WorldWideScience

Sample records for metagenomic publication record

  1. Toward a Standards-Compliant Genomic and Metagenomic Publication Record

    DEFF Research Database (Denmark)

    Garrity, GM; Field, D; Kyrpides, N

    2008-01-01

    Increasingly, we are aware as a community of the growing need to manage the avalanche of genomic and metagenomic data, in addition to related data types like ribosomal RNA and barcode sequences, in a way that tightly integrates contextual data with traditional literature in a machine-readable way...... is in the midst of a publishing revolution. This revolution is marked by a growing shift away from a traditional dichotomy between "journal articles" and "database entries" and an increasing adoption of hybrid models of collecting and disseminating scientific information. With respect to genomes and metagenomes...... or communities) such as the call by the GSC for a central repository of Standard Operating Procedures describing the genomic annotation pipelines of the major sequencing centers. We argue that such an "eJournal," published under the Open Access paradigm by the GSC, could be an attractive publishing forum...

  2. MetaStorm: A Public Resource for Customizable Metagenomics Annotation.

    Directory of Open Access Journals (Sweden)

    Gustavo Arango-Argoty

    Full Text Available Metagenomics is a trending research area, calling for the need to analyze large quantities of data generated from next generation DNA sequencing technologies. The need to store, retrieve, analyze, share, and visualize such data challenges current online computational systems. Interpretation and annotation of specific information is especially a challenge for metagenomic data sets derived from environmental samples, because current annotation systems only offer broad classification of microbial diversity and function. Moreover, existing resources are not configured to readily address common questions relevant to environmental systems. Here we developed a new online user-friendly metagenomic analysis server called MetaStorm (http://bench.cs.vt.edu/MetaStorm/, which facilitates customization of computational analysis for metagenomic data sets. Users can upload their own reference databases to tailor the metagenomics annotation to focus on various taxonomic and functional gene markers of interest. MetaStorm offers two major analysis pipelines: an assembly-based annotation pipeline and the standard read annotation pipeline used by existing web servers. These pipelines can be selected individually or together. Overall, MetaStorm provides enhanced interactive visualization to allow researchers to explore and manipulate taxonomy and functional annotation at various levels of resolution.

  3. MetaStorm: A Public Resource for Customizable Metagenomics Annotation.

    Science.gov (United States)

    Arango-Argoty, Gustavo; Singh, Gargi; Heath, Lenwood S; Pruden, Amy; Xiao, Weidong; Zhang, Liqing

    2016-01-01

    Metagenomics is a trending research area, calling for the need to analyze large quantities of data generated from next generation DNA sequencing technologies. The need to store, retrieve, analyze, share, and visualize such data challenges current online computational systems. Interpretation and annotation of specific information is especially a challenge for metagenomic data sets derived from environmental samples, because current annotation systems only offer broad classification of microbial diversity and function. Moreover, existing resources are not configured to readily address common questions relevant to environmental systems. Here we developed a new online user-friendly metagenomic analysis server called MetaStorm (http://bench.cs.vt.edu/MetaStorm/), which facilitates customization of computational analysis for metagenomic data sets. Users can upload their own reference databases to tailor the metagenomics annotation to focus on various taxonomic and functional gene markers of interest. MetaStorm offers two major analysis pipelines: an assembly-based annotation pipeline and the standard read annotation pipeline used by existing web servers. These pipelines can be selected individually or together. Overall, MetaStorm provides enhanced interactive visualization to allow researchers to explore and manipulate taxonomy and functional annotation at various levels of resolution.

  4. MetaStorm: A Public Resource for Customizable Metagenomics Annotation

    Science.gov (United States)

    Arango-Argoty, Gustavo; Singh, Gargi; Heath, Lenwood S.; Pruden, Amy; Xiao, Weidong; Zhang, Liqing

    2016-01-01

    Metagenomics is a trending research area, calling for the need to analyze large quantities of data generated from next generation DNA sequencing technologies. The need to store, retrieve, analyze, share, and visualize such data challenges current online computational systems. Interpretation and annotation of specific information is especially a challenge for metagenomic data sets derived from environmental samples, because current annotation systems only offer broad classification of microbial diversity and function. Moreover, existing resources are not configured to readily address common questions relevant to environmental systems. Here we developed a new online user-friendly metagenomic analysis server called MetaStorm (http://bench.cs.vt.edu/MetaStorm/), which facilitates customization of computational analysis for metagenomic data sets. Users can upload their own reference databases to tailor the metagenomics annotation to focus on various taxonomic and functional gene markers of interest. MetaStorm offers two major analysis pipelines: an assembly-based annotation pipeline and the standard read annotation pipeline used by existing web servers. These pipelines can be selected individually or together. Overall, MetaStorm provides enhanced interactive visualization to allow researchers to explore and manipulate taxonomy and functional annotation at various levels of resolution. PMID:27632579

  5. Databases of the marine metagenomics

    KAUST Repository

    Mineta, Katsuhiko

    2015-10-28

    The metagenomic data obtained from marine environments is significantly useful for understanding marine microbial communities. In comparison with the conventional amplicon-based approach of metagenomics, the recent shotgun sequencing-based approach has become a powerful tool that provides an efficient way of grasping a diversity of the entire microbial community at a sampling point in the sea. However, this approach accelerates accumulation of the metagenome data as well as increase of data complexity. Moreover, when metagenomic approach is used for monitoring a time change of marine environments at multiple locations of the seawater, accumulation of metagenomics data will become tremendous with an enormous speed. Because this kind of situation has started becoming of reality at many marine research institutions and stations all over the world, it looks obvious that the data management and analysis will be confronted by the so-called Big Data issues such as how the database can be constructed in an efficient way and how useful knowledge should be extracted from a vast amount of the data. In this review, we summarize the outline of all the major databases of marine metagenome that are currently publically available, noting that database exclusively on marine metagenome is none but the number of metagenome databases including marine metagenome data are six, unexpectedly still small. We also extend our explanation to the databases, as reference database we call, that will be useful for constructing a marine metagenome database as well as complementing important information with the database. Then, we would point out a number of challenges to be conquered in constructing the marine metagenome database.

  6. Metagenomics: The Next Culture-Independent Game Changer

    Directory of Open Access Journals (Sweden)

    Jessica D. Forbes

    2017-07-01

    Full Text Available A trend towards the abandonment of obtaining pure culture isolates in frontline laboratories is at a crossroads with the ability of public health agencies to perform their basic mandate of foodborne disease surveillance and response. The implementation of culture-independent diagnostic tests (CIDTs including nucleic acid and antigen-based assays for acute gastroenteritis is leaving public health agencies without laboratory evidence to link clinical cases to each other and to food or environmental substances. This limits the efficacy of public health epidemiology and surveillance as well as outbreak detection and investigation. Foodborne outbreaks have the potential to remain undetected or have insufficient evidence to support source attribution and may inadvertently increase the incidence of foodborne diseases. Next-generation sequencing of pure culture isolates in clinical microbiology laboratories has the potential to revolutionize the fields of food safety and public health. Metagenomics and other ‘omics’ disciplines could provide the solution to a cultureless future in clinical microbiology, food safety and public health. Data mining of information obtained from metagenomics assays can be particularly useful for the identification of clinical causative agents or foodborne contamination, detection of AMR and/or virulence factors, in addition to providing high-resolution subtyping data. Thus, metagenomics assays may provide a universal test for clinical diagnostics, foodborne pathogen detection, subtyping and investigation. This information has the potential to reform the field of enteric disease diagnostics and surveillance and also infectious diseases as a whole. The aim of this review will be to present the current state of CIDTs in diagnostic and public health laboratories as they relate to foodborne illness and food safety. Moreover, we will also discuss the diagnostic and subtyping utility and concomitant bias limitations of

  7. Critical Assessment of Metagenome Interpretation – a benchmark of computational metagenomics software

    Science.gov (United States)

    Sczyrba, Alexander; Hofmann, Peter; Belmann, Peter; Koslicki, David; Janssen, Stefan; Dröge, Johannes; Gregor, Ivan; Majda, Stephan; Fiedler, Jessika; Dahms, Eik; Bremges, Andreas; Fritz, Adrian; Garrido-Oter, Ruben; Jørgensen, Tue Sparholt; Shapiro, Nicole; Blood, Philip D.; Gurevich, Alexey; Bai, Yang; Turaev, Dmitrij; DeMaere, Matthew Z.; Chikhi, Rayan; Nagarajan, Niranjan; Quince, Christopher; Meyer, Fernando; Balvočiūtė, Monika; Hansen, Lars Hestbjerg; Sørensen, Søren J.; Chia, Burton K. H.; Denis, Bertrand; Froula, Jeff L.; Wang, Zhong; Egan, Robert; Kang, Dongwan Don; Cook, Jeffrey J.; Deltel, Charles; Beckstette, Michael; Lemaitre, Claire; Peterlongo, Pierre; Rizk, Guillaume; Lavenier, Dominique; Wu, Yu-Wei; Singer, Steven W.; Jain, Chirag; Strous, Marc; Klingenberg, Heiner; Meinicke, Peter; Barton, Michael; Lingner, Thomas; Lin, Hsin-Hung; Liao, Yu-Chieh; Silva, Genivaldo Gueiros Z.; Cuevas, Daniel A.; Edwards, Robert A.; Saha, Surya; Piro, Vitor C.; Renard, Bernhard Y.; Pop, Mihai; Klenk, Hans-Peter; Göker, Markus; Kyrpides, Nikos C.; Woyke, Tanja; Vorholt, Julia A.; Schulze-Lefert, Paul; Rubin, Edward M.; Darling, Aaron E.; Rattei, Thomas; McHardy, Alice C.

    2018-01-01

    In metagenome analysis, computational methods for assembly, taxonomic profiling and binning are key components facilitating downstream biological data interpretation. However, a lack of consensus about benchmarking datasets and evaluation metrics complicates proper performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on datasets of unprecedented complexity and realism. Benchmark metagenomes were generated from ~700 newly sequenced microorganisms and ~600 novel viruses and plasmids, including genomes with varying degrees of relatedness to each other and to publicly available ones and representing common experimental setups. Across all datasets, assembly and genome binning programs performed well for species represented by individual genomes, while performance was substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below the family level. Parameter settings substantially impacted performances, underscoring the importance of program reproducibility. While highlighting current challenges in computational metagenomics, the CAMI results provide a roadmap for software selection to answer specific research questions. PMID:28967888

  8. Web Resources for Metagenomics Studies

    Directory of Open Access Journals (Sweden)

    Pravin Dudhagara

    2015-10-01

    Full Text Available The development of next-generation sequencing (NGS platforms spawned an enormous volume of data. This explosion in data has unearthed new scalability challenges for existing bioinformatics tools. The analysis of metagenomic sequences using bioinformatics pipelines is complicated by the substantial complexity of these data. In this article, we review several commonly-used online tools for metagenomics data analysis with respect to their quality and detail of analysis using simulated metagenomics data. There are at least a dozen such software tools presently available in the public domain. Among them, MGRAST, IMG/M, and METAVIR are the most well-known tools according to the number of citations by peer-reviewed scientific media up to mid-2015. Here, we describe 12 online tools with respect to their web link, annotation pipelines, clustering methods, online user support, and availability of data storage. We have also done the rating for each tool to screen more potential and preferential tools and evaluated five best tools using synthetic metagenome. The article comprehensively deals with the contemporary problems and the prospects of metagenomics from a bioinformatics viewpoint.

  9. Exploring neighborhoods in the metagenome universe.

    Science.gov (United States)

    Aßhauer, Kathrin P; Klingenberg, Heiner; Lingner, Thomas; Meinicke, Peter

    2014-07-14

    The variety of metagenomes in current databases provides a rapidly growing source of information for comparative studies. However, the quantity and quality of supplementary metadata is still lagging behind. It is therefore important to be able to identify related metagenomes by means of the available sequence data alone. We have studied efficient sequence-based methods for large-scale identification of similar metagenomes within a database retrieval context. In a broad comparison of different profiling methods we found that vector-based distance measures are well-suitable for the detection of metagenomic neighbors. Our evaluation on more than 1700 publicly available metagenomes indicates that for a query metagenome from a particular habitat on average nine out of ten nearest neighbors represent the same habitat category independent of the utilized profiling method or distance measure. While for well-defined labels a neighborhood accuracy of 100% can be achieved, in general the neighbor detection is severely affected by a natural overlap of manually annotated categories. In addition, we present results of a novel visualization method that is able to reflect the similarity of metagenomes in a 2D scatter plot. The visualization method shows a similarly high accuracy in the reduced space as compared with the high-dimensional profile space. Our study suggests that for inspection of metagenome neighborhoods the profiling methods and distance measures can be chosen to provide a convenient interpretation of results in terms of the underlying features. Furthermore, supplementary metadata of metagenome samples in the future needs to comply with readily available ontologies for fine-grained and standardized annotation. To make profile-based k-nearest-neighbor search and the 2D-visualization of the metagenome universe available to the research community, we included the proposed methods in our CoMet-Universe server for comparative metagenome analysis.

  10. A Bioinformatician's Guide to Metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Kunin, Victor; Copeland, Alex; Lapidus, Alla; Mavromatis, Konstantinos; Hugenholtz, Philip

    2008-08-01

    As random shotgun metagenomic projects proliferate and become the dominant source of publicly available sequence data, procedures for best practices in their execution and analysis become increasingly important. Based on our experience at the Joint Genome Institute, we describe step-by-step the chain of decisions accompanying a metagenomic project from the viewpoint of a bioinformatician. We guide the reader through a standard workflow for a metagenomic project beginning with pre-sequencing considerations such as community composition and sequence data type that will greatly influence downstream analyses. We proceed with recommendations for sampling and data generation including sample and metadata collection, community profiling, construction of shotgun libraries and sequencing strategies. We then discuss the application of generic sequence processing steps (read preprocessing, assembly, and gene prediction and annotation) to metagenomic datasets by contrast to genome projects. Different types of data analyses particular to metagenomes are then presented including binning, dominant population analysis and gene-centric analysis. Finally data management systems and issues are presented and discussed. We hope that this review will assist bioinformaticians and biologists in making better-informed decisions on their journey during a metagenomic project.

  11. Challenges and Opportunities of Airborne Metagenomics

    OpenAIRE

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events su...

  12. The MAR databases: development and implementation of databases specific for marine metagenomics.

    Science.gov (United States)

    Klemetsen, Terje; Raknes, Inge A; Fu, Juan; Agafonov, Alexander; Balasundaram, Sudhagar V; Tartari, Giacomo; Robertsen, Espen; Willassen, Nils P

    2018-01-04

    We introduce the marine databases; MarRef, MarDB and MarCat (https://mmp.sfb.uit.no/databases/), which are publicly available resources that promote marine research and innovation. These data resources, which have been implemented in the Marine Metagenomics Portal (MMP) (https://mmp.sfb.uit.no/), are collections of richly annotated and manually curated contextual (metadata) and sequence databases representing three tiers of accuracy. While MarRef is a database for completely sequenced marine prokaryotic genomes, which represent a marine prokaryote reference genome database, MarDB includes all incomplete sequenced prokaryotic genomes regardless level of completeness. The last database, MarCat, represents a gene (protein) catalog of uncultivable (and cultivable) marine genes and proteins derived from marine metagenomics samples. The first versions of MarRef and MarDB contain 612 and 3726 records, respectively. Each record is built up of 106 metadata fields including attributes for sampling, sequencing, assembly and annotation in addition to the organism and taxonomic information. Currently, MarCat contains 1227 records with 55 metadata fields. Ontologies and controlled vocabularies are used in the contextual databases to enhance consistency. The user-friendly web interface lets the visitors browse, filter and search in the contextual databases and perform BLAST searches against the corresponding sequence databases. All contextual and sequence databases are freely accessible and downloadable from https://s1.sfb.uit.no/public/mar/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Challenges and Opportunities of Airborne Metagenomics

    KAUST Repository

    Behzad, H.

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  14. Antibiotic Resistome: Improving Detection and Quantification Accuracy for Comparative Metagenomics.

    Science.gov (United States)

    Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania

    2016-04-01

    The unprecedented rise of life-threatening antibiotic resistance (AR), combined with the unparalleled advances in DNA sequencing of genomes and metagenomes, has pushed the need for in silico detection of the resistance potential of clinical and environmental metagenomic samples through the quantification of AR genes (i.e., genes conferring antibiotic resistance). Therefore, determining an optimal methodology to quantitatively and accurately assess AR genes in a given environment is pivotal. Here, we optimized and improved existing AR detection methodologies from metagenomic datasets to properly consider AR-generating mutations in antibiotic target genes. Through comparative metagenomic analysis of previously published AR gene abundance in three publicly available metagenomes, we illustrate how mutation-generated resistance genes are either falsely assigned or neglected, which alters the detection and quantitation of the antibiotic resistome. In addition, we inspected factors influencing the outcome of AR gene quantification using metagenome simulation experiments, and identified that genome size, AR gene length, total number of metagenomics reads and selected sequencing platforms had pronounced effects on the level of detected AR. In conclusion, our proposed improvements in the current methodologies for accurate AR detection and resistome assessment show reliable results when tested on real and simulated metagenomic datasets.

  15. Multiple comparative metagenomics using multiset k-mer counting

    Directory of Open Access Journals (Sweden)

    Gaëtan Benoit

    2016-11-01

    Full Text Available Background Large scale metagenomic projects aim to extract biodiversity knowledge between different environmental conditions. Current methods for comparing microbial communities face important limitations. Those based on taxonomical or functional assignation rely on a small subset of the sequences that can be associated to known organisms. On the other hand, de novo methods, that compare the whole sets of sequences, either do not scale up on ambitious metagenomic projects or do not provide precise and exhaustive results. Methods These limitations motivated the development of a new de novo metagenomic comparative method, called Simka. This method computes a large collection of standard ecological distances by replacing species counts by k-mer counts. Simka scales-up today’s metagenomic projects thanks to a new parallel k-mer counting strategy on multiple datasets. Results Experiments on public Human Microbiome Project datasets demonstrate that Simka captures the essential underlying biological structure. Simka was able to compute in a few hours both qualitative and quantitative ecological distances on hundreds of metagenomic samples (690 samples, 32 billions of reads. We also demonstrate that analyzing metagenomes at the k-mer level is highly correlated with extremely precise de novo comparison techniques which rely on all-versus-all sequences alignment strategy or which are based on taxonomic profiling.

  16. Metagenomes from two microbial consortia associated with Santa Barbara seep oil.

    Science.gov (United States)

    Hawley, Erik R; Malfatti, Stephanie A; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Foster, Brian; Copeland, Alexander; del Rio, Tijana Glavina; Pati, Amrita; Jansson, Janet R; Gilbert, Jack A; Tringe, Susannah Green; Lorenson, Thomas D; Hess, Matthias

    2014-12-01

    The metagenomes from two microbial consortia associated with natural oils seeping into the Pacific Ocean offshore the coast of Santa Barbara (California, USA) were determined to complement already existing metagenomes generated from microbial communities associated with hydrocarbons that pollute the marine ecosystem. This genomics resource article is the first of two publications reporting a total of four new metagenomes from oils that seep into the Santa Barbara Channel. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Metaviz: interactive statistical and visual analysis of metagenomic data.

    Science.gov (United States)

    Wagner, Justin; Chelaru, Florin; Kancherla, Jayaram; Paulson, Joseph N; Zhang, Alexander; Felix, Victor; Mahurkar, Anup; Elmqvist, Niklas; Corrada Bravo, Héctor

    2018-04-06

    Large studies profiling microbial communities and their association with healthy or disease phenotypes are now commonplace. Processed data from many of these studies are publicly available but significant effort is required for users to effectively organize, explore and integrate it, limiting the utility of these rich data resources. Effective integrative and interactive visual and statistical tools to analyze many metagenomic samples can greatly increase the value of these data for researchers. We present Metaviz, a tool for interactive exploratory data analysis of annotated microbiome taxonomic community profiles derived from marker gene or whole metagenome shotgun sequencing. Metaviz is uniquely designed to address the challenge of browsing the hierarchical structure of metagenomic data features while rendering visualizations of data values that are dynamically updated in response to user navigation. We use Metaviz to provide the UMD Metagenome Browser web service, allowing users to browse and explore data for more than 7000 microbiomes from published studies. Users can also deploy Metaviz as a web service, or use it to analyze data through the metavizr package to interoperate with state-of-the-art analysis tools available through Bioconductor. Metaviz is free and open source with the code, documentation and tutorials publicly accessible.

  18. A Delphi Technology Foresight Study: Mapping Social Construction of Scientific Evidence on Metagenomics Tests for Water Safety.

    Directory of Open Access Journals (Sweden)

    Stanislav Birko

    Full Text Available Access to clean water is a grand challenge in the 21st century. Water safety testing for pathogens currently depends on surrogate measures such as fecal indicator bacteria (e.g., E. coli. Metagenomics concerns high-throughput, culture-independent, unbiased shotgun sequencing of DNA from environmental samples that might transform water safety by detecting waterborne pathogens directly instead of their surrogates. Yet emerging innovations such as metagenomics are often fiercely contested. Innovations are subject to shaping/construction not only by technology but also social systems/values in which they are embedded, such as experts' attitudes towards new scientific evidence. We conducted a classic three-round Delphi survey, comprised of 107 questions. A multidisciplinary expert panel (n = 24 representing the continuum of discovery scientists and policymakers evaluated the emergence of metagenomics tests. To the best of our knowledge, we report here the first Delphi foresight study of experts' attitudes on (1 the top 10 priority evidentiary criteria for adoption of metagenomics tests for water safety, (2 the specific issues critical to governance of metagenomics innovation trajectory where there is consensus or dissensus among experts, (3 the anticipated time lapse from discovery to practice of metagenomics tests, and (4 the role and timing of public engagement in development of metagenomics tests. The ability of a test to distinguish between harmful and benign waterborne organisms, analytical/clinical sensitivity, and reproducibility were the top three evidentiary criteria for adoption of metagenomics. Experts agree that metagenomic testing will provide novel information but there is dissensus on whether metagenomics will replace the current water safety testing methods or impact the public health end points (e.g., reduction in boil water advisories. Interestingly, experts view the publics relevant in a "downstream capacity" for adoption of

  19. Tentacle: distributed quantification of genes in metagenomes.

    Science.gov (United States)

    Boulund, Fredrik; Sjögren, Anders; Kristiansson, Erik

    2015-01-01

    In metagenomics, microbial communities are sequenced at increasingly high resolution, generating datasets with billions of DNA fragments. Novel methods that can efficiently process the growing volumes of sequence data are necessary for the accurate analysis and interpretation of existing and upcoming metagenomes. Here we present Tentacle, which is a novel framework that uses distributed computational resources for gene quantification in metagenomes. Tentacle is implemented using a dynamic master-worker approach in which DNA fragments are streamed via a network and processed in parallel on worker nodes. Tentacle is modular, extensible, and comes with support for six commonly used sequence aligners. It is easy to adapt Tentacle to different applications in metagenomics and easy to integrate into existing workflows. Evaluations show that Tentacle scales very well with increasing computing resources. We illustrate the versatility of Tentacle on three different use cases. Tentacle is written for Linux in Python 2.7 and is published as open source under the GNU General Public License (v3). Documentation, tutorials, installation instructions, and the source code are freely available online at: http://bioinformatics.math.chalmers.se/tentacle.

  20. Challenges and opportunities of airborne metagenomics.

    Science.gov (United States)

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. High throughtput comparisons and profiling of metagenomes for industrially relevant enzymes

    KAUST Repository

    Alam, Intikhab

    2016-01-26

    More and more genomes and metagenomes are being sequenced since the advent of Next Generation Sequencing Technologies (NGS). Many metagenomic samples are collected from a variety of environments, each exhibiting a different environmental profile, e.g. temperature, environmental chemistry, etc… These metagenomes can be profiled to unearth enzymes relevant to several industries based on specific enzyme properties such as ability to work on extreme conditions, such as extreme temperatures, salinity, anaerobically, etc.. In this work, we present the DMAP platform comprising of a high-throughput metagenomic annotation pipeline and a data-warehouse for comparisons and profiling across large number of metagenomes. We developed two reference databases for profiling of important genes, one containing enzymes related to different industries and the other containing genes with potential bioactivity roles. In this presentation we describe an example analysis of a large number of publicly available metagenomic sample from TARA oceans study (Science 2015) that covers significant part of world oceans.

  2. Exploration of Metagenome Assemblies with an Interactive Visualization Tool

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, Michael; Nordberg, Henrik; Smirnova, Tatyana; Andersen, Evan; Tringe, Susannah; Hess, Matthias; Dubchak, Inna

    2014-07-09

    Metagenomics, one of the fastest growing areas of modern genomic science, is the genetic profiling of the entire community of microbial organisms present in an environmental sample. Elviz is a web-based tool for the interactive exploration of metagenome assemblies. Elviz can be used with publicly available data sets from the Joint Genome Institute or with custom user-loaded assemblies. Elviz is available at genome.jgi.doe.gov/viz

  3. Metagenomes provide valuable comparative information on soil microeukaryotes

    DEFF Research Database (Denmark)

    Jacquiod, Samuel Jehan Auguste; Stenbæk, Jonas; Santos, Susana

    2016-01-01

    has been identified. Our analyses suggest that publicly available metagenome data can provide valuable information on soil microeukaryotes for comparative purposes when handled appropriately, complementing the current view provided by ribosomal amplicon sequencing methods......., providing microbiologists with substantial amounts of accessible information. We took advantage of public metagenomes in order to investigate microeukaryote communities in a well characterized grassland soil. The data gathered allowed the evaluation of several factors impacting the community structure......, including the DNA extraction method, the database choice and also the annotation procedure. While most studies on soil microeukaryotes are based on sequencing of PCR-amplified taxonomic markers (18S rRNA genes, ITS regions), this work represents, to our knowledge, the first report based solely...

  4. Metagenomic Taxonomy-Guided Database-Searching Strategy for Improving Metaproteomic Analysis.

    Science.gov (United States)

    Xiao, Jinqiu; Tanca, Alessandro; Jia, Ben; Yang, Runqing; Wang, Bo; Zhang, Yu; Li, Jing

    2018-04-06

    Metaproteomics provides a direct measure of the functional information by investigating all proteins expressed by a microbiota. However, due to the complexity and heterogeneity of microbial communities, it is very hard to construct a sequence database suitable for a metaproteomic study. Using a public database, researchers might not be able to identify proteins from poorly characterized microbial species, while a sequencing-based metagenomic database may not provide adequate coverage for all potentially expressed protein sequences. To address this challenge, we propose a metagenomic taxonomy-guided database-search strategy (MT), in which a merged database is employed, consisting of both taxonomy-guided reference protein sequences from public databases and proteins from metagenome assembly. By applying our MT strategy to a mock microbial mixture, about two times as many peptides were detected as with the metagenomic database only. According to the evaluation of the reliability of taxonomic attribution, the rate of misassignments was comparable to that obtained using an a priori matched database. We also evaluated the MT strategy with a human gut microbial sample, and we found 1.7 times as many peptides as using a standard metagenomic database. In conclusion, our MT strategy allows the construction of databases able to provide high sensitivity and precision in peptide identification in metaproteomic studies, enabling the detection of proteins from poorly characterized species within the microbiota.

  5. Metagenomic analysis of the airborne environment in urban spaces.

    Science.gov (United States)

    Be, Nicholas A; Thissen, James B; Fofanov, Viacheslav Y; Allen, Jonathan E; Rojas, Mark; Golovko, George; Fofanov, Yuriy; Koshinsky, Heather; Jaing, Crystal J

    2015-02-01

    The organisms in aerosol microenvironments, especially densely populated urban areas, are relevant to maintenance of public health and detection of potential epidemic or biothreat agents. To examine aerosolized microorganisms in this environment, we performed sequencing on the material from an urban aerosol surveillance program. Whole metagenome sequencing was applied to DNA extracted from air filters obtained during periods from each of the four seasons. The composition of bacteria, plants, fungi, invertebrates, and viruses demonstrated distinct temporal shifts. Bacillus thuringiensis serovar kurstaki was detected in samples known to be exposed to aerosolized spores, illustrating the potential utility of this approach for identification of intentionally introduced microbial agents. Together, these data demonstrate the temporally dependent metagenomic complexity of urban aerosols and the potential of genomic analytical techniques for biosurveillance and monitoring of threats to public health.

  6. 22 CFR 212.21 - Public records.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Public records. 212.21 Section 212.21 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT PUBLIC INFORMATION Availability of Information for Public Inspection and Copying § 212.21 Public records. In accordance with this subpart, USAID makes the following...

  7. Exploration of noncoding sequences in metagenomes.

    Directory of Open Access Journals (Sweden)

    Fabián Tobar-Tosse

    Full Text Available Environment-dependent genomic features have been defined for different metagenomes, whose genes and their associated processes are related to specific environments. Identification of ORFs and their functional categories are the most common methods for association between functional and environmental features. However, this analysis based on finding ORFs misses noncoding sequences and, therefore, some metagenome regulatory or structural information could be discarded. In this work we analyzed 23 whole metagenomes, including coding and noncoding sequences using the following sequence patterns: (G+C content, Codon Usage (Cd, Trinucleotide Usage (Tn, and functional assignments for ORF prediction. Herein, we present evidence of a high proportion of noncoding sequences discarded in common similarity-based methods in metagenomics, and the kind of relevant information present in those. We found a high density of trinucleotide repeat sequences (TRS in noncoding sequences, with a regulatory and adaptive function for metagenome communities. We present associations between trinucleotide values and gene function, where metagenome clustering correlate with microorganism adaptations and kinds of metagenomes. We propose here that noncoding sequences have relevant information to describe metagenomes that could be considered in a whole metagenome analysis in order to improve their organization, classification protocols, and their relation with the environment.

  8. Soil metagenomics and tropical soil productivity

    OpenAIRE

    Garrett, Karen A.

    2009-01-01

    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  9. Metagenome Assembly at the DOE JGI (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Chain, Patrick

    2011-10-13

    Patrick Chain of DOE JGI at LANL, Co-Chair of the Metagenome-specific Assembly session, on Metagenome Assembly at the DOE JGIat the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  10. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  11. Current and future resources for functional metagenomics

    Directory of Open Access Journals (Sweden)

    Kathy Nguyen Lam

    2015-10-01

    Full Text Available Functional metagenomics is a powerful experimental approach for studying gene function, starting from the extracted DNA of mixed microbial populations. A functional approach relies on the construction and screening of metagenomic libraries – physical libraries that contain DNA cloned from environmental metagenomes. The information obtained from functional metagenomics can help in future annotations of gene function and serve as a complement to sequence-based metagenomics. In this Perspective, we begin by summarizing the technical challenges of constructing metagenomic libraries and emphasize their value as resources. We then discuss libraries constructed using the popular cloning vector, pCC1FOS, and highlight the strengths and shortcomings of this system, alongside possible strategies to maximize existing pCC1FOS-based libraries by screening in diverse hosts. Finally, we discuss the known bias of libraries constructed from human gut and marine water samples, present results that suggest bias may also occur for soil libraries, and consider factors that bias metagenomic libraries in general. We anticipate that discussion of current resources and limitations will advance tools and technologies for functional metagenomics research.

  12. A primer on metagenomics.

    Directory of Open Access Journals (Sweden)

    John C Wooley

    2010-02-01

    Full Text Available Metagenomics is a discipline that enables the genomic study of uncultured microorganisms. Faster, cheaper sequencing technologies and the ability to sequence uncultured microbes sampled directly from their habitats are expanding and transforming our view of the microbial world. Distilling meaningful information from the millions of new genomic sequences presents a serious challenge to bioinformaticians. In cultured microbes, the genomic data come from a single clone, making sequence assembly and annotation tractable. In metagenomics, the data come from heterogeneous microbial communities, sometimes containing more than 10,000 species, with the sequence data being noisy and partial. From sampling, to assembly, to gene calling and function prediction, bioinformatics faces new demands in interpreting voluminous, noisy, and often partial sequence data. Although metagenomics is a relative newcomer to science, the past few years have seen an explosion in computational methods applied to metagenomic-based research. It is therefore not within the scope of this article to provide an exhaustive review. Rather, we provide here a concise yet comprehensive introduction to the current computational requirements presented by metagenomics, and review the recent progress made. We also note whether there is software that implements any of the methods presented here, and briefly review its utility. Nevertheless, it would be useful if readers of this article would avail themselves of the comment section provided by this journal, and relate their own experiences. Finally, the last section of this article provides a few representative studies illustrating different facets of recent scientific discoveries made using metagenomics.

  13. Can a resident's publication record predict fellowship publications?

    Science.gov (United States)

    Prasad, Vinay; Rho, Jason; Selvaraj, Senthil; Cheung, Mike; Vandross, Andrae; Ho, Nancy

    2014-01-01

    Internal medicine fellowship programs have an incentive to select fellows who will ultimately publish. Whether an applicant's publication record predicts long term publishing remains unknown. Using records of fellowship bound internal medicine residents, we analyzed whether publications at time of fellowship application predict publications more than 3 years (2 years into fellowship) and up to 7 years after fellowship match. We calculate the sensitivity, specificity, positive and negative predictive values and likelihood ratios for every cutoff number of application publications, and plot a receiver operator characteristic curve of this test. Of 307 fellowship bound residents, 126 (41%) published at least one article 3 to 7 years after matching, and 181 (59%) of residents do not publish in this time period. The area under the receiver operator characteristic curve is 0.59. No cutoff value for application publications possessed adequate test characteristics. The number of publications an applicant has at time of fellowship application is a poor predictor of who publishes in the long term. These findings do not validate the practice of using application publications as a tool for selecting fellows.

  14. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments.

    Science.gov (United States)

    Port, Jesse A; Cullen, Alison C; Wallace, James C; Smith, Marissa N; Faustman, Elaine M

    2014-03-01

    High-throughput genomic technologies offer new approaches for environmental health monitoring, including metagenomic surveillance of antibiotic resistance determinants (ARDs). Although natural environments serve as reservoirs for antibiotic resistance genes that can be transferred to pathogenic and human commensal bacteria, monitoring of these determinants has been infrequent and incomplete. Furthermore, surveillance efforts have not been integrated into public health decision making. We used a metagenomic epidemiology-based approach to develop an ARD index that quantifies antibiotic resistance potential, and we analyzed this index for common modal patterns across environmental samples. We also explored how metagenomic data such as this index could be conceptually framed within an early risk management context. We analyzed 25 published data sets from shotgun pyrosequencing projects. The samples consisted of microbial community DNA collected from marine and freshwater environments across a gradient of human impact. We used principal component analysis to identify index patterns across samples. We observed significant differences in the overall index and index subcategory levels when comparing ecosystems more proximal versus distal to human impact. The selection of different sequence similarity thresholds strongly influenced the index measurements. Unique index subcategory modes distinguished the different metagenomes. Broad-scale screening of ARD potential using this index revealed utility for framing environmental health monitoring and surveillance. This approach holds promise as a screening tool for establishing baseline ARD levels that can be used to inform and prioritize decision making regarding management of ARD sources and human exposure routes. Port JA, Cullen AC, Wallace JC, Smith MN, Faustman EM. 2014. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect 122:222–228; http://dx.doi.org/10.1289/ehp

  15. Assembling large, complex environmental metagenomes

    Energy Technology Data Exchange (ETDEWEB)

    Howe, A. C. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Plant Soil and Microbial Sciences; Jansson, J. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Malfatti, S. A. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tringe, S. G. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tiedje, J. M. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Plant Soil and Microbial Sciences; Brown, C. T. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Computer Science and Engineering

    2012-12-28

    The large volumes of sequencing data required to sample complex environments deeply pose new challenges to sequence analysis approaches. De novo metagenomic assembly effectively reduces the total amount of data to be analyzed but requires significant computational resources. We apply two pre-assembly filtering approaches, digital normalization and partitioning, to make large metagenome assemblies more computationaly tractable. Using a human gut mock community dataset, we demonstrate that these methods result in assemblies nearly identical to assemblies from unprocessed data. We then assemble two large soil metagenomes from matched Iowa corn and native prairie soils. The predicted functional content and phylogenetic origin of the assembled contigs indicate significant taxonomic differences despite similar function. The assembly strategies presented are generic and can be extended to any metagenome; full source code is freely available under a BSD license.

  16. Critical Assessment of Metagenome Interpretation

    DEFF Research Database (Denmark)

    Sczyrba, Alexander; Hofmann, Peter; Belmann, Peter

    2017-01-01

    Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchma...

  17. Ten years of maintaining and expanding a microbial genome and metagenome analysis system.

    Science.gov (United States)

    Markowitz, Victor M; Chen, I-Min A; Chu, Ken; Pati, Amrita; Ivanova, Natalia N; Kyrpides, Nikos C

    2015-11-01

    Launched in March 2005, the Integrated Microbial Genomes (IMG) system is a comprehensive data management system that supports multidimensional comparative analysis of genomic data. At the core of the IMG system is a data warehouse that contains genome and metagenome datasets sequenced at the Joint Genome Institute or provided by scientific users, as well as public genome datasets available at the National Center for Biotechnology Information Genbank sequence data archive. Genomes and metagenome datasets are processed using IMG's microbial genome and metagenome sequence data processing pipelines and are integrated into the data warehouse using IMG's data integration toolkits. Microbial genome and metagenome application specific data marts and user interfaces provide access to different subsets of IMG's data and analysis toolkits. This review article revisits IMG's original aims, highlights key milestones reached by the system during the past 10 years, and discusses the main challenges faced by a rapidly expanding system, in particular the complexity of maintaining such a system in an academic setting with limited budgets and computing and data management infrastructure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. BeerDeCoded: the open beer metagenome project.

    Science.gov (United States)

    Sobel, Jonathan; Henry, Luc; Rotman, Nicolas; Rando, Gianpaolo

    2017-01-01

    Next generation sequencing has radically changed research in the life sciences, in both academic and corporate laboratories. The potential impact is tremendous, yet a majority of citizens have little or no understanding of the technological and ethical aspects of this widespread adoption. We designed BeerDeCoded as a pretext to discuss the societal issues related to genomic and metagenomic data with fellow citizens, while advancing scientific knowledge of the most popular beverage of all. In the spirit of citizen science, sample collection and DNA extraction were carried out with the participation of non-scientists in the community laboratory of Hackuarium, a not-for-profit organisation that supports unconventional research and promotes the public understanding of science. The dataset presented herein contains the targeted metagenomic profile of 39 bottled beers from 5 countries, based on internal transcribed spacer (ITS) sequencing of fungal species. A preliminary analysis reveals the presence of a large diversity of wild yeast species in commercial brews. With this project, we demonstrate that coupling simple laboratory procedures that can be carried out in a non-professional environment with state-of-the-art sequencing technologies and targeted metagenomic analyses, can lead to the detection and identification of the microbial content in bottled beer.

  19. Challenges of the Unknown: Clinical Application of Microbial Metagenomics

    Directory of Open Access Journals (Sweden)

    Graham Rose

    2015-01-01

    Full Text Available Availability of fast, high throughput and low cost whole genome sequencing holds great promise within public health microbiology, with applications ranging from outbreak detection and tracking transmission events to understanding the role played by microbial communities in health and disease. Within clinical metagenomics, identifying microorganisms from a complex and host enriched background remains a central computational challenge. As proof of principle, we sequenced two metagenomic samples, a known viral mixture of 25 human pathogens and an unknown complex biological model using benchtop technology. The datasets were then analysed using a bioinformatic pipeline developed around recent fast classification methods. A targeted approach was able to detect 20 of the viruses against a background of host contamination from multiple sources and bacterial contamination. An alternative untargeted identification method was highly correlated with these classifications, and over 1,600 species were identified when applied to the complex biological model, including several species captured at over 50% genome coverage. In summary, this study demonstrates the great potential of applying metagenomics within the clinical laboratory setting and that this can be achieved using infrastructure available to nondedicated sequencing centres.

  20. Bioinformatic approaches reveal metagenomic characterization of soil microbial community.

    Directory of Open Access Journals (Sweden)

    Zhuofei Xu

    Full Text Available As is well known, soil is a complex ecosystem harboring the most prokaryotic biodiversity on the Earth. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated the progress of soil ecological studies. However, how to effectively understand the underlying biological features of large-scale sequencing data is a new challenge. In the present study, we used 33 publicly available metagenomes from diverse soil sites (i.e. grassland, forest soil, desert, Arctic soil, and mangrove sediment and integrated some state-of-the-art computational tools to explore the phylogenetic and functional characterizations of the microbial communities in soil. Microbial composition and metabolic potential in soils were comprehensively illustrated at the metagenomic level. A spectrum of metagenomic biomarkers containing 46 taxa and 33 metabolic modules were detected to be significantly differential that could be used as indicators to distinguish at least one of five soil communities. The co-occurrence associations between complex microbial compositions and functions were inferred by network-based approaches. Our results together with the established bioinformatic pipelines should provide a foundation for future research into the relation between soil biodiversity and ecosystem function.

  1. Vinasse fertirrigation alters soil resistome dynamics: an analysis based on metagenomic profiles.

    Science.gov (United States)

    Braga, Lucas P P; Alves, Rafael F; Dellias, Marina T F; Navarrete, Acacio A; Basso, Thiago O; Tsai, Siu M

    2017-01-01

    Every year around 300 Gl of vinasse, a by-product of ethanol distillation in sugarcane mills, are flushed into more than 9 Mha of sugarcane cropland in Brazil. This practice links fermentation waste management to fertilization for plant biomass production, and it is known as fertirrigation. Here we evaluate public datasets of soil metagenomes mining for changes in antibiotic resistance genes (ARGs) of soils from sugarcane mesocosms repeatedly amended with vinasse. The metagenomes were annotated using the ResFam database. We found that the abundance of open read frames (ORFs) annotated as ARGs changed significantly across 43 different families ( p -value resistome.

  2. Preliminary High-Throughput Metagenome Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Dusheyko, Serge; Furman, Craig; Pangilinan, Jasmyn; Shapiro, Harris; Tu, Hank

    2007-03-26

    Metagenome data sets present a qualitatively different assembly problem than traditional single-organism whole-genome shotgun (WGS) assembly. The unique aspects of such projects include the presence of a potentially large number of distinct organisms and their representation in the data set at widely different fractions. In addition, multiple closely related strains could be present, which would be difficult to assemble separately. Failure to take these issues into account can result in poor assemblies that either jumble together different strains or which fail to yield useful results. The DOE Joint Genome Institute has sequenced a number of metagenomic projects and plans to considerably increase this number in the coming year. As a result, the JGI has a need for high-throughput tools and techniques for handling metagenome projects. We present the techniques developed to handle metagenome assemblies in a high-throughput environment. This includes a streamlined assembly wrapper, based on the JGI?s in-house WGS assembler, Jazz. It also includes the selection of sensible defaults targeted for metagenome data sets, as well as quality control automation for cleaning up the raw results. While analysis is ongoing, we will discuss preliminary assessments of the quality of the assembly results (http://fames.jgi-psf.org).

  3. Viral Metagenomics: MetaView Software

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C; Smith, J

    2007-10-22

    The purpose of this report is to design and develop a tool for analysis of raw sequence read data from viral metagenomics experiments. The tool should compare read sequences of known viral nucleic acid sequence data and enable a user to attempt to determine, with some degree of confidence, what virus groups may be present in the sample. This project was conducted in two phases. In phase 1 we surveyed the literature and examined existing metagenomics tools to educate ourselves and to more precisely define the problem of analyzing raw read data from viral metagenomic experiments. In phase 2 we devised an approach and built a prototype code and database. This code takes viral metagenomic read data in fasta format as input and accesses all complete viral genomes from Kpath for sequence comparison. The system executes at the UNIX command line, producing output that is stored in an Oracle relational database. We provide here a description of the approach we came up with for handling un-assembled, short read data sets from viral metagenomics experiments. We include a discussion of the current MetaView code capabilities and additional functionality that we believe should be added, should additional funding be acquired to continue the work.

  4. Beyond biodiversity: fish metagenomes.

    Science.gov (United States)

    Ardura, Alba; Planes, Serge; Garcia-Vazquez, Eva

    2011-01-01

    Biodiversity and intra-specific genetic diversity are interrelated and determine the potential of a community to survive and evolve. Both are considered together in Prokaryote communities treated as metagenomes or ensembles of functional variants beyond species limits.Many factors alter biodiversity in higher Eukaryote communities, and human exploitation can be one of the most important for some groups of plants and animals. For example, fisheries can modify both biodiversity and genetic diversity (intra specific). Intra-specific diversity can be drastically altered by overfishing. Intense fishing pressure on one stock may imply extinction of some genetic variants and subsequent loss of intra-specific diversity. The objective of this study was to apply a metagenome approach to fish communities and explore its value for rapid evaluation of biodiversity and genetic diversity at community level. Here we have applied the metagenome approach employing the barcoding target gene coi as a model sequence in catch from four very different fish assemblages exploited by fisheries: freshwater communities from the Amazon River and northern Spanish rivers, and marine communities from the Cantabric and Mediterranean seas.Treating all sequences obtained from each regional catch as a biological unit (exploited community) we found that metagenomic diversity indices of the Amazonian catch sample here examined were lower than expected. Reduced diversity could be explained, at least partially, by overexploitation of the fish community that had been independently estimated by other methods.We propose using a metagenome approach for estimating diversity in Eukaryote communities and early evaluating genetic variation losses at multi-species level.

  5. Beyond biodiversity: fish metagenomes.

    Directory of Open Access Journals (Sweden)

    Alba Ardura

    Full Text Available Biodiversity and intra-specific genetic diversity are interrelated and determine the potential of a community to survive and evolve. Both are considered together in Prokaryote communities treated as metagenomes or ensembles of functional variants beyond species limits.Many factors alter biodiversity in higher Eukaryote communities, and human exploitation can be one of the most important for some groups of plants and animals. For example, fisheries can modify both biodiversity and genetic diversity (intra specific. Intra-specific diversity can be drastically altered by overfishing. Intense fishing pressure on one stock may imply extinction of some genetic variants and subsequent loss of intra-specific diversity. The objective of this study was to apply a metagenome approach to fish communities and explore its value for rapid evaluation of biodiversity and genetic diversity at community level. Here we have applied the metagenome approach employing the barcoding target gene coi as a model sequence in catch from four very different fish assemblages exploited by fisheries: freshwater communities from the Amazon River and northern Spanish rivers, and marine communities from the Cantabric and Mediterranean seas.Treating all sequences obtained from each regional catch as a biological unit (exploited community we found that metagenomic diversity indices of the Amazonian catch sample here examined were lower than expected. Reduced diversity could be explained, at least partially, by overexploitation of the fish community that had been independently estimated by other methods.We propose using a metagenome approach for estimating diversity in Eukaryote communities and early evaluating genetic variation losses at multi-species level.

  6. Gene Prediction in Metagenomic Fragments with Deep Learning

    Directory of Open Access Journals (Sweden)

    Shao-Wu Zhang

    2017-01-01

    Full Text Available Next generation sequencing technologies used in metagenomics yield numerous sequencing fragments which come from thousands of different species. Accurately identifying genes from metagenomics fragments is one of the most fundamental issues in metagenomics. In this article, by fusing multifeatures (i.e., monocodon usage, monoamino acid usage, ORF length coverage, and Z-curve features and using deep stacking networks learning model, we present a novel method (called Meta-MFDL to predict the metagenomic genes. The results with 10 CV and independent tests show that Meta-MFDL is a powerful tool for identifying genes from metagenomic fragments.

  7. Natural history bycatch: a pipeline for identifying metagenomic sequences in RADseq data

    Directory of Open Access Journals (Sweden)

    Iris Holmes

    2018-04-01

    Full Text Available Background Reduced representation genomic datasets are increasingly becoming available from a variety of organisms. These datasets do not target specific genes, and so may contain sequences from parasites and other organisms present in the target tissue sample. In this paper, we demonstrate that (1 RADseq datasets can be used for exploratory analysis of tissue-specific metagenomes, and (2 tissue collections house complete metagenomic communities, which can be investigated and quantified by a variety of techniques. Methods We present an exploratory method for mining metagenomic “bycatch” sequences from a range of host tissue types. We use a combination of the pyRAD assembly pipeline, NCBI’s blastn software, and custom R scripts to isolate metagenomic sequences from RADseq type datasets. Results When we focus on sequences that align with existing references in NCBI’s GenBank, we find that between three and five percent of identifiable double-digest restriction site associated DNA (ddRAD sequences from host tissue samples are from phyla to contain known blood parasites. In addition to tissue samples, we examine ddRAD sequences from metagenomic DNA extracted snake and lizard hind-gut samples. We find that the sequences recovered from these samples match with expected bacterial and eukaryotic gut microbiome phyla. Discussion Our results suggest that (1 museum tissue banks originally collected for host DNA archiving are also preserving valuable parasite and microbiome communities, (2 that publicly available RADseq datasets may include metagenomic sequences that could be explored, and (3 that restriction site approaches are a useful exploratory technique to identify microbiome lineages that could be missed by primer-based approaches.

  8. Human milk metagenome: a functional capacity analysis

    Science.gov (United States)

    2013-01-01

    Background Human milk contains a diverse population of bacteria that likely influences colonization of the infant gastrointestinal tract. Recent studies, however, have been limited to characterization of this microbial community by 16S rRNA analysis. In the present study, a metagenomic approach using Illumina sequencing of a pooled milk sample (ten donors) was employed to determine the genera of bacteria and the types of bacterial open reading frames in human milk that may influence bacterial establishment and stability in this primal food matrix. The human milk metagenome was also compared to that of breast-fed and formula-fed infants’ feces (n = 5, each) and mothers’ feces (n = 3) at the phylum level and at a functional level using open reading frame abundance. Additionally, immune-modulatory bacterial-DNA motifs were also searched for within human milk. Results The bacterial community in human milk contained over 360 prokaryotic genera, with sequences aligning predominantly to the phyla of Proteobacteria (65%) and Firmicutes (34%), and the genera of Pseudomonas (61.1%), Staphylococcus (33.4%) and Streptococcus (0.5%). From assembled human milk-derived contigs, 30,128 open reading frames were annotated and assigned to functional categories. When compared to the metagenome of infants’ and mothers’ feces, the human milk metagenome was less diverse at the phylum level, and contained more open reading frames associated with nitrogen metabolism, membrane transport and stress response (P milk metagenome also contained a similar occurrence of immune-modulatory DNA motifs to that of infants’ and mothers’ fecal metagenomes. Conclusions Our results further expand the complexity of the human milk metagenome and enforce the benefits of human milk ingestion on the microbial colonization of the infant gut and immunity. Discovery of immune-modulatory motifs in the metagenome of human milk indicates more exhaustive analyses of the functionality of the human

  9. An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant.

    Science.gov (United States)

    Ortseifen, Vera; Stolze, Yvonne; Maus, Irena; Sczyrba, Alexander; Bremges, Andreas; Albaum, Stefan P; Jaenicke, Sebastian; Fracowiak, Jochen; Pühler, Alfred; Schlüter, Andreas

    2016-08-10

    To study the metaproteome of a biogas-producing microbial community, fermentation samples were taken from an agricultural biogas plant for microbial cell and protein extraction and corresponding metagenome analyses. Based on metagenome sequence data, taxonomic community profiling was performed to elucidate the composition of bacterial and archaeal sub-communities. The community's cytosolic metaproteome was represented in a 2D-PAGE approach. Metaproteome databases for protein identification were compiled based on the assembled metagenome sequence dataset for the biogas plant analyzed and non-corresponding biogas metagenomes. Protein identification results revealed that the corresponding biogas protein database facilitated the highest identification rate followed by other biogas-specific databases, whereas common public databases yielded insufficient identification rates. Proteins of the biogas microbiome identified as highly abundant were assigned to the pathways involved in methanogenesis, transport and carbon metabolism. Moreover, the integrated metagenome/-proteome approach enabled the examination of genetic-context information for genes encoding identified proteins by studying neighboring genes on the corresponding contig. Exemplarily, this approach led to the identification of a Methanoculleus sp. contig encoding 16 methanogenesis-related gene products, three of which were also detected as abundant proteins within the community's metaproteome. Thus, metagenome contigs provide additional information on the genetic environment of identified abundant proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. 45 CFR 99.3 - Records to be public.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Records to be public. 99.3 Section 99.3 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROCEDURE FOR HEARINGS FOR THE CHILD CARE AND DEVELOPMENT FUND General § 99.3 Records to be public. All pleadings, correspondence...

  11. Marine metagenomics as a source for bioprospecting

    KAUST Repository

    Kodzius, Rimantas

    2015-08-12

    This review summarizes usage of genome-editing technologies for metagenomic studies; these studies are used to retrieve and modify valuable microorganisms for production, particularly in marine metagenomics. Organisms may be cultivable or uncultivable. Metagenomics is providing especially valuable information for uncultivable samples. The novel genes, pathways and genomes can be deducted. Therefore, metagenomics, particularly genome engineering and system biology, allows for the enhancement of biological and chemical producers and the creation of novel bioresources. With natural resources rapidly depleting, genomics may be an effective way to efficiently produce quantities of known and novel foods, livestock feed, fuels, pharmaceuticals and fine or bulk chemicals.

  12. Variability in metagenomic samples from the Puget Sound: Relationship to temporal and anthropogenic impacts.

    Directory of Open Access Journals (Sweden)

    James C Wallace

    Full Text Available Whole-metagenome sequencing (WMS has emerged as a powerful tool to assess potential public health risks in marine environments by measuring changes in microbial community structure and function in uncultured bacteria. In addition to monitoring public health risks such as antibiotic resistance determinants, it is essential to measure predictors of microbial variation in order to identify natural versus anthropogenic factors as well as to evaluate reproducibility of metagenomic measurements.This study expands our previous metagenomic characterization of Puget Sound by sampling new nearshore environments including the Duwamish River, an EPA superfund site, and the Hood Canal, an area characterized by highly variable oxygen levels. We also resampled a wastewater treatment plant, nearshore and open ocean sites introducing a longitudinal component measuring seasonal and locational variations and establishing metagenomics sampling reproducibility. Microbial composition from samples collected in the open sound were highly similar within the same season and location across different years, while nearshore samples revealed multi-fold seasonal variation in microbial composition and diversity. Comparisons with recently sequenced predominant marine bacterial genomes helped provide much greater species level taxonomic detail compared to our previous study. Antibiotic resistance determinants and pollution and detoxification indicators largely grouped by location showing minor seasonal differences. Metal resistance, oxidative stress and detoxification systems showed no increase in samples proximal to an EPA superfund site indicating a lack of ecosystem adaptation to anthropogenic impacts. Taxonomic analysis of common sewage influent families showed a surprising similarity between wastewater treatment plant and open sound samples suggesting a low-level but pervasive sewage influent signature in Puget Sound surface waters. Our study shows reproducibility of

  13. NeSSM: a Next-generation Sequencing Simulator for Metagenomics.

    Directory of Open Access Journals (Sweden)

    Ben Jia

    Full Text Available BACKGROUND: Metagenomics can reveal the vast majority of microbes that have been missed by traditional cultivation-based methods. Due to its extremely wide range of application areas, fast metagenome sequencing simulation systems with high fidelity are in great demand to facilitate the development and comparison of metagenomics analysis tools. RESULTS: We present here a customizable metagenome simulation system: NeSSM (Next-generation Sequencing Simulator for Metagenomics. Combining complete genomes currently available, a community composition table, and sequencing parameters, it can simulate metagenome sequencing better than existing systems. Sequencing error models based on the explicit distribution of errors at each base and sequencing coverage bias are incorporated in the simulation. In order to improve the fidelity of simulation, tools are provided by NeSSM to estimate the sequencing error models, sequencing coverage bias and the community composition directly from existing metagenome sequencing data. Currently, NeSSM supports single-end and pair-end sequencing for both 454 and Illumina platforms. In addition, a GPU (graphics processing units version of NeSSM is also developed to accelerate the simulation. By comparing the simulated sequencing data from NeSSM with experimental metagenome sequencing data, we have demonstrated that NeSSM performs better in many aspects than existing popular metagenome simulators, such as MetaSim, GemSIM and Grinder. The GPU version of NeSSM is more than one-order of magnitude faster than MetaSim. CONCLUSIONS: NeSSM is a fast simulation system for high-throughput metagenome sequencing. It can be helpful to develop tools and evaluate strategies for metagenomics analysis and it's freely available for academic users at http://cbb.sjtu.edu.cn/~ccwei/pub/software/NeSSM.php.

  14. Bacterial tag encoded FLX titanium amplicon pyrosequencing (bTEFAP based assessment of prokaryotic diversity in metagenome of Lonar soda lake, India

    Directory of Open Access Journals (Sweden)

    Pravin Dudhagara

    2015-06-01

    Full Text Available Bacterial diversity and archaeal diversity in metagenome of the Lonar soda lake sediment were assessed by bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP. Metagenome comprised 5093 sequences with 2,531,282 bp and 53 ± 2% G + C content. Metagenome sequence data are available at NCBI under the Bioproject database with accession no. PRJNA218849. Metagenome sequence represented the presence of 83.1% bacterial and 10.5% archaeal origin. A total of 14 different bacteria demonstrating 57 species were recorded with dominating species like Coxiella burnetii (17%, Fibrobacter intestinalis (12% and Candidatus Cloacamonas acidaminovorans (11%. Occurrence of two archaeal phyla representing 24 species, among them Methanosaeta harundinacea (35%, Methanoculleus chikugoensis (12% and Methanolinea tarda (11% were dominating species. Significant presence of 11% sequences as an unclassified indicated the possibilities for unknown novel prokaryotes from the metagenome.

  15. Comparative metagenomics of the Red Sea

    KAUST Repository

    Mineta, Katsuhiko

    2016-01-26

    Metagenome produces a tremendous amount of data that comes from the organisms living in the environments. This big data enables us to examine not only microbial genes but also the community structure, interaction and adaptation mechanisms at the specific location and condition. The Red Sea has several unique characteristics such as high salinity, high temperature and low nutrition. These features must contribute to form the unique microbial community during the evolutionary process. Since 2014, we started monthly samplings of the metagenomes in the Red Sea under KAUST-CCF project. In collaboration with Kitasato University, we also collected the metagenome data from the ocean in Japan, which shows contrasting features to the Red Sea. Therefore, the comparative metagenomics of those data provides a comprehensive view of the Red Sea microbes, leading to identify key microbes, genes and networks related to those environmental differences.

  16. Comparative metagenomics of the Red Sea

    KAUST Repository

    Mineta, Katsuhiko

    2016-01-01

    started monthly samplings of the metagenomes in the Red Sea under KAUST-CCF project. In collaboration with Kitasato University, we also collected the metagenome data from the ocean in Japan, which shows contrasting features to the Red Sea. Therefore

  17. The binning of metagenomic contigs for microbial physiology of mixed cultures.

    Science.gov (United States)

    Strous, Marc; Kraft, Beate; Bisdorf, Regina; Tegetmeyer, Halina E

    2012-01-01

    So far, microbial physiology has dedicated itself mainly to pure cultures. In nature, cross feeding and competition are important aspects of microbial physiology and these can only be addressed by studying complete communities such as enrichment cultures. Metagenomic sequencing is a powerful tool to characterize such mixed cultures. In the analysis of metagenomic data, well established algorithms exist for the assembly of short reads into contigs and for the annotation of predicted genes. However, the binning of the assembled contigs or unassembled reads is still a major bottleneck and required to understand how the overall metabolism is partitioned over different community members. Binning consists of the clustering of contigs or reads that apparently originate from the same source population. In the present study eight metagenomic samples from the same habitat, a laboratory enrichment culture, were sequenced. Each sample contained 13-23 Mb of assembled contigs and up to eight abundant populations. Binning was attempted with existing methods but they were found to produce poor results, were slow, dependent on non-standard platforms or produced errors. A new binning procedure was developed based on multivariate statistics of tetranucleotide frequencies combined with the use of interpolated Markov models. Its performance was evaluated by comparison of the results between samples with BLAST and in comparison to existing algorithms for four publicly available metagenomes and one previously published artificial metagenome. The accuracy of the new approach was comparable or higher than existing methods. Further, it was up to a 100 times faster. It was implemented in Java Swing as a complete open source graphical binning application available for download and further development (http://sourceforge.net/projects/metawatt).

  18. The binning of metagenomic contigs for microbial physiology of mixed cultures

    Directory of Open Access Journals (Sweden)

    Marc eStrous

    2012-12-01

    Full Text Available So far, microbial physiology has dedicated itself mainly to pure cultures. In nature, cross feeding and competition are important aspects of microbial physiology and these can only be addressed by studying complete communities such as enrichment cultures. Metagenomic sequencing is a powerful tool to characterize such mixed cultures. In the analysis of metagenomic data, well established algorithms exist for the assembly of short reads into contigs and for the annotation of predicted genes. However, the binning of the assembled contigs or unassembled reads is still a major bottleneck and required to understand how the overall metabolism is partitioned over different community members. Binning consists of the clustering of contigs or reads that apparently originate from the same source population.In the present study eight metagenomic samples originating from the same habitat, a laboratory enrichment culture, were sequenced. Each sample contained 13-23 Mb of assembled contigs and up to eight abundant populations. Binning was attempted with existing methods but they were found to produce poor results, were slow, dependent on non-standard platforms or produced errors. A new binning procedure was developed based on multivariate statistics of tetranucleotide frequencies combined with the use of interpolated Markov models. Its performance was evaluated by comparison of the results between samples with BLAST and in comparison to exisiting algorithms for four publicly available metagenomes and one previously published artificial metagenome. The accuracy of the new approach was comparable or higher than existing methods. Further, it was up to a hunderd times faster. It was implemented in Java Swing as a complete open source graphical binning application available for download and further development (http://sourceforge.net/projects/metawatt.

  19. Metagenomic applications in environmental monitoring and bioremediation.

    Science.gov (United States)

    Techtmann, Stephen M; Hazen, Terry C

    2016-10-01

    With the rapid advances in sequencing technology, the cost of sequencing has dramatically dropped and the scale of sequencing projects has increased accordingly. This has provided the opportunity for the routine use of sequencing techniques in the monitoring of environmental microbes. While metagenomic applications have been routinely applied to better understand the ecology and diversity of microbes, their use in environmental monitoring and bioremediation is increasingly common. In this review we seek to provide an overview of some of the metagenomic techniques used in environmental systems biology, addressing their application and limitation. We will also provide several recent examples of the application of metagenomics to bioremediation. We discuss examples where microbial communities have been used to predict the presence and extent of contamination, examples of how metagenomics can be used to characterize the process of natural attenuation by unculturable microbes, as well as examples detailing the use of metagenomics to understand the impact of biostimulation on microbial communities.

  20. Metagenomic analysis of microbial communities and beyond

    DEFF Research Database (Denmark)

    Schreiber, Lars

    2014-01-01

    From small clone libraries to large next-generation sequencing datasets – the field of community genomics or metagenomics has developed tremendously within the last years. This chapter will summarize some of these developments and will also highlight pitfalls of current metagenomic analyses...... heterologous expression of metagenomic DNA fragments to discover novel metabolic functions. Lastly, the chapter will shortly discuss the meta-analysis of gene expression of microbial communities, more precisely metatranscriptomics and metaproteomics....

  1. Interactive metagenomic visualization in a Web browser

    Directory of Open Access Journals (Sweden)

    Phillippy Adam M

    2011-09-01

    Full Text Available Abstract Background A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables. Results Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools. Conclusions Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: http://krona.sourceforge.net.

  2. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Stepanauskas, Ramunas

    2011-10-13

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  3. Marine metagenomics as a source for bioprospecting

    KAUST Repository

    Kodzius, Rimantas; Gojobori, Takashi

    2015-01-01

    This review summarizes usage of genome-editing technologies for metagenomic studies; these studies are used to retrieve and modify valuable microorganisms for production, particularly in marine metagenomics. Organisms may be cultivable

  4. An Experimental Metagenome Data Management and AnalysisSystem

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Victor M.; Korzeniewski, Frank; Palaniappan, Krishna; Szeto, Ernest; Ivanova, Natalia N.; Kyrpides, Nikos C.; Hugenholtz, Philip

    2006-03-01

    The application of shotgun sequencing to environmental samples has revealed a new universe of microbial community genomes (metagenomes) involving previously uncultured organisms. Metagenome analysis, which is expected to provide a comprehensive picture of the gene functions and metabolic capacity of microbial community, needs to be conducted in the context of a comprehensive data management and analysis system. We present in this paper IMG/M, an experimental metagenome data management and analysis system that is based on the Integrated Microbial Genomes (IMG) system. IMG/M provides tools and viewers for analyzing both metagenomes and isolate genomes individually or in a comparative context.

  5. Shotgun metagenomic data streams: surfing without fear

    Energy Technology Data Exchange (ETDEWEB)

    Berendzen, Joel R [Los Alamos National Laboratory

    2010-12-06

    Timely information about bio-threat prevalence, consequence, propagation, attribution, and mitigation is needed to support decision-making, both routinely and in a crisis. One DNA sequencer can stream 25 Gbp of information per day, but sampling strategies and analysis techniques are needed to turn raw sequencing power into actionable knowledge. Shotgun metagenomics can enable biosurveillance at the level of a single city, hospital, or airplane. Metagenomics characterizes viruses and bacteria from complex environments such as soil, air filters, or sewage. Unlike targeted-primer-based sequencing, shotgun methods are not blind to sequences that are truly novel, and they can measure absolute prevalence. Shotgun metagenomic sampling can be non-invasive, efficient, and inexpensive while being informative. We have developed analysis techniques for shotgun metagenomic sequencing that rely upon phylogenetic signature patterns. They work by indexing local sequence patterns in a manner similar to web search engines. Our methods are laptop-fast and favorable scaling properties ensure they will be sustainable as sequencing methods grow. We show examples of application to soil metagenomic samples.

  6. Rapid and efficient method to extract metagenomic DNA from estuarine sediments.

    Science.gov (United States)

    Shamim, Kashif; Sharma, Jaya; Dubey, Santosh Kumar

    2017-07-01

    Metagenomic DNA from sediments of selective estuaries of Goa, India was extracted using a simple, fast, efficient and environment friendly method. The recovery of pure metagenomic DNA from our method was significantly high as compared to other well-known methods since the concentration of recovered metagenomic DNA ranged from 1185.1 to 4579.7 µg/g of sediment. The purity of metagenomic DNA was also considerably high as the ratio of absorbance at 260 and 280 nm ranged from 1.88 to 1.94. Therefore, the recovered metagenomic DNA was directly used to perform various molecular biology experiments viz. restriction digestion, PCR amplification, cloning and metagenomic library construction. This clearly proved that our protocol for metagenomic DNA extraction using silica gel efficiently removed the contaminants and prevented shearing of the metagenomic DNA. Thus, this modified method can be used to recover pure metagenomic DNA from various estuarine sediments in a rapid, efficient and eco-friendly manner.

  7. Gut metagenomes of type 2 diabetic patients have characteristic single-nucleotide polymorphism distribution in Bacteroides coprocola.

    Science.gov (United States)

    Chen, Yaowen; Li, Zongcheng; Hu, Shuofeng; Zhang, Jian; Wu, Jiaqi; Shao, Ningsheng; Bo, Xiaochen; Ni, Ming; Ying, Xiaomin

    2017-02-01

    Gut microbes play a critical role in human health and disease, and researchers have begun to characterize their genomes, the so-called gut metagenome. Thus far, metagenomics studies have focused on genus- or species-level composition and microbial gene sets, while strain-level composition and single-nucleotide polymorphism (SNP) have been overlooked. The gut metagenomes of type 2 diabetes (T2D) patients have been found to be enriched with butyrate-producing bacteria and sulfate reduction functions. However, it is not known whether the gut metagenomes of T2D patients have characteristic strain patterns or SNP distributions. We downloaded public gut metagenome datasets from 170 T2D patients and 174 healthy controls and performed a systematic comparative analysis of their metagenome SNPs. We found that Bacteroides coprocola, whose relative abundance did not differ between the groups, had a characteristic distribution of SNPs in the T2D patient group. We identified 65 genes, all in B. coprocola, that had remarkably different enrichment of SNPs. The first and sixth ranked genes encode glycosyl hydrolases (GenBank accession EDU99824.1 and EDV02301.1). Interestingly, alpha-glucosidase, which is also a glycosyl hydrolase located in the intestine, is an important drug target of T2D. These results suggest that different strains of B. coprocola may have different roles in human gut and a specific set of B. coprocola strains are correlated with T2D.

  8. Filthy lucre: A metagenomic pilot study of microbes found on circulating currency in New York City.

    Directory of Open Access Journals (Sweden)

    Julia M Maritz

    Full Text Available Paper currency by its very nature is frequently transferred from one person to another and represents an important medium for human contact with-and potential exchange of-microbes. In this pilot study, we swabbed circulating $1 bills obtained from a New York City bank in February (Winter and June (Summer 2013 and used shotgun metagenomic sequencing to profile the communities found on their surface. Using basic culture conditions, we also tested whether viable microbes could be recovered from bills.Shotgun metagenomics identified eukaryotes as the most abundant sequences on money, followed by bacteria, viruses and archaea. Eukaryotic assemblages were dominated by human, other metazoan and fungal taxa. The currency investigated harbored a diverse microbial population that was dominated by human skin and oral commensals, including Propionibacterium acnes, Staphylococcus epidermidis and Micrococcus luteus. Other taxa detected not associated with humans included Lactococcus lactis and Streptococcus thermophilus, microbes typically associated with dairy production and fermentation. Culturing results indicated that viable microbes can be isolated from paper currency.We conducted the first metagenomic characterization of the surface of paper money in the United States, establishing a baseline for microbes found on $1 bills circulating in New York City. Our results suggest that money amalgamates DNA from sources inhabiting the human microbiome, food, and other environmental inputs, some of which can be recovered as viable organisms. These monetary communities may be maintained through contact with human skin, and DNA obtained from money may provide a record of human behavior and health. Understanding these microbial profiles is especially relevant to public health as money could potentially mediate interpersonal transfer of microbes.

  9. 22 CFR 214.37 - Public access to committee records.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Public access to committee records. 214.37 Section 214.37 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADVISORY COMMITTEE MANAGEMENT Operation of Advisory Committees § 214.37 Public access to committee records. Records maintained in...

  10. Diverse circovirus-like genome architectures revealed by environmental metagenomics.

    Science.gov (United States)

    Rosario, Karyna; Duffy, Siobain; Breitbart, Mya

    2009-10-01

    Single-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes similar to ssDNA circoviruses through data-mining of public viral metagenomes. The metagenomic libraries included samples from reclaimed water and three different marine environments (Chesapeake Bay, British Columbia coastal waters and Sargasso Sea). All the genomes have similarities to the replication (Rep) protein of circoviruses; however, only half have genomic features consistent with known circoviruses. Some of the genomes exhibit a mixture of genomic features associated with different families of ssDNA viruses (i.e. circoviruses, geminiviruses and parvoviruses). Unique genome architectures and phylogenetic analysis of the Rep protein suggest that these viruses belong to novel genera and/or families. Investigating the complex community of ssDNA viruses in the environment can lead to the discovery of divergent species and help elucidate evolutionary links between ssDNA viruses.

  11. Back to the Future of Soil Metagenomics.\

    Czech Academy of Sciences Publication Activity Database

    Nesme J, J.; Achouak, W.; Agathos SN, S.N.; Bailey, M.; Baldrian, Petr; Brunel, D.; Frostegård, Å.; Heulin, T.; Jansson JK, J.K.; Jurkevitch, E.; Kruus, K.L.; Kowalchuk, G.A.; Lagares, A.; Lapin-Scott, H.M.; Lemanceau, P.; Le Paslier, D.; Mandic-Mulec, I.; Murrell, J.C.; Myrold, D.D.; Nalin, R.; Nannipieri, P.; Neufeld, J.D.; O'Gara, F.; Parnell, J.J.; Pühler, A.; Pylro, V.; Ramos, J.L.; Roesch, L.F.; Schloter, M.; Schleper, C.; Sczyrba, A.; Sessitsch, A.; Sjöling, S.; Sørensen, J.; Sørensen, S.J.; Tebbe, C.C.; Topp, E.; Tsiamis, G.; van Elsas, J.D.; van Keulen, G.; Widmer, F.; Wagner, M.; Zhang, T.; Zhang, X.; Zhao, L; Zhu, Y-G.; Vogel, T.M.; Simonet, P.

    2016-01-01

    Roč. 7, FEB 10 (2016), s. 73 ISSN 1664-302X Institutional support: RVO:61388971 Keywords : metagenomic * soil microbiology; terrestrial microbiology * metagenomic; soil microbiology; terrestrial microbiology Subject RIV: EE - Microbiology, Virology Impact factor: 4.076, year: 2016

  12. Analysis and comparison of very large metagenomes with fast clustering and functional annotation

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2009-10-01

    Full Text Available Abstract Background The remarkable advance of metagenomics presents significant new challenges in data analysis. Metagenomic datasets (metagenomes are large collections of sequencing reads from anonymous species within particular environments. Computational analyses for very large metagenomes are extremely time-consuming, and there are often many novel sequences in these metagenomes that are not fully utilized. The number of available metagenomes is rapidly increasing, so fast and efficient metagenome comparison methods are in great demand. Results The new metagenomic data analysis method Rapid Analysis of Multiple Metagenomes with a Clustering and Annotation Pipeline (RAMMCAP was developed using an ultra-fast sequence clustering algorithm, fast protein family annotation tools, and a novel statistical metagenome comparison method that employs a unique graphic interface. RAMMCAP processes extremely large datasets with only moderate computational effort. It identifies raw read clusters and protein clusters that may include novel gene families, and compares metagenomes using clusters or functional annotations calculated by RAMMCAP. In this study, RAMMCAP was applied to the two largest available metagenomic collections, the "Global Ocean Sampling" and the "Metagenomic Profiling of Nine Biomes". Conclusion RAMMCAP is a very fast method that can cluster and annotate one million metagenomic reads in only hundreds of CPU hours. It is available from http://tools.camera.calit2.net/camera/rammcap/.

  13. Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures.

    Science.gov (United States)

    Pride, David T; Schoenfeld, Thomas

    2008-09-17

    Metagenomic analysis provides a rich source of biological information for otherwise intractable viral communities. However, study of viral metagenomes has been hampered by its nearly complete reliance on BLAST algorithms for identification of DNA sequences. We sought to develop algorithms for examination of viral metagenomes to identify the origin of sequences independent of BLAST algorithms. We chose viral metagenomes obtained from two hot springs, Bear Paw and Octopus, in Yellowstone National Park, as they represent simple microbial populations where comparatively large contigs were obtained. Thermal spring metagenomes have high proportions of sequences without significant Genbank homology, which has hampered identification of viruses and their linkage with hosts. To analyze each metagenome, we developed a method to classify DNA fragments using genome signature-based phylogenetic classification (GSPC), where metagenomic fragments are compared to a database of oligonucleotide signatures for all previously sequenced Bacteria, Archaea, and viruses. From both Bear Paw and Octopus hot springs, each assembled contig had more similarity to other metagenome contigs than to any sequenced microbial genome based on GSPC analysis, suggesting a genome signature common to each of these extreme environments. While viral metagenomes from Bear Paw and Octopus share some similarity, the genome signatures from each locale are largely unique. GSPC using a microbial database predicts most of the Octopus metagenome has archaeal signatures, while bacterial signatures predominate in Bear Paw; a finding consistent with those of Genbank BLAST. When using a viral database, the majority of the Octopus metagenome is predicted to belong to archaeal virus Families Globuloviridae and Fuselloviridae, while none of the Bear Paw metagenome is predicted to belong to archaeal viruses. As expected, when microbial and viral databases are combined, each of the Octopus and Bear Paw metagenomic contigs

  14. Enrichment allows identification of diverse, rare elements in metagenomic resistome-virulome sequencing.

    Science.gov (United States)

    Noyes, Noelle R; Weinroth, Maggie E; Parker, Jennifer K; Dean, Chris J; Lakin, Steven M; Raymond, Robert A; Rovira, Pablo; Doster, Enrique; Abdo, Zaid; Martin, Jennifer N; Jones, Kenneth L; Ruiz, Jaime; Boucher, Christina A; Belk, Keith E; Morley, Paul S

    2017-10-17

    Shotgun metagenomic sequencing is increasingly utilized as a tool to evaluate ecological-level dynamics of antimicrobial resistance and virulence, in conjunction with microbiome analysis. Interest in use of this method for environmental surveillance of antimicrobial resistance and pathogenic microorganisms is also increasing. In published metagenomic datasets, the total of all resistance- and virulence-related sequences accounts for enrichment system that incorporates unique molecular indices to count DNA molecules and correct for enrichment bias. The use of the bait-capture and enrichment system significantly increased on-target sequencing of the resistome-virulome, enabling detection of an additional 1441 gene accessions and revealing a low-abundance portion of the resistome-virulome that was more diverse and compositionally different than that detected by more traditional metagenomic assays. The low-abundance portion of the resistome-virulome also contained resistance genes with public health importance, such as extended-spectrum betalactamases, that were not detected using traditional shotgun metagenomic sequencing. In addition, the use of the bait-capture and enrichment system enabled identification of rare resistance gene haplotypes that were used to discriminate between sample origins. These results demonstrate that the rare resistome-virulome contains valuable and unique information that can be utilized for both surveillance and population genetic investigations of resistance. Access to the rare resistome-virulome using the bait-capture and enrichment system validated in this study can greatly advance our understanding of microbiome-resistome dynamics.

  15. MP3: a software tool for the prediction of pathogenic proteins in genomic and metagenomic data.

    Science.gov (United States)

    Gupta, Ankit; Kapil, Rohan; Dhakan, Darshan B; Sharma, Vineet K

    2014-01-01

    The identification of virulent proteins in any de-novo sequenced genome is useful in estimating its pathogenic ability and understanding the mechanism of pathogenesis. Similarly, the identification of such proteins could be valuable in comparing the metagenome of healthy and diseased individuals and estimating the proportion of pathogenic species. However, the common challenge in both the above tasks is the identification of virulent proteins since a significant proportion of genomic and metagenomic proteins are novel and yet unannotated. The currently available tools which carry out the identification of virulent proteins provide limited accuracy and cannot be used on large datasets. Therefore, we have developed an MP3 standalone tool and web server for the prediction of pathogenic proteins in both genomic and metagenomic datasets. MP3 is developed using an integrated Support Vector Machine (SVM) and Hidden Markov Model (HMM) approach to carry out highly fast, sensitive and accurate prediction of pathogenic proteins. It displayed Sensitivity, Specificity, MCC and accuracy values of 92%, 100%, 0.92 and 96%, respectively, on blind dataset constructed using complete proteins. On the two metagenomic blind datasets (Blind A: 51-100 amino acids and Blind B: 30-50 amino acids), it displayed Sensitivity, Specificity, MCC and accuracy values of 82.39%, 97.86%, 0.80 and 89.32% for Blind A and 71.60%, 94.48%, 0.67 and 81.86% for Blind B, respectively. In addition, the performance of MP3 was validated on selected bacterial genomic and real metagenomic datasets. To our knowledge, MP3 is the only program that specializes in fast and accurate identification of partial pathogenic proteins predicted from short (100-150 bp) metagenomic reads and also performs exceptionally well on complete protein sequences. MP3 is publicly available at http://metagenomics.iiserb.ac.in/mp3/index.php.

  16. Unsupervised Two-Way Clustering of Metagenomic Sequences

    Directory of Open Access Journals (Sweden)

    Shruthi Prabhakara

    2012-01-01

    Full Text Available A major challenge facing metagenomics is the development of tools for the characterization of functional and taxonomic content of vast amounts of short metagenome reads. The efficacy of clustering methods depends on the number of reads in the dataset, the read length and relative abundances of source genomes in the microbial community. In this paper, we formulate an unsupervised naive Bayes multispecies, multidimensional mixture model for reads from a metagenome. We use the proposed model to cluster metagenomic reads by their species of origin and to characterize the abundance of each species. We model the distribution of word counts along a genome as a Gaussian for shorter, frequent words and as a Poisson for longer words that are rare. We employ either a mixture of Gaussians or mixture of Poissons to model reads within each bin. Further, we handle the high-dimensionality and sparsity associated with the data, by grouping the set of words comprising the reads, resulting in a two-way mixture model. Finally, we demonstrate the accuracy and applicability of this method on simulated and real metagenomes. Our method can accurately cluster reads as short as 100 bps and is robust to varying abundances, divergences and read lengths.

  17. Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software.

    Science.gov (United States)

    Sczyrba, Alexander; Hofmann, Peter; Belmann, Peter; Koslicki, David; Janssen, Stefan; Dröge, Johannes; Gregor, Ivan; Majda, Stephan; Fiedler, Jessika; Dahms, Eik; Bremges, Andreas; Fritz, Adrian; Garrido-Oter, Ruben; Jørgensen, Tue Sparholt; Shapiro, Nicole; Blood, Philip D; Gurevich, Alexey; Bai, Yang; Turaev, Dmitrij; DeMaere, Matthew Z; Chikhi, Rayan; Nagarajan, Niranjan; Quince, Christopher; Meyer, Fernando; Balvočiūtė, Monika; Hansen, Lars Hestbjerg; Sørensen, Søren J; Chia, Burton K H; Denis, Bertrand; Froula, Jeff L; Wang, Zhong; Egan, Robert; Don Kang, Dongwan; Cook, Jeffrey J; Deltel, Charles; Beckstette, Michael; Lemaitre, Claire; Peterlongo, Pierre; Rizk, Guillaume; Lavenier, Dominique; Wu, Yu-Wei; Singer, Steven W; Jain, Chirag; Strous, Marc; Klingenberg, Heiner; Meinicke, Peter; Barton, Michael D; Lingner, Thomas; Lin, Hsin-Hung; Liao, Yu-Chieh; Silva, Genivaldo Gueiros Z; Cuevas, Daniel A; Edwards, Robert A; Saha, Surya; Piro, Vitor C; Renard, Bernhard Y; Pop, Mihai; Klenk, Hans-Peter; Göker, Markus; Kyrpides, Nikos C; Woyke, Tanja; Vorholt, Julia A; Schulze-Lefert, Paul; Rubin, Edward M; Darling, Aaron E; Rattei, Thomas; McHardy, Alice C

    2017-11-01

    Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.

  18. Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures

    Directory of Open Access Journals (Sweden)

    Pride David T

    2008-09-01

    Full Text Available Abstract Background Metagenomic analysis provides a rich source of biological information for otherwise intractable viral communities. However, study of viral metagenomes has been hampered by its nearly complete reliance on BLAST algorithms for identification of DNA sequences. We sought to develop algorithms for examination of viral metagenomes to identify the origin of sequences independent of BLAST algorithms. We chose viral metagenomes obtained from two hot springs, Bear Paw and Octopus, in Yellowstone National Park, as they represent simple microbial populations where comparatively large contigs were obtained. Thermal spring metagenomes have high proportions of sequences without significant Genbank homology, which has hampered identification of viruses and their linkage with hosts. To analyze each metagenome, we developed a method to classify DNA fragments using genome signature-based phylogenetic classification (GSPC, where metagenomic fragments are compared to a database of oligonucleotide signatures for all previously sequenced Bacteria, Archaea, and viruses. Results From both Bear Paw and Octopus hot springs, each assembled contig had more similarity to other metagenome contigs than to any sequenced microbial genome based on GSPC analysis, suggesting a genome signature common to each of these extreme environments. While viral metagenomes from Bear Paw and Octopus share some similarity, the genome signatures from each locale are largely unique. GSPC using a microbial database predicts most of the Octopus metagenome has archaeal signatures, while bacterial signatures predominate in Bear Paw; a finding consistent with those of Genbank BLAST. When using a viral database, the majority of the Octopus metagenome is predicted to belong to archaeal virus Families Globuloviridae and Fuselloviridae, while none of the Bear Paw metagenome is predicted to belong to archaeal viruses. As expected, when microbial and viral databases are combined, each of

  19. A method for the automated, reliable retrieval of publication-citation records.

    Directory of Open Access Journals (Sweden)

    Derek Ruths

    Full Text Available BACKGROUND: Publication records and citation indices often are used to evaluate academic performance. For this reason, obtaining or computing them accurately is important. This can be difficult, largely due to a lack of complete knowledge of an individual's publication list and/or lack of time available to manually obtain or construct the publication-citation record. While online publication search engines have somewhat addressed these problems, using raw search results can yield inaccurate estimates of publication-citation records and citation indices. METHODOLOGY: In this paper, we present a new, automated method that produces estimates of an individual's publication-citation record from an individual's name and a set of domain-specific vocabulary that may occur in the individual's publication titles. Because this vocabulary can be harvested directly from a research web page or online (partial publication list, our method delivers an easy way to obtain estimates of a publication-citation record and the relevant citation indices. Our method works by applying a series of stringent name and content filters to the raw publication search results returned by an online publication search engine. In this paper, our method is run using Google Scholar, but the underlying filters can be easily applied to any existing publication search engine. When compared against a manually constructed data set of individuals and their publication-citation records, our method provides significant improvements over raw search results. The estimated publication-citation records returned by our method have an average sensitivity of 98% and specificity of 72% (in contrast to raw search result specificity of less than 10%. When citation indices are computed using these records, the estimated indices are within of the true value 10%, compared to raw search results which have overestimates of, on average, 75%. CONCLUSIONS: These results confirm that our method provides

  20. Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Canon, Shane

    2011-10-12

    DOE JGI's Zhong Wang, chair of the High-performance Computing session, gives a brief introduction before Berkeley Lab's Shane Canon talks about "Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  1. Marine Metagenome as A Resource for Novel Enzymes

    KAUST Repository

    Alma’ abadi, Amani D.; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    the metagenomics approach has many limitations, it is expected to provide not only scientific insights but also economic benefits, especially in industry. This review highlights the importance of metagenomics in mining microbial lipases, as an example, by using

  2. Metagenomic Sequencing of an In Vitro-Simulated Microbial Community

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Jenna L.; Darling, Aaron E.; Eisen, Jonathan A.

    2009-12-01

    Background: Microbial life dominates the earth, but many species are difficult or even impossible to study under laboratory conditions. Sequencing DNA directly from the environment, a technique commonly referred to as metagenomics, is an important tool for cataloging microbial life. This culture-independent approach involves collecting samples that include microbes in them, extracting DNA from the samples, and sequencing the DNA. A sample may contain many different microorganisms, macroorganisms, and even free-floating environmental DNA. A fundamental challenge in metagenomics has been estimating the abundance of organisms in a sample based on the frequency with which the organism's DNA was observed in reads generated via DNA sequencing. Methodology/Principal Findings: We created mixtures of ten microbial species for which genome sequences are known. Each mixture contained an equal number of cells of each species. We then extracted DNA from the mixtures, sequenced the DNA, and measured the frequency with which genomic regions from each organism was observed in the sequenced DNA. We found that the observed frequency of reads mapping to each organism did not reflect the equal numbers of cells that were known to be included in each mixture. The relative organism abundances varied significantly depending on the DNA extraction and sequencing protocol utilized. Conclusions/Significance: We describe a new data resource for measuring the accuracy of metagenomic binning methods, created by in vitro-simulation of a metagenomic community. Our in vitro simulation can be used to complement previous in silico benchmark studies. In constructing a synthetic community and sequencing its metagenome, we encountered several sources of observation bias that likely affect most metagenomic experiments to date and present challenges for comparative metagenomic studies. DNA preparation methods have a particularly profound effect in our study, implying that samples prepared with

  3. Video Recordings in Public Libraries.

    Science.gov (United States)

    Doyle, Stephen

    1984-01-01

    Reports on development and operation of public library collection of video recordings, describes results of user survey conducted over 6-month period, and offers brief guidelines. Potential users, censorship and copyright, organization of collection, fees, damage and loss, funding, purchasing and promotion, formats, processing and cataloging,…

  4. Metagenome Fragment Classification Using -Mer Frequency Profiles

    Directory of Open Access Journals (Sweden)

    Gail Rosen

    2008-01-01

    Full Text Available A vast amount of microbial sequencing data is being generated through large-scale projects in ecology, agriculture, and human health. Efficient high-throughput methods are needed to analyze the mass amounts of metagenomic data, all DNA present in an environmental sample. A major obstacle in metagenomics is the inability to obtain accuracy using technology that yields short reads. We construct the unique -mer frequency profiles of 635 microbial genomes publicly available as of February 2008. These profiles are used to train a naive Bayes classifier (NBC that can be used to identify the genome of any fragment. We show that our method is comparable to BLAST for small 25 bp fragments but does not have the ambiguity of BLAST's tied top scores. We demonstrate that this approach is scalable to identify any fragment from hundreds of genomes. It also performs quite well at the strain, species, and genera levels and achieves strain resolution despite classifying ubiquitous genomic fragments (gene and nongene regions. Cross-validation analysis demonstrates that species-accuracy achieves 90% for highly-represented species containing an average of 8 strains. We demonstrate that such a tool can be used on the Sargasso Sea dataset, and our analysis shows that NBC can be further enhanced.

  5. Assembly of viral genomes from metagenomes

    Directory of Open Access Journals (Sweden)

    Saskia L Smits

    2014-12-01

    Full Text Available Viral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow rapid phylogenetic characterization of these new viruses. Often, however, complete viral genomes are not recovered, but rather several distinct contigs derived from a single entity, some of which have no sequence homology to any known proteins. De novo assembly of single viruses from a metagenome is challenging, not only because of the lack of a reference genome, but also because of intrapopulation variation and uneven or insufficient coverage. Here we explored different assembly algorithms, remote homology searches, genome-specific sequence motifs, k-mer frequency ranking, and coverage profile binning to detect and obtain viral target genomes from metagenomes. All methods were tested on 454-generated sequencing datasets containing three recently described RNA viruses with a relatively large genome which were divergent to previously known viruses from the viral families Rhabdoviridae and Coronaviridae. Depending on specific characteristics of the target virus and the metagenomic community, different assembly and in silico gap closure strategies were successful in obtaining near complete viral genomes.

  6. BioCreative Workshops for DOE Genome Sciences: Text Mining for Metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cathy H. [Univ. of Delaware, Newark, DE (United States). Center for Bioinformatics and Computational Biology; Hirschman, Lynette [The MITRE Corporation, Bedford, MA (United States)

    2016-10-29

    The objective of this project was to host BioCreative workshops to define and develop text mining tasks to meet the needs of the Genome Sciences community, focusing on metadata information extraction in metagenomics. Following the successful introduction of metagenomics at the BioCreative IV workshop, members of the metagenomics community and BioCreative communities continued discussion to identify candidate topics for a BioCreative metagenomics track for BioCreative V. Of particular interest was the capture of environmental and isolation source information from text. The outcome was to form a “community of interest” around work on the interactive EXTRACT system, which supported interactive tagging of environmental and species data. This experiment is included in the BioCreative V virtual issue of Database. In addition, there was broad participation by members of the metagenomics community in the panels held at BioCreative V, leading to valuable exchanges between the text mining developers and members of the metagenomics research community. These exchanges are reflected in a number of the overview and perspective pieces also being captured in the BioCreative V virtual issue. Overall, this conversation has exposed the metagenomics researchers to the possibilities of text mining, and educated the text mining developers to the specific needs of the metagenomics community.

  7. Evaluation of ddRADseq for reduced representation metagenome sequencing

    Directory of Open Access Journals (Sweden)

    Michael Y. Liu

    2017-09-01

    Full Text Available Background Profiling of microbial communities via metagenomic shotgun sequencing has enabled researches to gain unprecedented insight into microbial community structure and the functional roles of community members. This study describes a method and basic analysis for a metagenomic adaptation of the double digest restriction site associated DNA sequencing (ddRADseq protocol for reduced representation metagenome profiling. Methods This technique takes advantage of the sequence specificity of restriction endonucleases to construct an Illumina-compatible sequencing library containing DNA fragments that are between a pair of restriction sites located within close proximity. This results in a reduced sequencing library with coverage breadth that can be tuned by size selection. We assessed the performance of the metagenomic ddRADseq approach by applying the full method to human stool samples and generating sequence data. Results The ddRADseq data yields a similar estimate of community taxonomic profile as obtained from shotgun metagenome sequencing of the same human stool samples. No obvious bias with respect to genomic G + C content and the estimated relative species abundance was detected. Discussion Although ddRADseq does introduce some bias in taxonomic representation, the bias is likely to be small relative to DNA extraction bias. ddRADseq appears feasible and could have value as a tool for metagenome-wide association studies.

  8. SmashCommunity: A metagenomic annotation and analysis tool

    DEFF Research Database (Denmark)

    Arumugam, Manimozhiyan; Harrington, Eoghan D; Foerstner, Konrad U

    2010-01-01

    the quantitative phylogenetic and functional compositions of metagenomes, to compare compositions of multiple metagenomes and to produce intuitive visual representations of such analyses. AVAILABILITY: SmashCommunity is freely available at http://www.bork.embl.de/software/smash CONTACT: bork@embl.de....

  9. FANTOM: Functional and taxonomic analysis of metagenomes

    Directory of Open Access Journals (Sweden)

    Sanli Kemal

    2013-02-01

    Full Text Available Abstract Background Interpretation of quantitative metagenomics data is important for our understanding of ecosystem functioning and assessing differences between various environmental samples. There is a need for an easy to use tool to explore the often complex metagenomics data in taxonomic and functional context. Results Here we introduce FANTOM, a tool that allows for exploratory and comparative analysis of metagenomics abundance data integrated with metadata information and biological databases. Importantly, FANTOM can make use of any hierarchical database and it comes supplied with NCBI taxonomic hierarchies as well as KEGG Orthology, COG, PFAM and TIGRFAM databases. Conclusions The software is implemented in Python, is platform independent, and is available at http://www.sysbio.se/Fantom.

  10. 14 CFR 1206.800 - Failure to release records to the public.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Failure to release records to the public. 1206.800 Section 1206.800 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION AVAILABILITY OF AGENCY RECORDS TO MEMBERS OF THE PUBLIC Failure To Release Records to the Public § 1206.800...

  11. Towards diagnostic metagenomics of Campylobacter in fecal samples

    DEFF Research Database (Denmark)

    Andersen, Sandra Christine; Kiil, Kristoffer; Harder, Christoffer Bugge

    2017-01-01

    The development of diagnostic metagenomics is driven by the need for universal, culture-independent methods for detection and characterization of pathogens to substitute the time-consuming, organism-specific, and often culture-based laboratory procedures for epidemiological source-tracing. Some...... of the challenges in diagnostic metagenomics are, that it requires a great next-generation sequencing depth and unautomated data analysis. DNA from human fecal samples spiked with 7.75 × 101-7.75 × 107 colony forming unit (CFU)/ml Campylobacter jejuni and chicken fecal samples spiked with 1 × 102-1 × 106 CFU...... Campylobacter in all the clinical samples. Sensitivity in diagnostic metagenomics is improving and has reached a clinically relevant level. There are still challenges to overcome before real-time diagnostic metagenomics can replace quantitative polymerase chain reaction (qPCR) or culture-based surveillance...

  12. Microbial survival strategies in ancient permafrost: insights from metagenomics.

    Science.gov (United States)

    Mackelprang, Rachel; Burkert, Alexander; Haw, Monica; Mahendrarajah, Tara; Conaway, Christopher H; Douglas, Thomas A; Waldrop, Mark P

    2017-10-01

    In permafrost (perennially frozen ground) microbes survive oligotrophic conditions, sub-zero temperatures, low water availability and high salinity over millennia. Viable life exists in permafrost tens of thousands of years old but we know little about the metabolic and physiological adaptations to the challenges presented by life in frozen ground over geologic time. In this study we asked whether increasing age and the associated stressors drive adaptive changes in community composition and function. We conducted deep metagenomic and 16 S rRNA gene sequencing across a Pleistocene permafrost chronosequence from 19 000 to 33 000 years before present (kyr). We found that age markedly affected community composition and reduced diversity. Reconstruction of paleovegetation from metagenomic sequence suggests vegetation differences in the paleo record are not responsible for shifts in community composition and function. Rather, we observed shifts consistent with long-term survival strategies in extreme cryogenic environments. These include increased reliance on scavenging detrital biomass, horizontal gene transfer, chemotaxis, dormancy, environmental sensing and stress response. Our results identify traits that may enable survival in ancient cryoenvironments with no influx of energy or new materials.

  13. Metagenomic studies of the Red Sea.

    Science.gov (United States)

    Behzad, Hayedeh; Ibarra, Martin Augusto; Mineta, Katsuhiko; Gojobori, Takashi

    2016-02-01

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied among marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmoregulation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1-3°C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the Red Sea, and

  14. Effective Analysis of NGS Metagenomic Data with Ultra-Fast Clustering Algorithms (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weizhong

    2011-10-12

    San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  15. Metagenomic analysis of permafrost microbial community response to thaw

    Energy Technology Data Exchange (ETDEWEB)

    Mackelprang, R.; Waldrop, M.P.; DeAngelis, K.M.; David, M.M.; Chavarria, K.L.; Blazewicz, S.J.; Rubin, E.M.; Jansson, J.K.

    2011-07-01

    We employed deep metagenomic sequencing to determine the impact of thaw on microbial phylogenetic and functional genes and related this data to measurements of methane emissions. Metagenomics, the direct sequencing of DNA from the environment, allows for the examination of whole biochemical pathways and associated processes, as opposed to individual pieces of the metabolic puzzle. Our metagenome analyses revealed that during transition from a frozen to a thawed state there were rapid shifts in many microbial, phylogenetic and functional gene abundances and pathways. After one week of incubation at 5°C, permafrost metagenomes converged to be more similar to each other than while they were frozen. We found that multiple genes involved in cycling of C and nitrogen shifted rapidly during thaw. We also constructed the first draft genome from a complex soil metagenome, which corresponded to a novel methanogen. Methane previously accumulated in permafrost was released during thaw and subsequently consumed by methanotrophic bacteria. Together these data point towards the importance of rapid cycling of methane and nitrogen in thawing permafrost.

  16. 37 CFR 380.3 - Royalty fees for the public performance of sound recordings and for ephemeral recordings.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Royalty fees for the public... EPHEMERAL REPRODUCTIONS § 380.3 Royalty fees for the public performance of sound recordings and for ephemeral recordings. (a) Royalty rates and fees for eligible digital transmissions of sound recordings made...

  17. DOE JGI Quality Metrics; Approaches to Scaling and Improving Metagenome Assembly (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Alex; Brown, C. Titus

    2011-10-13

    DOE JGI's Alex Copeland on "DOE JGI Quality Metrics" and Michigan State University's C. Titus Brown on "Approaches to Scaling and Improving Metagenome Assembly" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  18. Marine Metagenome as A Resource for Novel Enzymes

    KAUST Repository

    Alma’abadi, Amani D.

    2015-11-10

    More than 99% of identified prokaryotes, including many from the marine environment, cannot be cultured in the laboratory. This lack of capability restricts our knowledge of microbial genetics and community ecology. Metagenomics, the culture-independent cloning of environmental DNAs that are isolated directly from an environmental sample, has already provided a wealth of information about the uncultured microbial world. It has also facilitated the discovery of novel biocatalysts by allowing researchers to probe directly into a huge diversity of enzymes within natural microbial communities. Recent advances in these studies have led to great interest in recruiting microbial enzymes for the development of environmentally-friendly industry. Although the metagenomics approach has many limitations, it is expected to provide not only scientific insights but also economic benefits, especially in industry. This review highlights the importance of metagenomics in mining microbial lipases, as an example, by using high-throughput techniques. In addition, we discuss challenges in the metagenomics as an important part of bioinformatics analysis in big data.

  19. Meta4: a web application for sharing and annotating metagenomic gene predictions using web services.

    Science.gov (United States)

    Richardson, Emily J; Escalettes, Franck; Fotheringham, Ian; Wallace, Robert J; Watson, Mick

    2013-01-01

    Whole-genome shotgun metagenomics experiments produce DNA sequence data from entire ecosystems, and provide a huge amount of novel information. Gene discovery projects require up-to-date information about sequence homology and domain structure for millions of predicted proteins to be presented in a simple, easy-to-use system. There is a lack of simple, open, flexible tools that allow the rapid sharing of metagenomics datasets with collaborators in a format they can easily interrogate. We present Meta4, a flexible and extensible web application that can be used to share and annotate metagenomic gene predictions. Proteins and predicted domains are stored in a simple relational database, with a dynamic front-end which displays the results in an internet browser. Web services are used to provide up-to-date information about the proteins from homology searches against public databases. Information about Meta4 can be found on the project website, code is available on Github, a cloud image is available, and an example implementation can be seen at.

  20. Bracken: estimating species abundance in metagenomics data

    Directory of Open Access Journals (Sweden)

    Jennifer Lu

    2017-01-01

    Full Text Available Metagenomic experiments attempt to characterize microbial communities using high-throughput DNA sequencing. Identification of the microorganisms in a sample provides information about the genetic profile, population structure, and role of microorganisms within an environment. Until recently, most metagenomics studies focused on high-level characterization at the level of phyla, or alternatively sequenced the 16S ribosomal RNA gene that is present in bacterial species. As the cost of sequencing has fallen, though, metagenomics experiments have increasingly used unbiased shotgun sequencing to capture all the organisms in a sample. This approach requires a method for estimating abundance directly from the raw read data. Here we describe a fast, accurate new method that computes the abundance at the species level using the reads collected in a metagenomics experiment. Bracken (Bayesian Reestimation of Abundance after Classification with KrakEN uses the taxonomic assignments made by Kraken, a very fast read-level classifier, along with information about the genomes themselves to estimate abundance at the species level, the genus level, or above. We demonstrate that Bracken can produce accurate species- and genus-level abundance estimates even when a sample contains multiple near-identical species.

  1. MetaQUAST: evaluation of metagenome assemblies.

    Science.gov (United States)

    Mikheenko, Alla; Saveliev, Vladislav; Gurevich, Alexey

    2016-04-01

    During the past years we have witnessed the rapid development of new metagenome assembly methods. Although there are many benchmark utilities designed for single-genome assemblies, there is no well-recognized evaluation and comparison tool for metagenomic-specific analogues. In this article, we present MetaQUAST, a modification of QUAST, the state-of-the-art tool for genome assembly evaluation based on alignment of contigs to a reference. MetaQUAST addresses such metagenome datasets features as (i) unknown species content by detecting and downloading reference sequences, (ii) huge diversity by giving comprehensive reports for multiple genomes and (iii) presence of highly relative species by detecting chimeric contigs. We demonstrate MetaQUAST performance by comparing several leading assemblers on one simulated and two real datasets. http://bioinf.spbau.ru/metaquast aleksey.gurevich@spbu.ru Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. 37 CFR 262.3 - Royalty fees for public performances of sound recordings and for ephemeral recordings.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Royalty fees for public... MAKING OF EPHEMERAL REPRODUCTIONS § 262.3 Royalty fees for public performances of sound recordings and for ephemeral recordings. (a) Basic royalty rate. Royalty rates and fees for eligible nonsubscription...

  3. Metagenomics and Bioinformatics in Microbial Ecology: Current Status and Beyond.

    Science.gov (United States)

    Hiraoka, Satoshi; Yang, Ching-Chia; Iwasaki, Wataru

    2016-09-29

    Metagenomic approaches are now commonly used in microbial ecology to study microbial communities in more detail, including many strains that cannot be cultivated in the laboratory. Bioinformatic analyses make it possible to mine huge metagenomic datasets and discover general patterns that govern microbial ecosystems. However, the findings of typical metagenomic and bioinformatic analyses still do not completely describe the ecology and evolution of microbes in their environments. Most analyses still depend on straightforward sequence similarity searches against reference databases. We herein review the current state of metagenomics and bioinformatics in microbial ecology and discuss future directions for the field. New techniques will allow us to go beyond routine analyses and broaden our knowledge of microbial ecosystems. We need to enrich reference databases, promote platforms that enable meta- or comprehensive analyses of diverse metagenomic datasets, devise methods that utilize long-read sequence information, and develop more powerful bioinformatic methods to analyze data from diverse perspectives.

  4. FY11 Report on Metagenome Analysis using Pathogen Marker Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Shea N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Allen, Jonathan E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLoughlin, Kevin S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Slezak, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-02

    A method, sequence library, and software suite was invented to rapidly assess whether any member of a pre-specified list of threat organisms or their near neighbors is present in a metagenome. The system was designed to handle mega- to giga-bases of FASTA-formatted raw sequence reads from short or long read next generation sequencing platforms. The approach is to pre-calculate a viral and a bacterial "Pathogen Marker Library" (PML) containing sub-sequences specific to pathogens or their near neighbors. A list of expected matches comparing every bacterial or viral genome against the PML sequences is also pre-calculated. To analyze a metagenome, reads are compared to the PML, and observed PML-metagenome matches are compared to the expected PML-genome matches, and the ratio of observed relative to expected matches is reported. In other words, a 3-way comparison among the PML, metagenome, and existing genome sequences is used to quickly assess which (if any) species included in the PML is likely to be present in the metagenome, based on available sequence data. Our tests showed that the species with the most PML matches correctly indicated the organism sequenced for empirical metagenomes consisting of a cultured, relatively pure isolate. These runs completed in 1 minute to 3 hours on 12 CPU (1 thread/CPU), depending on the metagenome and PML. Using more threads on the same number of CPU resulted in speed improvements roughly proportional to the number of threads. Simulations indicated that detection sensitivity depends on both sequencing coverage levels for a species and the size of the PML: species were correctly detected even at ~0.003x coverage by the large PMLs, and at ~0.03x coverage by the smaller PMLs. Matches to true positive species were 3-4 orders of magnitude higher than to false positives. Simulations with short reads (36 nt and ~260 nt) showed that species were usually detected for metagenome coverage above 0.005x and coverage in the PML above 0.05x, and

  5. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata

    Science.gov (United States)

    Pagani, Ioanna; Liolios, Konstantinos; Jansson, Jakob; Chen, I-Min A.; Smirnova, Tatyana; Nosrat, Bahador; Markowitz, Victor M.; Kyrpides, Nikos C.

    2012-01-01

    The Genomes OnLine Database (GOLD, http://www.genomesonline.org/) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2011, GOLD, now on version 4.0, contains information for 11 472 sequencing projects, of which 2907 have been completed and their sequence data has been deposited in a public repository. Out of these complete projects, 1918 are finished and 989 are permanent drafts. Moreover, GOLD contains information for 340 metagenome studies associated with 1927 metagenome samples. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about any (x) Sequence specification and beyond. PMID:22135293

  6. Archival legislation and the management of public sector Records in ...

    African Journals Online (AJOL)

    mpho ngoepe

    such institution Legislation relating to public records or national archives exists in some form in most countries. ... It establishes the framework within which appropriate records and archives ..... management and governance of public institutions (Organisation of Economic Cooperation ... Metropolitan Book Company. Mnjama ...

  7. 37 CFR 261.3 - Royalty fees for public performances of sound recordings and for ephemeral recordings.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Royalty fees for public... § 261.3 Royalty fees for public performances of sound recordings and for ephemeral recordings. (a) For the period October 28, 1998, through December 31, 2002, royalty rates and fees for eligible digital...

  8. Computational workflow for the fine-grained analysis of metagenomic samples.

    Science.gov (United States)

    Pérez-Wohlfeil, Esteban; Arjona-Medina, Jose A; Torreno, Oscar; Ulzurrun, Eugenia; Trelles, Oswaldo

    2016-10-25

    The field of metagenomics, defined as the direct genetic analysis of uncultured samples of genomes contained within an environmental sample, is gaining increasing popularity. The aim of studies of metagenomics is to determine the species present in an environmental community and identify changes in the abundance of species under different conditions. Current metagenomic analysis software faces bottlenecks due to the high computational load required to analyze complex samples. A computational open-source workflow has been developed for the detailed analysis of metagenomes. This workflow provides new tools and datafile specifications that facilitate the identification of differences in abundance of reads assigned to taxa (mapping), enables the detection of reads of low-abundance bacteria (producing evidence of their presence), provides new concepts for filtering spurious matches, etc. Innovative visualization ideas for improved display of metagenomic diversity are also proposed to better understand how reads are mapped to taxa. Illustrative examples are provided based on the study of two collections of metagenomes from faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity and their mothers. The proposed workflow provides an open environment that offers the opportunity to perform the mapping process using different reference databases. Additionally, this workflow shows the specifications of the mapping process and datafile formats to facilitate the development of new plugins for further post-processing. This open and extensible platform has been designed with the aim of enabling in-depth analysis of metagenomic samples and better understanding of the underlying biological processes.

  9. Computational workflow for the fine-grained analysis of metagenomic samples

    Directory of Open Access Journals (Sweden)

    Esteban Pérez-Wohlfeil

    2016-10-01

    Full Text Available Abstract Background The field of metagenomics, defined as the direct genetic analysis of uncultured samples of genomes contained within an environmental sample, is gaining increasing popularity. The aim of studies of metagenomics is to determine the species present in an environmental community and identify changes in the abundance of species under different conditions. Current metagenomic analysis software faces bottlenecks due to the high computational load required to analyze complex samples. Results A computational open-source workflow has been developed for the detailed analysis of metagenomes. This workflow provides new tools and datafile specifications that facilitate the identification of differences in abundance of reads assigned to taxa (mapping, enables the detection of reads of low-abundance bacteria (producing evidence of their presence, provides new concepts for filtering spurious matches, etc. Innovative visualization ideas for improved display of metagenomic diversity are also proposed to better understand how reads are mapped to taxa. Illustrative examples are provided based on the study of two collections of metagenomes from faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity and their mothers. Conclusions The proposed workflow provides an open environment that offers the opportunity to perform the mapping process using different reference databases. Additionally, this workflow shows the specifications of the mapping process and datafile formats to facilitate the development of new plugins for further post-processing. This open and extensible platform has been designed with the aim of enabling in-depth analysis of metagenomic samples and better understanding of the underlying biological processes.

  10. Metagenomic profiling of microbial composition and antibiotic resistance determinants in Puget Sound.

    Science.gov (United States)

    Port, Jesse A; Wallace, James C; Griffith, William C; Faustman, Elaine M

    2012-01-01

    Human-health relevant impacts on marine ecosystems are increasing on both spatial and temporal scales. Traditional indicators for environmental health monitoring and microbial risk assessment have relied primarily on single species analyses and have provided only limited spatial and temporal information. More high-throughput, broad-scale approaches to evaluate these impacts are therefore needed to provide a platform for informing public health. This study uses shotgun metagenomics to survey the taxonomic composition and antibiotic resistance determinant content of surface water bacterial communities in the Puget Sound estuary. Metagenomic DNA was collected at six sites in Puget Sound in addition to one wastewater treatment plant (WWTP) that discharges into the Sound and pyrosequenced. A total of ~550 Mbp (1.4 million reads) were obtained, 22 Mbp of which could be assembled into contigs. While the taxonomic and resistance determinant profiles across the open Sound samples were similar, unique signatures were identified when comparing these profiles across the open Sound, a nearshore marina and WWTP effluent. The open Sound was dominated by α-Proteobacteria (in particular Rhodobacterales sp.), γ-Proteobacteria and Bacteroidetes while the marina and effluent had increased abundances of Actinobacteria, β-Proteobacteria and Firmicutes. There was a significant increase in the antibiotic resistance gene signal from the open Sound to marina to WWTP effluent, suggestive of a potential link to human impacts. Mobile genetic elements associated with environmental and pathogenic bacteria were also differentially abundant across the samples. This study is the first comparative metagenomic survey of Puget Sound and provides baseline data for further assessments of community composition and antibiotic resistance determinants in the environment using next generation sequencing technologies. In addition, these genomic signals of potential human impact can be used to guide initial

  11. Metagenomic profiling of microbial composition and antibiotic resistance determinants in Puget Sound.

    Directory of Open Access Journals (Sweden)

    Jesse A Port

    Full Text Available Human-health relevant impacts on marine ecosystems are increasing on both spatial and temporal scales. Traditional indicators for environmental health monitoring and microbial risk assessment have relied primarily on single species analyses and have provided only limited spatial and temporal information. More high-throughput, broad-scale approaches to evaluate these impacts are therefore needed to provide a platform for informing public health. This study uses shotgun metagenomics to survey the taxonomic composition and antibiotic resistance determinant content of surface water bacterial communities in the Puget Sound estuary. Metagenomic DNA was collected at six sites in Puget Sound in addition to one wastewater treatment plant (WWTP that discharges into the Sound and pyrosequenced. A total of ~550 Mbp (1.4 million reads were obtained, 22 Mbp of which could be assembled into contigs. While the taxonomic and resistance determinant profiles across the open Sound samples were similar, unique signatures were identified when comparing these profiles across the open Sound, a nearshore marina and WWTP effluent. The open Sound was dominated by α-Proteobacteria (in particular Rhodobacterales sp., γ-Proteobacteria and Bacteroidetes while the marina and effluent had increased abundances of Actinobacteria, β-Proteobacteria and Firmicutes. There was a significant increase in the antibiotic resistance gene signal from the open Sound to marina to WWTP effluent, suggestive of a potential link to human impacts. Mobile genetic elements associated with environmental and pathogenic bacteria were also differentially abundant across the samples. This study is the first comparative metagenomic survey of Puget Sound and provides baseline data for further assessments of community composition and antibiotic resistance determinants in the environment using next generation sequencing technologies. In addition, these genomic signals of potential human impact can be used

  12. Marine Metagenome as A Resource for Novel Enzymes

    Directory of Open Access Journals (Sweden)

    Amani D. Alma’abadi

    2015-10-01

    Full Text Available More than 99% of identified prokaryotes, including many from the marine environment, cannot be cultured in the laboratory. This lack of capability restricts our knowledge of microbial genetics and community ecology. Metagenomics, the culture-independent cloning of environmental DNAs that are isolated directly from an environmental sample, has already provided a wealth of information about the uncultured microbial world. It has also facilitated the discovery of novel biocatalysts by allowing researchers to probe directly into a huge diversity of enzymes within natural microbial communities. Recent advances in these studies have led to a great interest in recruiting microbial enzymes for the development of environmentally-friendly industry. Although the metagenomics approach has many limitations, it is expected to provide not only scientific insights but also economic benefits, especially in industry. This review highlights the importance of metagenomics in mining microbial lipases, as an example, by using high-throughput techniques. In addition, we discuss challenges in the metagenomics as an important part of bioinformatics analysis in big data.

  13. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Aimee Marguerite Moore

    2011-10-01

    Full Text Available The human intestinal microbiota encode multiple critical functions impacting human health, including, metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique used for decades to study environmental microorganisms but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community independent of identity to known genes by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.

  14. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    DEFF Research Database (Denmark)

    Moore, Aimee M.; Munck, Christian; Sommer, Morten Otto Alexander

    2011-01-01

    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity...... microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host....... Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex...

  15. WebMGA: a customizable web server for fast metagenomic sequence analysis.

    Science.gov (United States)

    Wu, Sitao; Zhu, Zhengwei; Fu, Liming; Niu, Beifang; Li, Weizhong

    2011-09-07

    The new field of metagenomics studies microorganism communities by culture-independent sequencing. With the advances in next-generation sequencing techniques, researchers are facing tremendous challenges in metagenomic data analysis due to huge quantity and high complexity of sequence data. Analyzing large datasets is extremely time-consuming; also metagenomic annotation involves a wide range of computational tools, which are difficult to be installed and maintained by common users. The tools provided by the few available web servers are also limited and have various constraints such as login requirement, long waiting time, inability to configure pipelines etc. We developed WebMGA, a customizable web server for fast metagenomic analysis. WebMGA includes over 20 commonly used tools such as ORF calling, sequence clustering, quality control of raw reads, removal of sequencing artifacts and contaminations, taxonomic analysis, functional annotation etc. WebMGA provides users with rapid metagenomic data analysis using fast and effective tools, which have been implemented to run in parallel on our local computer cluster. Users can access WebMGA through web browsers or programming scripts to perform individual analysis or to configure and run customized pipelines. WebMGA is freely available at http://weizhongli-lab.org/metagenomic-analysis. WebMGA offers to researchers many fast and unique tools and great flexibility for complex metagenomic data analysis.

  16. WebMGA: a customizable web server for fast metagenomic sequence analysis

    Directory of Open Access Journals (Sweden)

    Niu Beifang

    2011-09-01

    Full Text Available Abstract Background The new field of metagenomics studies microorganism communities by culture-independent sequencing. With the advances in next-generation sequencing techniques, researchers are facing tremendous challenges in metagenomic data analysis due to huge quantity and high complexity of sequence data. Analyzing large datasets is extremely time-consuming; also metagenomic annotation involves a wide range of computational tools, which are difficult to be installed and maintained by common users. The tools provided by the few available web servers are also limited and have various constraints such as login requirement, long waiting time, inability to configure pipelines etc. Results We developed WebMGA, a customizable web server for fast metagenomic analysis. WebMGA includes over 20 commonly used tools such as ORF calling, sequence clustering, quality control of raw reads, removal of sequencing artifacts and contaminations, taxonomic analysis, functional annotation etc. WebMGA provides users with rapid metagenomic data analysis using fast and effective tools, which have been implemented to run in parallel on our local computer cluster. Users can access WebMGA through web browsers or programming scripts to perform individual analysis or to configure and run customized pipelines. WebMGA is freely available at http://weizhongli-lab.org/metagenomic-analysis. Conclusions WebMGA offers to researchers many fast and unique tools and great flexibility for complex metagenomic data analysis.

  17. Metagenomics at Grass Roots

    Indian Academy of Sciences (India)

    Metagenomics is a robust, interdisciplinary approach for studyingmicrobial community composition, function, and dynamics.It typically involves a core of molecular biology, microbiology,ecology, statistics, and computational biology. Excitingoutcomes anticipated from these studies include unravelingof complex interactions ...

  18. Metagenomics at Grass Roots

    Indian Academy of Sciences (India)

    CAMERA (Community Cyber-infrastructure for Advanced Mi- crobial Ecology .... Acidobacteria known to metabolize a variety of car- bon sources .... [7] J Nesme et al., Back to the future of soil metagenomics, Frontiers in Microbi- ology, Vol.7 ...

  19. Unlocking the potential of metagenomics through replicated experimental design

    NARCIS (Netherlands)

    Knight, R.; Jansson, J.; Field, D.; Fierer, N.; Desai, N.; Fuhrman, J.A.; Hugenholtz, P.; Van der Lelie, D.; Meyer, F.; Stevens, R.; Bailey, M.J.; Gordon, J.I.; Kowalchuk, G.A.; Gilbert, J.A.

    2012-01-01

    Metagenomics holds enormous promise for discovering novel enzymes and organisms that are biomarkers or drivers of processes relevant to disease, industry and the environment. In the past two years, we have seen a paradigm shift in metagenomics to the application of cross-sectional and longitudinal

  20. Unlocking the potential of metagenomics through replicated experimental design.

    NARCIS (Netherlands)

    Knight, R.; Jansson, J.; Field, D.; Fierer, N.; Desai, N.; Fuhrman, J.A.; Hugenholtz, P.; van der Lelie, D.; Meyer, F.; Stevens, R.; Bailey, M.J.; Gordon, J.I.; Kowalchuk, G.A.; Gilbert, J.A.

    2012-01-01

    Metagenomics holds enormous promise for discovering novel enzymes and organisms that are biomarkers or drivers of processes relevant to disease, industry and the environment. In the past two years, we have seen a paradigm shift in metagenomics to the application of cross-sectional and longitudinal

  1. Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design

    Science.gov (United States)

    Metch, Jacob W.; Burrows, Nathan D.; Murphy, Catherine J.; Pruden, Amy; Vikesland, Peter J.

    2018-01-01

    Next-generation DNA sequencing and metagenomic analysis provide powerful tools for the environmentally friendly design of nanoparticles. Herein we demonstrate this approach using a model community of environmental microbes (that is, wastewater-activated sludge) dosed with gold nanoparticles of varying surface coatings and morphologies. Metagenomic analysis was highly sensitive in detecting the microbial community response to gold nanospheres and nanorods with either cetyltrimethylammonium bromide or polyacrylic acid surface coatings. We observed that the gold-nanoparticle morphology imposes a stronger force in shaping the microbial community structure than does the surface coating. Trends were consistent in terms of the compositions of both taxonomic and functional genes, which include antibiotic resistance genes, metal resistance genes and gene-transfer elements associated with cell stress that are relevant to public health. Given that nanoparticle morphology remained constant, the potential influence of gold dissolution was minimal. Surface coating governed the nanoparticle partitioning between the bioparticulate and aqueous phases.

  2. 4 CFR 201.4 - Board records exempt from public disclosure.

    Science.gov (United States)

    2010-01-01

    ... § 201.4 Board records exempt from public disclosure. 5 U.S.C. 552 provides that the requirements of the... enforcement investigations or prosecutions if such disclosure could reasonably be expected to risk... 4 Accounts 1 2010-01-01 2010-01-01 false Board records exempt from public disclosure. 201.4...

  3. 10 CFR 1303.104 - Board records exempt from public disclosure.

    Science.gov (United States)

    2010-01-01

    ... Board records exempt from public disclosure. 5 U.S.C. 552 provides that the requirements of the FOIA do... enforcement investigations or prosecutions if such disclosure could reasonably be expected to risk... 10 Energy 4 2010-01-01 2010-01-01 false Board records exempt from public disclosure. 1303.104...

  4. An inventory of publications on electronic medical records revisited.

    Science.gov (United States)

    Moorman, P W; Schuemie, M J; van der Lei, J

    2009-01-01

    In this short review we provide an update of our earlier inventories of publications indexed in MedLine with the MeSH term 'Medical Records Systems, Computerized'. We retrieved and analyzed all references to English articles published before January 1, 2008, and indexed in PubMed with the MeSH term 'Medical Records Systems, Computerized'. We retrieved a total of 11,924 publications, of which 3937 (33%) appeared in a journal with an impact factor. Since 2002 the number of yearly publications, and the number of journals in which those publications appeared, increased. A cluster analysis revealed three clusters: an organizational issues cluster, a technically oriented cluster and a cluster about order-entry and research. Although our previous inventory in 2003 suggested a constant yearly production of publications on electronic medical records since 1998, the current inventory shows another rise in production since 2002. In addition, many new journals and countries have shown interest during the last five years. In the last 15 years, interest in organizational issues remained fairly constant, order entry and research with systems gained attention, while interest in technical issues relatively decreased.

  5. Cross-cutting activities: Soil quality and soil metagenomics

    OpenAIRE

    Motavalli, Peter P.; Garrett, Karen A.

    2008-01-01

    This presentation reports on the work of the SANREM CRSP cross-cutting activities "Assessing and Managing Soil Quality for Sustainable Agricultural Systems" and "Soil Metagenomics to Construct Indicators of Soil Degradation." The introduction gives an overview of the extensiveness of soil degradation globally and defines soil quality. The objectives of the soil quality cross cutting activity are: CCRA-4 (Soil Metagenomics)

  6. SPHINX--an algorithm for taxonomic binning of metagenomic sequences.

    Science.gov (United States)

    Mohammed, Monzoorul Haque; Ghosh, Tarini Shankar; Singh, Nitin Kumar; Mande, Sharmila S

    2011-01-01

    Compared with composition-based binning algorithms, the binning accuracy and specificity of alignment-based binning algorithms is significantly higher. However, being alignment-based, the latter class of algorithms require enormous amount of time and computing resources for binning huge metagenomic datasets. The motivation was to develop a binning approach that can analyze metagenomic datasets as rapidly as composition-based approaches, but nevertheless has the accuracy and specificity of alignment-based algorithms. This article describes a hybrid binning approach (SPHINX) that achieves high binning efficiency by utilizing the principles of both 'composition'- and 'alignment'-based binning algorithms. Validation results with simulated sequence datasets indicate that SPHINX is able to analyze metagenomic sequences as rapidly as composition-based algorithms. Furthermore, the binning efficiency (in terms of accuracy and specificity of assignments) of SPHINX is observed to be comparable with results obtained using alignment-based algorithms. A web server for the SPHINX algorithm is available at http://metagenomics.atc.tcs.com/SPHINX/.

  7. Gene prediction in metagenomic fragments: A large scale machine learning approach

    Directory of Open Access Journals (Sweden)

    Morgenstern Burkhard

    2008-04-01

    Full Text Available Abstract Background Metagenomics is an approach to the characterization of microbial genomes via the direct isolation of genomic sequences from the environment without prior cultivation. The amount of metagenomic sequence data is growing fast while computational methods for metagenome analysis are still in their infancy. In contrast to genomic sequences of single species, which can usually be assembled and analyzed by many available methods, a large proportion of metagenome data remains as unassembled anonymous sequencing reads. One of the aims of all metagenomic sequencing projects is the identification of novel genes. Short length, for example, Sanger sequencing yields on average 700 bp fragments, and unknown phylogenetic origin of most fragments require approaches to gene prediction that are different from the currently available methods for genomes of single species. In particular, the large size of metagenomic samples requires fast and accurate methods with small numbers of false positive predictions. Results We introduce a novel gene prediction algorithm for metagenomic fragments based on a two-stage machine learning approach. In the first stage, we use linear discriminants for monocodon usage, dicodon usage and translation initiation sites to extract features from DNA sequences. In the second stage, an artificial neural network combines these features with open reading frame length and fragment GC-content to compute the probability that this open reading frame encodes a protein. This probability is used for the classification and scoring of gene candidates. With large scale training, our method provides fast single fragment predictions with good sensitivity and specificity on artificially fragmented genomic DNA. Additionally, this method is able to predict translation initiation sites accurately and distinguishes complete from incomplete genes with high reliability. Conclusion Large scale machine learning methods are well-suited for gene

  8. A catalog of the mouse gut metagenome

    DEFF Research Database (Denmark)

    Xiao, Liang; Feng, Qiang; Liang, Suisha

    2015-01-01

    laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human......We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing...... counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies....

  9. 37 CFR 251.21 - Public records.

    Science.gov (United States)

    2010-07-01

    ... available by law except to a party in litigation with a CARP, the Copyright Office, or the Library of... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Public records. 251.21 Section 251.21 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT...

  10. Functional metagenomics to decipher food-microbe-host crosstalk.

    Science.gov (United States)

    Larraufie, Pierre; de Wouters, Tomas; Potocki-Veronese, Gabrielle; Blottière, Hervé M; Doré, Joël

    2015-02-01

    The recent developments of metagenomics permit an extremely high-resolution molecular scan of the intestinal microbiota giving new insights and opening perspectives for clinical applications. Beyond the unprecedented vision of the intestinal microbiota given by large-scale quantitative metagenomics studies, such as the EU MetaHIT project, functional metagenomics tools allow the exploration of fine interactions between food constituents, microbiota and host, leading to the identification of signals and intimate mechanisms of crosstalk, especially between bacteria and human cells. Cloning of large genome fragments, either from complex intestinal communities or from selected bacteria, allows the screening of these biological resources for bioactivity towards complex plant polymers or functional food such as prebiotics. This permitted identification of novel carbohydrate-active enzyme families involved in dietary fibre and host glycan breakdown, and highlighted unsuspected bacterial players at the top of the intestinal microbial food chain. Similarly, exposure of fractions from genomic and metagenomic clones onto human cells engineered with reporter systems to track modulation of immune response, cell proliferation or cell metabolism has allowed the identification of bioactive clones modulating key cell signalling pathways or the induction of specific genes. This opens the possibility to decipher mechanisms by which commensal bacteria or candidate probiotics can modulate the activity of cells in the intestinal epithelium or even in distal organs such as the liver, adipose tissue or the brain. Hence, in spite of our inability to culture many of the dominant microbes of the human intestine, functional metagenomics open a new window for the exploration of food-microbe-host crosstalk.

  11. New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs

    Science.gov (United States)

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; Pantaroto de Vasconcellos, Suzan; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs. PMID:24587220

  12. [Mini review] metagenomic studies of the Red Sea

    KAUST Repository

    Behzad, Hayedeh

    2015-10-23

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied amongst marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmolyte C1 oxidation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1–3 °C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the

  13. [Mini review] metagenomic studies of the Red Sea

    KAUST Repository

    Behzad, Hayedeh; Ibarra, Martin Augusto; Mineta, Katsuhiko; Gojobori, Takashi

    2015-01-01

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied amongst marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmolyte C1 oxidation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1–3 °C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the

  14. Meta-IDBA: a de Novo assembler for metagenomic data.

    Science.gov (United States)

    Peng, Yu; Leung, Henry C M; Yiu, S M; Chin, Francis Y L

    2011-07-01

    Next-generation sequencing techniques allow us to generate reads from a microbial environment in order to analyze the microbial community. However, assembling of a set of mixed reads from different species to form contigs is a bottleneck of metagenomic research. Although there are many assemblers for assembling reads from a single genome, there are no assemblers for assembling reads in metagenomic data without reference genome sequences. Moreover, the performances of these assemblers on metagenomic data are far from satisfactory, because of the existence of common regions in the genomes of subspecies and species, which make the assembly problem much more complicated. We introduce the Meta-IDBA algorithm for assembling reads in metagenomic data, which contain multiple genomes from different species. There are two core steps in Meta-IDBA. It first tries to partition the de Bruijn graph into isolated components of different species based on an important observation. Then, for each component, it captures the slight variants of the genomes of subspecies from the same species by multiple alignments and represents the genome of one species, using a consensus sequence. Comparison of the performances of Meta-IDBA and existing assemblers, such as Velvet and Abyss for different metagenomic datasets shows that Meta-IDBA can reconstruct longer contigs with similar accuracy. Meta-IDBA toolkit is available at our website http://www.cs.hku.hk/~alse/metaidba. chin@cs.hku.hk.

  15. Comparing and Evaluating Metagenome Assembly Tools from a Microbiologist's Perspective - Not Only Size Matters!

    Directory of Open Access Journals (Sweden)

    John Vollmers

    Full Text Available With the constant improvement in cost-efficiency and quality of Next Generation Sequencing technologies, shotgun-sequencing approaches -such as metagenomics- have nowadays become the methods of choice for studying and classifying microorganisms from various habitats. The production of data has dramatically increased over the past years and processing and analysis steps are becoming more and more of a bottleneck. Limiting factors are partly the availability of computational resources, but mainly the bioinformatics expertise in establishing and applying appropriate processing and analysis pipelines. Fortunately, a large diversity of specialized software tools is nowadays available. Nevertheless, choosing the most appropriate methods for answering specific biological questions can be rather challenging, especially for non-bioinformaticians. In order to provide a comprehensive overview and guide for the microbiological scientific community, we assessed the most common and freely available metagenome assembly tools with respect to their output statistics, their sensitivity for low abundant community members and variability in resulting community profiles as well as their ease-of-use. In contrast to the highly anticipated "Critical Assessment of Metagenomic Interpretation" (CAMI challenge, which uses general mock community-based assembler comparison we here tested assemblers on real Illumina metagenome sequencing data from natural communities of varying complexity sampled from forest soil and algal biofilms. Our observations clearly demonstrate that different assembly tools can prove optimal, depending on the sample type, available computational resources and, most importantly, the specific research goal. In addition, we present detailed descriptions of the underlying principles and pitfalls of publically available assembly tools from a microbiologist's perspective, and provide guidance regarding the user-friendliness, sensitivity and reliability of

  16. Genetic variability of psychrotolerant Acidithiobacillus ferrivorans revealed by (meta)genomic analysis.

    Science.gov (United States)

    González, Carolina; Yanquepe, María; Cardenas, Juan Pablo; Valdes, Jorge; Quatrini, Raquel; Holmes, David S; Dopson, Mark

    2014-11-01

    Acidophilic microorganisms inhabit low pH environments such as acid mine drainage that is generated when sulfide minerals are exposed to air. The genome sequence of the psychrotolerant Acidithiobacillus ferrivorans SS3 was compared to a metagenome from a low temperature acidic stream dominated by an A. ferrivorans-like strain. Stretches of genomic DNA characterized by few matches to the metagenome, termed 'metagenomic islands', encoded genes associated with metal efflux and pH homeostasis. The metagenomic islands were enriched in mobile elements such as phage proteins, transposases, integrases and in one case, predicted to be flanked by truncated tRNAs. Cus gene clusters predicted to be involved in copper efflux and further Cus-like RND systems were predicted to be located in metagenomic islands and therefore, constitute part of the flexible gene complement of the species. Phylogenetic analysis of Cus clusters showed both lineage specificity within the Acidithiobacillus genus as well as niche specificity associated with an acidic environment. The metagenomic islands also contained a predicted copper efflux P-type ATPase system and a polyphosphate kinase potentially involved in polyphosphate mediated copper resistance. This study identifies genetic variability of low temperature acidophiles that likely reflects metal resistance selective pressures in the copper rich environment. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Metagenomics and the protein universe

    Science.gov (United States)

    Godzik, Adam

    2011-01-01

    Metagenomics sequencing projects have dramatically increased our knowledge of the protein universe and provided over one-half of currently known protein sequences; they have also introduced a much broader phylogenetic diversity into the protein databases. The full analysis of metagenomic datasets is only beginning, but it has already led to the discovery of thousands of new protein families, likely representing novel functions specific to given environments. At the same time, a deeper analysis of such novel families, including experimental structure determination of some representatives, suggests that most of them represent distant homologs of already characterized protein families, and thus most of the protein diversity present in the new environments are due to functional divergence of the known protein families rather than the emergence of new ones. PMID:21497084

  18. Metagenomic Detection Methods in Biopreparedness Outbreak Scenarios

    DEFF Research Database (Denmark)

    Karlsson, Oskar Erik; Hansen, Trine; Knutsson, Rickard

    2013-01-01

    In the field of diagnostic microbiology, rapid molecular methods are critically important for detecting pathogens. With rapid and accurate detection, preventive measures can be put in place early, thereby preventing loss of life and further spread of a disease. From a preparedness perspective...... of a clinical sample, creating a metagenome, in a single week of laboratory work. As new technologies emerge, their dissemination and capacity building must be facilitated, and criteria for use, as well as guidelines on how to report results, must be established. This article focuses on the use of metagenomics...

  19. Comparative fecal metagenomics unveils unique functional capacity of the swine gut

    Directory of Open Access Journals (Sweden)

    Martinson John

    2011-05-01

    Full Text Available Abstract Background Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health as well as to food and water safety due to the presence of human pathogens in pig feces. Nonetheless, limited information on the functional diversity of the swine gut microbiome is available. Results Analysis of 637, 722 pyrosequencing reads (130 megabases generated from Yorkshire pig fecal DNA extracts was performed to help better understand the microbial diversity and largely unknown functional capacity of the swine gut microbiome. Swine fecal metagenomic sequences were annotated using both MG-RAST and JGI IMG/M-ER pipelines. Taxonomic analysis of metagenomic reads indicated that swine fecal microbiomes were dominated by Firmicutes and Bacteroidetes phyla. At a finer phylogenetic resolution, Prevotella spp. dominated the swine fecal metagenome, while some genes associated with Treponema and Anareovibrio species were found to be exclusively within the pig fecal metagenomic sequences analyzed. Functional analysis revealed that carbohydrate metabolism was the most abundant SEED subsystem, representing 13% of the swine metagenome. Genes associated with stress, virulence, cell wall and cell capsule were also abundant. Virulence factors associated with antibiotic resistance genes with highest sequence homology to genes in Bacteroidetes, Clostridia, and Methanosarcina were numerous within the gene families unique to the swine fecal metagenomes. Other abundant proteins unique to the distal swine gut shared high sequence homology to putative carbohydrate membrane transporters. Conclusions The results from this metagenomic survey demonstrated the presence of genes associated with resistance to antibiotics and carbohydrate metabolism suggesting that the swine gut microbiome may be shaped by husbandry practices.

  20. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem

    International Nuclear Information System (INIS)

    Edwards, Arwyn; Pachebat, Justin A; Swain, Martin; Hegarty, Matt; Rassner, Sara M E; Hodson, Andrew J; Irvine-Fynn, Tristram D L; Sattler, Birgit

    2013-01-01

    Cryoconite is a microbe–mineral aggregate which darkens the ice surface of glaciers. Microbial process and marker gene PCR-dependent measurements reveal active and diverse cryoconite microbial communities on polar glaciers. Here, we provide the first report of a cryoconite metagenome and culture-independent study of alpine cryoconite microbial diversity. We assembled 1.2 Gbp of metagenomic DNA sequenced using an Illumina HiScanSQ from cryoconite holes across the ablation zone of Rotmoosferner in the Austrian Alps. The metagenome revealed a bacterially-dominated community, with Proteobacteria (62% of bacterial-assigned contigs) and Bacteroidetes (14%) considerably more abundant than Cyanobacteria (2.5%). Streptophyte DNA dominated the eukaryotic metagenome. Functional genes linked to N, Fe, S and P cycling illustrated an acquisitive trend and a nitrogen cycle based upon efficient ammonia recycling. A comparison of 32 metagenome datasets revealed a similarity in functional profiles between the cryoconite and metagenomes characterized from other cold microbe–mineral aggregates. Overall, the metagenomic snapshot reveals the cryoconite ecosystem of this alpine glacier as dependent on scavenging carbon and nutrients from allochthonous sources, in particular mosses transported by wind from ice-marginal habitats, consistent with net heterotrophy indicated by productivity measurements. A transition from singular snapshots of cryoconite metagenomes to comparative analyses is advocated. (letter)

  1. In-depth resistome analysis by targeted metagenomics.

    Science.gov (United States)

    Lanza, Val F; Baquero, Fernando; Martínez, José Luís; Ramos-Ruíz, Ricardo; González-Zorn, Bruno; Andremont, Antoine; Sánchez-Valenzuela, Antonio; Ehrlich, Stanislav Dusko; Kennedy, Sean; Ruppé, Etienne; van Schaik, Willem; Willems, Rob J; de la Cruz, Fernando; Coque, Teresa M

    2018-01-15

    Antimicrobial resistance is a major global health challenge. Metagenomics allows analyzing the presence and dynamics of "resistomes" (the ensemble of genes encoding antimicrobial resistance in a given microbiome) in disparate microbial ecosystems. However, the low sensitivity and specificity of available metagenomic methods preclude the detection of minority populations (often present below their detection threshold) and/or the identification of allelic variants that differ in the resulting phenotype. Here, we describe a novel strategy that combines targeted metagenomics using last generation in-solution capture platforms, with novel bioinformatics tools to establish a standardized framework that allows both quantitative and qualitative analyses of resistomes. We developed ResCap, a targeted sequence capture platform based on SeqCapEZ (NimbleGene) technology, which includes probes for 8667 canonical resistance genes (7963 antibiotic resistance genes and 704 genes conferring resistance to metals or biocides), and 2517 relaxase genes (plasmid markers) and 78,600 genes homologous to the previous identified targets (47,806 for antibiotics and 30,794 for biocides or metals). Its performance was compared with metagenomic shotgun sequencing (MSS) for 17 fecal samples (9 humans, 8 swine). ResCap significantly improves MSS to detect "gene abundance" (from 2.0 to 83.2%) and "gene diversity" (26 versus 14.9 genes unequivocally detected per sample per million of reads; the number of reads unequivocally mapped increasing up to 300-fold by using ResCap), which were calculated using novel bioinformatic tools. ResCap also facilitated the analysis of novel genes potentially involved in the resistance to antibiotics, metals, biocides, or any combination thereof. ResCap, the first targeted sequence capture, specifically developed to analyze resistomes, greatly enhances the sensitivity and specificity of available metagenomic methods and offers the possibility to analyze genes

  2. MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Yasumbumi

    2011-10-13

    Keio University's Yasumbumi Sakakibara on "MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  3. The potential of viral metagenomics in blood transfusion safety.

    Science.gov (United States)

    Sauvage, V; Gomez, J; Boizeau, L; Laperche, S

    2017-09-01

    Thanks to the significant advent of high throughput sequencing in the last ten years, it is now possible via metagenomics to define the spectrum of the microbial sequences present in human blood samples. Therefore, metagenomics sequencing appears as a promising approach for the identification and global surveillance of new, emerging and/or unexpected viruses that could impair blood transfusion safety. However, despite considerable advantages compared to the traditional methods of pathogen identification, this non-targeted approach presents several drawbacks including a lack of sensitivity and sequence contaminant issues. With further improvements, especially to increase sensitivity, metagenomics sequencing should become in a near future an additional diagnostic tool in infectious disease field and especially in blood transfusion safety. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Challenges and Opportunities of Airborne Metagenomics

    KAUST Repository

    Behzad, H.; Gojobori, Takashi; Mineta, K.

    2015-01-01

    microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  5. 39 CFR 3000.735-502 - Public record of ex parte communications.

    Science.gov (United States)

    2010-07-01

    ... communication; the substance of the communication; and the relationship of the communication to a particular... 39 Postal Service 1 2010-07-01 2010-07-01 false Public record of ex parte communications. 3000.735... Parte Communications § 3000.735-502 Public record of ex parte communications. As ex parte communications...

  6. MG-Digger: an automated pipeline to search for giant virus-related sequences in metagenomes

    Directory of Open Access Journals (Sweden)

    Jonathan eVerneau

    2016-03-01

    Full Text Available The number of metagenomic studies conducted each year is growing dramatically. Storage and analysis of such big data is difficult and time-consuming. Interestingly, analysis shows that environmental and human metagenomes include a significant amount of non-annotated sequences, representing a ‘dark matter’. We established a bioinformatics pipeline that automatically detects metagenome reads matching query sequences from a given set and applied this tool to the detection of sequences matching large and giant DNA viral members of the proposed order Megavirales or virophages. A total of 1,045 environmental and human metagenomes (≈ 1 Terabase pairs were collected, processed and stored on our bioinformatics server. In addition, nucleotide and protein sequences from 93 Megavirales representatives, including 19 giant viruses of amoeba, and five virophages, were collected. The pipeline was generated by scripts written in Python language and entitled MG-Digger. Metagenomes previously found to contain megavirus-like sequences were tested as controls. MG-Digger was able to annotate hundreds of metagenome sequences as best matching those of giant viruses. These sequences were most often found to be similar to phycodnavirus or mimivirus sequences, but included reads related to recently available pandoraviruses, Pithovirus sibericum, and faustoviruses. Compared to other tools, MG-Digger combined stand-alone use on Linux or Windows operating systems through a user-friendly interface, implementation of ready-to-use customized metagenome databases and query sequence databases, adjustable parameters for BLAST searches, and creation of output files containing selected reads with best match identification. Compared to Metavir 2, a reference tool in viral metagenome analysis, MG-Digger detected 8% more true positive Megavirales-related reads in a control metagenome. The present work shows that massive, automated and recurrent analyses of metagenomes are

  7. Integrative Workflows for Metagenomic Analysis

    Directory of Open Access Journals (Sweden)

    Efthymios eLadoukakis

    2014-11-01

    Full Text Available The rapid evolution of all sequencing technologies, described by the term Next Generation Sequencing (NGS, have revolutionized metagenomic analysis. They constitute a combination of high-throughput analytical protocols, coupled to delicate measuring techniques, in order to potentially discover, properly assemble and map allelic sequences to the correct genomes, achieving particularly high yields for only a fraction of the cost of traditional processes (i.e. Sanger. From a bioinformatic perspective, this boils down to many gigabytes of data being generated from each single sequencing experiment, rendering the management or even the storage, critical bottlenecks with respect to the overall analytical endeavor. The enormous complexity is even more aggravated by the versatility of the processing steps available, represented by the numerous bioinformatic tools that are essential, for each analytical task, in order to fully unveil the genetic content of a metagenomic dataset. These disparate tasks range from simple, nonetheless non-trivial, quality control of raw data to exceptionally complex protein annotation procedures, requesting a high level of expertise for their proper application or the neat implementation of the whole workflow. Furthermore, a bioinformatic analysis of such scale, requires grand computational resources, imposing as the sole realistic solution, the utilization of cloud computing infrastructures. In this review article we discuss different, integrative, bioinformatic solutions available, which address the aforementioned issues, by performing a critical assessment of the available automated pipelines for data management, quality control and annotation of metagenomic data, embracing various, major sequencing technologies and applications.

  8. Diversity Indices as Measures of Functional Annotation Methods in Metagenomics Studies

    KAUST Repository

    Jankovic, Boris R.

    2016-01-26

    Applications of high-throughput techniques in metagenomics studies produce massive amounts of data. Fragments of genomic, transcriptomic and proteomic molecules are all found in metagenomics samples. Laborious and meticulous effort in sequencing and functional annotation are then required to, amongst other objectives, reconstruct a taxonomic map of the environment that metagenomics samples were taken from. In addition to computational challenges faced by metagenomics studies, the analysis is further complicated by the presence of contaminants in the samples, potentially resulting in skewed taxonomic analysis. The functional annotation in metagenomics can utilize all available omics data and therefore different methods that are associated with a particular type of data. For example, protein-coding DNA, non-coding RNA or ribosomal RNA data can be used in such an analysis. These methods would have their advantages and disadvantages and the question of comparison among them naturally arises. There are several criteria that can be used when performing such a comparison. Loosely speaking, methods can be evaluated in terms of computational complexity or in terms of the expected biological accuracy. We propose that the concept of diversity that is used in the ecosystems and species diversity studies can be successfully used in evaluating certain aspects of the methods employed in metagenomics studies. We show that when applying the concept of Hill’s diversity, the analysis of variations in the diversity order provides valuable clues into the robustness of methods used in the taxonomical analysis.

  9. Phylogenetic convolutional neural networks in metagenomics.

    Science.gov (United States)

    Fioravanti, Diego; Giarratano, Ylenia; Maggio, Valerio; Agostinelli, Claudio; Chierici, Marco; Jurman, Giuseppe; Furlanello, Cesare

    2018-03-08

    Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.

  10. Metagenomic sequence of saline desert microbiota from wild ass sanctuary, Little Rann of Kutch, Gujarat, India.

    Science.gov (United States)

    Patel, Rajesh; Mevada, Vishal; Prajapati, Dhaval; Dudhagara, Pravin; Koringa, Prakash; Joshi, C G

    2015-03-01

    We report Metagenome from the saline desert soil sample of Little Rann of Kutch, Gujarat State, India. Metagenome consisted of 633,760 sequences with size 141,307,202 bp and 56% G + C content. Metagenome sequence data are available at EBI under EBI Metagenomics database with accession no. ERP005612. Community metagenomics revealed total 1802 species belonged to 43 different phyla with dominating Marinobacter (48.7%) and Halobacterium (4.6%) genus in bacterial and archaeal domain respectively. Remarkably, 18.2% sequences in a poorly characterized group and 4% gene for various stress responses along with versatile presence of commercial enzyme were evident in a functional metagenome analysis.

  11. Record management in the Nigerian public sector and freedom of ...

    African Journals Online (AJOL)

    Record management in the Nigerian public sector and freedom of ... government relies upon policy documents, budget papers, procurement records, property ... play in administrative efficiency and success of Freedom of Information Act 2011.

  12. Evaluation of the Cow Rumen Metagenome: Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Sczyrba, Alex

    2011-10-13

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  13. Reconstruction of ribosomal RNA genes from metagenomic data.

    Directory of Open Access Journals (Sweden)

    Lu Fan

    Full Text Available Direct sequencing of environmental DNA (metagenomics has a great potential for describing the 16S rRNA gene diversity of microbial communities. However current approaches using this 16S rRNA gene information to describe community diversity suffer from low taxonomic resolution or chimera problems. Here we describe a new strategy that involves stringent assembly and data filtering to reconstruct full-length 16S rRNA genes from metagenomicpyrosequencing data. Simulations showed that reconstructed 16S rRNA genes provided a true picture of the community diversity, had minimal rates of chimera formation and gave taxonomic resolution down to genus level. The strategy was furthermore compared to PCR-based methods to determine the microbial diversity in two marine sponges. This showed that about 30% of the abundant phylotypes reconstructed from metagenomic data failed to be amplified by PCR. Our approach is readily applicable to existing metagenomic datasets and is expected to lead to the discovery of new microbial phylotypes.

  14. Bioinformatics tools for quantitative and functional metagenome and metatranscriptome data analysis in microbes.

    Science.gov (United States)

    Niu, Sheng-Yong; Yang, Jinyu; McDermaid, Adam; Zhao, Jing; Kang, Yu; Ma, Qin

    2017-05-08

    Metagenomic and metatranscriptomic sequencing approaches are more frequently being used to link microbiota to important diseases and ecological changes. Many analyses have been used to compare the taxonomic and functional profiles of microbiota across habitats or individuals. While a large portion of metagenomic analyses focus on species-level profiling, some studies use strain-level metagenomic analyses to investigate the relationship between specific strains and certain circumstances. Metatranscriptomic analysis provides another important insight into activities of genes by examining gene expression levels of microbiota. Hence, combining metagenomic and metatranscriptomic analyses will help understand the activity or enrichment of a given gene set, such as drug-resistant genes among microbiome samples. Here, we summarize existing bioinformatics tools of metagenomic and metatranscriptomic data analysis, the purpose of which is to assist researchers in deciding the appropriate tools for their microbiome studies. Additionally, we propose an Integrated Meta-Function mapping pipeline to incorporate various reference databases and accelerate functional gene mapping procedures for both metagenomic and metatranscriptomic analyses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Analysis of bacterial metagenomes from the Southwestern Gulf of Mexico for pathogens detection.

    Science.gov (United States)

    Escobedo-Hinojosa, Wendy; Pardo-López, Liliana

    2017-07-31

    Little is known about the diversity of bacteria in the Southwestern Gulf of Mexico. The aim of the study illustrated in this perspective was to search for the presence of bacterial pathogens in this ecosystem, using metagenomic data recently generated by the Mexican research group known as the Gulf of Mexico Research Consortium. Several genera of bacteria annotated as pathogens were detected in water and sediment marine samples. As expected, native and ubiquitous pathogenic bacteria genera such as Burkolderia, Halomonas, Pseudomonas, Shewanella and Vibrio were highly represented. Surprisingly, non-native genera of public health concern were also detected, including Borrelia, Ehrlichia, Leptospira, Mycobacterium, Mycoplasma, Salmonella, Staphylococcus, Streptococcus and Treponema. While there are no previous metagenomics studies of this environment, the potential influences of natural, anthropogenic and ecological factors on the diversity of putative pathogenic bacteria found in it are reviewed. The taxonomic annotation herein reported provides a starting point for an improved understanding of bacterial biodiversity in the Southwestern Gulf of Mexico. It also represents a useful tool in public health as it may help identify infectious diseases associated with exposure to marine water and ingestion of fish or shellfish, and thus may be useful in predicting and preventing waterborne disease outbreaks. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Documenting death: public access to government death records and attendant privacy concerns.

    Science.gov (United States)

    Boles, Jeffrey R

    2012-01-01

    This Article examines the contentious relationship between public rights to access government-held death records and privacy rights concerning the deceased, whose personal information is contained in those same records. This right of access dispute implicates core democratic principles and public policy interests. Open access to death records, such as death certificates and autopsy reports, serves the public interest by shedding light on government agency performance, uncovering potential government wrongdoing, providing data on public health trends, and aiding those investigating family history, for instance. Families of the deceased have challenged the release of these records on privacy grounds, as the records may contain sensitive and embarrassing information about the deceased. Legislatures and the courts addressing this dispute have collectively struggled to reconcile the competing open access and privacy principles. The Article demonstrates how a substantial portion of the resulting law in this area is haphazardly formed, significantly overbroad, and loaded with unintended consequences. The Article offers legal reforms to bring consistency and coherence to this currently disordered area of jurisprudence.

  17. Comprehensive benchmarking and ensemble approaches for metagenomic classifiers.

    Science.gov (United States)

    McIntyre, Alexa B R; Ounit, Rachid; Afshinnekoo, Ebrahim; Prill, Robert J; Hénaff, Elizabeth; Alexander, Noah; Minot, Samuel S; Danko, David; Foox, Jonathan; Ahsanuddin, Sofia; Tighe, Scott; Hasan, Nur A; Subramanian, Poorani; Moffat, Kelly; Levy, Shawn; Lonardi, Stefano; Greenfield, Nick; Colwell, Rita R; Rosen, Gail L; Mason, Christopher E

    2017-09-21

    One of the main challenges in metagenomics is the identification of microorganisms in clinical and environmental samples. While an extensive and heterogeneous set of computational tools is available to classify microorganisms using whole-genome shotgun sequencing data, comprehensive comparisons of these methods are limited. In this study, we use the largest-to-date set of laboratory-generated and simulated controls across 846 species to evaluate the performance of 11 metagenomic classifiers. Tools were characterized on the basis of their ability to identify taxa at the genus, species, and strain levels, quantify relative abundances of taxa, and classify individual reads to the species level. Strikingly, the number of species identified by the 11 tools can differ by over three orders of magnitude on the same datasets. Various strategies can ameliorate taxonomic misclassification, including abundance filtering, ensemble approaches, and tool intersection. Nevertheless, these strategies were often insufficient to completely eliminate false positives from environmental samples, which are especially important where they concern medically relevant species. Overall, pairing tools with different classification strategies (k-mer, alignment, marker) can combine their respective advantages. This study provides positive and negative controls, titrated standards, and a guide for selecting tools for metagenomic analyses by comparing ranges of precision, accuracy, and recall. We show that proper experimental design and analysis parameters can reduce false positives, provide greater resolution of species in complex metagenomic samples, and improve the interpretation of results.

  18. Metagenomic Analysis of Dairy Bacteriophages

    DEFF Research Database (Denmark)

    Muhammed, Musemma K.; Kot, Witold; Neve, Horst

    2017-01-01

    Despite their huge potential for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows to remove the bulk protein from...

  19. Translational metagenomics and the human resistome: confronting the menace of the new millennium.

    Science.gov (United States)

    Willmann, Matthias; Peter, Silke

    2017-01-01

    The increasing threat of antimicrobial resistance poses one of the greatest challenges to modern medicine. The collection of all antimicrobial resistance genes carried by various microorganisms in the human body is called the human resistome and represents the source of resistance in pathogens that can eventually cause life-threatening and untreatable infections. A deep understanding of the human resistome and its multilateral interaction with various environments is necessary for developing proper measures that can efficiently reduce the spread of resistance. However, the human resistome and its evolution still remain, for the most part, a mystery to researchers. Metagenomics, particularly in combination with next-generation-sequencing technology, provides a powerful methodological approach for studying the human microbiome as well as the pathogenome, the virolume and especially the resistome. We summarize below current knowledge on how the human resistome is shaped and discuss how metagenomics can be employed to improve our understanding of these complex processes, particularly as regards a rapid translation of new findings into clinical diagnostics, infection control and public health.

  20. ELIXIR pilot action: Marine metagenomics - towards a domain specific set of sustainable services.

    Science.gov (United States)

    Robertsen, Espen Mikal; Denise, Hubert; Mitchell, Alex; Finn, Robert D; Bongo, Lars Ailo; Willassen, Nils Peder

    2017-01-01

    Metagenomics, the study of genetic material recovered directly from environmental samples, has the potential to provide insight into the structure and function of heterogeneous microbial communities.  There has been an increased use of metagenomics to discover and understand the diverse biosynthetic capacities of marine microbes, thereby allowing them to be exploited for industrial, food, and health care products. This ELIXIR pilot action was motivated by the need to establish dedicated data resources and harmonized metagenomics pipelines for the marine domain, in order to enhance the exploration and exploitation of marine genetic resources. In this paper, we summarize some of the results from the ELIXIR pilot action "Marine metagenomics - towards user centric services".

  1. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas; Harmon-Smith, Miranda; Doud, Devin; Reddy, T. B. K.; Schulz, Frederik; Jarett, Jessica; Rivers, Adam R.; Eloe-Fadrosh, Emiley A.; Tringe, Susannah G.; Ivanova, Natalia N.; Copeland, Alex; Clum, Alicia; Becraft, Eric D.; Malmstrom, Rex R.; Birren, Bruce; Podar, Mircea; Bork, Peer; Weinstock, George M.; Garrity, George M.; Dodsworth, Jeremy A.; Yooseph, Shibu; Sutton, Granger; Glöckner, Frank O.; Gilbert, Jack A.; Nelson, William C.; Hallam, Steven J.; Jungbluth, Sean P.; Ettema, Thijs J. G.; Tighe, Scott; Konstantinidis, Konstantinos T.; Liu, Wen-Tso; Baker, Brett J.; Rattei, Thomas; Eisen, Jonathan A.; Hedlund, Brian; McMahon, Katherine D.; Fierer, Noah; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Tyson, Gene W.; Rinke, Christian; Kyrpides, Nikos C.; Schriml, Lynn; Garrity, George M.; Hugenholtz, Philip; Sutton, Granger; Yilmaz, Pelin; Meyer, Folker; Glöckner, Frank O.; Gilbert, Jack A.; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Lapidus, Alla; Meyer, Folker; Yilmaz, Pelin; Parks, Donovan H.; Eren, A. M.; Schriml, Lynn; Banfield, Jillian F.; Hugenholtz, Philip; Woyke, Tanja

    2017-08-08

    The number of genomes from uncultivated microbes will soon surpass the number of isolate genomes in public databases (Hugenholtz, Skarshewski, & Parks, 2016). Technological advancements in high-throughput sequencing and assembly, including single-cell genomics and the computational extraction of genomes from metagenomes (GFMs), are largely responsible. Here we propose community standards for reporting the Minimum Information about a Single-Cell Genome (MIxS-SCG) and Minimum Information about Genomes extracted From Metagenomes (MIxS-GFM) specific for Bacteria and Archaea. The standards have been developed in the context of the International Genomics Standards Consortium (GSC) community (Field et al., 2014) and can be viewed as a supplement to other GSC checklists including the Minimum Information about a Genome Sequence (MIGS), Minimum information about a Metagenomic Sequence(s) (MIMS) (Field et al., 2008) and Minimum Information about a Marker Gene Sequence (MIMARKS) (P. Yilmaz et al., 2011). Community-wide acceptance of MIxS-SCG and MIxS-GFM for Bacteria and Archaea will enable broad comparative analyses of genomes from the majority of taxa that remain uncultivated, improving our understanding of microbial function, ecology, and evolution.

  2. Challenges and opportunities in understanding microbial communities with metagenome assembly (accompanied by IPython Notebook tutorial)

    Science.gov (United States)

    Howe, Adina; Chain, Patrick S. G.

    2015-01-01

    Metagenomic investigations hold great promise for informing the genetics, physiology, and ecology of environmental microorganisms. Current challenges for metagenomic analysis are related to our ability to connect the dots between sequencing reads, their population of origin, and their encoding functions. Assembly-based methods reduce dataset size by extending overlapping reads into larger contiguous sequences (contigs), providing contextual information for genetic sequences that does not rely on existing references. These methods, however, tend to be computationally intensive and are again challenged by sequencing errors as well as by genomic repeats While numerous tools have been developed based on these methodological concepts, they present confounding choices and training requirements to metagenomic investigators. To help with accessibility to assembly tools, this review also includes an IPython Notebook metagenomic assembly tutorial. This tutorial has instructions for execution any operating system using Amazon Elastic Cloud Compute and guides users through downloading, assembly, and mapping reads to contigs of a mock microbiome metagenome. Despite its challenges, metagenomic analysis has already revealed novel insights into many environments on Earth. As software, training, and data continue to emerge, metagenomic data access and its discoveries will to grow. PMID:26217314

  3. Challenges and opportunities in understanding microbial communities with metagenome assembly (accompanied by IPython Notebook tutorial

    Directory of Open Access Journals (Sweden)

    Adina eHowe

    2015-07-01

    Full Text Available Metagenomic investigations hold great promise for informing the genetics, physiology, and ecology of environmental microorganisms. Current challenges for metagenomic analysis are related to our ability to connect the dots between sequencing reads, their population of origin, and their encoding functions. Assembly-based methods reduce dataset size by extending overlapping reads into larger contiguous sequences (contigs, providing contextual information for genetic sequences that does not rely on existing references. These methods, however, tend to be computationally intensive and are again challenged by sequencing errors as well as by genomic repeats While numerous tools have been developed based on these methodological concepts, they present confounding choices and training requirements to metagenomic investigators. To help with accessibility to assembly tools, this review also includes an IPython Notebook metagenomic assembly tutorial. This tutorial has instructions for execution any operating system using Amazon Elastic Cloud Compute and guides users through downloading, assembly, and mapping reads to contigs of a mock microbiome metagenome. Despite its challenges, metagenomic analysis has already revealed novel insights into many environments on Earth. As software, training, and data continue to emerge, metagenomic data access and its discoveries will to grow.

  4. 37 CFR 382.12 - Royalty fees for the public performance of sound recordings and the making of ephemeral recordings.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Royalty fees for the public... Preexisting Satellite Digital Audio Radio Services § 382.12 Royalty fees for the public performance of sound recordings and the making of ephemeral recordings. (a) In general. The monthly royalty fee to be paid by a...

  5. Genomics and metagenomics in medical microbiology.

    Science.gov (United States)

    Padmanabhan, Roshan; Mishra, Ajay Kumar; Raoult, Didier; Fournier, Pierre-Edouard

    2013-12-01

    Over the last two decades, sequencing tools have evolved from laborious time-consuming methodologies to real-time detection and deciphering of genomic DNA. Genome sequencing, especially using next generation sequencing (NGS) has revolutionized the landscape of microbiology and infectious disease. This deluge of sequencing data has not only enabled advances in fundamental biology but also helped improve diagnosis, typing of pathogen, virulence and antibiotic resistance detection, and development of new vaccines and culture media. In addition, NGS also enabled efficient analysis of complex human micro-floras, both commensal, and pathological, through metagenomic methods, thus helping the comprehension and management of human diseases such as obesity. This review summarizes technological advances in genomics and metagenomics relevant to the field of medical microbiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Managing public records in Zimbabwe: the road to good governance ...

    African Journals Online (AJOL)

    The ability by government departments to attain effective service delivery, accountability and good governance is largely determined by their records management practices. Delays and failure to access services due to missing or misplaced records from public institutions is a common challenge in Zimbabwe.

  7. Comparative analysis of metagenomes of Italian top soil improvers

    International Nuclear Information System (INIS)

    Gigliucci, Federica; Brambilla, Gianfranco; Tozzoli, Rosangela; Michelacci, Valeria; Morabito, Stefano

    2017-01-01

    Biosolids originating from Municipal Waste Water Treatment Plants are proposed as top soil improvers (TSI) for their beneficial input of organic carbon on agriculture lands. Their use to amend soil is controversial, as it may lead to the presence of emerging hazards of anthropogenic or animal origin in the environment devoted to food production. In this study, we used a shotgun metagenomics sequencing as a tool to perform a characterization of the hazards related with the TSIs. The samples showed the presence of many virulence genes associated to different diarrheagenic E. coli pathotypes as well as of different antimicrobial resistance-associated genes. The genes conferring resistance to Fluoroquinolones was the most relevant class of antimicrobial resistance genes observed in all the samples tested. To a lesser extent traits associated with the resistance to Methicillin in Staphylococci and genes conferring resistance to Streptothricin, Fosfomycin and Vancomycin were also identified. The most represented metal resistance genes were cobalt-zinc-cadmium related, accounting for 15–50% of the sequence reads in the different metagenomes out of the total number of those mapping on the class of resistance to compounds determinants. Moreover the taxonomic analysis performed by comparing compost-based samples and biosolids derived from municipal sewage-sludges treatments divided the samples into separate populations, based on the microbiota composition. The results confirm that the metagenomics is efficient to detect genomic traits associated with pathogens and antimicrobial resistance in complex matrices and this approach can be efficiently used for the traceability of TSI samples using the microorganisms’ profiles as indicators of their origin. - Highlights: • Sludge- and green- based biosolids analysed by metagenomics. • Biosolids may introduce microbial hazards in the food chain. • Metagenomics enables tracking biosolids’ sources.

  8. Comparative analysis of metagenomes of Italian top soil improvers

    Energy Technology Data Exchange (ETDEWEB)

    Gigliucci, Federica, E-mail: Federica.gigliucci@libero.it [Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161 Rome (Italy); Department of Sciences, University Roma,Tre, Viale Marconi, 446, 00146 Rome (Italy); Brambilla, Gianfranco; Tozzoli, Rosangela; Michelacci, Valeria; Morabito, Stefano [Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161 Rome (Italy)

    2017-05-15

    Biosolids originating from Municipal Waste Water Treatment Plants are proposed as top soil improvers (TSI) for their beneficial input of organic carbon on agriculture lands. Their use to amend soil is controversial, as it may lead to the presence of emerging hazards of anthropogenic or animal origin in the environment devoted to food production. In this study, we used a shotgun metagenomics sequencing as a tool to perform a characterization of the hazards related with the TSIs. The samples showed the presence of many virulence genes associated to different diarrheagenic E. coli pathotypes as well as of different antimicrobial resistance-associated genes. The genes conferring resistance to Fluoroquinolones was the most relevant class of antimicrobial resistance genes observed in all the samples tested. To a lesser extent traits associated with the resistance to Methicillin in Staphylococci and genes conferring resistance to Streptothricin, Fosfomycin and Vancomycin were also identified. The most represented metal resistance genes were cobalt-zinc-cadmium related, accounting for 15–50% of the sequence reads in the different metagenomes out of the total number of those mapping on the class of resistance to compounds determinants. Moreover the taxonomic analysis performed by comparing compost-based samples and biosolids derived from municipal sewage-sludges treatments divided the samples into separate populations, based on the microbiota composition. The results confirm that the metagenomics is efficient to detect genomic traits associated with pathogens and antimicrobial resistance in complex matrices and this approach can be efficiently used for the traceability of TSI samples using the microorganisms’ profiles as indicators of their origin. - Highlights: • Sludge- and green- based biosolids analysed by metagenomics. • Biosolids may introduce microbial hazards in the food chain. • Metagenomics enables tracking biosolids’ sources.

  9. MOCAT: a metagenomics assembly and gene prediction toolkit.

    Science.gov (United States)

    Kultima, Jens Roat; Sunagawa, Shinichi; Li, Junhua; Chen, Weineng; Chen, Hua; Mende, Daniel R; Arumugam, Manimozhiyan; Pan, Qi; Liu, Binghang; Qin, Junjie; Wang, Jun; Bork, Peer

    2012-01-01

    MOCAT is a highly configurable, modular pipeline for fast, standardized processing of single or paired-end sequencing data generated by the Illumina platform. The pipeline uses state-of-the-art programs to quality control, map, and assemble reads from metagenomic samples sequenced at a depth of several billion base pairs, and predict protein-coding genes on assembled metagenomes. Mapping against reference databases allows for read extraction or removal, as well as abundance calculations. Relevant statistics for each processing step can be summarized into multi-sheet Excel documents and queryable SQL databases. MOCAT runs on UNIX machines and integrates seamlessly with the SGE and PBS queuing systems, commonly used to process large datasets. The open source code and modular architecture allow users to modify or exchange the programs that are utilized in the various processing steps. Individual processing steps and parameters were benchmarked and tested on artificial, real, and simulated metagenomes resulting in an improvement of selected quality metrics. MOCAT can be freely downloaded at http://www.bork.embl.de/mocat/.

  10. MOCAT: a metagenomics assembly and gene prediction toolkit.

    Directory of Open Access Journals (Sweden)

    Jens Roat Kultima

    Full Text Available MOCAT is a highly configurable, modular pipeline for fast, standardized processing of single or paired-end sequencing data generated by the Illumina platform. The pipeline uses state-of-the-art programs to quality control, map, and assemble reads from metagenomic samples sequenced at a depth of several billion base pairs, and predict protein-coding genes on assembled metagenomes. Mapping against reference databases allows for read extraction or removal, as well as abundance calculations. Relevant statistics for each processing step can be summarized into multi-sheet Excel documents and queryable SQL databases. MOCAT runs on UNIX machines and integrates seamlessly with the SGE and PBS queuing systems, commonly used to process large datasets. The open source code and modular architecture allow users to modify or exchange the programs that are utilized in the various processing steps. Individual processing steps and parameters were benchmarked and tested on artificial, real, and simulated metagenomes resulting in an improvement of selected quality metrics. MOCAT can be freely downloaded at http://www.bork.embl.de/mocat/.

  11. Automated and Accurate Estimation of Gene Family Abundance from Shotgun Metagenomes.

    Directory of Open Access Journals (Sweden)

    Stephen Nayfach

    2015-11-01

    Full Text Available Shotgun metagenomic DNA sequencing is a widely applicable tool for characterizing the functions that are encoded by microbial communities. Several bioinformatic tools can be used to functionally annotate metagenomes, allowing researchers to draw inferences about the functional potential of the community and to identify putative functional biomarkers. However, little is known about how decisions made during annotation affect the reliability of the results. Here, we use statistical simulations to rigorously assess how to optimize annotation accuracy and speed, given parameters of the input data like read length and library size. We identify best practices in metagenome annotation and use them to guide the development of the Shotgun Metagenome Annotation Pipeline (ShotMAP. ShotMAP is an analytically flexible, end-to-end annotation pipeline that can be implemented either on a local computer or a cloud compute cluster. We use ShotMAP to assess how different annotation databases impact the interpretation of how marine metagenome and metatranscriptome functional capacity changes across seasons. We also apply ShotMAP to data obtained from a clinical microbiome investigation of inflammatory bowel disease. This analysis finds that gut microbiota collected from Crohn's disease patients are functionally distinct from gut microbiota collected from either ulcerative colitis patients or healthy controls, with differential abundance of metabolic pathways related to host-microbiome interactions that may serve as putative biomarkers of disease.

  12. Electronic records management in the public health sector of the ...

    African Journals Online (AJOL)

    Ngulup

    Document and Records Management System, medical records, service delivery, public ... standard operating procedures and formal methodologies for managing .... cords is the “information which is generated electronically and stored by means of a computer ..... This is because the disadvantages of one instrument are the.

  13. Assessment of Residential History Generation Using a Public-Record Database

    Directory of Open Access Journals (Sweden)

    David C. Wheeler

    2015-09-01

    Full Text Available In studies of disease with potential environmental risk factors, residential location is often used as a surrogate for unknown environmental exposures or as a basis for assigning environmental exposures. These studies most typically use the residential location at the time of diagnosis due to ease of collection. However, previous residential locations may be more useful for risk analysis because of population mobility and disease latency. When residential histories have not been collected in a study, it may be possible to generate them through public-record databases. In this study, we evaluated the ability of a public-records database from LexisNexis to provide residential histories for subjects in a geographically diverse cohort study. We calculated 11 performance metrics comparing study-collected addresses and two address retrieval services from LexisNexis. We found 77% and 90% match rates for city and state and 72% and 87% detailed address match rates with the basic and enhanced services, respectively. The enhanced LexisNexis service covered 86% of the time at residential addresses recorded in the study. The mean match rate for detailed address matches varied spatially over states. The results suggest that public record databases can be useful for reconstructing residential histories for subjects in epidemiologic studies.

  14. A retrospective metagenomics approach to studying Blastocystis.

    Science.gov (United States)

    Andersen, Lee O'Brien; Bonde, Ida; Nielsen, Henrik Bjørn; Stensvold, Christen Rune

    2015-07-01

    Blastocystis is a common single-celled intestinal parasitic genus, comprising several subtypes. Here, we screened data obtained by metagenomic analysis of faecal DNA for Blastocystis by searching for subtype-specific genes in coabundance gene groups, which are groups of genes that covary across a selection of 316 human faecal samples, hence representing genes originating from a single subtype. The 316 faecal samples were from 236 healthy individuals, 13 patients with Crohn's disease (CD) and 67 patients with ulcerative colitis (UC). The prevalence of Blastocystis was 20.3% in the healthy individuals and 14.9% in patients with UC. Meanwhile, Blastocystis was absent in patients with CD. Individuals with intestinal microbiota dominated by Bacteroides were much less prone to having Blastocystis-positive stool (Matthew's correlation coefficient = -0.25, P < 0.0001) than individuals with Ruminococcus- and Prevotella-driven enterotypes. This is the first study to investigate the relationship between Blastocystis and communities of gut bacteria using a metagenomics approach. The study serves as an example of how it is possible to retrospectively investigate microbial eukaryotic communities in the gut using metagenomic datasets targeting the bacterial component of the intestinal microbiome and the interplay between these microbial communities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Resolving the Complexity of Human Skin Metagenomes Using Single-Molecule Sequencing

    Directory of Open Access Journals (Sweden)

    Yu-Chih Tsai

    2016-02-01

    Full Text Available Deep metagenomic shotgun sequencing has emerged as a powerful tool to interrogate composition and function of complex microbial communities. Computational approaches to assemble genome fragments have been demonstrated to be an effective tool for de novo reconstruction of genomes from these communities. However, the resultant “genomes” are typically fragmented and incomplete due to the limited ability of short-read sequence data to assemble complex or low-coverage regions. Here, we use single-molecule, real-time (SMRT sequencing to reconstruct a high-quality, closed genome of a previously uncharacterized Corynebacterium simulans and its companion bacteriophage from a skin metagenomic sample. Considerable improvement in assembly quality occurs in hybrid approaches incorporating short-read data, with even relatively small amounts of long-read data being sufficient to improve metagenome reconstruction. Using short-read data to evaluate strain variation of this C. simulans in its skin community at single-nucleotide resolution, we observed a dominant C. simulans strain with moderate allelic heterozygosity throughout the population. We demonstrate the utility of SMRT sequencing and hybrid approaches in metagenome quantitation, reconstruction, and annotation.

  16. Resolving the Complexity of Human Skin Metagenomes Using Single-Molecule Sequencing

    Science.gov (United States)

    Tsai, Yu-Chih; Deming, Clayton; Segre, Julia A.; Kong, Heidi H.; Korlach, Jonas

    2016-01-01

    ABSTRACT Deep metagenomic shotgun sequencing has emerged as a powerful tool to interrogate composition and function of complex microbial communities. Computational approaches to assemble genome fragments have been demonstrated to be an effective tool for de novo reconstruction of genomes from these communities. However, the resultant “genomes” are typically fragmented and incomplete due to the limited ability of short-read sequence data to assemble complex or low-coverage regions. Here, we use single-molecule, real-time (SMRT) sequencing to reconstruct a high-quality, closed genome of a previously uncharacterized Corynebacterium simulans and its companion bacteriophage from a skin metagenomic sample. Considerable improvement in assembly quality occurs in hybrid approaches incorporating short-read data, with even relatively small amounts of long-read data being sufficient to improve metagenome reconstruction. Using short-read data to evaluate strain variation of this C. simulans in its skin community at single-nucleotide resolution, we observed a dominant C. simulans strain with moderate allelic heterozygosity throughout the population. We demonstrate the utility of SMRT sequencing and hybrid approaches in metagenome quantitation, reconstruction, and annotation. PMID:26861018

  17. Cyclodipeptides from metagenomic library of a japanese marine sponge

    Energy Technology Data Exchange (ETDEWEB)

    He, Rui; Wang, Bochu; Zhub, Liancai, E-mail: wangbc2000@126.com [Bioengineering College, Chongqing University, Chongqing, (China); Wang, Manyuan [School of Traditional Chinese Medicine, Capital University of Medical Sciences, Beijing (China); Wakimoto, Toshiyuki; Abe, Ikuro, E-mail: abei@mol.f.u-tokyo.ac.jp [Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo (Japan)

    2013-12-01

    Culture-independent metagenomics is an attractive and promising approach to explore unique bioactive small molecules from marine sponges harboring uncultured symbiotic microbes. Therefore, we conducted functional screening of the metagenomic library constructed from the Japanese marine sponge Discodermia calyx. Bioassay-guided fractionation of plate culture extract of antibacterial clone pDC113 afforded eleven cyclodipeptides: Cyclo(l-Thr-l-Leu) (1), Cyclo(l-Val-d-Pro) (2), Cyclo(l-Ile-d-Pro) (3), Cyclo(l-Leu-l-Pro) (4), Cyclo(l-Val-l-Leu) (5), Cyclo(l-Leu-l-Ile) (6), Cyclo(l-Leu-l-Leu) (7), Cyclo(l-Phe-l-Tyr) (8), Cyclo(l-Trp-l-Pro) (9), Cyclo(l-Val-l-Trp) (10) and Cyclo(l-Ile-l-Trp) (11). To the best of our knowledge, these are first cyclodepeptides isolated from metagenomic library. Sequence analysis suggested that isolated cyclodipeptides were not synthesized by nonribosomal peptide synthetases and there was no significant indication of cyclodipeptide synthetases. (author)

  18. Cyclodipeptides from metagenomic library of a japanese marine sponge

    International Nuclear Information System (INIS)

    He, Rui; Wang, Bochu; Zhub, Liancai; Wang, Manyuan; Wakimoto, Toshiyuki; Abe, Ikuro

    2013-01-01

    Culture-independent metagenomics is an attractive and promising approach to explore unique bioactive small molecules from marine sponges harboring uncultured symbiotic microbes. Therefore, we conducted functional screening of the metagenomic library constructed from the Japanese marine sponge Discodermia calyx. Bioassay-guided fractionation of plate culture extract of antibacterial clone pDC113 afforded eleven cyclodipeptides: Cyclo(l-Thr-l-Leu) (1), Cyclo(l-Val-d-Pro) (2), Cyclo(l-Ile-d-Pro) (3), Cyclo(l-Leu-l-Pro) (4), Cyclo(l-Val-l-Leu) (5), Cyclo(l-Leu-l-Ile) (6), Cyclo(l-Leu-l-Leu) (7), Cyclo(l-Phe-l-Tyr) (8), Cyclo(l-Trp-l-Pro) (9), Cyclo(l-Val-l-Trp) (10) and Cyclo(l-Ile-l-Trp) (11). To the best of our knowledge, these are first cyclodepeptides isolated from metagenomic library. Sequence analysis suggested that isolated cyclodipeptides were not synthesized by nonribosomal peptide synthetases and there was no significant indication of cyclodipeptide synthetases. (author)

  19. ELIXIR pilot action: Marine metagenomics – towards a domain specific set of sustainable services

    Science.gov (United States)

    Robertsen, Espen Mikal; Denise, Hubert; Mitchell, Alex; Finn, Robert D.; Bongo, Lars Ailo; Willassen, Nils Peder

    2017-01-01

    Metagenomics, the study of genetic material recovered directly from environmental samples, has the potential to provide insight into the structure and function of heterogeneous microbial communities.  There has been an increased use of metagenomics to discover and understand the diverse biosynthetic capacities of marine microbes, thereby allowing them to be exploited for industrial, food, and health care products. This ELIXIR pilot action was motivated by the need to establish dedicated data resources and harmonized metagenomics pipelines for the marine domain, in order to enhance the exploration and exploitation of marine genetic resources. In this paper, we summarize some of the results from the ELIXIR pilot action “Marine metagenomics – towards user centric services”. PMID:28620454

  20. MetaBAT: Metagenome Binning based on Abundance and Tetranucleotide frequence

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dongwan; Froula, Jeff; Egan, Rob; Wang, Zhong

    2014-03-21

    Grouping large fragments assembled from shotgun metagenomic sequences to deconvolute complex microbial communities, or metagenome binning, enables the study of individual organisms and their interactions. Here we developed automated metagenome binning software, called MetaBAT, which integrates empirical probabilistic distances of genome abundance and tetranucleotide frequency. On synthetic datasets MetaBAT on average achieves 98percent precision and 90percent recall at the strain level with 281 near complete unique genomes. Applying MetaBAT to a human gut microbiome data set we recovered 176 genome bins with 92percent precision and 80percent recall. Further analyses suggest MetaBAT is able to recover genome fragments missed in reference genomes up to 19percent, while 53 genome bins are novel. In summary, we believe MetaBAT is a powerful tool to facilitate comprehensive understanding of complex microbial communities.

  1. MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.

    Science.gov (United States)

    Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G

    2012-12-07

    MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.

  2. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata

    Science.gov (United States)

    Liolios, Konstantinos; Chen, I-Min A.; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor M.; Kyrpides, Nikos C.

    2010-01-01

    The Genomes On Line Database (GOLD) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2009, GOLD contains information for more than 5800 sequencing projects, of which 1100 have been completed and their sequence data deposited in a public repository. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about a (Meta)Genome Sequence (MIGS/MIMS) specification. GOLD is available at: http://www.genomesonline.org and has a mirror site at the Institute of Molecular Biology and Biotechnology, Crete, Greece, at: http://gold.imbb.forth.gr/ PMID:19914934

  3. Construction and screening of marine metagenomic libraries.

    Science.gov (United States)

    Weiland, Nancy; Löscher, Carolin; Metzger, Rebekka; Schmitz, Ruth

    2010-01-01

    Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.

  4. Analysis of composition-based metagenomic classification.

    Science.gov (United States)

    Higashi, Susan; Barreto, André da Motta Salles; Cantão, Maurício Egidio; de Vasconcelos, Ana Tereza Ribeiro

    2012-01-01

    An essential step of a metagenomic study is the taxonomic classification, that is, the identification of the taxonomic lineage of the organisms in a given sample. The taxonomic classification process involves a series of decisions. Currently, in the context of metagenomics, such decisions are usually based on empirical studies that consider one specific type of classifier. In this study we propose a general framework for analyzing the impact that several decisions can have on the classification problem. Instead of focusing on any specific classifier, we define a generic score function that provides a measure of the difficulty of the classification task. Using this framework, we analyze the impact of the following parameters on the taxonomic classification problem: (i) the length of n-mers used to encode the metagenomic sequences, (ii) the similarity measure used to compare sequences, and (iii) the type of taxonomic classification, which can be conventional or hierarchical, depending on whether the classification process occurs in a single shot or in several steps according to the taxonomic tree. We defined a score function that measures the degree of separability of the taxonomic classes under a given configuration induced by the parameters above. We conducted an extensive computational experiment and found out that reasonable values for the parameters of interest could be (i) intermediate values of n, the length of the n-mers; (ii) any similarity measure, because all of them resulted in similar scores; and (iii) the hierarchical strategy, which performed better in all of the cases. As expected, short n-mers generate lower configuration scores because they give rise to frequency vectors that represent distinct sequences in a similar way. On the other hand, large values for n result in sparse frequency vectors that represent differently metagenomic fragments that are in fact similar, also leading to low configuration scores. Regarding the similarity measure, in

  5. Tapping uncultured microorganisms through metagenomics for drug ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... Microorganisms are major source of bioactive natural products, and several ... This review highlights the recent methodologies, limitations, and applications of metagenomics for the discovery of new drugs.

  6. Pharmaceutical science faculty publication records at research-intensive pharmacy colleges and schools.

    Science.gov (United States)

    Thompson, Dennis F; Nahata, Milap C

    2012-11-12

    To determine yearly (phase 1) and cumulative (phase 2) publication records of pharmaceutical science faculty members at research-intensive colleges and schools of pharmacy. The publication records of pharmaceutical science faculty members at research-intensive colleges and schools of pharmacy were searched on Web of Science. Fifty colleges and schools of pharmacy were randomly chosen for a search of 1,042 individual faculty members' publications per year from 2005 to 2009. A stratified random sample of 120 faculty members also was chosen, and cumulative publication counts were recorded and bibliometric indices calculated. The median number of publications per year was 2 (range, 0-34). Overall, 22% of faculty members had no publications in any given year, but the number was highly variable depending on the faculty members' colleges or schools of pharmacy. Bibliometric indices were higher for medicinal chemistry and pharmaceutics, with pharmacology ranking third and social and administrative sciences fourth. Higher bibliometric indices were also observed for institution status (ie, public vs private) and academic rank (discipline chairperson vs non-chairperson and professor vs junior faculty member) (ppharmaceutical science disciplines and academic ranks within research-intensive colleges and schools of pharmacy. These data may be important for benchmarking purposes.

  7. Untangling Genomes from Metagenomes: Revealing an Uncultured Class of Marine Euryarchaeota

    Science.gov (United States)

    Iverson, Vaughn; Morris, Robert M.; Frazar, Christian D.; Berthiaume, Chris T.; Morales, Rhonda L.; Armbrust, E. Virginia

    2012-02-01

    Ecosystems are shaped by complex communities of mostly unculturable microbes. Metagenomes provide a fragmented view of such communities, but the ecosystem functions of major groups of organisms remain mysterious. To better characterize members of these communities, we developed methods to reconstruct genomes directly from mate-paired short-read metagenomes. We closed a genome representing the as-yet uncultured marine group II Euryarchaeota, assembled de novo from 1.7% of a metagenome sequenced from surface seawater. The genome describes a motile, photo-heterotrophic cell focused on degradation of protein and lipids and clarifies the origin of proteorhodopsin. It also demonstrates that high-coverage mate-paired sequence can overcome assembly difficulties caused by interstrain variation in complex microbial communities, enabling inference of ecosystem functions for uncultured members.

  8. Assembly of viral genomes from metagenomes

    NARCIS (Netherlands)

    S.L. Smits (Saskia); R. Bodewes (Rogier); A. Ruiz-Gonzalez (Aritz); V. Baumgärtner (Volkmar); M.P.G. Koopmans D.V.M. (Marion); A.D.M.E. Osterhaus (Albert); A. Schürch (Anita)

    2014-01-01

    textabstractViral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow

  9. Metagenomes obtained by "deep sequencing" - what do they tell about the EBPR communities?

    DEFF Research Database (Denmark)

    Albertsen, Mads; Saunders, Aaron Marc; Nielsen, Kåre Lehmann

    2013-01-01

    Metagenomics enables studies of the genomic potential of complex microbial communities by sequencing bulk genomic DNA directly from the environment. Knowledge of the genetic potential of a community can be used to formulate and test ecological hypotheses about stability and performance...... demonstrate that metagenomics can be used as a powerful tool for system wide characterization of the EBPR community as well as for a deeper understanding of the function of specific community members. Furthermore, we discuss and illustrate some of the general pitfalls in metagenomics and stress the need...

  10. Public Participation: Lessons from the Case Study Record

    Energy Technology Data Exchange (ETDEWEB)

    Beierle, Thomas C.; Cayford, Jerry [Resources for the Future, Washington, DC (United States)

    2001-07-01

    Public participation has received increasing attention in environmental policy making world wide. Yet research has been inadequate to answer fundamental questions about how successful past programs have been, what factors lead to success, and where efforts to improve public involvement should focus. To address these questions, we examine the case study record of public participation efforts in the United States over the last 30 years. We evaluate the success of numerous examples of public participation in environmental decision making and identify the factors that lead to success. The paper deals with a number of themes, including: The extent to which participation can incorporate public values into decision making, improve the substantive quality of decisions, reduce conflict, increase trust in institutions, and educate and inform the public; What can be expected from different approaches to public participation, such as public meetings, advisory committees, and mediation; The relative importance of the participatory process vs. the context in which participation takes place; Procedural features of particular importance; and The relationship between participation and implementation. The paper provides general results that can be used to guide the improvement of public participation programs, support assessment of innovative methods, and advance the theoretical understanding of public participation.

  11. Public Participation: Lessons from the Case Study Record

    International Nuclear Information System (INIS)

    Beierle, Thomas C.; Cayford, Jerry

    2001-01-01

    Public participation has received increasing attention in environmental policy making world wide. Yet research has been inadequate to answer fundamental questions about how successful past programs have been, what factors lead to success, and where efforts to improve public involvement should focus. To address these questions, we examine the case study record of public participation efforts in the United States over the last 30 years. We evaluate the success of numerous examples of public participation in environmental decision making and identify the factors that lead to success. The paper deals with a number of themes, including: The extent to which participation can incorporate public values into decision making, improve the substantive quality of decisions, reduce conflict, increase trust in institutions, and educate and inform the public; What can be expected from different approaches to public participation, such as public meetings, advisory committees, and mediation; The relative importance of the participatory process vs. the context in which participation takes place; Procedural features of particular importance; and The relationship between participation and implementation. The paper provides general results that can be used to guide the improvement of public participation programs, support assessment of innovative methods, and advance the theoretical understanding of public participation

  12. Laboratory procedures to generate viral metagenomes.

    Science.gov (United States)

    Thurber, Rebecca V; Haynes, Matthew; Breitbart, Mya; Wegley, Linda; Rohwer, Forest

    2009-01-01

    This collection of laboratory protocols describes the steps to collect viruses from various samples with the specific aim of generating viral metagenome sequence libraries (viromes). Viral metagenomics, the study of uncultured viral nucleic acid sequences from different biomes, relies on several concentration, purification, extraction, sequencing and heuristic bioinformatic methods. No single technique can provide an all-inclusive approach, and therefore the protocols presented here will be discussed in terms of hypothetical projects. However, care must be taken to individualize each step depending on the source and type of viral-particles. This protocol is a description of the processes we have successfully used to: (i) concentrate viral particles from various types of samples, (ii) eliminate contaminating cells and free nucleic acids and (iii) extract, amplify and purify viral nucleic acids. Overall, a sample can be processed to isolate viral nucleic acids suitable for high-throughput sequencing in approximately 1 week.

  13. Bayesian mixture analysis for metagenomic community profiling.

    Science.gov (United States)

    Morfopoulou, Sofia; Plagnol, Vincent

    2015-09-15

    Deep sequencing of clinical samples is now an established tool for the detection of infectious pathogens, with direct medical applications. The large amount of data generated produces an opportunity to detect species even at very low levels, provided that computational tools can effectively profile the relevant metagenomic communities. Data interpretation is complicated by the fact that short sequencing reads can match multiple organisms and by the lack of completeness of existing databases, in particular for viral pathogens. Here we present metaMix, a Bayesian mixture model framework for resolving complex metagenomic mixtures. We show that the use of parallel Monte Carlo Markov chains for the exploration of the species space enables the identification of the set of species most likely to contribute to the mixture. We demonstrate the greater accuracy of metaMix compared with relevant methods, particularly for profiling complex communities consisting of several related species. We designed metaMix specifically for the analysis of deep transcriptome sequencing datasets, with a focus on viral pathogen detection; however, the principles are generally applicable to all types of metagenomic mixtures. metaMix is implemented as a user friendly R package, freely available on CRAN: http://cran.r-project.org/web/packages/metaMix sofia.morfopoulou.10@ucl.ac.uk Supplementary data are available at Bionformatics online. © The Author 2015. Published by Oxford University Press.

  14. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection.

    Science.gov (United States)

    Schlaberg, Robert; Chiu, Charles Y; Miller, Steve; Procop, Gary W; Weinstock, George

    2017-06-01

    - Metagenomic sequencing can be used for detection of any pathogens using unbiased, shotgun next-generation sequencing (NGS), without the need for sequence-specific amplification. Proof-of-concept has been demonstrated in infectious disease outbreaks of unknown causes and in patients with suspected infections but negative results for conventional tests. Metagenomic NGS tests hold great promise to improve infectious disease diagnostics, especially in immunocompromised and critically ill patients. - To discuss challenges and provide example solutions for validating metagenomic pathogen detection tests in clinical laboratories. A summary of current regulatory requirements, largely based on prior guidance for NGS testing in constitutional genetics and oncology, is provided. - Examples from 2 separate validation studies are provided for steps from assay design, and validation of wet bench and bioinformatics protocols, to quality control and assurance. - Although laboratory and data analysis workflows are still complex, metagenomic NGS tests for infectious diseases are increasingly being validated in clinical laboratories. Many parallels exist to NGS tests in other fields. Nevertheless, specimen preparation, rapidly evolving data analysis algorithms, and incomplete reference sequence databases are idiosyncratic to the field of microbiology and often overlooked.

  15. Public Records and Archives as Tools for Good Governance ...

    African Journals Online (AJOL)

    Public Records and Archives as Tools for Good Governance: Reflections Within the ... and Southern Africa Regional Branch of the International Council on Archives ... they could be used as instruments of repression and human rights abuses.

  16. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries.

    Science.gov (United States)

    Coughlan, Laura M; Cotter, Paul D; Hill, Colin; Alvarez-Ordóñez, Avelino

    2015-01-01

    Microorganisms are found throughout nature, thriving in a vast range of environmental conditions. The majority of them are unculturable or difficult to culture by traditional methods. Metagenomics enables the study of all microorganisms, regardless of whether they can be cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present, and allowing the extraction of information regarding the functionality of microbial communities in their natural habitat. Function-based screenings, following the cloning and expression of metagenomic DNA in a heterologous host, can be applied to the discovery of novel proteins of industrial interest encoded by the genes of previously inaccessible microorganisms. Functional metagenomics has considerable potential in the food and pharmaceutical industries, where it can, for instance, aid (i) the identification of enzymes with desirable technological properties, capable of catalyzing novel reactions or replacing existing chemically synthesized catalysts which may be difficult or expensive to produce, and able to work under a wide range of environmental conditions encountered in food and pharmaceutical processing cycles including extreme conditions of temperature, pH, osmolarity, etc; (ii) the discovery of novel bioactives including antimicrobials active against microorganisms of concern both in food and medical settings; (iii) the investigation of industrial and societal issues such as antibiotic resistance development. This review article summarizes the state-of-the-art functional metagenomic methods available and discusses the potential of functional metagenomic approaches to mine as yet unexplored environments to discover novel genes with biotechnological application in the food and pharmaceutical industries.

  17. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries

    Directory of Open Access Journals (Sweden)

    Laura M Coughlan

    2015-06-01

    Full Text Available Microorganisms are found throughout nature, thriving in a vast range of environmental conditions. The majority of them are unculturable or difficult to culture by traditional methods. Metagenomics enables the study of all microorganisms, regardless of whether they can be cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present and allowing the extraction of information regarding the functionality of microbial communities in their natural habitat. Function-based screenings, following the cloning and expression of metagenomic DNA in a heterologous host, can be applied to the discovery of novel proteins of industrial interest encoded by the genes of previously inaccessible microorganisms. Functional metagenomics has considerable potential in the food and pharmaceutical industries, where it can, for instance, aid (i the identification of enzymes with desirable technological properties, capable of catalysing novel reactions or replacing existing chemically synthesized catalysts which may be difficult or expensive to produce, and able to work under a wide range of environmental conditions encountered in food and pharmaceutical processing cycles including extreme conditions of temperature, pH, osmolarity, etc; (ii the discovery of novel bioactives including antimicrobials active against microorganisms of concern both in food and medical settings; (iii the investigation of industrial and societal issues such as antibiotic resistance development. This review article summarizes the state-of-the-art functional metagenomic methods available and discusses the potential of functional metagenomic approaches to mine as yet unexplored environments to discover novel genes with biotechnological application in the food and pharmaceutical industries.

  18. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes

    NARCIS (Netherlands)

    Dutilh, Bas E; Cassman, Noriko; McNair, Katelyn; Sanchez, Savannah E; Silva, Genivaldo G Z; Boling, Lance; Barr, Jeremy J; Speth, Daan R; Seguritan, Victor; Aziz, Ramy K; Felts, Ben; Dinsdale, Elizabeth A; Mokili, John L; Edwards, Robert A

    2014-01-01

    Metagenomics, or sequencing of the genetic material from a complete microbial community, is a promising tool to discover novel microbes and viruses. Viral metagenomes typically contain many unknown sequences. Here we describe the discovery of a previously unidentified bacteriophage present in the

  19. 47 CFR 0.457 - Records not routinely available for public inspection.

    Science.gov (United States)

    2010-10-01

    ... inspection. 0.457 Section 0.457 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION General Information Public Information and Inspection of Records § 0.457 Records not routinely... a determination is pending. (b) Materials that are related solely to the internal personnel rules...

  20. Gene identification and protein classification in microbial metagenomic sequence data via incremental clustering

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2008-04-01

    Full Text Available Abstract Background The identification and study of proteins from metagenomic datasets can shed light on the roles and interactions of the source organisms in their communities. However, metagenomic datasets are characterized by the presence of organisms with varying GC composition, codon usage biases etc., and consequently gene identification is challenging. The vast amount of sequence data also requires faster protein family classification tools. Results We present a computational improvement to a sequence clustering approach that we developed previously to identify and classify protein coding genes in large microbial metagenomic datasets. The clustering approach can be used to identify protein coding genes in prokaryotes, viruses, and intron-less eukaryotes. The computational improvement is based on an incremental clustering method that does not require the expensive all-against-all compute that was required by the original approach, while still preserving the remote homology detection capabilities. We present evaluations of the clustering approach in protein-coding gene identification and classification, and also present the results of updating the protein clusters from our previous work with recent genomic and metagenomic sequences. The clustering results are available via CAMERA, (http://camera.calit2.net. Conclusion The clustering paradigm is shown to be a very useful tool in the analysis of microbial metagenomic data. The incremental clustering method is shown to be much faster than the original approach in identifying genes, grouping sequences into existing protein families, and also identifying novel families that have multiple members in a metagenomic dataset. These clusters provide a basis for further studies of protein families.

  1. Extremozymes from metagenome: Potential applications in food processing.

    Science.gov (United States)

    Khan, Mahejibin; Sathya, T A

    2017-06-12

    The long-established use of enzymes for food processing and product formulation has resulted in an increased enzyme market compounding to 7.0% annual growth rate. Advancements in molecular biology and recognition that enzymes with specific properties have application for industrial production of infant, baby and functional foods boosted research toward sourcing the genes of microorganisms for enzymes with distinctive properties. In this regard, functional metagenomics for extremozymes has gained attention on the premise that such enzymes can catalyze specific reactions. Hence, metagenomics that can isolate functional genes of unculturable extremophilic microorganisms has expanded attention as a promising tool. Developments in this field of research in relation to food sector are reviewed.

  2. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Shapiro, Harris [U.S. Department of Energy, Joint Genome Institute; Goltsman, Eugene [U.S. Department of Energy, Joint Genome Institute; McHardy, Alice C. [IBM T. J. Watson Research Center; Rigoutsos, Isidore [IBM T. J. Watson Research Center; Salamov, Asaf [U.S. Department of Energy, Joint Genome Institute; Korzeniewski, Frank [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Grigoriev, Igor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2007-01-01

    Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene-finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity-based ( blast hit distribution) and two sequence composition-based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis.

  3. PhyloSift: phylogenetic analysis of genomes and metagenomes.

    Science.gov (United States)

    Darling, Aaron E; Jospin, Guillaume; Lowe, Eric; Matsen, Frederick A; Bik, Holly M; Eisen, Jonathan A

    2014-01-01

    Like all organisms on the planet, environmental microbes are subject to the forces of molecular evolution. Metagenomic sequencing provides a means to access the DNA sequence of uncultured microbes. By combining DNA sequencing of microbial communities with evolutionary modeling and phylogenetic analysis we might obtain new insights into microbiology and also provide a basis for practical tools such as forensic pathogen detection. In this work we present an approach to leverage phylogenetic analysis of metagenomic sequence data to conduct several types of analysis. First, we present a method to conduct phylogeny-driven Bayesian hypothesis tests for the presence of an organism in a sample. Second, we present a means to compare community structure across a collection of many samples and develop direct associations between the abundance of certain organisms and sample metadata. Third, we apply new tools to analyze the phylogenetic diversity of microbial communities and again demonstrate how this can be associated to sample metadata. These analyses are implemented in an open source software pipeline called PhyloSift. As a pipeline, PhyloSift incorporates several other programs including LAST, HMMER, and pplacer to automate phylogenetic analysis of protein coding and RNA sequences in metagenomic datasets generated by modern sequencing platforms (e.g., Illumina, 454).

  4. PhyloSift: phylogenetic analysis of genomes and metagenomes

    Directory of Open Access Journals (Sweden)

    Aaron E. Darling

    2014-01-01

    Full Text Available Like all organisms on the planet, environmental microbes are subject to the forces of molecular evolution. Metagenomic sequencing provides a means to access the DNA sequence of uncultured microbes. By combining DNA sequencing of microbial communities with evolutionary modeling and phylogenetic analysis we might obtain new insights into microbiology and also provide a basis for practical tools such as forensic pathogen detection.In this work we present an approach to leverage phylogenetic analysis of metagenomic sequence data to conduct several types of analysis. First, we present a method to conduct phylogeny-driven Bayesian hypothesis tests for the presence of an organism in a sample. Second, we present a means to compare community structure across a collection of many samples and develop direct associations between the abundance of certain organisms and sample metadata. Third, we apply new tools to analyze the phylogenetic diversity of microbial communities and again demonstrate how this can be associated to sample metadata.These analyses are implemented in an open source software pipeline called PhyloSift. As a pipeline, PhyloSift incorporates several other programs including LAST, HMMER, and pplacer to automate phylogenetic analysis of protein coding and RNA sequences in metagenomic datasets generated by modern sequencing platforms (e.g., Illumina, 454.

  5. The YNP metagenome project

    DEFF Research Database (Denmark)

    Inskeep, William P.; Jay, Zackary J.; Tringe, Susannah G.

    2013-01-01

    The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply rooted and poorly understood archaea, bacteria, and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment......, and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1) phototrophic mats, (2) “filamentous streamer” communities, and (3...

  6. VSEARCH: a versatile open source tool for metagenomics.

    Science.gov (United States)

    Rognes, Torbjørn; Flouri, Tomáš; Nichols, Ben; Quince, Christopher; Mahé, Frédéric

    2016-01-01

    VSEARCH is an open source and free of charge multithreaded 64-bit tool for processing and preparing metagenomics, genomics and population genomics nucleotide sequence data. It is designed as an alternative to the widely used USEARCH tool (Edgar, 2010) for which the source code is not publicly available, algorithm details are only rudimentarily described, and only a memory-confined 32-bit version is freely available for academic use. When searching nucleotide sequences, VSEARCH uses a fast heuristic based on words shared by the query and target sequences in order to quickly identify similar sequences, a similar strategy is probably used in USEARCH. VSEARCH then performs optimal global sequence alignment of the query against potential target sequences, using full dynamic programming instead of the seed-and-extend heuristic used by USEARCH. Pairwise alignments are computed in parallel using vectorisation and multiple threads. VSEARCH includes most commands for analysing nucleotide sequences available in USEARCH version 7 and several of those available in USEARCH version 8, including searching (exact or based on global alignment), clustering by similarity (using length pre-sorting, abundance pre-sorting or a user-defined order), chimera detection (reference-based or de novo ), dereplication (full length or prefix), pairwise alignment, reverse complementation, sorting, and subsampling. VSEARCH also includes commands for FASTQ file processing, i.e., format detection, filtering, read quality statistics, and merging of paired reads. Furthermore, VSEARCH extends functionality with several new commands and improvements, including shuffling, rereplication, masking of low-complexity sequences with the well-known DUST algorithm, a choice among different similarity definitions, and FASTQ file format conversion. VSEARCH is here shown to be more accurate than USEARCH when performing searching, clustering, chimera detection and subsampling, while on a par with USEARCH for paired

  7. Tapping uncultured microorganisms through metagenomics for drug ...

    African Journals Online (AJOL)

    bdelnasser

    reached the market using this new technology. For these reasons and others, the interest in natural products has ..... Functional metagenomic library screening strategy ..... Bertrand H, Poly F, Van VT, Lombard N, Nalin R, Vogel TM, Simonet P.

  8. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes

    Science.gov (United States)

    Parks, Donovan H.; Imelfort, Michael; Skennerton, Connor T.; Hugenholtz, Philip; Tyson, Gene W.

    2015-01-01

    Large-scale recovery of genomes from isolates, single cells, and metagenomic data has been made possible by advances in computational methods and substantial reductions in sequencing costs. Although this increasing breadth of draft genomes is providing key information regarding the evolutionary and functional diversity of microbial life, it has become impractical to finish all available reference genomes. Making robust biological inferences from draft genomes requires accurate estimates of their completeness and contamination. Current methods for assessing genome quality are ad hoc and generally make use of a limited number of “marker” genes conserved across all bacterial or archaeal genomes. Here we introduce CheckM, an automated method for assessing the quality of a genome using a broader set of marker genes specific to the position of a genome within a reference genome tree and information about the collocation of these genes. We demonstrate the effectiveness of CheckM using synthetic data and a wide range of isolate-, single-cell-, and metagenome-derived genomes. CheckM is shown to provide accurate estimates of genome completeness and contamination and to outperform existing approaches. Using CheckM, we identify a diverse range of errors currently impacting publicly available isolate genomes and demonstrate that genomes obtained from single cells and metagenomic data vary substantially in quality. In order to facilitate the use of draft genomes, we propose an objective measure of genome quality that can be used to select genomes suitable for specific gene- and genome-centric analyses of microbial communities. PMID:25977477

  9. 75 FR 70343 - Privacy Act; System of Records: Records of the Bureau of Public Affairs

    Science.gov (United States)

    2010-11-17

    ...: Electronic, hardcopy. RETRIEVABILITY: By individual name. SAFEGUARDS: All users are given cyber security...: Purpose and Disclosure to Consumer Reporting Agencies. Any persons interested in commenting on the amended.... State-22 SYSTEM NAME: Records of the Bureau of Public Affairs. SECURITY CLASSIFICATION: Unclassified...

  10. Use of Metagenomic Shotgun Sequencing Technology To Detect Foodborne Pathogens within the Microbiome of the Beef Production Chain

    OpenAIRE

    Yang, Xiang; Noyes, Noelle R.; Doster, Enrique; Martin, Jennifer N.; Linke, Lyndsey M.; Magnuson, Roberta J.; Yang, Hua; Geornaras, Ifigenia; Woerner, Dale R.; Jones, Kenneth L.; Ruiz, Jaime; Boucher, Christina; Morley, Paul S.; Belk, Keith E.

    2016-01-01

    Foodborne illnesses associated with pathogenic bacteria are a global public health and economic challenge. The diversity of microorganisms (pathogenic and nonpathogenic) that exists within the food and meat industries complicates efforts to understand pathogen ecology. Further, little is known about the interaction of pathogens within the microbiome throughout the meat production chain. Here, a metagenomic approach and shotgun sequencing technology were used as tools to detect pathogenic bact...

  11. Metagenomics, metaMicrobesOnline and Kbase Data Integration (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir

    2011-10-12

    Berkeley Lab's Paramvir Dehal on "Managing and Storing large Datasets in MicrobesOnline, metaMicrobesOnline and the DOE Knowledgebase" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  12. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci.

    Directory of Open Access Journals (Sweden)

    Phillip B Pope

    Full Text Available Lignocellulosic biomass remains a largely untapped source of renewable energy predominantly due to its recalcitrance and an incomplete understanding of how this is overcome in nature. We present here a compositional and comparative analysis of metagenomic data pertaining to a natural biomass-converting ecosystem adapted to austere arctic nutritional conditions, namely the rumen microbiome of Svalbard reindeer (Rangifer tarandus platyrhynchus. Community analysis showed that deeply-branched cellulolytic lineages affiliated to the Bacteroidetes and Firmicutes are dominant, whilst sequence binning methods facilitated the assemblage of metagenomic sequence for a dominant and novel Bacteroidales clade (SRM-1. Analysis of unassembled metagenomic sequence as well as metabolic reconstruction of SRM-1 revealed the presence of multiple polysaccharide utilization loci-like systems (PULs as well as members of more than 20 glycoside hydrolase and other carbohydrate-active enzyme families targeting various polysaccharides including cellulose, xylan and pectin. Functional screening of cloned metagenome fragments revealed high cellulolytic activity and an abundance of PULs that are rich in endoglucanases (GH5 but devoid of other common enzymes thought to be involved in cellulose degradation. Combining these results with known and partly re-evaluated metagenomic data strongly indicates that much like the human distal gut, the digestive system of herbivores harbours high numbers of deeply branched and as-yet uncultured members of the Bacteroidetes that depend on PUL-like systems for plant biomass degradation.

  13. Metagenomic species profiling using universal phylogenetic marker genes

    DEFF Research Database (Denmark)

    Sunagawa, Shinichi; Mende, Daniel R; Zeller, Georg

    2013-01-01

    To quantify known and unknown microorganisms at species-level resolution using shotgun sequencing data, we developed a method that establishes metagenomic operational taxonomic units (mOTUs) based on single-copy phylogenetic marker genes. Applied to 252 human fecal samples, the method revealed th...... that on average 43% of the species abundance and 58% of the richness cannot be captured by current reference genome-based methods. An implementation of the method is available at http://www.bork.embl.de/software/mOTU/.......To quantify known and unknown microorganisms at species-level resolution using shotgun sequencing data, we developed a method that establishes metagenomic operational taxonomic units (mOTUs) based on single-copy phylogenetic marker genes. Applied to 252 human fecal samples, the method revealed...

  14. Culture-independent discovery of natural products from soil metagenomes.

    Science.gov (United States)

    Katz, Micah; Hover, Bradley M; Brady, Sean F

    2016-03-01

    Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules.

  15. Introduction to Metagenomics at DOE JGI (Opening Remarks for the Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos [DOE JGI

    2011-10-12

    After a quick introduction by DOE JGI Director Eddy Rubin, DOE JGI's Nikos Kyrpides delivers the opening remarks at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  16. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.

    Science.gov (United States)

    Nielsen, H Bjørn; Almeida, Mathieu; Juncker, Agnieszka Sierakowska; Rasmussen, Simon; Li, Junhua; Sunagawa, Shinichi; Plichta, Damian R; Gautier, Laurent; Pedersen, Anders G; Le Chatelier, Emmanuelle; Pelletier, Eric; Bonde, Ida; Nielsen, Trine; Manichanh, Chaysavanh; Arumugam, Manimozhiyan; Batto, Jean-Michel; Quintanilha Dos Santos, Marcelo B; Blom, Nikolaj; Borruel, Natalia; Burgdorf, Kristoffer S; Boumezbeur, Fouad; Casellas, Francesc; Doré, Joël; Dworzynski, Piotr; Guarner, Francisco; Hansen, Torben; Hildebrand, Falk; Kaas, Rolf S; Kennedy, Sean; Kristiansen, Karsten; Kultima, Jens Roat; Léonard, Pierre; Levenez, Florence; Lund, Ole; Moumen, Bouziane; Le Paslier, Denis; Pons, Nicolas; Pedersen, Oluf; Prifti, Edi; Qin, Junjie; Raes, Jeroen; Sørensen, Søren; Tap, Julien; Tims, Sebastian; Ussery, David W; Yamada, Takuji; Renault, Pierre; Sicheritz-Ponten, Thomas; Bork, Peer; Wang, Jun; Brunak, Søren; Ehrlich, S Dusko

    2014-08-01

    Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, but the microbial diversity of many environments extends far beyond what is covered by reference databases. De novo segregation of complex metagenomic data into specific biological entities, such as particular bacterial strains or viruses, remains a largely unsolved problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify affiliations between MGS and hundreds of viruses or genetic entities. Our method provides the means for comprehensive profiling of the diversity within complex metagenomic samples.

  17. Mining the metagenome of activated biomass of an industrial wastewater treatment plant by a novel method.

    Science.gov (United States)

    Sharma, Nandita; Tanksale, Himgouri; Kapley, Atya; Purohit, Hemant J

    2012-12-01

    Metagenomic libraries herald the era of magnifying the microbial world, tapping into the vast metabolic potential of uncultivated microbes, and enhancing the rate of discovery of novel genes and pathways. In this paper, we describe a method that facilitates the extraction of metagenomic DNA from activated sludge of an industrial wastewater treatment plant and its use in mining the metagenome via library construction. The efficiency of this method was demonstrated by the large representation of the bacterial genome in the constructed metagenomic libraries and by the functional clones obtained. The BAC library represented 95.6 times the bacterial genome, while, the pUC library represented 41.7 times the bacterial genome. Twelve clones in the BAC library demonstrated lipolytic activity, while four clones demonstrated dioxygenase activity. Four clones in pUC library tested positive for cellulase activity. This method, using FTA cards, not only can be used for library construction, but can also store the metagenome at room temperature.

  18. Potential and pitfalls of eukaryotic metagenome skimming: a test case for lichens.

    Science.gov (United States)

    Greshake, Bastian; Zehr, Simonida; Dal Grande, Francesco; Meiser, Anjuli; Schmitt, Imke; Ebersberger, Ingo

    2016-03-01

    Whole-genome shotgun sequencing of multispecies communities using only a single library layout is commonly used to assess taxonomic and functional diversity of microbial assemblages. Here, we investigate to what extent such metagenome skimming approaches are applicable for in-depth genomic characterizations of eukaryotic communities, for example lichens. We address how to best assemble a particular eukaryotic metagenome skimming data, what pitfalls can occur, and what genome quality can be expected from these data. To facilitate a project-specific benchmarking, we introduce the concept of twin sets, simulated data resembling the outcome of a particular metagenome sequencing study. We show that the quality of genome reconstructions depends essentially on assembler choice. Individual tools, including the metagenome assemblers Omega and MetaVelvet, are surprisingly sensitive to low and uneven coverages. In combination with the routine of assembly parameter choice to optimize the assembly N50 size, these tools can preclude an entire genome from the assembly. In contrast, MIRA, an all-purpose overlap assembler, and SPAdes, a multisized de Bruijn graph assembler, facilitate a comprehensive view on the individual genomes across a wide range of coverage ratios. Testing assemblers on a real-world metagenome skimming data from the lichen Lasallia pustulata demonstrates the applicability of twin sets for guiding method selection. Furthermore, it reveals that the assembly outcome for the photobiont Trebouxia sp. falls behind the a priori expectation given the simulations. Although the underlying reasons remain still unclear, this highlights that further studies on this organism require special attention during sequence data generation and downstream analysis. © 2015 John Wiley & Sons Ltd.

  19. Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases.

    Science.gov (United States)

    Cheng, Jiujun; Charles, Trevor C

    2016-09-01

    Bacterially produced biodegradable polyhydroxyalkanoates (PHAs) with versatile properties can be achieved using different PHA synthases (PhaCs). This work aims to expand the diversity of known PhaCs via functional metagenomics and demonstrates the use of these novel enzymes in PHA production. Complementation of a PHA synthesis-deficient Pseudomonas putida strain with a soil metagenomic cosmid library retrieved 27 clones expressing either class I, class II, or unclassified PHA synthases, and many did not have close sequence matches to known PhaCs. The composition of PHA produced by these clones was dependent on both the supplied growth substrates and the nature of the PHA synthase, with various combinations of short-chain-length (SCL) and medium-chain-length (MCL) PHA. These data demonstrate the ability to isolate diverse genes for PHA synthesis by functional metagenomics and their use for the production of a variety of PHA polymer and copolymer mixtures.

  20. High-resolution metagenomics targets major functional types in complex microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnaya, Marina G.; Lapidus, Alla; Ivanova, Natalia; Copeland, Alex C.; McHardy, Alice C.; Szeto, Ernest; Salamov, Asaf; Grigoriev, Igor V.; Suciu, Dominic; Levine, Samuel R.; Markowitz, Victor M.; Rigoutsos, Isidore; Tringe, Susannah G.; Bruce, David C.; Richardson, Paul M.; Lidstrom, Mary E.; Chistoserdova, Ludmila

    2009-08-01

    Most microbes in the biosphere remain uncultured and unknown. Whole genome shotgun (WGS) sequencing of environmental DNA (metagenomics) allows glimpses into genetic and metabolic potentials of natural microbial communities. However, in communities of high complexity metagenomics fail to link specific microbes to specific ecological functions. To overcome this limitation, we selectively targeted populations involved in oxidizing single-carbon (C{sub 1}) compounds in Lake Washington (Seattle, USA) by labeling their DNA via stable isotope probing (SIP), followed by WGS sequencing. Metagenome analysis demonstrated specific sequence enrichments in response to different C{sub 1} substrates, highlighting ecological roles of individual phylotypes. We further demonstrated the utility of our approach by extracting a nearly complete genome of a novel methylotroph Methylotenera mobilis, reconstructing its metabolism and conducting genome-wide analyses. This approach allowing high-resolution genomic analysis of ecologically relevant species has the potential to be applied to a wide variety of ecosystems.

  1. 77 FR 7184 - Public Availability of the National Archives and Records Administration FY 2011 Service Contract...

    Science.gov (United States)

    2012-02-10

    ... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION Public Availability of the National Archives and... Administration. ACTION: Notice of public availability of FY 2011 Service Contract Inventory. SUMMARY: In...), the National Archives and Records Administration (NARA) is publishing this notice to advise the public...

  2. Genome diversity of marine phages recovered from Mediterranean metagenomes: Size matters.

    Directory of Open Access Journals (Sweden)

    Mario López-Pérez

    2017-09-01

    Full Text Available Marine viruses play a critical role not only in the global geochemical cycles but also in the biology and evolution of their hosts. Despite their importance, viral diversity remains underexplored mostly due to sampling and cultivation challenges. Direct sequencing approaches such as viromics has provided new insights into the marine viral world. As a complementary approach, we analysed 24 microbial metagenomes (>0.2 μm size range obtained from six sites in the Mediterranean Sea that vary by depth, season and filter used to retrieve the fraction. Filter-size comparison showed a significant number of viral sequences that were retained on the larger-pore filters and were different from those found in the viral fraction from the same sample, indicating that some important viral information is missing using only assembly from viromes. Besides, we were able to describe 1,323 viral genomic fragments that were more than 10Kb in length, of which 36 represented complete viral genomes including some of them retrieved from a cross-assembly from different metagenomes. Host prediction based on sequence methods revealed new phage groups belonging to marine prokaryotes like SAR11, Cyanobacteria or SAR116. We also identified the first complete virophage from deep seawater and a new endemic clade of the recently discovered Marine group II Euryarchaeota virus. Furthermore, analysis of viral distribution using metagenomes and viromes indicated that most of the new phages were found exclusively in the Mediterranean Sea and some of them, mostly the ones recovered from deep metagenomes, do not recruit in any database probably indicating higher variability and endemicity in Mediterranean bathypelagic waters. Together these data provide the first detailed picture of genomic diversity, spatial and depth variations of viral communities within the Mediterranean Sea using metagenome assembly.

  3. 37 CFR 383.3 - Royalty fees for public performances of sound recordings and the making of ephemeral recordings.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Royalty fees for public... SUBSCRIPTION SERVICES § 383.3 Royalty fees for public performances of sound recordings and the making of... regulations for all years 2007 and earlier. Such fee shall be recoupable and credited against royalties due in...

  4. Estimating DNA coverage and abundance in metagenomes using a gamma approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Sean D; Dalevi, Daniel; Pati, Amrita; Mavromatis, Konstantinos; Ivanova, Natalia N; Kyrpides, Nikos C

    2010-01-01

    Shotgun sequencing generates large numbers of short DNA reads from either an isolated organism or, in the case of metagenomics projects, from the aggregate genome of a microbial community. These reads are then assembled based on overlapping sequences into larger, contiguous sequences (contigs). The feasibility of assembly and the coverage achieved (reads per nucleotide or distinct sequence of nucleotides) depend on several factors: the number of reads sequenced, the read length and the relative abundances of their source genomes in the microbial community. A low coverage suggests that most of the genomic DNA in the sample has not been sequenced, but it is often difficult to estimate either the extent of the uncaptured diversity or the amount of additional sequencing that would be most efficacious. In this work, we regard a metagenome as a population of DNA fragments (bins), each of which may be covered by one or more reads. We employ a gamma distribution to model this bin population due to its flexibility and ease of use. When a gamma approximation can be found that adequately fits the data, we may estimate the number of bins that were not sequenced and that could potentially be revealed by additional sequencing. We evaluated the performance of this model using simulated metagenomes and demonstrate its applicability on three recent metagenomic datasets.

  5. Metagenomic analysis of viral diversity in respiratory samples from patients with respiratory tract infections in Kuwait.

    Science.gov (United States)

    Madi, Nada; Al-Nakib, Widad; Mustafa, Abu Salim; Habibi, Nazima

    2018-03-01

    A metagenomic approach based on target independent next-generation sequencing has become a known method for the detection of both known and novel viruses in clinical samples. This study aimed to use the metagenomic sequencing approach to characterize the viral diversity in respiratory samples from patients with respiratory tract infections. We have investigated 86 respiratory samples received from various hospitals in Kuwait between 2015 and 2016 for the diagnosis of respiratory tract infections. A metagenomic approach using the next-generation sequencer to characterize viruses was used. According to the metagenomic analysis, an average of 145, 019 reads were identified, and 2% of these reads were of viral origin. Also, metagenomic analysis of the viral sequences revealed many known respiratory viruses, which were detected in 30.2% of the clinical samples. Also, sequences of non-respiratory viruses were detected in 14% of the clinical samples, while sequences of non-human viruses were detected in 55.8% of the clinical samples. The average genome coverage of the viruses was 12% with the highest genome coverage of 99.2% for respiratory syncytial virus, and the lowest was 1% for torque teno midi virus 2. Our results showed 47.7% agreement between multiplex Real-Time PCR and metagenomics sequencing in the detection of respiratory viruses in the clinical samples. Though there are some difficulties in using this method to clinical samples such as specimen quality, these observations are indicative of the promising utility of the metagenomic sequencing approach for the identification of respiratory viruses in patients with respiratory tract infections. © 2017 Wiley Periodicals, Inc.

  6. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Susannah

    2011-10-12

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  7. The impact of records management system in transparency of public administrations: Transparency by design

    Directory of Open Access Journals (Sweden)

    Agustí Cerrillo Martínez

    2018-05-01

    Full Text Available Records management system has a great impact in the improvement of transparency in public administration. Transparency by design refers to the inclusion of transparency duties stated by legislation in force in the records’ life cycle in a way that it guarantees citizens effective access to public information. In this paper, the changes that public administrations have to propel in their records management systems to improve public transparency and to make easy access to information are analysed. In particular, as a case study, provisions made by Law 19/2014, of December 29, on Transparency, Access to Public Information and Good Governance of Catalonia are explored.

  8. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges.

    Science.gov (United States)

    Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan D W

    2007-05-01

    Natural products isolated from sponges are an important source of new biologically active compounds. However, the development of these compounds into drugs has been held back by the difficulties in achieving a sustainable supply of these often-complex molecules for pre-clinical and clinical development. Increasing evidence implicates microbial symbionts as the source of many of these biologically active compounds, but the vast majority of the sponge microbial community remain uncultured. Metagenomics offers a biotechnological solution to this supply problem. Metagenomes of sponge microbial communities have been shown to contain genes and gene clusters typical for the biosynthesis of biologically active natural products. Heterologous expression approaches have also led to the isolation of secondary metabolism gene clusters from uncultured microbial symbionts of marine invertebrates and from soil metagenomic libraries. Combining a metagenomic approach with heterologous expression holds much promise for the sustainable exploitation of the chemical diversity present in the sponge microbial community.

  9. Metagenomic approach for discovering new pathogens in infection disease outbreaks

    Directory of Open Access Journals (Sweden)

    Emanuela Giombini

    2011-09-01

    Full Text Available Viruses represent the most abundant biological components on earth.They can be found in every environment, from deep layers of oceans to animal bodies.Although several viruses have been isolated and sequenced, in each environment there are millions of different types of viruses that have not been identified yet.The advent of nextgeneration sequencing technologies with their high throughput capabilities make possible to study in a single experiment all the community of microorganisms present in a particular sample “microbioma”.They made more feasible the application of the metagenomic approach, by which it is also possible to discover and identify new pathogens, that may pose a threat to public health.This paper summarizes the most recent applications of nextgeneration sequencing to discover new viral pathogens during the occurrence of infection disease outbreaks.

  10. Strain-Level Metagenomic Analysis of the Fermented Dairy Beverage Nunu Highlights Potential Food Safety Risks.

    Science.gov (United States)

    Walsh, Aaron M; Crispie, Fiona; Daari, Kareem; O'Sullivan, Orla; Martin, Jennifer C; Arthur, Cornelius T; Claesson, Marcus J; Scott, Karen P; Cotter, Paul D

    2017-08-15

    The rapid detection of pathogenic strains in food products is essential for the prevention of disease outbreaks. It has already been demonstrated that whole-metagenome shotgun sequencing can be used to detect pathogens in food but, until recently, strain-level detection of pathogens has relied on whole-metagenome assembly, which is a computationally demanding process. Here we demonstrated that three short-read-alignment-based methods, i.e., MetaMLST, PanPhlAn, and StrainPhlAn, could accurately and rapidly identify pathogenic strains in spinach metagenomes that had been intentionally spiked with Shiga toxin-producing Escherichia coli in a previous study. Subsequently, we employed the methods, in combination with other metagenomics approaches, to assess the safety of nunu, a traditional Ghanaian fermented milk product that is produced by the spontaneous fermentation of raw cow milk. We showed that nunu samples were frequently contaminated with bacteria associated with the bovine gut and, worryingly, we detected putatively pathogenic E. coli and Klebsiella pneumoniae strains in a subset of nunu samples. Ultimately, our work establishes that short-read-alignment-based bioinformatics approaches are suitable food safety tools, and we describe a real-life example of their utilization. IMPORTANCE Foodborne pathogens are responsible for millions of illnesses each year. Here we demonstrate that short-read-alignment-based bioinformatics tools can accurately and rapidly detect pathogenic strains in food products by using shotgun metagenomics data. The methods used here are considerably faster than both traditional culturing methods and alternative bioinformatics approaches that rely on metagenome assembly; therefore, they can potentially be used for more high-throughput food safety testing. Overall, our results suggest that whole-metagenome sequencing can be used as a practical food safety tool to prevent diseases or to link outbreaks to specific food products. Copyright

  11. Role of Public Archivists and Records Managers in Governance and ...

    African Journals Online (AJOL)

    Role of Public Archivists and Records Managers in Governance and Local ... and Southern Africa Regional Branch of the International Council on Archives ... accountability, respect for the rule of law and citizens' rights could be gauged.

  12. Design and implementation of an affordable, public sector electronic medical record in rural Nepal.

    Science.gov (United States)

    Raut, Anant; Yarbrough, Chase; Singh, Vivek; Gauchan, Bikash; Citrin, David; Verma, Varun; Hawley, Jessica; Schwarz, Dan; Harsha Bangura, Alex; Shrestha, Biplav; Schwarz, Ryan; Adhikari, Mukesh; Maru, Duncan

    2017-06-23

    Globally, electronic medical records are central to the infrastructure of modern healthcare systems. Yet the vast majority of electronic medical records have been designed for resource-rich environments and are not feasible in settings of poverty. Here we describe the design and implementation of an electronic medical record at a public sector district hospital in rural Nepal, and its subsequent expansion to an additional public sector facility.DevelopmentThe electronic medical record was designed to solve for the following elements of public sector healthcare delivery: 1) integration of the systems across inpatient, surgical, outpatient, emergency, laboratory, radiology, and pharmacy sites of care; 2) effective data extraction for impact evaluation and government regulation; 3) optimization for longitudinal care provision and patient tracking; and 4) effectiveness for quality improvement initiatives. For these purposes, we adapted Bahmni, a product built with open-source components for patient tracking, clinical protocols, pharmacy, laboratory, imaging, financial management, and supply logistics. In close partnership with government officials, we deployed the system in February of 2015, added on additional functionality, and iteratively improved the system over the following year. This experience enabled us then to deploy the system at an additional district-level hospital in a different part of the country in under four weeks. We discuss the implementation challenges and the strategies we pursued to build an electronic medical record for the public sector in rural Nepal.DiscussionOver the course of 18 months, we were able to develop, deploy and iterate upon the electronic medical record, and then deploy the refined product at an additional facility within only four weeks. Our experience suggests the feasibility of an integrated electronic medical record for public sector care delivery even in settings of rural poverty.

  13. Metagenomic analysis reveals presence of Treponema denticola in a tissue biopsy of the Iceman.

    Directory of Open Access Journals (Sweden)

    Frank Maixner

    Full Text Available Ancient hominoid genome studies can be regarded by definition as metagenomic analyses since they represent a mixture of both hominoid and microbial sequences in an environment. Here, we report the molecular detection of the oral spirochete Treponema denticola in ancient human tissue biopsies of the Iceman, a 5,300-year-old Copper Age natural ice mummy. Initially, the metagenomic data of the Iceman's genomic survey was screened for bacterial ribosomal RNA (rRNA specific reads. Through ranking the reads by abundance a relatively high number of rRNA reads most similar to T. denticola was detected. Mapping of the metagenome sequences against the T. denticola genome revealed additional reads most similar to this opportunistic pathogen. The DNA damage pattern of specifically mapped reads suggests an ancient origin of these sequences. The haematogenous spread of bacteria of the oral microbiome often reported in the recent literature could already explain the presence of metagenomic reads specific for T. denticola in the Iceman's bone biopsy. We extended, however, our survey to an Iceman gingival tissue sample and a mouth swab sample and could thereby detect T. denticola and Porphyrimonas gingivalis, another important member of the human commensal oral microflora. Taken together, this study clearly underlines the opportunity to detect disease-associated microorganisms when applying metagenomics-enabled approaches on datasets of ancient human remains.

  14. RNA viral metagenome of whiteflies leads to the discovery and characterization of a whitefly-transmitted carlavirus in North America.

    Science.gov (United States)

    Rosario, Karyna; Capobianco, Heather; Ng, Terry Fei Fan; Breitbart, Mya; Polston, Jane E

    2014-01-01

    Whiteflies from the Bemisia tabaci species complex have the ability to transmit a large number of plant viruses and are some of the most detrimental pests in agriculture. Although whiteflies are known to transmit both DNA and RNA viruses, most of the diversity has been recorded for the former, specifically for the Begomovirus genus. This study investigated the total diversity of DNA and RNA viruses found in whiteflies collected from a single site in Florida to evaluate if there are additional, previously undetected viral types within the B. tabaci vector. Metagenomic analysis of viral DNA extracted from the whiteflies only resulted in the detection of begomoviruses. In contrast, whiteflies contained sequences similar to RNA viruses from divergent groups, with a diversity that extends beyond currently described viruses. The metagenomic analysis of whiteflies also led to the first report of a whitefly-transmitted RNA virus similar to Cowpea mild mottle virus (CpMMV Florida) (genus Carlavirus) in North America. Further investigation resulted in the detection of CpMMV Florida in native and cultivated plants growing near the original field site of whitefly collection and determination of its experimental host range. Analysis of complete CpMMV Florida genomes recovered from whiteflies and plants suggests that the current classification criteria for carlaviruses need to be reevaluated. Overall, metagenomic analysis supports that DNA plant viruses carried by B. tabaci are dominated by begomoviruses, whereas significantly less is known about RNA viruses present in this damaging insect vector.

  15. RNA viral metagenome of whiteflies leads to the discovery and characterization of a whitefly-transmitted carlavirus in North America.

    Directory of Open Access Journals (Sweden)

    Karyna Rosario

    Full Text Available Whiteflies from the Bemisia tabaci species complex have the ability to transmit a large number of plant viruses and are some of the most detrimental pests in agriculture. Although whiteflies are known to transmit both DNA and RNA viruses, most of the diversity has been recorded for the former, specifically for the Begomovirus genus. This study investigated the total diversity of DNA and RNA viruses found in whiteflies collected from a single site in Florida to evaluate if there are additional, previously undetected viral types within the B. tabaci vector. Metagenomic analysis of viral DNA extracted from the whiteflies only resulted in the detection of begomoviruses. In contrast, whiteflies contained sequences similar to RNA viruses from divergent groups, with a diversity that extends beyond currently described viruses. The metagenomic analysis of whiteflies also led to the first report of a whitefly-transmitted RNA virus similar to Cowpea mild mottle virus (CpMMV Florida (genus Carlavirus in North America. Further investigation resulted in the detection of CpMMV Florida in native and cultivated plants growing near the original field site of whitefly collection and determination of its experimental host range. Analysis of complete CpMMV Florida genomes recovered from whiteflies and plants suggests that the current classification criteria for carlaviruses need to be reevaluated. Overall, metagenomic analysis supports that DNA plant viruses carried by B. tabaci are dominated by begomoviruses, whereas significantly less is known about RNA viruses present in this damaging insect vector.

  16. Experimental Design and Bioinformatics Analysis for the Application of Metagenomics in Environmental Sciences and Biotechnology.

    Science.gov (United States)

    Ju, Feng; Zhang, Tong

    2015-11-03

    Recent advances in DNA sequencing technologies have prompted the widespread application of metagenomics for the investigation of novel bioresources (e.g., industrial enzymes and bioactive molecules) and unknown biohazards (e.g., pathogens and antibiotic resistance genes) in natural and engineered microbial systems across multiple disciplines. This review discusses the rigorous experimental design and sample preparation in the context of applying metagenomics in environmental sciences and biotechnology. Moreover, this review summarizes the principles, methodologies, and state-of-the-art bioinformatics procedures, tools and database resources for metagenomics applications and discusses two popular strategies (analysis of unassembled reads versus assembled contigs/draft genomes) for quantitative or qualitative insights of microbial community structure and functions. Overall, this review aims to facilitate more extensive application of metagenomics in the investigation of uncultured microorganisms, novel enzymes, microbe-environment interactions, and biohazards in biotechnological applications where microbial communities are engineered for bioenergy production, wastewater treatment, and bioremediation.

  17. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Wei [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Simmons, Blake A. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Steven W. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-10-29

    The recovery of genomes from metagenomic datasets is a critical step to defining the functional roles of the underlying uncultivated populations. We previously developed MaxBin, an automated binning approach for high-throughput recovery of microbial genomes from metagenomes. Here, we present an expanded binning algorithm, MaxBin 2.0, which recovers genomes from co-assembly of a collection of metagenomic datasets. Tests on simulated datasets revealed that MaxBin 2.0 is highly accurate in recovering individual genomes, and the application of MaxBin 2.0 to several metagenomes from environmental samples demonstrated that it could achieve two complementary goals: recovering more bacterial genomes compared to binning a single sample as well as comparing the microbial community composition between different sampling environments. Availability and implementation: MaxBin 2.0 is freely available at http://sourceforge.net/projects/maxbin/ under BSD license. Supplementary information: Supplementary data are available at Bioinformatics online.

  18. Variations in the post-weaning human gut metagenome profile as result of Bifidobacterium acquisition in the Western microbiome

    Directory of Open Access Journals (Sweden)

    Matteo Soverini

    2016-07-01

    Full Text Available Studies of the gut microbiome variation among human populations revealed the existence of robust compositional and functional layouts matching the three subsistence strategies that describe a trajectory of changes across our recent evolutionary history: hunting and gathering, rural agriculture, and urban post-industrialized agriculture. In particular, beside the overall reduction of ecosystem diversity, the gut microbiome of Western industrial populations is typically characterized by the loss of Treponema and the acquisition of Bifidobacterium as an abundant inhabitant of the post-weaning gut microbial ecosystem. In order to advance the hypothesis about the possible adaptive nature of this exchange, here we explore specific functional attributes that correspond to the mutually exclusive presence of Treponema and Bifidobacterium using publically available gut metagenomic data from Hadza hunter-gatherers and urban industrial Italians. According to our findings, Bifidobacterium provides the enteric ecosystem with a diverse panel of saccharolytic functions, well suited to the array of gluco- and galacto-based saccharides that abound in the Western diet. On the other hand, the metagenomic functions assigned to Treponema are more predictive of a capacity to incorporate complex polysaccharides, such as those found in unrefined plant foods, which are consistently incorporated in the Hadza diet. Finally, unlike Treponema, the Bifidobacterium metagenome functions include genes that permit the establishment of microbe-host immunological cross-talk, suggesting recent co-evolutionary events between the human immune system and Bifidobacterium that are adaptive in the context of agricultural subsistence and sedentary societies.

  19. From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems.

    Science.gov (United States)

    Garza, Daniel R; Dutilh, Bas E

    2015-11-01

    Microorganisms and the viruses that infect them are the most numerous biological entities on Earth and enclose its greatest biodiversity and genetic reservoir. With strength in their numbers, these microscopic organisms are major players in the cycles of energy and matter that sustain all life. Scientists have only scratched the surface of this vast microbial world through culture-dependent methods. Recent developments in generating metagenomes, large random samples of nucleic acid sequences isolated directly from the environment, are providing comprehensive portraits of the composition, structure, and functioning of microbial communities. Moreover, advances in metagenomic analysis have created the possibility of obtaining complete or nearly complete genome sequences from uncultured microorganisms, providing important means to study their biology, ecology, and evolution. Here we review some of the recent developments in the field of metagenomics, focusing on the discovery of genetic novelty and on methods for obtaining uncultured genome sequences, including through the recycling of previously published datasets. Moreover we discuss how metagenomics has become a core scientific tool to characterize eco-evolutionary patterns of microbial ecosystems, thus allowing us to simultaneously discover new microbes and study their natural communities. We conclude by discussing general guidelines and challenges for modeling the interactions between uncultured microorganisms and viruses based on the information contained in their genome sequences. These models will significantly advance our understanding of the functioning of microbial ecosystems and the roles of microbes in the environment.

  20. Metagenomes Reveal Global Distribution of Bacterial Steroid Catabolism in Natural, Engineered, and Host Environments

    Directory of Open Access Journals (Sweden)

    Johannes Holert

    2018-01-01

    Full Text Available Steroids are abundant growth substrates for bacteria in natural, engineered, and host-associated environments. This study analyzed the distribution of the aerobic 9,10-seco steroid degradation pathway in 346 publically available metagenomes from diverse environments. Our results show that steroid-degrading bacteria are globally distributed and prevalent in particular environments, such as wastewater treatment plants, soil, plant rhizospheres, and the marine environment, including marine sponges. Genomic signature-based sequence binning recovered 45 metagenome-assembled genomes containing a majority of 9,10-seco pathway genes. Only Actinobacteria and Proteobacteria were identified as steroid degraders, but we identified several alpha- and gammaproteobacterial lineages not previously known to degrade steroids. Actino- and proteobacterial steroid degraders coexisted in wastewater, while soil and rhizosphere samples contained mostly actinobacterial ones. Actinobacterial steroid degraders were found in deep ocean samples, while mostly alpha- and gammaproteobacterial ones were found in other marine samples, including sponges. Isolation of steroid-degrading bacteria from sponges confirmed their presence. Phylogenetic analysis of key steroid degradation proteins suggested their biochemical novelty in genomes from sponges and other environments. This study shows that the ecological significance as well as taxonomic and biochemical diversity of bacterial steroid degradation has so far been largely underestimated, especially in the marine environment.

  1. Beyond research: a primer for considerations on using viral metagenomics in the field and clinic

    NARCIS (Netherlands)

    Hall, Richard J; Draper, Jenny L; Nielsen, Fiona G G; Dutilh, Bas E

    2015-01-01

    Powered by recent advances in next-generation sequencing technologies, metagenomics has already unveiled vast microbial biodiversity in a range of environments, and is increasingly being applied in clinics for difficult-to-diagnose cases. It can be tempting to suggest that metagenomics could be used

  2. Quantitative Field Testing Rotylenchulus reniformis DNA from Metagenomic Samples Isolated Directly from Soil

    Science.gov (United States)

    Showmaker, Kurt; Lawrence, Gary W.; Lu, Shien; Balbalian, Clarissa; Klink, Vincent P.

    2011-01-01

    A quantitative PCR procedure targeting the β-tubulin gene determined the number of Rotylenchulus reniformis Linford & Oliveira 1940 in metagenomic DNA samples isolated from soil. Of note, this outcome was in the presence of other soil-dwelling plant parasitic nematodes including its sister genus Helicotylenchus Steiner, 1945. The methodology provides a framework for molecular diagnostics of nematodes from metagenomic DNA isolated directly from soil. PMID:22194958

  3. Abundance profiling of specific gene groups using precomputed gut metagenomes yields novel biological hypotheses.

    Directory of Open Access Journals (Sweden)

    Konstantin Yarygin

    Full Text Available The gut microbiota is essentially a multifunctional bioreactor within a human being. The exploration of its enormous metabolic potential provides insights into the mechanisms underlying microbial ecology and interactions with the host. The data obtained using "shotgun" metagenomics capture information about the whole spectrum of microbial functions. However, each new study presenting new sequencing data tends to extract only a little of the information concerning the metabolic potential and often omits specific functions. A meta-analysis of the available data with an emphasis on biomedically relevant gene groups can unveil new global trends in the gut microbiota. As a step toward the reuse of metagenomic data, we developed a method for the quantitative profiling of user-defined groups of genes in human gut metagenomes. This method is based on the quick analysis of a gene coverage matrix obtained by pre-mapping the metagenomic reads to a global gut microbial catalogue. The method was applied to profile the abundance of several gene groups related to antibiotic resistance, phages, biosynthesis clusters and carbohydrate degradation in 784 metagenomes from healthy populations worldwide and patients with inflammatory bowel diseases and obesity. We discovered country-wise functional specifics in gut resistome and virome compositions. The most distinct features of the disease microbiota were found for Crohn's disease, followed by ulcerative colitis and obesity. Profiling of the genes belonging to crAssphage showed that its abundance varied across the world populations and was not associated with clinical status. We demonstrated temporal resilience of crAssphage and the influence of the sample preparation protocol on its detected abundance. Our approach offers a convenient method to add value to accumulated "shotgun" metagenomic data by helping researchers state and assess novel biological hypotheses.

  4. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    Directory of Open Access Journals (Sweden)

    Li Luen-Luen

    2011-08-01

    Full Text Available Abstract Background To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms. Results From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in Escherichia coli. Further characterization showed that two enzymes showed significant activity on p-nitrophenyl-α-L-arabinofuranoside, one enzyme had significant activity against p-nitrophenyl-β-D-glucopyranoside, and one enzyme showed significant activity against p-nitrophenyl-β-D-xylopyranoside. Enzymes were also tested in the presence of ionic liquids. Conclusions Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate. Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass.

  5. VSEARCH: a versatile open source tool for metagenomics

    Directory of Open Access Journals (Sweden)

    Torbjørn Rognes

    2016-10-01

    Full Text Available Background VSEARCH is an open source and free of charge multithreaded 64-bit tool for processing and preparing metagenomics, genomics and population genomics nucleotide sequence data. It is designed as an alternative to the widely used USEARCH tool (Edgar, 2010 for which the source code is not publicly available, algorithm details are only rudimentarily described, and only a memory-confined 32-bit version is freely available for academic use. Methods When searching nucleotide sequences, VSEARCH uses a fast heuristic based on words shared by the query and target sequences in order to quickly identify similar sequences, a similar strategy is probably used in USEARCH. VSEARCH then performs optimal global sequence alignment of the query against potential target sequences, using full dynamic programming instead of the seed-and-extend heuristic used by USEARCH. Pairwise alignments are computed in parallel using vectorisation and multiple threads. Results VSEARCH includes most commands for analysing nucleotide sequences available in USEARCH version 7 and several of those available in USEARCH version 8, including searching (exact or based on global alignment, clustering by similarity (using length pre-sorting, abundance pre-sorting or a user-defined order, chimera detection (reference-based or de novo, dereplication (full length or prefix, pairwise alignment, reverse complementation, sorting, and subsampling. VSEARCH also includes commands for FASTQ file processing, i.e., format detection, filtering, read quality statistics, and merging of paired reads. Furthermore, VSEARCH extends functionality with several new commands and improvements, including shuffling, rereplication, masking of low-complexity sequences with the well-known DUST algorithm, a choice among different similarity definitions, and FASTQ file format conversion. VSEARCH is here shown to be more accurate than USEARCH when performing searching, clustering, chimera detection and subsampling

  6. A sampling and metagenomic sequencing-based methodology for monitoring antimicrobial resistance in swine herds

    DEFF Research Database (Denmark)

    Munk, Patrick; Dalhoff Andersen, Vibe; de Knegt, Leonardo

    2016-01-01

    Objectives Reliable methods for monitoring antimicrobial resistance (AMR) in livestock and other reservoirs are essential to understand the trends, transmission and importance of agricultural resistance. Quantification of AMR is mostly done using culture-based techniques, but metagenomic read...... mapping shows promise for quantitative resistance monitoring. Methods We evaluated the ability of: (i) MIC determination for Escherichia coli; (ii) cfu counting of E. coli; (iii) cfu counting of aerobic bacteria; and (iv) metagenomic shotgun sequencing to predict expected tetracycline resistance based...... cultivation-based techniques in terms of predicting expected tetracycline resistance based on antimicrobial consumption. Our metagenomic approach had sufficient resolution to detect antimicrobial-induced changes to individual resistance gene abundances. Pen floor manure samples were found to represent rectal...

  7. Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome.

    Science.gov (United States)

    Tan, Hao; Wu, Xiang; Xie, Liyuan; Huang, Zhongqian; Peng, Weihong; Gan, Bingcheng

    2016-03-01

    Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phytases in numerous data mines derived from a variety of ecosystems throughout the world. In this study, we are interested in the histidine acid phosphatase (HAP) family phytases present in insect-cultivated fungus gardens. Using bioinformatic approaches, 11 putative HAP phytase genes were initially screened from 18 publicly available metagenomes of fungus gardens and were further overexpressed in Escherichia coli. One phytase from a south pine beetle fungus garden showed the highest activity and was then chosen for further study. Biochemical characterization showed that the phytase is mesophilic but possesses strong ability to withstand high temperatures. To our knowledge, it has the longest half-life time at 100 °C (27 min) and at 80 °C (2.1 h) as compared to all the thermostable phytases publicly reported to date. After 100 °C incubation for 15 min, more than 93 % of the activity was retained. The activity was 3102 μmol P/min/mg at 37 °C and 4135 μmol P/min/mg at 52.5 °C, which is higher than all the known thermostable phytases. For the high activity level demonstrated at mesophilic temperatures as well as the high resilience to high temperatures, the phytase might be promising for potential application as an additive enzyme in animal feed.

  8. New Bacterial Phytase through Metagenomic Prospection

    Directory of Open Access Journals (Sweden)

    Nathálya Farias

    2018-02-01

    Full Text Available Alkaline phytases from uncultured microorganisms, which hydrolyze phytate to less phosphorylated myo-inositols and inorganic phosphate, have great potential as additives in agricultural industry. The development of metagenomics has stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. In this study, a gene encoding a phytase was cloned from red rice crop residues and castor bean cake using a metagenomics strategy. The amino acid identity between this gene and its closest published counterparts is lower than 60%. The phytase was named PhyRC001 and was biochemically characterized. This recombinant protein showed activity on sodium phytate, indicating that PhyRC001 is a hydrolase enzyme. The enzymatic activity was optimal at a pH of 7.0 and at a temperature of 35 °C. β-propeller phytases possess great potential as feed additives because they are the only type of phytase with high activity at neutral pH. Therefore, to explore and exploit the underlying mechanism for β-propeller phytase functions could be of great benefit to biotechnology.

  9. An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes

    Directory of Open Access Journals (Sweden)

    Hannes Horn

    2016-11-01

    Full Text Available Many marine sponges are populated by dense and taxonomically diverse microbial consortia. We employed a metagenomics approach to unravel the differences in the functional gene repertoire among three Mediterranean sponge species, Petrosia ficiformis, Sarcotragus foetidus, Aplysina aerophoba and seawater. Different signatures were observed between sponge and seawater metagenomes with regard to microbial community composition, GC content, and estimated bacterial genome size. Our analysis showed further a pronounced repertoire for defense systems in sponge metagenomes. Specifically, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR, restriction modification, DNA phosphorothioation and phage growth limitation systems were enriched in sponge metagenomes. These data suggest that defense is an important functional trait for an existence within sponges that requires mechanisms to defend against foreign DNA from microorganisms and viruses. This study contributes to an understanding of the evolutionary arms race between viruses/phages and bacterial genomes and it sheds light on the bacterial defenses that have evolved in the context of the sponge holobiont.

  10. Metagenomic data of fungal internal transcribed spacer from serofluid dish, a traditional Chinese fermented food

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2016-03-01

    Full Text Available Serofluid dish (or Jiangshui, in Chinese, a traditional food in the Chinese culture for thousands of years, is made from vegetables by fermentation. In this work, microorganism community of the fermented serofluid dish was investigated by the culture-independent method. The metagenomic data in this article contains the sequences of fungal internal transcribed spacer (ITS regions of rRNA genes from 12 different serofluid dish samples. The metagenome comprised of 50,865 average raw reads with an average of 8,958,220 bp and G + C content is 45.62%. This is the first report on metagenomic data of fungal ITS from serofluid dish employing Illumina platform to profile the fungal communities of this little known fermented food from Gansu Province, China. The Metagenomic data of fungal internal transcribed spacer can be accessed at NCBI, SRA database accession no. SRP067411. Keywords: Serofluid dish, Jiangshui, Fungal ITS, Cultivation-independent, Microbial diversity

  11. Resolving prokaryotic taxonomy without rRNA: longer oligonucleotide word lengths improve genome and metagenome taxonomic classification.

    Science.gov (United States)

    Alsop, Eric B; Raymond, Jason

    2013-01-01

    Oligonucleotide signatures, especially tetranucleotide signatures, have been used as method for homology binning by exploiting an organism's inherent biases towards the use of specific oligonucleotide words. Tetranucleotide signatures have been especially useful in environmental metagenomics samples as many of these samples contain organisms from poorly classified phyla which cannot be easily identified using traditional homology methods, including NCBI BLAST. This study examines oligonucleotide signatures across 1,424 completed genomes from across the tree of life, substantially expanding upon previous work. A comprehensive analysis of mononucleotide through nonanucleotide word lengths suggests that longer word lengths substantially improve the classification of DNA fragments across a range of sizes of relevance to high throughput sequencing. We find that, at present, heptanucleotide signatures represent an optimal balance between prediction accuracy and computational time for resolving taxonomy using both genomic and metagenomic fragments. We directly compare the ability of tetranucleotide and heptanucleotide world lengths (tetranucleotide signatures are the current standard for oligonucleotide word usage analyses) for taxonomic binning of metagenome reads. We present evidence that heptanucleotide word lengths consistently provide more taxonomic resolving power, particularly in distinguishing between closely related organisms that are often present in metagenomic samples. This implies that longer oligonucleotide word lengths should replace tetranucleotide signatures for most analyses. Finally, we show that the application of longer word lengths to metagenomic datasets leads to more accurate taxonomic binning of DNA scaffolds and have the potential to substantially improve taxonomic assignment and assembly of metagenomic data.

  12. Resolving prokaryotic taxonomy without rRNA: longer oligonucleotide word lengths improve genome and metagenome taxonomic classification.

    Directory of Open Access Journals (Sweden)

    Eric B Alsop

    Full Text Available Oligonucleotide signatures, especially tetranucleotide signatures, have been used as method for homology binning by exploiting an organism's inherent biases towards the use of specific oligonucleotide words. Tetranucleotide signatures have been especially useful in environmental metagenomics samples as many of these samples contain organisms from poorly classified phyla which cannot be easily identified using traditional homology methods, including NCBI BLAST. This study examines oligonucleotide signatures across 1,424 completed genomes from across the tree of life, substantially expanding upon previous work. A comprehensive analysis of mononucleotide through nonanucleotide word lengths suggests that longer word lengths substantially improve the classification of DNA fragments across a range of sizes of relevance to high throughput sequencing. We find that, at present, heptanucleotide signatures represent an optimal balance between prediction accuracy and computational time for resolving taxonomy using both genomic and metagenomic fragments. We directly compare the ability of tetranucleotide and heptanucleotide world lengths (tetranucleotide signatures are the current standard for oligonucleotide word usage analyses for taxonomic binning of metagenome reads. We present evidence that heptanucleotide word lengths consistently provide more taxonomic resolving power, particularly in distinguishing between closely related organisms that are often present in metagenomic samples. This implies that longer oligonucleotide word lengths should replace tetranucleotide signatures for most analyses. Finally, we show that the application of longer word lengths to metagenomic datasets leads to more accurate taxonomic binning of DNA scaffolds and have the potential to substantially improve taxonomic assignment and assembly of metagenomic data.

  13. Biofilm-Growing Bacteria Involved in the Corrosion of Concrete Wastewater Pipes: Protocols for Comparative Metagenomic Analyses

    Science.gov (United States)

    Advances in high-throughput next-generation sequencing (NGS) technology for direct sequencing of environmental DNA (i.e. shotgun metagenomics) is transforming the field of microbiology. NGS technologies are now regularly being applied in comparative metagenomic studies, which pr...

  14. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.

    Science.gov (United States)

    Brown, Bonnie L; Watson, Mick; Minot, Samuel S; Rivera, Maria C; Franklin, Rima B

    2017-03-01

    Environmental metagenomic analysis is typically accomplished by assigning taxonomy and/or function from whole genome sequencing or 16S amplicon sequences. Both of these approaches are limited, however, by read length, among other technical and biological factors. A nanopore-based sequencing platform, MinION™, produces reads that are ≥1 × 104 bp in length, potentially providing for more precise assignment, thereby alleviating some of the limitations inherent in determining metagenome composition from short reads. We tested the ability of sequence data produced by MinION (R7.3 flow cells) to correctly assign taxonomy in single bacterial species runs and in three types of low-complexity synthetic communities: a mixture of DNA using equal mass from four species, a community with one relatively rare (1%) and three abundant (33% each) components, and a mixture of genomic DNA from 20 bacterial strains of staggered representation. Taxonomic composition of the low-complexity communities was assessed by analyzing the MinION sequence data with three different bioinformatic approaches: Kraken, MG-RAST, and One Codex. Results: Long read sequences generated from libraries prepared from single strains using the version 5 kit and chemistry, run on the original MinION device, yielded as few as 224 to as many as 3497 bidirectional high-quality (2D) reads with an average overall study length of 6000 bp. For the single-strain analyses, assignment of reads to the correct genus by different methods ranged from 53.1% to 99.5%, assignment to the correct species ranged from 23.9% to 99.5%, and the majority of misassigned reads were to closely related organisms. A synthetic metagenome sequenced with the same setup yielded 714 high quality 2D reads of approximately 5500 bp that were up to 98% correctly assigned to the species level. Synthetic metagenome MinION libraries generated using version 6 kit and chemistry yielded from 899 to 3497 2D reads with lengths averaging 5700 bp with up

  15. 21 CFR 20.120 - Records available in Food and Drug Administration Public Reading Rooms.

    Science.gov (United States)

    2010-04-01

    ... Public Reading Rooms. 20.120 Section 20.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF....120 Records available in Food and Drug Administration Public Reading Rooms. (a) The Food and Drug Administration operates two public reading rooms. The Freedom of Information Staff's Public Reading Room is...

  16. Metagenomic mining of feruloyl esterases from termite enteric flora

    CSIR Research Space (South Africa)

    Rashamuse, K

    2014-01-01

    Full Text Available A metagenome expression library was created from Trinervitermes trinervoides termite hindgut symbionts and subsequently screened for feruloyl esterase (FAE) activities, resulting in seven recombinant fosmids conferring feruloyl esterase phenotypes...

  17. BioMaS: a modular pipeline for Bioinformatic analysis of Metagenomic AmpliconS.

    Science.gov (United States)

    Fosso, Bruno; Santamaria, Monica; Marzano, Marinella; Alonso-Alemany, Daniel; Valiente, Gabriel; Donvito, Giacinto; Monaco, Alfonso; Notarangelo, Pasquale; Pesole, Graziano

    2015-07-01

    Substantial advances in microbiology, molecular evolution and biodiversity have been carried out in recent years thanks to Metagenomics, which allows to unveil the composition and functions of mixed microbial communities in any environmental niche. If the investigation is aimed only at the microbiome taxonomic structure, a target-based metagenomic approach, here also referred as Meta-barcoding, is generally applied. This approach commonly involves the selective amplification of a species-specific genetic marker (DNA meta-barcode) in the whole taxonomic range of interest and the exploration of its taxon-related variants through High-Throughput Sequencing (HTS) technologies. The accessibility to proper computational systems for the large-scale bioinformatic analysis of HTS data represents, currently, one of the major challenges in advanced Meta-barcoding projects. BioMaS (Bioinformatic analysis of Metagenomic AmpliconS) is a new bioinformatic pipeline designed to support biomolecular researchers involved in taxonomic studies of environmental microbial communities by a completely automated workflow, comprehensive of all the fundamental steps, from raw sequence data upload and cleaning to final taxonomic identification, that are absolutely required in an appropriately designed Meta-barcoding HTS-based experiment. In its current version, BioMaS allows the analysis of both bacterial and fungal environments starting directly from the raw sequencing data from either Roche 454 or Illumina HTS platforms, following two alternative paths, respectively. BioMaS is implemented into a public web service available at https://recasgateway.ba.infn.it/ and is also available in Galaxy at http://galaxy.cloud.ba.infn.it:8080 (only for Illumina data). BioMaS is a friendly pipeline for Meta-barcoding HTS data analysis specifically designed for users without particular computing skills. A comparative benchmark, carried out by using a simulated dataset suitably designed to broadly represent

  18. Comparative Metagenomics of Freshwater Microbial Communities

    International Nuclear Information System (INIS)

    Hemme, Chris; Deng, Ye; Tu, Qichao; Fields, Matthew; Gentry, Terry; Wu, Liyou; Tringe, Susannah; Watson, David; He, Zhili; Hazen, Terry; Tiedje, James; Rubin, Eddy; Zhou, Jizhong

    2010-01-01

    Previous analyses of a microbial metagenome from uranium and nitric-acid contaminated groundwater (FW106) showed significant environmental effects resulting from the rapid introduction of multiple contaminants. Effects include a massive loss of species and strain biodiversity, accumulation of toxin resistant genes in the metagenome and lateral transfer of toxin resistance genes between community members. To better understand these results in an ecological context, a second metagenome from a pristine groundwater system located along the same geological strike was sequenced and analyzed (FW301). It is hypothesized that FW301 approximates the ancestral FW106 community based on phylogenetic profiles and common geological parameters; however, even if is not the case, the datasets still permit comparisons between healthy and stressed groundwater ecosystems. Complex carbohydrate metabolism has been almost entirely lost in the stressed ecosystem. In contrast, the pristine system encodes a wide diversity of complex carbohydrate metabolism systems, suggesting that carbon turnover is very rapid and less leaky in the healthy groundwater system. FW301 encodes many (∼160+) carbon monoxide dehydrogenase genes while FW106 encodes none. This result suggests that the community is frequently exposed to oxygen from aerated rainwater percolating into the subsurface, with a resulting high rate of carbon metabolism and CO production. When oxygen levels fall, the CO then serves as a major carbon source for the community. FW301 appears to be capable of CO2 fixation via the reductive carboxylase (reverse TCA) cycle and possibly acetogenesis, activities; these activities are lacking in the heterotrophic FW106 system which relies exclusively on respiration of nitrate and/or oxygen for energy production. FW301 encodes a complete set of B12 biosynthesis pathway at high abundance suggesting the use of sodium gradients for energy production in the healthy groundwater community. Overall

  19. A novel genome signature based on inter-nucleotide distances profiles for visualization of metagenomic data

    Science.gov (United States)

    Xie, Xian-Hua; Yu, Zu-Guo; Ma, Yuan-Lin; Han, Guo-Sheng; Anh, Vo

    2017-09-01

    There has been a growing interest in visualization of metagenomic data. The present study focuses on the visualization of metagenomic data using inter-nucleotide distances profile. We first convert the fragment sequences into inter-nucleotide distances profiles. Then we analyze these profiles by principal component analysis. Finally the principal components are used to obtain the 2-D scattered plot according to their source of species. We name our method as inter-nucleotide distances profiles (INP) method. Our method is evaluated on three benchmark data sets used in previous published papers. Our results demonstrate that the INP method is good, alternative and efficient for visualization of metagenomic data.

  20. Soil and public health: invisible bridges

    Science.gov (United States)

    Pachepsky, Yakov

    2017-04-01

    Public health institutions, as ancient as civilizations itself, are intrinsically connected with soils. The massive body of the empirical knowledge about this connection has been accumulated. Recently unraveling the underlying mechanisms of this link has begun, and many of them appear to have the microbiological origin. The impressive progress in understanding the nexus between soil and health has been achieved by experimentation with preserved soil microbial systems functioning along with the metagenomic characterization. The objective of this work is to present an overview of some recent onsets. In the food safety arena, survival of human pathogens in soils has been related to the degree of soil eutrophication and/or related structure of soil microbial communities. Soil microbial systems affect the affinity of plants to internalizing pathogenic organisms. Pharmaceutical arsenals benefit from using field soil environment for developing antibiotics. Enzyme production by soil bacteria is used as the signal source for drug activation. Sanitary functions of sols are dependent on soil microbial system workings. The healthy living can be enhanced by the human immune system training received from direct contact with soils. The hygiene hypothesis considers the microbial input due to exposure to soil as the essential ecosystem service. The invisible links between soil and public health result in large-scale consequences. Examples of concurrent degradation of soil and public health are worth scrutinizing. Public health records can provide valuable sources of 'soil-public health' interactions. It may be worthwhile to examine current assessments of soil health from the public health standpoint. Soil management can be an efficient instrument of public health control.

  1. Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent red sea brine pools

    KAUST Repository

    Wang, Yong

    2013-04-29

    In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens.

  2. Metagenomic and proteomic analyses to elucidate the mechanism of anaerobic benzene degradation

    Energy Technology Data Exchange (ETDEWEB)

    Abu Laban, Nidal [Helmholtz (Germany)

    2011-07-01

    This paper presents the mechanism of anaerobic benzene degradation using metagenomic and proteomic analyses. The objective of the study is to find out the microbes and biochemistry involved in benzene degradation. Hypotheses are proposed for the initial activation mechanism of benzene under anaerobic conditions. Two methods for degradation, molecular characterization and identification of benzene-degrading enzymes, are described. The physiological and molecular characteristics of iron-reducing enrichment culture are given and the process is detailed. Metagenome analysis of iron-reducing culture is presented using a pie chart. From the metagenome analysis of benzene-degrading culture, putative mobile element genes were identified in the aromatic-degrading configurations. Metaproteomic analysis of iron-reducing cultures and the anaerobic benzene degradation pathway are also elucidated. From the study, it can be concluded that gram-positive bacteria are involved in benzene degradation under iron-reducing conditions and that the catalysis mechanism of putative anaerobic benzene carboxylase needs further investigation.

  3. Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Ying eHe

    2013-06-01

    Full Text Available Deep-sea hydrothermal vent chimneys contain a high diversity of microorganisms, yet the metabolic activity and the ecological functions of the microbial communities remain largely unexplored. In this study, a metagenomic approach was applied to characterize the metabolic potential in a Guaymas hydrothermal vent chimney and to conduct comparative genomic analysis among a variety of environments with sequenced metagenomes. Complete clustering of functional gene categories with a comparative metagenomic approach showed that this Guaymas chimney metagenome was clustered most closely with a chimney metagenome from Juan de Fuca. All chimney samples were enriched with genes involved in recombination and repair, chemotaxis and flagellar assembly, highlighting their roles in coping with the fluctuating extreme deep-sea environments. A high proportion of transposases was observed in all the metagenomes from deep-sea chimneys, supporting the previous hypothesis that horizontal gene transfer may be common in the deep-sea vent chimney biosphere. In the Guaymas chimney metagenome, thermophilic sulfate reducing microorganisms including bacteria and archaea were found predominant, and genes coding for the degradation of refractory organic compounds such as cellulose, lipid, pullullan, as well as a few hydrocarbons including toluene, ethylbenzene and o-xylene were identified. Therefore, this oil-immersed chimney supported a thermophilic microbial community capable of oxidizing a range of hydrocarbons that served as electron donors for sulphate reduction under anaerobic conditions.

  4. Metagenomics for the discovery of novel biosurfactants of environmental interest from marine ecosystems.

    Science.gov (United States)

    Jackson, Stephen A; Borchert, Erik; O'Gara, Fergal; Dobson, Alan D W

    2015-06-01

    Research focused on the search for new biosurfactants aims to replace chemical surfactants, which while being cost-effective are ecologically undesirable. Metagenomics can lead to discovery of novel biosurfactants, tackling issues of low production yields. Recent successes include the heterologous production of biosurfactants. The dearth of biosurfactants discovered to date through metagenomics is puzzling given that good screening systems and heterologous host systems are available. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Finding the needles in the meta-genome haystack

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Speksnijder, A.G.C.L.; Zhang, K.; Goodman, R.M.; Veen, van J.A.

    2007-01-01

    In the collective genomes (the metagenome) of the microorganisms inhabiting the Earth's diverse environments is written the history of life on this planet. New molecular tools developed and used for the past 15 years by microbial ecologists are facilitating the extraction, cloning, screening, and

  6. Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard Allen; Bottos, Eric M.; Roy Chowdhury, Taniya; Zucker, Jeremy D.; Brislawn, Colin J.; Nicora, Carrie D.; Fansler, Sarah J.; Glaesemann, Kurt R.; Glass, Kevin; Jansson, Janet K.; Langille, Morgan

    2016-06-28

    ABSTRACT

    Soil metagenomics has been touted as the “grand challenge” for metagenomics, as the high microbial diversity and spatial heterogeneity of soils make them unamenable to current assembly platforms. Here, we aimed to improve soil metagenomic sequence assembly by applying the Moleculo synthetic long-read sequencing technology. In total, we obtained 267 Gbp of raw sequence data from a native prairie soil; these data included 109.7 Gbp of short-read data (~100 bp) from the Joint Genome Institute (JGI), an additional 87.7 Gbp of rapid-mode read data (~250 bp), plus 69.6 Gbp (>1.5 kbp) from Moleculo sequencing. The Moleculo data alone yielded over 5,600 reads of >10 kbp in length, and over 95% of the unassembled reads mapped to contigs of >1.5 kbp. Hybrid assembly of all data resulted in more than 10,000 contigs over 10 kbp in length. We mapped three replicate metatranscriptomes derived from the same parent soil to the Moleculo subassembly and found that 95% of the predicted genes, based on their assignments to Enzyme Commission (EC) numbers, were expressed. The Moleculo subassembly also enabled binning of >100 microbial genome bins. We obtained via direct binning the first complete genome, that of “CandidatusPseudomonas sp. strain JKJ-1” from a native soil metagenome. By mapping metatranscriptome sequence reads back to the bins, we found that several bins corresponding to low-relative-abundanceAcidobacteriawere highly transcriptionally active, whereas bins corresponding to high-relative-abundanceVerrucomicrobiawere not. These results demonstrate that Moleculo sequencing provides a significant advance for resolving complex soil microbial communities.

    IMPORTANCESoil microorganisms carry out key processes for life on our planet, including cycling of carbon and other nutrients and supporting growth of plants. However, there is poor molecular-level understanding of their

  7. Forest harvesting reduces the soil metagenomic potential for biomass decomposition.

    Science.gov (United States)

    Cardenas, Erick; Kranabetter, J M; Hope, Graeme; Maas, Kendra R; Hallam, Steven; Mohn, William W

    2015-11-01

    Soil is the key resource that must be managed to ensure sustainable forest productivity. Soil microbial communities mediate numerous essential ecosystem functions, and recent studies show that forest harvesting alters soil community composition. From a long-term soil productivity study site in a temperate coniferous forest in British Columbia, 21 forest soil shotgun metagenomes were generated, totaling 187 Gb. A method to analyze unassembled metagenome reads from the complex community was optimized and validated. The subsequent metagenome analysis revealed that, 12 years after forest harvesting, there were 16% and 8% reductions in relative abundances of biomass decomposition genes in the organic and mineral soil layers, respectively. Organic and mineral soil layers differed markedly in genetic potential for biomass degradation, with the organic layer having greater potential and being more strongly affected by harvesting. Gene families were disproportionately affected, and we identified 41 gene families consistently affected by harvesting, including families involved in lignin, cellulose, hemicellulose and pectin degradation. The results strongly suggest that harvesting profoundly altered below-ground cycling of carbon and other nutrients at this site, with potentially important consequences for forest regeneration. Thus, it is important to determine whether these changes foreshadow long-term changes in forest productivity or resilience and whether these changes are broadly characteristic of harvested forests.

  8. Exploration of soil metagenome diversity for prospection of enzymes involved in lignocellulosic biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, T.M.; Squina, F.M. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Paixao, D.A.A.; Franco Cairo, J.P.L.; Buchli, F.; Ruller, R. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Campinas, SP (Brazil); Prade, R. [Oklahoma State University, Sillwater, OK (United States)

    2012-07-01

    Full text: Metagenomics allows access to genetic information encoded in DNA of microorganisms recalcitrant to cultivation. They represent a reservoir of novel biocatalyst with potential application in environmental friendly techniques aiming to overcome the dependence on fossil fuels and also to diminish air and water pollution. The focus of our work is the generation of a tool kit of lignocellulolytic enzymes from soil metagenome, which could be used for second generation ethanol production. Environmental samples were collected at a sugarcane field after harvesting, where it is expected that the microbial population involved on lignocellulose degradation was enriched due to the presence of straws covering the soil. Sugarcane Bagasse-Degrading-Soil (SBDS) metagenome was massively-parallel-454-Roche-sequenced. We identified a full repertoire of genes with significant match to glycosyl hydrolases catalytic domain and carbohydrate-binding modules. Soil metagenomics libraries cloned into pUC19 were screened through functional assays. CMC-agar screening resulted in positive clones, revealing new cellulases coding genes. Through a CMC-zymogram it was possible to observe that one of these genes, nominated as E-1, corresponds to an enzyme that is secreted to the extracellular medium, suggesting that the cloned gene carried the original signal peptide. Enzymatic assays and analysis through capillary electrophoresis showed that E-1 was able to cleave internal glycosidic bonds of cellulose. New rounds of functional screenings through chromogenic substrates are being conducted aiming the generation of a library of lignocellulolytic enzymes derived from soil metagenome, which may become key component for development of second generation biofuels. (author)

  9. A Novel Prosthetic Joint Infection Pathogen, Mycoplasma salivarium, Identified by Metagenomic Shotgun Sequencing.

    Science.gov (United States)

    Thoendel, Matthew; Jeraldo, Patricio; Greenwood-Quaintance, Kerryl E; Chia, Nicholas; Abdel, Matthew P; Steckelberg, James M; Osmon, Douglas R; Patel, Robin

    2017-07-15

    Defining the microbial etiology of culture-negative prosthetic joint infection (PJI) can be challenging. Metagenomic shotgun sequencing is a new tool to identify organisms undetected by conventional methods. We present a case where metagenomics was used to identify Mycoplasma salivarium as a novel PJI pathogen in a patient with hypogammaglobulinemia. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  10. Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review.

    Science.gov (United States)

    Cárdenas, Juan Pablo; Quatrini, Raquel; Holmes, David S

    2016-09-01

    High-throughput genomic technologies are accelerating progress in understanding the diversity of microbial life in many environments. Here we highlight advances in genomics and metagenomics of microorganisms from bioleaching heaps and related acidic mining environments. Bioleaching heaps used for copper recovery provide significant opportunities to study the processes and mechanisms underlying microbial successions and the influence of community composition on ecosystem functioning. Obtaining quantitative and process-level knowledge of these dynamics is pivotal for understanding how microorganisms contribute to the solubilization of copper for industrial recovery. Advances in DNA sequencing technology provide unprecedented opportunities to obtain information about the genomes of bioleaching microorganisms, allowing predictive models of metabolic potential and ecosystem-level interactions to be constructed. These approaches are enabling predictive phenotyping of organisms many of which are recalcitrant to genetic approaches or are unculturable. This mini-review describes current bioleaching genomic and metagenomic projects and addresses the use of genome information to: (i) build metabolic models; (ii) predict microbial interactions; (iii) estimate genetic diversity; and (iv) study microbial evolution. Key challenges and perspectives of bioleaching genomics/metagenomics are addressed. Copyright © 2016 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.

  11. Metagenomic survey of bacterial diversity in the atmosphere of Mexico City using different sampling methods.

    Science.gov (United States)

    Serrano-Silva, N; Calderón-Ezquerro, M C

    2018-04-01

    The identification of airborne bacteria has traditionally been performed by retrieval in culture media, but the bacterial diversity in the air is underestimated using this method because many bacteria are not readily cultured. Advances in DNA sequencing technology have produced a broad knowledge of genomics and metagenomics, which can greatly improve our ability to identify and study the diversity of airborne bacteria. However, researchers are facing several challenges, particularly the efficient retrieval of low-density microorganisms from the air and the lack of standardized protocols for sample collection and processing. In this study, we tested three methods for sampling bioaerosols - a Durham-type spore trap (Durham), a seven-day recording volumetric spore trap (HST), and a high-throughput 'Jet' spore and particle sampler (Jet) - and recovered metagenomic DNA for 16S rDNA sequencing. Samples were simultaneously collected with the three devices during one week, and the sequencing libraries were analyzed. A simple and efficient method for collecting bioaerosols and extracting good quality DNA for high-throughput sequencing was standardized. The Durham sampler collected preferentially Cyanobacteria, the HST Actinobacteria, Proteobacteria and Firmicutes, and the Jet mainly Proteobacteria and Firmicutes. The HST sampler collected the largest amount of airborne bacterial diversity. More experiments are necessary to select the right sampler, depending on study objectives, which may require monitoring and collecting specific airborne bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 22 CFR 214.51 - Administrative review of denial for public access to records.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Administrative review of denial for public access to records. 214.51 Section 214.51 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADVISORY COMMITTEE MANAGEMENT Administrative Remedies § 214.51 Administrative review of denial for public access to...

  13. Vikodak--A Modular Framework for Inferring Functional Potential of Microbial Communities from 16S Metagenomic Datasets.

    Directory of Open Access Journals (Sweden)

    Sunil Nagpal

    Full Text Available The overall metabolic/functional potential of any given environmental niche is a function of the sum total of genes/proteins/enzymes that are encoded and expressed by various interacting microbes residing in that niche. Consequently, prior (collated information pertaining to genes, enzymes encoded by the resident microbes can aid in indirectly (reconstructing/ inferring the metabolic/ functional potential of a given microbial community (given its taxonomic abundance profile. In this study, we present Vikodak--a multi-modular package that is based on the above assumption and automates inferring and/ or comparing the functional characteristics of an environment using taxonomic abundance generated from one or more environmental sample datasets. With the underlying assumptions of co-metabolism and independent contributions of different microbes in a community, a concerted effort has been made to accommodate microbial co-existence patterns in various modules incorporated in Vikodak.Validation experiments on over 1400 metagenomic samples have confirmed the utility of Vikodak in (a deciphering enzyme abundance profiles of any KEGG metabolic pathway, (b functional resolution of distinct metagenomic environments, (c inferring patterns of functional interaction between resident microbes, and (d automating statistical comparison of functional features of studied microbiomes. Novel features incorporated in Vikodak also facilitate automatic removal of false positives and spurious functional predictions.With novel provisions for comprehensive functional analysis, inclusion of microbial co-existence pattern based algorithms, automated inter-environment comparisons; in-depth analysis of individual metabolic pathways and greater flexibilities at the user end, Vikodak is expected to be an important value addition to the family of existing tools for 16S based function prediction.A web implementation of Vikodak can be publicly accessed at: http://metagenomics

  14. Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem

    Directory of Open Access Journals (Sweden)

    Eric Robert Johnston

    2016-04-01

    Full Text Available How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 grams are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth by sequencing, and the recovery of twenty-seven high-quality, almost complete (>80% completeness population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity. Collectively

  15. Construction of a dairy microbial genome catalog opens new perspectives for the metagenomic analysis of dairy fermented products.

    Science.gov (United States)

    Almeida, Mathieu; Hébert, Agnès; Abraham, Anne-Laure; Rasmussen, Simon; Monnet, Christophe; Pons, Nicolas; Delbès, Céline; Loux, Valentin; Batto, Jean-Michel; Leonard, Pierre; Kennedy, Sean; Ehrlich, Stanislas Dusko; Pop, Mihai; Montel, Marie-Christine; Irlinger, Françoise; Renault, Pierre

    2014-12-13

    Microbial communities of traditional cheeses are complex and insufficiently characterized. The origin, safety and functional role in cheese making of these microbial communities are still not well understood. Metagenomic analysis of these communities by high throughput shotgun sequencing is a promising approach to characterize their genomic and functional profiles. Such analyses, however, critically depend on the availability of appropriate reference genome databases against which the sequencing reads can be aligned. We built a reference genome catalog suitable for short read metagenomic analysis using a low-cost sequencing strategy. We selected 142 bacteria isolated from dairy products belonging to 137 different species and 67 genera, and succeeded to reconstruct the draft genome of 117 of them at a standard or high quality level, including isolates from the genera Kluyvera, Luteococcus and Marinilactibacillus, still missing from public database. To demonstrate the potential of this catalog, we analysed the microbial composition of the surface of two smear cheeses and one blue-veined cheese, and showed that a significant part of the microbiota of these traditional cheeses was composed of microorganisms newly sequenced in our study. Our study provides data, which combined with publicly available genome references, represents the most expansive catalog to date of cheese-associated bacteria. Using this extended dairy catalog, we revealed the presence in traditional cheese of dominant microorganisms not deliberately inoculated, mainly Gram-negative genera such as Pseudoalteromonas haloplanktis or Psychrobacter immobilis, that may contribute to the characteristics of cheese produced through traditional methods.

  16. Evaluation of FTA ® paper for storage of oral meta-genomic DNA.

    Science.gov (United States)

    Foitzik, Magdalena; Stumpp, Sascha N; Grischke, Jasmin; Eberhard, Jörg; Stiesch, Meike

    2014-10-01

    The purpose of the present study was to evaluate the short-term storage of meta-genomic DNA from native oral biofilms on FTA(®) paper. Thirteen volunteers of both sexes received an acrylic splint for intraoral biofilm formation over a period of 48 hours. The biofilms were collected, resuspended in phosphate-buffered saline, and either stored on FTA(®) paper or directly processed by standard laboratory DNA extraction. The nucleic acid extraction efficiencies were evaluated by 16S rDNA targeted SSCP fingerprinting. The acquired banding pattern of FTA-derived meta-genomic DNA was compared to a standard DNA preparation protocol. Sensitivity and positive predictive values were calculated. The volunteers showed inter-individual differences in their bacterial species composition. A total of 200 bands were found for both methods and 85% of the banding patterns were equal, representing a sensitivity of 0.941 and a false-negative predictive value of 0.059. Meta-genomic DNA sampling, extraction, and adhesion using FTA(®) paper is a reliable method for storage of microbial DNA for a short period of time.

  17. Separating metagenomic short reads into genomes via clustering

    Directory of Open Access Journals (Sweden)

    Tanaseichuk Olga

    2012-09-01

    Full Text Available Abstract Background The metagenomics approach allows the simultaneous sequencing of all genomes in an environmental sample. This results in high complexity datasets, where in addition to repeats and sequencing errors, the number of genomes and their abundance ratios are unknown. Recently developed next-generation sequencing (NGS technologies significantly improve the sequencing efficiency and cost. On the other hand, they result in shorter reads, which makes the separation of reads from different species harder. Among the existing computational tools for metagenomic analysis, there are similarity-based methods that use reference databases to align reads and composition-based methods that use composition patterns (i.e., frequencies of short words or l-mers to cluster reads. Similarity-based methods are unable to classify reads from unknown species without close references (which constitute the majority of reads. Since composition patterns are preserved only in significantly large fragments, composition-based tools cannot be used for very short reads, which becomes a significant limitation with the development of NGS. A recently proposed algorithm, AbundanceBin, introduced another method that bins reads based on predicted abundances of the genomes sequenced. However, it does not separate reads from genomes of similar abundance levels. Results In this work, we present a two-phase heuristic algorithm for separating short paired-end reads from different genomes in a metagenomic dataset. We use the observation that most of the l-mers belong to unique genomes when l is sufficiently large. The first phase of the algorithm results in clusters of l-mers each of which belongs to one genome. During the second phase, clusters are merged based on l-mer repeat information. These final clusters are used to assign reads. The algorithm could handle very short reads and sequencing errors. It is initially designed for genomes with similar abundance levels and then

  18. A feruloyl esterase derived from a leachate metagenome library

    CSIR Research Space (South Africa)

    Rashamuse, K

    2012-01-01

    Full Text Available A feruloyl esterase encoding gene (designated fae6), derived from a leachate metagenomic library, was cloned and the nucleotide sequence of the insert DNA determined. Translational analysis revealed that fae6 consists of a 515 amino acid polypeptide...

  19. A probabilistic model to recover individual genomes from metagenomes

    NARCIS (Netherlands)

    J. Dröge (Johannes); A. Schönhuth (Alexander); A.C. McHardy (Alice)

    2017-01-01

    textabstractShotgun metagenomics of microbial communities reveal information about strains of relevance for applications in medicine, biotechnology and ecology. Recovering their genomes is a crucial but very challenging step due to the complexity of the underlying biological system and technical

  20. An algorithm for detecting eukaryotic sequences in metagenomic ...

    Indian Academy of Sciences (India)

    species but also from accidental contamination from the genome of eukaryotic host cells. The latter scenario generally occurs in the case of host-associated metagenomes, e.g. microbes living in human gut. In such cases, one needs to identify and remove contaminating host DNA sequences, since the latter sequences will ...

  1. PCR screening of an African fermented pearl-millet porridge metagenome to investigate the nutritional potential of its microbiota.

    Science.gov (United States)

    Saubade, Fabien; Humblot, Christèle; Hemery, Youna M; Guyot, Jean-Pierre

    2017-03-06

    Cereals are staple foods in most African countries, and many African cereal-based foods are spontaneously fermented. The nutritional quality of cereal products can be enhanced through fermentation, and traditional cereal-based fermented foods (CBFFs) are possible sources of lactic acid bacteria (LAB) with useful nutritional properties. The nutritional properties of LAB vary depending on the species and even on the strain, and the microbial composition of traditional CBFFs varies from one traditional production unit (TPU) to another. The nutritional quality of traditional CBFFs may thus vary depending on their microbial composition. As the isolation of potentially useful LAB from traditional CBFFs can be very time consuming, the aim of this study was to use PCR to assess the nutritional potential of LAB directly on the metagenomes of pearl-millet based fermented porridges (ben-saalga) from Burkina Faso. Genes encoding enzymes involved in different nutritional activities were screened in 50 metagenomes extracted from samples collected in 10 TPUs in Ouagadougou. The variability of the genetic potential was recorded. Certain genes were never detected in the metagenomes (genes involved in carotenoid synthesis) while others were frequently detected (genes involved in folate and riboflavin production, starch hydrolysis, polyphenol degradation). Highly variable microbial composition - assessed by real-time PCR - was observed among samples collected in different TPUs, but also among samples from the same TPU. The high frequency of the presence of genes did not necessarily correlate with in situ measurements of the expected products. Indeed, no significant correlation was found between the microbial variability and the variability of the genetic potential. In spite of the high rate of detection (80%) of both genes folP and folK, encoding enzymes involved in folate synthesis, the folate content in ben-saalga was rather low (median: 0.5μg/100g fresh weight basis). This work

  2. A combined meta-barcoding and shotgun metagenomic analysis of spontaneous wine fermentation.

    Science.gov (United States)

    Sternes, Peter R; Lee, Danna; Kutyna, Dariusz R; Borneman, Anthony R

    2017-07-01

    Wine is a complex beverage, comprising hundreds of metabolites produced through the action of yeasts and bacteria in fermenting grape must. Commercially, there is now a growing trend away from using wine yeast (Saccharomyces) starter cultures, toward the historic practice of uninoculated or "wild" fermentation, where the yeasts and bacteria associated with the grapes and/or winery perform the fermentation. It is the varied metabolic contributions of these numerous non-Saccharomyces species that are thought to impart complexity and desirable taste and aroma attributes to wild ferments in comparison to their inoculated counterparts. To map the microflora of spontaneous fermentation, metagenomic techniques were employed to characterize and monitor the progression of fungal species in 5 different wild fermentations. Both amplicon-based ribosomal DNA internal transcribed spacer (ITS) phylotyping and shotgun metagenomics were used to assess community structure across different stages of fermentation. While providing a sensitive and highly accurate means of characterizing the wine microbiome, the shotgun metagenomic data also uncovered a significant overabundance bias in the ITS phylotyping abundance estimations for the common non-Saccharomyces wine yeast genus Metschnikowia. By identifying biases such as that observed for Metschnikowia, abundance measurements from future ITS phylotyping datasets can be corrected to provide more accurate species representation. Ultimately, as more shotgun metagenomic and single-strain de novo assemblies for key wine species become available, the accuracy of both ITS-amplicon and shotgun studies will greatly increase, providing a powerful methodology for deciphering the influence of the microbial community on the wine flavor and aroma. © The Authors 2017. Published by Oxford University Press.

  3. A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity.

    Science.gov (United States)

    Böhnke, Stefanie; Perner, Mirjam

    2015-03-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a key enzyme of the Calvin cycle, which is responsible for most of Earth's primary production. Although research on RubisCO genes and enzymes in plants, cyanobacteria and bacteria has been ongoing for years, still little is understood about its regulation and activation in bacteria. Even more so, hardly any information exists about the function of metagenomic RubisCOs and the role of the enzymes encoded on the flanking DNA owing to the lack of available function-based screens for seeking active RubisCOs from the environment. Here we present the first solely activity-based approach for identifying RubisCO active fosmid clones from a metagenomic library. We constructed a metagenomic library from hydrothermal vent fluids and screened 1056 fosmid clones. Twelve clones exhibited RubisCO activity and the metagenomic fragments resembled genes from Thiomicrospira crunogena. One of these clones was further analyzed. It contained a 35.2 kb metagenomic insert carrying the RubisCO gene cluster and flanking DNA regions. Knockouts of twelve genes and two intergenic regions on this metagenomic fragment demonstrated that the RubisCO activity was significantly impaired and was attributed to deletions in genes encoding putative transcriptional regulators and those believed to be vital for RubisCO activation. Our new technique revealed a novel link between a poorly characterized gene and RubisCO activity. This screen opens the door to directly investigating RubisCO genes and respective enzymes from environmental samples.

  4. A metagenomic approach to decipher the indigenous microbial communities of arsenic contaminated groundwater of Assam

    Directory of Open Access Journals (Sweden)

    Saurav Das

    2017-06-01

    Full Text Available Metagenomic approach was used to understand the structural and functional diversity present in arsenic contaminated groundwater of the Ganges Brahmaputra Delta aquifer system. A metagene dataset (coded as TTGW1 of 89,171 sequences (totaling 125,449,864 base pairs with an average length of 1406 bps was annotated. About 74,478 sequences containing 101,948 predicted protein coding regions passed the quality control. Taxonomical classification revealed abundance of bacteria that accounted for 98.3% of the microbial population of the metagenome. Eukaryota had an abundance of 1.1% followed by archea that showed 0.4% abundance. In phylum based classification, Proteobacteria was dominant (62.6% followed by Bacteroidetes (11.7%, Planctomycetes (7.7%, Verrucomicrobia (5.6%, Actinobacteria (3.7% and Firmicutes (1.9%. The Clusters of Orthologous Groups (COGs analysis indicated that the protein regulating the metabolic functions constituted a high percentage (18,199 reads; 39.3% of the whole metagenome followed by the proteins regulating the cellular processes (22.3%. About 0.07% sequences of the whole metagenome were related to genes coding for arsenic resistant mechanisms. Nearly 50% sequences of these coded for the arsenate reductase enzyme (EC. 1.20.4.1, the dominant enzyme of ars operon. Proteins associated with iron acquisition and metabolism were coded by 2% of the metagenome as revealed through SEED analysis. Our study reveals the microbial diversity and provides an insight into the functional aspect of the genes that might play crucial role in arsenic geocycle in contaminated ground water of Assam.

  5. A Statistical Framework for the Functional Analysis of Metagenomes

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Itai; Pati, Amrita; Markowitz, Victor; Pinter, Ron Y.

    2008-10-01

    Metagenomic studies consider the genetic makeup of microbial communities as a whole, rather than their individual member organisms. The functional and metabolic potential of microbial communities can be analyzed by comparing the relative abundance of gene families in their collective genomic sequences (metagenome) under different conditions. Such comparisons require accurate estimation of gene family frequencies. They present a statistical framework for assessing these frequencies based on the Lander-Waterman theory developed originally for Whole Genome Shotgun (WGS) sequencing projects. They also provide a novel method for assessing the reliability of the estimations which can be used for removing seemingly unreliable measurements. They tested their method on a wide range of datasets, including simulated genomes and real WGS data from sequencing projects of whole genomes. Results suggest that their framework corrects inherent biases in accepted methods and provides a good approximation to the true statistics of gene families in WGS projects.

  6. Construction and Screening of Marine Metagenomic Large Insert Libraries.

    Science.gov (United States)

    Weiland-Bräuer, Nancy; Langfeldt, Daniela; Schmitz, Ruth A

    2017-01-01

    The marine environment covers more than 70 % of the world's surface. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. In the past, marine microbes, mostly bacteria of microbial consortia attached to marine tissues of multicellular organisms, have proven to be a rich source of highly potent bioactive compounds, which represent a considerable number of drug candidates. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. This chapter describes sampling in the marine environment, construction of metagenomic large insert libraries from marine habitats, and exemplarily one function based screen of metagenomic clones for identification of quorum quenching activities.

  7. High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved.

    Science.gov (United States)

    Turaev, Dmitrij; Rattei, Thomas

    2016-06-01

    The systems biology of microbial communities, organismal communities inhabiting all ecological niches on earth, has in recent years been strongly facilitated by the rapid development of experimental, sequencing and data analysis methods. Novel experimental approaches and binning methods in metagenomics render the semi-automatic reconstructions of near-complete genomes of uncultivable bacteria possible, while advances in high-resolution amplicon analysis allow for efficient and less biased taxonomic community characterization. This will also facilitate predictive modeling approaches, hitherto limited by the low resolution of metagenomic data. In this review, we pinpoint the most promising current developments in metagenomics. They facilitate microbial systems biology towards a systemic understanding of mechanisms in microbial communities with scopes of application in many areas of our daily life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Centrifuge: rapid and sensitive classification of metagenomic sequences.

    Science.gov (United States)

    Kim, Daehwan; Song, Li; Breitwieser, Florian P; Salzberg, Steven L

    2016-12-01

    Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. © 2016 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Re-Analysis of Metagenomic Sequences from Acute Flaccidmyelitis Patients Reveals Alternatives to Enterovirus D68 Infection

    Science.gov (United States)

    2015-07-13

    caused in some cases by infection with enterovirus D68. We found that among the patients whose symptoms were previously attributed to enterovirus D68...distribution is unlimited. Re-analysis of metagenomic sequences from acute flaccidmyelitis patients reveals alternatives to enterovirus D68...Street Baltimore, MD 21218 -2685 ABSTRACT Re-analysis of metagenomic sequences from acute flaccidmyelitis patients reveals alternatives to enterovirus

  10. Electronic health record case studies to advance environmental public health tracking.

    Science.gov (United States)

    Namulanda, Gonza; Qualters, Judith; Vaidyanathan, Ambarish; Roberts, Eric; Richardson, Max; Fraser, Alicia; McVeigh, Katharine H; Patterson, Scott

    2018-03-01

    Data from traditional public health surveillance systems can have some limitations, e.g., timeliness, geographic level, and amount of data accessible. Electronic health records (EHRs) could present an opportunity to supplement current sources of routinely collected surveillance data. The National Environmental Public Health Tracking Program (Tracking Program) sought to explore the use of EHRs for advancing environmental public health surveillance practices. The Tracking Program funded four state/local health departments to obtain and pilot the use of EHR data to address several issues including the challenges and technical requirements for accessing EHR data, and the core data elements required to integrate EHR data within their departments' Tracking Programs. The results of these pilot projects highlighted the potential of EHR data for public health surveillance of rare diseases that may lack comprehensive registries, and surveillance of prevalent health conditions or risk factors for health outcomes at a finer geographic level. EHRs therefore, may have potential to supplement traditional sources of public health surveillance data. Published by Elsevier Inc.

  11. Communicating the promise, risks, and ethics of large-scale, open space microbiome and metagenome research.

    Science.gov (United States)

    Shamarina, Daria; Stoyantcheva, Iana; Mason, Christopher E; Bibby, Kyle; Elhaik, Eran

    2017-10-04

    The public commonly associates microorganisms with pathogens. This suspicion of microorganisms is understandable, as historically microorganisms have killed more humans than any other agent while remaining largely unknown until the late seventeenth century with the works of van Leeuwenhoek and Kircher. Despite our improved understanding regarding microorganisms, the general public are apt to think of diseases rather than of the majority of harmless or beneficial species that inhabit our bodies and the built and natural environment. As long as microbiome research was confined to labs, the public's exposure to microbiology was limited. The recent launch of global microbiome surveys, such as the Earth Microbiome Project and MetaSUB (Metagenomics and Metadesign of Subways and Urban Biomes) project, has raised ethical, financial, feasibility, and sustainability concerns as to the public's level of understanding and potential reaction to the findings, which, done improperly, risk negative implications for ongoing and future investigations, but done correctly, can facilitate a new vision of "smart cities." To facilitate improved future research, we describe here the major concerns that our discussions with ethics committees, community leaders, and government officials have raised, and we expound on how to address them. We further discuss ethical considerations of microbiome surveys and provide practical recommendations for public engagement.

  12. GenomePeek—an online tool for prokaryotic genome and metagenome analysis

    Directory of Open Access Journals (Sweden)

    Katelyn McNair

    2015-06-01

    Full Text Available As more and more prokaryotic sequencing takes place, a method to quickly and accurately analyze this data is needed. Previous tools are mainly designed for metagenomic analysis and have limitations; such as long runtimes and significant false positive error rates. The online tool GenomePeek (edwards.sdsu.edu/GenomePeek was developed to analyze both single genome and metagenome sequencing files, quickly and with low error rates. GenomePeek uses a sequence assembly approach where reads to a set of conserved genes are extracted, assembled and then aligned against the highly specific reference database. GenomePeek was found to be faster than traditional approaches while still keeping error rates low, as well as offering unique data visualization options.

  13. Increasing Access to Archival Records in Library Online Public Access Catalogs.

    Science.gov (United States)

    Gilmore, Matthew B.

    1988-01-01

    Looks at the use of online public access catalogs, the utility of subject and call-number searching, and possible archival applications. The Wallace Archives at the Claremont Colleges is used as an example of the availability of bibliographic descriptions of multiformat archival materials through the library catalog. Sample records and searches…

  14. Metagenomic covariation along densely sampled environmental gradients in the Red Sea

    KAUST Repository

    Thompson, Luke R

    2016-07-15

    Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of <2000 km, along narrow but well-defined latitudinal and depth-dependent gradients. We also asked how microbes are adapted to gradients and extremes in irradiance, temperature, salinity, and nutrients, examining the responses of individual gene ortholog groups to these parameters. Functional and taxonomic metrics were equally well explained (75–79%) by environmental parameters. However, only functional and not taxonomic covariation patterns were conserved when comparing with an intruding water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community

  15. An Improved Methodology to Overcome Key Issues in Human Fecal Metagenomic DNA Extraction

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar

    2016-12-01

    Full Text Available Microbes are ubiquitously distributed in nature, and recent culture-independent studies have highlighted the significance of gut microbiota in human health and disease. Fecal DNA is the primary source for the majority of human gut microbiome studies. However, further improvement is needed to obtain fecal metagenomic DNA with sufficient amount and good quality but low host genomic DNA contamination. In the current study, we demonstrate a quick, robust, unbiased, and cost-effective method for the isolation of high molecular weight (>23 kb metagenomic DNA (260/280 ratio >1.8 with a good yield (55.8 ± 3.8 ng/mg of feces. We also confirm that there is very low human genomic DNA contamination (eubacterial: human genomic DNA marker genes = 227.9:1 in the human feces. The newly-developed method robustly performs for fresh as well as stored fecal samples as demonstrated by 16S rRNA gene sequencing using 454 FLX+. Moreover, 16S rRNA gene analysis indicated that compared to other DNA extraction methods tested, the fecal metagenomic DNA isolated with current methodology retains species richness and does not show microbial diversity biases, which is further confirmed by qPCR with a known quantity of spike-in genomes. Overall, our data highlight a protocol with a balance between quality, amount, user-friendliness, and cost effectiveness for its suitability toward usage for culture-independent analysis of the human gut microbiome, which provides a robust solution to overcome key issues associated with fecal metagenomic DNA isolation in human gut microbiome studies.

  16. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony; Burns, Brendan Paul

    2015-05-29

    Modern microbial mats are potential analogues of some of Earth’s earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic nextgeneration sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats.

  17. Technical Report: Benchmarking for Quasispecies Abundance Inference with Confidence Intervals from Metagenomic Sequence Data

    Energy Technology Data Exchange (ETDEWEB)

    McLoughlin, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-22

    The software application “MetaQuant” was developed by our group at Lawrence Livermore National Laboratory (LLNL). It is designed to profile microbial populations in a sample using data from whole-genome shotgun (WGS) metagenomic DNA sequencing. Several other metagenomic profiling applications have been described in the literature. We ran a series of benchmark tests to compare the performance of MetaQuant against that of a few existing profiling tools, using real and simulated sequence datasets. This report describes our benchmarking procedure and results.

  18. Metagenomic investigation of the microbial diversity in a chrysotile asbestos mine pit pond, Lowell, Vermont, USA

    Directory of Open Access Journals (Sweden)

    Heather E. Driscoll

    2016-12-01

    Full Text Available Here we report on a metagenomics investigation of the microbial diversity in a serpentine-hosted aquatic habitat created by chrysotile asbestos mining activity at the Vermont Asbestos Group (VAG Mine in northern Vermont, USA. The now-abandoned VAG Mine on Belvidere Mountain in the towns of Eden and Lowell includes three open-pit quarries, a flooded pit, mill buildings, roads, and >26 million metric tons of eroding mine waste that contribute alkaline mine drainage to the surrounding watershed. Metagenomes and water chemistry originated from aquatic samples taken at three depths (0.5 m, 3.5 m, and 25 m along the water column at three distinct, offshore sites within the mine's flooded pit (near 44°46′00.7673″, −72°31′36.2699″; UTM NAD 83 Zone 18 T 0695720 E, 4960030 N. Whole metagenome shotgun Illumina paired-end sequences were quality trimmed and analyzed based on a translated nucleotide search of NCBI-NR protein database and lowest common ancestor taxonomic assignments. Our results show strata within the pit pond water column can be distinguished by taxonomic composition and distribution, pH, temperature, conductivity, light intensity, and concentrations of dissolved oxygen. At the phylum level, metagenomes from 0.5 m and 3.5 m contained a similar distribution of taxa and were dominated by Actinobacteria (46% and 53% of reads, respectively, Proteobacteria (45% and 38%, respectively, and Bacteroidetes (7% in both. The metagenomes from 25 m showed a greater diversity of phyla and a different distribution of reads than the two upper strata: Proteobacteria (60%, Actinobacteria (18%, Planctomycetes, (10%, Bacteroidetes (5% and Cyanobacteria (2.5%, Armatimonadetes (<1%, Verrucomicrobia (<1%, Firmicutes (<1%, and Nitrospirae (<1%. Raw metagenome sequence data from each sample reside in NCBI's Short Read Archive (SRA ID: SRP056095 and are accessible through NCBI BioProject PRJNA277916.

  19. Binning sequences using very sparse labels within a metagenome

    Directory of Open Access Journals (Sweden)

    Halgamuge Saman K

    2008-04-01

    Full Text Available Abstract Background In metagenomic studies, a process called binning is necessary to assign contigs that belong to multiple species to their respective phylogenetic groups. Most of the current methods of binning, such as BLAST, k-mer and PhyloPythia, involve assigning sequence fragments by comparing sequence similarity or sequence composition with already-sequenced genomes that are still far from comprehensive. We propose a semi-supervised seeding method for binning that does not depend on knowledge of completed genomes. Instead, it extracts the flanking sequences of highly conserved 16S rRNA from the metagenome and uses them as seeds (labels to assign other reads based on their compositional similarity. Results The proposed seeding method is implemented on an unsupervised Growing Self-Organising Map (GSOM, and called Seeded GSOM (S-GSOM. We compared it with four well-known semi-supervised learning methods in a preliminary test, separating random-length prokaryotic sequence fragments sampled from the NCBI genome database. We identified the flanking sequences of the highly conserved 16S rRNA as suitable seeds that could be used to group the sequence fragments according to their species. S-GSOM showed superior performance compared to the semi-supervised methods tested. Additionally, S-GSOM may also be used to visually identify some species that do not have seeds. The proposed method was then applied to simulated metagenomic datasets using two different confidence threshold settings and compared with PhyloPythia, k-mer and BLAST. At the reference taxonomic level Order, S-GSOM outperformed all k-mer and BLAST results and showed comparable results with PhyloPythia for each of the corresponding confidence settings, where S-GSOM performed better than PhyloPythia in the ≥ 10 reads datasets and comparable in the ≥ 8 kb benchmark tests. Conclusion In the task of binning using semi-supervised learning methods, results indicate S-GSOM to be the best of

  20. Metagenome-derived haloalkane dehalogenases with novel catalytic properties

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Vaňáček, P.; Kuňka, A.; Prokop, Z.; Dambrovský, J.

    2017-01-01

    Roč. 101, č. 16 (2017), s. 6385-6397 ISSN 0175-7598 R&D Projects: GA ČR GAP504/10/0137; GA MŠk(CZ) LM2015047; GA MŠk(CZ) LM2015055 Institutional support: RVO:61388971 Keywords : Haloalkane dehalogenase * Metagenomic DNA * Heterologous production Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.420, year: 2016

  1. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes.

    Science.gov (United States)

    Angly, Florent E; Willner, Dana; Prieto-Davó, Alejandra; Edwards, Robert A; Schmieder, Robert; Vega-Thurber, Rebecca; Antonopoulos, Dionysios A; Barott, Katie; Cottrell, Matthew T; Desnues, Christelle; Dinsdale, Elizabeth A; Furlan, Mike; Haynes, Matthew; Henn, Matthew R; Hu, Yongfei; Kirchman, David L; McDole, Tracey; McPherson, John D; Meyer, Folker; Miller, R Michael; Mundt, Egbert; Naviaux, Robert K; Rodriguez-Mueller, Beltran; Stevens, Rick; Wegley, Linda; Zhang, Lixin; Zhu, Baoli; Rohwer, Forest

    2009-12-01

    Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions.

  2. Fast and accurate taxonomic assignments of metagenomic sequences using MetaBin.

    Directory of Open Access Journals (Sweden)

    Vineet K Sharma

    Full Text Available Taxonomic assignment of sequence reads is a challenging task in metagenomic data analysis, for which the present methods mainly use either composition- or homology-based approaches. Though the homology-based methods are more sensitive and accurate, they suffer primarily due to the time needed to generate the Blast alignments. We developed the MetaBin program and web server for better homology-based taxonomic assignments using an ORF-based approach. By implementing Blat as the faster alignment method in place of Blastx, the analysis time has been reduced by severalfold. It is benchmarked using both simulated and real metagenomic datasets, and can be used for both single and paired-end sequence reads of varying lengths (≥45 bp. To our knowledge, MetaBin is the only available program that can be used for the taxonomic binning of short reads (<100 bp with high accuracy and high sensitivity using a homology-based approach. The MetaBin web server can be used to carry out the taxonomic analysis, by either submitting reads or Blastx output. It provides several options including construction of taxonomic trees, creation of a composition chart, functional analysis using COGs, and comparative analysis of multiple metagenomic datasets. MetaBin web server and a standalone version for high-throughput analysis are available freely at http://metabin.riken.jp/.

  3. A metagenomic analysis of pandemic influenza A (2009 H1N1 infection in patients from North America.

    Directory of Open Access Journals (Sweden)

    Alexander L Greninger

    2010-10-01

    Full Text Available Although metagenomics has been previously employed for pathogen discovery, its cost and complexity have prevented its use as a practical front-line diagnostic for unknown infectious diseases. Here we demonstrate the utility of two metagenomics-based strategies, a pan-viral microarray (Virochip and deep sequencing, for the identification and characterization of 2009 pandemic H1N1 influenza A virus. Using nasopharyngeal swabs collected during the earliest stages of the pandemic in Mexico, Canada, and the United States (n = 17, the Virochip was able to detect a novel virus most closely related to swine influenza viruses without a priori information. Deep sequencing yielded reads corresponding to 2009 H1N1 influenza in each sample (percentage of aligned sequences corresponding to 2009 H1N1 ranging from 0.0011% to 10.9%, with up to 97% coverage of the influenza genome in one sample. Detection of 2009 H1N1 by deep sequencing was possible even at titers near the limits of detection for specific RT-PCR, and the percentage of sequence reads was linearly correlated with virus titer. Deep sequencing also provided insights into the upper respiratory microbiota and host gene expression in response to 2009 H1N1 infection. An unbiased analysis combining sequence data from all 17 outbreak samples revealed that 90% of the 2009 H1N1 genome could be assembled de novo without the use of any reference sequence, including assembly of several near full-length genomic segments. These results indicate that a streamlined metagenomics detection strategy can potentially replace the multiple conventional diagnostic tests required to investigate an outbreak of a novel pathogen, and provide a blueprint for comprehensive diagnosis of unexplained acute illnesses or outbreaks in clinical and public health settings.

  4. Shotgun pyrosequencing metagenomic analyses of dusts from swine confinement and grain facilities.

    Science.gov (United States)

    Boissy, Robert J; Romberger, Debra J; Roughead, William A; Weissenburger-Moser, Lisa; Poole, Jill A; LeVan, Tricia D

    2014-01-01

    Inhalation of agricultural dusts causes inflammatory reactions and symptoms such as headache, fever, and malaise, which can progress to chronic airway inflammation and associated diseases, e.g. asthma, chronic bronchitis, chronic obstructive pulmonary disease, and hypersensitivity pneumonitis. Although in many agricultural environments feed particles are the major constituent of these dusts, the inflammatory responses that they provoke are likely attributable to particle-associated bacteria, archaebacteria, fungi, and viruses. In this study, we performed shotgun pyrosequencing metagenomic analyses of DNA from dusts from swine confinement facilities or grain elevators, with comparisons to dusts from pet-free households. DNA sequence alignment showed that 19% or 62% of shotgun pyrosequencing metagenomic DNA sequence reads from swine facility or household dusts, respectively, were of swine or human origin, respectively. In contrast only 2% of such reads from grain elevator dust were of mammalian origin. These metagenomic shotgun reads of mammalian origin were excluded from our analyses of agricultural dust microbiota. The ten most prevalent bacterial taxa identified in swine facility compared to grain elevator or household dust were comprised of 75%, 16%, and 42% gram-positive organisms, respectively. Four of the top five swine facility dust genera were assignable (Clostridium, Lactobacillus, Ruminococcus, and Eubacterium, ranging from 4% to 19% relative abundance). The relative abundances of these four genera were lower in dust from grain elevators or pet-free households. These analyses also highlighted the predominance in swine facility dust of Firmicutes (70%) at the phylum level, Clostridia (44%) at the Class level, and Clostridiales at the Order level (41%). In summary, shotgun pyrosequencing metagenomic analyses of agricultural dusts show that they differ qualitatively and quantitatively at the level of microbial taxa present, and that the bioinformatic analyses

  5. Shotgun pyrosequencing metagenomic analyses of dusts from swine confinement and grain facilities.

    Directory of Open Access Journals (Sweden)

    Robert J Boissy

    Full Text Available Inhalation of agricultural dusts causes inflammatory reactions and symptoms such as headache, fever, and malaise, which can progress to chronic airway inflammation and associated diseases, e.g. asthma, chronic bronchitis, chronic obstructive pulmonary disease, and hypersensitivity pneumonitis. Although in many agricultural environments feed particles are the major constituent of these dusts, the inflammatory responses that they provoke are likely attributable to particle-associated bacteria, archaebacteria, fungi, and viruses. In this study, we performed shotgun pyrosequencing metagenomic analyses of DNA from dusts from swine confinement facilities or grain elevators, with comparisons to dusts from pet-free households. DNA sequence alignment showed that 19% or 62% of shotgun pyrosequencing metagenomic DNA sequence reads from swine facility or household dusts, respectively, were of swine or human origin, respectively. In contrast only 2% of such reads from grain elevator dust were of mammalian origin. These metagenomic shotgun reads of mammalian origin were excluded from our analyses of agricultural dust microbiota. The ten most prevalent bacterial taxa identified in swine facility compared to grain elevator or household dust were comprised of 75%, 16%, and 42% gram-positive organisms, respectively. Four of the top five swine facility dust genera were assignable (Clostridium, Lactobacillus, Ruminococcus, and Eubacterium, ranging from 4% to 19% relative abundance. The relative abundances of these four genera were lower in dust from grain elevators or pet-free households. These analyses also highlighted the predominance in swine facility dust of Firmicutes (70% at the phylum level, Clostridia (44% at the Class level, and Clostridiales at the Order level (41%. In summary, shotgun pyrosequencing metagenomic analyses of agricultural dusts show that they differ qualitatively and quantitatively at the level of microbial taxa present, and that the

  6. Comparison of normalization methods for the analysis of metagenomic gene abundance data.

    Science.gov (United States)

    Pereira, Mariana Buongermino; Wallroth, Mikael; Jonsson, Viktor; Kristiansson, Erik

    2018-04-20

    In shotgun metagenomics, microbial communities are studied through direct sequencing of DNA without any prior cultivation. By comparing gene abundances estimated from the generated sequencing reads, functional differences between the communities can be identified. However, gene abundance data is affected by high levels of systematic variability, which can greatly reduce the statistical power and introduce false positives. Normalization, which is the process where systematic variability is identified and removed, is therefore a vital part of the data analysis. A wide range of normalization methods for high-dimensional count data has been proposed but their performance on the analysis of shotgun metagenomic data has not been evaluated. Here, we present a systematic evaluation of nine normalization methods for gene abundance data. The methods were evaluated through resampling of three comprehensive datasets, creating a realistic setting that preserved the unique characteristics of metagenomic data. Performance was measured in terms of the methods ability to identify differentially abundant genes (DAGs), correctly calculate unbiased p-values and control the false discovery rate (FDR). Our results showed that the choice of normalization method has a large impact on the end results. When the DAGs were asymmetrically present between the experimental conditions, many normalization methods had a reduced true positive rate (TPR) and a high false positive rate (FPR). The methods trimmed mean of M-values (TMM) and relative log expression (RLE) had the overall highest performance and are therefore recommended for the analysis of gene abundance data. For larger sample sizes, CSS also showed satisfactory performance. This study emphasizes the importance of selecting a suitable normalization methods in the analysis of data from shotgun metagenomics. Our results also demonstrate that improper methods may result in unacceptably high levels of false positives, which in turn may lead

  7. Insights into resistome and stress responses genes in Bubalus bubalis rumen through metagenomic analysis.

    Science.gov (United States)

    Reddy, Bhaskar; Singh, Krishna M; Patel, Amrutlal K; Antony, Ancy; Panchasara, Harshad J; Joshi, Chaitanya G

    2014-10-01

    Buffalo rumen microbiota experience variety of diets and represents a huge reservoir of mobilome, resistome and stress responses. However, knowledge of metagenomic responses to such conditions is still rudimentary. We analyzed the metagenomes of buffalo rumen in the liquid and solid phase of the rumen biomaterial from river buffalo adapted to varying proportion of concentrate to green or dry roughages, using high-throughput sequencing to know the occurrence of antibiotics resistance genes, genetic exchange between bacterial population and environmental reservoirs. A total of 3914.94 MB data were generated from all three treatments group. The data were analysed with Metagenome rapid annotation system tools. At phyla level, Bacteroidetes were dominant in all the treatments followed by Firmicutes. Genes coding for functional responses to stress (oxidative stress and heat shock proteins) and resistome genes (resistance to antibiotics and toxic compounds, phages, transposable elements and pathogenicity islands) were prevalent in similar proportion in liquid and solid fraction of rumen metagenomes. The fluoroquinolone resistance, MDR efflux pumps and Methicillin resistance genes were broadly distributed across 11, 9, and 14 bacterial classes, respectively. Bacteria responsible for phages replication and prophages and phage packaging and rlt-like streptococcal phage genes were mostly assigned to phyla Bacteroides, Firmicutes and proteaobacteria. Also, more reads matching the sigma B genes were identified in the buffalo rumen. This study underscores the presence of diverse mechanisms of adaptation to different diet, antibiotics and other stresses in buffalo rumen, reflecting the proportional representation of major bacterial groups.

  8. Beyond research: a primer for considerations on using viral metagenomics in the field and clinic

    OpenAIRE

    Hall, Richard J.; Draper, Jenny L.; Nielsen, Fiona G. G.; Dutilh, Bas E.

    2015-01-01

    Powered by recent advances in next-generation sequencing technologies, metagenomics has already unveiled vast microbial biodiversity in a range of environments, and is increasingly being applied in clinics for difficult-to-diagnose cases. It can be tempting to suggest that metagenomics could be used as a “universal test” for all pathogens without the need to conduct lengthy serial testing using specific assays. While this is an exciting prospect, there are issues that need to be addressed bef...

  9. Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments

    Directory of Open Access Journals (Sweden)

    Dobson Alan DW

    2008-08-01

    Full Text Available Abstract Metagenomic based strategies have previously been successfully employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the unculturable component of microbial communities from various terrestrial environmental niches. Both sequence based and function based screening approaches have been employed to identify genes encoding novel biocatalytic activities and metabolic pathways from metagenomic libraries. While much of the focus to date has centred on terrestrial based microbial ecosystems, it is clear that the marine environment has enormous microbial biodiversity that remains largely unstudied. Marine microbes are both extremely abundant and diverse; the environments they occupy likewise consist of very diverse niches. As culture-dependent methods have thus far resulted in the isolation of only a tiny percentage of the marine microbiota the application of metagenomic strategies holds great potential to study and exploit the enormous microbial biodiversity which is present within these marine environments.

  10. Design and implementation of an affordable, public sector electronic medical record in rural Nepal

    Directory of Open Access Journals (Sweden)

    Anant Raut

    2017-06-01

    Over the course of 18 months, we were able to develop, deploy and iterate upon the electronic medical record, and then deploy the refined product at an additional facility within only four weeks. Our experience suggests the feasibility of an integrated electronic medical record for public sector care delivery even in settings of rural poverty.

  11. Metagenomic analyses of bacteria on human hairs: a qualitative assessment for applications in forensic science.

    Science.gov (United States)

    Tridico, Silvana R; Murray, Dáithí C; Addison, Jayne; Kirkbride, Kenneth P; Bunce, Michael

    2014-01-01

    Mammalian hairs are one of the most ubiquitous types of trace evidence collected in the course of forensic investigations. However, hairs that are naturally shed or that lack roots are problematic substrates for DNA profiling; these hair types often contain insufficient nuclear DNA to yield short tandem repeat (STR) profiles. Whilst there have been a number of initial investigations evaluating the value of metagenomics analyses for forensic applications (e.g. examination of computer keyboards), there have been no metagenomic evaluations of human hairs-a substrate commonly encountered during forensic practice. This present study attempts to address this forensic capability gap, by conducting a qualitative assessment into the applicability of metagenomic analyses of human scalp and pubic hair. Forty-two DNA extracts obtained from human scalp and pubic hairs generated a total of 79,766 reads, yielding 39,814 reads post control and abundance filtering. The results revealed the presence of unique combinations of microbial taxa that can enable discrimination between individuals and signature taxa indigenous to female pubic hairs. Microbial data from a single co-habiting couple added an extra dimension to the study by suggesting that metagenomic analyses might be of evidentiary value in sexual assault cases when other associative evidence is not present. Of all the data generated in this study, the next-generation sequencing (NGS) data generated from pubic hair held the most potential for forensic applications. Metagenomic analyses of human hairs may provide independent data to augment other forensic results and possibly provide association between victims of sexual assault and offender when other associative evidence is absent. Based on results garnered in the present study, we believe that with further development, bacterial profiling of hair will become a valuable addition to the forensic toolkit.

  12. Statistical methods for detecting differentially abundant features in clinical metagenomic samples.

    Directory of Open Access Journals (Sweden)

    James Robert White

    2009-04-01

    Full Text Available Numerous studies are currently underway to characterize the microbial communities inhabiting our world. These studies aim to dramatically expand our understanding of the microbial biosphere and, more importantly, hope to reveal the secrets of the complex symbiotic relationship between us and our commensal bacterial microflora. An important prerequisite for such discoveries are computational tools that are able to rapidly and accurately compare large datasets generated from complex bacterial communities to identify features that distinguish them.We present a statistical method for comparing clinical metagenomic samples from two treatment populations on the basis of count data (e.g. as obtained through sequencing to detect differentially abundant features. Our method, Metastats, employs the false discovery rate to improve specificity in high-complexity environments, and separately handles sparsely-sampled features using Fisher's exact test. Under a variety of simulations, we show that Metastats performs well compared to previously used methods, and significantly outperforms other methods for features with sparse counts. We demonstrate the utility of our method on several datasets including a 16S rRNA survey of obese and lean human gut microbiomes, COG functional profiles of infant and mature gut microbiomes, and bacterial and viral metabolic subsystem data inferred from random sequencing of 85 metagenomes. The application of our method to the obesity dataset reveals differences between obese and lean subjects not reported in the original study. For the COG and subsystem datasets, we provide the first statistically rigorous assessment of the differences between these populations. The methods described in this paper are the first to address clinical metagenomic datasets comprising samples from multiple subjects. Our methods are robust across datasets of varied complexity and sampling level. While designed for metagenomic applications, our software

  13. A deep gold mine metagenome as a source of novel esterases

    African Journals Online (AJOL)

    Jane

    2011-07-04

    Jul 4, 2011 ... small metagenome library from the deep mine biofilm provided two esterolytic clones, ...... tuberosum) tubers, and its occurrence as genotype effect: processing .... diversity in freshwater sediment of a shallow eutrophic lake by.

  14. Metagenome of a Versatile Chemolithoautotroph from Expanding Oceanic Dead Zones

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, David A.; Zaikova, Elena; Howes, Charles L.; Song, Young; Wright, Jody; Tringe, Susannah G.; Tortell, Philippe D.; Hallam, Steven J.

    2009-07-15

    Oxygen minimum zones (OMZs), also known as oceanic"dead zones", are widespread oceanographic features currently expanding due to global warming and coastal eutrophication. Although inhospitable to metazoan life, OMZs support a thriving but cryptic microbiota whose combined metabolic activity is intimately connected to nutrient and trace gas cycling within the global ocean. Here we report time-resolved metagenomic analyses of a ubiquitous and abundant but uncultivated OMZ microbe (SUP05) closely related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur-oxidation and nitrate respiration responsive to a wide range of water column redox states. Thus, SUP05 plays integral roles in shaping nutrient and energy flow within oxygen-deficient oceanic waters via carbon sequestration, sulfide detoxification and biological nitrogen loss with important implications for marine productivity and atmospheric greenhouse control.

  15. A metagenomic framework for the study of airborne microbial communities.

    Science.gov (United States)

    Yooseph, Shibu; Andrews-Pfannkoch, Cynthia; Tenney, Aaron; McQuaid, Jeff; Williamson, Shannon; Thiagarajan, Mathangi; Brami, Daniel; Zeigler-Allen, Lisa; Hoffman, Jeff; Goll, Johannes B; Fadrosh, Douglas; Glass, John; Adams, Mark D; Friedman, Robert; Venter, J Craig

    2013-01-01

    Understanding the microbial content of the air has important scientific, health, and economic implications. While studies have primarily characterized the taxonomic content of air samples by sequencing the 16S or 18S ribosomal RNA gene, direct analysis of the genomic content of airborne microorganisms has not been possible due to the extremely low density of biological material in airborne environments. We developed sampling and amplification methods to enable adequate DNA recovery to allow metagenomic profiling of air samples collected from indoor and outdoor environments. Air samples were collected from a large urban building, a medical center, a house, and a pier. Analyses of metagenomic data generated from these samples reveal airborne communities with a high degree of diversity and different genera abundance profiles. The identities of many of the taxonomic groups and protein families also allows for the identification of the likely sources of the sampled airborne bacteria.

  16. Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Dini Andreote, Fernando; Chaves, Diego; Montaña, José Salvador; Osorio-Forero, Cesar; Junca, Howard; Zambrano, María Mercedes; Baena, Sandra

    2012-01-01

    A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads

  17. High throughtput comparisons and profiling of metagenomes for industrially relevant enzymes

    KAUST Repository

    Alam, Intikhab

    2016-01-01

    .g. temperature, environmental chemistry, etc… These metagenomes can be profiled to unearth enzymes relevant to several industries based on specific enzyme properties such as ability to work on extreme conditions, such as extreme temperatures, salinity

  18. IDENTIFICATION OF AVIAN-SPECIFIC FECAL METAGENOMIC SEQUENCES USING GENOME FRAGMENT ENRICHMENTS

    Science.gov (United States)

    Sequence analysis of microbial genomes has provided biologists the opportunity to compare genetic differences between closely related microorganisms. While random sequencing has also been used to study natural microbial communities, metagenomic comparisons via sequencing analysis...

  19. The new science of metagenomics: revealing the secrets of our microbial planet

    National Research Council Canada - National Science Library

    Committee on Metagenomics: Challenges and Functional Applications, National Research Council

    2007-01-01

    .... The emerging field of metagenomics offers a new way of exploring the microbial world that will transform modern microbiology and lead to practical applications in medicine, agriculture, alternative...

  20. The microbiome of Brazilian mangrove sediments as revealed by metagenomics

    NARCIS (Netherlands)

    Andreote, Fernando Dini; Jiménez Avella, Diego; Chaves, Diego; Dias, Armando Cavalcante Franco; Luvizotto, Danice Mazzer; Dini-Andreote, Francisco; Fasanella, Cristiane Cipola; Lopez, Maryeimy Varon; Baena, Sandra; Taketani, Rodrigo Gouvêa; de Melo, Itamar Soares

    2012-01-01

    Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct

  1. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes.

    Directory of Open Access Journals (Sweden)

    Florent E Angly

    2009-12-01

    Full Text Available Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS, a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and

  2. Combining gene prediction methods to improve metagenomic gene annotation

    Directory of Open Access Journals (Sweden)

    Rosen Gail L

    2011-01-01

    Full Text Available Abstract Background Traditional gene annotation methods rely on characteristics that may not be available in short reads generated from next generation technology, resulting in suboptimal performance for metagenomic (environmental samples. Therefore, in recent years, new programs have been developed that optimize performance on short reads. In this work, we benchmark three metagenomic gene prediction programs and combine their predictions to improve metagenomic read gene annotation. Results We not only analyze the programs' performance at different read-lengths like similar studies, but also separate different types of reads, including intra- and intergenic regions, for analysis. The main deficiencies are in the algorithms' ability to predict non-coding regions and gene edges, resulting in more false-positives and false-negatives than desired. In fact, the specificities of the algorithms are notably worse than the sensitivities. By combining the programs' predictions, we show significant improvement in specificity at minimal cost to sensitivity, resulting in 4% improvement in accuracy for 100 bp reads with ~1% improvement in accuracy for 200 bp reads and above. To correctly annotate the start and stop of the genes, we find that a consensus of all the predictors performs best for shorter read lengths while a unanimous agreement is better for longer read lengths, boosting annotation accuracy by 1-8%. We also demonstrate use of the classifier combinations on a real dataset. Conclusions To optimize the performance for both prediction and annotation accuracies, we conclude that the consensus of all methods (or a majority vote is the best for reads 400 bp and shorter, while using the intersection of GeneMark and Orphelia predictions is the best for reads 500 bp and longer. We demonstrate that most methods predict over 80% coding (including partially coding reads on a real human gut sample sequenced by Illumina technology.

  3. Assembling the Marine Metagenome, One Cell at a Time

    Energy Technology Data Exchange (ETDEWEB)

    Woyke, Tanja; Xie, Gary; Copeland, Alex; Gonzalez, Jose M.; Han, Cliff; Kiss, Hajnalka; Saw, Jimmy H.; Senin, Pavel; Yang, Chi; Chatterji, Sourav; Cheng, Jan-Fang; Eisen, Jonathan A.; Sieracki, Michael E.; Stepanauskas, Ramunas

    2010-06-24

    The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91percent and 78percent, respectively. Only 0.24percent of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured

  4. Constructing and Screening a Metagenomic Library of a Cold and Alkaline Extreme Environment.

    Science.gov (United States)

    Glaring, Mikkel A; Vester, Jan K; Stougaard, Peter

    2017-01-01

    Natural cold or alkaline environments are common on Earth. A rare combination of these two extremes is found in the permanently cold (less than 6 °C) and alkaline (pH above 10) ikaite columns in the Ikka Fjord in Southern Greenland. Bioprospecting efforts have established the ikaite columns as a source of bacteria and enzymes adapted to these conditions. They have also highlighted the limitations of cultivation-based methods in this extreme environment and metagenomic approaches may provide access to novel extremophilic enzymes from the uncultured majority of bacteria. Here, we describe the construction and screening of a metagenomic library of the prokaryotic community inhabiting the ikaite columns.

  5. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn

    2010-01-01

    To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence...

  6. High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes

    Directory of Open Access Journals (Sweden)

    Mikihiko eKawai

    2014-03-01

    Full Text Available Marine subsurface sediments on the Pacific margin harbor diverse microbial communities even at depths of several hundreds meters below the seafloor (mbsf or more. Previous PCR-based molecular analysis showed the presence of diverse reductive dehalogenase gene (rdhA homologs in marine subsurface sediment, suggesting that anaerobic respiration of organohalides is one of the possible energy-yielding pathways in the organic-rich sedimentary habitat. However, primer-independent molecular characterization of rdhA has remained to be demonstrated. Here, we studied the diversity and frequency of rdhA homologs by metagenomic analysis of five different depth horizons (0.8, 5.1, 18.6, 48.5 and 107.0 mbsf at Site C9001 off the Shimokita Peninsula of Japan. From all metagenomic pools, remarkably diverse rdhA-homologous sequences, some of which are affiliated with novel clusters, were observed with high frequency. As a comparison, we also examined frequency of dissimilatory sulfite reductase genes (dsrAB, key functional genes for microbial sulfate reduction. The dsrAB were also widely observed in the metagenomic pools whereas the frequency of dsrAB genes was generally smaller than that of rdhA-homologous genes. The phylogenetic composition of rdhA-homologous genes was similar among the five depth horizons. Our metagenomic data revealed that subseafloor rdhA homologs are more diverse than previously identified from PCR-based molecular studies. Spatial distribution of similar rdhA homologs across wide depositional ages indicates that the heterotrophic metabolic processes mediated by the genes can be ecologically important, functioning in the organic-rich subseafloor sedimentary biosphere.

  7. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes.

    Science.gov (United States)

    Hingamp, Pascal; Grimsley, Nigel; Acinas, Silvia G; Clerissi, Camille; Subirana, Lucie; Poulain, Julie; Ferrera, Isabel; Sarmento, Hugo; Villar, Emilie; Lima-Mendez, Gipsi; Faust, Karoline; Sunagawa, Shinichi; Claverie, Jean-Michel; Moreau, Hervé; Desdevises, Yves; Bork, Peer; Raes, Jeroen; de Vargas, Colomban; Karsenti, Eric; Kandels-Lewis, Stefanie; Jaillon, Olivier; Not, Fabrice; Pesant, Stéphane; Wincker, Patrick; Ogata, Hiroyuki

    2013-09-01

    Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2-1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 10(4)-10(5) genomes ml(-1) for the samples from the photic zone and 10(2)-10(3) genomes ml(-1) for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.

  8. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs

    Directory of Open Access Journals (Sweden)

    Erica C. Pehrsson

    2013-06-01

    Full Text Available Rates of infection with antibiotic-resistant bacteria have increased precipitously over the past several decades, with far-reaching healthcare and societal costs. Recent evidence has established a link between antibiotic resistance genes in human pathogens and those found in non-pathogenic, commensal, and environmental organisms, prompting deeper investigation of natural and human-associated reservoirs of antibiotic resistance. Functional metagenomic selections, in which shotgun-cloned DNA fragments are selected for their ability to confer survival to an indicator host, have been increasingly applied to the characterization of many antibiotic resistance reservoirs. These experiments have demonstrated that antibiotic resistance genes are highly diverse and widely distributed, many times bearing little to no similarity to known sequences. Through unbiased selections for survival to antibiotic exposure, functional metagenomics can improve annotations by reducing the discovery of false-positive resistance and by allowing for the identification of previously unrecognizable resistance genes. In this review, we summarize the novel resistance functions uncovered using functional metagenomic investigations of natural and human-impacted resistance reservoirs. Examples of novel antibiotic resistance genes include those highly divergent from known sequences, those for which sequence is entirely unable to predict resistance function, bifunctional resistance genes, and those with unconventional, atypical resistance mechanisms. Overcoming antibiotic resistance in the clinic will require a better understanding of existing resistance reservoirs and the dissemination networks that govern horizontal gene exchange, informing best practices to limit the spread of resistance-conferring genes to human pathogens.

  9. Innovative uses of electronic health records and social media for public health surveillance.

    Science.gov (United States)

    Eggleston, Emma M; Weitzman, Elissa R

    2014-03-01

    Electronic health records (EHRs) and social media have the potential to enrich public health surveillance of diabetes. Clinical and patient-facing data sources for diabetes surveillance are needed given its profound public health impact, opportunity for primary and secondary prevention, persistent disparities, and requirement for self-management. Initiatives to employ data from EHRs and social media for diabetes surveillance are in their infancy. With their transformative potential come practical limitations and ethical considerations. We explore applications of EHR and social media for diabetes surveillance, limitations to approaches, and steps for moving forward in this partnership between patients, health systems, and public health.

  10. Public Trust in Health Information Sharing: Implications for Biobanking and Electronic Health Record Systems

    Directory of Open Access Journals (Sweden)

    Jodyn Platt

    2015-02-01

    Full Text Available Biobanks are made all the more valuable when the biological samples they hold can be linked to health information collected in research, electronic health records, or public health practice. Public trust in such systems that share health information for research and health care practice is understudied. Our research examines characteristics of the general public that predict trust in a health system that includes researchers, health care providers, insurance companies and public health departments. We created a 119-item survey of predictors and attributes of system trust and fielded it using Amazon’s MTurk system (n = 447. We found that seeing one’s primary care provider, having a favorable view of data sharing and believing that data sharing will improve the quality of health care, as well as psychosocial factors (altruism and generalized trust were positively and significantly associated with system trust. As expected, privacy concern, but counterintuitively, knowledge about health information sharing were negatively associated with system trust. We conclude that, in order to assure the public’s trust, policy makers charged with setting best practices for governance of biobanks and access to electronic health records should leverage critical access points to engage a diverse public in joint decision making.

  11. Evaluation of a pooled strategy for high-throughput sequencing of cosmid clones from metagenomic libraries.

    Science.gov (United States)

    Lam, Kathy N; Hall, Michael W; Engel, Katja; Vey, Gregory; Cheng, Jiujun; Neufeld, Josh D; Charles, Trevor C

    2014-01-01

    High-throughput sequencing methods have been instrumental in the growing field of metagenomics, with technological improvements enabling greater throughput at decreased costs. Nonetheless, the economy of high-throughput sequencing cannot be fully leveraged in the subdiscipline of functional metagenomics. In this area of research, environmental DNA is typically cloned to generate large-insert libraries from which individual clones are isolated, based on specific activities of interest. Sequence data are required for complete characterization of such clones, but the sequencing of a large set of clones requires individual barcode-based sample preparation; this can become costly, as the cost of clone barcoding scales linearly with the number of clones processed, and thus sequencing a large number of metagenomic clones often remains cost-prohibitive. We investigated a hybrid Sanger/Illumina pooled sequencing strategy that omits barcoding altogether, and we evaluated this strategy by comparing the pooled sequencing results to reference sequence data obtained from traditional barcode-based sequencing of the same set of clones. Using identity and coverage metrics in our evaluation, we show that pooled sequencing can generate high-quality sequence data, without producing problematic chimeras. Though caveats of a pooled strategy exist and further optimization of the method is required to improve recovery of complete clone sequences and to avoid circumstances that generate unrecoverable clone sequences, our results demonstrate that pooled sequencing represents an effective and low-cost alternative for sequencing large sets of metagenomic clones.

  12. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Directory of Open Access Journals (Sweden)

    Zhimin Dai

    Full Text Available Biological nitrogen fixation is an essential function of acid mine drainage (AMD microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  13. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Science.gov (United States)

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  14. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    Science.gov (United States)

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  15. Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle.

    Directory of Open Access Journals (Sweden)

    Erin D Scully

    Full Text Available The Asian longhorned beetle (Anoplophoraglabripennis is an invasive, wood-boring pest that thrives in the heartwood of deciduous tree species. A large impediment faced by A. glabripennis as it feeds on woody tissue is lignin, a highly recalcitrant biopolymer that reduces access to sugars and other nutrients locked in cellulose and hemicellulose. We previously demonstrated that lignin, cellulose, and hemicellulose are actively deconstructed in the beetle gut and that the gut harbors an assemblage of microbes hypothesized to make significant contributions to these processes. While lignin degrading mechanisms have been well characterized in pure cultures of white rot basidiomycetes, little is known about such processes in microbial communities associated with wood-feeding insects. The goals of this study were to develop a taxonomic and functional profile of a gut community derived from an invasive population of larval A. glabripennis collected from infested host trees and to identify genes that could be relevant for the digestion of woody tissue and nutrient acquisition. To accomplish this goal, we taxonomically and functionally characterized the A. glabripennis midgut microbiota through amplicon and shotgun metagenome sequencing and conducted a large-scale comparison with the metagenomes from a variety of other herbivore-associated communities. This analysis distinguished the A. glabripennis larval gut metagenome from the gut communities of other herbivores, including previously sequenced termite hindgut metagenomes. Genes encoding enzymes were identified in the A. glabripennis gut metagenome that could have key roles in woody tissue digestion including candidate lignin degrading genes (laccases, dye-decolorizing peroxidases, novel peroxidases and β-etherases, 36 families of glycoside hydrolases (such as cellulases and xylanases, and genes that could facilitate nutrient recovery, essential nutrient synthesis, and detoxification. This community

  16. ELIXIR pilot action: Marine metagenomics – towards a domain specific set of sustainable services [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Espen Mikal Robertsen

    2017-01-01

    Full Text Available Metagenomics, the study of genetic material recovered directly from environmental samples, has the potential to provide insight into the structure and function of heterogeneous microbial communities.  There has been an increased use of metagenomics to discover and understand the diverse biosynthetic capacities of marine microbes, thereby allowing them to be exploited for industrial, food, and health care products. This ELIXIR pilot action was motivated by the need to establish dedicated data resources and harmonized metagenomics pipelines for the marine domain, in order to enhance the exploration and exploitation of marine genetic resources. In this paper, we summarize some of the results from the ELIXIR pilot action “Marine metagenomics – towards user centric services”.

  17. Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth.

    Science.gov (United States)

    Gloux, Karine; Leclerc, Marion; Iliozer, Harout; L'Haridon, René; Manichanh, Chaysavanh; Corthier, Gérard; Nalin, Renaud; Blottière, Hervé M; Doré, Joël

    2007-06-01

    Metagenomic libraries derived from human intestinal microbiota (20,725 clones) were screened for epithelial cell growth modulation. Modulatory clones belonging to the four phyla represented among the metagenomic libraries were identified (hit rate, 0.04 to 8.7% depending on the screening cutoff). Several candidate loci were identified by transposon mutagenesis and subcloning.

  18. Diversity Indices as Measures of Functional Annotation Methods in Metagenomics Studies

    KAUST Repository

    Jankovic, Boris R.

    2016-01-01

    in the ecosystems and species diversity studies can be successfully used in evaluating certain aspects of the methods employed in metagenomics studies. We show that when applying the concept of Hill’s diversity, the analysis of variations in the diversity order

  19. Metagenomics of Bacterial Diversity in Villa Luz Caves with Sulfur Water Springs

    Directory of Open Access Journals (Sweden)

    Giuseppe D’Auria

    2018-01-01

    Full Text Available New biotechnology applications require in-depth preliminary studies of biodiversity. The methods of massive sequencing using metagenomics and bioinformatics tools offer us sufficient and reliable knowledge to understand environmental diversity, to know new microorganisms, and to take advantage of their functional genes. Villa Luz caves, in the southern Mexican state of Tabasco, are fed by at least 26 groundwater inlets, containing 300–500 mg L-1 H2S and <0.1 mg L-1 O2. We extracted environmental DNA for metagenomic analysis of collected samples in five selected Villa Luz caves sites, with pH values from 2.5 to 7. Foreign organisms found in this underground ecosystem can oxidize H2S to H2SO4. These include: biovermiculites, a bacterial association that can grow on the rock walls; snottites, that are whitish, viscous biofilms hanging from the rock walls, and sacks or bags of phlegm, which live within the aquatic environment of the springs. Through the emergency food assistance program (TEFAP pyrosequencing, a total of 20,901 readings of amplification products from hypervariable regions V1 and V3 of 16S rRNA bacterial gene in whole and pure metagenomic DNA samples were generated. Seven bacterial phyla were identified. As a result, Proteobacteria was more frequent than Acidobacteria. Finally, acidophilic Proteobacteria was detected in UJAT5 sample

  20. Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities

    Science.gov (United States)

    Brazelton, William J.; Nelson, Bridget; Schrenk, Matthew O.

    2012-01-01

    Ultramafic rocks in the Earth’s mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). In order to assess the potential for microbial H2 utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H2-oxidizers. Both sites also yielded metagenomic evidence for microbial H2 production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood–Ljungdahl pathway. In general, our results point to H2-oxidizing Betaproteobacteria thriving in shallow, oxic–anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H2-powered primary production in serpentinite-hosted subsurface habitats. PMID:22232619

  1. Metagenomic evidence for h(2) oxidation and h(2) production by serpentinite-hosted subsurface microbial communities.

    Science.gov (United States)

    Brazelton, William J; Nelson, Bridget; Schrenk, Matthew O

    2012-01-01

    Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H(2)). In order to assess the potential for microbial H(2) utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H(2)-oxidizers. Both sites also yielded metagenomic evidence for microbial H(2) production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood-Ljungdahl pathway. In general, our results point to H(2)-oxidizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H(2)-powered primary production in serpentinite-hosted subsurface habitats.

  2. Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities

    Directory of Open Access Journals (Sweden)

    William J Brazelton

    2012-01-01

    Full Text Available Ultramafic rocks in the Earth’s mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2. In order to assess the potential for microbial H2 utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field and two continental serpentinite- hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland. Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H2-oxidizers. Both sites also yielded metagenomic evidence for microbial H2 production catalyzed by [FeFe]-hydrogenases in anaerobic Gram- positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood-Ljungdahl pathway. In general, our results point to H2-oxidizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H2- powered primary production in serpentinite-hosted subsurface habitats.

  3. Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation

    Science.gov (United States)

    Uhlik, Ondrej; Leewis, Mary-Cathrine; Strejcek, Michal; Musilova, Lucie; Mackova, Martina; Leigh, Mary Beth; Macek, Tomas

    2012-01-01

    Microbial biodegradation and biotransformation reactions are essential to most bioremediation processes, yet the specific organisms, genes, and mechanisms involved are often not well understood. Stable isotope probing (SIP) enables researchers to directly link microbial metabolic capability to phylogenetic and metagenomic information within a community context by tracking isotopically labeled substances into phylogenetically and functionally informative biomarkers. SIP is thus applicable as a tool for the identification of active members of the microbial community and associated genes integral to the community functional potential, such as biodegradative processes. The rapid evolution of SIP over the last decade and integration with metagenomics provides researchers with a much deeper insight into potential biodegradative genes, processes, and applications, thereby enabling an improved mechanistic understanding that can facilitate advances in the field of bioremediation. PMID:23022353

  4. EXTRACT: interactive extraction of environment metadata and term suggestion for metagenomic sample annotation.

    Science.gov (United States)

    Pafilis, Evangelos; Buttigieg, Pier Luigi; Ferrell, Barbra; Pereira, Emiliano; Schnetzer, Julia; Arvanitidis, Christos; Jensen, Lars Juhl

    2016-01-01

    The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have therefore developed an interactive annotation tool, EXTRACT, which helps curators identify and extract standard-compliant terms for annotation of metagenomic records and other samples. Behind its web-based user interface, the system combines published methods for named entity recognition of environment, organism, tissue and disease terms. The evaluators in the BioCreative V Interactive Annotation Task found the system to be intuitive, useful, well documented and sufficiently accurate to be helpful in spotting relevant text passages and extracting organism and environment terms. Comparison of fully manual and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15-25% and helps curators to detect terms that would otherwise have been missed. Database URL: https://extract.hcmr.gr/. © The Author(s) 2016. Published by Oxford University Press.

  5. Applying Shannon's information theory to bacterial and phage genomes and metagenomes

    Science.gov (United States)

    Akhter, Sajia; Bailey, Barbara A.; Salamon, Peter; Aziz, Ramy K.; Edwards, Robert A.

    2013-01-01

    All sequence data contain inherent information that can be measured by Shannon's uncertainty theory. Such measurement is valuable in evaluating large data sets, such as metagenomic libraries, to prioritize their analysis and annotation, thus saving computational resources. Here, Shannon's index of complete phage and bacterial genomes was examined. The information content of a genome was found to be highly dependent on the genome length, GC content, and sequence word size. In metagenomic sequences, the amount of information correlated with the number of matches found by comparison to sequence databases. A sequence with more information (higher uncertainty) has a higher probability of being significantly similar to other sequences in the database. Measuring uncertainty may be used for rapid screening for sequences with matches in available database, prioritizing computational resources, and indicating which sequences with no known similarities are likely to be important for more detailed analysis.

  6. Functional Metagenomics: Construction and High-Throughput Screening of Fosmid Libraries for Discovery of Novel Carbohydrate-Active Enzymes.

    Science.gov (United States)

    Ufarté, Lisa; Bozonnet, Sophie; Laville, Elisabeth; Cecchini, Davide A; Pizzut-Serin, Sandra; Jacquiod, Samuel; Demanèche, Sandrine; Simonet, Pascal; Franqueville, Laure; Veronese, Gabrielle Potocki

    2016-01-01

    Activity-based metagenomics is one of the most efficient approaches to boost the discovery of novel biocatalysts from the huge reservoir of uncultivated bacteria. In this chapter, we describe a highly generic procedure of metagenomic library construction and high-throughput screening for carbohydrate-active enzymes. Applicable to any bacterial ecosystem, it enables the swift identification of functional enzymes that are highly efficient, alone or acting in synergy, to break down polysaccharides and oligosaccharides.

  7. The Metagenome of Utricularia gibba's Traps: Into the Microbial Input to a Carnivorous Plant

    Science.gov (United States)

    Alcaraz, Luis David; Martínez-Sánchez, Shamayim; Torres, Ignacio; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis

    2016-01-01

    The genome and transcriptome sequences of the aquatic, rootless, and carnivorous plant Utricularia gibba L. (Lentibulariaceae), were recently determined. Traps are necessary for U. gibba because they help the plant to survive in nutrient-deprived environments. The U. gibba's traps (Ugt) are specialized structures that have been proposed to selectively filter microbial inhabitants. To determine whether the traps indeed have a microbiome that differs, in composition or abundance, from the microbiome in the surrounding environment, we used whole-genome shotgun (WGS) metagenomics to describe both the taxonomic and functional diversity of the Ugt microbiome. We collected U. gibba plants from their natural habitat and directly sequenced the metagenome of the Ugt microbiome and its surrounding water. The total predicted number of species in the Ugt was more than 1,100. Using pan-genome fragment recruitment analysis, we were able to identify to the species level of some key Ugt players, such as Pseudomonas monteilii. Functional analysis of the Ugt metagenome suggests that the trap microbiome plays an important role in nutrient scavenging and assimilation while complementing the hydrolytic functions of the plant. PMID:26859489

  8. Medical records confidentiality and public health research: two values at stake? An italian survey focus on individual preferences

    Directory of Open Access Journals (Sweden)

    Virgilia Toccaceli

    2015-02-01

    Full Text Available In a time when Europe is preparing to introduce new regulations on privacy protection, we conducted a survey among 1700 twins enrolled in the Italian Twin Register about the access and use of their medical records for public health research without explicit informed consent. A great majority of respondents would refuse or are doubtful about the access and use of hospital discharge records or clinical data without their explicit consent. Young and female individuals represent the modal profile of these careful people. As information retrieved from medical records is crucial for progressing knowledge, it is important to promote a better understanding of the value of public health research activities among the general population. Furthermore, public opinions are relevant to policy making, and concerns and preferences about privacy and confidentiality in research can contribute to the design of procedures to exploit medical records effectively and customize the protection of individuals’ medical data.

  9. Functional metagenomic profiling of intestinal microbiome in extreme ageing

    Science.gov (United States)

    Rampelli, Simone; Candela, Marco; Turroni, Silvia; Biagi, Elena; Collino, Sebastiano; Franceschi, Claudio; O'Toole, Paul W; Brigidi, Patrizia

    2013-01-01

    Age-related alterations in human gut microbiota composition have been thoroughly described, but a detailed functional description of the intestinal bacterial coding capacity is still missing. In order to elucidate the contribution of the gut metagenome to the complex mosaic of human longevity, we applied shotgun sequencing to total fecal bacterial DNA in a selection of samples belonging to a well-characterized human ageing cohort. The age-related trajectory of the human gut microbiome was characterized by loss of genes for shortchain fatty acid production and an overall decrease in the saccharolytic potential, while proteolytic functions were more abundant than in the intestinal metagenome of younger adults. This altered functional profile was associated with a relevant enrichment in “pathobionts”, i.e. opportunistic pro-inflammatory bacteria generally present in the adult gut ecosystem in low numbers. Finally, as a signature for long life we identified 116 microbial genes that significantly correlated with ageing. Collectively, our data emphasize the relationship between intestinal bacteria and human metabolism, by detailing the modifications in the gut microbiota as a consequence of and/or promoter of the physiological changes occurring in the human host upon ageing. PMID:24334635

  10. Functional metagenomic profiling of intestinal microbiome in extreme ageing.

    Science.gov (United States)

    Rampelli, Simone; Candela, Marco; Turroni, Silvia; Biagi, Elena; Collino, Sebastiano; Franceschi, Claudio; O'Toole, Paul W; Brigidi, Patrizia

    2013-12-01

    Age-related alterations in human gut microbiota composition have been thoroughly described, but a detailed functional description of the intestinal bacterial coding capacity is still missing. In order to elucidate the contribution of the gut metagenome to the complex mosaic of human longevity, we applied shotgun sequencing to total fecal bacterial DNA in a selection of samples belonging to a well-characterized human ageing cohort. The age-related trajectory of the human gut microbiome was characterized by loss of genes for shortchain fatty acid production and an overall decrease in the saccharolytic potential, while proteolytic functions were more abundant than in the intestinal metagenome of younger adults. This altered functional profile was associated with a relevant enrichment in "pathobionts", i.e. opportunistic pro-inflammatory bacteria generally present in the adult gut ecosystem in low numbers. Finally, as a signature for long life we identified 116 microbial genes that significantly correlated with ageing. Collectively, our data emphasize the relationship between intestinal bacteria and human metabolism, by detailing the modifications in the gut microbiota as a consequence of and/or promoter of the physiological changes occurring in the human host upon ageing.

  11. IDENTIFICATION OF CHICKEN-SPECIFIC FECAL MICROBIAL SEQUENCES USING A METAGENOMIC APPROACH

    Science.gov (United States)

    In this study, we applied a genome fragment enrichment (GFE) method to select for genomic regions that differ between different fecal metagenomes. Competitive DNA hybridizations were performed between chicken fecal DNA and pig fecal DNA (C-P) and between chicken fecal DNA and an ...

  12. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer

    DEFF Research Database (Denmark)

    Yu, Jun; Feng, Qiang; Wong, Sunny Hei

    2017-01-01

    known associations of Fusobacterium nucleatum and Peptostreptococcus stomatis with CRC, we found significant associations with several species, including Parvimonas micra and Solobacterium moorei. We identified 20 microbial gene markers that differentiated CRC and control microbiomes, and validated 4...... in the independent Chinese cohort with AUC=0.84 and OR of 23. These genes were enriched in early-stage (I-II) patient microbiomes, highlighting the potential for using faecal metagenomic biomarkers for early diagnosis of CRC. CONCLUSIONS: We present the first metagenomic profiling study of CRC faecal microbiomes...

  13. Expanding the marine virosphere using metagenomics.

    Directory of Open Access Journals (Sweden)

    Carolina Megumi Mizuno

    Full Text Available Viruses infecting prokaryotic cells (phages are the most abundant entities of the biosphere and contain a largely uncharted wealth of genomic diversity. They play a critical role in the biology of their hosts and in ecosystem functioning at large. The classical approaches studying phages require isolation from a pure culture of the host. Direct sequencing approaches have been hampered by the small amounts of phage DNA present in most natural habitats and the difficulty in applying meta-omic approaches, such as annotation of small reads and assembly. Serendipitously, it has been discovered that cellular metagenomes of highly productive ocean waters (the deep chlorophyll maximum contain significant amounts of viral DNA derived from cells undergoing the lytic cycle. We have taken advantage of this phenomenon to retrieve metagenomic fosmids containing viral DNA from a Mediterranean deep chlorophyll maximum sample. This method allowed description of complete genomes of 208 new marine phages. The diversity of these genomes was remarkable, contributing 21 genomic groups of tailed bacteriophages of which 10 are completely new. Sequence based methods have allowed host assignment to many of them. These predicted hosts represent a wide variety of important marine prokaryotic microbes like members of SAR11 and SAR116 clades, Cyanobacteria and also the newly described low GC Actinobacteria. A metavirome constructed from the same habitat showed that many of the new phage genomes were abundantly represented. Furthermore, other available metaviromes also indicated that some of the new phages are globally distributed in low to medium latitude ocean waters. The availability of many genomes from the same sample allows a direct approach to viral population genomics confirming the remarkable mosaicism of phage genomes.

  14. Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data

    DEFF Research Database (Denmark)

    Raes, Jeroen; Letunic, Ivica; Yamada, Takuji

    2011-01-01

    Using metagenomic 'parts lists' to infer global patterns on microbial ecology remains a significant challenge. To deduce important ecological indicators such as environmental adaptation, molecular trait dispersal, diversity variation and primary production from the gene pool of an ecosystem, we...... integrated 25 ocean metagenomes with geographical, meteorological and geophysicochemical data. We find that climatic factors (temperature, sunlight) are the major determinants of the biomolecular repertoire of each sample and the main limiting factor on functional trait dispersal (absence of biogeographic...... provincialism). Molecular functional richness and diversity show a distinct latitudinal gradient peaking at 20° N and correlate with primary production. The latter can also be predicted from the molecular functional composition of an environmental sample. Together, our results show that the functional community...

  15. HORSE SPECIES SYMPOSIUM: Canine intestinal microbiology and metagenomics: From phylogeny to function.

    Science.gov (United States)

    Guard, B C; Suchodolski, J S

    2016-06-01

    Recent molecular studies have revealed a complex microbiota in the dog intestine. Convincing evidence has been reported linking changes in microbial communities to acute and chronic gastrointestinal inflammation, especially in canine inflammatory bowel disease (IBD). The most common microbial changes observed in intestinal inflammation are decreases in the bacterial phyla Firmicutes (i.e., Lachnospiraceae, Ruminococcaceae, and ) and Bacteroidetes, with concurrent increases in Proteobacteria (i.e., ). Due to the important role of microbial-derived metabolites for host health, it is important to elucidate the metabolic consequences of gastrointestinal dysbiosis and physiological pathways implicated in specific disease phenotypes. Metagenomic studies have used shotgun sequencing of DNA as well as phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) to characterize functional changes in the bacterial metagenome in gastrointestinal disease. Furthermore, wide-scale and untargeted measurements of metabolic products derived by the host and the microbiota in intestinal samples allow a better understanding of the functional alterations that occur in gastrointestinal disease. For example, changes in bile acid metabolism and tryptophan catabolism recently have been reported in humans and dogs. Also, metabolites associated with the pentose phosphate pathway were significantly altered in chronic gastrointestinal inflammation and indicate the presence of oxidative stress in dogs with IBD. This review focuses on the advancements made in canine metagenomics and metabolomics and their implications in understanding gastrointestinal disease as well as the development of better treatment approaches.

  16. The Human Gut Antibiotic Resistome in the Metagenomic Era: Progress and Perspectives

    Directory of Open Access Journals (Sweden)

    Yongfei Hu

    2016-04-01

    Full Text Available The human gut is populated by a vast number of bacteria, which play a critical role in human health. In recent years, attention has focused on the gut bacteria as a reservoir of antibiotic resistance genes (ARGs. Both culture-dependent and culture-independent methods have been applied to investigate numerous ARGs, collectively called the antibiotic resistome, harbored by gut bacteria. This has led to an increased understanding of the overall profile of the gut antibiotic resistome, although it remains incompletely understood. In this review, we summarize the recent research findings on the human gut antibiotic resistome, with an emphasis on progress achieved using the culture-independent metagenomic strategy. We also describe the features of different available ARG databases used for annotation in metagenomic analysis, discuss the potential problems and limitations in current research, and suggest several directions for future investigation.

  17. Strain-Level Discrimination of Shiga Toxin-Producing Escherichia coli in Spinach Using Metagenomic Sequencing.

    Directory of Open Access Journals (Sweden)

    Susan R Leonard

    Full Text Available Consumption of fresh bagged spinach contaminated with Shiga toxin-producing Escherichia coli (STEC has led to severe illness and death; however current culture-based methods to detect foodborne STEC are time consuming. Since not all STEC strains are considered pathogenic to humans, it is crucial to incorporate virulence characterization of STEC in the detection method. In this study, we assess the comprehensiveness of utilizing a shotgun metagenomics approach for detection and strain-level identification by spiking spinach with a variety of genomically disparate STEC strains at a low contamination level of 0.1 CFU/g. Molecular serotyping, virulence gene characterization, microbial community analysis, and E. coli core gene single nucleotide polymorphism (SNP analysis were performed on metagenomic sequence data from enriched samples. It was determined from bacterial community analysis that E. coli, which was classified at the phylogroup level, was a major component of the population in most samples. However, in over half the samples, molecular serotyping revealed the presence of indigenous E. coli which also contributed to the percent abundance of E. coli. Despite the presence of additional E. coli strains, the serotype and virulence genes of the spiked STEC, including correct Shiga toxin subtype, were detected in 94% of the samples with a total number of reads per sample averaging 2.4 million. Variation in STEC abundance and/or detection was observed in replicate spiked samples, indicating an effect from the indigenous microbiota during enrichment. SNP analysis of the metagenomic data correctly placed the spiked STEC in a phylogeny of related strains in cases where the indigenous E. coli did not predominate in the enriched sample. Also, for these samples, our analysis demonstrates that strain-level phylogenetic resolution is possible using shotgun metagenomic data for determining the genomic relatedness of a contaminating STEC strain to other

  18. Genometa--a fast and accurate classifier for short metagenomic shotgun reads.

    Science.gov (United States)

    Davenport, Colin F; Neugebauer, Jens; Beckmann, Nils; Friedrich, Benedikt; Kameri, Burim; Kokott, Svea; Paetow, Malte; Siekmann, Björn; Wieding-Drewes, Matthias; Wienhöfer, Markus; Wolf, Stefan; Tümmler, Burkhard; Ahlers, Volker; Sprengel, Frauke

    2012-01-01

    Metagenomic studies use high-throughput sequence data to investigate microbial communities in situ. However, considerable challenges remain in the analysis of these data, particularly with regard to speed and reliable analysis of microbial species as opposed to higher level taxa such as phyla. We here present Genometa, a computationally undemanding graphical user interface program that enables identification of bacterial species and gene content from datasets generated by inexpensive high-throughput short read sequencing technologies. Our approach was first verified on two simulated metagenomic short read datasets, detecting 100% and 94% of the bacterial species included with few false positives or false negatives. Subsequent comparative benchmarking analysis against three popular metagenomic algorithms on an Illumina human gut dataset revealed Genometa to attribute the most reads to bacteria at species level (i.e. including all strains of that species) and demonstrate similar or better accuracy than the other programs. Lastly, speed was demonstrated to be many times that of BLAST due to the use of modern short read aligners. Our method is highly accurate if bacteria in the sample are represented by genomes in the reference sequence but cannot find species absent from the reference. This method is one of the most user-friendly and resource efficient approaches and is thus feasible for rapidly analysing millions of short reads on a personal computer. The Genometa program, a step by step tutorial and Java source code are freely available from http://genomics1.mh-hannover.de/genometa/ and on http://code.google.com/p/genometa/. This program has been tested on Ubuntu Linux and Windows XP/7.

  19. Genometa--a fast and accurate classifier for short metagenomic shotgun reads.

    Directory of Open Access Journals (Sweden)

    Colin F Davenport

    Full Text Available Metagenomic studies use high-throughput sequence data to investigate microbial communities in situ. However, considerable challenges remain in the analysis of these data, particularly with regard to speed and reliable analysis of microbial species as opposed to higher level taxa such as phyla. We here present Genometa, a computationally undemanding graphical user interface program that enables identification of bacterial species and gene content from datasets generated by inexpensive high-throughput short read sequencing technologies. Our approach was first verified on two simulated metagenomic short read datasets, detecting 100% and 94% of the bacterial species included with few false positives or false negatives. Subsequent comparative benchmarking analysis against three popular metagenomic algorithms on an Illumina human gut dataset revealed Genometa to attribute the most reads to bacteria at species level (i.e. including all strains of that species and demonstrate similar or better accuracy than the other programs. Lastly, speed was demonstrated to be many times that of BLAST due to the use of modern short read aligners. Our method is highly accurate if bacteria in the sample are represented by genomes in the reference sequence but cannot find species absent from the reference. This method is one of the most user-friendly and resource efficient approaches and is thus feasible for rapidly analysing millions of short reads on a personal computer.The Genometa program, a step by step tutorial and Java source code are freely available from http://genomics1.mh-hannover.de/genometa/ and on http://code.google.com/p/genometa/. This program has been tested on Ubuntu Linux and Windows XP/7.

  20. Culture-Independent Identification of Manganese-Oxidizing Genes from Deep-Sea Hydrothermal Vent Chemoautotrophic Ferromanganese Microbial Communities Using a Metagenomic Approach

    Science.gov (United States)

    Davis, R.; Tebo, B. M.

    2013-12-01

    Microbial activity has long been recognized as being important to the fate of manganese (Mn) in hydrothermal systems, yet we know very little about the organisms that catalyze Mn oxidation, the mechanisms by which Mn is oxidized or the physiological function that Mn oxidation serves in these hydrothermal systems. Hydrothermal vents with thick ferromanganese microbial mats and Mn oxide-coated rocks observed throughout the Pacific Ring of Fire are ideal models to study the mechanisms of microbial Mn oxidation, as well as primary productivity in these metal-cycling ecosystems. We sampled ferromanganese microbial mats from Vai Lili Vent Field (Tmax=43°C) located on the Eastern Lau Spreading Center and Mn oxide-encrusted rhyolytic pumice (4°C) from Niua South Seamount on the Tonga Volcanic Arc. Metagenomic libraries were constructed and assembled from these samples and key genes known to be involved in Mn oxidation and carbon fixation pathways were identified in the reconstructed genomes. The Vai Lili metagenome assembled to form 121,157 contiguous sequences (contigs) greater than 1000bp in length, with an N50 of 8,261bp and a total metagenome size of 593 Mbp. Contigs were binned using an emergent self-organizing map of tetranucleotide frequencies. Putative homologs of the multicopper Mn-oxidase MnxG were found in the metagenome that were related to both the Pseudomonas-like and Bacillus-like forms of the enzyme. The bins containing the Pseudomonas-like mnxG genes are most closely related to uncultured Deltaproteobacteria and Chloroflexi. The Deltaproteobacteria bin appears to be an obligate anaerobe with possible chemoautotrophic metabolisms, while the Chloroflexi appears to be a heterotrophic organism. The metagenome from the Mn-stained pumice was assembled into 122,092 contigs greater than 1000bp in length with an N50 of 7635 and a metagenome size of 385 Mbp. Both forms of mnxG genes are present in this metagenome as well as the genes encoding the putative Mn

  1. Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome.

    Science.gov (United States)

    Marine, Rachel; McCarren, Coleen; Vorrasane, Vansay; Nasko, Dan; Crowgey, Erin; Polson, Shawn W; Wommack, K Eric

    2014-01-30

    Shotgun metagenomics has become an important tool for investigating the ecology of microorganisms. Underlying these investigations is the assumption that metagenome sequence data accurately estimates the census of microbial populations. Multiple displacement amplification (MDA) of microbial community DNA is often used in cases where it is difficult to obtain enough DNA for sequencing; however, MDA can result in amplification biases that may impact subsequent estimates of population census from metagenome data. Some have posited that pooling replicate MDA reactions negates these biases and restores the accuracy of population analyses. This assumption has not been empirically tested. Using mock viral communities, we examined the influence of pooling on population-scale analyses. In pooled and single reaction MDA treatments, sequence coverage of viral populations was highly variable and coverage patterns across viral genomes were nearly identical, indicating that initial priming biases were reproducible and that pooling did not alleviate biases. In contrast, control unamplified sequence libraries showed relatively even coverage across phage genomes. MDA should be avoided for metagenomic investigations that require quantitative estimates of microbial taxa and gene functional groups. While MDA is an indispensable technique in applications such as single-cell genomics, amplification biases cannot be overcome by combining replicate MDA reactions. Alternative library preparation techniques should be utilized for quantitative microbial ecology studies utilizing metagenomic sequencing approaches.

  2. Metagenomic exploration reveals a marked change in the river resistome and mobilome after treated wastewater discharges.

    Science.gov (United States)

    Lekunberri, Itziar; Balcázar, José Luis; Borrego, Carles M

    2018-03-01

    Mobile genetic elements (MGEs) are key agents in the spread of antibiotic resistance genes (ARGs) across environments. Here we used metagenomics to compare the river resistome (collection of all ARGs) and mobilome (e.g., integrases, transposases, integron integrases and insertion sequence common region "ISCR" elements) between samples collected upstream (n = 6) and downstream (n = 6) of an urban wastewater treatment plant (UWWTP). In comparison to upstream metagenomes, downstream metagenomes showed a drastic increase in the abundance of ARGs, as well as markers of MGEs, particularly integron integrases and ISCR elements. These changes were accompanied by a concomitant prevalence of 16S rRNA gene signatures of bacteria affiliated to families encompassing well-known human and animal pathogens. Our results confirm that chronic discharges of treated wastewater severely impact the river resistome affecting not only the abundance and diversity of ARGs but also their potential spread by enriching the river mobilome in a wide variety of MGEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Metagenomic analysis of a tropical composting operation at the são paulo zoo park reveals diversity of biomass degradation functions and organisms.

    Directory of Open Access Journals (Sweden)

    Layla Farage Martins

    Full Text Available Composting operations are a rich source for prospection of biomass degradation enzymes. We have analyzed the microbiomes of two composting samples collected in a facility inside the São Paulo Zoo Park, in Brazil. All organic waste produced in the park is processed in this facility, at a rate of four tons/day. Total DNA was extracted and sequenced with Roche/454 technology, generating about 3 million reads per sample. To our knowledge this work is the first report of a composting whole-microbial community using high-throughput sequencing and analysis. The phylogenetic profiles of the two microbiomes analyzed are quite different, with a clear dominance of members of the Lactobacillus genus in one of them. We found a general agreement of the distribution of functional categories in the Zoo compost metagenomes compared with seven selected public metagenomes of biomass deconstruction environments, indicating the potential for different bacterial communities to provide alternative mechanisms for the same functional purposes. Our results indicate that biomass degradation in this composting process, including deconstruction of recalcitrant lignocellulose, is fully performed by bacterial enzymes, most likely by members of the Clostridiales and Actinomycetales orders.

  4. Cloning, Overexpression, and Characterization of a Metagenome-Derived Phytase with Optimal Activity at Low pH.

    Science.gov (United States)

    Tan, Hao; Wu, Xiang; Xie, Liyuan; Huang, Zhongqian; Gan, Bingcheng; Peng, Weihong

    2015-06-01

    A phytase gene was identified in a publicly available metagenome derived from subsurface groundwater, which was deduced to encode for a protein of the histidine acid phosphatase (HAP) family. The nucleotide sequence of the phytase gene was chemically synthesized and cloned, in order to further overexpress the phytase in Escherichia coli. Purified protein of the recombinant phytase demonstrated an activity for phytic acid of 298 ± 17 μmol P/min/mg, at the pH optimum of 2.0 with the temperature of 37 °C. Interestingly, the pH optimum of this phytase is much lower in comparison with most HAP phytases known to date. It suggests that the phytase could possess improved adaptability to the low pH condition caused by the gastric acid in livestock and poultry stomachs.

  5. 77 FR 74182 - Records Governing Off-the-Record Communications; Public Notice

    Science.gov (United States)

    2012-12-13

    .... CP11-515-000 12-6-12 Thomas Salamone 3. CP11-515-000 12-6-12 Michael Mojica \\1\\ Exempt 1. CP13-8-000 11...-000 12-4-12 Kate Valdez \\1\\ Email record. \\2\\ Phone record. \\3\\ Email record. \\4\\ Hons. Rob Kane and...

  6. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  7. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome.

    Science.gov (United States)

    Joli, Nathalie; Monier, Adam; Logares, Ramiro; Lovejoy, Connie

    2017-06-01

    Prasinophytes occur in all oceans but rarely dominate phytoplankton populations. In contrast, a single ecotype of the prasinophyte Micromonas is frequently the most abundant photosynthetic taxon reported in the Arctic from summer through autumn. However, seasonal dynamics of prasinophytes outside of this period are little known. To address this, we analyzed high-throughput V4 18S rRNA amplicon data collected from November to July in the Amundsen Gulf Region, Beaufort Sea, Arctic. Surprisingly during polar sunset in November and December, we found a high proportion of reads from both DNA and RNA belonging to another prasinophyte, Bathycoccus. We then analyzed a metagenome from a December sample and the resulting Bathycoccus metagenome assembled genome (MAG) covered ~90% of the Bathycoccus Ban7 reference genome. In contrast, only ~20% of a reference Micromonas genome was found in the metagenome. Our phylogenetic analysis of marker genes placed the Arctic Bathycoccus in the B1 coastal clade. In addition, substitution rates of 129 coding DNA sequences were ~1.6% divergent between the Arctic MAG and coastal Chilean upwelling MAGs and 17.3% between it and a South East Atlantic open ocean MAG in the B2 Clade. The metagenomic analysis also revealed a winter viral community highly skewed toward viruses targeting Micromonas, with a much lower diversity of viruses targeting Bathycoccus. Overall a combination of Micromonas being relatively less able to maintain activity under dark winter conditions and viral suppression of Micromonas may have contributed to the success of Bathycoccus in the Amundsen Gulf during winter.

  8. Metagenomic Sequencing of Marine Periphyton: Taxonomic and Functional Insights into Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Kemal eSanli

    2015-10-01

    Full Text Available Periphyton communities are complex phototrophic, multispecies biofilms that develop on surfaces in aquatic environments. These communities harbor a large diversity of organisms comprising viruses, bacteria, algae, fungi, protozoans and metazoans. However, thus far the total biodiversity of periphyton has not been described. In this study, we use metagenomics to characterize periphyton communities from the marine environment of the Swedish west coast. Although we found approximately ten times more eukaryotic rRNA marker gene sequences compared to prokaryotic, the whole metagenome-based similarity searches showed that bacteria constitute the most abundant phyla in these biofilms. We show that marine periphyton encompass a range of heterotrophic and phototrophic organisms. Heterotrophic bacteria, including the majority of proteobacterial clades and Bacteroidetes, and eukaryotic macro-invertebrates were found to dominate periphyton. The phototrophic groups comprise Cyanobacteria and the alpha-proteobacterial genus Roseobacter, followed by different micro- and macro-algae. We also assess the metabolic pathways that predispose these communities to an attached lifestyle. Functional indicators of the biofilm form of life in periphyton involve genes coding for enzymes that catalyze the production and degradation of extracellular polymeric substances, mainly in the form of complex sugars such as starch and glycogen-like meshes together with chitin. Genes for 278 different transporter proteins were detected in the metagenome, constituting the most abundant protein complexes. Finally, genes encoding enzymes that participate in anaerobic pathways, such as denitrification and methanogenesis, were detected suggesting the presence of anaerobic or low-oxygen micro-zones within the biofilms.

  9. Metagenomic detection of viruses in aerosol samples from workers in animal slaughterhouses.

    Directory of Open Access Journals (Sweden)

    Richard J Hall

    Full Text Available Published studies have shown that workers in animal slaughterhouses are at a higher risk of lung cancers as compared to the general population. No specific causal agents have been identified, and exposures to several chemicals have been examined and found to be unrelated. Evidence suggests a biological aetiology as the risk is highest for workers who are exposed to live animals or to biological material containing animal faeces, urine or blood. To investigate possible biological exposures in animal slaughterhouses, we used a metagenomic approach to characterise the profile of organisms present within an aerosol sample. An assessment of aerosol exposures for individual workers was achieved by the collection of personal samples that represent the inhalable fraction of dust/bioaerosol in workplace air in both cattle and sheep slaughterhouses. Two sets of nine personal aerosol samples were pooled for the cattle processing and sheep processing areas respectively, with a total of 332,677,346 sequence reads and 250,144,492 sequence reads of 85 bp in length produced for each. Eukaryotic genome sequence was found in both sampling locations, and bovine, ovine and human sequences were common. Sequences from WU polyomavirus and human papillomavirus 120 were detected in the metagenomic dataset from the cattle processing area, and these sequences were confirmed as being present in the original personal aerosol samples. This study presents the first metagenomic description of personal aerosol exposure and this methodology could be applied to a variety of environments. Also, the detection of two candidate viruses warrants further investigation in the setting of occupational exposures in animal slaughterhouses.

  10. Tuning the performance of a natural treatment process using metagenomics for improved trace organic chemical attenuation

    KAUST Repository

    Drewes, Jorg

    2014-02-01

    By utilizing high-throughput sequencing and metagenomics, this study revealed how the microbial community characteristics including composition, diversity, as well as functional genes in managed aquifer recharge (MAR) systems can be tuned to enhance removal of trace organic chemicals of emerging concern (CECs). Increasing the humic content of the primary substrate resulted in higher microbial diversity. Lower concentrations and a higher humic content of the primary substrate promoted the attenuation of biodegradable CECs in laboratory and field MAR systems. Metagenomic results indicated that the metabolic capabilities of xenobiotic biodegradation were significantly promoted for the microbiome under carbon-starving conditions. © IWA Publishing 2014.

  11. 37 CFR 201.26 - Recordation of documents pertaining to computer shareware and donation of public domain computer...

    Science.gov (United States)

    2010-07-01

    ... pertaining to computer shareware and donation of public domain computer software. 201.26 Section 201.26... GENERAL PROVISIONS § 201.26 Recordation of documents pertaining to computer shareware and donation of public domain computer software. (a) General. This section prescribes the procedures for submission of...

  12. Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome

    Directory of Open Access Journals (Sweden)

    Liu Yu

    2008-12-01

    Full Text Available Abstract Background Pyrethroids and pyrethrins are widely used insecticides. Extensive applications not only result in pest resistance to these insecticides, but also may lead to environmental issues and human exposure. Numerous studies have shown that very high exposure to pyrethroids might cause potential problems to man and aquatic organisms. Therefore, it is important to develop a rapid and efficient disposal process to eliminate or minimize contamination of surface water, groundwater and agricultural products by pyrethroid insecticides. Bioremediation is considered to be a reliable and cost-effective technique for pesticides abatement and a major factor determining the fate of pyrethroid pesticides in the environment, and suitable esterase is expected to be useful for potential application for detoxification of pyrethroid residues. Soil is a complex environment considered as one of the main reservoirs of microbial diversity on the planet. However, most of the microorganisms in nature are inaccessible as they are uncultivable in the laboratory. Metagenomic approaches provide a powerful tool for accessing novel valuable genetic resources (novel enzymes and developing various biotechnological applications. Results The pyrethroid pesticides residues on foods and the environmental contamination are a public safety concern. Pretreatment with pyrethroid-hydrolyzing esterase has the potential to alleviate the conditions. To this end, a pyrethroid-hydrolyzing esterase gene was successfully cloned using metagenomic DNA combined with activity-based functional screening from soil, sequence analysis of the DNA responsible for the pye3 gene revealed an open reading frame of 819 bp encoding for a protein of 272 amino acid residues. Extensive multiple sequence alignments of the deduced amino acid of Pye3 with the most homologous carboxylesterases revealed moderate identity (45–49%. The recombinant Pye3 was heterologously expressed in E. coli BL21(DE3

  13. Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries

    Directory of Open Access Journals (Sweden)

    Mari eNyyssönen

    2013-09-01

    Full Text Available Recent advances in sequencing technologies generate new predictions and hypotheses about the functional roles of environmental microorganisms. Yet, until we can test these predictions at a scale that matches our ability to generate them, most of them will remain as hypotheses. Function-based mining of metagenomic libraries can provide direct linkages between genes, metabolic traits and microbial taxa and thus bridge this gap between sequence data generation and functional predictions. Here we developed high-throughput screening assays for function-based characterization of activities involved in plant polymer decomposition from environmental metagenomic libraries. The multiplexed assays use fluorogenic and chromogenic substrates, combine automated liquid handling and use a genetically modified expression host to enable simultaneous screening of 12,160 clones for 14 activities in a total of 170,240 reactions. Using this platform we identified 374 (0.26 % cellulose, hemicellulose, chitin, starch, phosphate and protein hydrolyzing clones from fosmid libraries prepared from decomposing leaf litter. Sequencing on the Illumina MiSeq platform, followed by assembly and gene prediction of a subset of 95 fosmid clones, identified a broad range of bacterial phyla, including Actinobacteria, Bacteroidetes, multiple Proteobacteria sub-phyla in addition to some Fungi. Carbohydrate-active enzyme genes from 20 different glycoside hydrolase families were detected. Using tetranucleotide frequency binning of fosmid sequences, multiple enzyme activities from distinct fosmids were linked, demonstrating how biochemically-confirmed functional traits in environmental metagenomes may be attributed to groups of specific organisms. Overall, our results demonstrate how functional screening of metagenomic libraries can be used to connect microbial functionality to community composition and, as a result, complement large-scale metagenomic sequencing efforts.

  14. 76 FR 42122 - Records Governing Off-the-Record; Public Notice

    Science.gov (United States)

    2011-07-18

    ...- the-record communication relevant to the merits of a contested proceeding, to deliver to the Secretary of the Commission, a copy of the communication, if written, or a summary of the substance of any oral... the receipt of prohibited and exempt off-the-record communications. Order No. 607 (64 FR 51222...

  15. Culture-independent detection and characterisation of Mycobacterium tuberculosis and M. africanum in sputum samples using shotgun metagenomics on a benchtop sequencer

    Directory of Open Access Journals (Sweden)

    Emma L. Doughty

    2014-09-01

    Full Text Available Tuberculosis remains a major global health problem. Laboratory diagnostic methods that allow effective, early detection of cases are central to management of tuberculosis in the individual patient and in the community. Since the 1880s, laboratory diagnosis of tuberculosis has relied primarily on microscopy and culture. However, microscopy fails to provide species- or lineage-level identification and culture-based workflows for diagnosis of tuberculosis remain complex, expensive, slow, technically demanding and poorly able to handle mixed infections. We therefore explored the potential of shotgun metagenomics, sequencing of DNA from samples without culture or target-specific amplification or capture, to detect and characterise strains from the Mycobacterium tuberculosis complex in smear-positive sputum samples obtained from The Gambia in West Africa. Eight smear- and culture-positive sputum samples were investigated using a differential-lysis protocol followed by a kit-based DNA extraction method, with sequencing performed on a benchtop sequencing instrument, the Illumina MiSeq. The number of sequence reads in each sputum-derived metagenome ranged from 989,442 to 2,818,238. The proportion of reads in each metagenome mapping against the human genome ranged from 20% to 99%. We were able to detect sequences from the M. tuberculosis complex in all eight samples, with coverage of the H37Rv reference genome ranging from 0.002X to 0.7X. By analysing the distribution of large sequence polymorphisms (deletions and the locations of the insertion element IS6110 and single nucleotide polymorphisms (SNPs, we were able to assign seven of eight metagenome-derived genomes to a species and lineage within the M. tuberculosis complex. Two metagenome-derived mycobacterial genomes were assigned to M. africanum, a species largely confined to West Africa; the others that could be assigned belonged to lineages T, H or LAM within the clade of “modern” M. tuberculosis

  16. Metagenomic and satellite analyses of red snow in the Russian Arctic

    Directory of Open Access Journals (Sweden)

    Nao Hisakawa

    2015-12-01

    Full Text Available Cryophilic algae thrive in liquid water within snow and ice in alpine and polar regions worldwide. Blooms of these algae lower albedo (reflection of sunlight, thereby altering melting patterns (Kohshima, Seko & Yoshimura, 1993; Lutz et al., 2014; Thomas & Duval, 1995. Here metagenomic DNA analysis and satellite imaging were used to investigate red snow in Franz Josef Land in the Russian Arctic. Franz Josef Land red snow metagenomes confirmed that the communities are composed of the autotroph Chlamydomonas nivalis that is supporting a complex viral and heterotrophic bacterial community. Comparisons with white snow communities from other sites suggest that white snow and ice are initially colonized by fungal-dominated communities and then succeeded by the more complex C. nivalis-heterotroph red snow. Satellite image analysis showed that red snow covers up to 80% of the surface of snow and ice fields in Franz Josef Land and globally. Together these results show that C. nivalis supports a local food web that is on the rise as temperatures warm, with potential widespread impacts on alpine and polar environments worldwide.

  17. FMAP: Functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies.

    Science.gov (United States)

    Kim, Jiwoong; Kim, Min Soo; Koh, Andrew Y; Xie, Yang; Zhan, Xiaowei

    2016-10-10

    Given the lack of a complete and comprehensive library of microbial reference genomes, determining the functional profile of diverse microbial communities is challenging. The available functional analysis pipelines lack several key features: (i) an integrated alignment tool, (ii) operon-level analysis, and (iii) the ability to process large datasets. Here we introduce our open-sourced, stand-alone functional analysis pipeline for analyzing whole metagenomic and metatranscriptomic sequencing data, FMAP (Functional Mapping and Analysis Pipeline). FMAP performs alignment, gene family abundance calculations, and statistical analysis (three levels of analyses are provided: differentially-abundant genes, operons and pathways). The resulting output can be easily visualized with heatmaps and functional pathway diagrams. FMAP functional predictions are consistent with currently available functional analysis pipelines. FMAP is a comprehensive tool for providing functional analysis of metagenomic/metatranscriptomic sequencing data. With the added features of integrated alignment, operon-level analysis, and the ability to process large datasets, FMAP will be a valuable addition to the currently available functional analysis toolbox. We believe that this software will be of great value to the wider biology and bioinformatics communities.

  18. Characterization of Bacterial Hydrocarbon Degradation Potential in the Red Sea Through Metagenomic and Cultivation Methods

    KAUST Repository

    Bianchi, Patrick

    2018-01-01

    The focus of this thesis is on the characterization at the metagenomic level of the water column of the Red Sea and on the isolation and characterization of novel hydrocarbon-degrading species and genomes adapted to the unique environmental characteristics of the basin. The presence of metabolic genes responsible of both linear and aromatic hydrocarbon degradation has been evaluated from a metagenomic survey and a meta-analysis of already available datasets. In parallel, water column-based microcosms have been established with crude oil as the sole carbon source, with aim to isolate potential novel bacterial species and provide new genome-based insights on the hydrocarbon degradation potential available in the Red Sea.

  19. A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio.

    Science.gov (United States)

    Leung, Henry C M; Yiu, S M; Yang, Bin; Peng, Yu; Wang, Yi; Liu, Zhihua; Chen, Jingchi; Qin, Junjie; Li, Ruiqiang; Chin, Francis Y L

    2011-06-01

    With the rapid development of next-generation sequencing techniques, metagenomics, also known as environmental genomics, has emerged as an exciting research area that enables us to analyze the microbial environment in which we live. An important step for metagenomic data analysis is the identification and taxonomic characterization of DNA fragments (reads or contigs) resulting from sequencing a sample of mixed species. This step is referred to as 'binning'. Binning algorithms that are based on sequence similarity and sequence composition markers rely heavily on the reference genomes of known microorganisms or phylogenetic markers. Due to the limited availability of reference genomes and the bias and low availability of markers, these algorithms may not be applicable in all cases. Unsupervised binning algorithms which can handle fragments from unknown species provide an alternative approach. However, existing unsupervised binning algorithms only work on datasets either with balanced species abundance ratios or rather different abundance ratios, but not both. In this article, we present MetaCluster 3.0, an integrated binning method based on the unsupervised top--down separation and bottom--up merging strategy, which can bin metagenomic fragments of species with very balanced abundance ratios (say 1:1) to very different abundance ratios (e.g. 1:24) with consistently higher accuracy than existing methods. MetaCluster 3.0 can be downloaded at http://i.cs.hku.hk/~alse/MetaCluster/.

  20. A highly optimized grid deployment: the metagenomic analysis example.

    Science.gov (United States)

    Aparicio, Gabriel; Blanquer, Ignacio; Hernández, Vicente

    2008-01-01

    Computational resources and computationally expensive processes are two topics that are not growing at the same ratio. The availability of large amounts of computing resources in Grid infrastructures does not mean that efficiency is not an important issue. It is necessary to analyze the whole process to improve partitioning and submission schemas, especially in the most critical experiments. This is the case of metagenomic analysis, and this text shows the work done in order to optimize a Grid deployment, which has led to a reduction of the response time and the failure rates. Metagenomic studies aim at processing samples of multiple specimens to extract the genes and proteins that belong to the different species. In many cases, the sequencing of the DNA of many microorganisms is hindered by the impossibility of growing significant samples of isolated specimens. Many bacteria cannot survive alone, and require the interaction with other organisms. In such cases, the information of the DNA available belongs to different kinds of organisms. One important stage in Metagenomic analysis consists on the extraction of fragments followed by the comparison and analysis of their function stage. By the comparison to existing chains, whose function is well known, fragments can be classified. This process is computationally intensive and requires of several iterations of alignment and phylogeny classification steps. Source samples reach several millions of sequences, which could reach up to thousands of nucleotides each. These sequences are compared to a selected part of the "Non-redundant" database which only implies the information from eukaryotic species. From this first analysis, a refining process is performed and alignment analysis is restarted from the results. This process implies several CPU years. The article describes and analyzes the difficulties to fragment, automate and check the above operations in current Grid production environments. This environment has been

  1. Identification of aminoglycoside and β-lactam resistance genes from within an infant gut functional metagenomic library.

    Directory of Open Access Journals (Sweden)

    Fiona Fouhy

    Full Text Available The infant gut microbiota develops rapidly during the first 2 years of life, acquiring microorganisms from diverse sources. During this time, significant opportunities exist for the infant to acquire antibiotic resistant bacteria, which can become established and constitute the infant gut resistome. With increased antibiotic resistance limiting our ability to treat bacterial infections, investigations into resistance reservoirs are highly pertinent. This study aimed to explore the nascent resistome in antibiotically-naïve infant gut microbiomes, using a combination of metagenomic approaches. Faecal samples from 22 six-month-old infants without previous antibiotic exposure were used to construct a pooled metagenomic library, which was functionally screened for ampicillin and gentamicin resistance. Our library of ∼220Mb contained 0.45 ampicillin resistant hits/Mb and 0.059 gentamicin resistant hits/Mb. PCR-based analysis of fosmid clones and uncloned metagenomic DNA, revealed a diverse and abundant aminoglycoside and β-lactam resistance reservoir within the infant gut, with resistance determinants exhibiting homology to those found in common gut inhabitants, including Escherichia coli, Enterococcus sp., and Clostridium difficile, as well as to genes from cryptic environmental bacteria. Notably, the genes identified differed from those revealed when a sequence-driven PCR-based screen of metagenomic DNA was employed. Carriage of these antibiotic resistance determinants conferred substantial, but varied (2-512x, increases in antibiotic resistance to their bacterial host. These data provide insights into the infant gut resistome, revealing the presence of a varied aminoglycoside and β-lactam resistance reservoir even in the absence of selective pressure, confirming the infant resistome establishes early in life, perhaps even at birth.

  2. Microbial Diversity and Biochemical Potential Encoded by Thermal Spring Metagenomes Derived from the Kamchatka Peninsula

    Directory of Open Access Journals (Sweden)

    Bernd Wemheuer

    2013-01-01

    Full Text Available Volcanic regions contain a variety of environments suitable for extremophiles. This study was focused on assessing and exploiting the prokaryotic diversity of two microbial communities derived from different Kamchatkian thermal springs by metagenomic approaches. Samples were taken from a thermoacidophilic spring near the Mutnovsky Volcano and from a thermophilic spring in the Uzon Caldera. Environmental DNA for metagenomic analysis was isolated from collected sediment samples by direct cell lysis. The prokaryotic community composition was examined by analysis of archaeal and bacterial 16S rRNA genes. A total number of 1235 16S rRNA gene sequences were obtained and used for taxonomic classification. Most abundant in the samples were members of Thaumarchaeota, Thermotogae, and Proteobacteria. The Mutnovsky hot spring was dominated by the Terrestrial Hot Spring Group, Kosmotoga, and Acidithiobacillus. The Uzon Caldera was dominated by uncultured members of the Miscellaneous Crenarchaeotic Group and Enterobacteriaceae. The remaining 16S rRNA gene sequences belonged to the Aquificae, Dictyoglomi, Euryarchaeota, Korarchaeota, Thermodesulfobacteria, Firmicutes, and some potential new phyla. In addition, the recovered DNA was used for generation of metagenomic libraries, which were subsequently mined for genes encoding lipolytic and proteolytic enzymes. Three novel genes conferring lipolytic and one gene conferring proteolytic activity were identified.

  3. Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing.

    Science.gov (United States)

    Monteiro, Carolina Cunha; Villegas, Luis Eduardo Martinez; Campolina, Thais Bonifácio; Pires, Ana Clara Machado Araújo; Miranda, Jose Carlos; Pimenta, Paulo Filemon Paolucci; Secundino, Nagila Francinete Costa

    2016-08-31

    Parasites of the genus Leishmania cause a broad spectrum of diseases, collectively known as leishmaniasis, in humans worldwide. American cutaneous leishmaniasis is a neglected disease transmitted by sand fly vectors including Lutzomyia intermedia, a proven vector. The female sand fly can acquire or deliver Leishmania spp. parasites while feeding on a blood meal, which is required for nutrition, egg development and survival. The microbiota composition and abundance varies by food source, life stages and physiological conditions. The sand fly microbiota can affect parasite life-cycle in the vector. We performed a metagenomic analysis for microbiota composition and abundance in Lu. intermedia, from an endemic area in Brazil. The adult insects were collected using CDC light traps, morphologically identified, carefully sterilized, dissected under a microscope and the females separated into groups according to their physiological condition: (i) absence of blood meal (unfed = UN); (ii) presence of blood meal (blood-fed = BF); and (iii) presence of developed ovaries (gravid = GR). Then, they were processed for metagenomics with Illumina Hiseq Sequencing in order to be sequence analyzed and to obtain the taxonomic profiles of the microbiota. Bacterial metagenomic analysis revealed differences in microbiota composition based upon the distinct physiological stages of the adult insect. Sequence identification revealed two phyla (Proteobacteria and Actinobacteria), 11 families and 15 genera; 87 % of the bacteria were Gram-negative, while only one family and two genera were identified as Gram-positive. The genera Ochrobactrum, Bradyrhizobium and Pseudomonas were found across all of the groups. The metagenomic analysis revealed that the microbiota of the Lu. intermedia female sand flies are distinct under specific physiological conditions and consist of 15 bacterial genera. The Ochrobactrum, Bradyrhizobium and Pseudomonas were the common genera. Our results detailing

  4. Expanding the Repertoire of Carbapenem-Hydrolyzing Metallo-ß-Lactamases by Functional Metagenomic Analysis of Soil Microbiota

    DEFF Research Database (Denmark)

    Gudeta, Dereje D.; Bortolaia, Valeria; Pollini, Simona

    2016-01-01

    , diversity and functionality of carbapenemase-encoding genes in soil microbiota by functional metagenomics. Ten plasmid libraries were generated by cloning metagenomic DNA from agricultural (n = 6) and grassland (n = 4) soil into Escherichia coli. The libraries were cultured on amoxicillin-containing agar......% identity). RAIphy analysis indicated that six enzymes (CRD3-1, GRD23-1, DHT2-1, SPN79-1, ALG6-1, and ALG11-1) originated from Proteobacteria, two (PEDO-1 and ESP-2) from Bacteroidetes and one (GRD33-1) from Gemmatimonadetes. All MBLs detected in soil microbiota were functional when expressed in E. coli...... approaches targeted different subpopulations in soil microbiota....

  5. Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Pichereau, Vianney; Dupont, Catherine

    2017-01-01

    Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro...... extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure......, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine...

  6. Mining for hemicellulases in the fungus-growing termite Pseudacanthotermes militaris using functional metagenomics.

    Science.gov (United States)

    Bastien, Géraldine; Arnal, Grégory; Bozonnet, Sophie; Laguerre, Sandrine; Ferreira, Fernando; Fauré, Régis; Henrissat, Bernard; Lefèvre, Fabrice; Robe, Patrick; Bouchez, Olivier; Noirot, Céline; Dumon, Claire; O'Donohue, Michael

    2013-05-14

    The metagenomic analysis of gut microbiomes has emerged as a powerful strategy for the identification of biomass-degrading enzymes, which will be no doubt useful for the development of advanced biorefining processes. In the present study, we have performed a functional metagenomic analysis on comb and gut microbiomes associated with the fungus-growing termite, Pseudacanthotermes militaris. Using whole termite abdomens and fungal-comb material respectively, two fosmid-based metagenomic libraries were created and screened for the presence of xylan-degrading enzymes. This revealed 101 positive clones, corresponding to an extremely high global hit rate of 0.49%. Many clones displayed either β-d-xylosidase (EC 3.2.1.37) or α-l-arabinofuranosidase (EC 3.2.1.55) activity, while others displayed the ability to degrade AZCL-xylan or AZCL-β-(1,3)-β-(1,4)-glucan. Using secondary screening it was possible to pinpoint clones of interest that were used to prepare fosmid DNA. Sequencing of fosmid DNA generated 1.46 Mbp of sequence data, and bioinformatics analysis revealed 63 sequences encoding putative carbohydrate-active enzymes, with many of these forming parts of sequence clusters, probably having carbohydrate degradation and metabolic functions. Taxonomic assignment of the different sequences revealed that Firmicutes and Bacteroidetes were predominant phyla in the gut sample, while microbial diversity in the comb sample resembled that of typical soil samples. Cloning and expression in E. coli of six enzyme candidates identified in the libraries provided access to individual enzyme activities, which all proved to be coherent with the primary and secondary functional screens. This study shows that the gut microbiome of P. militaris possesses the potential to degrade biomass components, such as arabinoxylans and arabinans. Moreover, the data presented suggests that prokaryotic microorganisms present in the comb could also play a part in the degradation of biomass within the

  7. Metagenome Analyses of Corroded Concrete Wastewater Pipe Biofilms Reveals a Complex Microbial System

    Science.gov (United States)

    Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top) and invert (bottom) sections of a corroded wastewater pipe. Taxonomic and functio...

  8. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Marchesi Julian R

    2010-01-01

    Full Text Available Abstract Background Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome. In this study we employed the culture independent TRACA system to isolate novel plasmids from the human gut microbiota, and a comparative metagenomic analysis to investigate the distribution and relative abundance of functions encoded by these plasmids in the human gut microbiome. Results Novel plasmids were acquired from the human gut microbiome, and homologous nucleotide sequences with high identity (>90% to two plasmids (pTRACA10 and pTRACA22 were identified in the multiple human gut microbiomes analysed here. However, no homologous nucleotide sequences to these plasmids were identified in the murine gut or environmental metagenomes. Functions encoded by the plasmids pTRACA10 and pTRACA22 were found to be more prevalent in the human gut microbiome when compared to microbial communities from other environments. Among the most prevalent functions identified was a putative RelBE toxin-antitoxin (TA addiction module, and subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes. A broad phylogenetic distribution of RelE toxin genes was observed in gut associated bacterial species (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, but no RelE homologues were identified in gut associated archaeal species. We also provide indirect evidence for the horizontal transfer of these genes between bacterial species belonging to disparate phylogenetic divisions, namely Gram negative Proteobacteria and Gram positive species from the Firmicutes division. Conclusions The application of a culture independent system to capture novel plasmids from the human gut mobile metagenome, coupled with subsequent comparative metagenomic analysis, highlighted the unexpected prevalence of plasmid encoded functions in the gut microbial ecosystem. In

  9. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil

    Energy Technology Data Exchange (ETDEWEB)

    Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S.

    2009-09-01

    Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal-restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal-restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF{sup 103} of the isolate, Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.

  10. 13 CFR 102.23 - Publication in the Federal Register-Notices of systems of records.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Publication in the Federal Register-Notices of systems of records. 102.23 Section 102.23 Business Credit and Assistance SMALL BUSINESS... Federal Register upon establishment or revision a notice of the existence and character of any new or...

  11. A viral metagenomic approach on a non-metagenomic experiment: Mining next generation sequencing datasets from pig DNA identified several porcine parvoviruses for a retrospective evaluation of viral infections.

    Directory of Open Access Journals (Sweden)

    Samuele Bovo

    Full Text Available Shot-gun next generation sequencing (NGS on whole DNA extracted from specimens collected from mammals often produces reads that are not mapped (i.e. unmapped reads on the host reference genome and that are usually discarded as by-products of the experiments. In this study, we mined Ion Torrent reads obtained by sequencing DNA isolated from archived blood samples collected from 100 performance tested Italian Large White pigs. Two reduced representation libraries were prepared from two DNA pools constructed each from 50 equimolar DNA samples. Bioinformatic analyses were carried out to mine unmapped reads on the reference pig genome that were obtained from the two NGS datasets. In silico analyses included read mapping and sequence assembly approaches for a viral metagenomic analysis using the NCBI Viral Genome Resource. Our approach identified sequences matching several viruses of the Parvoviridae family: porcine parvovirus 2 (PPV2, PPV4, PPV5 and PPV6 and porcine bocavirus 1-H18 isolate (PBoV1-H18. The presence of these viruses was confirmed by PCR and Sanger sequencing of individual DNA samples. PPV2, PPV4, PPV5, PPV6 and PBoV1-H18 were all identified in samples collected in 1998-2007, 1998-2000, 1997-2000, 1998-2004 and 2003, respectively. For most of these viruses (PPV4, PPV5, PPV6 and PBoV1-H18 previous studies reported their first occurrence much later (from 5 to more than 10 years than our identification period and in different geographic areas. Our study provided a retrospective evaluation of apparently asymptomatic parvovirus infected pigs providing information that could be important to define occurrence and prevalence of different parvoviruses in South Europe. This study demonstrated the potential of mining NGS datasets non-originally derived by metagenomics experiments for viral metagenomics analyses in a livestock species.

  12. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients.

    Science.gov (United States)

    Fierer, Noah; Lauber, Christian L; Ramirez, Kelly S; Zaneveld, Jesse; Bradford, Mark A; Knight, Rob

    2012-05-01

    Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N.

  13. An artificial functional family filter in homolog searching in next-generation sequencing metagenomics.

    Directory of Open Access Journals (Sweden)

    Ruofei Du

    Full Text Available In functional metagenomics, BLAST homology search is a common method to classify metagenomic reads into protein/domain sequence families such as Clusters of Orthologous Groups of proteins (COGs in order to quantify the abundance of each COG in the community. The resulting functional profile of the community is then used in downstream analysis to correlate the change in abundance to environmental perturbation, clinical variation, and so on. However, the short read length coupled with next-generation sequencing technologies poses a barrier in this approach, essentially because similarity significance cannot be discerned by searching with short reads. Consequently, artificial functional families are produced, in which those with a large number of reads assigned decreases the accuracy of functional profile dramatically. There is no method available to address this problem. We intended to fill this gap in this paper. We revealed that BLAST similarity scores of homologues for short reads from COG protein members coding sequences are distributed differently from the scores of those derived elsewhere. We showed that, by choosing an appropriate score cut-off, we are able to filter out most artificial families and simultaneously to preserve sufficient information in order to build the functional profile. We also showed that, by incorporated application of BLAST and RPS-BLAST, some artificial families with large read counts can be further identified after the score cutoff filtration. Evaluated on three experimental metagenomic datasets with different coverages, we found that the proposed method is robust against read coverage and consistently outperforms the other E-value cutoff methods currently used in literatures.

  14. Molecular cloning of a novel bioH gene from an environmental metagenome encoding a carboxylesterase with exceptional tolerance to organic solvents

    DEFF Research Database (Denmark)

    Shi, Yuping; Pan, Yingjie; Li, Bailin

    2013-01-01

    with a strong potential in industrial applications. CONCLUSIONS: This study constituted the first investigation of a novel bioHx gene in a biotin biosynthetic gene cluster cloned from an environmental metagenome. The bioHx gene was successfully cloned, expressed and characterized. The results demonstrated...... that BioHx is a novel carboxylesterase, displaying distinct biochemical properties with strong application potential in industry. Our results also provided the evidence for the effectiveness of functional metagenomic approach for identifying novel bioH genes from complex ecosystem.......ABSTRACT: BACKGROUND: BioH is one of the key enzymes to produce the precursor pimeloyl-ACP to initiate biotin biosynthesis de novo in bacteria. To date, very few bioH genes have been characterized. In this study, we cloned and identified a novel bioH gene, bioHx, from an environmental metagenome...

  15. Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwater reservoirs

    Czech Academy of Sciences Publication Activity Database

    Cabello-Yeves, P.J.; Ghai, Rohit; Mehrshad, Maliheh; Picazo, A.; Camacho, A.; Rodriguez-Valera, F.

    2017-01-01

    Roč. 8, Nov (2017), č. článku 2131. ISSN 1664-302X R&D Projects: GA ČR GA17-04828S Grant - others:AV ČR(CZ) L200961651 Institutional support: RVO:60077344 Keywords : freshwater Verrucomicrobia * metagenomics * rhodopsin * nitrogen fixation * genome streamlining Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.076, year: 2016

  16. Public Hospital Spending in England: Evidence from National Health Service Administrative Records

    OpenAIRE

    Kelly, E.; Stoye, G.; Vera-Hernández, M.

    2016-01-01

    © 2016 The Authors. Fiscal Studies published by John Wiley & Sons Ltd. on behalf of Institute for Fiscal StudiesHealth spending per capita in England has almost doubled since 1997, yet relatively little is known about how that spending is distributed across the population. This paper uses administrative National Health Service (NHS) hospital records to examine key features of public hospital spending in England. We describe how costs vary across the life cycle, and the concentration of spendi...

  17. Public hospital spending in England: Evidence from National Health Service administrative records

    OpenAIRE

    Kelly, Elaine; Stoye, George; Vera-Hernández, Marcos

    2015-01-01

    Health spending per capita in England has more than doubled since 1997, yet relatively little is known about how that spending is distributed across the population. This paper uses administrative National Health Service (NHS) hospital records to examine key features of public hospital spending in England. We describe how costs vary across the lifecycle, and the concentration of spending among people and over time. We find that costs per person start to increase after age 50 and escalate after...

  18. Possibilities and obstacles in recovery of genomes from elusive microbes in complex metagenomes

    DEFF Research Database (Denmark)

    Karst, Søren Michael; Albertsen, Mads; Nielsen, Jeppe Lund

    Representative genomes provide an entry point for understanding a given ecosystem. The genomes themselves give insights in the metabolic potential and possible role of the bacteria in the ecosystem, as well as being essential when applying other omics based techniques. Metagenomics and single cel...

  19. Novel Cold-Adapted Esterase MHlip from an Antarctic Soil Metagenome

    Directory of Open Access Journals (Sweden)

    Moreno Galleni

    2013-01-01

    Full Text Available An Antarctic soil metagenomic library was screened for lipolytic enzymes and allowed for the isolation of a new cytosolic esterase from the a/b hydrolase family 6, named MHlip. This enzyme is related to hypothetical genes coding esterases, aryl-esterases and peroxydases, among others. MHlip was produced, purified and its activity was determined. The substrate profile of MHlip reveals a high specificity for short p-nitrophenyl-esters. The apparent optimal activity of MHlip was measured for p-nitrophenyl-acetate, at 33 °C, in the pH range of 6–9. The MHlip thermal unfolding was investigated by spectrophotometric methods, highlighting a transition (Tm at 50 °C. The biochemical characterization of this enzyme showed its adaptation to cold temperatures, even when it did not present evident signatures associated with cold-adapted proteins. Thus, MHlip adaptation to cold probably results from many discrete structural modifications, allowing the protein to remain active at low temperatures. Functional metagenomics is a powerful approach to isolate new enzymes with tailored biophysical properties (e.g., cold adaptation. In addition, beside the ever growing amount of sequenced DNA, the functional characterization of new catalysts derived from environment is still required, especially for poorly characterized protein families like α/b hydrolases.

  20. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis.

    Science.gov (United States)

    Wen, Chengping; Zheng, Zhijun; Shao, Tiejuan; Liu, Lin; Xie, Zhijun; Le Chatelier, Emmanuelle; He, Zhixing; Zhong, Wendi; Fan, Yongsheng; Zhang, Linshuang; Li, Haichang; Wu, Chunyan; Hu, Changfeng; Xu, Qian; Zhou, Jia; Cai, Shunfeng; Wang, Dawei; Huang, Yun; Breban, Maxime; Qin, Nan; Ehrlich, Stanislav Dusko

    2017-07-27

    The assessment and characterization of the gut microbiome has become a focus of research in the area of human autoimmune diseases. Ankylosing spondylitis is an inflammatory autoimmune disease and evidence showed that ankylosing spondylitis may be a microbiome-driven disease. To investigate the relationship between the gut microbiome and ankylosing spondylitis, a quantitative metagenomics study based on deep shotgun sequencing was performed, using gut microbial DNA from 211 Chinese individuals. A total of 23,709 genes and 12 metagenomic species were shown to be differentially abundant between ankylosing spondylitis patients and healthy controls. Patients were characterized by a form of gut microbial dysbiosis that is more prominent than previously reported cases with inflammatory bowel disease. Specifically, the ankylosing spondylitis patients demonstrated increases in the abundance of Prevotella melaninogenica, Prevotella copri, and Prevotella sp. C561 and decreases in Bacteroides spp. It is noteworthy that the Bifidobacterium genus, which is commonly used in probiotics, accumulated in the ankylosing spondylitis patients. Diagnostic algorithms were established using a subset of these gut microbial biomarkers. Alterations of the gut microbiome are associated with development of ankylosing spondylitis. Our data suggest biomarkers identified in this study might participate in the pathogenesis or development process of ankylosing spondylitis, providing new leads for the development of new diagnostic tools and potential treatments.

  1. Comparative metagenome of a stream impacted by the urbanization phenomenon

    Directory of Open Access Journals (Sweden)

    Julliane Dutra Medeiros

    Full Text Available Abstract Rivers and streams are important reservoirs of freshwater for human consumption. These ecosystems are threatened by increasing urbanization, because raw sewage discharged into them alters their nutrient content and may affect the composition of their microbial community. In the present study, we investigate the taxonomic and functional profile of the microbial community in an urban lotic environment. Samples of running water were collected at two points in the São Pedro stream: an upstream preserved and non-urbanized area, and a polluted urbanized area with discharged sewage. The metagenomic DNA was sequenced by pyrosequencing. Differences were observed in the community composition at the two sites. The non-urbanized area was overrepresented by genera of ubiquitous microbes that act in the maintenance of environments. In contrast, the urbanized metagenome was rich in genera pathogenic to humans. The functional profile indicated that the microbes act on the metabolism of methane, nitrogen and sulfur, especially in the urbanized area. It was also found that virulence/defense (antibiotic resistance and metal resistance and stress response-related genes were disseminated in the urbanized environment. The structure of the microbial community was altered by uncontrolled anthropic interference, highlighting the selective pressure imposed by high loads of urban sewage discharged into freshwater environments.

  2. Genomic and metagenomic technologies to explore the antibiotic resistance mobilome.

    Science.gov (United States)

    Martínez, José L; Coque, Teresa M; Lanza, Val F; de la Cruz, Fernando; Baquero, Fernando

    2017-01-01

    Antibiotic resistance is a relevant problem for human health that requires global approaches to establish a deep understanding of the processes of acquisition, stabilization, and spread of resistance among human bacterial pathogens. Since natural (nonclinical) ecosystems are reservoirs of resistance genes, a health-integrated study of the epidemiology of antibiotic resistance requires the exploration of such ecosystems with the aim of determining the role they may play in the selection, evolution, and spread of antibiotic resistance genes, involving the so-called resistance mobilome. High-throughput sequencing techniques allow an unprecedented opportunity to describe the genetic composition of a given microbiome without the need to subculture the organisms present inside. However, bioinformatic methods for analyzing this bulk of data, mainly with respect to binning each resistance gene with the organism hosting it, are still in their infancy. Here, we discuss how current genomic methodologies can serve to analyze the resistance mobilome and its linkage with different bacterial genomes and metagenomes. In addition, we describe the drawbacks of current methodologies for analyzing the resistance mobilome, mainly in cases of complex microbiotas, and discuss the possibility of implementing novel tools to improve our current metagenomic toolbox. © 2016 New York Academy of Sciences.

  3. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents

    International Nuclear Information System (INIS)

    Xiao, Ke-Qing; Li, Li-Guan; Ma, Li-Ping; Zhang, Si-Yu; Bao, Peng; Zhang, Tong; Zhu, Yong-Guan

    2016-01-01

    Microbe-mediated arsenic (As) metabolism plays a critical role in global As cycle, and As metabolism involves different types of genes encoding proteins facilitating its biotransformation and transportation processes. Here, we used metagenomic analysis based on high-throughput sequencing and constructed As metabolism protein databases to analyze As metabolism genes in five paddy soils with low-As contents. The results showed that highly diverse As metabolism genes were present in these paddy soils, with varied abundances and distribution for different types and subtypes of these genes. Arsenate reduction genes (ars) dominated in all soil samples, and significant correlation existed between the abundance of arr (arsenate respiration), aio (arsenite oxidation), and arsM (arsenite methylation) genes, indicating the co-existence and close-relation of different As resistance systems of microbes in wetland environments similar to these paddy soils after long-term evolution. Among all soil parameters, pH was an important factor controlling the distribution of As metabolism gene in five paddy soils (p = 0.018). To the best of our knowledge, this is the first study using high-throughput sequencing and metagenomics approach in characterizing As metabolism genes in the five paddy soil, showing their great potential in As biotransformation, and therefore in mitigating arsenic risk to humans. - Highlights: • Use metagenomics to analyze As metabolism genes in paddy soils with low-As content. • These genes were ubiquitous, abundant, and associated with diverse microbes. • pH as an important factor controlling their distribution in paddy soil. • Imply combinational effect of evolution and selection on As metabolism genes. - Metagenomics was used to analyze As metabolism genes in paddy soils with low-As contents. These genes were ubiquitous, abundant, and associated with diverse microbes.

  4. Aerially transmitted human fungal pathogens: what can we learn from metagenomics and comparative genomics?

    Science.gov (United States)

    Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo

    2014-01-01

    In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  5. A Novel Cold Active Esterase from a Deep Sea Sponge Stelletta normani Metagenomic Library

    Directory of Open Access Journals (Sweden)

    Erik Borchert

    2017-09-01

    Full Text Available Esterases catalyze the hydrolysis of ester bonds in fatty acid esters with short-chain acyl groups. Due to the widespread applications of lipolytic enzymes in various industrial applications, there continues to be an interest in novel esterases with unique properties. Marine ecosystems have long been acknowledged as a significant reservoir of microbial biodiversity and in particular of bacterial enzymes with desirable characteristics for industrial use, such as for example cold adaptation and activity in the alkaline pH range. We employed a functional metagenomic approach to exploit the enzymatic potential of one particular marine ecosystem, namely the microbiome of the deep sea sponge Stelletta normani. Screening of a metagenomics library from this sponge resulted in the identification of a number of lipolytic active clones. One of these encoded a highly, cold-active esterase 7N9, and the recombinant esterase was subsequently heterologously expressed in Escherichia coli. The esterase was classified as a type IV lipolytic enzyme, belonging to the GDSAG subfamily of hormone sensitive lipases. Furthermore, the recombinant 7N9 esterase was biochemically characterized and was found to be most active at alkaline pH (8.0 and displays salt tolerance over a wide range of concentrations. In silico docking studies confirmed the enzyme's activity toward short-chain fatty acids while also highlighting the specificity toward certain inhibitors. Furthermore, structural differences to a closely related mesophilic E40 esterase isolated from a marine sediment metagenomics library are discussed.

  6. Metagenomics Study on the Polymorphism of Gut Microbiota and Their Function on Human Health

    DEFF Research Database (Denmark)

    Feng, Qiang

    diversity and functional complexity of the gut microbiome. Facilitated by the Next Generation Sequencing (NGS) technologies and the progress of bioinformatics in the past decade, we have acquired substantial achievements in metagenomic studies on human gut microbiome and established the fundamentals of our...... understanding of the interactions between gut microbes and human body, and also the importance of this interaction on human health. As one of the milestones, the first integrated gene catalog in the human gut microbiome was constructed in 2010 in the scheme of the Metagenomics of Human Intestinal Tract (Meta......’ are shared in the population. These microorganisms participate in various metabolic pathways and activities of the immune system and the nervous system of our bodies,and have fundamental impacts on our health. For example, an association study between gut microbiome and type 2 diabetes (T2D) highlighted...

  7. Using Short-Term Enrichments and Metagenomics to Obtain Genomes from uncultured Activated Sludge Microorganisms

    DEFF Research Database (Denmark)

    Karst, Søren Michael; Nielsen, Per Halkjær; Albertsen, Mads

    is that they depend on system-specific reference genomes in order to analyze the vast amounts of data (Albertsen et al., 2012). This limits the application of -omics to environments for which a comprehensive catalogue of reference genomes exists e.g. the human gut. Several strategies for obtaining microbial genomes...... exist today, but their ability to obtain complete genomes from complex microbial communities on a large scale is still inadequate (Lasken, 2012). In theory, conventional metagenomics should be able to recover genomes from complex communities, but in practice the approach is hampered by the presence...... of microdiversity. This leads to fragmented and chimeric de novo assemblies, which prevent the extraction of complete genomes. The new approach presented here involves reducing the impact of microdiversity and increasing genome extraction efficiency by what we term “metagenome triangulation”. The microdiversity...

  8. Evaluation of methods for the concentration and extraction of viruses from sewage in the context of metagenomic sequencing

    DEFF Research Database (Denmark)

    Hjelmsø, Mathis Hjort; Hellmér, Maria; Fernandez-Cassi, Xavier

    2017-01-01

    Viral sewage metagenomics is a novel field of study used for surveillance, epidemiological studies, and evaluation of waste water treatment efficiency. In raw sewage human waste is mixed with household, industrial and drainage water, and virus particles are, therefore, only found in low concentra......Viral sewage metagenomics is a novel field of study used for surveillance, epidemiological studies, and evaluation of waste water treatment efficiency. In raw sewage human waste is mixed with household, industrial and drainage water, and virus particles are, therefore, only found in low...... ways employing a wide range of viral concentration and extraction procedures. However, there is limited knowledge of the efficacy and inherent biases associated with these methods in respect to viral sewage metagenomics, hampering the development of this field. By the use of next generation sequencing...... this study aimed to evaluate the efficiency of four commonly applied viral concentrations techniques (precipitation with polyethylene glycol, organic flocculation with skim milk, monolithic adsorption filtration and glass wool filtration) and extraction methods (Nucleospin RNA XS, QIAamp Viral RNA Mini Kit...

  9. Oral Metagenomic Biomarkers in Rheumatoid Arthritis

    Science.gov (United States)

    2017-09-01

    individuals with rheumatoid arthritis (RA). The goal is to test the  hypothesis that oral microbiome and metagenomic analyses will allow  us  to identify new...biomarkers  that are  useful  for the diagnosis of early RA and/or biomarkers that help to predict the efficacy of  specific therapeutic interventions... RNA  microbiome analysis as well as whole genome shotgun sequencing.  Upon completion of these aims, any identified bacterial biomarkers may be

  10. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2013-05-01

    Full Text Available The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply-rooted and poorly understood archaea, bacteria and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1 phototrophic mats, (2 ‘filamentous streamer’ communities, and (3 archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments.

  11. Viral indicators for fecal contamination - a one-year viral metagenomic study of treatment efficiency in danish waste water treatment plants

    DEFF Research Database (Denmark)

    Hellmér, Maria; Stranddorf, Kasper; Seidel, Michael

    2017-01-01

    from two urban waste water treatment plants in Copenhagen. All samples are investigated for their viral content and the presence of pathogens by metagenomic sequencing and analyzed specifically for HAdV, JCPyV, norovirus GI and GII (NoV GI and GII) using quantitative (q)PCR. Preliminary qPCR results......, the number of identified pathogenic viral species decreases with treatment of the waste water. Further bioinformatic analyses will investigate the seasonal variations of viral composition within a sample as well as the effect of the treatment system. Updated qPCR and metagenomics data will be presented....... are therefore using metagenomics sequencing with the aim to map the viriome in different water sources. In addition we investigate the possibility to use Human Adenovirus (HAdV) or JC Polyomavirus (JCPyV) as indicator for human fecal contamination. Water has been sampled monthly throughout the treatment process...

  12. Metagenomic Analysis of the Gut Microbiome of the Common Black Slug Arion ater in Search of Novel Lignocellulose Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Ryan Joynson

    2017-11-01

    Full Text Available Some eukaryotes are able to gain access to well-protected carbon sources in plant biomass by exploiting microorganisms in the environment or harbored in their digestive system. One is the land pulmonate Arion ater, which takes advantage of a gut microbial consortium that can break down the widely available, but difficult to digest, carbohydrate polymers in lignocellulose, enabling them to digest a broad range of fresh and partially degraded plant material efficiently. This ability is considered one of the major factors that have enabled A. ater to become one of the most widespread plant pest species in Western Europe and North America. Using metagenomic techniques we have characterized the bacterial diversity and functional capability of the gut microbiome of this notorious agricultural pest. Analysis of gut metagenomic community sequences identified abundant populations of known lignocellulose-degrading bacteria, along with well-characterized bacterial plant pathogens. This also revealed a repertoire of more than 3,383 carbohydrate active enzymes (CAZymes including multiple enzymes associated with lignin degradation, demonstrating a microbial consortium capable of degradation of all components of lignocellulose. This would allow A. ater to make extensive use of plant biomass as a source of nutrients through exploitation of the enzymatic capabilities of the gut microbial consortia. From this metagenome assembly we also demonstrate the successful amplification of multiple predicted gene sequences from metagenomic DNA subjected to whole genome amplification and expression of functional proteins, facilitating the low cost acquisition and biochemical testing of the many thousands of novel genes identified in metagenomics studies. These findings demonstrate the importance of studying Gastropod microbial communities. Firstly, with respect to understanding links between feeding and evolutionary success and, secondly, as sources of novel enzymes with

  13. Microbiological profile of chicken carcasses: A comparative analysis using shotgun metagenomic sequencing

    Directory of Open Access Journals (Sweden)

    Alessandra De Cesare

    2018-04-01

    Full Text Available In the last few years metagenomic and 16S rRNA sequencing have completly changed the microbiological investigations of food products. In this preliminary study, the microbiological profile of chicken carcasses collected from animals fed with different diets were tested by using shotgun metagenomic sequencing. A total of 15 carcasses have been collected at the slaughetrhouse at the end of the refrigeration tunnel from chickens reared for 35 days and fed with a control diet (n=5, a diet supplemented with 1500 FTU/kg of commercial phytase (n=5 and a diet supplemented with 1500 FTU/kg of commercial phytase and 3g/kg of inositol (n=5. Ten grams of neck and breast skin were obtained from each carcass and submited to total DNA extraction by using the DNeasy Blood & Tissue Kit (Qiagen. Sequencing libraries have been prepared by using the Nextera XT DNA Library Preparation Kit (Illumina and sequenced in a HiScanSQ (Illumina at 100 bp in paired ends. A number of sequences ranging between 5 and 9 million was obtained for each sample. Sequence analysis showed that Proteobacteria and Firmicutes represented more than 98% of whole bacterial populations associated to carcass skin in all groups but their abundances were different between groups. Moraxellaceae and other degradative bacteria showed a significantly higher abundance in the control compared to the treated groups. Furthermore, Clostridium perfringens showed a relative frequency of abundance significantly higher in the group fed with phytase and Salmonella enterica in the group fed with phytase plus inositol. The results of this preliminary study showed that metagenome sequencing is suitable to investigate and monitor carcass microbiota in order to detect specific pathogenic and/or degradative populations.

  14. Metagenomic insights into S(0 precipitation in a terrestrial subsurface lithoautotrophic ecosystem

    Directory of Open Access Journals (Sweden)

    Trinity eHamilton

    2015-01-01

    Full Text Available The Frasassi and Acquasanta Terme cave systems in Italy host isolated lithoautotrophic ecosystems characterized by sulfur-oxidizing biofilms with up to 50% S(0 by mass. The net contributions of microbial taxa in the biofilms to production and consumption of S(0 are poorly understood and have implications for understanding the formation of geological sulfur deposits as well as the ecological niches of sulfur-oxidizing autotrophs. Filamentous Epsilonproteobacteria are among the principal biofilm architects in Frasassi and Acquasanta Terme streams, colonizing high-sulfide, low-oxygen niches relative to other major biofilm-forming populations. Metagenomic sequencing of eight biofilm samples indicated the presence of diverse and abundant Epsilonproteobacteria. Populations of Sulfurovum-like organisms were the most abundant Epsilonproteobacteria regardless of differences in biofilm morphology, temperature, or water chemistry. After assembling and binning the metagenomic data, we retrieved four nearly-complete genomes of Sulfurovum-like organisms as well as a Sulfuricurvum spp. Analyses of the binned and assembled metagenomic data indicate that the Epsilonproteobacteria are autotrophic and therefore provide organic carbon to the isolated subsurface ecosystem. Multiple homologs of sulfide-quinone oxidoreductase (Sqr, together with incomplete or absent Sox pathways, suggest that cave Sulfurovum-like Epsilonproteobacteria oxidize sulfide incompletely to S(0 using either O2 or nitrate as a terminal electron acceptor, consistent with previous evidence that they are most successful in niches with high dissolved sulfide to oxygen ratios. In contrast, we recovered homologs of the complete complement of Sox proteins affiliated Gammaproteobacteria and with less abundant Sulfuricurvum spp. and Arcobacter spp., suggesting that these populations are capable of the complete oxidation of sulfide to sulfate. These and other genomic data presented here offer new clues

  15. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria

    Science.gov (United States)

    Ghai, Rohit; Mizuno, Carolina Megumi; Picazo, Antonio; Camacho, Antonio; Rodriguez-Valera, Francisco

    2013-01-01

    We describe a deep-branching lineage of marine Actinobacteria with very low GC content (33%) and the smallest free living cells described yet (cell volume ca. 0.013 μm3), even smaller than the cosmopolitan marine photoheterotroph, ‘Candidatus Pelagibacter ubique'. These microbes are highly related to 16S rRNA sequences retrieved by PCR from the Pacific and Atlantic oceans 20 years ago. Metagenomic fosmids allowed a virtual genome reconstruction that also indicated very small genomes below 1 Mb. A new kind of rhodopsin was detected indicating a photoheterotrophic lifestyle. They are estimated to be ~4% of the total numbers of cells found at the site studied (the Mediterranean deep chlorophyll maximum) and similar numbers were estimated in all tropical and temperate photic zone metagenomes available. Their geographic distribution mirrors that of picocyanobacteria and there appears to be an association between these microbial groups. A new sub-class, ‘Candidatus Actinomarinidae' is proposed to designate these microbes. PMID:23959135

  16. Re-analysis of metagenomic sequences from acute flaccid myelitis patients reveals alternatives to enterovirus D68 infection [v2; ref status: indexed, http://f1000r.es/5mz

    Directory of Open Access Journals (Sweden)

    Florian P. Breitwieser

    2015-07-01

    Full Text Available Metagenomic sequence data can be used to detect the presence of infectious viruses and bacteria, but normal microbial flora make this process challenging. We re-analyzed metagenomic RNA sequence data collected during a recent outbreak of acute flaccid myelitis (AFM, caused in some cases by infection with enterovirus D68. We found that among the patients whose symptoms were previously attributed to enterovirus D68, one patient had clear evidence of infection with Haemophilus influenzae, and a second patient had a severe Staphylococcus aureus infection caused by a methicillin-resistant strain. Neither of these bacteria were identified in the original study. These observations may have relevance in cases that present with flaccid paralysis because bacterial infections, co-infections or post-infection immune responses may trigger pathogenic processes that may present as poliomyelitis-like syndromes and may mimic AFM.  A separate finding was that large numbers of human sequences were present in each of the publicly released samples, although the original study reported that human sequences had been removed before deposition.

  17. Tracking cashew economically important diseases in the West African region using metagenomics

    Science.gov (United States)

    Monteiro, Filipa; Romeiras, Maria M.; Figueiredo, Andreia; Sebastiana, Mónica; Baldé, Aladje; Catarino, Luís; Batista, Dora

    2015-01-01

    During the last decades, agricultural land-uses in West Africa were marked by dramatic shifts in the coverage of individual crops. Nowadays, cashew (Anacardium occidentale L.) is one of the most export-oriented horticulture crops, notably in Guinea-Bissau. Relying heavily on agriculture to increase their income, developing countries have been following a strong trend of moving on from traditional farming systems toward commercial production. Emerging infectious diseases, driven either by adaptation to local conditions or inadvertent importation of plant pathogens, are able to cause tremendous cashew production losses, with economic and social impact of which, in developing countries is often underestimated. Presently, plant genomics with metagenomics as an emergent tool, presents an enormous potential to better characterize diseases by providing extensive knowledge on plant pathogens at a large scale. In this perspective, we address metagenomics as a promising genomic tool to identify cashew fungal associated diseases as well as to discriminate the causal pathogens, aiming at obtaining tools to help design effective strategies for disease control and thus promote the sustainable production of cashew in West African Region. PMID:26175748

  18. Tracking cashew economically important diseases in the West African region using metagenomics

    Directory of Open Access Journals (Sweden)

    Filipa eMonteiro

    2015-06-01

    Full Text Available During the last decades, agricultural land-uses in West Africa were marked by dramatic shifts in the coverage of individual crops. Nowadays, cashew (Anacardium occidentale L. is one of the most export-oriented horticulture crops, notably in Guinea-Bissau. Relying heavily on agriculture to increase their income, developing countries have been following a strong trend of moving on from traditional farming systems towards commercial production. Emerging infectious diseases, driven either by adaptation to local conditions or inadvertent importation of plant pathogens, are able to cause tremendous cashew production losses, with economic and social impact of which, in developing countries is often underestimated. Presently, plant genomics with metagenomics as an emergent tool, presents an enormous potential to better characterize diseases by providing extensive knowledge on plant pathogens at a large scale. In this perspective, we address metagenomics as a promising genomic tool to identify cashew fungal associated diseases as well as to discriminate the causal pathogens, aiming at obtaining tools to help design effective strategies for disease control and thus promote the sustainable production of cashew in West African region.

  19. A Combined Bioinformatics and Functional Metagenomics Approach to Discovering Lipolytic Biocatalysts

    Directory of Open Access Journals (Sweden)

    Thorsten eMasuch

    2015-10-01

    Full Text Available The majority of protein sequence data published today is of metagenomic origin. However, our ability to assign functions to these sequences is often hampered by our general inability to cultivate the larger part of microbial species and the sheer amount of sequence data generated in these projects. Here we present a combination of bioinformatics, synthetic biology and Escherichia coli genetics to discover biocatalysts in metagenomic datasets. We created a subset of the Global Ocean Sampling dataset, the largest metagenomic project published to date, by removing all proteins that matched Hidden Markov Models of known protein families from PFAM and TIGRFAM with high confidence (e-value > 10-5. This essentially left us with proteins with low or no homology to known protein families, still encompassing ~1.7 million different sequences. In this subset, we then identified protein families de novo with a Markov clustering algorithm. For each protein family, we defined a single representative based on its phylogenetic relationship to all other members in that family. This reduced the dataset to ~17,000 representatives of protein families with more than 10 members. Based on conserved regions typical for lipases and esterases, we selected a representative gene from a family of 27 members for synthesis. This protein, when expressed in E. coli, showed lipolytic activity towards para-nitrophenyl (pNP esters. The Km value of the enzyme was 66.68 µM for pNP-butyrate and 68.08 µM for pNP-palmitate with kcat/Km values at 3.4 x 106 and 6.6 x 105 M-1s-1, respectively. Hydrolysis of model substrates showed enantiopreference for the R-form. Reactions yielded 43% and 61% enantiomeric excess of products with ibuprofen methyl ester and 2-phenylpropanoic acid ethyl ester, respectively. The enzyme retains 50 % of its maximum activity at temperatures as low as 10 °C, its activity is enhanced in artificial seawater and buffers with higher salt concentrations with an

  20. Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries.

    Science.gov (United States)

    Lam, Kathy N; Charles, Trevor C

    2015-01-01

    Clone libraries provide researchers with a powerful resource to study nucleic acid from diverse sources. Metagenomic clone libraries in particular have aided in studies of microbial biodiversity and function, and allowed the mining of novel enzymes. Libraries are often constructed by cloning large inserts into cosmid or fosmid vectors. Recently, there have been reports of GC bias in fosmid metagenomic libraries, and it was speculated to be a result of fragmentation and loss of AT-rich sequences during cloning. However, evidence in the literature suggests that transcriptional activity or gene product toxicity may play a role. To explore possible mechanisms responsible for sequence bias in clone libraries, we constructed a cosmid library from a human microbiome sample and sequenced DNA from different steps during library construction: crude extract DNA, size-selected DNA, and cosmid library DNA. We confirmed a GC bias in the final cosmid library, and we provide evidence that the bias is not due to fragmentation and loss of AT-rich sequences but is likely occurring after DNA is introduced into Escherichia coli. To investigate the influence of strong constitutive transcription, we searched the sequence data for promoters and found that rpoD/σ(70) promoter sequences were underrepresented in the cosmid library. Furthermore, when we examined the genomes of taxa that were differentially abundant in the cosmid library relative to the original sample, we found the bias to be more correlated with the number of rpoD/σ(70) consensus sequences in the genome than with simple GC content. The GC bias of metagenomic libraries does not appear to be due to DNA fragmentation. Rather, analysis of promoter sequences provides support for the hypothesis that strong constitutive transcription from sequences recognized as rpoD/σ(70) consensus-like in E. coli may lead to instability, causing loss of the plasmid or loss of the insert DNA that gives rise to the transcription. Despite

  1. Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients

    NARCIS (Netherlands)

    Gigliucci, Federica; von Meijenfeldt, F A Bastiaan; Knijn, Arnold; Michelacci, Valeria; Scavia, Gaia; Minelli, Fabio; Dutilh, Bas E|info:eu-repo/dai/nl/304546313; Ahmad, Hamideh M; Raangs, Gerwin C; Friedrich, Alex W; Rossen, John W A; Morabito, Stefano

    2018-01-01

    The human intestinal microbiota is a homeostatic ecosystem with a remarkable impact on human health and the disruption of this equilibrium leads to an increased susceptibility to infection by numerous pathogens. In this study, we used shotgun metagenomic sequencing and two different bioinformatic

  2. deFUME: Dynamic exploration of functional metagenomic sequencing data

    DEFF Research Database (Denmark)

    van der Helm, Eric; Geertz-Hansen, Henrik Marcus; Genee, Hans Jasper

    2015-01-01

    is time consuming and constitutes a major bottleneck for experimental researchers in the field. Here we present the deFUME web server, an easy-to-use web-based interface for processing, annotation and visualization of functional metagenomics sequencing data, tailored to meet the requirements of non......-bioinformaticians. The web-server integrates multiple analysis steps into one single workflow: read assembly, open reading frame prediction, and annotation with BLAST, InterPro and GO classifiers. Analysis results are visualized in an online dynamic web-interface. The deFUME webserver provides a fast track from raw sequence...

  3. Metagenomics and development of the gut microbiota in infants

    DEFF Research Database (Denmark)

    Vallès, Y.; Gosalbes, M. J.; de Vries, Lisbeth Elvira

    2012-01-01

    Clin Microbiol Infect 2012; 18 (Suppl. 4): 21–26 The establishment of a balanced intestinal microbiota is essential for numerous aspects of human health, yet the microbial colonization of the gastrointestinal tract of infants is both complex and highly variable among individuals. In addition......, the gastrointestinal tract microbiota is often exposed to antibiotics, and may be an important reservoir of resistant strains and of transferable resistance genes from early infancy. We are investigating by means of diverse metagenomic approaches several areas of microbiota development in infants, including...

  4. Comparative metagenomics of eight geographically remote terrestrial hot springs

    DEFF Research Database (Denmark)

    Menzel, Peter; Islin, Sóley Ruth; Rike, Anne Gunn

    2015-01-01

    Hot springs are natural habitats for thermophilic Archaea and Bacteria. In this paper, we present the metagenomic analysis of eight globally distributed terrestrial hot springs from China, Iceland, Italy, Russia, and the USA with a temperature range between 61 and 92 (∘)C and pH between 1.8 and 7....... A comparison of the biodiversity and community composition generally showed a decrease in biodiversity with increasing temperature and decreasing pH. Another important factor shaping microbial diversity of the studied sites was the abundance of organic substrates. Several species of the Crenarchaeal order...

  5. Viruses as new agents of organomineralization in the geological record.

    Science.gov (United States)

    Pacton, Muriel; Wacey, David; Corinaldesi, Cinzia; Tangherlini, Michael; Kilburn, Matt R; Gorin, Georges E; Danovaro, Roberto; Vasconcelos, Crisogono

    2014-07-03

    Viruses are the most abundant biological entities throughout marine and terrestrial ecosystems, but little is known about virus-mineral interactions or the potential for virus preservation in the geological record. Here we use contextual metagenomic data and microscopic analyses to show that viruses occur in high diversity within a modern lacustrine microbial mat, and vastly outnumber prokaryotes and other components of the microbial mat. Experimental data reveal that mineral precipitation takes place directly on free viruses and, as a result of viral infections, on cell debris resulting from cell lysis. Viruses are initially permineralized by amorphous magnesium silicates, which then alter to magnesium carbonate nanospheres of ~80-200 nm in diameter during diagenesis. Our findings open up the possibility to investigate the evolution and geological history of viruses and their role in organomineralization, as well as providing an alternative explanation for enigmatic carbonate nanospheres previously observed in the geological record.

  6. A response regulator from a soil metagenome enhances resistance to the β-lactam antibiotic carbenicillin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Heather K Allen

    Full Text Available Functional metagenomic analysis of soil metagenomes is a method for uncovering as-yet unidentified mechanisms for antibiotic resistance. Here we report an unconventional mode by which a response regulator derived from a soil metagenome confers resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. A recombinant clone (βlr16 harboring a 5,169 bp DNA insert was selected from a metagenomic library previously constructed from a remote Alaskan soil. The βlr16 clone conferred specific resistance to carbenicillin, with limited increases in resistance to other tested antibiotics, including other β-lactams (penicillins and cephalosporins, rifampin, ciprofloxacin, erythromycin, chloramphenicol, nalidixic acid, fusidic acid, and gentamicin. Resistance was more pronounced at 24°C than at 37°C. Zone-of-inhibition assays suggested that the mechanism of carbenicillin resistance was not due to antibiotic inactivation. The DNA insert did not encode any genes known to confer antibiotic resistance, but did have two putative open reading frames (ORFs that were annotated as a metallopeptidase and a two-component response regulator. Transposon mutagenesis and subcloning of the two ORFs followed by phenotypic assays showed that the response regulator gene was necessary and sufficient to confer the resistance phenotype. Quantitative reverse transcriptase PCR showed that the response regulator suppressed expression of the ompF porin gene, independently of the small RNA regulator micF, and enhanced expression of the acrD, mdtA, and mdtB efflux pump genes. This work demonstrates that antibiotic resistance can be achieved by the modulation of gene regulation by heterologous DNA. Functional analyses such as these can be important for making discoveries in antibiotic resistance gene biology and ecology.

  7. Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment.

    Science.gov (United States)

    Rasigraf, Olivia; Schmitt, Julia; Jetten, Mike S M; Lüke, Claudia

    2017-08-01

    The biological nitrogen cycle is driven by a plethora of reactions transforming nitrogen compounds between various redox states. Here, we investigated the metagenomic potential for nitrogen cycle of the in situ microbial community in an oligotrophic, brackish environment of the Bothnian Sea sediment. Total DNA from three sediment depths was isolated and sequenced. The characterization of the total community was performed based on 16S rRNA gene inventory using SILVA database as reference. The diversity of diagnostic functional genes coding for nitrate reductases (napA;narG), nitrite:nitrate oxidoreductase (nxrA), nitrite reductases (nirK;nirS;nrfA), nitric oxide reductase (nor), nitrous oxide reductase (nosZ), hydrazine synthase (hzsA), ammonia monooxygenase (amoA), hydroxylamine oxidoreductase (hao), and nitrogenase (nifH) was analyzed by blastx against curated reference databases. In addition, Polymerase chain reaction (PCR)-based amplification was performed on the hzsA gene of anammox bacteria. Our results reveal high genomic potential for full denitrification to N 2 , but minor importance of anaerobic ammonium oxidation and dissimilatory nitrite reduction to ammonium. Genomic potential for aerobic ammonia oxidation was dominated by Thaumarchaeota. A higher diversity of anammox bacteria was detected in metagenomes than with PCR-based technique. The results reveal the importance of various N-cycle driving processes and highlight the advantage of metagenomics in detection of novel microbial key players. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. The chaperonin-60 universal target is a barcode for bacteria that enables de novo assembly of metagenomic sequence data.

    Science.gov (United States)

    Links, Matthew G; Dumonceaux, Tim J; Hemmingsen, Sean M; Hill, Janet E

    2012-01-01

    Barcoding with molecular sequences is widely used to catalogue eukaryotic biodiversity. Studies investigating the community dynamics of microbes have relied heavily on gene-centric metagenomic profiling using two genes (16S rRNA and cpn60) to identify and track Bacteria. While there have been criteria formalized for barcoding of eukaryotes, these criteria have not been used to evaluate gene targets for other domains of life. Using the framework of the International Barcode of Life we evaluated DNA barcodes for Bacteria. Candidates from the 16S rRNA gene and the protein coding cpn60 gene were evaluated. Within complete bacterial genomes in the public domain representing 983 species from 21 phyla, the largest difference between median pairwise inter- and intra-specific distances ("barcode gap") was found from cpn60. Distribution of sequence diversity along the ∼555 bp cpn60 target region was remarkably uniform. The barcode gap of the cpn60 universal target facilitated the faithful de novo assembly of full-length operational taxonomic units from pyrosequencing data from a synthetic microbial community. Analysis supported the recognition of both 16S rRNA and cpn60 as DNA barcodes for Bacteria. The cpn60 universal target was found to have a much larger barcode gap than 16S rRNA suggesting cpn60 as a preferred barcode for Bacteria. A large barcode gap for cpn60 provided a robust target for species-level characterization of data. The assembly of consensus sequences for barcodes was shown to be a reliable method for the identification and tracking of novel microbes in metagenomic studies.

  9. Metagenomics as a tool to obtain full genomes of process-critical bacteria in engineered systems

    DEFF Research Database (Denmark)

    Albertsen, Mads; Hugenholtz, Philip; Tyson, Gene W.

    of the community. The assembled genomes include many of the process-critical bacteria involved in wastewater treatment, such as Competibacter, Tetrasphaera and TM7. The approach is not limited to different extraction methods, but can be applied to any treatment that results in different relative abundance......Bacteria play a pivotal role in engineered systems such as wastewater treatment plants. Obtaining genomes of the bacteria provides the genetic potential of the system and also allows studies of in situ functions through transcriptomics and proteomics. Hence, it enables correlations of operational......, the sequencing of bulk genomic DNA from environmental samples, has the potential to provide genomes of this uncultured majority. However, so far only few bacterial genomes have been obtained from metagenomic data. In this study we present a new approach to obtain individual genomes from metagenomes. We deeply...

  10. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome.

    Science.gov (United States)

    Müller, Christina A; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C A; Wellington, Elizabeth M H; Berg, Gabriele

    2015-08-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Metagenomic covariation along densely sampled environmental gradients in the Red Sea

    Science.gov (United States)

    Thompson, Luke R; Williams, Gareth J; Haroon, Mohamed F; Shibl, Ahmed; Larsen, Peter; Shorenstein, Joshua; Knight, Rob; Stingl, Ulrich

    2017-01-01

    Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community resource for marine microbial ecology. PMID:27420030

  12. Machine Learning Leveraging Genomes from Metagenomes Identifies Influential Antibiotic Resistance Genes in the Infant Gut Microbiome

    Science.gov (United States)

    Olm, Matthew R.; Morowitz, Michael J.

    2018-01-01

    ABSTRACT Antibiotic resistance in pathogens is extensively studied, and yet little is known about how antibiotic resistance genes of typical gut bacteria influence microbiome dynamics. Here, we leveraged genomes from metagenomes to investigate how genes of the premature infant gut resistome correspond to the ability of bacteria to survive under certain environmental and clinical conditions. We found that formula feeding impacts the resistome. Random forest models corroborated by statistical tests revealed that the gut resistome of formula-fed infants is enriched in class D beta-lactamase genes. Interestingly, Clostridium difficile strains harboring this gene are at higher abundance in formula-fed infants than C. difficile strains lacking this gene. Organisms with genes for major facilitator superfamily drug efflux pumps have higher replication rates under all conditions, even in the absence of antibiotic therapy. Using a machine learning approach, we identified genes that are predictive of an organism’s direction of change in relative abundance after administration of vancomycin and cephalosporin antibiotics. The most accurate results were obtained by reducing annotated genomic data to five principal components classified by boosted decision trees. Among the genes involved in predicting whether an organism increased in relative abundance after treatment are those that encode subclass B2 beta-lactamases and transcriptional regulators of vancomycin resistance. This demonstrates that machine learning applied to genome-resolved metagenomics data can identify key genes for survival after antibiotics treatment and predict how organisms in the gut microbiome will respond to antibiotic administration. IMPORTANCE The process of reconstructing genomes from environmental sequence data (genome-resolved metagenomics) allows unique insight into microbial systems. We apply this technique to investigate how the antibiotic resistance genes of bacteria affect their ability to

  13. Patient and public attitudes towards informed consent models and levels of awareness of Electronic Health Records in the UK

    Science.gov (United States)

    Riordan, Fiona; Papoutsi, Chrysanthi; Reed, Julie E.; Marston, Cicely; Bell, Derek; Majeed, Azeem

    2015-01-01

    Background The development of Electronic Health Records (EHRs) forms an integral part of the information strategy for the National Health Service (NHS) in the UK, with the aim of facilitating health information exchange for patient care and secondary use, including research and healthcare planning. Implementing EHR systems requires an understanding of patient expectations for consent mechanisms and consideration of public awareness towards information sharing as might be made possible through integrated EHRs across primary and secondary health providers. Objectives To explore levels of public awareness about EHRs and to examine attitudes towards different consent models with respect to sharing identifiable and de-identified records for healthcare provision, research and planning. Methods A cross-sectional questionnaire survey was administered to adult patients and members of the public in primary and secondary care clinics in West London, UK in 2011. In total, 5331 individuals participated in the survey, and 3157 were included in the final analysis. Results The majority (91%) of respondents expected to be explicitly asked for consent for their identifiable records to be accessed for health provision, research or planning. Half the respondents (49%) did not expect to be asked for consent before their de-identified records were accessed. Compared with White British respondents, those from all other ethnic groups were more likely to anticipate their permission would be obtained before their de-identified records were used. Of the study population, 59% reported already being aware of EHRs before the survey. Older respondents and individuals with complex patterns of interaction with healthcare services were more likely to report prior awareness of EHRs. Individuals self-identifying as belonging to ethnic groups other than White British, and those with lower educational qualifications were less likely to report being aware of EHRs than White British respondents and

  14. MATAM: reconstruction of phylogenetic marker genes from short sequencing reads in metagenomes.

    Science.gov (United States)

    Pericard, Pierre; Dufresne, Yoann; Couderc, Loïc; Blanquart, Samuel; Touzet, Hélène

    2018-02-15

    Advances in the sequencing of uncultured environmental samples, dubbed metagenomics, raise a growing need for accurate taxonomic assignment. Accurate identification of organisms present within a community is essential to understanding even the most elementary ecosystems. However, current high-throughput sequencing technologies generate short reads which partially cover full-length marker genes and this poses difficult bioinformatic challenges for taxonomy identification at high resolution. We designed MATAM, a software dedicated to the fast and accurate targeted assembly of short reads sequenced from a genomic marker of interest. The method implements a stepwise process based on construction and analysis of a read overlap graph. It is applied to the assembly of 16S rRNA markers and is validated on simulated, synthetic and genuine metagenomes. We show that MATAM outperforms other available methods in terms of low error rates and recovered fractions and is suitable to provide improved assemblies for precise taxonomic assignments. https://github.com/bonsai-team/matam. pierre.pericard@gmail.com or helene.touzet@univ-lille1.fr. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Use of Metagenomic Shotgun Sequencing Technology To Detect Foodborne Pathogens within the Microbiome of the Beef Production Chain.

    Science.gov (United States)

    Yang, Xiang; Noyes, Noelle R; Doster, Enrique; Martin, Jennifer N; Linke, Lyndsey M; Magnuson, Roberta J; Yang, Hua; Geornaras, Ifigenia; Woerner, Dale R; Jones, Kenneth L; Ruiz, Jaime; Boucher, Christina; Morley, Paul S; Belk, Keith E

    2016-04-01

    Foodborne illnesses associated with pathogenic bacteria are a global public health and economic challenge. The diversity of microorganisms (pathogenic and nonpathogenic) that exists within the food and meat industries complicates efforts to understand pathogen ecology. Further, little is known about the interaction of pathogens within the microbiome throughout the meat production chain. Here, a metagenomic approach and shotgun sequencing technology were used as tools to detect pathogenic bacteria in environmental samples collected from the same groups of cattle at different longitudinal processing steps of the beef production chain: cattle entry to feedlot, exit from feedlot, cattle transport trucks, abattoir holding pens, and the end of the fabrication system. The log read counts classified as pathogens per million reads for Salmonella enterica,Listeria monocytogenes,Escherichia coli,Staphylococcus aureus, Clostridium spp. (C. botulinum and C. perfringens), and Campylobacter spp. (C. jejuni,C. coli, and C. fetus) decreased over subsequential processing steps. Furthermore, the normalized read counts for S. enterica,E. coli, and C. botulinumwere greater in the final product than at the feedlots, indicating that the proportion of these bacteria increased (the effect on absolute numbers was unknown) within the remaining microbiome. From an ecological perspective, data indicated that shotgun metagenomics can be used to evaluate not only the microbiome but also shifts in pathogen populations during beef production. Nonetheless, there were several challenges in this analysis approach, one of the main ones being the identification of the specific pathogen from which the sequence reads originated, which makes this approach impractical for use in pathogen identification for regulatory and confirmation purposes. Copyright © 2016 Yang et al.

  16. 49 CFR 801.59 - Geological records.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Geological records. 801.59 Section 801.59... PUBLIC AVAILABILITY OF INFORMATION Exemption From Public Disclosure § 801.59 Geological records. Pursuant to 5 U.S.C. 552(b)(9), records concerning geological wells are exempt from public disclosure. ...

  17. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea

    KAUST Repository

    Alzubaidy, Hanin S.; Essack, Magbubah; Malas, Tareq Majed Yasin; Bokhari, Ameerah; Motwalli, Olaa Amin; Kamanu, Frederick Kinyua; Jamhor, Suhaiza; Mokhtar, Noor Azlin; Antunes, Andre; Simoes, Marta; Alam, Intikhab; Bougouffa, Salim; Lafi, Feras Fawzi; Bajic, Vladimir B.; Archer, John A.C.

    2015-01-01

    To our knowledge, this is the first metagenomic study on the microbiome of mangroves in the Red Sea, and the first application of unbiased 454-pyrosequencing to study the rhizosphere microbiome associated with A. marina. Our results provide the first insights into the range of functions and microbial diversity in the rhizosphere and soil sediments of gray mangrove (A. marina) in the Red Sea.

  18. Identification and characterization of a novel fumarase gene by metagenome expression cloning from marine microorganisms

    Directory of Open Access Journals (Sweden)

    Tang Xian-Lai

    2010-11-01

    Full Text Available Abstract Background Fumarase catalyzes the reversible hydration of fumarate to L-malate and is a key enzyme in the tricarboxylic acid (TCA cycle and in amino acid metabolism. Fumarase is also used for the industrial production of L-malate from the substrate fumarate. Thermostable and high-activity fumarases from organisms that inhabit extreme environments may have great potential in industry, biotechnology, and basic research. The marine environment is highly complex and considered one of the main reservoirs of microbial diversity on the planet. However, most of the microorganisms are inaccessible in nature and are not easily cultivated in the laboratory. Metagenomic approaches provide a powerful tool to isolate and identify enzymes with novel biocatalytic activities for various biotechnological applications. Results A plasmid metagenomic library was constructed from uncultivated marine microorganisms within marine water samples. Through sequence-based screening of the DNA library, a gene encoding a novel fumarase (named FumF was isolated. Amino acid sequence analysis revealed that the FumF protein shared the greatest homology with Class II fumarate hydratases from Bacteroides sp. 2_1_33B and Parabacteroides distasonis ATCC 8503 (26% identical and 43% similar. The putative fumarase gene was subcloned into pETBlue-2 vector and expressed in E. coli BL21(DE3pLysS. The recombinant protein was purified to homogeneity. Functional characterization by high performance liquid chromatography confirmed that the recombinant FumF protein catalyzed the hydration of fumarate to form L-malate. The maximum activity for FumF protein occurred at pH 8.5 and 55°C in 5 mM Mg2+. The enzyme showed higher affinity and catalytic efficiency under optimal reaction conditions: Km= 0.48 mM, Vmax = 827 μM/min/mg, and kcat/Km = 1900 mM/s. Conclusions We isolated a novel fumarase gene, fumF, from a sequence-based screen of a plasmid metagenomic library from uncultivated

  19. Microbiota composition, gene pool and its expression in Gir cattle (Bos indicus) rumen under different forage diets using metagenomic and metatranscriptomic approaches.

    Science.gov (United States)

    Pandit, Ramesh J; Hinsu, Ankit T; Patel, Shriram H; Jakhesara, Subhash J; Koringa, Prakash G; Bruno, Fosso; Psifidi, Androniki; Shah, S V; Joshi, Chaitanya G

    2018-03-09

    Zebu (Bos indicus) is a domestic cattle species originating from the Indian subcontinent and now widely domesticated on several continents. In this study, we were particularly interested in understanding the functionally active rumen microbiota of an important Zebu breed, the Gir, under different dietary regimes. Metagenomic and metatranscriptomic data were compared at various taxonomic levels to elucidate the differential microbial population and its functional dynamics in Gir cattle rumen under different roughage dietary regimes. Different proportions of roughage rather than the type of roughage (dry or green) modulated microbiome composition and the expression of its gene pool. Fibre degrading bacteria (i.e. Clostridium, Ruminococcus, Eubacterium, Butyrivibrio, Bacillus and Roseburia) were higher in the solid fraction of rumen (Pcomparison of metagenomic shotgun and metatranscriptomic sequencing appeared to be a much richer source of information compared to conventional metagenomic analysis. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Fast and sensitive taxonomic classification for metagenomics with Kaiju

    DEFF Research Database (Denmark)

    Menzel, Peter; Ng, Kim Lee; Krogh, Anders

    2016-01-01

    heuristic. We show in a genome exclusion study that Kaiju can classify more reads with higher sensitivity and similar precision compared to fast k-mer based classifiers, especially in genera that are underrepresented in reference databases. We also demonstrate that Kaiju classifies more than twice as many...... reads in ten real metagenomes compared to programs based on genomic k-mers. Kaiju can process up to millions of reads per minute, and its memory footprint is below 5 GB of RAM, allowing the analysis on a standard PC. The program is available under the GPL3 license at: github.com/bioinformatics-centre/kaiju...

  1. Denoising PCR-amplified metagenome data

    Directory of Open Access Journals (Sweden)

    Rosen Michael J

    2012-10-01

    Full Text Available Abstract Background PCR amplification and high-throughput sequencing theoretically enable the characterization of the finest-scale diversity in natural microbial and viral populations, but each of these methods introduces random errors that are difficult to distinguish from genuine biological diversity. Several approaches have been proposed to denoise these data but lack either speed or accuracy. Results We introduce a new denoising algorithm that we call DADA (Divisive Amplicon Denoising Algorithm. Without training data, DADA infers both the sample genotypes and error parameters that produced a metagenome data set. We demonstrate performance on control data sequenced on Roche’s 454 platform, and compare the results to the most accurate denoising software currently available, AmpliconNoise. Conclusions DADA is more accurate and over an order of magnitude faster than AmpliconNoise. It eliminates the need for training data to establish error parameters, fully utilizes sequence-abundance information, and enables inclusion of context-dependent PCR error rates. It should be readily extensible to other sequencing platforms such as Illumina.

  2. Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients

    Directory of Open Access Journals (Sweden)

    Federica Gigliucci

    2018-02-01

    Full Text Available The human intestinal microbiota is a homeostatic ecosystem with a remarkable impact on human health and the disruption of this equilibrium leads to an increased susceptibility to infection by numerous pathogens. In this study, we used shotgun metagenomic sequencing and two different bioinformatic approaches, based on mapping of the reads onto databases and on the reconstruction of putative draft genomes, to investigate possible changes in the composition of the intestinal microbiota in samples from patients with Shiga Toxin-producing E. coli (STEC infection compared to healthy and healed controls, collected during an outbreak caused by a STEC O26:H11 infection. Both the bioinformatic procedures used, produced similar result with a good resolution of the taxonomic profiles of the specimens. The stool samples collected from the STEC infected patients showed a lower abundance of the members of Bifidobacteriales and Clostridiales orders in comparison to controls where those microorganisms predominated. These differences seemed to correlate with the STEC infection although a flexion in the relative abundance of the Bifidobacterium genus, part of the Bifidobacteriales order, was observed also in samples from Crohn's disease patients, displaying a STEC-unrelated dysbiosis. The metagenomics also allowed to identify in the STEC positive samples, all the virulence traits present in the genomes of the STEC O26 that caused the outbreak as assessed through isolation of the epidemic strain and whole genome sequencing. The results shown represent a first evidence of the changes occurring in the intestinal microbiota of children in the course of STEC infection and indicate that metagenomics may be a promising tool for the culture-independent clinical diagnosis of the infection.

  3. Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients

    Science.gov (United States)

    Gigliucci, Federica; von Meijenfeldt, F. A. Bastiaan; Knijn, Arnold; Michelacci, Valeria; Scavia, Gaia; Minelli, Fabio; Dutilh, Bas E.; Ahmad, Hamideh M.; Raangs, Gerwin C.; Friedrich, Alex W.; Rossen, John W. A.; Morabito, Stefano

    2018-01-01

    The human intestinal microbiota is a homeostatic ecosystem with a remarkable impact on human health and the disruption of this equilibrium leads to an increased susceptibility to infection by numerous pathogens. In this study, we used shotgun metagenomic sequencing and two different bioinformatic approaches, based on mapping of the reads onto databases and on the reconstruction of putative draft genomes, to investigate possible changes in the composition of the intestinal microbiota in samples from patients with Shiga Toxin-producing E. coli (STEC) infection compared to healthy and healed controls, collected during an outbreak caused by a STEC O26:H11 infection. Both the bioinformatic procedures used, produced similar result with a good resolution of the taxonomic profiles of the specimens. The stool samples collected from the STEC infected patients showed a lower abundance of the members of Bifidobacteriales and Clostridiales orders in comparison to controls where those microorganisms predominated. These differences seemed to correlate with the STEC infection although a flexion in the relative abundance of the Bifidobacterium genus, part of the Bifidobacteriales order, was observed also in samples from Crohn's disease patients, displaying a STEC-unrelated dysbiosis. The metagenomics also allowed to identify in the STEC positive samples, all the virulence traits present in the genomes of the STEC O26 that caused the outbreak as assessed through isolation of the epidemic strain and whole genome sequencing. The results shown represent a first evidence of the changes occurring in the intestinal microbiota of children in the course of STEC infection and indicate that metagenomics may be a promising tool for the culture-independent clinical diagnosis of the infection. PMID:29468143

  4. Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs

    DEFF Research Database (Denmark)

    Islin, Sóley Ruth; Menzel, Peter; Krogh, Anders

    2016-01-01

    Limited by culture-dependent methods the number of viruses identified from thermophilic Archaea and Bacteria is still very small. In this study we retrieved viral sequences from six hot spring metagenomes isolated worldwide, revealing a wide distribution of four archaeal viral families....... Among the novel genomes, one belongs to a putative thermophilic virus infecting the bacterium Hydrogenobaculum, for which no virus has been reported in the literature. Moreover, a high viral diversity was observed in the metagenomes, especially among the Lipothrixviridae, as indicated by the large...

  5. Metagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analogue

    Directory of Open Access Journals (Sweden)

    Stuart E Denman

    2015-10-01

    Full Text Available Japanese goats fed a diet of 50% Timothy grass and 50% concentrate with increasing levels of the anti-methanogenic compound, bromochloromethane (BCM were investigated with respect to the microbial shifts in the rumen. Microbial ecology methods identified many species that exhibited positive and negative responses to the increasing levels of BCM. The methane-inhibited rumen appeared to adapt to the higher H2 levels by shifting fermentation to propionate which was mediated by an increase in the population of hydrogen-consuming Prevotella and Selenomonas spp. Metagenomic analysis of propionate production pathways was dominated by genomic content from these species. Reductive acetogenic marker gene libraries and metagenomics analysis indicate that reductive acetogenic species do not play a major role in the BCM treated rumen.

  6. Data on gut metagenomes of the patients with Helicobacter pylori infection before and after the antibiotic therapy

    Directory of Open Access Journals (Sweden)

    Oksana E. Glushchenko

    2017-04-01

    Full Text Available Antibiotic therapy can lead to the disruption of gut microbiota community with possible negative outcomes for human health. One of the diseases for which the treatment scheme commonly included antibiotic intake is Helicobacter pylori infection. The changes in taxonomic and functional composition of microbiota in patients can be assessed using “shotgun” metagenomic sequencing. Ten stool samples were collected from 4 patients with Helicobacter pylori infection before and directly after the H. pylori eradication course. Additionally, for two of the subjects, the samples were collected 1 month after the end of the treatment. The samples were subject to “shotgun” (whole-genome metagenomic sequencing using Illumina HiSeq platform. The reads are deposited in the ENA (project ID: PRJEB18265.

  7. Metagenomic analysis of lysogeny in Tampa Bay: implications for prophage gene expression.

    Directory of Open Access Journals (Sweden)

    Lauren McDaniel

    Full Text Available Phage integrase genes often play a role in the establishment of lysogeny in temperate phage by catalyzing the integration of the phage into one of the host's replicons. To investigate temperate phage gene expression, an induced viral metagenome from Tampa Bay was sequenced by 454/Pyrosequencing. The sequencing yielded 294,068 reads with 6.6% identifiable. One hundred-three sequences had significant similarity to integrases by BLASTX analysis (e < or =0.001. Four sequences with strongest amino-acid level similarity to integrases were selected and real-time PCR primers and probes were designed. Initial testing with microbial fraction DNA from Tampa Bay revealed 1.9 x 10(7, and 1300 gene copies of Vibrio-like integrase and Oceanicola-like integrase L(-1 respectively. The other two integrases were not detected. The integrase assay was then tested on microbial fraction RNA extracted from 200 ml of Tampa Bay water sampled biweekly over a 12 month time series. Vibrio-like integrase gene expression was detected in three samples, with estimated copy numbers of 2.4-1280 L(-1. Clostridium-like integrase gene expression was detected in 6 samples, with estimated copy numbers of 37 to 265 L(-1. In all cases, detection of integrase gene expression corresponded to the occurrence of lysogeny as detected by prophage induction. Investigation of the environmental distribution of the two expressed integrases in the Global Ocean Survey Database found the Vibrio-like integrase was present in genome equivalents of 3.14% of microbial libraries and all four viral metagenomes. There were two similar genes in the library from British Columbia and one similar gene was detected in both the Gulf of Mexico and Sargasso Sea libraries. In contrast, in the Arctic library eleven similar genes were observed. The Clostridium-like integrase was less prevalent, being found in 0.58% of the microbial and none of the viral libraries. These results underscore the value of metagenomic data

  8. MetaComp: comprehensive analysis software for comparative meta-omics including comparative metagenomics.

    Science.gov (United States)

    Zhai, Peng; Yang, Longshu; Guo, Xiao; Wang, Zhe; Guo, Jiangtao; Wang, Xiaoqi; Zhu, Huaiqiu

    2017-10-02

    During the past decade, the development of high throughput nucleic sequencing and mass spectrometry analysis techniques have enabled the characterization of microbial communities through metagenomics, metatranscriptomics, metaproteomics and metabolomics data. To reveal the diversity of microbial communities and interactions between living conditions and microbes, it is necessary to introduce comparative analysis based upon integration of all four types of data mentioned above. Comparative meta-omics, especially comparative metageomics, has been established as a routine process to highlight the significant differences in taxon composition and functional gene abundance among microbiota samples. Meanwhile, biologists are increasingly concerning about the correlations between meta-omics features and environmental factors, which may further decipher the adaptation strategy of a microbial community. We developed a graphical comprehensive analysis software named MetaComp comprising a series of statistical analysis approaches with visualized results for metagenomics and other meta-omics data comparison. This software is capable to read files generated by a variety of upstream programs. After data loading, analyses such as multivariate statistics, hypothesis testing of two-sample, multi-sample as well as two-group sample and a novel function-regression analysis of environmental factors are offered. Here, regression analysis regards meta-omic features as independent variable and environmental factors as dependent variables. Moreover, MetaComp is capable to automatically choose an appropriate two-group sample test based upon the traits of input abundance profiles. We further evaluate the performance of its choice, and exhibit applications for metagenomics, metaproteomics and metabolomics samples. MetaComp, an integrative software capable for applying to all meta-omics data, originally distills the influence of living environment on microbial community by regression analysis

  9. Genome sequence determination and metagenomic characterization of a Dehalococcoides mixed culture grown on cis-1,2-dichloroethene.

    Science.gov (United States)

    Yohda, Masafumi; Yagi, Osami; Takechi, Ayane; Kitajima, Mizuki; Matsuda, Hisashi; Miyamura, Naoaki; Aizawa, Tomoko; Nakajima, Mutsuyasu; Sunairi, Michio; Daiba, Akito; Miyajima, Takashi; Teruya, Morimi; Teruya, Kuniko; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Juan, Ayaka; Nakano, Kazuma; Aoyama, Misako; Terabayashi, Yasunobu; Satou, Kazuhito; Hirano, Takashi

    2015-07-01

    A Dehalococcoides-containing bacterial consortium that performed dechlorination of 0.20 mM cis-1,2-dichloroethene to ethene in 14 days was obtained from the sediment mud of the lotus field. To obtain detailed information of the consortium, the metagenome was analyzed using the short-read next-generation sequencer SOLiD 3. Matching the obtained sequence tags with the reference genome sequences indicated that the Dehalococcoides sp. in the consortium was highly homologous to Dehalococcoides mccartyi CBDB1 and BAV1. Sequence comparison with the reference sequence constructed from 16S rRNA gene sequences in a public database showed the presence of Sedimentibacter, Sulfurospirillum, Clostridium, Desulfovibrio, Parabacteroides, Alistipes, Eubacterium, Peptostreptococcus and Proteocatella in addition to Dehalococcoides sp. After further enrichment, the members of the consortium were narrowed down to almost three species. Finally, the full-length circular genome sequence of the Dehalococcoides sp. in the consortium, D. mccartyi IBARAKI, was determined by analyzing the metagenome with the single-molecule DNA sequencer PacBio RS. The accuracy of the sequence was confirmed by matching it to the tag sequences obtained by SOLiD 3. The genome is 1,451,062 nt and the number of CDS is 1566, which includes 3 rRNA genes and 47 tRNA genes. There exist twenty-eight RDase genes that are accompanied by the genes for anchor proteins. The genome exhibits significant sequence identity with other Dehalococcoides spp. throughout the genome, but there exists significant difference in the distribution RDase genes. The combination of a short-read next-generation DNA sequencer and a long-read single-molecule DNA sequencer gives detailed information of a bacterial consortium. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Metagenomic evidence for reciprocal particle exchange between the mainstem estuary and lateral bay sediments of the lower Columbia River

    Directory of Open Access Journals (Sweden)

    Mariya W Smith

    2015-10-01

    Full Text Available Lateral bays of the lower Columbia River estuary are areas of enhanced water retention that influence net ecosystem metabolism through activities of their diverse microbial communities. Metagenomic characterization of sediment microbiota from three disparate sites in two brackish lateral bays (Baker and Youngs produced approximately 100 Gbp of DNA sequence data analyzed subsequently for predicted SSU rRNA and peptide-coding genes. The metagenomes were dominated by Bacteria. A large component of Eukaryota was present in Youngs Bay samples, i.e. the inner bay sediment was enriched with the invasive New Zealand mudsnail, Potamopyrgus antipodarum, known for high ammonia production. The metagenome was also highly enriched with an archaeal ammonia oxidizer closely related to Nitrosoarchaeum limnia. Combined analysis of sequences and continuous, high-resolution time series of biogeochemical data from fixed and mobile platforms revealed the importance of large-scale reciprocal particle exchanges between the mainstem estuarine water column and lateral bay sediments. Deposition of marine diatom particles in sediments near Youngs Bay mouth was associated with a dramatic enrichment of Bacteroidetes (58% of total Bacteria and corresponding genes involved in phytoplankton polysaccharide degradation. The Baker Bay sediment metagenome contained abundant Archaea, including diverse methanogens, as well as functional genes for methylotrophy and taxonomic markers for syntrophic bacteria, suggesting that active methane cycling occurs at this location. Our previous work showed enrichments of similar anaerobic taxa in particulate matter of the mainstem estuarine water column. In total, our results identify the lateral bays as both sources and sinks of biogenic particles significantly impacting microbial community composition and biogeochemical activities in the estuary.

  11. Metabolic model for the filamentous ‘Candidatus Microthrix parvicella’ based on genomic and metagenomic analyses

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Kristiansen, Rikke; Albertsen, Mads

    2013-01-01

    acids as triacylglycerols. Utilisation of trehalose and/or polyphosphate stores or partial oxidation of long-chain fatty acids may supply the energy required for anaerobic lipid uptake and storage. Comparing the genome sequence of this isolate with metagenomes from two full-scale wastewater treatment...

  12. Draft Genome Sequences of Two Novel Acidimicrobiaceae Members from an Acid Mine Drainage Biofilm Metagenome

    OpenAIRE

    Pinto, Ameet J.; Sharp, Jonathan O.; Yoder, Michael J.; Almstrand, Robert

    2016-01-01

    Bacteria belonging to the family Acidimicrobiaceae are frequently encountered in heavy metal-contaminated acidic environments. However, their phylogenetic and metabolic diversity is poorly resolved. We present draft genome sequences of two novel and phylogenetically distinct Acidimicrobiaceae members assembled from an acid mine drainage biofilm metagenome.

  13. Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential

    Directory of Open Access Journals (Sweden)

    Richard Allen White III

    2015-09-01

    Full Text Available Within the subarctic climate of Clinton Creek, Yukon, Canada, lies an abandoned and flooded open-pit asbestos mine that harbors rapidly growing microbialites. To understand their formation we completed a metagenomic community profile of the microbialites and their surrounding sediments. Assembled metagenomic data revealed that bacteria within the phylum Proteobacteria numerically dominated this system, although the relative abundances of taxa within the phylum varied among environments. Bacteria belonging to Alphaproteobacteria and Gammaproteobacteria were dominant in the microbialites and sediments, respectively. The microbialites were also home to many other groups associated with microbialite formation including filamentous cyanobacteria and dissimilatory sulfate-reducing Deltaproteobacteria, consistent with the idea of a shared global microbialite microbiome. Other members were present that are typically not associated with microbialites including Gemmatimonadetes and iron-oxidizing Betaproteobacteria, which participate in carbon metabolism and iron cycling. Compared to the sediments, the microbialite microbiome has significantly more genes associated with photosynthetic processes (e.g., photosystem II reaction centers, carotenoid and chlorophyll biosynthesis and carbon fixation (e.g., CO dehydrogenase. The Clinton Creek microbialite communities had strikingly similar functional potentials to non-lithifying microbial mats from the Canadian High Arctic and Antarctica, but are functionally distinct, from non-lithifying mats or biofilms from Yellowstone. Clinton Creek microbialites also share metabolic genes (R2 0.900. These metagenomic profiles from an anthropogenic microbialite-forming ecosystem provide context to microbialite formation on a human-relevant timescale.

  14. Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes.

    Science.gov (United States)

    Becraft, Eric D; Dodsworth, Jeremy A; Murugapiran, Senthil K; Ohlsson, J Ingemar; Briggs, Brandon R; Kanbar, Jad; De Vlaminck, Iwijn; Quake, Stephen R; Dong, Hailiang; Hedlund, Brian P; Swingley, Wesley D

    2016-02-15

    The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This "microbial dark matter" represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum "Calescamantes" (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Metagenomic Analysis of Chicken Gut Microbiota for Improving Metabolism and Health of Chickens — A Review

    Directory of Open Access Journals (Sweden)

    Ki Young Choi

    2015-09-01

    Full Text Available Chicken is a major food source for humans, hence it is important to understand the mechanisms involved in nutrient absorption in chicken. In the gastrointestinal tract (GIT, the microbiota plays a central role in enhancing nutrient absorption and strengthening the immune system, thereby affecting both growth and health of chicken. There is little information on the diversity and functions of chicken GIT microbiota, its impact on the host, and the interactions between the microbiota and host. Here, we review the recent metagenomic strategies to analyze the chicken GIT microbiota composition and its functions related to improving metabolism and health. We summarize methodology of metagenomics in order to obtain bacterial taxonomy and functional inferences of the GIT microbiota and suggest a set of indicator genes for monitoring and manipulating the microbiota to promote host health in future.

  16. Putative bacterial interactions from metagenomic knowledge with an integrative systems ecology approach.

    Science.gov (United States)

    Bordron, Philippe; Latorre, Mauricio; Cortés, Maria-Paz; González, Mauricio; Thiele, Sven; Siegel, Anne; Maass, Alejandro; Eveillard, Damien

    2016-02-01

    Following the trend of studies that investigate microbial ecosystems using different metagenomic techniques, we propose a new integrative systems ecology approach that aims to decipher functional roles within a consortium through the integration of genomic and metabolic knowledge at genome scale. For the sake of application, using public genomes of five bacterial strains involved in copper bioleaching: Acidiphilium cryptum, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans, we first reconstructed a global metabolic network. Next, using a parsimony assumption, we deciphered sets of genes, called Sets from Genome Segments (SGS), that (1) are close on their respective genomes, (2) take an active part in metabolic pathways and (3) whose associated metabolic reactions are also closely connected within metabolic networks. Overall, this SGS paradigm depicts genomic functional units that emphasize respective roles of bacterial strains to catalyze metabolic pathways and environmental processes. Our analysis suggested that only few functional metabolic genes are horizontally transferred within the consortium and that no single bacterial strain can accomplish by itself the whole copper bioleaching. The use of SGS pinpoints a functional compartmentalization among the investigated species and exhibits putative bacterial interactions necessary for promoting these pathways. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water.

    Science.gov (United States)

    Shi, Peng; Jia, Shuyu; Zhang, Xu-Xiang; Zhang, Tong; Cheng, Shupei; Li, Aimin

    2013-01-01

    This study aimed to investigate the chlorination effects on microbial antibiotic resistance in a drinking water treatment plant. Biochemical identification, 16S rRNA gene cloning and metagenomic analysis consistently indicated that Proteobacteria were the main antibiotic resistant bacteria (ARB) dominating in the drinking water and chlorine disinfection greatly affected microbial community structure. After chlorination, higher proportion of the surviving bacteria was resistant to chloramphenicol, trimethoprim and cephalothin. Quantitative real-time PCRs revealed that sulI had the highest abundance among the antibiotic resistance genes (ARGs) detected in the drinking water, followed by tetA and tetG. Chlorination caused enrichment of ampC, aphA2, bla(TEM-1), tetA, tetG, ermA and ermB, but sulI was considerably removed (p water chlorination could concentrate various ARGs, as well as of plasmids, insertion sequences and integrons involved in horizontal transfer of the ARGs. Water pipeline transportation tended to reduce the abundance of most ARGs, but various ARB and ARGs were still present in the tap water, which deserves more public health concerns. The results highlighted prevalence of ARB and ARGs in chlorinated drinking water and this study might be technologically useful for detecting the ARGs in water environments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Metagenomic analysis of phosphorus removing sludgecommunities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Martin, Hector; Ivanova, Natalia; Kunin, Victor; Warnecke,Falk; Barry, Kerrie; McHardy, Alice C.; Yeates, Christine; He, Shaomei; Salamov, Asaf; Szeto, Ernest; Dalin, Eileen; Putnam, Nik; Shapiro, HarrisJ.; Pangilinan, Jasmyn L.; Rigoutsos, Isidore; Kyrpides, Nikos C.; Blackall, Linda Louise; McMahon, Katherine D.; Hugenholtz, Philip

    2006-02-01

    Enhanced Biological Phosphorus Removal (EBPR) is not wellunderstood at the metabolic level despite being one of the best-studiedmicrobially-mediated industrial processes due to its ecological andeconomic relevance. Here we present a metagenomic analysis of twolab-scale EBPR sludges dominated by the uncultured bacterium, "CandidatusAccumulibacter phosphatis." This analysis resolves several controversiesin EBPR metabolic models and provides hypotheses explaining the dominanceof A. phosphatis in this habitat, its lifestyle outside EBPR and probablecultivation requirements. Comparison of the same species from differentEBPR sludges highlights recent evolutionary dynamics in the A. phosphatisgenome that could be linked to mechanisms for environmental adaptation.In spite of an apparent lack of phylogenetic overlap in the flankingcommunities of the two sludges studied, common functional themes werefound, at least one of them complementary to the inferred metabolism ofthe dominant organism. The present study provides a much-needed blueprintfor a systems-level understanding of EBPR and illustrates thatmetagenomics enables detailed, often novel, insights into evenwell-studied biological systems.

  19. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing.

    Science.gov (United States)

    Thoendel, Matthew; Jeraldo, Patricio R; Greenwood-Quaintance, Kerryl E; Yao, Janet Z; Chia, Nicholas; Hanssen, Arlen D; Abdel, Matthew P; Patel, Robin

    2016-08-01

    Metagenomic whole genome sequencing for detection of pathogens in clinical samples is an exciting new area for discovery and clinical testing. A major barrier to this approach is the overwhelming ratio of human to pathogen DNA in samples with low pathogen abundance, which is typical of most clinical specimens. Microbial DNA enrichment methods offer the potential to relieve this limitation by improving this ratio. Two commercially available enrichment kits, the NEBNext Microbiome DNA Enrichment Kit and the Molzym MolYsis Basic kit, were tested for their ability to enrich for microbial DNA from resected arthroplasty component sonicate fluids from prosthetic joint infections or uninfected sonicate fluids spiked with Staphylococcus aureus. Using spiked uninfected sonicate fluid there was a 6-fold enrichment of bacterial DNA with the NEBNext kit and 76-fold enrichment with the MolYsis kit. Metagenomic whole genome sequencing of sonicate fluid revealed 13- to 85-fold enrichment of bacterial DNA using the NEBNext enrichment kit. The MolYsis approach achieved 481- to 9580-fold enrichment, resulting in 7 to 59% of sequencing reads being from the pathogens known to be present in the samples. These results demonstrate the usefulness of these tools when testing clinical samples with low microbial burden using next generation sequencing. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen

    NARCIS (Netherlands)

    Do, Huyen Thi; Dao, Khoa Trong; Nguyen, Viet Khanh Hoang; Le Ngoc, Giang; Nguyen, Phuong Thi Mai; Le, Lam Tung; Phung, Nguyet Thu; M. van Straalen, Nico; Roelofs, Dick; Truong, Hai Nam

    2017-01-01

    Objective: In a previous study, analysis of Illumina sequenced metagenomic DNA data of bacteria in Vietnamese goats' rumen showed a high diversity of putative lignocellulolytic genes. In this study, taxonomy speculation of microbial community and lignocellulolytic bacteria population in the rumen

  1. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy

    Directory of Open Access Journals (Sweden)

    William J. Brazelton

    2017-01-01

    Full Text Available The production of hydrogen and methane by geochemical reactions associated with the serpentinization of ultramafic rocks can potentially support subsurface microbial ecosystems independent of the photosynthetic biosphere. Methanogenic and methanotrophic microorganisms are abundant in marine hydrothermal systems heavily influenced by serpentinization, but evidence for methane-cycling archaea and bacteria in continental serpentinite springs has been limited. This report provides metagenomic and experimental evidence for active methanogenesis and methanotrophy by microbial communities in serpentinite springs of the Voltri Massif, Italy. Methanogens belonging to family Methanobacteriaceae and methanotrophic bacteria belonging to family Methylococcaceae were heavily enriched in three ultrabasic springs (pH 12. Metagenomic data also suggest the potential for hydrogen oxidation, hydrogen production, carbon fixation, fermentation, and organic acid metabolism in the ultrabasic springs. The predicted metabolic capabilities are consistent with an active subsurface ecosystem supported by energy and carbon liberated by geochemical reactions within the serpentinite rocks of the Voltri Massif.

  2. Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products.

    Science.gov (United States)

    Kang, Hahk-Soo

    2017-02-01

    Genomics-based methods are now commonplace in natural products research. A phylogeny-guided mining approach provides a means to quickly screen a large number of microbial genomes or metagenomes in search of new biosynthetic gene clusters of interest. In this approach, biosynthetic genes serve as molecular markers, and phylogenetic trees built with known and unknown marker gene sequences are used to quickly prioritize biosynthetic gene clusters for their metabolites characterization. An increase in the use of this approach has been observed for the last couple of years along with the emergence of low cost sequencing technologies. The aim of this review is to discuss the basic concept of a phylogeny-guided mining approach, and also to provide examples in which this approach was successfully applied to discover new natural products from microbial genomes and metagenomes. I believe that the phylogeny-guided mining approach will continue to play an important role in genomics-based natural products research.

  3. Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing

    Science.gov (United States)

    O’Donovan, Brian D.; Gelfand, Jeffrey M.; Sample, Hannah A.; Chow, Felicia C.; Betjemann, John P.; Shah, Maulik P.; Richie, Megan B.; Gorman, Mark P.; Hajj-Ali, Rula A.; Calabrese, Leonard H.; Zorn, Kelsey C.; Chow, Eric D.; Greenlee, John E.; Blum, Jonathan H.; Green, Gary; Khan, Lillian M.; Banerji, Debarko; Langelier, Charles; Bryson-Cahn, Chloe; Harrington, Whitney; Lingappa, Jairam R.; Shanbhag, Niraj M.; Green, Ari J.; Brew, Bruce J.; Soldatos, Ariane; Strnad, Luke; Doernberg, Sarah B.; Jay, Cheryl A.; Douglas, Vanja; Josephson, S. Andrew; DeRisi, Joseph L.

    2018-01-01

    Importance Identifying infectious causes of subacute or chronic meningitis can be challenging. Enhanced, unbiased diagnostic approaches are needed. Objective To present a case series of patients with diagnostically challenging subacute or chronic meningitis using metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) supported by a statistical framework generated from mNGS of control samples from the environment and from patients who were noninfectious. Design, Setting, and Participants In this case series, mNGS data obtained from the CSF of 94 patients with noninfectious neuroinflammatory disorders and from 24 water and reagent control samples were used to develop and implement a weighted scoring metric based on z scores at the species and genus levels for both nucleotide and protein alignments to prioritize and rank the mNGS results. Total RNA was extracted for mNGS from the CSF of 7 participants with subacute or chronic meningitis who were recruited between September 2013 and March 2017 as part of a multicenter study of mNGS pathogen discovery among patients with suspected neuroinflammatory conditions. The neurologic infections identified by mNGS in these 7 participants represented a diverse array of pathogens. The patients were referred from the University of California, San Francisco Medical Center (n = 2), Zuckerberg San Francisco General Hospital and Trauma Center (n = 2), Cleveland Clinic (n = 1), University of Washington (n = 1), and Kaiser Permanente (n = 1). A weighted z score was used to filter out environmental contaminants and facilitate efficient data triage and analysis. Main Outcomes and Measures Pathogens identified by mNGS and the ability of a statistical model to prioritize, rank, and simplify mNGS results. Results The 7 participants ranged in age from 10 to 55 years, and 3 (43%) were female. A parasitic worm (Taenia solium, in 2 participants), a virus (HIV-1), and 4 fungi (Cryptococcus neoformans

  4. A platform-independent method for detecting errors in metagenomic sequencing data: DRISEE.

    Directory of Open Access Journals (Sweden)

    Kevin P Keegan

    Full Text Available We provide a novel method, DRISEE (duplicate read inferred sequencing error estimation, to assess sequencing quality (alternatively referred to as "noise" or "error" within and/or between sequencing samples. DRISEE provides positional error estimates that can be used to inform read trimming within a sample. It also provides global (whole sample error estimates that can be used to identify samples with high or varying levels of sequencing error that may confound downstream analyses, particularly in the case of studies that utilize data from multiple sequencing samples. For shotgun metagenomic data, we believe that DRISEE provides estimates of sequencing error that are more accurate and less constrained by technical limitations than existing methods that rely on reference genomes or the use of scores (e.g. Phred. Here, DRISEE is applied to (non amplicon data sets from both the 454 and Illumina platforms. The DRISEE error estimate is obtained by analyzing sets of artifactual duplicate reads (ADRs, a known by-product of both sequencing platforms. We present DRISEE as an open-source, platform-independent method to assess sequencing error in shotgun metagenomic data, and utilize it to discover previously uncharacterized error in de novo sequence data from the 454 and Illumina sequencing platforms.

  5. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids

    Science.gov (United States)

    Jungbluth, Sean P.; Amend, Jan P.; Rappé, Michael S.

    2017-03-01

    The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet. This study takes advantage of new sampling technologies and couples them with improvements to DNA sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generated two metagenomes from borehole observatories located 311 meters apart and, using binning tools, retrieved 98 genomes from metagenomes (GFMs). Of the GFMs, 31 were estimated to be >90% complete, while an additional 17 were >70% complete. Phylogenomic analysis revealed 53 bacterial and 45 archaeal GFMs, of which nearly all were distantly related to known cultivated isolates. In the GFMs, abundant Bacteria included Chloroflexi, Nitrospirae, Acetothermia (OP1), EM3, Aminicenantes (OP8), Gammaproteobacteria, and Deltaproteobacteria, while abundant Archaea included Archaeoglobi, Bathyarchaeota (MCG), and Marine Benthic Group E (MBG-E). These data are the first GFMs reconstructed from the deep basaltic subseafloor biosphere, and provide a dataset available for further interrogation.

  6. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review.

    Science.gov (United States)

    Tiwari, Rameshwar; Nain, Lata; Labrou, Nikolaos E; Shukla, Pratyoosh

    2018-03-01

    Second generation biofuel production has been appeared as a sustainable and alternative energy option. The ultimate aim is the development of an industrially feasible and economic conversion process of lignocellulosic biomass into biofuel molecules. Since, cellulose is the most abundant biopolymer and also represented as the photosynthetically fixed form of carbon, the efficient hydrolysis of cellulose is the most important step towards the development of a sustainable biofuel production process. The enzymatic hydrolysis of cellulose by suites of hydrolytic enzymes underlines the importance of cellulase enzyme system in whole hydrolysis process. However, the selection of the suitable cellulolytic enzymes with enhanced activities remains a challenge for the biorefinery industry to obtain efficient enzymatic hydrolysis of biomass. The present review focuses on deciphering the novel and effective cellulases from different environmental niches by unculturable metagenomic approaches. Furthermore, a comprehensive functional aspect of cellulases is also presented and evaluated by assessing the structural and catalytic properties as well as sequence identities and expression patterns. This review summarizes the recent development in metagenomics based approaches for identifying and exploring novel cellulases which open new avenues for their successful application in biorefineries.

  7. A metagenomic survey of viral abundance and diversity in mosquitoes from Hubei province.

    Directory of Open Access Journals (Sweden)

    Chenyan Shi

    Full Text Available Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process.

  8. A Metagenomic Survey of Viral Abundance and Diversity in Mosquitoes from Hubei Province

    Science.gov (United States)

    Shi, Chenyan; Liu, Yi; Hu, Xiaomin; Xiong, Jinfeng; Zhang, Bo; Yuan, Zhiming

    2015-01-01

    Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process. PMID:26030271

  9. Metagenomic insights into ultraviolet disinfection effects on antibiotic resistome in biologically treated wastewater.

    Science.gov (United States)

    Hu, Qing; Zhang, Xu-Xiang; Jia, Shuyu; Huang, Kailong; Tang, Junying; Shi, Peng; Ye, Lin; Ren, Hongqiang

    2016-09-15

    High-throughput sequencing-based metagenomic approaches were used to comprehensively investigate ultraviolet effects on the microbial community structure, and diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in biologically treated wastewater. After ultraviolet radiation, some dominant genera, like Aeromonas and Halomonas, in the wastewater almost disappeared, while the relative abundance of some minor genera including Pseudomonas and Bacillus increased dozens of times. Metagenomic analysis showed that 159 ARGs within 14 types were detectable in the samples, and the radiation at 500 mJ/cm(2) obviously increased their total relative abundance from 31.68 ppm to 190.78 ppm, which was supported by quantitative real time PCR. As the dominant persistent ARGs, multidrug resistance genes carried by Pseudomonas and bacitracin resistance gene bacA carried by Bacillus mainly contributed to the ARGs abundance increase. Bacterial community shift and MGEs replication induced by the radiation might drive the resistome alteration. The findings may shed new light on the mechanism behind the ultraviolet radiation effects on antibiotic resistance in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas; Harmon-Smith, Miranda; Doud, Devin; Reddy, T. B. K.; Schulz, Frederik; Jarett, Jessica; Rivers, Adam R.; Eloe-Fadrosh, Emiley A.; Tringe, Susannah G.; Ivanova, Natalia N.; Copeland, Alex; Clum, Alicia; Becraft, Eric D.; Malmstrom, Rex R.; Birren, Bruce; Podar, Mircea; Bork, Peer; Weinstock, George M.; Garrity, George M.; Dodsworth, Jeremy A.; Yooseph, Shibu; Sutton, Granger; Glöckner, Frank O.; Gilbert, Jack A.; Nelson, William C.; Hallam, Steven J.; Jungbluth, Sean P.; Ettema, Thijs J. G.; Tighe, Scott; Konstantinidis, Konstantinos T.; Liu, Wen-Tso; Baker, Brett J.; Rattei, Thomas; Eisen, Jonathan A.; Hedlund, Brian; McMahon, Katherine D.; Fierer, Noah; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Tyson, Gene W.; Rinke, Christian; Kyrpides, Nikos C.; Schriml, Lynn; Garrity, George M.; Hugenholtz, Philip; Sutton, Granger; Yilmaz, Pelin; Meyer, Folker; Glöckner, Frank O.; Gilbert, Jack A.; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Lapidus, Alla; Meyer, Folker; Yilmaz, Pelin; Parks, Donovan H.; Eren, A. M.; Schriml, Lynn; Banfield, Jillian F.; Hugenholtz, Philip; Woyke, Tanja

    2017-08-08

    We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.

  11. myPhyloDB: a local web server for the storage and analysis of metagenomics data

    Science.gov (United States)

    myPhyloDB is a user-friendly personal database with a browser-interface designed to facilitate the storage, processing, analysis, and distribution of metagenomics data. MyPhyloDB archives raw sequencing files, and allows for easy selection of project(s)/sample(s) of any combination from all availab...

  12. Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis.

    Science.gov (United States)

    Luo, Gang; Fotidis, Ioannis A; Angelidaki, Irini

    2016-01-01

    Biogas production is a very complex process due to the high complexity in diversity and interactions of the microorganisms mediating it, and only limited and diffuse knowledge exists about the variation of taxonomic and functional patterns of microbiomes across different biogas reactors, and their relationships with the metabolic patterns. The present study used metagenomic sequencing and radioisotopic analysis to assess the taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors operated under various conditions treating either sludge or manure. The results from metagenomic analysis showed that the dominant methanogenic pathway revealed by radioisotopic analysis was not always correlated with the taxonomic and functional compositions. It was found by radioisotopic experiments that the aceticlastic methanogenic pathway was dominant, while metagenomics analysis showed higher relative abundance of hydrogenotrophic methanogens. Principal coordinates analysis showed the sludge-based samples were clearly distinct from the manure-based samples for both taxonomic and functional patterns, and canonical correspondence analysis showed that the both temperature and free ammonia were crucial environmental variables shaping the taxonomic and functional patterns. The study further the overall patterns of functional genes were strongly correlated with overall patterns of taxonomic composition across different biogas reactors. The discrepancy between the metabolic patterns determined by metagenomic analysis and metabolic pathways determined by radioisotopic analysis was found. Besides, a clear correlation between taxonomic and functional patterns was demonstrated for biogas reactors, and also the environmental factors that shaping both taxonomic and functional genes patterns were identified.

  13. Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library

    Directory of Open Access Journals (Sweden)

    Parachin Nádia

    2011-05-01

    Full Text Available Abstract Background Xylose isomerase (XI catalyses the isomerisation of xylose to xylulose in bacteria and some fungi. Currently, only a limited number of XI genes have been functionally expressed in Saccharomyces cerevisiae, the microorganism of choice for lignocellulosic ethanol production. The objective of the present study was to search for novel XI genes in the vastly diverse microbial habitat present in soil. As the exploitation of microbial diversity is impaired by the ability to cultivate soil microorganisms under standard laboratory conditions, a metagenomic approach, consisting of total DNA extraction from a given environment followed by cloning of DNA into suitable vectors, was undertaken. Results A soil metagenomic library was constructed and two screening methods based on protein sequence similarity and enzyme activity were investigated to isolate novel XI encoding genes. These two screening approaches identified the xym1 and xym2 genes, respectively. Sequence and phylogenetic analyses revealed that the genes shared 67% similarity and belonged to different bacterial groups. When xym1 and xym2 were overexpressed in a xylA-deficient Escherichia coli strain, similar growth rates to those in which the Piromyces XI gene was expressed were obtained. However, expression in S. cerevisiae resulted in only one-fourth the growth rate of that obtained for the strain expressing the Piromyces XI gene. Conclusions For the first time, the screening of a soil metagenomic library in E. coli resulted in the successful isolation of two active XIs. However, the discrepancy between XI enzyme performance in E. coli and S. cerevisiae suggests that future screening for XI activity from soil should be pursued directly using yeast as a host.

  14. 78 FR 43258 - Privacy Act; System of Records: Human Resources Records, State-31

    Science.gov (United States)

    2013-07-19

    ... DEPARTMENT OF STATE [Public Notice 8384] Privacy Act; System of Records: Human Resources Records... system of records, Human Resources Records, State- 31, pursuant to the provisions of the Privacy Act of... State proposes that the current system will retain the name ``Human Resources Records'' (previously...

  15. Draft Genome Sequence of a Novel Desulfobacteraceae Member from a Sulfate-Reducing Bioreactor Metagenome

    OpenAIRE

    Almstrand, Robert; Pinto, Ameet J.; Figueroa, Linda A.; Sharp, Jonathan O.

    2016-01-01

    Sulfate-reducing bacteria are important players in the global sulfur cycle and of considerable commercial interest. The draft genome sequence of a sulfate-reducing bacterium of the family Desulfobacteraceae, assembled from a sulfate-reducing bioreactor metagenome, indicates that heavy-metal? and acid-resistance traits of this organism may be of importance for its application in acid mine drainage mitigation.

  16. The role of records management as a tool to identify risks in the public sector in South Africa

    Directory of Open Access Journals (Sweden)

    Mpho Ngoepe

    2014-06-01

    Objectives: The study utilised the King III report on corporate governance in South Africa as a framework to investigate the role of records management in identifying risks in the public sector, with a view to entrench the synergy between records management and risk management. Method: Quantitative data were collected through questionnaires distributed to records managers, risk managers and auditors in governmental bodies in South Africa. Provisions of the King III report, guided the research objectives. Results: Even though the study established that there is a reciprocal relationship between risk identification and records management, most governmental bodies in South Africa lack records management and risk-mitigating frameworks or strategy. Furthermore, records management did not feature in most governmental bodies’ risk registers. It has been established that most governmental bodies have established risk committees that do not include records management practitioners. In most governmental bodies, risk management resides within internal audit functions. Conclusion: The study concludes by arguing that a strong records management regime can be one of an organisation’s primary tools in identifying risks and implementing proper risk management. Therefore, records management should be integrated with risk management processes for organisations to benefit from the synergy.

  17. MetaGenSense: A web-application for analysis and exploration of high throughput sequencing metagenomic data [version 3; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Damien Correia

    2016-12-01

    Full Text Available The detection and characterization of emerging infectious agents has been a continuing public health concern. High Throughput Sequencing (HTS or Next-Generation Sequencing (NGS technologies have proven to be promising approaches for efficient and unbiased detection of pathogens in complex biological samples, providing access to comprehensive analyses. As NGS approaches typically yield millions of putatively representative reads per sample, efficient data management and visualization resources have become mandatory. Most usually, those resources are implemented through a dedicated Laboratory Information Management System (LIMS, solely to provide perspective regarding the available information. We developed an easily deployable web-interface, facilitating management and bioinformatics analysis of metagenomics data-samples. It was engineered to run associated and dedicated Galaxy workflows for the detection and eventually classification of pathogens. The web application allows easy interaction with existing Galaxy metagenomic workflows, facilitates the organization, exploration and aggregation of the most relevant sample-specific sequences among millions of genomic sequences, allowing them to determine their relative abundance, and associate them to the most closely related organism or pathogen. The user-friendly Django-Based interface, associates the users’ input data and its metadata through a bio-IT provided set of resources (a Galaxy instance, and both sufficient storage and grid computing power. Galaxy is used to handle and analyze the user’s input data from loading, indexing, mapping, assembly and DB-searches. Interaction between our application and Galaxy is ensured by the BioBlend library, which gives API-based access to Galaxy’s main features. Metadata about samples, runs, as well as the workflow results are stored in the LIMS. For metagenomic classification and exploration purposes, we show, as a proof of concept, that integration

  18. Genome Assembly Forensics: Metrics for Assessing Assembly Correctness (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Pop, Mihai

    2011-10-13

    University of Maryland's Mihai Pop on Genome Assembly Forensics: Metrics for Assessing Assembly Correctness at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  19. Profile hidden Markov models for the detection of viruses within metagenomic sequence data.

    Directory of Open Access Journals (Sweden)

    Peter Skewes-Cox

    Full Text Available Rapid, sensitive, and specific virus detection is an important component of clinical diagnostics. Massively parallel sequencing enables new diagnostic opportunities that complement traditional serological and PCR based techniques. While massively parallel sequencing promises the benefits of being more comprehensive and less biased than traditional approaches, it presents new analytical challenges, especially with respect to detection of pathogen sequences in metagenomic contexts. To a first approximation, the initial detection of viruses can be achieved simply through alignment of sequence reads or assembled contigs to a reference database of pathogen genomes with tools such as BLAST. However, recognition of highly divergent viral sequences is problematic, and may be further complicated by the inherently high mutation rates of some viral types, especially RNA viruses. In these cases, increased sensitivity may be achieved by leveraging position-specific information during the alignment process. Here, we constructed HMMER3-compatible profile hidden Markov models (profile HMMs from all the virally annotated proteins in RefSeq in an automated fashion using a custom-built bioinformatic pipeline. We then tested the ability of these viral profile HMMs ("vFams" to accurately classify sequences as viral or non-viral. Cross-validation experiments with full-length gene sequences showed that the vFams were able to recall 91% of left-out viral test sequences without erroneously classifying any non-viral sequences into viral protein clusters. Thorough reanalysis of previously published metagenomic datasets with a set of the best-performing vFams showed that they were more sensitive than BLAST for detecting sequences originating from more distant relatives of known viruses. To facilitate the use of the vFams for rapid detection of remote viral homologs in metagenomic data, we provide two sets of vFams, comprising more than 4,000 vFams each, in the HMMER3

  20. Novel high-performance metagenome β-galactosidases for lactose hydrolysis in the dairy industry.

    Science.gov (United States)

    Erich, Sarah; Kuschel, Beatrice; Schwarz, Thilo; Ewert, Jacob; Böhmer, Nico; Niehaus, Frank; Eck, Jürgen; Lutz-Wahl, Sabine; Stressler, Timo; Fischer, Lutz

    2015-09-20

    The industrially utilised β-galactosidases from Kluyveromyces spp. and Aspergillus spp. feature undesirable kinetic properties in praxis, such as an unsatisfactory lactose affinity (KM) and product inhibition (KI) by galactose. In this study, a metagenome library of about 1.3 million clones was investigated with a three-step activity-based screening strategy in order to find new β-galactosidases with more favourable kinetic properties. Six novel metagenome β-galactosidases (M1-M6) were found with an improved lactose hydrolysis performance in original milk when directly compared to the commercial β-galactosidase from Kluyveromyces lactis (GODO-YNL2). The best metagenome candidate, called "M1", was recombinantly produced in Escherichia coli BL21(DE3) in a bioreactor (volume 35 L), resulting in a total β-galactosidase M1 activity of about 1100 μkatoNPGal,37 °C L(-1). Since milk is a sensitive and complex medium, it has to be processed at 5-10 °C in the dairy industry. Therefore, the β-galactosidase M1 was tested at 8 °C in milk and possessed a good stability (t1/2=21.8 d), a desirably low apparent KM,lactose,8 °C value of 3.8±0.7 mM and a high apparent KI,galactose,8 °C value of 196.6±55.5 mM. A lactose hydrolysis process (milk, 40 nkatlactose mLmilk,8 °C(-1)) was conducted at a scale of 0.5L to compare the performance of M1 with the commercial β-galactosidase from K. lactis (GODO-YNL2). Lactose was completely (>99.99%) hydrolysed by M1 and to 99.6% (w/v) by K. lactis β-galactosidase after 25 h process time. Thus, M1 was able to achieve the limit of lactose per litre milk, which is recommended for dairy products labelled as "lactose-free". Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. A Metagenomic Survey of Serpentinites and Nearby Soils in Taiwan

    Science.gov (United States)

    Li, K. Y.; Hsu, Y. W.; Chen, Y. W.; Huang, T. Y.; Shih, Y. J.; Chen, J. S.; Hsu, B. M.

    2016-12-01

    The serpentinite of Taiwan is originated from the subduction zone of the Eurasian plate and the Philippine Sea plate. Many small bodies of serpentinite are scattered around the lands of the East Rift Valley, which are also one of the major agricultural areas in Taiwan. Since microbial communities play a role both on weathering process and soil recovery, uncovering the microbial compositions in serpentinites and surrounding soils may help people to understand the roles of microorganisms on serpentinites during the nature weathering process. In this study, microorganisms growing on the surface of serpentinites, in the surrounding soil, and agriculture soils that are miles of horizontal distance away from serpentinite were collected. Next generation sequencing (NGS) was carried out to examine the metagenomics of uncultured microbial community in these samples. The metagenomics were further clustered into operational taxonomic units (OTUs) to analyze relative abundance, heatmap of OTUs, and principal coordinates analysis (PCoA). Our data revealed the different types of geographic material had their own distinct structures of microbial community. In serpentinites, the heatmaps based on the phylogenetic pattern showed that the OTUs distributions were similar in phyla of Bacteroidetes, Cyanobacteria, Proteobacteria, Verrucomicrobia, and WPS-1/WPS-2. On the other hand, the heatmaps of phylogenetic pattern of agriculture soils showed that the OTUs distributions in phyla of Chloroflexi, Acidobacteria, Actinobacteria, WPS-1/WPS-2, and Proteobacteria were similar. In soil nearby the serpentinite, some clusters of OTUs in phyla of Bacteroidetes, Cyanobacteria, and WPS-1/WPS-2 have disappeared. Our data provided evidence regarding kinetic evolutions of microbial communities in different geographic materials.

  2. Memory Efficient Sequence Analysis Using Compressed Data Structures (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Jared

    2011-10-13

    Wellcome Trust Sanger Institute's Jared Simpson on Memory efficient sequence analysis using compressed data structures at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  3. Computational prediction of CRISPR cassettes in gut metagenome samples from Chinese type-2 diabetic patients and healthy controls.

    Science.gov (United States)

    Mangericao, Tatiana C; Peng, Zhanhao; Zhang, Xuegong

    2016-01-11

    CRISPR has been becoming a hot topic as a powerful technique for genome editing for human and other higher organisms. The original CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats coupled with CRISPR-associated proteins) is an important adaptive defence system for prokaryotes that provides resistance against invading elements such as viruses and plasmids. A CRISPR cassette contains short nucleotide sequences called spacers. These unique regions retain a history of the interactions between prokaryotes and their invaders in individual strains and ecosystems. One important ecosystem in the human body is the human gut, a rich habitat populated by a great diversity of microorganisms. Gut microbiomes are important for human physiology and health. Metagenome sequencing has been widely applied for studying the gut microbiomes. Most efforts in metagenome study has been focused on profiling taxa compositions and gene catalogues and identifying their associations with human health. Less attention has been paid to the analysis of the ecosystems of microbiomes themselves especially their CRISPR composition. We conducted a preliminary analysis of CRISPR sequences in a human gut metagenomic data set of Chinese individuals of type-2 diabetes patients and healthy controls. Applying an available CRISPR-identification algorithm, PILER-CR, we identified 3169 CRISPR cassettes in the data, from which we constructed a set of 1302 unique repeat sequences and 36,709 spacers. A more extensive analysis was made for the CRISPR repeats: these repeats were submitted to a more comprehensive clustering and classification using the web server tool CRISPRmap. All repeats were compared with known CRISPRs in the database CRISPRdb. A total of 784 repeats had matches in the database, and the remaining 518 repeats from our set are potentially novel ones. The computational analysis of CRISPR composition based contigs of metagenome sequencing data is feasible. It provides an efficient

  4. Willingness to share personal health record data for care improvement and public health: a survey of experienced personal health record users

    Directory of Open Access Journals (Sweden)

    Weitzman Elissa R

    2012-05-01

    Full Text Available Abstract Background Data stored in personally controlled health records (PCHRs may hold value for clinicians and public health entities, if patients and their families will share them. We sought to characterize consumer willingness and unwillingness (reticence to share PCHR data across health topics, and with different stakeholders, to advance understanding of this issue. Methods Cross-sectional 2009 Web survey of repeat PCHR users who were patients over 18 years old or parents of patients, to assess willingness to share their PCHR data with an-out-of-hospital provider to support care, and the state/local public health authority to support monitoring; the odds of reticence to share PCHR information about ten exemplary health topics were estimated using a repeated measures approach. Results Of 261 respondents (56% response rate, more reported they would share all information with the state/local public health authority (63.3% than with an out-of-hospital provider (54.1% (OR 1.5, 95% CI 1.1, 1.9; p = .005; few would not share any information with these parties (respectively, 7.9% and 5.2%. For public health sharing, reticence was higher for most topics compared to contagious illness (ORs 4.9 to 1.4, all p-values  Conclusions Pediatric patients and their families are often willing to share electronic health information to support health improvement, but remain cautious. Robust trust models for PCHR sharing are needed.

  5. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Almeida, Mathieu; Juncker, Agnieszka

    2014-01-01

    of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify...

  6. Diagnosis of Fatal Human Case of St. Louis Encephalitis Virus Infection by Metagenomic Sequencing, California, 2016.

    Science.gov (United States)

    Chiu, Charles Y; Coffey, Lark L; Murkey, Jamie; Symmes, Kelly; Sample, Hannah A; Wilson, Michael R; Naccache, Samia N; Arevalo, Shaun; Somasekar, Sneha; Federman, Scot; Stryke, Doug; Vespa, Paul; Schiller, Gary; Messenger, Sharon; Humphries, Romney; Miller, Steve; Klausner, Jeffrey D

    2017-10-01

    We used unbiased metagenomic next-generation sequencing to diagnose a fatal case of meningoencephalitis caused by St. Louis encephalitis virus in a patient from California in September 2016. This case is associated with the recent 2015-2016 reemergence of this virus in the southwestern United States.

  7. Metagenomic exploration of viruses throughout the Indian Ocean.

    Directory of Open Access Journals (Sweden)

    Shannon J Williamson

    Full Text Available The characterization of global marine microbial taxonomic and functional diversity is a primary goal of the Global Ocean Sampling Expedition. As part of this study, 19 water samples were collected aboard the Sorcerer II sailing vessel from the southern Indian Ocean in an effort to more thoroughly understand the lifestyle strategies of the microbial inhabitants of this ultra-oligotrophic region. No investigations of whole virioplankton assemblages have been conducted on waters collected from the Indian Ocean or across multiple size fractions thus far. Therefore, the goals of this study were to examine the effect of size fractionation on viral consortia structure and function and understand the diversity and functional potential of the Indian Ocean virome. Five samples were selected for comprehensive metagenomic exploration; and sequencing was performed on the microbes captured on 3.0-, 0.8- and 0.1 µm membrane filters as well as the viral fraction (<0.1 µm. Phylogenetic approaches were also used to identify predicted proteins of viral origin in the larger fractions of data from all Indian Ocean samples, which were included in subsequent metagenomic analyses. Taxonomic profiling of viral sequences suggested that size fractionation of marine microbial communities enriches for specific groups of viruses within the different size classes and functional characterization further substantiated this observation. Functional analyses also revealed a relative enrichment for metabolic proteins of viral origin that potentially reflect the physiological condition of host cells in the Indian Ocean including those involved in nitrogen metabolism and oxidative phosphorylation. A novel classification method, MGTAXA, was used to assess virus-host relationships in the Indian Ocean by predicting the taxonomy of putative host genera, with Prochlorococcus, Acanthochlois and members of the SAR86 cluster comprising the most abundant predictions. This is the first study

  8. Extent of ICT Application in the Management of Administrative and Student Personnel Records in the Public Universities in Enugu State, Nigeria

    Science.gov (United States)

    Chidobi, Roseline Unoma

    2015-01-01

    The purpose of the study is to identify the extent of ICT application in management of administrative and student personnel record in the public universities in Enugu state. The study was a survey research the quantitative data were collected through a 20-item questionnaire title "Extent of ICT Application in Record management"…

  9. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  10. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  11. Technical Report: Algorithm and Implementation for Quasispecies Abundance Inference with Confidence Intervals from Metagenomic Sequence Data

    Energy Technology Data Exchange (ETDEWEB)

    McLoughlin, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-11

    This report describes the design and implementation of an algorithm for estimating relative microbial abundances, together with confidence limits, using data from metagenomic DNA sequencing. For the background behind this project and a detailed discussion of our modeling approach for metagenomic data, we refer the reader to our earlier technical report, dated March 4, 2014. Briefly, we described a fully Bayesian generative model for paired-end sequence read data, incorporating the effects of the relative abundances, the distribution of sequence fragment lengths, fragment position bias, sequencing errors and variations between the sampled genomes and the nearest reference genomes. A distinctive feature of our modeling approach is the use of a Chinese restaurant process (CRP) to describe the selection of genomes to be sampled, and thus the relative abundances. The CRP component is desirable for fitting abundances to reads that may map ambiguously to multiple targets, because it naturally leads to sparse solutions that select the best representative from each set of nearly equivalent genomes.

  12. Metagenomic profiling of a microbial assemblage associated with the California mussel: a node in networks of carbon and nitrogen cycling.

    Directory of Open Access Journals (Sweden)

    Catherine A Pfister

    2010-05-01

    Full Text Available Mussels are conspicuous and often abundant members of rocky shores and may constitute an important site for the nitrogen cycle due to their feeding and excretion activities. We used shotgun metagenomics of the microbial community associated with the surface of mussels (Mytilus californianus on Tatoosh Island in Washington state to test whether there is a nitrogen-based microbial assemblage associated with mussels. Analyses of both tidepool mussels and those on emergent benches revealed a diverse community of Bacteria and Archaea with approximately 31 million bp from 6 mussels in each habitat. Using MG-RAST, between 22.5-25.6% were identifiable using the SEED non-redundant database for proteins. Of those fragments that were identifiable through MG-RAST, the composition was dominated by Cyanobacteria and Alpha- and Gamma-proteobacteria. Microbial composition was highly similar between the tidepool and emergent bench mussels, suggesting similar functions across these different microhabitats. One percent of the proteins identified in each sample were related to nitrogen cycling. When normalized to protein discovery rate, the high diversity and abundance of enzymes related to the nitrogen cycle in mussel-associated microbes is as great or greater than that described for other marine metagenomes. In some instances, the nitrogen-utilizing profile of this assemblage was more concordant with soil metagenomes in the Midwestern U.S. than for open ocean system. Carbon fixation and Calvin cycle enzymes further represented 0.65 and 1.26% of all proteins and their abundance was comparable to a number of open ocean marine metagenomes. In sum, the diversity and abundance of nitrogen and carbon cycle related enzymes in the microbes occupying the shells of Mytilus californianus suggest these mussels provide a node for microbial populations and thus biogeochemical processes.

  13. MetaPhinder-Identifying Bacteriophage Sequences in Metagenomic Data Sets

    DEFF Research Database (Denmark)

    Jurtz, Vanessa Isabell; Villarroel, Julia; Lund, Ole

    2016-01-01

    genome structure of many bacteriophages. The method is demonstrated to outperform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source...... and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e. contigs) of phage origin in metage-nomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic...... code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder....

  14. Elucidation of Taste- and Odor-Producing Bacteria and Toxigenic Cyanobacteria in a Midwestern Drinking Water Supply Reservoir by Shotgun Metagenomic Analysis.

    Science.gov (United States)

    Otten, Timothy G; Graham, Jennifer L; Harris, Theodore D; Dreher, Theo W

    2016-09-01

    While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp., Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R(2) = 0.71) and microcystin (adjusted R(2) = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems. Cyanobacterial toxins and microbial taste-and-odor compounds are a growing concern for drinking water utilities reliant upon surface water resources. Specific

  15. Elucidation of taste- and odor-producing bacteria and toxigenic cyanobacteria in a Midwestern drinking water supply reservoir by shotgun metagenomics analysis

    Science.gov (United States)

    Otten, Timothy; Graham, Jennifer L.; Harris, Theodore D.; Dreher, Theo

    2016-01-01

    While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp.,Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R2 = 0.71) and microcystin (adjusted R2 = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems.

  16. A viral metagenomic approach on a nonmetagenomic experiment

    DEFF Research Database (Denmark)

    Bovo, Samuele; Mazzoni, Gianluca; Ribani, Anisa

    2017-01-01

    Shot-gun next generation sequencing (NGS) on whole DNA extracted from specimens collected from mammals often produces reads that are not mapped (i.e. unmapped reads) on the host reference genome and that are usually discarded as by-products of the experiments. In this study, we mined Ion Torrent...... reads obtained by sequencing DNA isolated from archived blood samples collected from 100 performance tested Italian Large White pigs. Two reduced representation libraries were prepared from two DNA pools constructed each from 50 equimolar DNA samples. Bioinformatic analyses were carried out to mine...... unmapped reads on the reference pig genome that were obtained from the two NGS datasets. In silico analyses included read mapping and sequence assembly approaches for a viral metagenomic analysis using the NCBI Viral Genome Resource. Our approach identified sequences matching several viruses...

  17. 26 CFR 601.702 - Publication, public inspection, and specific requests for records.

    Science.gov (United States)

    2010-04-01

    ... request for records, if any, or has made payment in advance of the fee estimated to be due. If the... section, or (C) Payment in advance has been received from the requester. (8) Search for records requested... section 501(c) or (d) and determined to be exempt from taxation under section 501(a), and any letter or...

  18. The metagenome-derived enzymes LipS and LipT increase the diversity of known lipases.

    Directory of Open Access Journals (Sweden)

    Jennifer Chow

    Full Text Available Triacylglycerol lipases (EC 3.1.1.3 catalyze both hydrolysis and synthesis reactions with a broad spectrum of substrates rendering them especially suitable for many biotechnological applications. Most lipases used today originate from mesophilic organisms and are susceptible to thermal denaturation whereas only few possess high thermotolerance. Here, we report on the identification and characterization of two novel thermostable bacterial lipases identified by functional metagenomic screenings. Metagenomic libraries were constructed from enrichment cultures maintained at 65 to 75 °C and screened resulting in the identification of initially 10 clones with lipolytic activities. Subsequently, two ORFs were identified encoding lipases, LipS and LipT. Comparative sequence analyses suggested that both enzymes are members of novel lipase families. LipS is a 30.2 kDa protein and revealed a half-life of 48 h at 70 °C. The lipT gene encoded for a multimeric enzyme with a half-life of 3 h at 70 °C. LipS had an optimum temperature at 70 °C and LipT at 75 °C. Both enzymes catalyzed hydrolysis of long-chain (C(12 and C(14 fatty acid esters and additionally hydrolyzed a number of industry-relevant substrates. LipS was highly specific for (R-ibuprofen-phenyl ester with an enantiomeric excess (ee of 99%. Furthermore, LipS was able to synthesize 1-propyl laurate and 1-tetradecyl myristate at 70 °C with rates similar to those of the lipase CalB from Candida antarctica. LipS represents the first example of a thermostable metagenome-derived lipase with significant synthesis activities. Its X-ray structure was solved with a resolution of 1.99 Å revealing an unusually compact lid structure.

  19. 22 CFR 212.32 - Identification of records.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Identification of records. 212.32 Section 212.32 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT PUBLIC INFORMATION Access to Agency Records § 212.32 Identification of records. The request for a record by a member of the public must contain a...

  20. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    Science.gov (United States)

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.