoresis at alkaline pH was done in all whereas HPLC was performed in 27 cases.Results: A sharp peak of hemoglobinopathies and thalassemias was seen in Tharu community though other communities are also affected. Thalassemia trait was the most common diagnosis (26.8% followed by sickle cell anemia (21.6%.  Electrophoresis was efficient in detecting some alpha thalassemia variants but missed many cases of beta thalassemia trait.Conclusion: Beta Thalassemia trait and sickle cell anemia both are common in Nepal , along with some other hemoglobinopathies  A sharp peak of hemoglobinopathies and thalassemias are seen in Tharu community. These abnormal hemoglobins and thalassemias are mainly seen in Terai region. Electrophoresis fails to quantify hemoglobin percentage and thus is not appropriate test in beta thalassemia screening. 

  7. Comparative Studies of Two-Dimensional Electrophoresis on Galactosidase Relating to Bombyx Lectin Activity

    OpenAIRE

    加藤, 靖夫; カトウ, ヤスオ; Yasuo, Kato

    2005-01-01

    "Comparative two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) analysis on the haemolymph of the domesticated silkworm, Bombyx mori and Fraction II obtained by gel filtration from the haemolymph of B. mori was performed using the 2-D mini-slab system (Atto Co.) (the first method of 2-D PAGE) and the Mini-PROTEAN mini tube gel 2-D PAGE system (Bio-Rad Laboratories, Inc.) (the second method). Moreover, two-dimensionnal electrophoresis analysis on standard β-galactosidase, grade III ...

  8. Determination of some trace metals in elsaraf dam (GEDAREF)

    International Nuclear Information System (INIS)

    Yagoob, T. I.

    2001-07-01

    In this study the part of the plant analyzed was the root, while by the soil we mean the soil which is in direct contact with the plant root. This analysis was carried to find the relation between the concentrations of the free ions in water, the mobile ions in the soil in contact with the root of the plant and the ions uptake by the plant as well as the movement of these ions between different reservoirs. The nutrient elements, (Fe, Mn, Zn, Cu, Co) showed higher concentrations than toxic elements (Cr, Ni, Cd). Because of its natural abundance, iron has the highest concentration (54900/56600, 33580/36800), manganese has shown the second highest concentration, followed by nickel and zinc. Copper, cobalt and chromium have shown relatively similar concentrations, while cadmium has shown the lowest concentration. In general, almost for all elements the soils have shown higher concentration followed by the plant and then water. Cyperus rotandus has shown high affinity towards most of the metal ions, while the rest of plants have shown almost similar affinity. Because of the generally low concentration of metal ions in water, preconcentration was used using 8-hydroxyquinoline (oxine) and ammonium pyrolidine dithiocarbamate APDC to extract (pre concentrate) the metal ions at the optimum parameters before measurement in AAS.(Author)

  9. Metal binding proteins, recombinant host cells and methods

    Science.gov (United States)

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  10. Capillary electrophoresis microchip coupled with on-line chemiluminescence detection

    International Nuclear Information System (INIS)

    Su Rongguo; Lin Jinming; Qu Feng; Chen Zhifeng; Gao Yunhua; Yamada, Masaaki

    2004-01-01

    In the present work, chemiluminescence detection was integrated with capillary electrophoresis microchip. The microchip was designed on the principle of flow-injection chemiluminescence system and capillary electrophoresis. It has three main channels, five reservoirs and a detection cell. As model samples, dopamine and catechol were separated and detected using a permanganate chemiluminescent system on the prepared microchip. The samples were electrokinetically injected into the double-T cross section, separated in the separation channel, and then oxidized by chemiluminescent reagent delivered by a home-made micropump to produce light in the detection cell. The electroosmotic flow could be smoothly coupled with the micropump flow. The detection limits for dopamine and catechol were 20.0 and 10.0 μM, respectively. Successful separation and detection of dopamine and catechol demonstrated the distinct advantages of integration of chemiluminescent detection on a microchip for rapid and sensitive analysis

  11. Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration.

    Science.gov (United States)

    Choudhary, Sangeeta; Sar, Pinaki

    2009-05-01

    Heavy metal sequestration by a multimetal resistant Pseudomonas strain isolated from a uranium mine was characterized for its potential application in metal bioremediation. 16S rRNA gene analysis revealed phylogenetic relatedness of this isolate to Pseudomonas fluorescens. Metal uptake by this bacterium was monophasic, fast saturating, concentration and pH dependent with maximum loading of 1048 nmol Ni(2+) followed by 845 nmol Co(2+), 828 nmol Cu(2+) and 700 nmol Cd(2+)mg(-1) dry wt. Preferential metal deposition in cell envelope was confirmed by TEM and cell fractionation. FTIR spectroscopy and EDX analysis revealed a major role of carboxyl and phosphoryl groups along with a possible ion exchange mechanism in cation binding. Binary system demonstrated selective metal binding affinity in the order of Cu(2+)>Ni(2+)>Co(2+)>Cd(2+). A comparison with similar metal uptake reports considering live bacteria strongly indicated the superiority of this strain in metal sequestration, which could be useful for developing efficient metal removal system.

  12. On Affine Fusion and the Phase Model

    Directory of Open Access Journals (Sweden)

    Mark A. Walton

    2012-11-01

    Full Text Available A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n Wess-Zumino-Novikov-Witten (WZNW conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.

  13. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.

    Science.gov (United States)

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades

    2015-01-01

    DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA

  14. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique

    Science.gov (United States)

    2015-01-01

    Background DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. Results We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. Conclusions This work presents an

  15. Analysis of lipoproteins by capillary zone electrophoresis in microfluidic devices: Assay development and surface roughness measurements

    NARCIS (Netherlands)

    Weiller, Bruce H.; Ceriotti, Laura; Shibata, Takayuki; Rein, Dietrich; Roberts, Matthew A.; Lichtenberg, Jan; German, J. Bruce; De Rooij, Nico F.; Verpoorte, Elisabeth

    2002-01-01

    The development of a new assay for lipoproteins by capillary electrophoresis in fused-silica capillaries and in glass microdevices is described in this paper. The separation of low-density (LDL) and high-density (HDL) lipoproteins by capillary zone electrophoresis is demonstrated in fused-silica

  16. Specificity and affinity quantification of protein-protein interactions.

    Science.gov (United States)

    Yan, Zhiqiang; Guo, Liyong; Hu, Liang; Wang, Jin

    2013-05-01

    Most biological processes are mediated by the protein-protein interactions. Determination of the protein-protein structures and insight into their interactions are vital to understand the mechanisms of protein functions. Currently, compared with the isolated protein structures, only a small fraction of protein-protein structures are experimentally solved. Therefore, the computational docking methods play an increasing role in predicting the structures and interactions of protein-protein complexes. The scoring function of protein-protein interactions is the key responsible for the accuracy of the computational docking. Previous scoring functions were mostly developed by optimizing the binding affinity which determines the stability of the protein-protein complex, but they are often lack of the consideration of specificity which determines the discrimination of native protein-protein complex against competitive ones. We developed a scoring function (named as SPA-PP, specificity and affinity of the protein-protein interactions) by incorporating both the specificity and affinity into the optimization strategy. The testing results and comparisons with other scoring functions show that SPA-PP performs remarkably on both predictions of binding pose and binding affinity. Thus, SPA-PP is a promising quantification of protein-protein interactions, which can be implemented into the protein docking tools and applied for the predictions of protein-protein structure and affinity. The algorithm is implemented in C language, and the code can be downloaded from http://dl.dropbox.com/u/1865642/Optimization.cpp.

  17. Diamond cubic phase of monoolein and water as an amphiphilic matrix for electrophoresis of oligonucleotides.

    Science.gov (United States)

    Carlsson, Nils; Winge, Ann-Sofie; Engström, Sven; Akerman, Björn

    2005-10-06

    We used a cubic liquid crystal formed by the nonionic monoglyceride monoolein and water as a porous matrix for the electrophoresis of oligonucleotides. The diamond cubic phase is thermodynamically stable when in contact with a water-rich phase, which we exploit to run the electrophoresis in the useful submarine mode. Oligonucleotides are separated according to size and secondary structure by migration through the space-filling aqueous nanometer pores of the regular liquid crystal, but the comparatively slow migration means the cubic phase will not be a replacement for the conventional DNA gels. However, our demonstration that the cubic phase can be used in submarine electrophoresis opens up the possibility for a new matrix for electrophoresis of amphiphilic molecules. From this perspective, the results on the oligonucleotides show that water-soluble particles of nanometer size, typical for the hydrophilic parts of membrane-bound proteins, may be a useful separation motif. A charged contamination in the commercial sample of monoolein, most likely oleic acid that arises from its hydrolysis, restricts useful buffer conditions to a pH below 5.6.

  18. Customizable Biopolymers for Heavy Metal Remediation

    International Nuclear Information System (INIS)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred

    2005-01-01

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create 'artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted

  19. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  20. Determination of ammonium in river water and sewage samples by capillary zone electrophoresis with direct UV detection.

    Science.gov (United States)

    Fukushi, Keiichi; Ito, Hideyuki; Kimura, Kenichi; Yokota, Kuriko; Saito, Keiitsu; Chayama, Kenji; Takeda, Sahori; Wakida, Shin-ichi

    2006-02-17

    We developed capillary zone electrophoresis (CZE) with direct UV detection for determination of ammonium in environmental water samples. Ammonium in the samples was partly converted into ammonia in the alkaline background electrolyte (BGE) during migration and was detected by molecular absorption of ammonia at 190 nm in approximately 7 min. The limit of detection (LOD) for ammonium was 0.24 mg/l (as nitrogen) at a signal-to-noise ratio of three. The respective values of the relative standard deviation (RSD) of peak area, peak height, and migration time for ammonium were 2.1, 1.8, and 0.46%. Major alkali and alkaline earth metal ions coexisting in the samples did not interfere with ammonium determination by the proposed method. The proposed method determined ammonium in surface water and sewage samples. The results were compared to those obtained using ion chromatography (IC).

  1. Amperometric Detection in Microchip Electrophoresis Devices: Effect of Electrode Material and Alignment on Analytical Performance

    Science.gov (United States)

    Fischer, David J.; Hulvey, Matthew K.; Regel, Anne R.; Lunte, Susan M.

    2012-01-01

    The fabrication and evaluation of different electrode materials and electrode alignments for microchip electrophoresis with electrochemical (EC) detection is described. The influences of electrode material, both metal and carbon-based, on sensitivity and limits of detection (LOD) were examined. In addition, the effects of working electrode alignment on analytical performance (in terms of peak shape, resolution, sensitivity, and LOD) were directly compared. Using dopamine (DA), norepinephrine (NE), and catechol (CAT) as test analytes, it was found that pyrolyzed photoresist electrodes with end-channel alignment yielded the lowest limit of detection (35 nM for DA). In addition to being easier to implement, end-channel alignment also offered better analytical performance than off-channel alignment for the detection of all three analytes. In-channel electrode alignment resulted in a 3.6-fold reduction in peak skew and reduced peak tailing by a factor of 2.1 for catechol in comparison to end-channel alignment. PMID:19802847

  2. Exploring chip-capillary electrophoresis-laser-induced fluorescence field-deployable platform flexibility: Separations of fluorescent dyes by chip-based non-aqueous capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Nuchtavorn, N.; Smejkal, Petr; Breadmore, M. C.; Guijt, R. M.; Doble, P.; Bek, F.; Foret, František; Suntornsuk, L.; Macka, M.

    2013-01-01

    Roč. 1286, APR (2013), s. 216-221 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : microfluidic chip CE * capillary electrophoresis * NACE * LIF detection Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.258, year: 2013

  3. The Metal Cation Chelating Capacity of Astaxanthin. Does This Have Any Influence on Antiradical Activity?

    Directory of Open Access Journals (Sweden)

    Ana Martínez

    2012-01-01

    Full Text Available In this Density Functional Theory study, it became apparent that astaxanthin (ASTA may form metal ion complexes with metal cations such as Ca+2, Cu+2, Pb+2, Zn+2, Cd+2 and Hg+2. The presence of metal cations induces changes in the maximum absorption bands which are red shifted in all cases. Therefore, in the case of compounds where metal ions are interacting with ASTA, they are redder in color. Moreover, the antiradical capacity of some ASTA-metal cationic complexes was studied by assessing their vertical ionization energy and vertical electron affinity, reaching the conclusion that metal complexes are slightly better electron donors and better electron acceptors than ASTA.

  4. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  5. Affine pairings on ARM

    NARCIS (Netherlands)

    Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.; Abdalla, M.; Lange, T.

    2013-01-01

    We report on relative performance numbers for affine and projective pairings on a dual-core Cortex A9 ARM processor. Using a fast inversion in the base field and doing inversion in extension fields by using the norm map to reduce to inversions in smaller fields, we find a very low ratio of

  6. Performance comparison of capillary and agarose gel electrophoresis for the identification and characterization of monoclonal immunoglobulins.

    Science.gov (United States)

    McCudden, Christopher R; Mathews, Stephanie P; Hainsworth, Shirley A; Chapman, John F; Hammett-Stabler, Catherine A; Willis, Monte S; Grenache, David G

    2008-03-01

    The objective of this study was to compare gel- and capillary-based serum protein electrophoresis methods to identify and characterize monoclonal immunoglobulins (M proteins). Five reviewers interpreted 149 consecutively ordered serum specimens following agarose gel electrophoresis (AGE), capillary electrophoresis (CE), immunofixation electrophoresis (IFE), and subtraction immunotyping (IT). As a screening test for detecting M proteins, AGE and CE displayed similar sensitivity (91% and 92%, respectively). CE was less specific (74%) than AGE (81%). An analysis of interinterpreter agreement revealed that interpretations were more consistent using gel-based methods than capillary-based methods, with 80% of the gel interpretations being in complete (5/5) agreement compared with 67% of the capillary interpretations. After implementing the capillary-based methods, the number of tests per reportable result increased (from 1.58 to 1.73). CE is an analytically suitable alternative to AGE, but laboratories implementing it will need to continue IFE testing to characterize all M proteins detected by CE.

  7. Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli.

    Science.gov (United States)

    Grillo-Puertas, Mariana; Schurig-Briccio, Lici Ariane; Rodríguez-Montelongo, Luisa; Rintoul, María Regina; Rapisarda, Viviana Andrea

    2014-03-19

    Metal tolerance in bacteria has been related to polyP in a model in which heavy metals stimulate the polymer hydrolysis, forming metal-phosphate complexes that are exported. As previously described in our laboratory, Escherichia coli cells grown in media containing a phosphate concentration >37 mM maintained an unusually high polyphosphate (polyP) level in stationary phase. The aim of the present work was to evaluate the influence of polyP levels as the involvement of low-affinity inorganic phosphate transport (Pit) system in E. coli copper tolerance. PolyP levels were modulated by the media phosphate concentration and/or using mutants in polyP metabolism. Stationary phase wild-type cells grown in high phosphate medium were significantly more tolerant to copper than those grown in sufficient phosphate medium. Copper addition to tolerant cells induced polyP degradation by PPX (an exopolyphosphatase), phosphate efflux and membrane polarization. ppk-ppx- (unable to synthesize/degrade polyP), ppx- (unable to degrade polyP) and Pit system mutants were highly sensitive to metal even in high phosphate media. In exponential phase, CopA and polyP-Pit system would act simultaneously to detoxify the metal or one could be sufficient to safeguard the absence of the other. Our results support a mechanism for copper detoxification in exponential and stationary phases of E. coli, involving Pit system and degradation of polyP. Data reflect the importance of the environmental phosphate concentration in the regulation of the microbial physiological state.

  8. Affine planes, ternary rings, and examples of non-Desarguesian planes

    OpenAIRE

    Ivanov, Nikolai V.

    2016-01-01

    The paper is devoted to a detailed self-contained exposition of a part of the theory of affine planes leading to a construction of affine (or, equivalently, projective) planes not satisfying the Desarques axiom. It is intended to complement the introductory expositions of the theory of affine and projective planes. A novelty of our exposition is a new notation for the ternary operation in a ternary ring, much more suggestive than the standard one.

  9. Fermionic construction of vertex operators for twisted affine algebras

    International Nuclear Information System (INIS)

    Frappat, L.; Sorba, P.; Sciarrino, A.

    1988-03-01

    We construct vertex operator representations of the twisted affine algebras in terms of fermionic (or parafermionic in some cases) elementary fields. The folding method applied to the extended Dynkin diagrams of the affine algebras allows us to determine explicitly these fermionic fields as vertex operators

  10. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  11. k-Schur functions and affine Schubert calculus

    CERN Document Server

    Lam, Thomas; Morse, Jennifer; Schilling, Anne; Shimozono, Mark; Zabrocki, Mike

    2014-01-01

    This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory. The other direction is the study of the Schubert bases of the (co)homology of the affine Grassmannian, an algebro-topological formulation of a problem in enumerative geometry. This is the first introductory text on this subject. It contains many examples in Sage, a free open source general purpose mathematical software system, to entice the reader to investigate the open problems. This book is written for advanced undergraduate and graduate students, as well as researchers, who want to become familiar with ...

  12. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.

    Science.gov (United States)

    Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser

    2016-04-05

    Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods.

  13. Synthesis and binding affinity of an iodinated juvenile hormone

    Energy Technology Data Exchange (ETDEWEB)

    Prestwich, G.D.; Eng, W.S.; Robles, S.; Vogt, R.G.; Wisniewski, J.R.; Wawrzenczyk, C.

    1988-01-25

    The synthesis of the first iodinated juvenile hormone (JH) in enantiomerically enriched form is reported. This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera. The unlabeled compound shows approximately 10% of the relative binding affinity for the larval hemolymph JH binding protein (JHBP) of Manduca sexta, which specifically binds natural /sup 3/H-10R,11S-JH I (labeled at 58 Ci/mmol) with a KD of 8 X 10(-8) M. It is also approximately one-tenth as biologically active as JH I in the black Manduca and epidermal commitment assays. The 12-hydroxy and 12-oxo compounds are poor competitors and are also biologically inactive. The radioiodinated (/sup 125/I)12-iodo-JH I can be prepared in low yield at greater than 2500 Ci/mmol by nucleophilic displacement using no-carrier-added /sup 125/I-labeled sodium iodide in acetone; however, synthesis using sodium iodide carrier to give the approximately 50 Ci/mmol radioiodinated ligand proceeds in higher radiochemical yield with fewer by-products and provides a radioligand which is more readily handled in binding assays. The KD of (/sup 125/I)12-iodo-JH I was determined for hemolymph JHBP of three insects: M. sexta, 795 nM; Galleria mellonella, 47 nM; Locusta migratoria, 77 nM. The selectivity of 12-iodo-JH I for the 32-kDa JHBP of M. sexta was demonstrated by direct autoradiography of a native polyacrylamide gel electrophoresis gel of larval hemolymph incubated with the radioiodinated ligand. Thus, the in vitro and in vivo activity of 12-iodo-JH I indicate that it can serve as an important new gamma-emitting probe in the search for JH receptor proteins in target tissues.

  14. N-(2-chloroethyl)-N-nitrosoureas covalently bound to nonionic and monocationic lexitropsin dipeptides. Synthesis, DNA affinity binding characteristics, and reactions with 32P-end-labeled DNA

    International Nuclear Information System (INIS)

    Church, K.M.; Wurdeman, R.L.; Zhang, Yi; Chen, Faxian; Gold, B.

    1990-01-01

    The synthesis and characterization of a series of compounds that contain an N-alkyl-N-nitrosourea functionality linked to DNA minor groove binding bi- and tripeptides (lexitropsins or information-reading peptides) based on methylpyrrole-2-carboxamide subunits are described. The lexitropsins (lex) synthesized have either a 3-(dimethylamino)propyl or propyl substituent on the carboxyl terminus. The preferred DNA affinity binding sequences of these compounds were footprinted in 32 P-end-labeled restriction fragments with methidiumpropyl-EDTA·Fe(II), and in common with other structural analogues, e.g., distamycin and netropsin, these nitrosoureas recognize A-T-rich runs. The affinity binding of the compound with the dimethylamino terminus, which is ionized at near-neutral pH, appeared stronger than that observed for the neutral dipeptide. The sequence specificity for DNA alkylation by (2-chloroethyl)nitrosourea-lex dipeptides (Cl-ENU-lex), with neutral and charged carboxyl termini, using 32 P-end-labeled restriction fragments, was determined by the conversion of the adducted sites into single-strand breaks by sequential heating at neutral pH and exposure to base. The DNA cleavage sites were visualized by polyacrylamide gel electrophoresis and autoradiography. Linking the Cl-ENU moiety to minor groove binders is a viable strategy to qualitatively and quantitatively control the delivery and release of the ultimate DNA alkylating agent in a sequence-dependent fashion

  15. Two-dimensional gel electrophoresis analysis of different parts of ...

    African Journals Online (AJOL)

    Two-dimensional gel electrophoresis analysis of different parts of Panax quinquefolius L. root. ... From these results it was concluded that proteomic analysis method was an effective way to identify the different parts of quinquefolius L. root. These findings may contribute to further understanding of the physiological ...

  16. Recent applications of capillary electromigration methods to separation and analysis of proteins

    Czech Academy of Sciences Publication Activity Database

    Štěpánová, Sille; Kašička, Václav

    2016-01-01

    Roč. 933, Aug 24 (2016), s. 23-42 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA15-01948S Institutional support: RVO:61388963 Keywords : affinity electrophoresis * capillary electrophoresis * isoelectric focusing * isotachophoresis * proteins * review Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.950, year: 2016

  17. Purification of human alpha uterine protein.

    Science.gov (United States)

    Sutcliffe, R G; Bolton, A E; Sharp, F; Nicholson, L V; MacKinnon, R

    1980-03-01

    Human alpha uterine protein (AUP) has been prepared from extracts of decudua by antibody affinity chromatography, DEAE Sepharose chromatography and by filtration through Sephadex G-150. This procedure yielded a protein fraction containing AUP, which was labelled with 125I by chloramine T. When analysed by SDS gel electrophoresis this radioiodinated protein fraction was found to contain predominantly a single species of protein which was precipitated by antibodies against AUP in antibody-antigen crossed electrophoresis. Rabbit anti-AUP precipitated 55-65% of the tracer in a double-antibody system. Sephadex G150 gel filtration of AUP obtained before and after affinity chromatography provided a molecular weight estimate of 50000. Since SDS gel electrophoresis revealed a polypeptide molecular weight of 23000-25000, it is suggested that AUP is a dimer.

  18. Affine-projective field laws

    International Nuclear Information System (INIS)

    Murphy, G.L.

    1975-01-01

    The general topic of geometric unified field theories is discussed in the first section. Some reasons are given for pursuing such theories, and some criticisms are considered. The second section develops the fundamental equations of a purely affine theory which is invariant under projective transformations of the affine connection. This theory is a generalization of that of Schrodinger. Possible identifications for the space-time metric are considered in Sec. III. Sections IV and V deal with the limits of pure gravitation and electrodynamics. In the symmetric limit, Einstein's vacuum equations with cosmological term are recovered. The theory also contains a generalized electrodynamic set of equations which is very similar to the Born-Infeld set. In the weak-field approximation, a finite mass must be attributed to the photon. The problem of motion for charges is discussed here, and it is argued that criticisms of unified field theories because of a supposed inability to produce the Lorentz force law are probably not justified. Three more speculative sections deal with possible explanations of nuclear forces, the spin-torsion relation, and particle structure

  19. Canine serum protein patterns using high-resolution electrophoresis (HRE).

    Science.gov (United States)

    Abate, O; Zanatta, R; Malisano, T; Dotta, U

    2000-03-01

    Serum protein values were determined in 26 healthy dogs using agarose gel electrophoresis (SPE), splitting the electrophoretic separation into six regions: albumin, alpha(1), alpha(2), beta(1), beta(2)and gamma globulins. High-resolution electrophoresis (HRE) was used to separate single proteins. Serum proteins from dogs (26 healthy and 20 affected by various diseases) were then characterized by electrophoretic immunofixation (IFE) and Sudan black staining on HRE film. Haemoglobin and normal canine plasma and serum were used to identify haptoglobin and fibrinogen, respectively. In the standard pattern, determined by HRE, the following proteins were identified: albumin, alpha(1)-lipoprotein (alpha(1)-region), haptoglobin and alpha(2)-macroglobulin (alpha(2)-region), beta -lipoprotein and C3 (beta(1)-region), transferrin and IgM (beta(2)-region), IgG (mostly in gamma -region and partly in beta(2)-region). The HRE pattern shown by healthy dogs could be compared with those of dogs affected by various diseases to obtain clinical information. Copyright 2000 Harcourt Publishers Ltd.

  20. Optically controlled electrophoresis with a photoconductive substrate

    Science.gov (United States)

    Inami, Wataru; Nagashima, Taiki; Kawata, Yoshimasa

    2018-05-01

    A photoconductive substrate is used to perform electrophoresis. Light-induced micro-particle flow manipulation is demonstrated without using a fabricated flow channel. The path along which the particles were moved was formed by an illuminated light pattern on the substrate. Because the substrate conductivity and electric field distribution can be modified by light illumination, the forces acting on the particles can be controlled. This technique has potential applications as a high functionality analytical device.

  1. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    Science.gov (United States)

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  2. Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming

    NARCIS (Netherlands)

    A.B. Berkelaar (Arjan); J.F. Sturm; S. Zhang (Shuzhong)

    1996-01-01

    textabstractIn this paper we generalize the primal--dual cone affine scaling algorithm of Sturm and Zhang to semidefinite programming. We show in this paper that the underlying ideas of the cone affine scaling algorithm can be naturely applied to semidefinite programming, resulting in a new

  3. Control and estimation of piecewise affine systems

    CERN Document Server

    Xu, Jun

    2014-01-01

    As a powerful tool to study nonlinear systems and hybrid systems, piecewise affine (PWA) systems have been widely applied to mechanical systems. Control and Estimation of Piecewise Affine Systems presents several research findings relating to the control and estimation of PWA systems in one unified view. Chapters in this title discuss stability results of PWA systems, using piecewise quadratic Lyapunov functions and piecewise homogeneous polynomial Lyapunov functions. Explicit necessary and sufficient conditions for the controllability and reachability of a class of PWA systems are

  4. Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series

    International Nuclear Information System (INIS)

    Pagnanelli, F.; Moscardini, E.; Giuliano, V.; Toro, L.

    2004-01-01

    In this paper heavy metal pollution at an abandoned Italian pyrite mine has been investigated by comparing total concentrations and speciation of heavy metals (Fe, Cu, Mn, Zn, Pb and As) in a red mud sample and a river sediment. Acid digestions show that all the investigated heavy metals present larger concentrations in the sediment than in the tailing. A modified Tessier's procedure has been used to discriminate heavy metal bound to organic fraction from those originally present in the mineral sulphide matrix and to detect a possible trend of metal mobilisation from red mud to river sediment. Sequential extractions on bulk and size fractionated samples denote that sediment samples present larger percent concentrations of the investigated heavy metals in the first extractive steps (I-IV) especially in lower dimension size fractionated samples suggesting that heavy metals in the sediment are significantly bound by superficial adsorption mechanisms. - Capsule: A modified Tessier's procedure, discriminating organic and sulphide bound metals, was used to detect pollutant mobilisation from red mud to river sediment in an abandoned pyrite mine

  5. VIII All-Russian symposium on molecular liquid chromatography and capillary electrophoresis. Program. Summary of reports

    International Nuclear Information System (INIS)

    2001-01-01

    Program and summary of reports of the VIII All-Russian symposium on molecular liquid chromatography and capillary electrophoresis are performed. The meeting took place 15-19 October, 2001 in Moscow. Many problems of liquid and ion exchange chromatography, capillary electrophoresis, thin-layer chromatography have been discussed extensively. Reports covering properties of sorbents and devices for chromatography are incorporated in the collection [ru

  6. Technical improvement to prevent DNA degradation of Leptospira spp. in pulsed field gel electrophoresis.

    Science.gov (United States)

    Ribeiro, R L; Machry, L; Brazil, J M V; Ramos, T M V; Avelar, K E S; Pereira, M M

    2009-08-01

    Leptospirosis is a public health problem. Infection with pathogenic Leptospira occurs by exposure to many environments and is traditionally associated with occupational risk activities. Pulsed-field gel electrophoresis was used to investigate the epidemiological relatedness among Leptospira isolates. However, analysis by PFGE yielded inconclusive data as a result of extensive DNA degradation. This degradation can be significantly reduced by the inclusion of thiourea in the electrophoresis buffer, improving the analysis of DNA banding patterns.

  7. Use of electrophoresis and immunoelectrophoresis in taxonomic and pollution studies

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Qasim, S.Z.

    Studies were conducted on the electrophoresis of blood serum and eye lens proteins of 5 fishes and immunoelectrophoresis of the soluble lens proteins of 10 fishes. The effects of a toxic pollutant (mercury) on the electrophoretic patterns...

  8. Non-contact adhesion to self-affine surfaces: A theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Makeev, Maxim A., E-mail: makeev@umich.edu

    2013-11-22

    Strength of adhesion between materials is known to be strongly influenced by interface irregularities. In this work, I devise a perturbative approach to describe the effect of self-affine roughness on non-contact adhesive interactions. The hierarchy of the obtained analytical solutions is the following. First, analytical formulae are deduced to describe roughness corrections to the van der Waals interaction energies between a hemi-space adherend, bounded by a self-affine surface, and a point-like adherent. Second, the problem of two hemi-spaces, one of which has a planar surface, and the other is bounded by a self-affine surface, is solved analytically. In the latter case, a numerical analysis is performed to delineate the behavior of the roughness corrections as a function of the parameters, characterizing self-affine fractal surface roughness. The problem of two hemi-spaces, both bounded by self-affine fractal surfaces, is also addressed in this work. The model's predictions are compared with previously reported theoretical results and available experimental data.

  9. Detection-Guided Fast Affine Projection Channel Estimator for Speech Applications

    Directory of Open Access Journals (Sweden)

    Yan Wu Jennifer

    2007-04-01

    Full Text Available In various adaptive estimation applications, such as acoustic echo cancellation within teleconferencing systems, the input signal is a highly correlated speech. This, in general, leads to extremely slow convergence of the NLMS adaptive FIR estimator. As a result, for such applications, the affine projection algorithm (APA or the low-complexity version, the fast affine projection (FAP algorithm, is commonly employed instead of the NLMS algorithm. In such applications, the signal propagation channel may have a relatively low-dimensional impulse response structure, that is, the number m of active or significant taps within the (discrete-time modelled channel impulse response is much less than the overall tap length n of the channel impulse response. For such cases, we investigate the inclusion of an active-parameter detection-guided concept within the fast affine projection FIR channel estimator. Simulation results indicate that the proposed detection-guided fast affine projection channel estimator has improved convergence speed and has lead to better steady-state performance than the standard fast affine projection channel estimator, especially in the important case of highly correlated speech input signals.

  10. Ligand intermediates in metal-catalyzed reactions; Annual technical report, August 1, 1992--August 1, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Gladysz, J.A.

    1993-08-10

    Achievements are reported for the following 4 areas: {pi}/{sigma} equillibria in aldehyde and ketone complexes; thermodynamic ligand binding affinities ({alpha},{beta} unsaturated organic carbonyl compounds); (a new form of coordinated carbon) an unsupported C{sub 3} chain that spans two different transition metals; and (a new form of coordinated carbon) an C{sub 3} chain that is anchored by a metal on each end and spanned by a third.

  11. Self-affine roughness influence on redox reaction charge admittance

    NARCIS (Netherlands)

    Palasantzas, G

    2005-01-01

    In this work we investigate the influence of self-affine electrode roughness on the admittance of redox reactions during facile charge transfer kinetics. The self-affine roughness is characterized by the rms roughness amplitude w, the correlation length xi and the roughness exponent H (0

  12. Affine Toda equations and solutions in the homogeneous grading

    Czech Academy of Sciences Publication Activity Database

    Zuevsky, Alexander

    2018-01-01

    Roč. 542, April 1 (2018), s. 149-161 ISSN 0024-3795 Institutional support: RVO:67985840 Keywords : affine Lie gebras * affine Toda modes * solitons Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.973, year: 2016 https://www.sciencedirect.com/science/article/pii/S0024379517302100

  13. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the range of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.

  14. Application of a diode-array detector in capillary electrophoresis

    NARCIS (Netherlands)

    Beck, W.; Hoek, van R.; Engelhardt, H.

    1993-01-01

    In the last decade diode-array detection has proved to be extremely useful in high performance liquid chromatography in recording UV-visible spectra directly and on-line in the column effluent. In capillary electrophoresis (CE) only fast-scanning detectors with long scan times (up to 2 s) are

  15. The single-cell gel electrophoresis assay to determine apoptosis ...

    African Journals Online (AJOL)

    When the frequency of appearance of apoptotic cells following was observed over a period of time, there was a significant increase in appearance of apoptosis when using single cell gel electrophoresis assay. The present report demonstrates that the characteristic pattern of apoptotic comets detected by the comet assay ...

  16. New analytical portable instrument for microchip electrophoresis with electrochemical detection.

    Science.gov (United States)

    Fernández-la-Villa, Ana; Pozo-Ayuso, Diego F; Castaño-Alvarez, Mario

    2010-08-01

    A new portable instrument that includes a high voltage power supply, a bipotentiostat, and a chip holder has been especially developed for using microchips electrophoresis with electrochemical detection. The main unit of the instrument has dimensions of 150 x 165 x 70 mm (wxdxh) and consists of a four-outputs high voltage power supply with a maximum voltage of +/-3 KV and an acquisition system with two channels for dual amperometric (DC or pulsed amperometric detection) detection. Electrochemical detection has been selected as signal transduction method because it is relatively easily implemented, since nonoptical elements are required. The system uses a lithium-ion polymer battery and it is controlled from a desktop or laptop PC with a graphical user interface based on LabVIEW connected by serial RS232 or Bluetooth. The last part of the system consists of a reusable chip holder for housing the microchips, which contain all the electrical connections and reservoirs for making the work with microchips easy. The performance of the new instrument has been evaluated and compared with other commercially available apparatus using single- and dual-channel pyrex microchips for the separation of the neurotransmitters dopamine, epinephrine, and 3,4-dihydroxy-L-phenyl-alanine. The reduction of the size of the instrument has not affected the good performance of the separation and detection using microchips electrophoresis with electrochemical detection. Moreover, the new portable instrument paves the way for in situ analysis making the use of microchips electrophoresis easier.

  17. Optimization of a pulsed-field gel electrophoresis for molecular typing of Proteus mirabilis

    Directory of Open Access Journals (Sweden)

    Alper Karagöz

    2013-09-01

    Full Text Available Objective: For the detection of outbreaks caused byProteus mirabilis, strains clonal relations are determinedmethods as “pulsed-field gel electrophoresis (PFGE”.The aim of this study was optimization of a pulsed-fieldgel electrophoresis for molecular typing of P. mirabilis.Methods: In this study, PFGE’ protocol is optimized foruse in molecular typing of P. mirabilis. Phylogenetic analyzesof strains were evaluated with Bionumerics softwaresystem (version 6.01; Applied Maths, Sint-Martens-Latem, Belgium.Results: This protocol compared with Gram-negativebacteria PFGE protocols, NotI enzyme is suitable for thisbacterium. Electrophoresis conditions should be revealedas; - block 1: initial pulse duration 1 sec, ending pulseduration 30 sec, striking angle 120°, the current 6 V/cm2,temperature 14°C, time 8 hours; - block 2: initial pulseduration 30 sec, ending pulse duration 70 sec, strikingangle 120°, the current 6 V/cm2, temperature 14°C, time16 hours; - TBE, pH=8.4.Conclusion: P. mirabilis strains were typed by PFGE andBionumerics analysis program were determined clonal relationships.The procedure was simple, reproducible andsuitable for these bacteria. Also it was evaluated, becauseof reducing time, the solution volumes and enzymes canbe economically. Outbreaks of nosocomial infections dueto bacteria studied assessment and the potential to provideuseful information about the degree of prevalence.This optimized protocol is allowed different centers’ PFGEresults to compare with other laboratories results. J ClinExp Invest 2013; 4 (3: 306-312Key words: Proteus mirabilis, molecular typing, pulsedfieldgel electrophoresis.

  18. Comparison of ethanol-soluble proteins from different rye (Secale cereale) varieties by two-dimensional electrophoresis

    DEFF Research Database (Denmark)

    Radzikowski, Louise; Nesic, Ljiljana; Hansen, H.B.

    2002-01-01

    The major storage proteins from six rye varieties, grown under the same conditions in 1997 and 1998 in Ronhave, Denmark, were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis. The proteins were extracted from ground rye kernels with 70% ethanol and separated by 2-D electrophor......The major storage proteins from six rye varieties, grown under the same conditions in 1997 and 1998 in Ronhave, Denmark, were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis. The proteins were extracted from ground rye kernels with 70% ethanol and separated by 2-D...... electrophoresis. The gels were scanned, compared using ImageMaster(R) software and the data sets were analyzed by principal component analysis (PCA) using THE UNSCRAMBLER software. Afterwards MATLAB was used to make a cluster analysis of the varieties based on PCA. The analysis of the gels showed...... separately. When the results were combined from the two years five varieties could be differentiated. The results from the PCA confirmed the finding of the unique spots and cluster analysis was made in order to illustrate the results. The combination of the results from 2-D electrophoresis and other grain...

  19. Design, synthesis and DNA interactions of a chimera between a platinum complex and an IHF mimicking peptide.

    Science.gov (United States)

    Rao, Harita; Damian, Mariana S; Alshiekh, Alak; Elmroth, Sofi K C; Diederichsen, Ulf

    2015-12-28

    Conjugation of metal complexes with peptide scaffolds possessing high DNA binding affinity has shown to modulate their biological activities and to enhance their interaction with DNA. In this work, a platinum complex/peptide chimera was synthesized based on a model of the Integration Host Factor (IHF), an architectural protein possessing sequence specific DNA binding and bending abilities through its interaction with a minor groove. The model peptide consists of a cyclic unit resembling the minor grove binding subdomain of IHF, a positively charged lysine dendrimer for electrostatic interactions with the DNA phosphate backbone and a flexible glycine linker tethering the two units. A norvaline derived artificial amino acid was designed to contain a dimethylethylenediamine as a bidentate platinum chelating unit, and introduced into the IHF mimicking peptides. The interaction of the chimeric peptides with various DNA sequences was studied by utilizing the following experiments: thermal melting studies, agarose gel electrophoresis for plasmid DNA unwinding experiments, and native and denaturing gel electrophoresis to visualize non-covalent and covalent peptide-DNA adducts, respectively. By incorporation of the platinum metal center within the model peptide mimicking IHF we have attempted to improve its specificity and DNA targeting ability, particularly towards those sequences containing adjacent guanine residues.

  20. Blood grouping based on PCR methods and agarose gel electrophoresis.

    Science.gov (United States)

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.